Dark Energy And

Large Scale Structure

A thesis submitted to The University of Manchester for thgrde of
Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2011

Steven Pediani

School of Physics and Astronomy



Contents

List of Figures 5
List of Tables 7
Abstract . . . . . . . 8
Declaration . . . . . . . . . . e 9
Copyright Statement . . . . . . . . . .. .. ... ... 10
Acknowledgements . . . . .. . ... 11
The Author . . . . . . . . 12
Conventions . . . . . .. e e 13
1 Introduction 14
1.1 Basicsofcosmology .. .. .. ... .. ... .. ... ... ..., 16
1.2 Fundamentals of general relativity . . . .. ... ... ... ... 18
1.3 Perturbed cosmological equations . . . ... ... ... ... ... 23
1.4 Energydensitycomponents . . . . . . .. .. .. ... .. .. .. .. 26
1.4.1 BaryonsandColdDarkMatter . . . .. ... ......... 26
142 Radiation . .. .. .. ... . ... 28
1.43 DarkEnergy . .. .. ... ... .. .. ... 30
1.5 CMBanisotropies . . . . . . . . v v v i e 32
1.6 Darkenergymodels. . . .. ... ... ... ... ... .. ..., 36
1.6.1 Quintessence . . . . . . . .. 36
1.6.2 Elasticdarkenergy . .. ... .. .. ... .. ........ 37

STEVEN PEDIANI 2



CONTENTS

1.6.3 Otherdarkenergymodels . . ... .............. 40
2 Constraints from weak lensing 42
2.1 Introduction . . . . . . . ... 43
2.2 Weak lensing geodesicequations . . . . . ... ... ... ... .. 44
2.3 Codes to compute weak lensing observables . . . . . ... ... .50
2.4 CosmoMC results using WMAP5 and SNladata. . . ... ..... 7 5
2.5 Constraining parameters with weak lensingdata . . . . . .. .. 62
2.5.1 Includingweaklensing . . . .. ... ... .......... 62
2.5.2 Results using WMAP5 SNIla+ weak lensing . . . . .. .. 67
2.5.3 Varyingtypelasupernova . ... .. ............. 70
26 Conclusion . . ... ... 74
27 Tables . . . . .. 76
3 Constraints from the ISW effect 79
3.1 Introduction . . . . . . . ... 79
3.2 Atheoretical description of the ISWfect . . . . . . ... ... ... 81
3.2.1 Modification to CMB codes for elastic dark energy . . ... . 84
3.3 Constraining parameters withISWdata . .. ... .. ... ..... 87
331 ThelSWdata ... .. ... ... ... ... ... . ..... 87
3.3.2 ResultsusingWMAPSISW . . ... ... ......... 90
3.3.3 ResultsusingWMAPS5ISW+SNIla. . ... ........ 93
3.3.4 \Varyingtypelasupernova . .. .. .. ... ......... 95
3.4 Conclusion . . ... .. 97
35 Tables . . . . ... 99
4 Dark energy voids and clustering 103
4.1 The approach of DuttaandMaor . . . . .. .. ... ... ...... 108
4.2 Elastic dark energy andfective scalar field clustering . . . . . . .. 113
4.2.1 Hfectivescalarfield . .. ................... 113

STEVEN PEDIANI 3



422 Method ... ... ... .. .....

4.3 Conclusion . ... ... .. ... .. ....

5 Discussion of results and future work

5.1 Futurerelevantmissions . ... ... . ...

References
Word count~ 22000

STEVEN PEDIANI

CONTENTS



List of Figures

1.1 TT power spectrum of ACDM model. . . .. ... ... ... ... 35
2.1 Weak lensingféect on background sources. . . . . . ... ... ... 44
2.2 Thelinear convergence powerspectra. . . . . . . .. .. .. ... 52
2.3 AperturemassvarianCe. . . . . . . . . ... 53
2.4 Sheardispersion. . . . .. .. ... e 54
2.5 Newtonianpotentials. . . . . . . ... .. ... oL 56
2.6 1D marginalized plots using WMAPS5data. . . .. ... .. .. .. 59
2.7 2D marginalized plots using WMAPS5data. . . .. ... .. .. .. 60
2.8 1D marginalized plots using WMARS5SNIladata. . . . . ... ... 61
2.9 2D marginalized plots using WMARS5SNIladata. . . . . ... ... 62
2.10 Aperture mass variance and shear variance from 3rdQd&TLS
Widedata. . . . . . . . . . . 63
2.11 1D marginalized plots using WMAPR5Sweak lensing data. . . . . . . 65
2.12 2D marginalized plots WMAPS weak lensingdata. . . . . ... .. 66
2.13 1D marginalized plots using WMARSSNIa+ weak lensing data. . . 68
2.14 2D marginalized plots using WMAPR5SNIa+ weak lensing data. . . 69

2.15 1D marginalized plots using WMAPSNIa+ snK + weak lensing data. 72
2.16 2D marginalized plots using WMAPSNIa+ snK + weak lensing data. 73

3.1 TTpowerspectra. . . . . . . . . v v v it e e e e 83
3.2 ISW-galaxy powerspectra. . . . . . . . .. .. 85

STEVEN PEDIANI 5



3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7

LIST OF FIGURES

ISW-galaxy correlation function. . . . . .. ... ......... 86
Galaxy distribution. . . . . . . ... L o o 89
1D marginalized plots using WMARGISW data. . . . .. ... .. 92
2D marginalized plots using WMARSISW data. . . . . . ... .. 93
1D marginalized plots using WMARS5SNIa+ ISW data. . . . . .. 94
2D marginalized plots using WMARS5SNIa+ ISW data. . . . . . . 95
1D marginalized plots using WMARS5SNIa+ snK + ISW data. .. 96
2D marginalized plots using WMARS5SNIa+ snK + ISW data. . . 97
Clustering of elasticdarkenergy. . . . . .. .. ... ... .. ... 105
Clustering of scalar fieldmodel. . . . . ... ... ......... 106
Void formation in classical scalar field. . . . . . ... ... .... 112
Plot for elastic and scalar field dark energy perturlmatio . . . . . . 118
Matter and dark energy density. . . . . . . .. .. ... ... 119
Reduced power in CDM by elastic dark energy. . . . . . . .. ... 121
Percentage fierence in CDM amplitude. . . . . .. .. .. ... .. 122

STEVEN PEDIANI 6



List of Tables

2.1
2.2

2.3

2.4

3.1

3.2
3.3

3.4

3.5

CosmoMC initial parameters. . . . . . . . .. ... L

Scalar field and elastic dark energy statistics from then@MC runs

using WMAPS5 and weak lensingdata. . . . ... ..........

Scalar field and elastic dark energy statistics from then@MC runs

using the WMAPS5, SNla and weak lensingdata . . . . ... .. ..

Scalar field and elastic dark energy statistics from then@MC runs
using the WMAP5, SNla and weak lensing data and usingstie

parameter . . . . . .. L

ISW data and surveys used in our analysis, taken frone@agt et al.

(2008). . . o e

Initial cosmological parameters. . . . . .. ... ... ... ...

Scalar field and elastic dark energy statistics from then@MC runs

using WMAPS5and ISW. . . . . ... ... ... .. ... ......

Scalar field and elastic dark energy statistics from then@MC runs
using WMAPS5, SNlaand ISW. . . . . . ... ... .........
Scalar field and elastic dark energy statistics from then@MC runs
using WMAPS5, SNla, ISW and using tlseK parameter. . . . . . . .

STEVEN PEDIANI



Abstract

Currently one of the most exciting problems in cosmologhesnature of dark en-
ergy, which is responsible for the late time accelerate@degion of the universe. Dark
energy modifies the distance-redshift relation, and gaséra late time evolution of
gravitational potentials in the universe. Therefore byepbisg large scale structure
we can gain valuable information on the nature of dark enehgyhis thesis we ex-
amine a particular theory of dark energy, known as elastik daergy. Using weak
lensing and the ISWftect, coupled with CMB and SNla data, we find lower bounds
for the sound speed of elastic dark energy. We also explokettis model behaves in

the presence of collapsing matter.
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Unless otherwise stated, we use a spacetime mejgicwith signature (+,+,+).
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Introduction

Cosmology, the study of the Universe, is a relatively modsgience that has in re-
cent times seen an explosion in interest due to new and egatiservational results
and theories. Physical cosmology attempts to explain wiyJmiverse looks and be-

haves the way it does, by tying astronomical observatiotisether disciplines within

physics such as general relativity, astrophysics, andctaphysics. Our understand-
ing of the universe and our place within it has come along Wathe Second Century
the astronomer and mathematician Clauidus Ptolemy pudalibis Almagest, which,

using a geocentric model, discussed the motions of the {glamel background stars.
This idea of the Earth at the centre of the Universe remaiogdlar in European soci-
ety for over a thousand years. It wasn’t until Nicolaus Caprrs published his work

on a heliocentric model, in 1543, that the model of Ptolemyg wiaperseded. Further
work, notably by Johannes Kepler and Issac Newton in the Cétitury, showed that
the planets moved on elliptical orbits around the Sun, aatlttte mechanism respon-
sible was gravity. In the early part of the 20th Century thieca®mer Edwin Hubble

discovered that the Cepheid variable stars he was obsemeng located outside the
Milky Way, in other galaxies. He was able to show a relatiogp&ietween the distance
of these Cepheid variables and the redshift of the galakeg inhabited. Generally
the further the galaxy, the larger the observed redshifbtfver words Hubble showed

that the Universe was expanding. A few years later, FritzcRwproposed the idea of
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a new type of matter, called dark matter, to account for th&simg matter necessary
to explain measured galaxy rotation curves. Following tiseaVery of an expanding
universe, the two big theories of cosmology that emergea Wes steady state theory,
in which new matter is created as the Universe expands, mgadne Universe looks
the same at every point in time, and the big bang model, inhvtiie Universe began
life as a singularity which underwent a rapid expansion andinues to expand today.
George Gamow predicted that a big bang would leave the wavesthed in a back-
ground radiation, which would posses a blackbody spectnairba isotropic. In 1964
this Cosmic Microwave Background (CMB) was detected by APeozias and Robert
Wilson, and with this, the hot big bang model was establishedhe most popular
cosmological theory of our Universe. This model explaihg, origins of the CMB,
nucleosynthesis of the light elements (deuterium, hel@jrhelium-4, and lithium),
the expansion of the Universe, and the formation of largéesstaucture. Just before
the turn of the 21th Century, it was observed by two indepehdmups (Riess et al.
(1998), and Perlmutter et al. (1999)) that the Universe apgukto have recently en-
tered a period of accelerated expansion. The cause of tbédeaation is unknown,
and the term dark energy was coined to describe the coléettteories put forward to
explain it. One of the more popular theories is th€ DM model which consists of
a universe currently dominated by a cosmological constantyhile also containing
cold dark matter (CDM), baryonic matter, and radiation. Ad®lp which is spatially
flat, containingx 73% dark energyy 23% CDM, and~ 4% baroyinc matter, is some-
times known as the Cosmic Concordance Model (CCM), due tagheement between
many independent astronomical measurements. While thielm@redictions match
observational measurements, it is not without its prob|emhsch leaves the door open
for many other theories that aim to improve upon A&@DM model. The area of dark
energy is now a subject in its own right within cosmology, #mel basis of this thesis
is to examine a particular model of dark energy, known adieldark energy, and to
comment on how this model’s presendieats observable astronomical quantities. By

doing so we aim to constrain the model’s parameters and also that elastic dark
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1.1: BASCSOF COSMOLOGY

energy is not ruled out by a variety of observational data.

1.1 Basics of cosmology

Given that we appear to live in an expanding universe, it Ipfbkto factor the ex-
pansion out by defining two flerent distance measures= ay, where a is known

as the scale factor, which we define to be equal to 1 at themirdsg, v is the co-
moving distance, and the real distance. The distance between two points in such a
universe increases with time, but in the absence of pecudiarcities, the comoving
distance remains constant. How the scale factor evolvédstimiie depends on the ge-
ometry, and total energy density of the Universe. We can d¢fia Hubble parameter

as,H() = %‘g where, as derived later,

8nG k
Hz(t) = Tptotal T2 (1.2)

wherepoa IS the combined density of all the energy density componiantse Uni-
verse, andk measures the curvature of space. This then gives us a relataween the
expansion of the universe, and the energy density of coestittomponents and cur-
vature of space. When appropriately scaledan be made dimensionless and take on
three values, -1, 0 and 1, corresponding to an open, flatpsedluniverse. An open, or
hyperbolic universe has the property that the angles odadte add up to be more than
18C, or in other words, two lines running parallel would evetijudiverge from one
another. Such a universe would be infinite in extent. A clas@derse has the opposite
properties in that parallel lines eventually cross one la@mtand angles of a triangle
add up to less than 180 Such a universe is finite, hence the name, closed. A flat
universe is one where the angles of a triangle add up to gxB@f* and parallel lines
remain parallel as in Euclidean geometry. In order for theeanse to be flat, the energy
density of the universe must be an exact value, known as iteatdensity.H is usu-
ally expressed as100 kms! Mpc™, whereh has been observed to be0.7 (Jarosik

et al. (2011)), making today’s value of the Hubble paramekgr: 70 kms?* Mpc?.
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1.1: BASCSOF COSMOLOGY

Rearranging (1.1) we find that today’s value of the criticahsity is given as,

_3H]
= % .
In Sl units, this becomes, = 1.88h?x 102°g cn2. The Universe has been measured

Pc (1.2)

to be remarkable flat (Spergel et al. (2007)), and for thiskware will now only
consider a flat univers&, = 0. It is useful to define the density parameter of a given

energy density componery, as,

px(t)
Protal(t) ,
wherepy(t) is the average energy density of componer@ndoa(t) is the sum of the

Qu(t) = (1.3)

average energy density of all components. We can now wrgé-tledmann equation

in terms of the density parameter,

H2(t) = H3 )" Qu(1). (1.4)

