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Abstract

Currently one of the most exciting problems in cosmology is the nature of dark en-

ergy, which is responsible for the late time accelerated expansion of the universe. Dark

energy modifies the distance-redshift relation, and governs the late time evolution of

gravitational potentials in the universe. Therefore by observing large scale structure

we can gain valuable information on the nature of dark energy. In this thesis we ex-

amine a particular theory of dark energy, known as elastic dark energy. Using weak

lensing and the ISW effect, coupled with CMB and SNIa data, we find lower bounds

for the sound speed of elastic dark energy. We also explore how this model behaves in

the presence of collapsing matter.
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1

Introduction

Cosmology, the study of the Universe, is a relatively modernscience that has in re-

cent times seen an explosion in interest due to new and exciting observational results

and theories. Physical cosmology attempts to explain why our Universe looks and be-

haves the way it does, by tying astronomical observations with other disciplines within

physics such as general relativity, astrophysics, and particle physics. Our understand-

ing of the universe and our place within it has come along way.In the Second Century

the astronomer and mathematician Clauidus Ptolemy published his Almagest, which,

using a geocentric model, discussed the motions of the planets and background stars.

This idea of the Earth at the centre of the Universe remained popular in European soci-

ety for over a thousand years. It wasn’t until Nicolaus Copernicus published his work

on a heliocentric model, in 1543, that the model of Ptolemy was superseded. Further

work, notably by Johannes Kepler and Issac Newton in the 17thCentury, showed that

the planets moved on elliptical orbits around the Sun, and that the mechanism respon-

sible was gravity. In the early part of the 20th Century the astronomer Edwin Hubble

discovered that the Cepheid variable stars he was observingwere located outside the

Milky Way, in other galaxies. He was able to show a relationship between the distance

of these Cepheid variables and the redshift of the galaxies they inhabited. Generally

the further the galaxy, the larger the observed redshift, inother words Hubble showed

that the Universe was expanding. A few years later, Fritz Zwicky proposed the idea of
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a new type of matter, called dark matter, to account for the missing matter necessary

to explain measured galaxy rotation curves. Following the discovery of an expanding

universe, the two big theories of cosmology that emerged were the steady state theory,

in which new matter is created as the Universe expands, meaning the Universe looks

the same at every point in time, and the big bang model, in which the Universe began

life as a singularity which underwent a rapid expansion and continues to expand today.

George Gamow predicted that a big bang would leave the universe bathed in a back-

ground radiation, which would posses a blackbody spectrum and be isotropic. In 1964

this Cosmic Microwave Background (CMB) was detected by ArnoPenzias and Robert

Wilson, and with this, the hot big bang model was establishedas the most popular

cosmological theory of our Universe. This model explains, the origins of the CMB,

nucleosynthesis of the light elements (deuterium, helium-3, helium-4, and lithium),

the expansion of the Universe, and the formation of large scale structure. Just before

the turn of the 21th Century, it was observed by two independent groups (Riess et al.

(1998), and Perlmutter et al. (1999)) that the Universe appeared to have recently en-

tered a period of accelerated expansion. The cause of this acceleration is unknown,

and the term dark energy was coined to describe the collective theories put forward to

explain it. One of the more popular theories is theΛCDM model which consists of

a universe currently dominated by a cosmological constant,Λ, while also containing

cold dark matter (CDM), baryonic matter, and radiation. A model, which is spatially

flat, containing≈ 73% dark energy,≈ 23% CDM, and≈ 4% baroyinc matter, is some-

times known as the Cosmic Concordance Model (CCM), due to theagreement between

many independent astronomical measurements. While this models predictions match

observational measurements, it is not without its problems, which leaves the door open

for many other theories that aim to improve upon theΛCDM model. The area of dark

energy is now a subject in its own right within cosmology, andthe basis of this thesis

is to examine a particular model of dark energy, known as elastic dark energy, and to

comment on how this model’s presence affects observable astronomical quantities. By

doing so we aim to constrain the model’s parameters and also show that elastic dark

STEVEN PEDIANI 15



1.1: BASICS OF COSMOLOGY

energy is not ruled out by a variety of observational data.

1.1 Basics of cosmology

Given that we appear to live in an expanding universe, it is helpful to factor the ex-

pansion out by defining two different distance measures,r = aχ, where a is known

as the scale factor, which we define to be equal to 1 at the present day,χ is the co-

moving distance, andr the real distance. The distance between two points in such a

universe increases with time, but in the absence of peculiarvelocities, the comoving

distance remains constant. How the scale factor evolves with time depends on the ge-

ometry, and total energy density of the Universe. We can define the Hubble parameter

as,H(t) ≡ da
dt

1
a , where, as derived later,

H2(t) =
8πG

3
ρtotal −

k
a2
, (1.1)

whereρtotal is the combined density of all the energy density componentsin the Uni-

verse, andk measures the curvature of space. This then gives us a relation between the

expansion of the universe, and the energy density of constituent components and cur-

vature of space. When appropriately scaled,k can be made dimensionless and take on

three values, -1, 0 and 1, corresponding to an open, flat, or closed universe. An open, or

hyperbolic universe has the property that the angles of a triangle add up to be more than

180◦, or in other words, two lines running parallel would eventually diverge from one

another. Such a universe would be infinite in extent. A closeduniverse has the opposite

properties in that parallel lines eventually cross one another, and angles of a triangle

add up to less than 180◦. Such a universe is finite, hence the name, closed. A flat

universe is one where the angles of a triangle add up to exactly 180◦ and parallel lines

remain parallel as in Euclidean geometry. In order for the universe to be flat, the energy

density of the universe must be an exact value, known as the critical density.H is usu-

ally expressed ash 100 km s−1 Mpc−1, whereh has been observed to be≈ 0.7 (Jarosik

et al. (2011)), making today’s value of the Hubble parameterH0 ≈ 70 km s−1 Mpc−1.

STEVEN PEDIANI 16



1.1: BASICS OF COSMOLOGY

Rearranging (1.1) we find that today’s value of the critical density is given as,

ρc =
3H2

0

8πG
. (1.2)

In SI units, this becomesρc = 1.88h2×10−29 g cm−3. The Universe has been measured

to be remarkable flat (Spergel et al. (2007)), and for this work, we will now only

consider a flat universe,k = 0. It is useful to define the density parameter of a given

energy density component,x, as,

Ωx(t) ≡
ρx(t)
ρtotal(t)

, (1.3)

whereρx(t) is the average energy density of componentx, andρtotal(t) is the sum of the

average energy density of all components. We can now write the Friedmann equation

in terms of the density parameter,

H2(t) = H2
0

∑

x

Ωx(t) . (1.4)

Another important cosmological equation is the fluid equation,

ρ̇x = −3H (ρx + Px) = −3Hρx (1+ wx) , (1.5)

where the dot denotes a derivative with respect to time, and we have introduced the

equation of state parameter,w = P
ρ
, with P being the pressure of the fluid. The fluid

equation tells us how the density of each species,x, evolves with time. If we integrate

the fluid equation, we can write,

Ωx(t) = Ωxa
−3(1+w) , (1.6)

whereΩx is today’s value. The fluid equation, combined with differentiating the Fried-

mann equation with respect to time yields a third cosmological equation, the accelera-

tion equation,

ä
a
= −4πG

3
ρ [1 + 3w] . (1.7)
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

In an expanding universe, distance is now a function of the scale factor. The comoving

distance from an observer to a source located at a scale factor, a, is given by,

χ(a) =
∫ t0

t(a)

dt′

a(t′)
=

∫ 1

a

da′

a′2H(a′)
. (1.8)

To obtain the physical distance to the source, the comoving distance must be multiplied

by a(t). Since light has a finite speed, parts of the universe are notcasually connected.

An observer can define a cosmological horizon, which is the furthest point that light

could have travelled to the observer given the age of the Universe, and so is the bar-

rier between the observable and unobservable regions of theUniverse. The comoving

distance to this horizon is given by,

dH(t) =
∫ t0

0

dt′

a(t′)
, (1.9)

wheret0 is the time today. In a similar way to the definition of a comoving distance,

we can define comoving, or conformal time, which is given bydτ = dt/a, and so with

the speed of light set toc = 1, τ andχ are the same. Using conformal time, we can

define the conformal Hubble parameter which is given by,

H = 1
a

da
dτ
= aH . (1.10)

1.2 Fundamentals of general relativity

In order to describe our Universe, we first need a relation between the geometry of

space, and the energy density of objects in said space. General relativity, published

by Einstein in 1915, gives us these tools and allow us to proceed with describing our

universe. In our everyday Euclidean world we measure the separation between two

objects by measuring the distance,s, between them, given bys2 = x2 + y2 + z2. In the

special theory of relativity, temporal separation must also be considered as there is no

such thing as a universal time. The separation between two events in spacetime is now
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

given by the line element,

ds2 = −dt2 + dx2 + dy2 + dz2 . (1.11)

If ds2 < 0 the spacetime interval between two events is said to be timelike, and a

causal relationship exists between these two events. If theinterval isds2 > 0, then the

interval is spacelike, and the events are not casually connected and the spatial distance

is so large that travelling at the speed of light is not enoughto traverse it. Ifds2 = 0

the interval is lightlike and this separates the regions which are causally linked, to ones

which are not. This line element is called the Minkowski coordinate system, and can

be written as,

ds2 =
∑

ηµνdxµdxν , (1.12)

whereηµν is the Minkowski metric and is given by,

ηµν =



















































−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















































, (1.13)

and we have introduced index notation wherex0 = t, x1 = x, x2 = y, andx3 = z. When

we want to refer specifically to spatial indices we will use Roman indices, whereas

generally we will use Greek indices. It is convention to sum over repeated indices, and

we will therefore remove the summation term in (1.12) from now on.

In Minkowski space particles obey Newton’s laws, if no forceacts on a particle, it

will travel in a straight line. In general relativity the idea of a straight line is replaced

with a geodesic, where gravity is not thought of as an external force, but the curvature

of spacetime. In general relativity a particle with no external force acting on it travels

along a geodesic. The Minkowski metric is replaced with the metric tensor,gµν. The

equations of motion,
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

d2xi

dt2
= 0 , (1.14)

is replaced with the geodesic equation, given by,

d2xµ

dλ2
= −Γµ

αβ

dxα

dλ
dxβ

dλ
. (1.15)

Time is now an evolving parameter and hence we parameterize aparticle’s path with

λ, so a vectorxµ is now a function ofλ. We have also introduced the connection

coefficients, also known as Christoffel symbols, given by,

Γ
µ

αβ
=

1
2

gµρ
[

∂αgβρ + ∂βgαρ − ∂ρgαβ
]

, (1.16)

where we have written the partial derivatives as∂/∂xµ = ∂µ, and∂/∂xµ = ∂µ. A

tensor is defined by the way it transforms from one coordinatesystem to another. For

example, the covariant tensor transforms as,

A′µ =
∂xν
∂x′µ

Aν , (1.17)

and a contravariant tensor transforms as,

A′µ =
∂x′µ
∂xν

Aν . (1.18)

Under a transformation, the partial derivatives do not transform in the same way as

tensors, and so we define a covariant derivative. The covariant derivative of a con-

travariant tensor is,

∇ρAµ = ∂ρA
µ + ΓµρσAσ , (1.19)

and for a covariant tensor,

∇ρAµ = ∂ρAµ − ΓσρµAσ . (1.20)
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

The first part is just the partial derivative, the other partswith the Christoffel symbols

are the corrections, defined to make the covariant derivative transform like a tensor. We

will be using the metric for a Friedmann-Robertson-Walker (FRW) universe, which is

a universe that is homogeneous and isotropic. This metric ina flat universe is given by,

gµν =



















































−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)



















































, (1.21)

wherea is the scale factor. The assumption of homogeneity and isotropy apply on

the large scales of the universe. Clearly on small scales theuniverse is lumpy, littered

with galaxies surrounded by huge voids of space. But as we look at larger scales these

”lumps” smooth out. If we assume the Copernican principle, that we do not observe

the universe from a special vantage point, and with the knowledge that the CMB is very

smooth, with the differences in temperature varying by≈ 10−5 at the most, it follows

that the rest of the universe must also be homogeneous and isotropic. The Reimmann

curvature tensor is given by,

Rσ
ρµν = ∂µΓ

σ
ρν − ∂νΓσρµ + ΓσµαΓαρν − ΓσναΓαρµ . (1.22)

The Ricci tensorRµν is a contraction of the Riemmann tensor,

Rµν = Rρ
µρν = ∂ρΓ

ρ
µν − ∂νΓρρµ + ΓρρσΓσµν − ΓρρνΓνρµ , (1.23)

and the Ricci scalar is the contraction of the Ricci Tensor,R = gµνRµν. These equations

govern the curvature of space and appear in the Einstein fieldequations which are

given by,

Gµ
ν ≡ Rµ

ν −
1
2
δµνR = 8πGT µ

ν . (1.24)

The left side of (1.24) is the curvature part, the right side is the source of the curvature,

governed by the energy-momentum tensorT µ
ν. We have enough information now to
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compute the curvature part of (1.24) using an FRW metric. TheChristoffel symbols

are,

Γ0
00 = 0 , (1.25)

Γ0
i j = δı jȧa , (1.26)

Γi
0 j = Γ

i
j0 = δ

i
j

ȧ
a
, (1.27)

Γ0
0i = Γ

0
i0 = 0 . (1.28)

With these we can work out that the Ricci tensor components are,

R00 = −3
ä
a
, (1.29)

Ri j = δi j

(

2ȧ2 + aä
)

. (1.30)

And finally the Ricci scalar is,

R = 6

(

ȧ2

a2
+

ä
a

)

. (1.31)

We now turn to the right side of equation (1.24) which createsthe curvature we

observe. A perfect fluid has an energy-momentum tensor givenby

T µν = (ρ + P)uµuν + Pgµν , (1.32)

where the rest frame density and pressure of the fluid are given by ρ andP, anduµ is

the velocity vector field. In a frame comoving with the fluid, the energy-momentum

tensor is given by,
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T µ
ν =



















































−ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P



















































. (1.33)

Putting (1.29) and (1.33) together gives the Friedmann equation,

H2 =
8πG

3
ρ . (1.34)

The trace part of the Einstein equation gives us the acceleration equation,

ä
a
=

4πG
3

[

ρ + 3P
]

. (1.35)

We can obtain the fluid equation by taking the covariant derivative of the energy-

momentum tensor, knowing that it must be equal to zero due to energy conservation,

∇µT µ0 = 0,

ρ̇ + 3H(ρ + P) = 0 . (1.36)

1.3 Perturbed cosmological equations

The equations derived so far have only been dependent on time, and describe the back-

ground evolution of the Universe. The Universe is not completely smooth however,

and in order to describe gravitational perturbations in theenergy density components,

we need to perturb our metric. We will now be working in conformal time where

dτ = dt/a, and we will be using the synchronous gauge as this is what is used in

the CMB codes, CMBFAST (Seljak and Zaldarriaga (1996)) and CAMB (Lewis et al.

(2000)) (see Chapters 2 and 3). Unless otherwise referenced, the following discusion

is taken from Ma and Bertschinger (1995). A general perturbed metric can be defined

as,
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gµν = a2
(

ηµν + hµν
)

, (1.37)

and we can set the componentsh00 andh0i equal to zero to remove the gauge freedom

in the Einstein equations. The metric perturbationhi j can be decomposed into scalar,

vector and tensor components, which correspond to density,vorticity and gravity wave

perturbations respectively. During the expansion of the Universe the vector modes

are suppressed and so are not normally considered. Working in Fourier space, the

decomposed metric perturbation can be written as,

hi j = k̂ik̂ jh + 6η

(

k̂ik̂ j −
1
3
δi j

)

+ k̂ih
V
j + k̂ jh

V
i + hT

i j , (1.38)

where the superscript V and T refer to vector and tensor respectively. Using this de-

composition, the perturbed Einstein equations in the synchronous gauge are (Battye

and Moss (2007)),

a2G0
0 = −3H2 −H ḣ +

1
2
∂i∂

ih − 1
2
∂i∂ jh

i j , (1.39)

2a2G0
i = ∂iḣ − ∂ jḣ

j
i , (1.40)

2a2Gi
0 = ∂ jḣ

i j − ∂iḣ , (1.41)

a2Gi
j =

(

2Ḣ − H2
)

δi
j +

1
2

(

ḧi
j − ḧδi

j

)

+H
(

ḣi
j − ḣδi

j

)

(1.42)

+
1
2

(

δi
j∂k∂

kh − ∂k∂
khi

j

)

+
1
2
δik

(

∂k∂lh
l
j + ∂ j∂lh

l
k − ∂k∂ jh

)

− 1
2
δi

j∂k∂lh
kl .