Another important cosmological equation is the fluid equati

px = —=3H (ox + P) = —=3Hpy (1 + W) , (1.5)

where the dot denotes a derivative with respect to time, amdhave introduced the
equation of state parametey,= E, with P being the pressure of the fluid. The fluid
equation tells us how the density of each specigsyolves with time. If we integrate

the fluid equation, we can write,

Qu(t) = Qa3 | (1.6)

whereQ, is today’s value. The fluid equation, combined witlelientiating the Fried-
mann equation with respect to time yields a third cosmolmgiquation, the accelera-

tion equation,

2 MO 3w (1.7)
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

In an expanding universe, distance is now a function of th&edactor. The comoving

distance from an observer to a source located at a scale,faci®given by,

© dt’ ode
@ [ 3w ), wa 8)

To obtain the physical distance to the source, the comovsigrice must be multiplied

by a(t). Since light has a finite speed, parts of the universe areastally connected.
An observer can define a cosmological horizon, which is thhé&st point that light

could have travelled to the observer given the age of thedJs@; and so is the bar-
rier between the observable and unobservable regions afriverse. The comoving

distance to this horizon is given by,

to dt/
dH(t):jO\ %, (1.9)

wherety is the time today. In a similar way to the definition of a conmaydistance,
we can define comoving, or conformal time, which is giverdby= dt/a, and so with
the speed of light set to = 1, r andy are the same. Using conformal time, we can

define the conformal Hubble parameter which is given by,

lda
= Sd aH. (1.10)

1.2 Fundamentals of general relativity

In order to describe our Universe, we first need a relatiowéen the geometry of
space, and the energy density of objects in said space. &eptativity, published
by Einstein in 1915, gives us these tools and allow us to maeéth describing our
universe. In our everyday Euclidean world we measure tharaépn between two
objects by measuring the distansebetween them, given bg? = X2 + y? + Z2. In the
special theory of relativity, temporal separation must &ls considered as there is no

such thing as a universal time. The separation between tem®in spacetime is now
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

given by the line element,

ds? = —dt? + dx® + dy? + dZ°. (1.11)

If ds’> < 0 the spacetime interval between two events is said to bdikieneand a
causal relationship exists between these two events. Iitheval isds® > 0, then the
interval is spacelike, and the events are not casually aiedeand the spatial distance
is so large that travelling at the speed of light is not enotagtiaverse it. Ifds*> = 0
the interval is lightlike and this separates the regionsWiare causally linked, to ones
which are not. This line element is called the Minkowski aboate system, and can

be written as,

ds? = Z Nwdxtdx’ (1.12)

wheren,, is the Minkowski metric and is given by,

-1 00O
0 100
Nw = , (113)
0 010
0 001

and we have introduced index notation whete- t, x' = x, ¥> =y, andx® = z When
we want to refer specifically to spatial indices we will usenfRm indices, whereas
generally we will use Greek indices. It is convention to swaragepeated indices, and
we will therefore remove the summation term in (1.12) fronwvrom.

In Minkowski space particles obey Newton’s laws, if no foess on a particle, it
will travel in a straight line. In general relativity the id®f a straight line is replaced
with a geodesic, where gravity is not thought of as an extéonee, but the curvature
of spacetime. In general relativity a particle with no ertdiforce acting on it travels
along a geodesic. The Minkowski metric is replaced with thegria tensorg,,. The

equations of motion,
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

d?x
57 = 0. (1.14)

is replaced with the geodesic equation, given by,

>, dxdx

a2~ eBdn dh

Time is now an evolving parameter and hence we parametepaetiale’s path with

(1.15)

L, SO a vecton is now a function of.. We have also introduced the connection

codficients, also known as Chrigfel symbols, given by,

1
rﬁﬁ = Egup [aagﬂp + 9pQap — apgaﬁ] . (1.16)

where we have written the partial derivatives@#x* = d,, andd/ox, = o*. A
tensor is defined by the way it transforms from one coordiegstem to another. For

example, the covariant tensor transforms as,

X

A =—A,, 1.17

Hooox, ( )
and a contravariant tensor transforms as,
c’)x;

AHF = A, (1.18)

OoX,
Under a transformation, the partial derivatives do notdfarm in the same way as
tensors, and so we define a covariant derivative. The couadirivative of a con-

travariant tensor is,

VA =GN+ T AT (1.19)

and for a covariant tensor,

VA, = 3,A, ~TIA, . (1.20)
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

The first part is just the partial derivative, the other parith the Christdfel symbols
are the corrections, defined to make the covariant derv&@nsform like a tensor. We
will be using the metric for a Friedmann-Robertson-WallkeR\(V) universe, which is

a universe that is homogeneous and isotropic. This metadlat universe is given by,

-1 0 0 0
0 aXt) O 0
Qv , (1.21)
0 0 at) o

0O O 0 a3t
wherea is the scale factor. The assumption of homogeneity andoggtapply on

the large scales of the universe. Clearly on small scalesritverse is lumpy, littered
with galaxies surrounded by huge voids of space. But as wedotarger scales these
"lumps” smooth out. If we assume the Copernican princigiat tve do not observe
the universe from a special vantage point, and with the kadgé that the CMB is very
smooth, with the dferences in temperature varying y10~° at the most, it follows
that the rest of the universe must also be homogeneous anolpgo The Reimmann
curvature tensor is given by,
R, =007, -8, +17,T° —T7,T1°. (1.22)

The Ricci tensoR,, is a contraction of the Riemmann tensor,

R = Ry = 0,17, = 0,1y + TP T = TP TV, (1.23)
and the Ricci scalar is the contraction of the Ricci TenRet,gR,,. These equations

govern the curvature of space and appear in the Einsteindeplichitions which are

given by,

G =R, - %&‘VR = 87GT¥, . (1.24)

The left side of (1.24) is the curvature part, the right sglthe source of the curvature,

governed by the energy-momentum tenséy. We have enough information now to
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1.2: FUNDAMENTALS OF GENERAL RELATIVITY

compute the curvature part of (1.24) using an FRW metric. Chastdfel symbols

are,

%,=0, (1.25)

Foij = ¢,;aa, (1.26)
[y =T= 552, (1.27)
% =1%=0. (1.28)

With these we can work out that the Ricci tensor componesets ar

Roo = —3<, (1.29)
a
Rj = 6ij (28% + ) . (1.30)
And finally the Ricci scalar is,
(& a
R=6|+]. (1.31)

We now turn to the right side of equation (1.24) which credkescurvature we

observe. A perfect fluid has an energy-momentum tensor gayen

T = (o + PU“U’ + Pg" (1.32)

where the rest frame density and pressure of the fluid arediye andP, andw is
the velocity vector field. In a frame comoving with the fluidetenergy-momentum

tensor is given by,
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1.3: PERTURBED COSMOLOGICAL EQUATIONS

-o 0 0 O
O POO
T, = (1.33)
0O 0OPO
0O 0 OP
Putting (1.29) and (1.33) together gives the Friedmanntezua
H? = %p. (1.34)
3
The trace part of the Einstein equation gives us the acd¢earaquation,
a 4nG
- = P]. 1.
5= 3 P+ 3Pl (1.35)

We can obtain the fluid equation by taking the covariant @tine of the energy-
momentum tensor, knowing that it must be equal to zero dueeoyy conservation,
v, T =0,

p+3H(p+P)=0. (1.36)

1.3 Perturbed cosmological equations

The equations derived so far have only been dependent ondimdalescribe the back-
ground evolution of the Universe. The Universe is not congiyesmooth however,
and in order to describe gravitational perturbations inghergy density components,
we need to perturb our metric. We will now be working in confiat time where
dr = dt/a, and we will be using the synchronous gauge as this is whasad in
the CMB codes, CMBFAST (Seljak and Zaldarriaga (1996)) aAdi8 (Lewis et al.
(2000)) (see Chapters 2 and 3). Unless otherwise referetteedbllowing discusion
is taken from Ma and Bertschinger (1995). A general peruirbetric can be defined

as,
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1.3: PERTURBED COSMOLOGICAL EQUATIONS

g/lV = a2 (nuv + hyv) ’ (137)

and we can set the componehgs andhg equal to zero to remove the gauge freedom
in the Einstein equations. The metric perturbatprcan be decomposed into scalar,
vector and tensor components, which correspond to dewmsitycity and gravity wave
perturbations respectively. During the expansion of thévéhse the vector modes
are suppressed and so are not normally considered. Wonkikgurier space, the

decomposed metric perturbation can be written as,

(NI

wl =

hijZRi&jh+6n(&Rj— 5ij)+&h\j/+&jhiv+h-r- (138)
where the superscript V and T refer to vector and tensor otispé/. Using this de-
composition, the perturbed Einstein equations in the symdus gauge are (Battye

and Moss (2007)),

a’G% = —3742—ﬂh+%aiaih—%aiajh‘i, (1.39)
2a°G% = ah-ah, (1.40)
2a°Gly = a;hl - d'h, (1.41)
2ni ) 2\ di 1 ini i <i i I <
&G = (2(H-(H)5,-+§(hj—h5j)+7{(hj—h5,-) (1.42)
1,. : 1. 1.
+§ (5Ij(9k(9kh - akakhlj) + Eélk ((9k(9| hlj + c’),-<9| hlk - c’)kc’),-h) - §5|j5k5| hkl .

The perturbed energy-momentum tensor equations are,

T% = —(o+6p), (1.43)
T% = (p+P)w, (1.44)
To = —(p+P)V, (1.45)
T, = (P+6P)s,+2';, (1.46)
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1.3: PERTURBED COSMOLOGICAL EQUATIONS

wherev; is the velocity perturbation anf; = T'j — 15';T% is the traceless part of
the energy-momentum tensor. Upon substitution of thesatems into the Einstein
equations, we obtain a list of constraint and evolution éqna. We will only be

dealing with the scalar perturbations in this work, and sotihio scalar constraint

equations are,

Hh - 2k
kn

—81Ga?sTY, (1.47)
4nGa’(p + P)V° , (1.48)

and the two scalar evolution equations are,

h+2Hh-2kn = -81Ga%T';, (1.49)
h+6ij+ 2H(h+ 67) — 2k’p = —24Ga’(p + P)©° , (1.50)
where,
(o + P)V® = iKl6TO;, (1.51)
s LU 1 i
(p+P)® E—(kikj—§5ij)2j. (152)

The perturbed part of the energy-momentum conservatioateus (VMT/”) =0is,

§(V, TH) = 8,6 + 6L, T + T,0T™ + 6T, T + T0psT® =0, (1.53)

and from this we arrive at the equations describing the tiaodugion of the density

contrast and velocity perturbation, which in the synchumgauge are given by,

5§ = —(1+W)(kvs+%h)—37{(c§—w)6, (1.54)
S _ _aqr(1_ L VIR T
Vo= —H(1-3w)Vv 1+st+csl+wk6 k®® , (1.55)

STEVEN PEDIANI 25



1.4: ENERGY DENSITY COMPONENTS

where we define a sound speefl= 6P/5p. Weller and Lewis (2003) and Bean and
Doré (2004) defined the sound speed to be in the frame comevith the fluid, and
redefineds to bes = 6.5+ 3H (1 +W)VS /k in order to apply in an arbitrary frame. The

equations of motion now become,

97_{2
1+ ?(cg - W)

0,).
Il

—(1+w) (kvS

+ %h) - 37{(c§ - w)d, (1.56)

—H (1-3w)V° + cgﬁk(s , (1.57)

<
I

where we have assumed no anisotropic stress, and comstant

1.4 Energy density components

We now turn our attention to the components that contribmted energy-momentum
tensor,T,,, in our Universe. We can place these components into thewoip four

categories, baryonic matter, radiation, dark matter, sartt énergy. The two more
familiar components are baryonic matter and radiation.rfilieng we see and touch
is composed of baryonic matter, and it is radiation, in threnfof photons that allow
us to interact and see the baryonic world. The study of cosgyohas identified two
other components, which we are unaware of in our everydagende. Dark matter, an
as yet unknown form of matter, that doesn’t appear to intéheiough the electromag-
netic (EM) force, and dark energy, a component that is resiptenfor the accelerated

expansion of the Universe.

1.4.1 Baryons and Cold Dark Matter

Baryons, which in the cosmological sense include electsomse their relative mass
is so small, make up our visible Universe. The majority of baeyonic matter in
our Universe is found in diiuse hot gas within galaxy clusters. This matter has been

heated due to the gravitational forces induced by the alualil®ewing the gas to be
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viewed in the X-ray part of the EM spectrum. In fact there isupht to be 5 to 10
times the amount of baryonic matter contained within ireéagtic gas than contained
within stars (Liddle (2003)). The abundance of light eletsemeated during big bang
nucleosynthesis is sensitive to the total baryon mass. efdrer study of the light
elements can constrain the total baryon density, whichusdao be roughly 5% of
the critical density (Burles et al. (2001)). WMAP7, whichtie year 7 results from
the Wilkinson Microwave Anisotropy Probe (WMAP) missiomds that for asACDM
model,Q, = 0.0449+ 0.0028 (Jarosik et al. (2011)).

As well as baryonic matter, there is evidence that pointsriorabaryonic type of
matter which only interacts with the rest of the Universegnavity. Cold dark matter
(CDM) is the most popular candidate for this extra componethiere the term cold
refers to the fact that the fluid was non-relativistic at tineet of photon decoupling.
The topic of the missing mass goes back to the 1930’s, wherk¥wand Oort in-
dependently found evidence that the mass observed washisthe mass inferred
through gravitational féects. As an example, one can look at galaxy rotation curves,
which chart the rotation speed of galaxies with respect stadice from the centre.
Using Kepler’'s law we can write this tangential velocityat radiusR, with respect to

the massM, contained within R,

V= w/GNFI{(R), (1.58)

where G is Newton’s gravitational constant. At large radie would expect that

velocity to fall off as the inverse square root of R. In fact what is observed isdlogity
becomes constant, suggesting that even when outside théevpairt of the galaxy,
there is still more unseen mass. There are several methpdsiiog down how much
of the Universe is made up of CDM, ranging from CMB anisotegpobservations,
Pryke et al. (2002), to measuring the ratio of baryonic matieCDM, Grego et al.
(2001). Such observations suggest th&3% of the critical density is in the form of
CDM (see also Turner (2002)). WMAP7 best fit parameters failCbM model put
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Qcpm = 0.222+ 0.026 (Jarosik et al. (2011)).

In cosmology matter is described as a pressureless fluidthaischas an equation
of statew = 0. Referring to the fluid equation, (1.5), it is straight fand to show that
pm o a3, or in terms of the density paramet&,(t) = Qna3, whereQ,, is the present
day value. Substituting this into the Friedmann equatibi)( we can relate the scale

factor to time, which in a universe only containing matter is

2
a= (1) , (1.59)
to
and,
2
H=2. (1.60)

A flat universe only containing matter will expand foreveut bhe rate at which it

expands will decrease with time.

1.4.2 Radiation

The Universe is bathed in radiation, made up mainly from phstthat originated
from the surface of last scattering. The CMB is comprisecheké photons, and has
a temperature of.Z25+ 0.002K, Mather et al. (1999), with a black body spectrum.
Knowing the temperature of the radiation allows us to catathe energy density, via,
2
T +a
Py = ETV' (1.61)

Relating this to the critical density, the density param&ieradiation is then,

247%x10°
.Q.y = T .

We also need to include neutrinos when discussing radiatitimee cosmological con-

(1.62)

text. Neutrinos are very weakly interacting particles,t thialy interact through the

weak, and gravitational forces. At some point the early ©rse will have been so
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hot and dense that even the neutrinos will have been in thexgualibrium with all
other particles in the Universe. As the Universe expandwee neutrino energy den-
sity dropped and decoupled from the rest of the Universe histpoint the neutrinos
were now able to travel through the Universe freely and ngdéomnteracted with the
matter and photons. The temperature of the Universe wik ltantinued to drop, and
once lower than the mass of the electron, the positrons avérannihilated with the
electrons, transferring heat to the photons. Since thiaroed after the neutrinos had
decoupled, they do not feel théfects of this process, and therefore the photons re-
ceive a boost in temperature relative to the neutrinos. Wecedict the background
neutrino temperaturd,,, from the fact that the ratio of the present valudoto T,, is
equal to the ratio of’, before the electron-positron boost andafterward. The ratio

is given as,

T, (4\"®

Y
SinceT, is measured to be 2.725 K, the neutrino temperature should9seK. Re-
calling that the energy density goes as the power of four mperature, the energy

density contribution from the neutrinos .4 is then,

7 (4\"®
QV = 3)( é X (ﬁ) Qy = 0.68Qy, (164)

where (1.64) takes into account the fact that there are thea&ino species, and the
7/8 term comes from the fact that neutrinos are Fermions, nevBslike photons. The
value of Q44 is then the sum of the photon and neutrino contributiéhg, = 4.15 x
10-°h~2. Radiation has an equation of statex 3, and squyag « a™*. Substituting this

into the Freidmann equation gives,

a= (—)i , (1.65)

and,
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_1
2t

A flat universe containing only radiation would also expaoi¥er, albeit at a slower

H (1.66)

rate than a matter dominated universe. As the Universe egpahoton’s wavelengths
are stretched, leading to the exéra term inp,,q. Therefore a universe with a mixture

of just matter and radiation, would always become matteridataed at some time.

1.4.3 Dark Energy

If we were to assume that the Universe was matter dominatibdyi = 1, then the age
of the Universe would be given by= 2/3H,, which if Hy ~ 70km s*Mpc™, would
equal~ 9 Gyr. This is in contradiction with other measurements @& #ige of the
Universe. For example, the lifetime of a star is directlkéd to its mass. A star with
a greater mass will burn its fuel at a greater rate, and asu#t fes/e a shorter life. In
contrast a lower mass star will have a considerably lonéger or reference our own
sun, a G-type main sequence star, is thought to have a lifedfpa9 Gyr. Measuring
the oldest stars in the Universe can give a lower bound omgés &ince all the stars in
a globular cluster were created around the same time, th&g g@od cosmic clocks,
with the oldest globular clusters containing only contaiw Imass stars. Numerous
globular clusters have been dated (see for example Hansér(2002), Puzia (2002),
Jimenez and Padoan (1996), Krauss (2003)), with some dppearbe as old as 16
Gyr which directly rules out a universe wi€by,, = 1. Since the Universe is measured to
be almost flat, and best estimates of the matter density ach tawer than the critical
density, there must be a large amount of energy densityndr@d% of the critical
density, missing.

By directly probing the expansion Riess et al. (1998), amthiRdter et al. (1999)
recently observed that the Universe has begun to undergpaahef accelerated ex-
pansion, which is direct evidence for dark energy. Thesamgganade observations of

the apparent magnitudes of a number of type la supernoveeagsumed that type la
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supernovae are standard candles, that is they have a kn@etusdbmagnitude which

is independent of their location within the Universe and¢f@e comparing the ap-
parent and absolute magnitude yields an estimate of thengdistof a given supernova.
This can then be compared against the redshift of the hastgateasured using spec-
troscopy. If the Universe is experiencing an acceleratezlobexpansion, the energy
density component responsible must have a negative peeByrconsidering the ac-
celeration equation, equation (1.7), it is clear that sudomponent must have an
equation of state witlv < —1/3. The simplest, and most aesthetically pleasing, is a
cosmological constanty, which hasw = —-1.

A cosmological constant first appeared in Einstein’s fieldegigpns in order to arti-
ficially keep the Universe static, and while later he congdét a mistake and dropped
it from the field equations, it has since been brought backpéaén the late time accel-
eration of the Universe. A cosmological constant is homeges and isotropic, and
while its fect would have been negligible in the early Universe, as tieegy density
of the radiation and matter components decay, it will evalhtlbecome the dominant

component. We can defifg, = A/3H2, and so the Friedmann equation becomes,

H2(t) = H3 (Qma > + Qraga™* + Q) . (1.67)

A ACDM model, withQ, ~ 0.7 gives a very good fit to a wide range of observations.
Large deviations from this model are limited by data from W&AP mission. In
Komatsu et al. (2009) the authors, using a combination & fitatm WMAP, baryonic
acoustic oscillations (BAO) and Type la supernova obsemaj found a constraint
on the equation of state to bel.14 < w < -0.88. Using measurements of the X-
ray gas mass fraction in 42 X-ray luminous galaxies, Alleralet(2008) found the
equation of state to bey = —1.14 + 0.31. When they combined this data with CMB
and type la supernova (SNla) data, they found —0.98 + 0.07. Hicken et al. (2009)
found that by combining CfA3 SNla data with that of the Uniat &Kowalski et al.
(2008)), and combining with a BAO prior, the bounds on theagigu of state to be

1+w = 0.0137)585. Both results are consistent with a cosmological consfatCDM
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universe will become dominated by tihecomponent eventually, at which point such
a universe will undergo accelerated expansion which wsll farever.

There are problems with a cosmological constant, howeueaiciwleave the door
open for a wide range of other dark energy models. There isindamental theory
that allows us to derive the energy density of the cosmosdgionstant. Currently,
particle physicists estimate the value for the energy detsibe many orders of mag-
nitude from the observed value (for example, Weinberg (1888 Bertolami (2009)).
A second problem is the coincidence problem, which asks whytlze matter and
dark energy densities currently very similar. A cosmolaggonstant’s energy density
would have been negligible in the early Universe next to tlaten energy density.
Sincepn, « a3, the cosmological constant is going to become totally damim the
not too distant future. To be living in an epoch where theyvary similar is consid-
ered by some to be a huge coincidence. The coincidence pnatde be alleviated
somewhat by anthropic considerations. If the Universe waashe way it is currently,
then we may not be here to observe it, thus perhaps we shotite sorrprised by dark

energy’s current energy density.

1.5 CMB anisotropies

The CMB is the earliest snap shot of the Universe we have. ifioisopic to 1 part

in 100,000, has the most perfect black body spectrum evearebdd in nature (White
(1999)), and its intensity peaks in the microwave range. ofgiog to the hot big
bang model, after an inflationary period the early Universald have been filled with

a “cosmic gas” of high energy particles all coupled togethahermal equilibrium.
Quantum fluctuations before inflation will have been amglifieading to regions in

the cosmic gas having fierent densities. As the Universe expanded this cosmic gas
would have cooled and the energies of the particles woule iaken. When the
Universe reached a temperature~obeV, the electrons had lost enough energy and

began combining with protons, forming hydrogen, withow thverse process occur-
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ring. The temperature continued to fall and at abeud.25eV the photons decouple
from the matter and started to travel through the Universelyr an epoch known as
photon decoupling. These photons are said to have beeredrfritim the surface of
last scattering. This happened at a redshift 1100 and it is these photons that make
up the CMB, which due to continual expansion of the Univers& has a tempera-
ture of 2.725K. What makes the CMB so valuable are the angolaelations in the
temperature and polarisation anisotropies. The most celngmisive study of the CMB
has been made using WMAP, which measured the temperature GMB at diterent

points on the sky. The temperature autocorrelation funatam then be calculated,

AT\ (AT
C(o) =< (?)l(?)z > (1.68)

where the subscripts 1 and 2 refer to two positions on the skiesded by and angle

0. C(0) can be expanded in a multipole expansion,

21+ |
C() = Izzl 4 CiPi(cosd). (1.69)

wherel is the wave numberP,(cosf) are the Legendre polynomials, a@y is the
angular power spectrum. The peaks and troughs in this pquestrsim are created
due to a variety of #ects, and it is these features that can tell us a huge amoaout ab
our Universe.

In the early Universe, the cosmic gas was filled with denséstyrbations which
had been seeded by initial quantum fluctuations. Pertuntsiivithin the horizon os-
cillated with time due to the competingfects of gravity, trying to compress an over-
dense region, and the photon pressure, trying to opposeotih@ression. Photons
leaving the surface of last scattering from an overdensemegill have to climb out
of a potential well, and thus be redshifted relative to a ph@manating from an under-
dense region. Photons leaving an overdense region will ddigher energy initially
than a photon leaving an underdense region due to the fadtititeer density regions

will be hotter. Also, a photon emanating from a perturbatioat possesses a pecu-
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liar velocity relative to us will exhibit a Doppler shift. Blse competingféects are
recorded on the CMB, and allow us to constraifietent cosmological parameters.
The Sachs-Wolfe plateau is the fairly flat part of the powescsum, located at
large angular scale$, < 100. On such large scales no oscillations occurred in the
cosmic gas since the associated Fourier modes hadn’teeedrthe horizon. Therefore
AT/T is purely due to the gravitational potentid, of “frozen in” perturbations and is
equal toAT/T = ®/3. Between 106< | < 1000 are the acoustic peaks corresponding
to the velocity and density perturbations at the surfaceasf $cattering. The odd
peaks correspond to Fourier modes that were overdensit@soton decoupling, the
first peak being dt~ 220, and the even peaks correspond to underdensities. We po
falls off at largel due to Silk damping. Recombination happens over a finitedoale
meaning the surface of last scattering has a width| BoA. 000 these anisotropies are
on a smaller scale than the width of the surface of last soagteand are suppressed.
These anisotropies are primary anisotropies, and show he\CMB was at the
surface of last scattering. The photons have travelled g Woay across the Uni-
verse on their way to us, passing objects that have modifed, threating secondary
anisotropies in the measured CMB. Theffeas include the Integrated Sachs Wolfe
(ISW) effect which is dependent on dark energy parameters, makingideal ob-
servation for constraining cosmological parameters. iaryhe dark energy equation
of state,wpe changes the rate of expansion in the universe and thus vatigd the
way the temperature-temperature (TT) power spectrum loBk#tingwpe towards a
value larger than -1, shifts the angular power spectrunufeattowards larger angular
scales. Theféect of varyingwpe is degenerate with varying the total energy den€ity
The measurements taken of thé&elient angular power spectra can be compared with
theoretical results from programs such as CMBFAST and CAMBIch evolve the
Einstein equations, and component equations of motiorg fange of initial starting
parameters, outputting a range offdrent power spectra. Assuming\& DM model,
WMAPY7 finds the following best fit result§),, = 0.266+ 0.029,Qpe = 0.734+0.029,
h = 0.710+ 0.025,74 = 10882 + 1.2, ns = 0.963+ 0.014,7 = 0.088+ 0.015 and
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AZ = (243 0.11)x 10°°. Wherens is the scalar spectral indexjs the reionization
optical depth anol&?e is the curvature fluctuation amplitude. Using these pararagt
and the CMB code CMBFAST, we have plottedh&DM TT power spectrum, shown

in figure 1.1 for illustration.
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1000 [ R

1 10 100 1000

Figure 1.1: TT power spectrum for &CDM model, with the following values of
cosmological parameter§,,, = 0.266,Qpeg = 0.734,h = 0.71, zge. = 10882, ns =
0.963,7 = 0.088 andA% = 2.43x 10°°. The ISW dfect is responsible for the raised

power atl < 10.

STEVEN PEDIANI 35



1.6: DARK ENERGY MODELS

1.6 Dark energy models

With no fundamental theory of dark energy, there has beerda variety of diferent
theories proposed in order to explain the observed actieleraf the Universe, other

than a cosmological constant.

1.6.1 Quintessence

A popular alternative to a cosmological constant is a qes#ace model, described by
a scalar fields and a potentiaV/(¢). The energy-momentum tensor for a scalar field is

given by,

1
Ty = 0,00, G 300,005 + V(9 (170

Using equation (1.70) for a flat FRW universe and assurgiagp(t), we find that,

1.
p=350"+V(e), (1.71)

P= %@2 - V(). (1.72)

The Hubble and acceleration equations then become,

H2 = 8”6( 32 V(¢)) (1.73)
2= TR -ve). (1.74)

We can see from equation (1.74) that for an accelerated faansion? < V().