The perturbed energy-momentum tensor equations are,

T 0
0 = −(ρ + δρ) , (1.43)

T 0
i = (ρ + P)vi , (1.44)

T i
0 = −(ρ + P)vi , (1.45)

T i
j = (P + δP)δi

j + Σ
i
j , (1.46)
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wherevi is the velocity perturbation andΣi
j = T i

j − 1
3δ

i
jT k

k is the traceless part of

the energy-momentum tensor. Upon substitution of these equations into the Einstein

equations, we obtain a list of constraint and evolution equations. We will only be

dealing with the scalar perturbations in this work, and so the two scalar constraint

equations are,

H ḣ − 2k2η = −8πGa2δT 0
0 , (1.47)

kη̇ = 4πGa2(ρ + P)vs , (1.48)

and the two scalar evolution equations are,

ḧ + 2H ḣ − 2k2η = −8πGa2δT i
i , (1.49)

ḧ + 6η̈ + 2H(ḣ + 6η̇) − 2k2η = −24πGa2(ρ + P)Θs , (1.50)

where,

(ρ + P)vs ≡ ik jδT 0
j , (1.51)

(ρ + P)Θs ≡ −
(

k̂ik̂ j −
1
3
δi j

)

Σi
j . (1.52)

The perturbed part of the energy-momentum conservation equationδ
(

∇µT µν
)

= 0 is,

δ
(

∇µT µν
)

= ∂µδT
µν + δΓναβT

αβ + ΓναβδT
αβ + δΓααβT

νβ + ΓααβδT
νβ = 0 , (1.53)

and from this we arrive at the equations describing the time evolution of the density

contrast and velocity perturbation, which in the synchronous gauge are given by,

δ̇ = −(1+ w)

(

kvS +
1
2

ḣ

)

− 3H
(

c2
s − w

)

δ , (1.54)

v̇S = −H (1− 3w) vS − ẇ
1+ w

vs + c2
s

1
1+ w

kδ − kΘS , (1.55)
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where we define a sound speed,c2
s ≡ δP/δρ. Weller and Lewis (2003) and Bean and

Doré (2004) defined the sound speed to be in the frame comoving with the fluid, and

redefinedδ to beδ ≡ δrest+3H(1+w)vS /k in order to apply in an arbitrary frame. The

equations of motion now become,

δ̇ = −(1+ w)

(

kvS

[

1+
9H2

k2
(c2

s − w)

]

+
1
2

ḣ

)

− 3H
(

c2
s − w

)

δ , (1.56)

v̇S = −H (1− 3w) vS + c2
s

1
1+ w

kδ , (1.57)

where we have assumed no anisotropic stress, and constantw.

1.4 Energy density components

We now turn our attention to the components that contribute to the energy-momentum

tensor,Tµν, in our Universe. We can place these components into the following four

categories, baryonic matter, radiation, dark matter, and dark energy. The two more

familiar components are baryonic matter and radiation. Everything we see and touch

is composed of baryonic matter, and it is radiation, in the form of photons that allow

us to interact and see the baryonic world. The study of cosmology has identified two

other components, which we are unaware of in our everyday existence. Dark matter, an

as yet unknown form of matter, that doesn’t appear to interact through the electromag-

netic (EM) force, and dark energy, a component that is responsible for the accelerated

expansion of the Universe.

1.4.1 Baryons and Cold Dark Matter

Baryons, which in the cosmological sense include electronssince their relative mass

is so small, make up our visible Universe. The majority of thebaryonic matter in

our Universe is found in diffuse hot gas within galaxy clusters. This matter has been

heated due to the gravitational forces induced by the cluster, allowing the gas to be
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viewed in the X-ray part of the EM spectrum. In fact there is thought to be 5 to 10

times the amount of baryonic matter contained within intergalactic gas than contained

within stars (Liddle (2003)). The abundance of light elements created during big bang

nucleosynthesis is sensitive to the total baryon mass. Therefore study of the light

elements can constrain the total baryon density, which is found to be roughly 5% of

the critical density (Burles et al. (2001)). WMAP7, which isthe year 7 results from

the Wilkinson Microwave Anisotropy Probe (WMAP) mission, finds that for aΛCDM

model,Ωb = 0.0449± 0.0028 (Jarosik et al. (2011)).

As well as baryonic matter, there is evidence that points to anon baryonic type of

matter which only interacts with the rest of the Universe viagravity. Cold dark matter

(CDM) is the most popular candidate for this extra component, where the term cold

refers to the fact that the fluid was non-relativistic at the time of photon decoupling.

The topic of the missing mass goes back to the 1930’s, when Zwicky and Oort in-

dependently found evidence that the mass observed was less than the mass inferred

through gravitational effects. As an example, one can look at galaxy rotation curves,

which chart the rotation speed of galaxies with respect to distance from the centre.

Using Kepler’s law we can write this tangential velocity,v, at radiusR, with respect to

the mass,M, contained within R,

v =

√

GM(R)
R

, (1.58)

where G is Newton’s gravitational constant. At large radii,one would expect that

velocity to fall off as the inverse square root of R. In fact what is observed is thevelocity

becomes constant, suggesting that even when outside the visible part of the galaxy,

there is still more unseen mass. There are several methods topinning down how much

of the Universe is made up of CDM, ranging from CMB anisotropies observations,

Pryke et al. (2002), to measuring the ratio of baryonic matter to CDM, Grego et al.

(2001). Such observations suggest that∼ 23% of the critical density is in the form of

CDM (see also Turner (2002)). WMAP7 best fit parameters for aΛCDM model put
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ΩCDM = 0.222± 0.026 (Jarosik et al. (2011)).

In cosmology matter is described as a pressureless fluid, andthus has an equation

of state,w = 0. Referring to the fluid equation, (1.5), it is straight forward to show that

ρm ∝ a−3, or in terms of the density parameter,Ωm(t) = Ωma−3, whereΩm is the present

day value. Substituting this into the Friedmann equation, (1.4), we can relate the scale

factor to time, which in a universe only containing matter is,

a =

(

t
t0

)
2
3

, (1.59)

and,

H =
2
3t
. (1.60)

A flat universe only containing matter will expand forever, but the rate at which it

expands will decrease with time.

1.4.2 Radiation

The Universe is bathed in radiation, made up mainly from photons that originated

from the surface of last scattering. The CMB is comprised of these photons, and has

a temperature of 2.725± 0.002K, Mather et al. (1999), with a black body spectrum.

Knowing the temperature of the radiation allows us to calculate the energy density, via,

ργ =
π2

15
T 4
γ . (1.61)

Relating this to the critical density, the density parameter for radiation is then,

Ωγ =
2.47× 10−5

h2
. (1.62)

We also need to include neutrinos when discussing radiationin the cosmological con-

text. Neutrinos are very weakly interacting particles, that only interact through the

weak, and gravitational forces. At some point the early Universe will have been so
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hot and dense that even the neutrinos will have been in thermal equilibrium with all

other particles in the Universe. As the Universe expanded, the neutrino energy den-

sity dropped and decoupled from the rest of the Universe. At this point the neutrinos

were now able to travel through the Universe freely and no longer interacted with the

matter and photons. The temperature of the Universe will have continued to drop, and

once lower than the mass of the electron, the positrons will have annihilated with the

electrons, transferring heat to the photons. Since this occurred after the neutrinos had

decoupled, they do not feel the effects of this process, and therefore the photons re-

ceive a boost in temperature relative to the neutrinos. We can predict the background

neutrino temperature,Tν, from the fact that the ratio of the present value ofTν to Tγ, is

equal to the ratio ofTγ before the electron-positron boost andTγ afterward. The ratio

is given as,

Tν

Tγ

=

(

4
11

)1/3

. (1.63)

SinceTγ is measured to be 2.725 K, the neutrino temperature should be1.95 K. Re-

calling that the energy density goes as the power of four of temperature, the energy

density contribution from the neutrinos toΩrad is then,

Ων = 3× 7
8
×

(

4
11

)4/3

Ωγ = 0.68Ωγ , (1.64)

where (1.64) takes into account the fact that there are threeneutrino species, and the

7/8 term comes from the fact that neutrinos are Fermions, not Bosons like photons. The

value ofΩrad is then the sum of the photon and neutrino contributions,Ωrad = 4.15×

10−5h−2. Radiation has an equation of state,w = 1
3, and soρrad ∝ a−4. Substituting this

into the Freidmann equation gives,

a =

(

t
t0

)
1
2

, (1.65)

and,
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H =
1
2t
. (1.66)

A flat universe containing only radiation would also expand forever, albeit at a slower

rate than a matter dominated universe. As the Universe expands, photon’s wavelengths

are stretched, leading to the extraa−1 term inρrad. Therefore a universe with a mixture

of just matter and radiation, would always become matter dominated at some time.

1.4.3 Dark Energy

If we were to assume that the Universe was matter dominated withΩm = 1, then the age

of the Universe would be given byt = 2/3H0, which if H0 ≈ 70km s−1 Mpc−1, would

equal≈ 9 Gyr. This is in contradiction with other measurements of the age of the

Universe. For example, the lifetime of a star is directly linked to its mass. A star with

a greater mass will burn its fuel at a greater rate, and as a result have a shorter life. In

contrast a lower mass star will have a considerably longer life. For reference our own

sun, a G-type main sequence star, is thought to have a life span of≈ 9 Gyr. Measuring

the oldest stars in the Universe can give a lower bound on its age. Since all the stars in

a globular cluster were created around the same time, they make good cosmic clocks,

with the oldest globular clusters containing only contain low mass stars. Numerous

globular clusters have been dated (see for example Hansen etal. (2002), Puzia (2002),

Jimenez and Padoan (1996), Krauss (2003)), with some appearing to be as old as 16

Gyr which directly rules out a universe withΩm = 1. Since the Universe is measured to

be almost flat, and best estimates of the matter density are much lower than the critical

density, there must be a large amount of energy density, around 70% of the critical

density, missing.

By directly probing the expansion Riess et al. (1998), and Perlmutter et al. (1999)

recently observed that the Universe has begun to undergo an epoch of accelerated ex-

pansion, which is direct evidence for dark energy. These groups made observations of

the apparent magnitudes of a number of type Ia supernovae. Itis assumed that type Ia
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supernovae are standard candles, that is they have a known absolute magnitude which

is independent of their location within the Universe and therefore comparing the ap-

parent and absolute magnitude yields an estimate of the distance of a given supernova.

This can then be compared against the redshift of the host galaxy measured using spec-

troscopy. If the Universe is experiencing an accelerated rate of expansion, the energy

density component responsible must have a negative pressure. By considering the ac-

celeration equation, equation (1.7), it is clear that such acomponent must have an

equation of state withw > −1/3. The simplest, and most aesthetically pleasing, is a

cosmological constant,Λ, which hasw = −1.

A cosmological constant first appeared in Einstein’s field equations in order to arti-

ficially keep the Universe static, and while later he considered it a mistake and dropped

it from the field equations, it has since been brought back to explain the late time accel-

eration of the Universe. A cosmological constant is homogeneous and isotropic, and

while its effect would have been negligible in the early Universe, as the energy density

of the radiation and matter components decay, it will eventually become the dominant

component. We can defineΩΛ = Λ/3H2
0, and so the Friedmann equation becomes,

H2(t) = H2
0

(

Ωma−3 + Ωrada−4 + ΩΛ

)

. (1.67)

A ΛCDM model, withΩΛ ≈ 0.7 gives a very good fit to a wide range of observations.

Large deviations from this model are limited by data from theWMAP mission. In

Komatsu et al. (2009) the authors, using a combination of data from WMAP, baryonic

acoustic oscillations (BAO) and Type Ia supernova observations, found a constraint

on the equation of state to be−1.14 < w < −0.88. Using measurements of the X-

ray gas mass fraction in 42 X-ray luminous galaxies, Allen etal. (2008) found the

equation of state to be,w = −1.14± 0.31. When they combined this data with CMB

and type Ia supernova (SNIa) data, they foundw = −0.98± 0.07. Hicken et al. (2009)

found that by combining CfA3 SNIa data with that of the Union set (Kowalski et al.

(2008)), and combining with a BAO prior, the bounds on the equation of state to be

1+w = 0.013+0.066
−0.068. Both results are consistent with a cosmological constant.A ΛCDM
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universe will become dominated by theΛ component eventually, at which point such

a universe will undergo accelerated expansion which will last forever.

There are problems with a cosmological constant, however, which leave the door

open for a wide range of other dark energy models. There is no fundamental theory

that allows us to derive the energy density of the cosmological constant. Currently,

particle physicists estimate the value for the energy density to be many orders of mag-

nitude from the observed value (for example, Weinberg (1989) and Bertolami (2009)).

A second problem is the coincidence problem, which asks why are the matter and

dark energy densities currently very similar. A cosmological constant’s energy density

would have been negligible in the early Universe next to the matter energy density.

Sinceρm ∝ a−3, the cosmological constant is going to become totally dominant in the

not too distant future. To be living in an epoch where they arevery similar is consid-

ered by some to be a huge coincidence. The coincidence problem can be alleviated

somewhat by anthropic considerations. If the Universe was not the way it is currently,

then we may not be here to observe it, thus perhaps we should not be surprised by dark

energy’s current energy density.

1.5 CMB anisotropies

The CMB is the earliest snap shot of the Universe we have. It isisotropic to 1 part

in 100,000, has the most perfect black body spectrum ever observed in nature (White

(1999)), and its intensity peaks in the microwave range. According to the hot big

bang model, after an inflationary period the early Universe would have been filled with

a “cosmic gas” of high energy particles all coupled togetherin thermal equilibrium.

Quantum fluctuations before inflation will have been amplified, leading to regions in

the cosmic gas having different densities. As the Universe expanded this cosmic gas

would have cooled and the energies of the particles would have fallen. When the

Universe reached a temperature of∼ 5eV, the electrons had lost enough energy and

began combining with protons, forming hydrogen, without the reverse process occur-
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ring. The temperature continued to fall and at about∼ 0.25eV the photons decouple

from the matter and started to travel through the Universe freely, an epoch known as

photon decoupling. These photons are said to have been emitted from the surface of

last scattering. This happened at a redshiftz ∼ 1100 and it is these photons that make

up the CMB, which due to continual expansion of the Universe now has a tempera-

ture of 2.725K. What makes the CMB so valuable are the angularcorrelations in the

temperature and polarisation anisotropies. The most comprehensive study of the CMB

has been made using WMAP, which measured the temperature of the CMB at different

points on the sky. The temperature autocorrelation function can then be calculated,

C(θ) =<

(

∆T
T

)

1

(

∆T
T

)

2

> , (1.68)

where the subscripts 1 and 2 refer to two positions on the sky subtended by and angle

θ. C(θ) can be expanded in a multipole expansion,

C(θ) =
∞
∑

l=2

2l + l
4π

ClPl(cosθ) , (1.69)

where l is the wave number,Pl(cosθ) are the Legendre polynomials, andCl is the

angular power spectrum. The peaks and troughs in this power spectrum are created

due to a variety of effects, and it is these features that can tell us a huge amount about

our Universe.

In the early Universe, the cosmic gas was filled with density perturbations which

had been seeded by initial quantum fluctuations. Perturbations within the horizon os-

cillated with time due to the competing effects of gravity, trying to compress an over-

dense region, and the photon pressure, trying to oppose the compression. Photons

leaving the surface of last scattering from an overdense region will have to climb out

of a potential well, and thus be redshifted relative to a photon emanating from an under-

dense region. Photons leaving an overdense region will havea higher energy initially

than a photon leaving an underdense region due to the fact that higher density regions

will be hotter. Also, a photon emanating from a perturbationthat possesses a pecu-
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liar velocity relative to us will exhibit a Doppler shift. These competing effects are

recorded on the CMB, and allow us to constrain different cosmological parameters.

The Sachs-Wolfe plateau is the fairly flat part of the power spectrum, located at

large angular scales,l > 100. On such large scales no oscillations occurred in the

cosmic gas since the associated Fourier modes hadn’t re-entered the horizon. Therefore

∆T/T is purely due to the gravitational potential,Φ, of “frozen in” perturbations and is

equal to∆T/T = Φ/3. Between 100> l > 1000 are the acoustic peaks corresponding

to the velocity and density perturbations at the surface of last scattering. The odd

peaks correspond to Fourier modes that were overdensities at photon decoupling, the

first peak being atl ∼ 220, and the even peaks correspond to underdensities. The power

falls off at largel due to Silk damping. Recombination happens over a finite timescale

meaning the surface of last scattering has a width. Forl ? 1000 these anisotropies are

on a smaller scale than the width of the surface of last scattering, and are suppressed.

These anisotropies are primary anisotropies, and show how the CMB was at the

surface of last scattering. The photons have travelled a long way across the Uni-

verse on their way to us, passing objects that have modified them, creating secondary

anisotropies in the measured CMB. These effects include the Integrated Sachs Wolfe

(ISW) effect which is dependent on dark energy parameters, making it an ideal ob-

servation for constraining cosmological parameters. Varying the dark energy equation

of state,wDE changes the rate of expansion in the universe and thus will change the

way the temperature-temperature (TT) power spectrum looks. ShiftingwDE towards a

value larger than -1, shifts the angular power spectrum features towards larger angular

scales. The effect of varyingwDE is degenerate with varying the total energy densityΩ.

The measurements taken of the different angular power spectra can be compared with

theoretical results from programs such as CMBFAST and CAMB,which evolve the

Einstein equations, and component equations of motion, fora range of initial starting

parameters, outputting a range of different power spectra. Assuming aΛCDM model,

WMAP7 finds the following best fit results,Ωm = 0.266±0.029,ΩDE = 0.734±0.029,

h = 0.710± 0.025,zdec = 1088.2 ± 1.2, ns = 0.963± 0.014,τ = 0.088± 0.015 and
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∆2
R = (2.43± 0.11)× 10−9. Wherens is the scalar spectral index,τ is the reionization

optical depth and∆2
R is the curvature fluctuation amplitude. Using these parameters,

and the CMB code CMBFAST, we have plotted aΛCDM TT power spectrum, shown

in figure 1.1 for illustration.

1 10 100 1000

1000

l

Figure 1.1: TT power spectrum for aΛCDM model, with the following values of

cosmological parameters,Ωm = 0.266,ΩDE = 0.734,h = 0.71, zdec = 1088.2, ns =

0.963,τ = 0.088 and∆2
R = 2.43× 10−9. The ISW effect is responsible for the raised

power atl > 10.
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1.6 Dark energy models

With no fundamental theory of dark energy, there has been a wide variety of different

theories proposed in order to explain the observed acceleration of the Universe, other

than a cosmological constant.

1.6.1 Quintessence

A popular alternative to a cosmological constant is a quintessence model, described by

a scalar fieldφ and a potentialV(φ). The energy-momentum tensor for a scalar field is

given by,

Tµν = ∂µφ∂νφ − gµν

(

1
2

gαβ∂αφ∂β + V(φ)

)

. (1.70)

Using equation (1.70) for a flat FRW universe and assumingφ = φ(t), we find that,

ρ =
1
2
φ̇2 + V(φ) , (1.71)

P =
1
2
φ̇2 − V(φ) . (1.72)

The Hubble and acceleration equations then become,

H2 =
8πG

3

(

1
2
φ̇2 + V(φ)

)

, (1.73)

ä
a
= −8πG

3

(

φ̇2 − V(φ)
)

. (1.74)

We can see from equation (1.74) that for an accelerated rate of expansionφ̇2 < V(φ).

The equation of state for a scalar field is then given by,

wφ =
P
ρ
=
φ̇2 − V(φ)

φ̇2 + V(φ)
, (1.75)

noting that−1 ≤ wφ ≤ 1. Then from the fluid equation (1.5),
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ρ = ρ0 exp

(

−
∫

3(1+ wφ)
da
a

)

. (1.76)

We know from the fluid equation that for an accelerated expansion, w ≤ −1/3, and

putting this together with equation (1.76) we find that for a scalar field,ρ ∝ a−b where

0 ≤ b < 2. In the case whereV(φ) ≫ φ̇2, the slow roll limit, the equation of state

is wφ ≈ −1, and so to match observation, a scalar field will need to be slowly rolling

down its potential.

An advantage of quintessence models overΛ models is quintessence can exhibit

tracking behaviour with a specific potential, see for example Zlatev et al. (1999) and

Steinhardt et al. (1999). A tracker model is a scalar field that is insensitive to the initial

conditions. During the early radiation dominated Universethe scalar field can have

a huge range of initial energy densities. The field however tracks the radiation den-

sity until matter radiation equality. Therefore two initial conditions several orders of

magnitude apart will converge on the same value of energy density by matter radiation

equality. Once this epoch is reached the scalar field densitybecomes the dominant

component in the Universe and starts behaving as it is observed today. Such a model

alleviates the fine tuning problem suffered by the cosmological constant.

1.6.2 Elastic dark energy

The elastic dark energy model treats the dark energy as a fluid, much like the treatment

of the other components of the energy-momentum tensor, however allowing for the

fluid to have rigidity and can thus be regarded as analogous toan elastic solid. The

topic of elastic dark energy is discussed in depth in Battye and Moss (2007), here we

briefly outline the model.

The model was originally motivated when considering frustrated networks of topo-

logical defects, such as domain walls or cosmic strings, as acandidate for dark en-

ergy. However the topic of an elastic dark energy can be studied on its own from a
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phenomenological point of view. The energy-momentum tensor for a perfect elastic

medium takes the form,

T µν = ρuµuν + Pµν , (1.77)

whereuµ are the flow vectors, withuµuµ = −1, and thePµν is the pressure tensor. The

Lagrangian variation of this energy-momentum tensor is given by,

δLT µν = −1
2

(Wµνρσ + T µνgρσ) δLgρσ . (1.78)

HereWµνρσ is the non-orthogonal elasticity tensor, which can be decomposed as,

Wµνρσ = Eµνρσ+Pµνuρuσ+Pρσuµuν−Pµρuσuν−Pµσuρuν−Pνσuρuµ−Pνρuσuµ−ρuµuνuρuσ .

(1.79)

Eµνρσ is the elasticity tensor, satisfying,

Eµνρσ = E(µν)(ρσ) = Eρσµν , (1.80)

and,

Eµνρσuσ = 0 . (1.81)

The difference between the Lagrangian (moving with the perturbation) variation,δL,

and the Eulerian (fixed with respect to a background) variations isδL = δE + Lξ, and

hence the Lagrangian variation of the metric tensor is,

δLgµν = δEgµν + 2∇(µξν) , (1.82)

andξµ is the infinitesimal displacement field. In order to arrive atthe equation of mo-

tion for the displacement field, one must evaluate the Lagrangian variation,δL(γµν∇µT µν) =

0, which gives,
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(

Aµ(ν
ρ
σ) − (ργµρ + Pµ

ρ)u
νuσ

)

δLΓ
ρ
νσ +

1
2
γµργ

α
νγ

β
σ(δLgαβ)∇τEρτνσ = (1.83)

(

Pµνu̇σ − 1
2

Pνσu̇µ − 2Aµ(ν
ρ
τ)vρτu

σ + (ργµρ + Pµ
ρ)u̇

ρuνuσ
)

δLgνσ .

Here the dots now representuµ∇µ, covariant differentiation with respect to the flow,

andAµ(ν
ρ
σ) is the relativistic Hadamard elasticity tensor, given by,

Aµ(ν
ρ
σ) = Eµ(ν

ρ
σ) − γµρPνσ , (1.84)

andγµν = gµν + uµuν. For an isotropic perfect elastic medium, the pressure tensor is

given by,Pµν = Pγµν and the elasticity tensor can be written as,

Eµνρσ = Σµνρσ + (β − P)γµνγρσ + 2Pγµ(ργσ)ν , (1.85)

whereΣµνρσ is the shear tensor, obeying the same symmetry and orthogonality condi-

tions as the elasticity tensor, andβ is the bulk modulus. The shear tensor can be written

in terms of the shear modulus,µ, where for a perfect fluid,µ = 0, giving,

Σµνρσ = 2µ

(

γµ(ργσ)ν − 1
3
γµνγρσ

)

. (1.86)

We can now combine these equations and substitute them into equation (1.78), given

the perturbed energy-momentum tensor components,

δT 0
0 = (ρ + P)

(

∂iξ
i +

1
2

h

)

, (1.87)

δT i
0 = −(ρ + P)ξ̇i , (1.88)

δT i
j = −δi

j

(

β − 2
3
µ

) (

∂kξ
k +

1
2

h

)

− µ(2∂( jξ
i) + hi

j) , (1.89)

and from equation 1.83, the evolution ofξi is,

(ρ + P)(ξ̈i +H ξ̇i) − 3βH ξ̇i − β
(

∂i∂ jξ
j + ∂i h

2

)

− µ
(

∂ j∂ jξ
i +

∂i∂ jξ
j

3
+ ∂ jhi

j −
∂ih
3

)

= 0 ,

(1.90)
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whereh is the trace of the metric perturbationhµν. Combining equations (1.43), (1.44),

(1.45), (1.46) with equations (1.87), (1.88), and (1.89) gives,

δρ = −ρ(1+ w)

(

kξS +
1
2

(h − hI)

)

, (1.91)

vS = ξ̇S , (1.92)

δP = −ρ(1+ w)
dP
dρ

(

kξS +
1
2

(h − hI)

)

, (1.93)

ΠS =
3
2

1+ w
w
Θ =

3
2

(

c2
S − w

)

(1+ w−1)
(

− δ

1+ w
+ 3(η − ηI)

)

. (1.94)

From these we arrive at the equations of motion for the elastic dark energy model,

δ̇ = −(1+ w)

(

kvS +
1
2

ḣ

)

, (1.95)

v̇S = −H
(

1− 3
dP
dρ

)

vS +
dP
dρ

1
1+ w

kδ − 2
3

w
1+ w

kΠS . (1.96)

1.6.3 Other dark energy models

Since there is no fundamental theory for dark energy, there are a large range of differ-

ent dark energy models which given the correct parameters, can reproduce the CMB

anisotropies using the CMB codes. For example, k-essence isa scalar field model of

dark energy which relies on modifications to the kinetic energy, instead of the potential

energy, in order to reproduce the accelerated expansion (Malquarti et al. (2003), de Put-

ter and Linder (2007), Armendariz-Picon et al. (2001)). Another fluid based model is

the Chaplygin gas dark energy model (Kamenshchik et al. (2001), Bento et al. (2002)).

In this model dark energy has an equation of state given byP = −A/ρα where A is a

positive constant and 0< α < 1. At early times a Chaplygin gas exhibits the charac-

teristics of a pressureless gas, while at later times the gasbehaves like a cosmological

constant. Most models of dark energy set its equation of state greater than or equal to
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-1. Since observational evidence doesn’t necessarily placew = −1 as the lower bound,

see for example Komatsu et al. (2009) and Hicken et al. (2009)), it is reasonable to con-

sider the possibility of an equation of state less than -1. One such model is phantom

dark energy, where the sum of the density and pressure is negative. The energy density

increases with time for a phantom energy model, leading to a Big Rip scenario, where

the phantom energy overcomes all other forces of nature (Caldwell et al. (2003)).

Each of these models can predict how such a universe will lookat a given time,

dependent on, among other things, specific dark energy parameters that may be unique

to that model of dark energy. While it is very difficult to say which specific model is

a true representation of the actual phenomenon, given no fundamental theory of dark

energy, we can compare observations with theoretical predictions, and thus constrain

given dark energy parameters.
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Constraints from weak lensing

In the framework of general relativity freely moving particles travel along geodesics,

the shortest path between two points. In the presence of a gravitational potential, this

path will appear curved to an external observer. Photons travel along null geodesics,

and so when light travels through the Universe its directionis modified when in the

vicinity of mass such as galaxies and galaxy clusters. This effect is known as gravita-

tional lensing and is an important tool for cosmology as any deflection that the photons

undergo is due solely to the response of the photons to a gravitational field, irrespective

of the gravitational source and physical properties.

It was gravitational lensing that gave the first confirmationof the theory of general

relativity back in 1919. In a trip to Prncipe off the coast of Africa, Arthur Eddington

observed, during a solar eclipse, the angular shift in the position of a star when it

was in close proximity to the Sun. Such a shift proved that themass of the Sun had

deflected the light rays from the distant star, and thus confirmed a crucial prediction

of general relativity. With this knowledge it became theoretically possible map out the

mass overdensities within the Universe, as opposed to measuring light from galaxies

to infer galaxy distributions.
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2.1 Introduction

Gravitational lensing can be categorized into two distincttypes, strong gravitational

lensing and weak gravitational lensing. Strong gravitational lensing heavily distorts

background sources, producing noticeable distortions such as multiple images, Ein-

stein rings, and arcs within images of clusters. In order to observe strong gravitational

lensing images, one must be aligned in such a way that a background source is almost

directly behind a foreground source. Weak lensing producesa more subtle effect on a

large number of background sources. As the light from the background sources such

as distant galaxies traverse the Universe, the photon pathsare slightly modified when

passing foreground mass. This leads to a slight modificationto the observed shape and

size of the source. Since we cannot know the intrinsic size, shape and orientation of a

given galaxy before it undergoes any distortion, coupled with the fact we don’t know

exactly where every underdense and overdense region appears on the night sky, many

light sources must be analysed and statistical patterns need to be detected. Therefore

weak lensing measurements are purely statistical in nature, such as correlation func-

tions and power spectra. Figure 2.1 shows simple representation of what weak lensing

can do to a background source. Given that dark energy modifiesthe matter-matter

power spectrum and the distance redshift relation, both of which are related to weak

lensing parameters, observations of weak lensing can lead to independent constraints

on dark energy parameters.
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Figure 2.1: The left image shows points representing galaxies in a typical arrangement

one may find before any weak lensing effects are added. The right image shows what

effect weak lensing would have on the background source. Both shape, and magnifi-

cation have been modified.

2.2 Weak lensing geodesic equations

So far we have a given a brief qualitative account of weak lensing, but in order to

proceed we must have a mathematical description. We follow asimilar description

given in Dodelson (2003). We start by solving the geodesic equation for a given photon

travelling from a background source to us. The geodesic equation, given earlier, (1.15),

is,

d2xα

dλ2
= −Γαβγ

dxβ

dλ
dxγ

dλ
. (2.1)

Both the right and left hand side of the geodesic equation (2.1) can be rearranged using

the chain rule of differentiation,

dχ
dλ

d
dχ

[

dχ
dλ

dxi

dλ

]

= −Γαβγ
dxβ

dχ
dxγ

dχ
dχ
dλ

dχ
dλ

, (2.2)

where we have only consider the spatial parts ofxα, and split the three spatial parts

into radial,x3 = χ, and traverse,xi = θiχ, distances. Because we are making use of the
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small angle approximation, it follows that any perturbation in the metric multiplied by

θiχ can be taken to be zero. Also note thatdχ is numerically interchangeable with±dτ

with the speed of light set toc = 1. dτ/dλ can be worked out using the knowledge that,

because photons are massless,

gαβ
dxα

dλ
dxβ

dλ
= 0 , (2.3)

or,

gαβ
dxα

dλ
dxβ

dλ
= g00

dτ
dλ

dτ
dλ
+ gi j

dxi

dλ
dx j

dλ
, (2.4)

and from this we get, for photons,

g00(P
0)2 + p2 = 0 , (2.5)

where we have definedP0 = dτ
dλ and photon momentump2 = gi j

dxi

dλ
dx j

dλ . By simple

rearrangement we have,

P0 = p(1−Ψ) , (2.6)

whereΨ is the temporal perturbation to the metric. There are four possible combina-

tions in the sum on the right of geodesic equation. These are:β = γ = 0; β = 0, γ = j;

β = j, γ = 0; andβ = j, γ = k. The non zero perturbed Christoffel symbols in the

Newtonian gauge are,

Γi
00 = ∂

iΨa2 , (2.7)

Γi
0 j = Γ

i
j0 = Hδi

j − Φ̇δi
j , (2.8)

Γi
jk = ∂

iΦa2δ jk − ∂ jΦδ
i
k − ∂kΦδ

i
j , (2.9)
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whereΦ is the spatial perturbation in the metric. Putting this all together, the geodesic

equation becomes,

p2 d
dχ

(

1
a2

d(χθi)
dλ

)

= − p2

a2
(1− ψ)

(

a2∂iΨ + a2∂iΦ + 2H d(χθi)
dχ

)

, (2.10)

making use of the fact thatd(pa)
dχ is constant. This reduces to,

d2(χθi)
d2λ

= −δi j
(

∂ jΨ + ∂ jΦ
)

. (2.11)

In cosmological models where there is an absence of anisotropic stress at late times,

Ψ = Φ, and thus the right hand side of equation (2.11) would be−2δi j∂ jΦ. Here we

can see that a gravitational perturbation leads directly toa perturbed viewing angle at

a given position, whereas a uniform potential (∇Φ = 0) leads tod(χθi)
dχ being constant.

We can integrate equation (2.11) twice with respect toχ which will allow us to know

the original source angle,θs, before it was distorted by the gravitational potential.

θi
s = −

∫ χ

0
dχ′

(

∂iΨ(χ′) + ∂iΦ(χ′)
)

(

1− χ
′

χ

)

+ θi . (2.12)

The constant from the integration must be the observed angleθi as in the absence of

any metric perturbations, the source angleθs will equal θi. Distortions in the shape of

a background source can then be characterised by the 2× 2 symmetric shear matrix

defined as,

Ai j ≡
∂θi

s

∂θ j
≡





















1− κ − γ1 −γ2

−γ2 1− κ + γ1





















, (2.13)

whereκ is the convergence, describing contractions and dilationswhich are propor-

tional to the projected mass along the line of sight. The shear, γ, characterises stretch-

ing and compression of the image. From equation (2.13) the convergence and shear

are given by,

κ = −
(A11 + A22

2

)

+ 1 , (2.14)

STEVEN PEDIANI 46



2.2: WEAK LENSING GEODESIC EQUATIONS

γ1 = −
(A11 − A22

2

)

, (2.15)

γ2 = −A12 . (2.16)

From these equations and the fact that the dominant contribution comes from trans-

verse fluctuations, we can write the convergence,κ(θ), caused by a given source at

redshiftz,

κ(θ) = −1
2

∫ χ

0
dχ′W(χ′)

(

k2Ψ(χ′) + k2Φ(χ′)
)

. (2.17)

We have written the Newtonian potentials in Fourier space (∇2Φ = −k2Φ), and W(z)

is our window function, given by,

W(χ) = χ
∫ ∞

χ

dχ′n(χ′)

(

1− χ

χ′

)

, (2.18)

andn(z) is the normalised source galaxy distribution. Typically in weak lensing liter-

ature, late time shear is assumed to be zero, and thus the quantity k2Φ + k2Ψ = 2k2Φ.