The equation of state for a scalar field is then given by,

P ¢*-V(g)
p P +V(e)
noting that-1 < wj, < 1. Then from the fluid equation (1.5),

W, = (1.75)
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0 = pPo exp(— f3(1+ w¢)d§) . (1.76)

We know from the fluid equation that for an accelerated expansv < —-1/3, and
putting this together with equation (1.76) we find that focalar field,o « a™® where
0 < b < 2. In the case wher¥(¢) > ¢?, the slow roll limit, the equation of state
isw, ~ —1, and so to match observation, a scalar field will need to d&lglrolling

down its potential.

An advantage of quintessence models akenodels is quintessence can exhibit
tracking behaviour with a specific potential, see for exanflatev et al. (1999) and
Steinhardt et al. (1999). A tracker model is a scalar fieltlihmsensitive to the initial
conditions. During the early radiation dominated Univeltse scalar field can have
a huge range of initial energy densities. The field howe\skis the radiation den-
sity until matter radiation equality. Therefore two init@nditions several orders of
magnitude apart will converge on the same value of energgitydny matter radiation
equality. Once this epoch is reached the scalar field debsitpmes the dominant
component in the Universe and starts behaving as it is obddoday. Such a model

alleviates the fine tuning problemfsered by the cosmological constant.

1.6.2 Elastic dark energy

The elastic dark energy model treats the dark energy as arfhwich like the treatment
of the other components of the energy-momentum tensor, Jevatlowing for the
fluid to have rigidity and can thus be regarded as analogoas telastic solid. The
topic of elastic dark energy is discussed in depth in BattyMoss (2007), here we
briefly outline the model.

The model was originally motivated when considering fratstd networks of topo-
logical defects, such as domain walls or cosmic strings, esnaidate for dark en-

ergy. However the topic of an elastic dark energy can be atudn its own from a
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phenomenological point of view. The energy-momentum tefmoa perfect elastic

medium takes the form,

T = ptu’ + P, (1.77)

wherew are the flow vectors, witb¥‘u, = -1, and theP*” is the pressure tensor. The

Lagrangian variation of this energy-momentum tensor isgivy,

1
oTH = -3 (W7 + TR 6L0pe - (1.78)

HereW**7 is the non-orthogonal elasticity tensor, which can be deamsad as,

WHPT = BT 4 PP + PP — PO — PO — PP~ PP U —pU LA

(1.79)
E**7 s the elasticity tensor, satisfying,
Erveo — Eweo) — grony , (1.80)
and,
Ef*7u, = 0. (1.81)

The diference between the Lagrangian (moving with the perturbptiariation,o,,
and the Eulerian (fixed with respect to a background) vamatiss, = dg + L, and

hence the Lagrangian variation of the metric tensor is,

6Lguv = 6Eguv + 2V(/té:v) s (182)

andé* is the infinitesimal displacement field. In order to arriveheg equation of mo-
tion for the displacement field, one must evaluate the Lagearvariationg, (y,V,T*) =

0, which gives,
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v O VO 1 02 VT
(AC 7 — (py", + P U ) LT, + SY'Y P (6L0p)V-E"T = (1.83)
A .
(P“Vu" — EPV"u“ =280 OV U + (o9, + P“p)u"uvu") SL0ve -
Here the dots now represeutV,, covariant diferentiation with respect to the flow,

and A" , 7 is the relativistic Hadamard elasticity tensor, given by,

v o) _ v o) Vo
AT = BT -t P (1.84)

andy,, = g, + U,U,. For an isotropic perfect elastic medium, the pressureoteiss

given by,P*" = Py*” and the elasticity tensor can be written as,

EFPT = TR 4 (B — P)yH yP7 + 2PyHey ) | (1.85)

whereX*"*” is the shear tensor, obeying the same symmetry and orthiiyarendi-
tions as the elasticity tensor, adds the bulk modulus. The shear tensor can be written

in terms of the shear modulys, where for a perfect fluigy = 0, giving,

1
THPT = 2 (y#(f)y‘ﬂv — :—)’y/“yp‘f) . (1.86)
We can now combine these equations and substitute themduagtien (1.78), given

the perturbed energy-momentum tensor components,

6T% = (+P) («%5‘ + %h) , (1.87)
6Ty = —(p+P), (1.88)
oT', = -4, (,8 -~ %ﬂ) (akfk + %h) — (2058 + 1)), (1.89)

and from equation 1.83, the evolutionfis,

(o + P)E + HE) — 3pHE - ﬁ(aiajfj . ai*-z‘) —u(aiajgi O o - a_;) =0

(1.90)
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wherehis the trace of the metric perturbatibty. Combining equations (1.43), (1.44),
(1.45), (1.46) with equations (1.87), (1.88), and (1.89ggi

sp = —p(l+w) (kgs + %(h - h|)) , (1.91)
Vo= &S, (1.92)
P = —p(1+ w)g—;) (kgs + %(h - h,)) : (1.93)
ms = 2’1;’""@ - g’(cg—w) 1+w?) (—ﬁm(n—n.)) . (L94)

From these we arrive at the equations of motion for the elasiik energy model,

5§ = —(1+w)(kvs+%h), (1.95)
5 dP dP 1 2w s
Vo= —H(1—3$)ﬁ+$l+w —§1+Wkn . (1.96)

1.6.3 Other dark energy models

Since there is no fundamental theory for dark energy, there déarge range of ter-

ent dark energy models which given the correct parametarsreproduce the CMB
anisotropies using the CMB codes. For example, k-esseracedalar field model of
dark energy which relies on modifications to the kinetic ggginstead of the potential
energy, in order to reproduce the accelerated expansiolg(iddi et al. (2003), de Put-
ter and Linder (2007), Armendariz-Picon et al. (2001)). tao fluid based model is
the Chaplygin gas dark energy model (Kamenshchik et al.(g@ento et al. (2002)).

In this model dark energy has an equation of state giveR by—A/p® where A is a
positive constant and @ @ < 1. At early times a Chaplygin gas exhibits the charac-
teristics of a pressureless gas, while at later times thdefaaves like a cosmological

constant. Most models of dark energy set its equation oé ggaater than or equal to
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-1. Since observational evidence doesn't necessarileplae —1 as the lower bound,
see for example Komatsu et al. (2009) and Hicken et al. (0@ reasonable to con-
sider the possibility of an equation of state less than -1e €uch model is phantom
dark energy, where the sum of the density and pressure isiveegBhe energy density
increases with time for a phantom energy model, leading tm&ip scenario, where
the phantom energy overcomes all other forces of naturel{zdl et al. (2003)).

Each of these models can predict how such a universe will &gk given time,
dependent on, among other things, specific dark energy pa&easrthat may be unique
to that model of dark energy. While it is veryfiicult to say which specific model is
a true representation of the actual phenomenon, given rdafuantal theory of dark
energy, we can compare observations with theoretical gieds, and thus constrain

given dark energy parameters.
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Constraints from weak lensing

In the framework of general relativity freely moving paléis travel along geodesics,
the shortest path between two points. In the presence ofvitajianal potential, this
path will appear curved to an external observer. Photongltedong null geodesics,
and so when light travels through the Universe its direcitomodified when in the
vicinity of mass such as galaxies and galaxy clusters. Tiféseis known as gravita-
tional lensing and is an important tool for cosmology as agf{edtion that the photons
undergo is due solely to the response of the photons to agtiawial field, irrespective
of the gravitational source and physical properties.

It was gravitational lensing that gave the first confirmatiéthe theory of general
relativity back in 1919. In a trip to Prncipdifcdhe coast of Africa, Arthur Eddington
observed, during a solar eclipse, the angular shift in th&tijpo of a star when it
was in close proximity to the Sun. Such a shift proved thatntiaess of the Sun had
deflected the light rays from the distant star, and thus aoefira crucial prediction
of general relativity. With this knowledge it became theimadly possible map out the
mass overdensities within the Universe, as opposed to megdight from galaxies

to infer galaxy distributions.
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2.1 Introduction

Gravitational lensing can be categorized into two distigpes, strong gravitational
lensing and weak gravitational lensing. Strong gravitedldensing heavily distorts
background sources, producing noticeable distortionk siscmultiple images, Ein-
stein rings, and arcs within images of clusters. In ordelbgeove strong gravitational
lensing images, one must be aligned in such a way that a baakdisource is almost
directly behind a foreground source. Weak lensing prodaa@sre subtle féect on a
large number of background sources. As the light from thédpaeind sources such
as distant galaxies traverse the Universe, the photon paghslightly modified when
passing foreground mass. This leads to a slight modificétitime observed shape and
size of the source. Since we cannot know the intrinsic stzapes and orientation of a
given galaxy before it undergoes any distortion, coupleith Wie fact we don’t know
exactly where every underdense and overdense region appeé#ne night sky, many
light sources must be analysed and statistical patterns todlee detected. Therefore
weak lensing measurements are purely statistical in nasuigh as correlation func-
tions and power spectra. Figure 2.1 shows simple reprasantd what weak lensing
can do to a background source. Given that dark energy modifeesnatter-matter
power spectrum and the distance redshift relation, bothto€hvare related to weak
lensing parameters, observations of weak lensing can tealépendent constraints

on dark energy parameters.
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Figure 2.1: The left image shows points representing gesaxi a typical arrangement
one may find before any weak lensinjests are added. The right image shows what
effect weak lensing would have on the background source. Bapestand magnifi-

cation have been modified.

2.2 \Weak lensing geodesic equations

So far we have a given a brief qualitative account of weakitensut in order to
proceed we must have a mathematical description. We foll@wdlar description
given in Dodelson (2003). We start by solving the geodesi@ggn for a given photon
travelling from a background source to us. The geodesictequaiven earlier, (1.15),
is,
2
@ = Thae @

Both the right and left hand side of the geodesic equatidr) (an be rearranged using

the chain rule of dferentiation,

dy d [d)( dxi] , X dx dy dy

@ay |a @ |~ a oy @2
where we have only consider the spatial partx9fand split the three spatial parts

into radial,x® = y, and traversex = 6'y, distances. Because we are making use of the
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small angle approximation, it follows that any perturbatio the metric multiplied by
'y can be taken to be zero. Also note thgtis numerically interchangeable wittdr
with the speed of light set to= 1. dr/dA can be worked out using the knowledge that,

because photons are massless,

dx® dx?
gaﬂaa - O’ (2.3)
or,
dedd drdr | dddx 20
Yo an an T oo T '
and from this we get, for photons,
doo(P°)* + p* = 0, (2.5)
where we have defineB® = % and photon momenturp? = gij%—f%—’f. By simple
rearrangement we have,
PO = p(1-¥), (2.6)

whereV is the temporal perturbation to the metric. There are fowsfme combina-
tions in the sum on the right of geodesic equation. TheseBatey = 0;8 =0,y = |;
B =],y =0;andB = j, vy = k. The non zero perturbed Chrigfel symbols in the

Newtonian gauge are,

I, =0'va?, (2.7)
Iy, = [y = HS, — s}, (2.8)
I, = 8 ©a’s ) — 0,06, — O, D3|, (2.9)
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where® is the spatial perturbation in the metric. Putting this adjether, the geodesic

equation becomes,

i 2 i
2% (éd(a\/f_)) = —%(1—1//) (azﬁi‘l’+a26icb+2ﬂ%j)), (2.10)

making use of the fact th ';a) is constant. This reduces to,
d?(y6')

d2)\
In cosmological models where there is an absence of anotstress at late times,

¥ = @, and thus the right hand side of equation (2.11) would-B&!9;®. Here we

= -5 (0,¥ + 9,0) . (2.11)

can see that a gravitational perturbation leads directly perturbed viewing angle at
a given position, whereas a uniform potentid( = 0) leads to‘%fi) being constant.
We can integrate equation (2.11) twice with respegt tehich will allow us to know

the original source anglés, before it was distorted by the gravitational potential.

6. = —f: dy’ (8P (x") +8i(D(X’))(1—)§)+9i. (2.12)
The constant from the integration must be the observed ahgle in the absence of
any metric perturbations, the source angyevill equal ¢'. Distortions in the shape of
a background source can then be characterised by th@ 8ymmetric shear matrix

defined as,

90 l-k-v1 —Y2
Aj = 8_97 = , (2.13)
—Y2 l-«k+vy1

wherex is the convergence, describing contractions and dilatiamsh are propor-
tional to the projected mass along the line of sight. Theisheaharacterises stretch-
ing and compression of the image. From equation (2.13) theergence and shear

are given by,

Ags + A
K = —(M)+l, (2.14)

2
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As — A
yi= —(—“ 22) : (2.15)
Y2 = —Aaz. (2.16)

From these equations and the fact that the dominant cohibibaomes from trans-
verse fluctuations, we can write the convergenge), caused by a given source at
redshiftz,

«(6) = —% fo dy'W(x') (KP¥() + KD(y)) - (2.17)

We have written the Newtonian potentials in Fourier spage(= —k?®), and W(z)

is our window function, given by,

we) =x [ denw)(1-%). @.18)
5% X
andn(2) is the normalised source galaxy distribution. Typicaliyweak lensing liter-

ature, late time shear is assumed to be zero, and thus thétgud® + k> = 2k?®.

This can then be written using the Poisson fluid equation,

3H2Q,6
ko =y =X (2.19)
X

With no knowledge of the intrinsic size and shape of a giverkgeound source, our
weak lensing observations must be statistical measurem®ne such statistical quan-

tity is the convergence auto correlation function,

CKK = <K(9)K(9/)> P (220)

which, when transformed into multipole space, is defined as,

whereP,(l) is the convergence power spectrum. Limber's approximafio~ Kky)

allows us to writeP, (1) as,

STEVEN PEDIANI a7



2.2: WEAK LENSING GEODES C EQUATIONS

_ o HRS e WA(Y) (1)
PK(I)_EX: . fodXXZaZO()PX Zx- (2.22)

whereP, (L;x) is the power spectrum of species From the convergence power
spectrum several other second order cosmic shear quamtitig be calculated. These
include the two point correlation functiogs(d), the aperture mass variandtﬂasze)
and the shear varian€g/|?)(6).