This can then be written using the Poisson fluid equation,

k2Φ =
∑

x

3H2
0Ωxδx

2a
. (2.19)

With no knowledge of the intrinsic size and shape of a given background source, our

weak lensing observations must be statistical measurements. One such statistical quan-

tity is the convergence auto correlation function,

Cκκ = 〈κ(θ)κ(θ′)〉 , (2.20)

which, when transformed into multipole space, is defined as,

< κlmκl′m′ >= δl1l2δm1m2Pκ(l) , (2.21)

wherePκ(l) is the convergence power spectrum. Limber’s approximation (l ≈ kχ)

allows us to writePκ(l) as,
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Pκ(l) =
∑

x

9H4
0Ω

2
x

4

∫ χs

0
dχ

W2(χ)
χ2a2(χ)

Px

(

l
χ

; χ

)

. (2.22)

where Px

(

l
χ
; χ

)

is the power spectrum of speciesx. From the convergence power

spectrum several other second order cosmic shear quantities may be calculated. These

include the two point correlation functionsξ±(θ), the aperture mass variance〈M2
ap〉(θ)

and the shear variance〈|γ̄|2〉(θ).

The two point correlation functionsξ±(θ) are defined as

ξ±(θ) = ξtt(θ) ± ξ××(θ) . (2.23)

where the subscripts tt and×× are the tangential and 45◦ rotated ellipticity correlation

functions respectively, which can be directly inferred from observations. They can also

be calculated theoretically from the convergence power spectrum via,

ξ±(θ) =
1
2π

∫ ∞

0
dl lPκ(l)J0,4(lθ) . (2.24)

Whereθ is the angle separating galaxy pairs andJ0,4 are Bessel functions of the first

kind. The shear variance is defined as the variance of the average shear in circular areas

of differing radii on the sky. As pointed out in Schneider et al. (2002), when trying to

determine the shear variance directly, gaps in the observational data can make this

difficult. The shear variance can however be computed from the measured correlation

function, using,

〈|γ̄|2〉(θ) =
∫

ϑdϑ
θ2

ξ+(ϑ)S +

(

ϑ

θ

)

, (2.25)

where,

S +(x) =
1
π

(

4 arccos
[ x
2

]

− x
√

4− x2
)

. (2.26)

The shear variance can also be calculated using the theoretical convergence power

spectrum via Bartelmann and Schneider (2001),

STEVEN PEDIANI 48



2.2: WEAK LENSING GEODESIC EQUATIONS

〈|γ̄|2〉(θ) = 1
2π

∫ ∞

0
dlPκ(l)

4J1
2(lθ)

lθ2
, (2.27)

with J1 being a Bessel function of the first kind. The shear variance is a low-pass

estimate of the convergence power spectrum. The third statistic is the aperture mass,

which can be measured experimentally via,

Map(θ) =
∫

d2ϑQ(|ϑ|)γt(ϑ) , (2.28)

whereγt(ϑ) is the tangential shear relative to the centre of a circularaperture of angular

radiusθ, and Q is a filter function. Directly observing the aperture mass variance,

〈M2
ap〉, suffers the same problems as the shear variance. Like the shear variance, the

aperture mass variance can be written in terms of the correlation functions,

〈M2
ap〉(θ) =

1
2

∫

ϑdϑ
θ2

(

ξ+(ϑ)T+

[

ϑ

θ

]

+ ξ−(ϑ)T−

[

ϑ

θ

])

, (2.29)

with,

T+(x) = 576
∫ ∞

0

dt
t3

J0(xt) [J4(t)]
2 , (2.30)

and,

T−(x) = 576
∫ ∞

0

dt
t3

J4(xt) [J4(t)]
2 . (2.31)

The aperture mass variance can also be given by the theoretical convergence power

spectrum,

〈M2
ap〉(θ) =

1
2π

∫ ∞

0
dlPκ(l)

576J4
2(lθ)

l3θ4
. (2.32)

The aperture mass variance is a bandpass estimate of the convergence power spectrum.

All three of these measurements are essentially just integrals over the power spectrum

but with differing window functions, and therefore probing different parts of the con-

vergence power spectrum. Given the fact that elastic dark energy is a linear theory, we
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are constrain to the linear regime, and so shear variance is abetter quantity to calculate

and compare with observations as the aperture mass is a more localised measurement.

One can work down to∼ 30′ with shear variance before non-linear effects take over.

With the aperture mass non-linear effects become dominate at much larger angles∼ 80′

(Fu et al. (2008)).

2.3 Codes to compute weak lensing observables

CMBFAST calculates the temperature autocorrelation function and the polarization

power spectra for a given set of cosmological parameters. A typical power spectrum

can be computed via,

Cl = (4π)2

∫

k2dkPψ(k)|∆a(k, η = η0)∆b(k, η = η0)| , (2.33)

wherePψ is the initial power spectrum,∆a and∆b are the numerically computed trans-

fer functions. Seljak and Zaldarriaga (1996) showed that the anisotropy term can be

split up into a source term and a geometric term, given by,

∆(k, µ, η0) =
∫ τ0

0
dτeikµ(τ−τ0)S (k, µ, τ) , (2.34)

whereµ is the cosine of the angle separating the incoming photon with the wavenumber

k. If one multiplies both sides by the Legendre polynomialPl(µ) and then integrates

overµ the following result is obtained,

∆l(k, η0) =
∫ τ0

0
dτS (k, τ) jl[k(η0 − η)] , (2.35)

where jl is the spherical Bessel function. CMBFAST calculates the temperature and

polarisation anisotropies in this way, where the only difference between each calcu-

lation is what is used for the source. Corasaniti et al. (2005) modified CMBFAST to

include a scalar field type dark energy model (see Bean and Doré (2004)), and also

added a feature so that the matter-matter and ISW-matter power spectra (see Chapter
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3 for more details on the ISW-matter power spectrum) could becalculated by adding

new source terms. These terms for matter and ISW are given respectively by,

S M = W(z)bgδM , (2.36)

S IS W = e−κ(Φ̇ + Ψ̇) , (2.37)

whereW(z) is a window function,Φ andΨ are Newtonian potentials, andbg is the

galaxy bias. TheCl’s for the matter-matter, ISW-matter correlations can now be com-

puted via,

Cgg
l = (4π)2

∫

k2dkPψ(k)|∆gg(k, η = η0)∆gg(k, η = η0)| , (2.38)

CgT
l = (4π)2

∫

k2dkPψ(k)|∆gg(k, η = η0)∆TT (k, η = η0)| . (2.39)

We can perform a similar modification in order to calculate the convergence power

spectrum (2.22), by defining the source term,

S κ = −
1
2

k2(Φ + Ψ)W(z) , (2.40)

whereW(z) is the window function given in (2.18). In the case whereΨ = Φ, the

equation reduces to−k2ΦW(z). This has allowed us to modify CMBFAST to output

the convergence power spectrum. We ran the code for a range ofdifferent dark energy

parameters, using a galaxy distribution given by,

n(z) =
z2

0.53
exp

(

− z
0.5

)

, (2.41)

as in Huterer (2002), normalised so,

∫ ∞

0
n(z)dz = 1 . (2.42)

In figure (2.2) we have plotted the convergence power spectrafor aΛCDM, scalar field,

and elastic dark energy model with a selection of different values for the sound speed
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and equation of state. For the other cosmological parameters we used the WMAP7

best fit values. We have also plotted the aperture mass variance and shear variance for

each convergence power spectra in figures 2.3 and 2.4 respectively.

1 10 100 1000

0.0001

l

1 10 100 1000

0.0001

l

1 10 100 1000

0.0001

l

1 10 100 1000

0.0001

l

Figure 2.2: These plots show the linear convergence power spectra. The plots on the

left are scalar field models and the plots on the right are elastic dark energy model.

The plots on the top havew = −0.4, the plots on the bottom havew = −0.8. The black

dotted line in all plots is aΛCDM model, the blue lines correspond toc2
s = 10−4, and

the red lines toc2
s = 1.
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Figure 2.3: These plots show the aperture mass variance, given by equation (2.32).

The plots are laid out the same as figure (2.2).θ has units of arcmins.
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Figure 2.4: These plots show the shear variance, given by equation (2.27). The plots

are laid out the same as figure (2.2).θ has units of arcmins.

There is very little between the models whenc2
s = 1, but as the sound speed is low-

ered, differences start to appear. When the elastic dark energy has an equation of state

w = −0.8, lowering the sound speed reduces the amplitude of the convergence power

spectrum. In the case wherew = −0.4, the opposite happens, and lower sound speeds

lead to larger amplitudes. If we were to only consider 4πGδx/3 = −k2Φ for our weak

lensing source, in our convergence equation, then as the sound speed was reduced,
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the amplitude would always increase. The reduction at certain values comes from the

competing effects of shear and density. Because we are using1
2k2(Φ + Ψ) in the con-

vergence equation, withk2Ψ = k2Φ − 12πGa2ρ(1 + w)Θ, andΘ always has the same

sign asΦ, meaning|Ψ| is always lower than|Φ|. We have illustrated this effect in figure

2.5, where we have plottedΦ, Ψ and |Φ + Ψ| for both models. The plots on the left

havec2
s = 1, and show the models are indistinguishable. This explainswhy there is

very little difference in the red lines in figures 2.2, 2.3, and 2.4 between each model,

for a givenw. The plots on the right of figure 2.5 havec2
s = 10−4, and now show large

differences inΦ andΨ for the elastic dark energy model. There is no late time differ-

ence between the two potentials in the scalar field model asΘ is negligible. The value

of |Φ + Ψ| is larger for elastic dark energy than the scalar field whenw = −0.4, but the

opposite is true for whenw = −0.8.
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Figure 2.5: These plots demonstrate the evolution of the metric perturbations with

respect to the scale factor. The blue lines areΦ, and the red areΨ. Solid lines denote

use of an elastic dark energy model, and dotted lines a scalarfield model. The black

lines are|Φ + Ψ|. Plots on the left havec2
s = 1, plots on the right havec2

s = 10−4. Plots

on the top havew = −0.4, plots on the bottom havew = −0.8.
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2.4 CosmoMC results using WMAP5 and SNIa data

We have shown in the last section, using a modified version of CMBFAST, that differ-

ences in the convergence power spectrum between elastic dark energy and a scalar field

model can occur for certain values ofw andcs. Ultimately we would like to test the

theoretical predictions against observed data, and in doing so help constrain these dark

energy parameters. We found it useful to put the weak lensingequations into the CMB

code, CAMB (Lewis et al. (2000)). Due to the close similarities between CAMB and

CMBFAST, it was relatively straight forward to modify CAMB to compute the conver-

gence power spectra and associated correlation functions using the same method. The

advantage with CAMB aside from being noticeably quicker than CMBFAST, is that

CosmoMC (Lewis and Bridle (2002)) has been written to work with CAMB. Using

a Markov Chain Monte Carlo algorithm, CosmoMC runs CAMB manytimes varying

selected cosmological parameters and compares the output to observable data, finding

best fit parameters for a given model, and produces marginalized statistics for different

cosmological parameters such asw, cs, Ωx, h, andns. Of particular interest to us are

the dark energy parameters,w and the sound speed,cs. Whencs is ∼ 1 it is difficult to

distinguish between a scalar field model and an elastic dark energy model as seen in the

previous section. As the sound speed approaches zero however, large differences in the

power spectra appear and it is these differences that will allow us to constrain the pa-

rameters. Given how sensitive elastic dark energy is to low sound speeds, CosmoMC

will allow us to define a lower limit to this sound speed, as well as show preferred

values of all other parameters for each model.

We ran CosmoMC on the Computation of Mathematical Astrophysics (COMA)

cluster at the Jodrell Bank Centre for Astrophysics. COMA isinstalled with 312 vir-

tual cores, allowing us to run multiple chains on multiple cpus. CAMB was written

with multithreading in mind, and by utilising OpenMP, one instance of CAMB can

be run over several CPUs, greatly speeding up the computational time. Not only this,

since CosmoMC is a hybrid MPI/OpenMP code, we can also run several chains simul-
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taneously. Each time we ran CosmoMC we used the API’s MPICH2,and OpenMP

to run 4 chains, with each chain running on 4 virtual cores, using a total of 16 virtual

cores. Using MPI, the code can compare chains as it is runningin real time, and check

whether the chains are converging.

We ran CosmoMC with the option, MPI Converge Stop= 0.03, enabled. This

option checks each of the parameter’s “variance of chain means” divided by the “mean

of chain variances”, An et al. (1998), also known as the Gelman and Rubin R statistic.

Typically for convergence one would wantR − 1 < 0.2. Initially we ran CosmoMC

using just WMAP5 data (Dunkley et al. (2009)), and as we expected these showed

minimal differences between the elastic dark energy and scalar field model. CosmoMC

allows other CMB datasets to be used, including data from theArcminute Cosmology

Bolometer Array Receiver (ACBAR) (Reichardt et al. (2009)), the Cosmic Background

Imager (CBI) (Padin et al. (2000)), however since the differences between elastic dark

energy and the scalar field model occur at low values ofl in the CMB cross correlation

functions, smaller angle observations do not aid significantly in distinguishing the two

models. Table 2.1 shows the cosmological parameters used with the initial values from

our params.ini file. All other options and parameters were left at their default settings.

Parameter Start Center Min Max Starting Width σ estimate

Ωbh2 0.0223 0.005 0.1 0.001 0.001

Ωch2 0.105 0.01 0.99 0.01 0.01

θ 1.04 0.5 10 0.002 0.002

w -0.8 -0.999 0 0.02 0.02

ns 0.95 0.5 1.5 0.02 0.01

log[1010As] 3 2.7 4 0.01 0.01

log[cs] 0 -5 0 0.02 0.02

Table 2.1: Initial cosmological parameters used in all CosmoMC runs, unless other-

wise stated.

We used the default CosmoMC installation which imposes priors onH0 and the age

of the Universe as, 40 km s−1 Mpc−1 < H0 < 100 km s−1 Mpc−1 and 10 Gyr< age<
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20 Gyr. Unless mentioned, we used these settings, and the values in table 2.1 on all

CosmoMC runs. 1D and 2D marginalized plots are shown in figures 2.6 and 2.7 in a

variety of parameter planes, where we have overlaid scalar field and elastic dark energy

contours on the same plots.

Figure 2.6: 1D marginalized plots for cosmological parameters using WMAP5 data for

a scalar field (black) and elastic dark energy (red) model. Wesee very little difference

between models.
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Figure 2.7: 2D marginalized plots for cosmological parameters using WMAP5 data

for a scalar field (black) and elastic dark energy (red) model. Both models produce

similar results, with no lower bound on the sound speed,cs.

Using WMAP5 data on its own does not give a lower bound to the sound speed, and

does not really help with differentiating between models. We then ran CosmoMC us-

ing WMAP5 and type Ia supernova (SNIa) data taken from the Union SNIa compila-

tion, Kowalski et al. (2008), where the authors had complieddata from the Supernova

Legacy Survey, ESSENCE survey, and recent observations of high redshift SNIa made

by the Hubble Space Telescope. This work was one of the most upto date SNIa com-

pilation when we carried out our analysis. Our results are presented in figures 2.8 and

2.9. Although the inclusion of the SNIa data has tightened the constraint on the cos-

mological parameters, it has done nothing to help constraincs, and does not aid telling

the two models apart. Both models allow the same range of cosmological parameters.
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Figure 2.8: 1D marginalized plots for cosmological parameters using WMAP5+ SNIa

data for a scalar field (black) and elastic dark energy (red) model. Again the models

give near identical results.

STEVEN PEDIANI 61



2.5: CONSTRAINING PARAMETERS WITH WEAK LENSING DATA

Figure 2.9: 2D marginalized plots for cosmological parameters using WMAP5+ SNIa

data for a scalar field (black) and elastic dark energy (red) model.

2.5 Constraining parameters with weak lensing data

2.5.1 Including weak lensing

Weak lensing shear observations have been detected by many groups over the last

decade, see for example, Kaiser et al. (2000), Hoekstra et al. (2002), Hamana et al.

(2003), Maoli et al. (2000), Chang et al. (2004), and Jee et al. (2006). Most observa-

tions of weak lensing shear probe small angles, where non-linear effects in the evolu-

tion of the growth of structure are prevalent. We use the weaklensing data taken from

the 3rd year Canada-France-Hawaii Telescope Legacy Survey(CFHTLS) Wide data

release (Fu et al. (2008)). One of the primary goals of the CFHTLS is to use weak

lensing measurements to explore the dark matter power spectrum and its evolution.
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Utilising the CFHT MEGAPRIME/MEGACAM instrument the project has produced

high quality weak lensing shear data. The CFHTLS Wide surveywas designed to

explore angular scales of up to 8 degrees, a fact that makes this survey ideal for our

work. Our equations are linear and so only give accurate results at large angles, or low

ℓ values. The data from Fu et al. (2008), based on the third yearCFHTLS Wide data

release, is predominantly set in the linear regime making itthe perfect data to compare

with. Figure 2.10 shows the measured aperture mass and shearvariance from this data

set.

30 60 90 120 150 180 210
0

30 60 90 120 150 180 210
0

Figure 2.10: Aperture mass variance (bottom) and shear variance (top) from 3rd year

CHFTLS Wide data (Fu et al. (2008)).

By introducing weak lensing data into our analysis we can improve upon the results

from WMAP5 and SNIa data alone as, shown in the previous section, large differences
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occur for certain parameter values. Massey et al. (2007), produced a module for Cos-

moMC allowing calculation of the convergence power spectrum, their data however

was largely within the non-linear regime ranging from 0.1 to40 arcmins. Given that

we don’t have a non-linear description of dark energy withinCAMB, we have to con-

fine ourselves to the linear part of the spectrum. The linear scale for shear variance is

approximately> 30′, and with aperture mass variance it is larger at> 80′. However

we use the Massey et al. (2007) module as a basic template for calculating the 2nd

order weak lensing effects, shear variance and aperture mass variance. To avoid issues

with non-linearity, we choose to use the shear variance data, and discarded any data

observed at an angle lower than 30′. The selection function was replaced with the one

used by Fu et al. (2008) for the observable data, given by,

n(z) = A
z0.612+ z0.621×8.125

z8.125+ 0.620
, (2.43)

where A is a constant set to meet the condition that,

∫

n(z)dz = 1 . (2.44)

1D and 2D marginalized plots obtained from CosmoMC for WMAP+ weak lensing

are shown in figures 2.11 and 2.12.
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Figure 2.11: 1D marginalized plots for cosmological parameters using WMAP5+

weak lensing data for a scalar field (black) and elastic dark energy (red) model. We

can now see there is a sharp reduction at low values in the likelihood for the sound

speed in an elastic dark energy model.
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Figure 2.12: 2D marginalized plots for cosmological parameters using WMAP5+

weak lensing data for a scalar field (black) and elastic dark energy (red) model. Elastic

dark energy is more tightly bound than the scalar field model.

With the inclusion of the weak lensing data there are now noticeable differences

between the two CosmoMC outputs for the scalar field and elastic dark energy models.

Elastic dark energy appears to be far more tightly constrained than the scalar field

model. The most significant difference appears to be in the sound speed values that

the two models can take. Referring to figure 2.11, we see that the elastic dark energy

is almost cut off around log10 cs ? −2.5, whereas in contrast the scalar field prefers a

lower sound speed. The elastic dark energy is not completelycut off due to the fact that

whenw approaches 1, the sound speed has less effect on the power spectra, meaning

for w ∼ −0.99, anycs value will not significantly change the power spectra. This effect

can be seen in the 2D plot in figure 2.12, where log10 cs againstw plot shows that as

w approaches -1, log10 cs can take on any value at the 98% confident limit. We find a
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2σ lower bound to the sound speed to be log10 cs ≥ −3.35. The equation of state,w,

for the elastic dark energy model appears to be much more tightly constrained with the

other parameters than in the scalar field case. The 2σ upper bound on the equation of

state for elastic dark energy isw ≤ −0.79, whereas for the scalar field we find a value

of w ≤ −0.3.

2.5.2 Results using WMAP5+ SNIa+ weak lensing

We can combine the SNIa data with the WMAP5+ weak lensing data. Figures 2.13

and 2.14 shows the resulting plots for when SNIa data is used alongside WMAP5 and

weak lensing data.
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Figure 2.13: 1D marginalized plots for cosmological parameters using WMAP5+

SNIa+ weak lensing data for a scalar field (black) and elastic dark energy (red) model.

The sharp reduction in the likelihood of the sound speed for an elastic dark energy

model is still present.

STEVEN PEDIANI 68



2.5: CONSTRAINING PARAMETERS WITH WEAK LENSING DATA

log
10

c
s

w

−4 −2 0
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

Ω
DE

w

0.62 0.66 0.7
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

Ω
m

w

0.28 0.32 0.36
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

σ
8

w

0.7 0.75 0.8 0.85
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

H
0

w

60 65 70
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

Ω
m

σ 8

0.28 0.32 0.36

0.7

0.75

0.8

0.85

Figure 2.14: 2D marginalized plots for cosmological parameters using WMAP5+

SNIa+ weak lensing data for a scalar field (black) and elastic dark energy (red) model.

Both models are now more tightly bound when including the SNIa data.

The addition of the SNIa data tightens the range of values that the equation of state

can take for both models, although this has had a more noticeable effect on the scalar

field, which previously could take a much larger range. We finda 2σ upper bound for

the equation of state for the elastic dark energy model to bew ≤ −0.872, and for the

scalar field,w ≤ −0.787. Withw more tightly constrained, so too are the values forΩm

andΩDE. The same sound speed behaviour is observed as with just using WMAP5 and

weak lensing data, with elastic dark energy displaying a sharp decline in likelihood at

log10 cs ? −2.5, and the scalar field model preferring a lower sound speed. We find

a 2σ lower bound for the elastic dark energy sound speed to be log10 cs ≥ −3.84. No

such bound is found for the scalar field model.
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2.5.3 Varying type Ia supernova

The supernova data is based on observations of type Ia supernova, which are assumed

to be standard candles. When a star reaches the Chandrasekhar limit, the maximum

mass a body can have before the degenerate electron pressureis overcome by the gravi-

tational pressure, it can no longer support itself and collapses, resulting in a supernova.

Typically type Ia supernova occur in binary systems where a white dwarf strips the

other star of its mass, slowly increasing the white dwarfs mass. Once the white dwarf

reaches the Chandrasekhar limit, it becomes a supernova. Because the mass of the

star is known due to the Chandrasekhar limit, it is assumed that the peak luminosity is

then the same no matter where the supernova is in the Universe, that is, it is a standard

candle. This means that by measuring the difference between apparent and absolute

magnitude, one can compute the distance of the galaxy that the supernova occurred

in. This can then be compared with the redshift of the galaxy.Conventionally the

differences between apparentm and absoluteM magnitude is expressed as,

m − M = 5 log

(

dL

10pc

)

+ K , (2.45)

whereK is to account for the shifting of the photon wavelength as theUniverse ex-

pands, anddL is the luminosity distance and is defined as,

dL ≡
χ

a
. (2.46)

The specific properties that may affect the way in which the star undergoes this dra-

matic change, such as the local environment and its exact composition can be different

at different redshifts. We mentioned that SNIa originate from a single degenerate sys-

tem (a white dwarf and a companion), but as pointed out in Riess and Livio (2006),

there is no evidence to say that SNIa cannot occur in double degenerate systems. These

two progenitor systems differ in delay time to the explosion and local environment thus

introducing an uncertainty into the evolution effects of SNIa, should double degenerate

systems produce SNIa. Without a detailed understanding it is hard not to imagine the
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possibility that SNIa luminosity may not be independent of redshift. At its extreme,

such a conclusion could call into question the very fact thatthe Universe is undergoing

an accelerated expansion. Ferramacho et al. (2008) examined what would happen if

the peak magnitude of a supernova was able to vary linearly with time by defining,

∆m(z) = snK

(

t0 − t(z)
t0 − t1

)

, (2.47)

wheret0 is the present age of the Universe,t(z) is the time at the redshift of the super-

nova,t1 is the age of the Universe at a redshift of 1, andsnK represents the change of

magnitude at this redshift. In order to see what effect this would have on our models

we incorporated the parametersnK into our version of CosmoMC. We have plotted

the resulting 1D and 2D marginalized plots in Figures 2.15 and 2.16 respectively.
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Figure 2.15: 1D marginalized plots for cosmological parameters using WMAP+ SNIa

+ snK + weak lensing data for scalar field (black) and elastic dark energy (red). The

scalar field is more sensative to thesnK parameter, allowing a wider range of values

than in the elastic dark energy case.
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Figure 2.16: 2D marginalized plots for cosmological parameters using WMAP+ SNIa

+ snK + weak lensing data for scalar field (black) and elastic dark energy (red).

Not surprisingly, allowing the supernovae to evolve with time has reduced the con-

straints for both models on all parameters, but this has not qualitatively changed our

previous result. We find a lower bound on the elastic dark energy sound speed still

exists, with a 2σ lower bound being log10 cs ≥ −3.50. No such lower bound exists for

the scalar field. The equation of state for the scalar field model is poorly constrained,

and highly degenerate withsnK. We find that the 2σ upper bound onw is w ≤ −0.795
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for elastic dark energy andw ≤ −0.293 for the scalar field. WhensnK is positive, dis-

tant objects appear brighter, and whensnK is negative distant objects are dimmer. By

modifying this distance-redshift relation, we change the amount of dark energy, and

its equation of state, needed to agree with observations. Looking at figure 2.16 we can

see thatsnK is degenerate withΩDE, w andH0.

2.6 Conclusion

The aim of the work encompassed within this chapter was to ascertain if, using weak

gravitational lensing, coupled with WMAP5 and SNIa data, wecould distinguish be-

tween an elastic dark energy and a scalar field model, and place a lower limit on the

sound speed of elastic dark energy. Since the weak lensing effect on a photon’s path

only depend on the gravitational force created by a body, andnot on its make up, weak

lensing is a powerful method in obtaining cosmological parameters.

It is known that as the sound speed of elastic dark energy is lowered, it can behave

more like dark matter, exhibiting clustering properties (Battye and Moss (2007)). If

such behaviour is occurring within our Universe, elastic dark energy will be modifying

the gravitational potentials throughout space. The strength of this clustering is directly

related to the sound speed, and so elastic dark energy’s sound speed would directly

impact on weak lensing effects. First we demonstrated that using WMAP5 and SNIa

data alone does not give a lower bound on the sound speed for either model, nor help

with differentiating between the models (figures 2.8 and 2.9). From the scalar field

point of view, this agrees with work carried out by a number ofauthors. For exam-

ple, Weller and Lewis (2003) did not detect a significant constraint on the sound speed

using the first year WMAP data combined with large scale structure and supernovae

observations. A similar analysis, given in Bean and Doré (2004), obtained a 1σ upper

limit on the sound speedc2
s < 0.04, but could not detect a lower limit. The difficulty in

putting a significant set of constraints on the sound speed ofa scalar field model was

also pointed out in Hannestad (2005), where, using CMB, SNIaand large scale struc-
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ture data the author showed that placing such constraints onthe sound speed was not

currently possible. We then showed that combining WMAP5 with the shear variance

data from the 3rd year CFHTLS Wide data release (Fu et al. (2008)), does show dif-

ferences between the models (figures 2.11 and 2.12). The elastic dark energy model’s

equation of state is more likely to be closer to -1 than the scalar field model, which

itself can take on a range of values with the marginalised curve peaking atw ∼ −0.55.

The models are very different with respect to sound speed, with elastic dark energy

showing a sharp drop off in the marginalised sound speed, with 2σ lower bounds of

log10 cs ≥ −3.35 when using WMAP5 and weak lensing data, and log10 cs ≥ −3.84

when using WMAP5, SNIa and weak lensing data. The reason thatthe 2σ bound is

lower when including the SNIa data is to do with the fact that when the equation of

state is close to -1, the sound speed can take on a larger rangeof values. Including

SNIa data tightens the constraints on the equation of state,forcing it closer to -1, and

this in turns lowers the bound on the sound speed.

The scalar field model shows no cut off in its sound speed when combining the

weak lensing data with WMAP5 and the SNIa data. Using these data sets we find a

2σ upper bound onw for the scalar field to bew ≤ −0.787, larger than the elastic dark

energy’s upper bound ofw ≤ −0.872.

Finally we investigated the possibility that SNIa are not standard candles, but vary

in brightness as a function of redshift. We used a model wherepeak luminosity is

linearly evolving with redshift, with the parametersnK representing this change. In

general the constraints on all parameters are not as tight (figures 2.15 and 2.16). The

data mirrors what we saw with just using WMAP5 and weak lensing data, where the

scalar field could take on a large range of values for the cosmological parameters,

and had no lower bound to the sound speed. Elastic dark energyis still more tightly

constrained than the scalar field, and we can place a 2σ lower bound on the sound

speed of log10 cs ≥ −3.50.
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2.7 Tables

Below we have tabulated the marginalised statistics for allweak lensing runs on Cos-

moMC.

Scalar Field Elastic Dark Energy

Parameter Mean σ Mean σ

Ωbh2 0.0223 0.0006 0.0225 0.0005

Ωch2 0.111 0.005 0.119 0.0028

θ 1.03 0.003 1.04 0.0029

w -0.590 0.178 -0.918 0.065

ns 0.954 0.013 0.958 0.013

log[1010As] 3.21 0.04 3.23 0.03

log10 cs -3.13 1.15 -1.08 0.941

ΩDE 0.577 0.069 0.668 0.024

Age/GYr 14.2 0.319 13.8 0.129

Ωm 0.422 0.069 0.331 0.024

σ8 0.686 0.073 0.813 0.034

zre 10.9 0.185 10.9 0.161

H0 56.9 5.02 65.5 2.14

Table 2.2: Scalar field and elastic dark energy statistics from the CosmoMC runs using

WMAP5 and weak lensing data.
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Scalar Field Elastic Dark Energy

Parameter Mean σ Mean σ

Ωbh2 0.0224 0.0005 0.0225 0.0006

Ωch2 0.117 0.0028 0.119 0.0029

θ 10.4 0.0029 10.4 0.0029

w -0.903 0.064 -0.951 0.04

ns 0.957 0.012 0.957 0.018

log[1010As] 3.23 0.033 3.23 0.034

log10 cs -2.87 1.34 -1.22 1.05

ΩDE 0.674 0.018 0.679 0.017

Age/GYr 13.8 0.13 13.8 0.12

Ωm 0.325 0.018 0.320 0.017

σ8 0.807 0.029 0.820 0.034

zre 10.8 0.157 10.9 0.162

H0 65.6 1.89 66.5 1.54

Table 2.3: Scalar field and elastic dark energy statistics from the CosmoMC runs using

the WMAP5, SNIa and weak lensing data
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Scalar Field Elastic Dark Energy

Parameter Mean σ Mean σ

Ωbh2 0.0222 0.0006 0.0225 0.0006

Ωch2 0.111 0.0051 0.119 0.0029

θ 1.03 0.003 1.04 0.003

w -0.581 0.182 -0.921 0.064

ns 0.953 0.013 0.957 0.013

log[1010As] 3.21 0.036 3.23 0.035

log10 cs -3.13 1.15 -1.11 0.976

snK 0.270 0.134 0.0488 0.0778

ΩDE 0.573 0.07 0.668 0.024

Age/GYr 14.2 0.331 13.8 0.13

Ωm 0.426 0.07 0.331 0.024

σ8 0.683 0.074 0.815 0.031

zre 10.9 0.190 10.9 0.165

H0 56.6 5.12 65.5 2.14

Table 2.4: Scalar field and elastic dark energy statistics from the CosmoMC runs using

the WMAP5, SNIa and weak lensing data and using thesnK parameter
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Constraints from the ISW effect

As well as weak lensing, there is another cosmological observation we can use to con-

strain dark energy parameters, and potentially discriminate elastic dark energy from a

scalar field dark energy. This observation is the IntegratedSachs-Wolfe (ISW) effect

(Sachs and Wolfe (1967)). Like the Sachs-Wolfe (SW) effect, the ISW effect arises

when photon energies are modified in the presence of a gravitational field. The dif-

ference is that while the SW effect occurs when CMB photons leave the surface of

last scattering, the ISW effect occurs as these CMB photons travel through the evolv-

ing Universe. Encountering evolving potentials leads to a late time shifting of CMB

photon energies, giving rise to secondary anisotropies on the CMB power spectrum.

3.1 Introduction

As a photon leaves the surface of last scattering it will encounter many potential wells

set up by the uneven distribution of matter throughout the Universe. These gravita-

tional potential wells cause a photon’s wavelength to be blueshifted as it falls into a

well, and then redshifted as it climbs out. During periods ofmatter domination the

gravitational potentials are constant with time,Φ̇ = 0, and so the energy gained by a

photon falling into a well is lost climbing out of the well. Ifat some point the Universe

were to become dominated by a dark energy component, the gravitational potentials
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would begin to decay. A CMB photon now falling into a potential well gains a given

amount of energy, but as the potential is being reduced, the photon will lose less en-

ergy climbing out and thus the photon experiences a net change in energy. This shift

in photon energy is known as the ISW effect, where the term ‘integrated’ refers to the

fact that the energy shift is due to the sum of all the potential wells a given photon

encounters between the surface of last scattering and the observer. Therefore, the ISW

effect gives rise to a further anisotropy in the CMB TT power spectrum on large scales,

l < 10, caused at late times (z < 2) when the Universe becomes dominated by dark en-

ergy. The very existence of an ISW effect is further proof of an accelerated expansion,

reinforcing the inferences made using SNIa data (Perlmutter et al. (1999), Riess et al.

(1998)).

The ISW signature imprinted on the CMB TT power spectrum cannot be separated

from the primary CMB anisotropies laid down at the time of last scattering, further-

more the amplitude of the ISW component will be much lower than that of the primary

anisotropies. However, given that the decaying gravitational perturbations give rise to

this net photon energy shift, there should be a direct correlation between tracers of the

large scale structures in the Universe and the temperature anisotropies in the CMB.