The two point correlation functions (0) are defined as

61(9) = é:tt(e) + fxx(e) . (223)

where the subscripts tt andk are the tangential and 45otated ellipticity correlation
functions respectively, which can be directly inferredhfrobservations. They can also

be calculated theoretically from the convergence powettspm via,

£.(0) = % fo ) dl1P,(1)Jo4(16) . (2.24)
Whered is the angle separating galaxy pairs algd are Bessel functions of the first
kind. The shear variance is defined as the variance of thag@ehear in circular areas
of differing radii on the sky. As pointed out in Schneider et al. @0@hen trying to
determine the shear variance directly, gaps in the obsenatdata can make this
difficult. The shear variance can however be computed from theurezhcorrelation
function, using,

w0 - [ ems.(3). (2.25

where,

S.(X) = %(4 arccos[g] - XV4- x2) : (2.26)

The shear variance can also be calculated using the theadretinvergence power

spectrum via Bartelmann and Schneider (2001),
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43,2(16)
2 9

o0 = 5 [ dP) @27)

with J; being a Bessel function of the first kind. The shear variasca low-pass
estimate of the convergence power spectrum. The thirdsstais the aperture mass,

which can be measured experimentally via,

Map(6) = f IQI (), (2.28)

wherey () is the tangential shear relative to the centre of a cirap@rture of angular
radiusd, and Q is a filter function. Directly observing the aperture massgarece,
(M p> sufers the same problems as the shear variance. Like the shréearoe the

aperture mass variance can be written in terms of the ctioelfunctions,

ddd 19 )
e =3 [ 5 (e o [5|veor 5] 2.29)
with,
T.(X) =576 f —Jo(xt)[J4(t)]2 (2.30)
and,
* dt 5
T_(x) =576 fo t—3J4(xt)[J4(t)] : (2.31)
The aperture mass variance can also be given by the thedretiovergence power
spectrum,
5761,2(16)
)(9) = f diP()———— Bt (2.32)

The aperture mass variance is a bandpass estimate of thergenge power spectrum.
All three of these measurements are essentially just iategrer the power spectrum
but with differing window functions, and therefore probindtdient parts of the con-

vergence power spectrum. Given the fact that elastic dagkggns a linear theory, we
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are constrain to the linear regime, and so shear variandegter quantity to calculate
and compare with observations as the aperture mass is a otateséd measurement.
One can work down te- 30' with shear variance before non-linedfests take over.
With the aperture mass non-linedfexts become dominate at much larger angl&§
(Fu et al. (2008)).

2.3 Codes to compute weak lensing observables

CMBFAST calculates the temperature autocorrelation foncand the polarization
power spectra for a given set of cosmological parameters/pisal power spectrum

can be computed via,

Ci = (4n)° f k2dkPy (K)Aa(k, 7 = 70)An(K, 7 = 10)l, (2.33)

whereP, is the initial power spectrunf, andA, are the numerically computed trans-
fer functions. Seljak and Zaldarriaga (1996) showed thatathisotropy term can be

split up into a source term and a geometric term, given by,

A(K, 1, 1) = f dre¥ ISk, 1, 1), (2.34)
0

whereu is the cosine of the angle separating the incoming photdmtivé wavenumber
k. If one multiplies both sides by the Legendre polynomiig):) and then integrates

overu the following result is obtained,

Ak 7o) = f ® Sk 1)tk - )] (2.35)

where |, is the spherical Bessel function. CMBFAST calculates tmeperature and
polarisation anisotropies in this way, where the onlffedence between each calcu-
lation is what is used for the source. Corasaniti et al. (2008dified CMBFAST to
include a scalar field type dark energy model (see Bean and (2004)), and also

added a feature so that the matter-matter and ISW-matteemspectra (see Chapter
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3 for more details on the ISW-matter power spectrum) coulddleulated by adding

new source terms. These terms for matter and ISW are givpactegely by,

Sy = W(Z)bgéM , (236)

Sisw = €4(® +¥), (2.37)

whereW(z) is a window function,® and'¥ are Newtonian potentials, arg is the
galaxy bias. Th&,’s for the matter-matter, ISW-matter correlations can nexbm-

puted via,

C¥ = (4n)? f k2dkP, (K)|Agg(K, 7 = 170)Agg(K, 17 = 7o), (2.38)

" = (4’ f K2dkP, (I Agg(k 7 = 10)Arr (k.7 = 70)1 . (2.39)

We can perform a similar modification in order to calculate tonvergence power
spectrum (2.22), by defining the source term,
1 2
S = _Ek (@ +Y)W(2), (2.40)
whereW(2) is the window function given in (2.18). In the case whéfe= @, the
equation reduces tek?®W(z). This has allowed us to modify CMBFAST to output
the convergence power spectrum. We ran the code for a rardjferent dark energy

parameters, using a galaxy distribution given by,

n(z) = % exp(—é) , (2.41)

as in Huterer (2002), normalised so,

f n(zdz=1. (2.42)
0
In figure (2.2) we have plotted the convergence power spgateeACDM, scalar field,

and elastic dark energy model with a selection difedtent values for the sound speed
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and equation of state. For the other cosmological paraseterused the WMAP7
best fit values. We have also plotted the aperture mass carard shear variance for

each convergence power spectra in figures 2.3 and 2.4 reghgct
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Figure 2.2: These plots show the linear convergence povestisp The plots on the
left are scalar field models and the plots on the right aretieldark energy model.
The plots on the top hawe = —0.4, the plots on the bottom have= —0.8. The black
dotted line in all plots is a\CDM model, the blue lines corresponddp= 104, and
the red lines ta2 = 1.
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Figure 2.3: These plots show the aperture mass variancen ¢y equation (2.32).

The plots are laid out the same as figure (202)as units of arcmins.
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Figure 2.4: These plots show the shear variance, given batiequ(2.27). The plots

are laid out the same as figure (2.2has units of arcmins.

There is very little between the models when= 1, but as the sound speed is low-
ered, diferences start to appear. When the elastic dark energy hagiahan of state

w = —0.8, lowering the sound speed reduces the amplitude of theccgemce power
spectrum. In the case whene= —0.4, the opposite happens, and lower sound speeds
lead to larger amplitudes. If we were to only consideGé,/3 = —k?® for our weak

lensing source, in our convergence equation, then as thedsspeed was reduced,
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the amplitude would always increase. The reduction at icevilues comes from the
competing &ects of shear and density. Because we are ugzcin%@) + ¥) in the con-
vergence equation, witkk¥ = k’® — 127Ga’o(1 + w)®, and® always has the same
sign asd, meaningdV| is always lower thaifib|. We have illustrated thisfkect in figure
2.5, where we have plotted, ¥ and|® + V| for both models. The plots on the left
havec? = 1, and show the models are indistinguishable. This exphaimsthere is
very little difference in the red lines in figures 2.2, 2.3, and 2.4 betweemn reacdlel,
for a givenw. The plots on the right of figure 2.5 haggé= 104, and now show large
differences ind andV¥ for the elastic dark energy model. There is no late tinfeedi
ence between the two potentials in the scalar field mod@liasnegligible. The value
of |® + Y| is larger for elastic dark energy than the scalar field when-0.4, but the

opposite is true for whew = —0.8.
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Figure 2.5: These plots demonstrate the evolution of theimperturbations with
respect to the scale factor. The blue lines@&reand the red ar®¥. Solid lines denote
use of an elastic dark energy model, and dotted lines a sioaidmodel. The black
lines ard® + ¥|. Plots on the left haveZ = 1, plots on the right have? = 10-*. Plots

on the top havev = —0.4, plots on the bottom hawe = —0.8.
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2.4 CosmoMC results using WMAP5 and SNla data

We have shown in the last section, using a modified versionBEAST, that difer-
ences in the convergence power spectrum between eladtienlengy and a scalar field
model can occur for certain valueswfandcs. Ultimately we would like to test the
theoretical predictions against observed data, and imgdsmrhelp constrain these dark
energy parameters. We found it useful to put the weak leresjugtions into the CMB
code, CAMB (Lewis et al. (2000)). Due to the close similastbetween CAMB and
CMBFAST, it was relatively straight forward to modify CAMB tompute the conver-
gence power spectra and associated correlation functeing the same method. The
advantage with CAMB aside from being noticeably quickemtitBFAST, is that
CosmoMC (Lewis and Bridle (2002)) has been written to workhwCAMB. Using

a Markov Chain Monte Carlo algorithm, CosmoMC runs CAMB méamyes varying
selected cosmological parameters and compares the oatplosérvable data, finding
best fit parameters for a given model, and produces margathditatistics for dierent
cosmological parameters suchwascs, Qy, h, andns. Of particular interest to us are
the dark energy parametergand the sound speed, Whencsis ~ 1 itis difficult to
distinguish between a scalar field model and an elastic daatgg model as seen in the
previous section. As the sound speed approaches zero hpleege diferences in the
power spectra appear and it is thes@edtences that will allow us to constrain the pa-
rameters. Given how sensitive elastic dark energy is to lmwmd speeds, CosmoMC
will allow us to define a lower limit to this sound speed, aslvesl show preferred
values of all other parameters for each model.

We ran CosmoMC on the Computation of Mathematical Astrojusy€COMA)
cluster at the Jodrell Bank Centre for Astrophysics. COMMgalled with 312 vir-
tual cores, allowing us to run multiple chains on multipleisp CAMB was written
with multithreading in mind, and by utilising OpenMP, onestance of CAMB can
be run over several CPUs, greatly speeding up the compuétione. Not only this,

since CosmoMC is a hybrid MRDpenMP code, we can also run several chains simul-
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taneously. Each time we ran CosmoMC we used the API's MPIGd, OpenMP

to run 4 chains, with each chain running on 4 virtual cores)gia total of 16 virtual

cores. Using MPI, the code can compare chains as it is runnirggl time, and check
whether the chains are converging.

We ran CosmoMC with the option, MPI Converge Step0.03, enabled. This
option checks each of the parameter’s “variance of chaimsiadivided by the “mean
of chain variances”, An et al. (1998), also known as the Galarad Rubin R statistic.
Typically for convergence one would waRt— 1 < 0.2. Initially we ran CosmoMC
using just WMAPS data (Dunkley et al. (2009)), and as we etquethese showed
minimal differences between the elastic dark energy and scalar field n@amoMC
allows other CMB datasets to be used, including data fronAtikeninute Cosmology
Bolometer Array Receiver (ACBAR) (Reichardt et al. (200®)E Cosmic Background
Imager (CBI) (Padin et al. (2000)), however since théedences between elastic dark
energy and the scalar field model occur at low valudsrmthe CMB cross correlation
functions, smaller angle observations do not aid signiflgan distinguishing the two
models. Table 2.1 shows the cosmological parameters uskdheiinitial values from

our params.ini file. All other options and parameters welteaketheir default settings.

Parameter| Start Centef Min | Max | Starting Width| o estimate
Qph? 0.0223 0.005| 0.1 0.001 0.001
Qch? 0.105 0.01 | 0.99 0.01 0.01

6 1.04 0.5 10 0.002 0.002
w -0.8 -0.999| O 0.02 0.02
Ns 0.95 0.5 15 0.02 0.01

log[10%°A] 3 27 | 4 0.01 0.01

log[c,] 0 -5 0 0.02 0.02

Table 2.1: Initial cosmological parameters used in all CoSIG runs, unless other-

wise stated.

We used the default CosmoMC installation which imposesrgrim Hy and the age

of the Universe as, 40 kmsMpc™ < Hy < 100kms*Mpc™ and 10 Gyr< age <
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20 Gyr. Unless mentioned, we used these settings, and thesvad table 2.1 on all
CosmoMC runs. 1D and 2D marginalized plots are shown in fg@ré and 2.7 in a
variety of parameter planes, where we have overlaid sceldrdnd elastic dark energy

contours on the same plots.
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Figure 2.6: 1D marginalized plots for cosmological pararetising WMAPS data for
a scalar field (black) and elastic dark energy (red) models&¢éevery little diference

between models.
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Figure 2.7: 2D marginalized plots for cosmological paraereusing WMAPS5 data
for a scalar field (black) and elastic dark energy (red) mo@sth models produce

similar results, with no lower bound on the sound speed,

Using WMAPS5S data on its own does not give a lower bound to thaendspeed, and
does not really help with éierentiating between models. We then ran CosmoMC us-
ing WMAPS and type la supernova (SNIa) data taken from theok)i&§Nla compila-
tion, Kowalski et al. (2008), where the authors had compdiath from the Supernova
Legacy Survey, ESSENCE survey, and recent observatioriglofédshift SNla made

by the Hubble Space Telescope. This work was one of the madst dgte SNla com-
pilation when we carried out our analysis. Our results aesgmted in figures 2.8 and
2.9. Although the inclusion of the SNla data has tightenedctbnstraint on the cos-
mological parameters, it has done nothing to help consttaend does not aid telling

the two models apart. Both models allow the same range of clogjical parameters.
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Figure 2.8: 1D marginalized plots for cosmological pararetsing WMAPS5+ SNla
data for a scalar field (black) and elastic dark energy (realeh Again the models

give near identical results.
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Figure 2.9: 2D marginalized plots for cosmological pararetsing WMAPS5+ SNla
data for a scalar field (black) and elastic dark energy (reatjeh

2.5 Constraining parameters with weak lensing data

2.5.1 Including weak lensing

Weak lensing shear observations have been detected by namgsgover the last
decade, see for example, Kaiser et al. (2000), Hoekstra €@02), Hamana et al.
(2003), Maoli et al. (2000), Chang et al. (2004), and Jee.€RAD6). Most observa-
tions of weak lensing shear probe small angles, where maadid¢fects in the evolu-
tion of the growth of structure are prevalent. We use the Weiaging data taken from
the 3rd year Canada-France-Hawaii Telescope Legacy SUGEMTLS) Wide data
release (Fu et al. (2008)). One of the primary goals of the TFHis to use weak

lensing measurements to explore the dark matter powerrspeend its evolution.
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Utilising the CFHT MEGAPRIMEMEGACAM instrument the project has produced
high quality weak lensing shear data. The CFHTLS Wide suwag designed to
explore angular scales of up to 8 degrees, a fact that malsesutvey ideal for our
work. Our equations are linear and so only give accuratdteegstlarge angles, or low
¢ values. The data from Fu et al. (2008), based on the third @E&ITLS Wide data
release, is predominantly set in the linear regime makitigeiperfect data to compare
with. Figure 2.10 shows the measured aperture mass andwarearce from this data

set.
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Figure 2.10: Aperture mass variance (bottom) and sheaanveei(top) from 3rd year
CHFTLS Wide data (Fu et al. (2008)).

By introducing weak lensing data into our analysis we carrowp upon the results

from WMAPS and SNla data alone as, shown in the previous@gdtrge diferences
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occur for certain parameter values. Massey et al. (200@)Yyzed a module for Cos-
moMC allowing calculation of the convergence power speuctrtheir data however
was largely within the non-linear regime ranging from 0.4@arcmins. Given that
we don’t have a non-linear description of dark energy withAMB, we have to con-
fine ourselves to the linear part of the spectrum. The linealesor shear variance is
approximately> 30, and with aperture mass variance it is largere80. However
we use the Massey et al. (2007) module as a basic templatalriating the 2nd
order weak lensingféects, shear variance and aperture mass variance. To aso&kis
with non-linearity, we choose to use the shear variance daté discarded any data
observed at an angle lower thart 30he selection function was replaced with the one

used by Fu et al. (2008) for the observable data, given by,

20.612 + ZO.621><8.125

=A , 2.43
n@) 2151 0,620 (2.43)

where A is a constant set to meet the condition that,
f n(z)dz=1. (2.44)

1D and 2D marginalized plots obtained from CosmoMC for WMARveak lensing

are shown in figures 2.11 and 2.12.
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Figure 2.11: 1D marginalized plots for cosmological parereusing WMAP5+
weak lensing data for a scalar field (black) and elastic dagkgy (red) model. We
can now see there is a sharp reduction at low values in thihidea for the sound

speed in an elastic dark energy model.
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Figure 2.12: 2D marginalized plots for cosmological pareerseeusing WMAP5+
weak lensing data for a scalar field (black) and elastic daekgy (red) model. Elastic

dark energy is more tightly bound than the scalar field model.

With the inclusion of the weak lensing data there are nowceathle diferences
between the two CosmoMC outputs for the scalar field andieldatk energy models.
Elastic dark energy appears to be far more tightly constrhitman the scalar field
model. The most significant fierence appears to be in the sound speed values that
the two models can take. Referring to figure 2.11, we see lieaglastic dark energy
is almost cut & around log,cs > —2.5, whereas in contrast the scalar field prefers a
lower sound speed. The elastic dark energy is not completelgf due to the fact that
whenw approaches 1, the sound speed has |#ssteon the power spectra, meaning
forw ~ —0.99, anycs value will not significantly change the power spectra. Tlfiiect
can be seen in the 2D plot in figure 2.12, where J@g againstw plot shows that as

w approaches -1, lqgcs can take on any value at the 98% confident limit. We find a
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20 lower bound to the sound speed to be;jgg > —-3.35. The equation of statey,

for the elastic dark energy model appears to be much morttiginstrained with the
other parameters than in the scalar field case. Bhagper bound on the equation of
state for elastic dark energyws < —0.79, whereas for the scalar field we find a value

of w< -0.3.

2.5.2 Results using WMAP5+ SNIa + weak lensing

We can combine the SNla data with the WMARSveak lensing data. Figures 2.13
and 2.14 shows the resulting plots for when SNla data is usegiside WMAPS and

weak lensing data.
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Figure 2.13: 1D marginalized plots for cosmological pareereusing WMAP5+
SNla+ weak lensing data for a scalar field (black) and elastic daekgy (red) model.

The sharp reduction in the likelihood of the sound speed foelastic dark energy

model is still present.
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Figure 2.14: 2D marginalized plots for cosmological pareereusing WMAP5+

SNla+ weak lensing data for a scalar field (black) and elastic daekgy (red) model.

Both models are now more tightly bound when including thessdta.

The addition of the SNIa data tightens the range of valudghiesequation of state

can take for both models, although this has had a more nbteedect on the scalar
field, which previously could take a much larger range. We &r&tr upper bound for
the equation of state for the elastic dark energy model tev ke—0.872, and for the
scalar fieldw < —0.787. Withw more tightly constrained, so too are the value<igr
andQpe. The same sound speed behaviour is observed as with jugtW8WAP5 and
weak lensing data, with elastic dark energy displaying astacline in likelihood at
log,yCs = —2.5, and the scalar field model preferring a lower sound speesl fivi

a 20 lower bound for the elastic dark energy sound speed to bgdog —3.84. No

such bound is found for the scalar field model.
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2.5.3 Varying type la supernova

The supernova data is based on observations of type la sayagemhich are assumed
to be standard candles. When a star reaches the ChandnaBekhahe maximum
mass a body can have before the degenerate electron presssueecome by the gravi-
tational pressure, it can no longer support itself and pska, resulting in a supernova.
Typically type la supernova occur in binary systems wherehdeandwarf strips the
other star of its mass, slowly increasing the white dwarfssn®nce the white dwarf
reaches the Chandrasekhar limit, it becomes a supernoveauBe the mass of the
star is known due to the Chandrasekhar limit, it is assumaitktie peak luminosity is
then the same no matter where the supernova is in the Unjihedes, it is a standard
candle. This means that by measuring thiedénce between apparent and absolute
magnitude, one can compute the distance of the galaxy teagupernova occurred
in. This can then be compared with the redshift of the gala@gnventionally the

differences between apparemaind absolutél magnitude is expressed as,

m-M=5 |og(1g:)0) +K, (2.45)

whereK is to account for the shifting of the photon wavelength asUne/erse ex-

pands, andl, is the luminosity distance and is defined as,

X (2.46)

dLa

The specific properties that maffect the way in which the star undergoes this dra-
matic change, such as the local environment and its exagb@sition can be dierent
at different redshifts. We mentioned that SNla originate from glsidegenerate sys-
tem (a white dwarf and a companion), but as pointed out indRaesl Livio (2006),
there is no evidence to say that SNIa cannot occur in doulglerdate systems. These
two progenitor systemsfier in delay time to the explosion and local environment thus
introducing an uncertainty into the evolutiofiexts of SNla, should double degenerate

systems produce SNla. Without a detailed understandirsghiaid not to imagine the
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possibility that SNIa luminosity may not be independentexfghift. At its extreme,
such a conclusion could call into question the very fact thetJniverse is undergoing
an accelerated expansion. Ferramacho et al. (2008) exdminat would happen if

the peak magnitude of a supernova was able to vary lineatlytiwme by defining,

to—11
wherety is the present age of the Univers$g) is the time at the redshift of the super-

AM(2) = snK (t" - t(z)) , (2.47)

nova,t; is the age of the Universe at a redshift of 1, an#l represents the change of
magnitude at this redshift. In order to see whifi¢et this would have on our models
we incorporated the parametsiK into our version of CosmoMC. We have plotted

the resulting 1D and 2D marginalized plots in Figures 2.1 216 respectively.
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Figure 2.15: 1D marginalized plots for cosmological pareerseeusing WMAP+ SNla
+ snK + weak lensing data for scalar field (black) and elastic dagkgn(red). The
scalar field is more sensative to theK parameter, allowing a wider range of values

than in the elastic dark energy case.
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Figure 2.16: 2D marginalized plots for cosmological pareereeusing WMAP+ SNla

+ snK + weak lensing data for scalar field (black) and elastic dasgtgn(red).

Not surprisingly, allowing the supernovae to evolve withéihas reduced the con-
straints for both models on all parameters, but this has unalitatively changed our
previous result. We find a lower bound on the elastic darkggnsound speed still
exists, with a & lower bound being log cs > —3.50. No such lower bound exists for
the scalar field. The equation of state for the scalar fieldehsdpoorly constrained,

and highly degenerate wimK. We find that the & upper bound o isw < —0.795
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for elastic dark energy anal < —0.293 for the scalar field. WhesnK is positive, dis-
tant objects appear brighter, and whseiK is negative distant objects are dimmer. By
modifying this distance-redshift relation, we change theant of dark energy, and
its equation of state, needed to agree with observationskihg at figure 2.16 we can

see thasnK is degenerate witlpg, w andH.

2.6 Conclusion

The aim of the work encompassed within this chapter was tertsn if, using weak

gravitational lensing, coupled with WMAP5 and SNla data,aseald distinguish be-
tween an elastic dark energy and a scalar field model, ane pldmwer limit on the

sound speed of elastic dark energy. Since the weak lenfliiact ®n a photon’s path
only depend on the gravitational force created by a bodynahdn its make up, weak
lensing is a powerful method in obtaining cosmological paeters.

It is known that as the sound speed of elastic dark energyvsrked, it can behave
more like dark matter, exhibiting clustering propertiesffige and Moss (2007)). If
such behaviour is occurring within our Universe, elastidkaanergy will be modifying
the gravitational potentials throughout space. The stheofthis clustering is directly
related to the sound speed, and so elastic dark energy’slspeed would directly
impact on weak lensingfkects. First we demonstrated that using WMAPS5 and SNla
data alone does not give a lower bound on the sound speedHer eiodel, nor help
with differentiating between the models (figures 2.8 and 2.9). Frensthlar field
point of view, this agrees with work carried out by a numbeaofthors. For exam-
ple, Weller and Lewis (2003) did not detect a significant ¢xst on the sound speed
using the first year WMAP data combined with large scale stirecand supernovae
observations. A similar analysis, given in Bean and Do), obtained ad upper
limit on the sound speed} < 0.04, but could not detect a lower limit. Theffitulty in
putting a significant set of constraints on the sound speedsctlar field model was

also pointed out in Hannestad (2005), where, using CMB, SNthlarge scale struc-
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ture data the author showed that placing such constraintiseosound speed was not
currently possible. We then showed that combining WMAPS\lile shear variance
data from the 3rd year CFHTLS Wide data release (Fu et al.g@08oes show dif-
ferences between the models (figures 2.11 and 2.12). Thecalask energy model’s
equation of state is more likely to be closer to -1 than théasdaeld model, which
itself can take on a range of values with the marginalisedecpeaking atv ~ —0.55.
The models are very flerent with respect to sound speed, with elastic dark energy
showing a sharp dropfloin the marginalised sound speed, wiitr bwer bounds of
log,yCs > —3.35 when using WMAPS and weak lensing data, andjJog > —3.84
when using WMAPS5, SNla and weak lensing data. The reasorthibddr bound is
lower when including the SNIa data is to do with the fact thaew the equation of
state is close to -1, the sound speed can take on a larger cangéues. Including
SNla data tightens the constraints on the equation of gtatang it closer to -1, and
this in turns lowers the bound on the sound speed.

The scalar field model shows no cuf i its sound speed when combining the
weak lensing data with WMAPS5 and the SNla data. Using thesz skts we find a
20~ upper bound omv for the scalar field to bes < —0.787, larger than the elastic dark
energy’s upper bound ef < —-0.872.

Finally we investigated the possibility that SNla are nanstard candles, but vary
in brightness as a function of redshift. We used a model wpesk luminosity is
linearly evolving with redshift, with the parametanK representing this change. In
general the constraints on all parameters are not as tighotés 2.15 and 2.16). The
data mirrors what we saw with just using WMAPS and weak lemsiata, where the
scalar field could take on a large range of values for the ctmsywal parameters,
and had no lower bound to the sound speed. Elastic dark ereeggyl more tightly
constrained than the scalar field, and we can place éo®%er bound on the sound

speed of log, ¢cs > —3.50.
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2.7 Tables

Below we have tabulated the marginalised statistics fowvalik lensing runs on Cos-

moMC.

Scalar Field | Elastic Dark Energy

Parameter| Mean o Mean o
Qph? 0.0223| 0.0006| 0.0225 0.0005
Q.h? 0.111 | 0.005 | 0.119 0.0028

0 1.03 | 0.003| 1.04 | 0.0029

w -0.590| 0.178 | -0.918| 0.065

Ns 0.954 | 0.013 | 0.958 | 0.013
log[10°A] | 3.21 | 0.04 | 3.23 0.03

l0g,, Cs -3.13 | 1.15 | -1.08 0.941
Qpe 0.577 | 0.069 | 0.668 0.024
Age/GYr 142 | 0.319 | 13.8 0.129

Qm 0.422 | 0.069 | 0.331 0.024
os 0.686 | 0.073 | 0.813 0.034
Ze 10.9 | 0.185| 10.9 0.161
Ho 56.9 5.02 65.5 2.14

Table 2.2: Scalar field and elastic dark energy statistars the CosmoMC runs using

WMAPS5 and weak lensing data.