This was first suggested in Crittenden and Turok (1996). If any such correlation be-

tween the temperature differences and the matter distribution are detected, it will be

due to the ISW effect since the primary temperature anisotropies were formedwell be-

fore large scale structure formation. Since CMB and matter correlations are relatively

weak, in order to reduce the chance of accidental correlations a near full sky map of the

matter distribution is needed. The ISW effect was first detected by Boughn and Crit-

tenden (2004) by correlating the first year WMAP maps (Bennett et al. (2003)), with

the NRAO VLA sky survey (NVSS) of radio galaxies (Condon et al. (1998)), which

was generated using the Very Large Array (VLA) in New Mexico,and the hard X-ray

background data from the HEAO-1 satellite (Boldt (1987)). These surveys mapped

out radio and X-ray emissions respectively, emanating fromactive galaxies out to a

redshift of order 1, and due to the large sky coverage allow large angular scales to be
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probed. Since its initial detection the ISW effect has now been observed by numerous

groups, using a variety of different density tracers and probing different redshift ranges

from z ∼ 0.1 to z ∼ 1.5. See for example the work of Scranton et al. (2003), Fosalba

et al. (2003), Afshordi et al. (2004), Nolta et al. (2004), Giannantonio et al. (2006),

McEwen et al. (2007), and Rassat et al. (2007). Typical ISW matter correlations have

been detected at significances between a 2∼ 3σ significance, and are consistent with

aΛCDM model.

3.2 A theoretical description of the ISW effect

Here we outline the equations used to describe the ISW effect. IfΦ andΨ are the grav-

itational potentials in the conformal Newtonian gauge, then the expected temperature

perturbation of a given photon coming in the directionn̂ is given by,

∆T (n̂)
T
=

∫ τ0

τdec

dτ
(

Φ̇[(τ0 − τ)n̂, τ] + Ψ̇ [(τ0 − τ)n̂, τ]
)

, (3.1)

whereΦ̇ andΨ̇ are derivatives with respect to conformal time andτdec is the time of

decoupling. As mentioned in the introduction, potentials that vary with time modify

the net energy gain of photons passing through them, and so one would expect a cor-

relation with nearby large scale structure if the Universe is undergoing an accelerated

expansion. The observed density contrast of galaxies in thedirectionn̂ is given by,

δg(n̂) =
∫

bg(z)W(z)δm(n̂, z)dz , (3.2)

where it is assumed that the galaxy overdensity traces the CDM density contrastδm,

andbg is the linear galaxy bias. The cross correlation and auto correlation functions of

these quantities are defined as,

CTg(θ) ≡ 〈
∆T (n̂1)

T
δg(n̂2)〉 , (3.3)

Cgg(θ) ≡ 〈δg(n̂1)δg(n̂2)〉 , (3.4)
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CTT (θ) ≡ 〈∆T (n̂1)
T
∆T (n̂2)

T
〉 . (3.5)

These can be decomposed into a Legendre series,

Cxx(θ) =
∞
∑

l=2

2l + 1
4π

Cxx
l Pl(cosθ) , (3.6)

which now gives the auto/cross correlation in harmonic space. TheCxx
l are the corre-

sponding auto/cross correlation power spectra, andPl are the Legendre polynomials.

Seljak and Zaldarriaga (1996) split the theoretical calculation of a power spectrum into

source and geometric terms, which lead to a more efficient way of calculating numer-

ical results, and was implemented in CMBFAST. The equivalent source terms in the

CMB codes forδg(n̂) and∆T (n̂)
T were given in Corasaniti et al. (2005), and stated earlier

(see equations (2.36) and (2.37) ) as,

S m = W(z)bgδm(z) , (3.7)

S IS W = e−κ(Φ̇ + Ψ̇) , (3.8)

whereW(z) is a window function and the exponential term is known as thevisibility

function, which accounts for further scattering of the CMB photons post-reionization.

The ISW effect changes the TT power spectrum by increasing power at the larger an-

gular scales, or lower values ofl. Using CMBFAST we have plotted the TT power

spectrum for both an elastic dark energy and scalar field model, with a variety of dif-

ferent values for the dark energy equation of state,w, and its sound speed,cs. These are

presented in figure 3.1. As with the weak lensing convergencepower spectra, a larger

value ofw gives greater differences between the power spectra as the sound speed is

varied in both models.
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Figure 3.1: Here we have plotted the TT power spectra for different values ofw and

cs. The plots on the left are scalar field models and the plots on the right are elastic

dark energy model. The plots on the top havew = −0.4, the plots on the bottom

havew = −0.9. The black dotted line in all plots is aΛCDM model, the blue lines

correspond toc2
s = 10−4, and the red lines toc2

s = 1. The other cosmological parameters

are set asΩm = 0.266,ΩDE = 0.734,h = 0.71, zdec = 1088.2, ns = 0.963,τ = 0.088

and∆2
R = 2.43× 10−9.
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3.2.1 Modification to CMB codes for elastic dark energy

In the case of a cosmological constant, or dark energy that does not cluster, equation

(3.7) is sufficient to calculate the ISW galaxy power spectrum, and subsequent quanti-

ties. As with the weak lensing case, when considering elastic dark energy some mod-

ifications must be made due to the fact that elastic dark energy can cluster ifcS ≈ 0.

We therefore replace equation (3.7), with

S m = W(z)bg (Ωmδm + ΩDEδDE) , (3.9)

whereδDE is the density contrast of the elastic dark. If there is no dark energy pertur-

bation, it is clear that equation (3.9) is going to be smallerby a factor ofΩm than the

original equation it has replaced, equation (3.7). As will be explained when used in

CosmoMC, the factor,bg, will effectively correct for this discrepancy. We have plotted

the temperature matter (Tg) power spectrum and corresponding cross correlation func-

tion, CTg(θ), for an elastic dark energy, scalar field, andΛCDM model, with a variety

of different dark energy parameters, shown in figures 3.2 and 3.3 respectively.
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Figure 3.2: We have plotted the ISW-galaxy power spectra. The plots on the left are

scalar field models and the plots on the right are elastic darkenergy model. The plots

on the top havew = −0.4, the plots on the bottom havew = −0.9. The black dotted

line in all plots is aΛCDM model, the blue lines correspond toc2
s = 10−4, and the red

lines toc2
s = 1. The other cosmological parameters are set as in figure 3.1.
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Figure 3.3: These plots are of the ISW-galaxy correlation function, laid out as figure

3.2. We see that in the elastic dark energy models on the right, much larger differences

appear when the sound speed is lowered compared with the scalar field case.
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3.3 Constraining parameters with ISW data

3.3.1 The ISW data

We choose to use the publicly available ISW data provided in Gaztanaga et al. (2006)

(henceforth we refer to this as the ISW data). This data has been obtained from five

independent collaborations where the CMB anisotropies have been cross correlated

with galaxy surveys, spanning a range in median redshift of 0.1 < z̄ < 1, and extending

over the electromagnetic spectrum from the infra-red to theX-ray waveband. Because

the ISW effect occurs at large angles, there are no non-linear effects that we need to

take into account, as there were in the weak lensing case. Thecompilation of the

data was averaged over fixed angular scale ofθ = 6◦, and the bias was removed by

comparing the galaxy auto-correlation function, with the theoretical matter correlation

function,

b =

√

CGG

Cmm
, (3.10)

whereCGG is the observed galaxy auto-correlation function, andCmm the theoretical

prediction of〈δm(n̂1)δm(n̂2)〉. Although bias is a function of redshift, Gaztanaga et al.

(2006) fixed the bias as a constant at the median redshift of the given survey,b = b(z̄).

The data is then presented asCTg/b, normalised to the cosmic concordance model

(CCM). This data is shown in table 3.1.

z̄ CTg/b b Catalogue Band

0.1 0.7± 0.32 1.1 2MASS infra-red (2µm)

0.15 0.35± 0.17 1.0 APM optical (b j)

0.3 0.26± 0.14 1.0 SDSS optical (r)

0.5 0.216± 0.096 2.4 SDSS high z optical (r+colours)

0.9 0.043± 0.015 1.2 NVSS+HEAO radio and X-rays

Table 3.1: ISW data and surveys used in our analysis, taken from Gaztanaga et al.

(2006).
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For any other model, we must compute a relative bias given by,

b =

√

CCCM
mm

Cmod
mm

, (3.11)

whereCCCM
mm is the matter auto-correlation function in the CCM measuredat 8h−1Mpc

for a given median redshift, andCmod
mm is the matter autocorrelation function for a given

cosmological model. According to Gaztanaga et al. (2006) where one chooses to mea-

sure this relative bias has a negligible effect on the outcome. Because we are defining

the bias in this way, in the absence of dark energy perturbations, the factor ofΩm in

equation (3.9) will be accounted for. To take into account the error in the median

redshift when calculatingχ2, we use,

σ2
i = σ

2
C +

(

d(CTg/b)

dz

)2

σ2
z , (3.12)

whereσ2
C is the error inCTg andσ2

z the error in median redshift. However as shown

in Gaztanaga et al. (2006), this extra error term for median redshift makes very little

difference to the final answer. To approximate the galaxy redshift distribution, we use

a generic window function also used by Gaztanaga et al. (2006), given as,

W(z) =
1

Γ
(

m+1
β

)β
zm

zm+1
0

e
−
(

z
z0

)β

. (3.13)

The parametersβ andm modify the shape of the selection function. We have plotted

this window function in figure 3.4 for illustration. Gaztanaga et al. (2006) set the values

for these parameters asβ = 1.5 andm = 2 for there analysis, assuming that this was

a similar representation to the actual galaxy redshift distribution. Since we are using

the same data as these authors, we also useβ = 1.5 andm = 2. The authors note

that settingβ = 2.5 andm = 4 did not change the results by a significant margin. We

can also confirm this, while quantitatively different, the qualitative differences between

elastic dark energy and a scalar field were the same for these two choices of parameters.
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Figure 3.4: The galaxy distribution as a function of redshift n(z) is plotted forβ = 1.5

andm = 2 (blue line) andβ = 2.5 andm = 4 (red line).

When combining surveys in this way, some consideration mustbe given to possible

overlapping in sky position or redshift, which could lead tocovariance between the

data sets. Gaztanaga et al. (2006) chose data which complemented each other, leading

to a 1% volume overlap in the surveys. When two data sets overlap heavily in sky

position for instance, there is a negligible overlap in the redshift. Since the individual

sampling errors are of order 30%, the overlap impact on the analysis can be considered
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negligible. At the time this work was carried out, Gaztanagaet al. (2006) was was

the most up to date combined analysis of the ISW effect. Since then a more thorough

approach to combining data sets and analysing the ISW effect has been undertaken

by Giannantonio et al. (2008). Here, the authors reanalysedthe ISW observation in

a consistent way, and measured the covariances between eachdata set using a variety

of different methods. This analysis concluded that the overall significance of the ISW

detection was∼ 4.5σ, and was consistent with the CCM, albeit favouring models with

a slightly lower value ofΩm.

3.3.2 Results using WMAP5+ ISW

As with our weak lensing analysis, we ran CosmoMC on the COMA cluster at the

Jodrell Bank Centre for Astrophysics. For each run we used the MPICH2 and OpenMP

allowing us to run 4 chains, with each chain being made up of 4 threads, running on 4

virtual cores. We again tested the convergence using the MPIConverge Stop function

set at 0.03. We first ran our code in CosmoMC using the WMAP5 and the ISW data.

Table 3.2 shows the cosmological parameters used with the initial values from our

params.ini file. All other options and parameters were left at their default settings.

Parameter Start Center Min Max Starting Width σ estimate

Ωbh2 0.0223 0.005 0.1 0.001 0.001

Ωch2 0.105 0.01 0.99 0.01 0.01

θ 1.04 0.5 10 0.002 0.002

w -0.8 -0.999 0 0.02 0.02

ns 0.95 0.5 1.5 0.02 0.01

log[1010As] 3 2.7 4 0.01 0.01

log[cs] 0 -5 0 0.02 0.02

Table 3.2: Initial cosmological paramters used in all CosmoMC runs, unless otherwise

stated.

As before we use the default CosmoMC installation which imposes priors onH0 and
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the age of the Universe as, 40 km s−1 Mpc−1 < H0 < 100 km s−1 Mpc−1 and 10 Gyr<

age < 20 Gyr. Unless otherwise stated, we used these settings, andthe values in

table 3.2 on all CosmoMC runs. The results are presented below, with 1D marginal-

ized plot shown in figure 3.5 and the 2D marginalized plots areshown in figure 3.6.

As in the weak lensing case, the values for the elastic dark energy model are more

tightly constrained than the scalar field model, albeit not as much. Comparing the 2D

marginalized plot ofw against log10 cs in the weak lensing, and ISW cases (figures 2.12

and 3.6), we see that the ISW data confinesw to values closer tow = −1 than using

the weak lensing data. Having a smaller range ofw leads to tighter constraints on all

other parameters. The same cut off appears in the sound speed for elastic dark energy

although there is now a peak at log10 cs ≈ −1.7. The 2σ lower bound on the elastic

dark energy sound speed is log10 cs ≥ −3.13.
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Figure 3.5: 1D marginalized plots for cosmological parameters using WMAP5+ ISW

data for a scalar field (black) and elastic dark energy (red) model. The models give

similar results, but are quite different with respect to sound speed.
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Figure 3.6: 2D marginalized plots for cosmological parameters using WMAP5+ ISW

data for a scalar field (black) and elastic dark energy (red) model.

3.3.3 Results using WMAP5+ ISW + SNIa

Like with the weak lensing case, we also included the SNIa data (Kowalski et al.

(2008)) in our analysis. The results are plotted in figures 3.7 and 3.8.
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Figure 3.7: 1D marginalized plots for cosmological parameters using WMAP5+ SNIa

+ ISW data for a scalar field (black) and elastic dark energy (red) model. Again we

see the models are similar, but different with respect to the sound speed.
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Figure 3.8: 2D marginalized plots for cosmological parameters using WMAP5+ SNIa

+ ISW data for a scalar field (black) and elastic dark energy (red) model.

Aside from the now familiar cut off in sound speed of the elastic dark energy, the

two models appear quite similar. Asw approaches -1, the two models tend towards a

ΛCDM model and are thus indistinguishable. It is therefore ofno surprise that asw

is forced closer to -1, achieved by including the SNIa data, smaller differences appear

between the two models. We find no lower bound on the scalar field sound speed, but

do find a 2σ lower bound of log10 cs ≥ −3.22 on the elastic dark energy sound speed.

3.3.4 Varying type Ia supernova

We again include the possibility that the absolute magnitude of a type Ia supernova

may vary with redshift, using (Ferramacho et al. (2008)),

∆m(z) = snK

(

t0 − t(z)
t0 − t1

)

, (3.14)
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The results are shown in figures 3.9 and 3.10. Allowing the variable snK to vary

has drastically changed the results for an elastic dark energy model. There is now

a bimodal solution, corresponding tow = −1 andw = −0.45. Looking at the 2D

plots, we can see that thew = −1 solution more closely fits a universe with parameters

matching the CCM model. The solution withw = −0.45 is correlated with a universe

with almost equal amounts of matter and dark energy,ΩΛ ∼ Ωm ∼ 0.5. The scalar field

in contrast is less affected by varyingsnK than when using the weak lensing data, with

the mean value ofsnK closer to zero.
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Figure 3.9: 1D marginalized plots for cosmological parameters using WMAP5+ SNIa

+ snK + ISW data for a scalar field (black) and elastic dark energy (red) model. A

bimodal solution exists for the elastic dark energy model.
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Figure 3.10: 2D marginalized plots for cosmological parameters using WMAP5+

SNIa+ snK + ISW data for a scalar field (black) and elastic dark energy (red) model.

3.4 Conclusion

In the previous chapter, we were able to show that when using weak lensing data

combined with WMAP5 and SNIa observations, a 2σ lower bound in the elastic dark

energy speed was found to be log10 cs ≥ −3.84. The purpose of the work carried out
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within this chapter was to perform a similar analysis and ascertain if a similar result

could be obtained, and thus independently confirm a cut off in elastic dark energy

sound speed. The ISW effect is observed when correlating matter tracers with CMB

anisotropies, and gives us independent evidence of a dark energy component. Such

a correlation has been detected numerous times, but at very weak significance levels.

In order to constrain cosmological parameters using ISW observations it is better to

combine individual measurements of the ISW effect, spanning different redshifts, sky

positions, and electromagnetic spectra.

This approach has been done several times before by, among others, Cooray et al.

(2005), Corasaniti et al. (2005), Gaztanaga et al. (2006), and Giannantonio et al.

(2008). With the necessary modifications to our CAMB and CosmoMC code we were

able to confirm the result obtained when using weak lensing data. Referring to figures

3.7 and 3.8 we see that there is a lower limit to the sound speedin the dark energy case.

The drop off in likelihood occurs for the same order of magnitude, log10 cs ∼ −2.5, as

in the weak lensing analysis, and we find a 2σ lower bound of log10 cs ≥ −3.13. A sig-

nificant cut off in w exists for the elastic dark energy model, with a 2σ upper bound of

w ≤ −0.81, whereas the scalar field model is less well bounded, with a2σ upper bound

of w ≤ −0.57. This was also the case when using the WMAP5 and weak lensing data.