STEVEN PEDIANI 76



2.7: TABLES

Scalar Field | Elastic Dark Energy
Parameter| Mean o Mean o
Qph? 0.0224| 0.0005| 0.0225| 0.0006
Qch? 0.117 | 0.0028| 0.119 0.0029
0 10.4 | 0.0029| 10.4 0.0029
w -0.903| 0.064 | -0.951 0.04
Ns 0.957 | 0.012 | 0.957 0.018
log[10'°As] | 3.23 | 0.033 | 3.23 0.034
log,,Cs | -2.87 | 1.34 | -1.22 1.05
Qpe 0.674 | 0.018 | 0.679 0.017
Age/GYr 13.8 0.13 13.8 0.12
Qn 0.325 | 0.018 | 0.320 0.017
o 0.807 | 0.029 | 0.820 0.034
Ze 10.8 | 0.157 | 10.9 0.162
Ho 65.6 1.89 66.5 1.54

Table 2.3: Scalar field and elastic dark energy statistars he CosmoMC runs using
the WMAPS5, SNIa and weak lensing data
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Scalar Field | Elastic Dark Energy

Parameter| Mean o Mean o
Qph? 0.0222| 0.0006| 0.0225 0.0006
Q.h? 0.111 | 0.0051| 0.119 0.0029

0 1.03 | 0.003 | 1.04 0.003
w -0.581| 0.182 | -0.921 0.064
Ns 0.953 | 0.013 | 0.957 0.013

log[10°Ag] | 3.21 | 0.036 | 3.23 0.035
log,cs | -3.13 | 115 | -1.11 | 0.976
snK 0.270 | 0.134 | 0.0488| 0.0778
Qpe 0.573 | 0.07 | 0.668 | 0.024

Age/GYr 142 | 0.331| 13.8 0.13
Qn 0.426 | 0.07 | 0.331 0.024
os 0.683 | 0.074 | 0.815 0.031
Ze 10.9 | 0.190 | 10.9 0.165
Ho 56.6 5.12 65.5 2.14

Table 2.4: Scalar field and elastic dark energy statistara the CosmoMC runs using

the WMAPS5, SNla and weak lensing data and usingdit€ parameter
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Constraints from the ISW effect

As well as weak lensing, there is another cosmological easien we can use to con-
strain dark energy parameters, and potentially discriteisfastic dark energy from a
scalar field dark energy. This observation is the Integr&achs-Wolfe (ISW) fect
(Sachs and Wolfe (1967)). Like the Sachs-Wolfe (SWed, the ISW &ect arises
when photon energies are modified in the presence of a giawighfield. The dif-
ference is that while the SWifect occurs when CMB photons leave the surface of
last scattering, the ISWiect occurs as these CMB photons travel through the evolv-
ing Universe. Encountering evolving potentials leads tata time shifting of CMB

photon energies, giving rise to secondary anisotropief®CMB power spectrum.

3.1 Introduction

As a photon leaves the surface of last scattering it will @n¢éer many potential wells
set up by the uneven distribution of matter throughout théevéise. These gravita-
tional potential wells cause a photon’s wavelength to beditifted as it falls into a
well, and then redshifted as it climbs out. During periodsraitter domination the
gravitational potentials are constant with tinde = 0, and so the energy gained by a
photon falling into a well is lost climbing out of the well. @t some point the Universe

were to become dominated by a dark energy component, théagianal potentials
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would begin to decay. A CMB photon now falling into a potehtieell gains a given
amount of energy, but as the potential is being reduced, ltb&p will lose less en-
ergy climbing out and thus the photon experiences a net ehenenergy. This shift

in photon energy is known as the ISWext, where the term ‘integrated’ refers to the
fact that the energy shift is due to the sum of all the potémtels a given photon
encounters between the surface of last scattering and Hes\a. Therefore, the ISW
effect gives rise to a further anisotropy in the CMB TT power $peu on large scales,

| < 10, caused at late timez € 2) when the Universe becomes dominated by dark en-
ergy. The very existence of an ISWect is further proof of an accelerated expansion,
reinforcing the inferences made using SNla data (Perlmattal. (1999), Riess et al.
(1998)).

The ISW signature imprinted on the CMB TT power spectrum cabe separated
from the primary CMB anisotropies laid down at the time ot Issattering, further-
more the amplitude of the ISW component will be much lowenttieat of the primary
anisotropies. However, given that the decaying gravitai@erturbations give rise to
this net photon energy shift, there should be a direct caticel between tracers of the
large scale structures in the Universe and the temperatiseteopies in the CMB.
This was first suggested in Crittenden and Turok (1996). yfsuch correlation be-
tween the temperaturefterences and the matter distribution are detected, it will be
due to the ISW ffect since the primary temperature anisotropies were fommaticde-
fore large scale structure formation. Since CMB and matieretations are relatively
weak, in order to reduce the chance of accidental correlsamear full sky map of the
matter distribution is needed. The ISWext was first detected by Boughn and Crit-
tenden (2004) by correlating the first year WMAP maps (Benetedl. (2003)), with
the NRAO VLA sky survey (NVSS) of radio galaxies (Condon et(&aP98)), which
was generated using the Very Large Array (VLA) in New Mexiaod the hard X-ray
background data from the HEAO-1 satellite (Boldt (1987)he3e surveys mapped
out radio and X-ray emissions respectively, emanating femtive galaxies out to a

redshift of order 1, and due to the large sky coverage allogelangular scales to be
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probed. Since its initial detection the ISWect has now been observed by numerous
groups, using a variety of flerent density tracers and probindfdrent redshift ranges
fromz ~ 0.1toz ~ 1.5. See for example the work of Scranton et al. (2003), Fosalba
et al. (2003), Afshordi et al. (2004), Nolta et al. (2004)a@antonio et al. (2006),
McEwen et al. (2007), and Rassat et al. (2007). Typical ISWenaorrelations have
been detected at significances between-a3r significance, and are consistent with
aACDM model.

3.2 Atheoretical description of the ISW dfect

Here we outline the equations used to describe the 18¥¢te If ® and¥ are the grav-
itational potentials in the conformal Newtonian gaugenttiee expected temperature

perturbation of a given photon coming in the directiois given by,

AT(R)
= =

f dr (@[(r0 - 7). 7] + ¥ [(r0 - )R, 7]) (3.1)

Tdec

where® and¥ are derivatives with respect to conformal time amgl is the time of
decoupling. As mentioned in the introduction, potentiksttvary with time modify
the net energy gain of photons passing through them, andeswould expect a cor-
relation with nearby large scale structure if the Univessendergoing an accelerated

expansion. The observed density contrast of galaxies idithetionfi is given by,

54(R) = f by(DW(D)Sm(R, 2)dz, (3.2)

where it is assumed that the galaxy overdensity traces thd @énsity contrasb,,
andby is the linear galaxy bias. The cross correlation and aut@tzdron functions of

these quantities are defined as,

Crq(0) = <ATT(ﬁ1)5g(ﬁz)>, (3.3)
Cyy(6) = (g(N1)dg(N2)) , (3.4)
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AT(h,) AT(N)
T T

These can be decomposed into a Legendre series,

Crr(0) =<

). (3.5)

Cu(6) = 2 2 4; Leop(cost), (3.6)
which now gives the autoross correlation in harmonic space. T/ are the corre-
sponding aut@cross correlation power spectra, afdare the Legendre polynomials.
Seljak and Zaldarriaga (1996) split the theoretical catah of a power spectrum into
source and geometric terms, which lead to a mdiieient way of calculating numer-
ical results, and was implemented in CMBFAST. The equivadenirce terms in the
CMB codes fowg(Nn) and%(m were given in Corasaniti et al. (2005), and stated earlier

(see equations (2.36) and (2.37) ) as,

S = W(@bgon(2). (3.7)

Sisw = €@ + P), (3.8)

whereW(2) is a window function and the exponential term is known asvikibility
function, which accounts for further scattering of the CMi®fpns post-reionization.

The ISW dfect changes the TT power spectrum by increasing power aatperlan-

gular scales, or lower values bf Using CMBFAST we have plotted the TT power
spectrum for both an elastic dark energy and scalar field madté a variety of dif-
ferent values for the dark energy equation of stat@nd its sound speed,. These are
presented in figure 3.1. As with the weak lensing convergpoeer spectra, a larger
value ofw gives greater dierences between the power spectra as the sound speed is

varied in both models.
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Figure 3.1: Here we have plotted the TT power spectra ffieint values ofv and

Cs. The plots on the left are scalar field models and the plothernight are elastic
dark energy model. The plots on the top have= -0.4, the plots on the bottom
havew = —0.9. The black dotted line in all plots is &CDM model, the blue lines
correspond ta2 = 104, and the red lines tcZ = 1. The other cosmological parameters
are set a€)y, = 0.266,Qpe = 0.734,h = 0.71, z4ec = 10882, ns = 0.963,7 = 0.088
andAZ = 2.43x 10°°.
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3.2.1 Modification to CMB codes for elastic dark energy

In the case of a cosmological constant, or dark energy thed dot cluster, equation
(3.7) is sufficient to calculate the ISW galaxy power spectrum, and sulesgayuanti-
ties. As with the weak lensing case, when considering eldstik energy some mod-
ifications must be made due to the fact that elastic dark greag cluster ifcs ~ 0.

We therefore replace equation (3.7), with

wheredpe is the density contrast of the elastic dark. If there is n&k dgarergy pertur-
bation, it is clear that equation (3.9) is going to be smdllera factor ofQ2;,, than the
original equation it has replaced, equation (3.7). As wdldxplained when used in
CosmoMC, the factoly, will effectively correct for this discrepancy. We have plotted
the temperature matter (Tg) power spectrum and correspgiedoss correlation func-
tion, Cr4(6), for an elastic dark energy, scalar field, aa@DM model, with a variety

of different dark energy parameters, shown in figures 3.2 and J8ately.
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Figure 3.2: We have plotted the ISW-galaxy power spectra dibts on the left are
scalar field models and the plots on the right are elastic eéaekgy model. The plots
on the top havev = —0.4, the plots on the bottom hawe = —0.9. The black dotted
line in all plots is aACDM model, the blue lines corresponddd= 104, and the red

lines toc2 = 1. The other cosmological parameters are set as in figure 3.1.
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Figure 3.3: These plots are of the ISW-galaxy correlatiorcfion, laid out as figure
3.2. We see that in the elastic dark energy models on the ngith larger dierences

appear when the sound speed is lowered compared with tter fietd case.
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3.3 Constraining parameters with ISW data

3.3.1 TheISW data

We choose to use the publicly available ISW data provideddmt@aga et al. (2006)
(henceforth we refer to this as the ISW data). This data has bbtained from five
independent collaborations where the CMB anisotropie® limen cross correlated
with galaxy surveys, spanning a range in median redshiftlok® < 1, and extending
over the electromagnetic spectrum from the infra-red todray waveband. Because
the ISW dfect occurs at large angles, there are no non-linffacts that we need to
take into account, as there were in the weak lensing case. caimpilation of the
data was averaged over fixed angular scalé ef 6°, and the bias was removed by

comparing the galaxy auto-correlation function, with thedretical matter correlation

Cee
b=,/ —, 3.10
\/ Co (3.10)

whereCgg is the observed galaxy auto-correlation function, &jg the theoretical

function,

prediction of(6,(fi1)dm(A2)). Although bias is a function of redshift, Gaztanaga et al.
(2006) fixed the bias as a constant at the median redshifedfitien surveyb = b(2).
The data is then presented @s,/b, normalised to the cosmic concordance model
(CCM). This data is shown in table 3.1.

z Crg/b b Catalogue Band
0.1 0.7+032 |11 2MASS infra-red (2um)
0.15| 0.35+0.17 | 1.0 APM optical b;)
0.3 | 0.26+0.14 | 1.0 SDSS optical (r)

0.5 | 0.216+0.096| 2.4 | SDSS high z | optical (r+colours)
0.9 | 0.043+0.015| 1.2 | NVSS+HEAO | radio and X-rays

Table 3.1: ISW data and surveys used in our analysis, taken aztanaga et al.
(2006).
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For any other model, we must compute a relative bias given by,

Cor
b= e (3.11)

whereCSSM is the matter auto-correlation function in the CCM measuategh—Mpc

for a given median redshift, af@f® is the matter autocorrelation function for a given
cosmological model. According to Gaztanaga et al. (200@®revlone chooses to mea-
sure this relative bias has a negligibléeet on the outcome. Because we are defining
the bias in this way, in the absence of dark energy pertustithe factor of),, in
equation (3.9) will be accounted for. To take into accourmt énror in the median
redshift when calculating?, we use,

d(Crg/b)\?
ol = 0%+ (%) o2, (3.12)

wherec? is the error inCrg ando? the error in median redshift. However as shown
in Gaztanaga et al. (2006), this extra error term for medeaishift makes very little
difference to the final answer. To approximate the galaxy redsikifibution, we use

a generic window function also used by Gaztanaga et al. (200&n as,

_1 ‘(%)p, 3.13
IGEN o

The parameterg andm modify the shape of the selection function. We have plotted

W(2) =

this window function in figure 3.4 for illustration. Gaztageeet al. (2006) set the values
for these parameters gs= 1.5 andm = 2 for there analysis, assuming that this was
a similar representation to the actual galaxy redshiftithstion. Since we are using
the same data as these authors, we als@@usel.5 andm = 2. The authors note
that settings = 2.5 andm = 4 did not change the results by a significant margin. We
can also confirm this, while quantitativelyftiirent, the qualitative éfierences between

elastic dark energy and a scalar field were the same for tivesghbices of parameters.
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Figure 3.4: The galaxy distribution as a function of redshft) is plotted fo3 = 1.5

andm = 2 (blue line) angs = 2.5 andm = 4 (red line).

When combining surveys in this way, some consideration mmeigiven to possible
overlapping in sky position or redshift, which could leadctwvariance between the
data sets. Gaztanaga et al. (2006) chose data which compkesireach other, leading
to a 1% volume overlap in the surveys. When two data sets ajvérbavily in sky
position for instance, there is a negligible overlap in thashift. Since the individual

sampling errors are of order 30%, the overlap impact on thé/ais can be considered
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negligible. At the time this work was carried out, Gaztanagal. (2006) was was
the most up to date combined analysis of the ISYéat. Since then a more thorough
approach to combining data sets and analysing the |8®&¢tehas been undertaken
by Giannantonio et al. (2008). Here, the authors reanalffsedSW observation in
a consistent way, and measured the covariances between&acbket using a variety
of different methods. This analysis concluded that the overallfgignce of the ISW
detection was- 4.50-, and was consistent with the CCM, albeit favouring modett wi

a slightly lower value of2,.

3.3.2 Results using WMAP5+ ISW

As with our weak lensing analysis, we ran CosmoMC on the COMJter at the
Jodrell Bank Centre for Astrophysics. For each run we usedfRICH2 and OpenMP
allowing us to run 4 chains, with each chain being made up bfdaids, running on 4
virtual cores. We again tested the convergence using theQdRVerge Stop function
set at 003. We first ran our code in CosmoMC using the WMAP5 and the 1S5ié.d
Table 3.2 shows the cosmological parameters used with thal imalues from our

params.ini file. All other options and parameters were letiheir default settings.