A feature also shared with the weak lensing analysis is that the scalar field model is

not as tightly constrained, demonstrated in the 2D marginalized plots. This is a direct

result of the fact that the sound speed has a much more dramatic effect on elastic dark

energy density perturbations, than on the scalar field perturbations, allowing it to take

on a greater range of values, and still match observation. Byincluding the SNIa data

(figures 3.7 and 3.8), the models look fairly similar, now that the scalar field is more

tightly constrained inw. There is still no lower limit to the sound speed for the scalar

field, however. As in the previous chapter, this agrees with Weller and Lewis (2003),

Bean and Doré (2004) and Hannestad (2005), where the authors argued that placing a

lower limit on the sound speed of the scalar field model was notcurrently possible. In

the elastic dark energy case, the 2σ lower bound is log10 cs ≥ −3.22. We also find at
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the 2σ level, for the elastic dark energy,w ≤ −0.808 and for the effective scalar field,

w ≤ −0.791. If we compare the marginalised statistics, for each model in the WMAP5

+ SNIa+ ISW analysis, and the WMAP5+ SNIa+ weak lensing analysis, given in ta-

bles 3.4 and 2.3 respectively, we see that the numerical results of w and log10 cs largely

agree, within one standard deviation. We notice the ISW analysis favours a larger value

of ΩDE, and hence a lowerΩm, than in the weak lensing analysis.

As in the weak lensing analysis, we explored the possibilitythat SNIa are not

standard candles, where peak luminosity is also a function of redshift. Using the model

given in Ferramacho et al. (2008), we can place a 2σ lower bound of log10 cs ≥ −2.09

on the sound speed for the elastic dark energy, while we find nolower bound for the

scalar field case. A curious result is that a bimodal solutionexists for the elastic dark

energy model, with an almost even mixture of dark energy and matter. Such a model

can in principal be ruled out due to independent measurements on the amount of matter

in the universe (see Chapter 1).

3.5 Tables

Below we have tabulated the marginalised statistics for allISW runs on CosmoMC.
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Scalar Field Elastic Dark Energy

Parameter Mean σ Mean σ

Ωbh2 0.0224 0.0006 0.0225 0.0006

Ωch2 0.106 0.0059 0.107 0.0056

θ 1.03 0.003 1.04 0.003

w -0.851 0.133 -0.91 0.0574

ns 0.962 0.0132 0.964 0.0136

log[1010As] 3.17 0.0457 3.17 0.0458

log10 cs -1.95 1.45 -1.54 0.852

ΩDE 0.710 0.054 0.725 0.033

Age/GYr 13.8 0.202 13.7 0.135

Ωm 0.289 0.0538 0.274 0.0334

σ8 0.729 0.0601 0.730 0.0734

zre 10.6 0.214 10.6 0.213

H0 67.3 5.02 69.1 3.04

Table 3.3: Scalar field and elastic dark energy statistics from the CosmoMC runs using

WMAP5 and ISW.
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Scalar Field Elastic Dark Energy

Parameter Mean σ Mean σ

Ωbh2 0.0224 0.0006 0.0226 0.0006

Ωch2 0.107 0.006 0.109 0.006

θ 10.3 0.003 10.4 0.003

w -0.9 0.061 -0.92 0.059

ns 0.96 0.013 0.96 0.014

log[1010As] 3.18 0.0431 3.17 0.0454

log10 cs -2.17 1.46 -1.18 0.966

ΩDE 0.72 0.025 0.721 0.026

Age/GYr 13.8 0.132 13.7 0.131

Ωm 0.276 0.025 0.278 0.026

σ8 0.753 0.044 0.755 0.0062

zre 10.6 0.2 10.6 0.21

H0 68.7 2.34 68.9 2.4

Table 3.4: Scalar field and elastic dark energy statistics from the CosmoMC runs using

WMAP5, SNIa and ISW.
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Scalar Field Elastic Dark Energy

Parameter Mean σ Mean σ

Ωbh2 0.0224 0.0006 0.0225 0.0006

Ωch2 0.106 0.0059 0.108 0.0057

θ 1.03 0.003 1.03 0.003

w -0.855 0.141 -0.559 0.228

ns 0.961 0.0132 0.962 0.0148

log[1010As] 3.17 0.0451 3.18 0.0471

log10 cs -1.9 1.44 -1.6 0.69

snK 0.0248 0.131 0.267 0.184

ΩDE 0.709 0.058 0.578 0.102

Age/GYr 13.8 0.221 14.2 0.379

Ωm 0.29 0.0575 0.421 0.102

σ8 0.732 0.0642 0.605 0.111

zre 10.6 0.214 10.8 0.271

H0 67.3 5.17 57.1 7.75

Table 3.5: Scalar field and elastic dark energy statistics from the CosmoMC runs using

WMAP5, SNIa, ISW and using thesnK parameter.
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4

Dark energy voids and clustering

For a cosmological constant, the energy density of the dark energy component is ho-

mogeneous and isotropic. As we have discussed in the previous chapters, this needn’t

be the case with other models of dark energy wherew is not equal to -1. How dark

energy density perturbations evolve and their effect on CDM density perturbations is

of great interest, and has been explored numerous times within the literature. For ex-

ample, the implications of dark energy perturbations on observable quantities such as

the ISW effect was discussed in Bean and Doré (2004). The authors commented on

the increased clustering effect of the scalar field model when lowering its sound speed.

Using the first year WMAP data, the authors obtained a 1σ constraint on the sound

speedc2
s < 0.04. A similar analysis performed by Weller and Lewis (2003) did not

find a significant constraint on the sound speed, and similarly, no such constraint was

found in Hannestad (2005). Other papers on the clustering ofdark energy and how

such clustering affects CDM perturbations are given in, for example, Bartolo etal.

(2004), Hu and Scranton (2004), Nunes and Mota (2006), Unnikrishnan et al. (2008),

Avelino et al. (2008), and Basilakos et al. (2009). The clustering in this scalar field

model is very weak, making it challenging to constrain its sound speed, a fact demon-

strated in the previous two chapters. It has been shown in Battye and Moss (2007),

that elastic dark energy density perturbations can be several orders of magnitude larger

than a scalar field with the same equation of state and sound speed, a property due to
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its intrinsic anisotropic stress.

They showed that lowering the sound speed of dark energy, increased power on

small scales inδ(k). To illustrate this point, we have plotted the power spectrum Pδ(k)

for both dark energy models in figures 4.1 and 4.2. We have assumedPδ(k) = |δtotal|2

and definedδ(k) ≡ ∑

iΩiδ(k)i. We have evolved the equations of motion given in Bat-

tye and Moss (2007), setting the initial matter and dark energy density and velocity

perturbations to zero, and perturbed the metric. It should be noted that the dark energy

density contrast,δDE(k), for both the elastic dark energy and scalar field add coherently

with the matter perturbation,δm(k). We see that the sound speed for the scalar field

makes very little differences to the power spectrum, and hence, as shown in the pre-

vious chapters, a scalar field can take on a large range of sound speed values and still

agree with observations. When comparing this with the elastic dark energy model and

we see the dramatic effect that a lower sound speed has on the power spectrum. As the

elastic dark energy speed is lowered, the matter power spectrum is reduced, a property

not seen in the scalar field case. Such large changes are what allow us to put a lower

limit on the elastic dark energy sound speed.
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Figure 4.1: A demonstration of the clustering effect of the elastic dark energy model.

The black line is the total power spectrum defined asPδ(k) = |δtotal|2 with δtotal ≡
∑

iΩiδi. The blue and red lines are the individual components makingup the total

power spectrum, matter and dark energy respectively. The total power spectrum has

been normalised atk = 10−3h Mpc−1. The dark energy parameters arew = −2/3 and

starting from the top left and moving clockwise,c2
s = 10−2, c2

s = 10−3, c2
s = 10−4 and

c2
s = 10−5.
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Figure 4.2: The clustering effect of the scalar field dark energy model. The black

line is the total power spectrum defined asPδ(k) = |δtotal|2 with δtotal ≡
∑

iΩiδi. The

blue and red lines are the individual components making up the total power spectrum,

matter and dark energy respectively. The total power spectrum has been normalised at

k = 10−3h Mpc−1. The dark energy parameters arew = −2/3 and starting from the top

left and moving clockwise,c2
s = 10−2, c2

s = 10−3, c2
s = 10−4 andc2

s = 10−5.

Given the fact that these models allow density perturbations to form, we need to

know how dark energy clustering correlates with matter perturbations in the Universe.

An interesting suggestion was made by Dutta and Maor (2007),who evolved the equa-

tions of motion for a classical scalar field,φ, and found that in the presence of col-

lapsing matter, the dark energy density perturbation became negative, forming a void.

They found that the opposite was true for regions where therewas an underdensity in
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the matter density field, the dark energy density perturbation becomes positive.

This work was carried out in the linear regime, with the authors noting that given

the sharp increase in scalar field density at late times, a non-linear approach might

lead to some interesting results. A different approach was undertaken in Mota et al.

(2008), where the authors used the method of matched asymptotic expansion to obtain

analytical expressions for the dark energy perturbations that are valid in the linear,

quasi-linear, and fully non linear regimes. In the linear and quasi-linear regime the

authors showed, as in Dutta and Maor (2007), that the scalar field density contrast

became negative in the presence of collapsing matter on super cluster scales. However

for virialized clusters of matter, the scalar field density was found to be positive. They

argued that while in the results agree with the work of Dutta and Maor (2007) for linear

overdensities, (δm ≪ 1), as these perturbations virialize and their growth becomes

non-linear, the dark energy perturbations become positive. A similar result was found

by Wang and Fan (2009). They developed an iterative algorithm which was used to

examined the evolution of the density perturbations withina scalar field dark energy,

in both linear and non-linear regimes, in the presence of a collapsing dark matter halo.

While using a different method to Mota et al. (2008), their results do broadly agree, in

that underdensities can form within the scalar field, but when entering the non-linear

regime, these voids become overdensities.

In this chapter we set up a similar code used in the work of Dutta and Maor (2007),

using the elastic dark energy and effective scalar field model (we will refer to the scalar

field model we have been using as an effective scalar field in order to distinguish it from

the model used in Dutta and Maor (2007)), and evolved our equations of motion in the

presence of collapsing matter to ascertain if voids in the dark energy are created with

these models.
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4.1 The approach of Dutta and Maor

Here we present a reproduction of the results of Dutta and Maor (2007) who solved for

δφ, the density contrast of the scalar field. The line element used by Dutta and Maor

(2007) is given by,

ds2 = dt2 − U(t, r)dr2 − V(t, r)(dθ2 + sin2 θdφ2) , (4.1)

whereU(t, r) = a(t)2e2ζ(t,r) andV(t, r) = r2a(t)2e2ψ(t,r), where, as beforea(t) is the scale

factor,r is the distance from the centre of the perturbation andψ andζ are the metric

perturbations. Given the line element the Ricci tensor components are found to be,

Rtt =
1
4

U̇2

U2
+

1
2

V̇2

V2
− 1

2
Ü
U
− V̈

V
, (4.2)

Rrr =
1
2

Ü +
1
2

V̇U̇
V
− 1

4
U̇2

U
+

1
2

V ′U′

VU
+

1
2

V ′2

V2
− V ′′

V
, (4.3)

Rθθ =
Rφφ

sin2 θ
=

1
2

V̈ +
1
4

V̇U̇
U
+

1
4

V ′U′

U2
+ −1

2
V ′′

U
+ 1 , (4.4)

Rtr =
1
2

V̇V ′

V2
− V̇ ′

V
+

1
2

V ′U̇
VU

, (4.5)

where dots now refers to derivatives with respect to real time. The Ricci scalar is given

by,

R =
1
2

U̇2

U2
+

1
2

V̇2

V2
− Ü

U
− 2

V̈
V2
− 1

2
V ′2

UV2
+ 2

V ′′

UV
− U̇V̇

UV
− U′V ′

U2V
− 2

V
. (4.6)

The Ricci tensor can be related to the energy-momentum tensor via an alternate version

of Einstein’s equations than the one given in Chapter 1,

Rµν = K

(

Tµν −
1
2

gµνT
α
α

)

, (4.7)

whereK = 8πG.
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The dark energy component is modelled as a classical scalar field,φ, which has an

energy-momentum tensor given by,

Tµν = ∂µφ∂νφ − gµνL , (4.8)

and the Lagrangian is,

L = 1
2

(∂µφ)2 − V(φ) . (4.9)

The matter component is modelled by a perfect, pressurelessfluid which, following

Dutta and Maor (2007) has an energy-momentum tensor,

T µ
ν =



















































ρ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



















































. (4.10)

Being uncoupled, both energy-momentum tensors are subjectto separate energy con-

servation constraints, given by,

∇µT µν(m) = 0, ∇µT µν(φ) = 0 . (4.11)

From these equations we can now describe the unperturbed background evolution of

H, ρ, andφ from the following differential equations,

3H2 − K

[

ρ + V +
1
2
φ̇2

]

= 0 , (4.12)

Ḣ + 3H2 − K

[

1
2
ρ + V

]

= 0 , (4.13)

ρ̇ + 3Hρ = 0 , (4.14)

φ̈ + 3Hφ̇ +
dV
dφ
= 0 . (4.15)

The next step is to introduce a perturbation in the matter density and scalar field,
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ρ(t, r) = ρ(t) + δρ(t, r) , (4.16)

φ(t, r) = φ(t) + δφ(t, r) , (4.17)

V(φ + δφ) = V(φ) + δV(φ, δφ) . (4.18)

By defining the parameterχ ≡ ζ̇+2ψ̇, which is 3δH, the variation in the Hubble param-

eter around the perturbation, Dutta and Maor (2007) obtained the perturbed Einstein

equations, along with the equations of motion. When using a spherical coordinate sys-

tem, problems can arise when equations haver in the denominator, since whenr → 0,

infinities can arise. Dutta and Maor (2007) avoid such problems by combining sev-

eral of the perturbation equations in such a way that 1/r terms cancel. There are three

perturbation equations to solve, which to linear order are,

δρ̇ + 3Hδρ + ρχ = 0 , (4.19)

δφ̈ + 3Hδφ̇ + δV ′ + φ̇χ − 1
a2
∇2δφ = 0 , (4.20)

χ̇ + 2Hχ + K
(

δρ − δV + 2φ̇δφ̇
)

= 0 . (4.21)

We consider the potentialV(φ) = 1
2m2φ2, as in Dutta and Maor (2007). They also

considered a more complex double exponential, but find that both potentials produce

the same qualitative result. In our analysis, we choose to factor the units out of the

evolution equations by the following redefinitions,

t̂ = H0t , (4.22)

Ĥ =
H
H0

, (4.23)

ρ̂ =
ρ

ρcrit
, (4.24)

φ̂ =
φ

Mpl
, (4.25)

m̂ =
m
H0

, (4.26)
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χ̂ =
χ

H0
, (4.27)

where Mpl is the Planck mass. These redefinitions give us the followingevolution

equations, where we have moved to Fourier space,

ȧ = a

√

[

ρ̂ +
1
6

(

˙̂φ
2
+ m̂2φ̂2

)

]

, (4.28)

˙̂ρ = −3Ĥρ̂ , (4.29)

¨̂φ = −3Ĥ ˙̂φ − m̂2φ̂ , (4.30)

δ ˙̂ρk + 3Ĥδρ̂k + ρ̂χ̂k = 0 , (4.31)

δ ¨̂φk + 3Ĥδ ˙̂φk +

(

m̂2 +
k2

H2
0a2

)

δφ̂k + φ̇χ̂k = 0 , (4.32)

˙̂χk + 2Ĥχ̂k +

(

3
2
δρ̂k − m̂2φ̂δφ̂k + 2˙̂φδ ˙̂φk

)

= 0 . (4.33)

We then evolved these equations with the same matter perturbation given in Dutta and

Maor (2007),

δm = A exp

(

− r2

σ2

)

. (4.34)

We setM̂ = 1, σ = 0.01Hinitial , and set other initial conditions so that they give the

present day values,Ωm = 0.3 andΩφ = 0.7. We find that, as in Dutta and Maor

(2007), at the centre of an initial matter perturbation, thescalar field component forms

underdensities, thus confirming their work. Figure 4.3 shows a plot of the scalar field

density perturbation at the centre of the matter perturbation.
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Figure 4.3: Scalar field density plotted against redshift, z, wherez = 1
a −1, at the centre

of the initial matter perturbation. The scalar field densityis negative at late times, thus

forming a void.

Dutta and Maor (2007) reasoned that a dark energy void is created due to the fact

that in a region of space containing a matter overdensity, the expansion is slower than

the background due to the force of gravity. This in turn meansthat the local Hubble

value within a matter perturbation is lower than the background value and so offers

less Hubble damping toδφ̈. This allows the scalar field to accelerate down its potential

at an increased rate to the background. The linear scalar field dark energy density

perturbation is given byδρφ = φ̇δφ̇+m2φδφ where the first term is the kinetic term and

the last is the potential term. Initially the kinetic part dominates and the dark energy

density increases. The absolute value ofδφ̈, initially grows, and then weakens at lower

redshift but crucially does not change sign. As suchδφ̇ tends toward a constant value,

andδφ continues to grow. Therefore, at late times them2φδφ part ofδρφ becomes the
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dominate term, and sinceδφ andφ have opposite signs,m2φδφ is negative, and hence

a dark energy void is formed.

4.2 Elastic dark energy and effective scalar field clus-

tering

Having written a code that confirmed the results found by Dutta and Maor (2007), we

now turn our attention to modifying the equations to includean elastic dark energy

and effective scalar field with constant equation of state, to ascertain how the models

respond to collapsing matter.

4.2.1 Effective scalar field

We can show that a classical scalar field with constantw, whereρ = 1
2φ̇

2 + V and

P = 1
2φ̇

2 − V is the same as the effective scalar field model we used earlier in the

CMB codes, with the sound speed set atcS = 1. Working in conformal time, where

dots indicate derivatives with respect to conformal time,τ, andH = 1
a

da
dτ , whenw is

constant,

φ̇2 = a2(1+ w)ρφ , (4.35)

and,

V =
1
2

(1− w)ρφ . (4.36)

Then, using the chain rule,

dV
dφ
=

V̇

φ̇
=

1
2(1− w)ρ̇φ

a
√

(1+ w)ρφ
= − 3

2a
(1− w)

√
1+ wH √ρφ , (4.37)

and,
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4.2: ELASTIC DARK ENERGY AND EFFECTIVE SCALAR FIELD CLUSTERING

d2V
dφ2
= −3(1− w)

2a2

(

Ḣ − 1
2

(5+ 3w)H2

)

. (4.38)

The equations of motion for the classical scalar field are given in (Hu et al. (1998)),

φ̈ + 2H φ̇ + a2dV
dφ
= 0 , (4.39)

δφ̈ + 2Hδφ̇ +
(

k2 + a2d2V
dφ2

)

δφ = S φ , (4.40)

δρφ =
φ̇δφ̇

a2
+

dV
dφ

δφ , (4.41)

θφ =
k2δφ

φ̇
, (4.42)

whereS φ is the perturbed metric term, which in the synchronous gaugeis S φ = 2ḣφ̇.

The conformal time derivative of the density contrast,δφ, is,

d
dt

(

δρφ

ρφ

)

=
δρ̇φ

ρφ
+ 3H(1+ w)

δρφ

ρφ
, (4.43)

which, when combining the equations above, becomes,

δ̇φ = −3(1− w)H
(

δφ + 3H(1+ w)
Vφ

k2

)

+ (1+ w)(S φ − Vφ) . (4.44)

In a similar manner, the divergence of the fluid velocity, is,

θ̇φ = k2

(

δφ̇

φ̇
− φ̈δφ

φ̇2

)

, (4.45)

which, after substitution, becomes,

θ̇φ = −2Hθφ +
k2

1+ w
δφ . (4.46)

These equations are the same as used in our modified CMBFAST and CAMB codes

whenc2
s = 1.
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4.2.2 Method

We follow a similar method to that shown previously, but withsome differences. First

we choose to work in the conformal Newtonian gauge for simplicity, since we are only

interested in scalar perturbations, coupled with the fact the analysis is done within

the horizon. The conformal Newtonian gauge has a line element given in Ma and

Bertschinger (1995),

ds2 = a2(η)
(

−dη2 [1 + 2Ψ] + dxidxi [1 − 2Φ]
)

. (4.47)

We are also now working in conformal time. The elastic dark energy equations of

motion, along with the Einstein equations must be worked out. The curvature part of

the Einstein equations are already well known, and are givenin Ma and Bertschinger

(1995), as,

k2Φ + 3H
(

Φ̇ +HΨ
)

= −4πGa2δρ , (4.48)

k
(

Φ̇ +HΨ
)

= 4πGa2ρ(1+ w)vS , (4.49)

Φ̈ +H(Ψ̇ + 2Φ̇) +

(

2
ä
a
− ȧ2

a2

)

Ψ +
k2

3
(Φ −Ψ) = −4πGa2δP , (4.50)

k2(Φ −Ψ) = 12πGa2ρ(1+ w)Θ . (4.51)

By combining equations 4.48 and 4.49 we arrive at an expression forΦ,

k2Φ = −4πGa2ρ

[

δ + 3H(1+ w)
Vs

k

]

. (4.52)

Using Battye and Moss (2007) and Carter (1982), we find the theequations of motion

for an elastic dark energy model in the conformal Newtonian gauge are,

δ̇ = −(1+ w)
[

kvS − 3Φ̇
]

, (4.53)
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v̇S = −H(1− 3w)vS + 3Φ(w − c2
s)k +

(

c2
sδ

1+ w

)

k + Ψk . (4.54)

As a quick check, we can confirm these are the correct equations by converting them

from the conformal gauge to the synchronous gauge, where thelatter appear in Battye

and Moss (2007). To convert we use the following substitutions, which are given in

Ma and Bertschinger (1995),

δcon = δsyn − 3Hα(1+ w) , (4.55)

vS
con = vS

syn + αk , (4.56)

Φ = η − Hα , (4.57)

Ψ = α̇ +Hα , (4.58)

where,

α =
1

2k2

(

ḣ + 6η̇
)

. (4.59)

Substituting these expressions into (4.53) and (4.54), give,

δ̇ = −(1+ w)

[

kvS +
ḣ
2

]

, (4.60)

v̇S = −vSH(1− 3w) + 3kη(w − c2
s) +

(

c2
skδ

1+ w

)

, (4.61)

which are the equations given in Battye and Moss (2007), thusconfirming that (4.53)

and (4.54) are correct. We evolve the spatial perturbation to the metric,Φ, using equa-

tion (4.48). By rearranging equation (4.51) we can get an expression for the temporal

perturbation to the metric,Ψ, given by,
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Ψ =
−12πGa2ρ(1+ w)Θ

k2
+ Φ , (4.62)

whereΘ is given by,

Θ =
2
3

w
1+ w

Π = (c2
s − w)

( −δ
1+ w

+ 3(Φ − Φini)
)

. (4.63)

We use the same initial conditions as in the previous section, starting the equations at

z = 35, and define the same matter perturbation given by,

δm = A exp

(

− r2

σ2

)

. (4.64)

When converting this to Fourier space, we note that the imaginary part is an odd inte-

grand, so integrating over a symmetrical range is just zero.The Fourier Transform of

a Gaussian is another Gaussian. We are also only consideringone perturbation and as

such, no phase information is lost in our approach. We setA = 0.1 andσ = 0.01Hini.

We set all other values to zero, exceptΦ which is dependent onδm. Since we are

using the conformal Newtonian gauge we choose to output the density contrast in the

gauge invariant quantity,δ = δcon + 3H(1 + w)vc/k, which is the density contrast in

the rest frame of the fluid. We only consider what happens at the centre of the matter

perturbation,r = 0.
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Figure 4.4: Plots showing how the density perturbation of the dark energy, at the centre

of the matter perturbation, evolve with time. From bottom left, moving clockwise,

elastic dark energy withw = −0.9, scalar field withw = −0.9, scalar field withw =

−0.4, and elastic dark energy withw = −0.4. The black lines havec2
s = 10−4 and the

red lines havec2
s = 1.

We see that in figure 4.4 neither the elastic dark energy, nor the effective scalar

field model form voids. Instead the density perturbations grow, with the gradient being

relatively large at first. The gradient weakens, before increasing again for all models.

Larger equations of state for the dark energy give a smaller density perturbation for

both matter and dark energy components. This is not surprising as looking at equation

(4.60), the term (1+ w) means that the largerw, the larger the absolute value ofδ̇.

Lowering the sound speed increases the magnitude of the density perturbation which
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has been shown earlier. If we display the matter and dark energy density perturbations

on the same plot we see that the dark energy density perturbation, after increasing by

several orders of magnitude in a short time scale, begin to level out and follow the

matter density perturbation, as we can see in figure 4.5.
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Figure 4.5: Plots showing the dark energy, and matter density perturbation evolving as

a function ofa, and 1+ z. The plots on the left havew = −0.4, the plots on the right

havew = −0.9. The sound speed is set atc2
s = 10−4. The dotted lines are the matter

density perturbations and the solid lines the dark energy density perturbations. Top

plots are against the scale factora, and the bottom plots are against 1+ z. The red line

corresponds to using an effective scalar field model, and the black line corresponds to

an elastic dark energy model.
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4.3 Conclusion

In this chapter we set out to determine whether, using the same method as in Dutta and

Maor (2007), elastic dark energy and the effective scalar field would create voids as a

response to collapsing matter. Considering only two components, non relativistic mat-

ter and dark energy, we evolved the cosmological equations,along with the perturbed

equations of motion for the matter and dark energy components. We set a positive ini-

tial Gaussian matter perturbation and kept the initial darkenergy perturbation at zero.

Looking at figures 4.4 and 4.5 we see that the growth of the darkenergy perturbation is

initially very rapid. This is a consequence of the artificialinitial conditions, where the

dark energy perturbation has been set to zero. This sharp gradient occurs in the first

few time steps, no matter what time we start evolving our equations from. In the case

studied in Dutta and Maor (2007), after an initial growth, the scalar field density con-

trast become negative, turning over atz ∼ 10−11, depending on the initial width of the

matter perturbation. In both the elastic dark energy, and effective scalar field models,

the density contrast remains positive, and continues to grow. Perhaps unsurprisingly

the elastic dark energy density contrast is always larger than the effective scalar field’s.

We have seen that elastic dark energy’s effect on observable quantities is to in general

enhance them over the effective scalar field model. An interesting observation is that

the matter density contrast is lower when using an elastic dark energy model than when

using the effective scalar field model. In figure 4.6 we have replotted the top left plot

of figure 4.5 to better illustrate this.
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Figure 4.6: A plot highlighting the reduced power in the matter perturbation when

using an elastic dark energy model. The dotted lines correspond toδm and the solid

lines toδDE. The red lines indicate when an effective scalar field is used, and black

when an elastic dark energy model is used. The equation of state isw = −0.4, and the

sound speed isc2
s = 10−4.

In figure 4.7 we have plotted
(

δm(ESF)
δm(EDE) − 1

)

× 100% against the scale factor, where

δm(ESF) refers to the matter density perturbation using an effective scalar field, and

δm(EDE) refers to the matter density perturbation using an elastic dark energy model.

We see that the suppression of the matter density contrast ishighly dependent on both

the dark energy equation of state, with a largerw causing a greater difference, and the

sound speed, with a lower sound speed increasing the difference. It must be stressed
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that our analysis has only be conducted in the linear regime,and our results are ap-

plicable on the order of the supercluster scale (∼ 100 Mpc), since elastic dark energy

is a linear theory. Therefore whether this lack of growth continues into the non-linear

regime is unknown.
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Figure 4.7: Highlighting the percentage difference between the matter perturba-

tion, when using an effective scalar field, and elastic dark energy. We have plotted
(

δm(ESF)
δm(EDE) − 1

)

× 100% against the scale factor,a. The top plots havec2
s = 10−4 and the

bottom havec2
s = 1. The plots on the left havew = −0.4 and the plots on the right have

w = −0.9.

The fact that the matter density contrast is lower when usingelastic dark energy than

when using the effective scalar field can also be seen when using the CMB codes. As
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w→ −1 andc2
s → 1, the differences become increasingly small. Since the equation of

state is measured to be close to -1, and because it is difficult to separate matter and dark

energy perturbations, such an effect will be very difficult to detect observationally.

We can now say why our models did not produce the voids seen when using a clas-

sical scalar field. In the classical scalar field case,φ, the potential term inδφ ultimately

becomes dominate in the presence of collapsing matter, and this is why the void is cre-

ated. When we fixw, we fix the perturbed potential, and so this term can never come

to dominate. When w is constant the density of the scalar fieldis given by,

ρ =
1
2
φ̇2

[

1+
1− w
1+ w

]

. (4.65)

The term in the square brackets is a constant, and so by introducing a perturbation,

φ + δφ, this becomes

δρ = φ̇δφ̇

[

1+
1− w
1+ w

]

. (4.66)

The termφ̇δφ̇ continues to grow, as it does in the Dutta and Maor (2007) case. But

unlike that case where theφδφ term grows and becomes dominant over theφ̇δφ̇ term,

the potential is unable to change. It is for this reason that the effective scalar field and

the elastic dark energy models cannot form voids.
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5

Discussion of results and future work

The aim of the work contained within this thesis was to examine an elastic dark energy

model and highlight observational differences between such a model, and an effective

scalar field model (Bean and Doré (2004), and Weller and Lewis (2003)). It was shown

in the work by Battye and Moss (2007), that when Elastic Dark Energy’s sound speed

is lowered, it starts to exhibiting clustering properties similar to CDM. If the cluster-

ing is sufficiently large, it will affect a range of cosmological measurements. With

this direct relation between dark energy, and what we can experimentally observe, we

are able to constrain dark energy parameters for different models. Using the CMB

codes, CMBFAST (Seljak and Zaldarriaga (1996)), CAMB (Lewis et al. (2000)) and

CosmoMC (Lewis and Bridle (2002)), coupled with WMAP5 (Dunkley et al. (2009)),

SNIa (Kowalski et al. (2008)), weak lensing (Fu et al. (2008)) and ISW (Gaztanaga

et al. (2006)) data, we were able to show that while there is nolimit on the sound speed

of the effective scalar field model, there is a lower bound on the elastic dark energy

sound speed. While using WMAP5 and SNIa data, no such lower bound was evident,

but when either weak lensing or ISW data was included the differences in the models

become apparent. Using WMAP5, SNIa and weak lensing data gave a lower bound

of log10 cs ≥ −3.84 at the 2σ level, while using WMAP5, SNIa and ISW data gave

a lower bound of log10 cs ≥ −3.22 at the 2σ level. Our work is consistent with that

of other authors performing similar analysis on the effective scalar field model, in that
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no lower limit was found for the sound speed (see for example Bean and Doré (2004),

Weller and Lewis (2003) and Hannestad (2005)).

The equation of state was more tightly constrained for the elastic dark energy model

than for the effective scalar field model, when using both weak lensing and ISW data.

Using WMAP5, SNIa and weak lensing data, we found a 2σ upper limit onw ≤

−0.872, while for the effective scalar field,w ≤ −0.787. Using the ISW data combined

with WMAP5 and SNIa data, we find for the elastic dark energy,w ≤ −0.808 and for

the effective scalar field,w ≤ −0.791, also at the 2σ level. An obvious first step to

attempt to improve our constraints on elastic dark energy’ssound speed and equation

of state would be to combine the weak lensing, ISW, WMAP5, andSNIa data.

Using a model proposed in Ferramacho et al. (2008) for the evolution of SNIa,

we repeated our analysis, and including the parametersnK, which represented the

change in magnitude at a given redshift. In both the weak lensing and ISW cases, we

were still able to show a lower bound to the elastic dark energy sound speed, where

log10 cs ≥ −3.50, and log10 cs ≥ −2.09 respectively. No bound was found for the

effective scalar field. While the cut off in sound speed is still present, the values of the

cosmological parameters are not similar, due to the bimodalsolution when using the

ISW data. It would be interesting to combine the weak lensingand ISW data together

with the WMAP5 and SNIa data as this could possibly remove thebimodal solution.

We also showed that the elastic dark energy model does not form voids, as classical

scalar fields have been noted to do in the linear regime (Duttaand Maor (2007), Mota

et al. (2008), and Wang and Fan (2009)). We noted that elasticdark energy clustering

does affect the amplitude of the CDM clustering, by lowering it relative to an effective

scalar field model. This property is heavily dependent on theequation of state, and the

difference between the two models becomes greater asw tends towards zero. In order

to improve this analysis, we would need develop a non-lineartheory of elastic dark

energy, and probe smaller length scales.
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5.1 Future relevant missions

Our CosmoMC analysis relies on the quality of the data we haveused, after all, we

are testing a theoretical model against what is actually observed. Planck is an upcom-

ing mission to map out full sky maps of the CMB anisotropies, over nine frequency

bands, improving upon the resolution mapped out by WMAP. However given that our

work is based in the linear regime, and the low multiple anisotropies are already well

constrained, Planck won’t make a significant difference to our work. It will however

be an important tool for cosmology, improving both constraints on cosmological pa-

rameters, and astrophysical foreground models. What wouldbe more significant in

improving our work, is improved large scale structure data,covering more of the sky.

There are a few experiments currently being developed with this goal in mind. A

relevant upcoming mission is the Dark Energy Survey (DES). The DES will build a

galaxy catalogue containing more than 300 millions objects, measuring the number,

and spatial distribution of galaxy clusters in the 0.1 < z < 1.4 range, and the record

the luminosity distances for around 2000 supernovae in the 0.3 < z < 0.8 range. The

DES will also measure weak lensing shear out toz ∼ 1. The Large Synoptic Survey

Telescope (LSST) is another planned survey that is intendedto map out the entire sky

in multiple frequency bands. Due to its unique setup, the LSST will be able to measure

weak lensing shear, supernovae, baryonic acoustic oscillations, and map out clusters,

all as a function of redshift. By combining this data, further constraints on dark energy

should be possible.
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