Parameter| Start Centey Min | Max | Starting Width| o- estimate
Qph? 0.0223 0.005| 0.1 0.001 0.001
Q.h? 0.105 0.01 | 0.99 0.01 0.01

6 1.04 0.5 10 0.002 0.002
w -0.8 -0.999| O 0.02 0.02
Ng 0.95 0.5 15 0.02 0.01

log[10%°A] 3 27 | 4 0.01 0.01

log[c,] 0 -5 0 0.02 0.02

Table 3.2: Initial cosmological paramters used in all Cost@auns, unless otherwise

stated.

As before we use the default CosmoMC installation which isgsopriors orHy and
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the age of the Universe as, 40 kmMpc™ < Hy < 100kms*Mpc™ and 10 Gyr<
age < 20Gyr. Unless otherwise stated, we used these settingsthandalues in
table 3.2 on all CosmoMC runs. The results are presentedvpelith 1D marginal-
ized plot shown in figure 3.5 and the 2D marginalized plotsstr@wn in figure 3.6.
As in the weak lensing case, the values for the elastic dagkggnmodel are more
tightly constrained than the scalar field model, albeit sotmauich. Comparing the 2D
marginalized plot ofv against log, cs in the weak lensing, and ISW cases (figures 2.12
and 3.6), we see that the ISW data confinet® values closer tov = —1 than using
the weak lensing data. Having a smaller ranga/déads to tighter constraints on all
other parameters. The same cfitappears in the sound speed for elastic dark energy
although there is now a peak at lggs ~ —1.7. The 2r lower bound on the elastic

dark energy sound speed is lggs > —3.13.
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Figure 3.5: 1D marginalized plots for cosmological pararetising WMAPS5+ ISW
data for a scalar field (black) and elastic dark energy (redjleh The models give

similar results, but are quiteftierent with respect to sound speed.
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Figure 3.6: 2D marginalized plots for cosmological pararetising WMAPS5+ ISW
data for a scalar field (black) and elastic dark energy (reafjeh

3.3.3 Results using WMAP5+ ISW + SNla

Like with the weak lensing case, we also included the SNia bwalski et al.

(2008)) in our analysis. The results are plotted in figur@saBd 3.8.
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Figure 3.7: 1D marginalized plots for cosmological pararetsing WMAP5+ SNla
+ ISW data for a scalar field (black) and elastic dark energg)(neodel. Again we

see the models are similar, bufférent with respect to the sound speed.
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Figure 3.8: 2D marginalized plots for cosmological pararetusing WMAPS5+ SNla

+ ISW data for a scalar field (black) and elastic dark energy)(neodel.

Aside from the now familiar cutfd in sound speed of the elastic dark energy, the
two models appear quite similar. Asapproaches -1, the two models tend towards a
ACDM model and are thus indistinguishable. It is therefore@fsurprise that aw
is forced closer to -1, achieved by including the SNla datelker diferences appear
between the two models. We find no lower bound on the scalargmlind speed, but

do find a 2r lower bound of log, cs > —3.22 on the elastic dark energy sound speed.

3.3.4 Varying type la supernova

We again include the possibility that the absolute mageitofda type la supernova

may vary with redshift, using (Ferramacho et al. (2008)),

(3.14)

AM(2) = snK (t" — t(z)) :

to—t,
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The results are shown in figures 3.9 and 3.10. Allowing theatée snK to vary
has drastically changed the results for an elastic darkggnmodel. There is now

a bimodal solution, corresponding ¥ = -1 andw = -0.45. Looking at the 2D
plots, we can see that the= —1 solution more closely fits a universe with parameters
matching the CCM model. The solution with= —0.45 is correlated with a universe
with almost equal amounts of matter and dark enefgy~ Q. ~ 0.5. The scalar field

in contrast is lessfiected by varyingnK than when using the weak lensing data, with

the mean value odnK closer to zero.

-1 -0.8 -0.6 -0.4 -0.2 305 31 315 32 325 33
w log[10 AS]

-5 -4 -3 -2 -1 0 0.4 0.5 0.6 0.7 0.8
DE

0.2 0.3 0.4 0.5 0.6 0.2 0.4 0.6 0.8

10 10.5 11 115 -0.2 0 0.2 0.4 0.6
Zre snK

50 60 70 80
Figure 3.9: 1D marginalized plots for cosmological pararetsing WMAPS5+ SNla

+ snK + ISW data for a scalar field (black) and elastic dark energg)(neodel. A

bimodal solution exists for the elastic dark energy model.
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Figure 3.10: 2D marginalized plots for cosmological pareereeusing WMAP5+

SNla+ snK + ISW data for a scalar field (black) and elastic dark energy)(neodel.

3.4 Conclusion

In the previous chapter, we were able to show that when usiegkvensing data
combined with WMAPS5 and SNla observations,a@ [Bwer bound in the elastic dark

energy speed was found to be Jggs > —3.84. The purpose of the work carried out

STEVEN PEDIANI 97



3.4: CONCLUSON

within this chapter was to perform a similar analysis ancegam if a similar result
could be obtained, and thus independently confirm a @utnoelastic dark energy
sound speed. The ISWfect is observed when correlating matter tracers with CMB
anisotropies, and gives us independent evidence of a dargyromponent. Such

a correlation has been detected numerous times, but at \ealy significance levels.
In order to constrain cosmological parameters using ISWefasgions it is better to
combine individual measurements of the ISW&et, spanning dierent redshifts, sky
positions, and electromagnetic spectra.

This approach has been done several times before by, amioaig oCooray et al.
(2005), Corasaniti et al. (2005), Gaztanaga et al. (2006, @iannantonio et al.
(2008). With the necessary modifications to our CAMB and Calgi@ code we were
able to confirm the result obtained when using weak lensita deferring to figures
3.7 and 3.8 we see that there is a lower limit to the sound spebd dark energy case.
The drop df in likelihood occurs for the same order of magnitude,jag ~ —2.5, as
in the weak lensing analysis, and we findeal2wer bound of log, cs > —3.13. A sig-
nificant cut df in w exists for the elastic dark energy model, witha@pper bound of
w < -0.81, whereas the scalar field model is less well bounded, wAth@pper bound
of w < —0.57. This was also the case when using the WMAP5 and weak tpdsita.
A feature also shared with the weak lensing analysis is tlestalar field model is
not as tightly constrained, demonstrated in the 2D margiedlplots. This is a direct
result of the fact that the sound speed has a much more daeffatit on elastic dark
energy density perturbations, than on the scalar field getions, allowing it to take
on a greater range of values, and still match observationn@&uding the SNla data
(figures 3.7 and 3.8), the models look fairly similar, nowtttree scalar field is more
tightly constrained irw. There is still no lower limit to the sound speed for the scala
field, however. As in the previous chapter, this agrees wigllé/and Lewis (2003),
Bean and Doré (2004) and Hannestad (2005), where the awrgued that placing a
lower limit on the sound speed of the scalar field model wasuoently possible. In

the elastic dark energy case, the Bwer bound is log,cs > —3.22. We also find at
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the 2r level, for the elastic dark energwy, < —0.808 and for the #ective scalar field,
w < —0.791. If we compare the marginalised statistics, for eachehiodhe WMAPS5

+ SNla+ ISW analysis, and the WMAPS SNla+ weak lensing analysis, given in ta-
bles 3.4 and 2.3 respectively, we see that the numericdtsesdu and log, cs largely
agree, within one standard deviation. We notice the ISWyasafavours a larger value
of Qpg, and hence a lowe,,, than in the weak lensing analysis.

As in the weak lensing analysis, we explored the possibiligt SNla are not
standard candles, where peak luminosity is also a funcficedshift. Using the model
given in Ferramacho et al. (2008), we can placerd®ver bound of log,cs > —2.09
on the sound speed for the elastic dark energy, while we findwer bound for the
scalar field case. A curious result is that a bimodal solutixists for the elastic dark
energy model, with an almost even mixture of dark energy aatlen Such a model
can in principal be ruled out due to independent measurenoerthe amount of matter

in the universe (see Chapter 1).

3.5 Tables

Below we have tabulated the marginalised statistics faiSAN runs on CosmoMC.
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Scalar Field | Elastic Dark Energy

Parameter| Mean o Mean o
Qph? 0.0224| 0.0006| 0.0225 0.0006
Q.h? 0.106 | 0.0059| 0.107 0.0056

0 1.03 | 0.003 | 1.04 0.003
w -0.851| 0.133 | -0.91 0.0574
Ns 0.962 | 0.0132| 0.964 0.0136

log[10°Ay] | 3.17 | 0.0457| 3.17 | 0.0458
log,,Cs | -1.95 | 1.45 | -1.54 | 0.852
Ope 0.710 | 0.054 | 0.725 | 0.033
Age/GYr | 13.8 | 0.202 | 13.7 0.135

Qm 0.289 | 0.0538| 0.274 0.0334
os 0.729 | 0.0601| 0.730 0.0734
Ze 10.6 | 0.214 | 10.6 0.213
Ho 67.3 5.02 69.1 3.04

Table 3.3: Scalar field and elastic dark energy statistars the CosmoMC runs using
WMAPS5 and ISW.

STEVEN PEDIANI 100



3.5: TABLES

Scalar Field | Elastic Dark Energy

Parameter| Mean o Mean o
Qph? 0.0224| 0.0006| 0.0226 0.0006
Q.h? 0.107 | 0.006 | 0.109 0.006

0 10.3 | 0.003 | 104 0.003
w -0.9 | 0.061 | -0.92 0.059
Ns 0.96 | 0.013 | 0.96 0.014

log[101°A] | 3.18 | 0.0431| 3.17 | 0.0454
log,cs | -2.17 | 1.46 | -1.18 0.966

Qpe 0.72 | 0.025 | 0.721 0.026
Age/GYr 13.8 | 0.132 | 13.7 0.131
Qm 0.276 | 0.025 | 0.278 0.026
os 0.753 | 0.044 | 0.755 0.0062
Ze 10.6 0.2 10.6 0.21
Ho 68.7 2.34 68.9 2.4

Table 3.4: Scalar field and elastic dark energy statistars he CosmoMC runs using
WMAP5, SNIa and ISW.
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Scalar Field | Elastic Dark Energy

Parameter| Mean o Mean o
Qph? 0.0224| 0.0006| 0.0225 0.0006
Q.h? 0.106 | 0.0059| 0.108 0.0057

0 1.03 | 0.003 | 1.03 0.003
w -0.855| 0.141 | -0.559| 0.228
Ns 0.961 | 0.0132| 0.962 | 0.0148

log[10°Ag | 3.17 | 0.0451| 3.18 | 0.0471

log,cs | -1.9 | 144 | -16 0.69

snK 0.0248| 0.131 | 0.267 0.184
Qpe 0.709 | 0.058 | 0.578 0.102
Age/GYr 13.8 | 0.221 | 14.2 0.379

Qn 0.29 | 0.0575| 0.421 0.102
os 0.732 | 0.0642| 0.605 0.111
Ze 10.6 | 0.214 | 10.8 0.271
Ho 67.3 5.17 57.1 7.75

Table 3.5: Scalar field and elastic dark energy statistara the CosmoMC runs using
WMAPS5, SNla, ISW and using thenK parameter.
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4

Dark energy voids and clustering

For a cosmological constant, the energy density of the daekgy component is ho-
mogeneous and isotropic. As we have discussed in the pregtmpters, this needn’t
be the case with other models of dark energy wivweie not equal to -1. How dark
energy density perturbations evolve and théieet on CDM density perturbations is
of great interest, and has been explored numerous timeswiité literature. For ex-
ample, the implications of dark energy perturbations oreolable quantities such as
the ISW dfect was discussed in Bean and Doré (2004). The authors cotachen
the increased clusteringfect of the scalar field model when lowering its sound speed.
Using the first year WMAP data, the authors obtainedracbnstraint on the sound
speedc < 0.04. A similar analysis performed by Weller and Lewis (200R) ot
find a significant constraint on the sound speed, and similaol such constraint was
found in Hannestad (2005). Other papers on the clusterirdpdf energy and how
such clustering ffiects CDM perturbations are given in, for example, Bartolalet
(2004), Hu and Scranton (2004), Nunes and Mota (2006), Uishikan et al. (2008),
Avelino et al. (2008), and Basilakos et al. (2009). The dtsg in this scalar field
model is very weak, making it challenging to constrain itsrsbspeed, a fact demon-
strated in the previous two chapters. It has been shown ity8and Moss (2007),
that elastic dark energy density perturbations can be skweters of magnitude larger

than a scalar field with the same equation of state and sowgetisp property due to
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its intrinsic anisotropic stress.

They showed that lowering the sound speed of dark energseased power on
small scales id(k). To illustrate this point, we have plotted the power spauttP;(k)
for both dark energy models in figures 4.1 and 4.2. We haveassB;s(K) = |5l
and defined(k) = 3; Q;i6(k);. We have evolved the equations of motion given in Bat-
tye and Moss (2007), setting the initial matter and dark gnéensity and velocity
perturbations to zero, and perturbed the metric. It shoelddied that the dark energy
density contrastjpe(K), for both the elastic dark energy and scalar field add cattigre
with the matter perturbatio,,(k). We see that the sound speed for the scalar field
makes very little diferences to the power spectrum, and hence, as shown in the pre-
vious chapters, a scalar field can take on a large range otisspeed values and still
agree with observations. When comparing this with the ieldstrk energy model and
we see the dramatidfect that a lower sound speed has on the power spectrum. As the
elastic dark energy speed is lowered, the matter powerrspeds reduced, a property
not seen in the scalar field case. Such large changes are Navata to put a lower

limit on the elastic dark energy sound speed.
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Figure 4.1: A demonstration of the clusteringjeet of the elastic dark energy model.
The black line is the total power spectrum definedPagk) = [Sital®> With Sy =
> Qi6i. The blue and red lines are the individual components makkmghe total
power spectrum, matter and dark energy respectively. Tia¢power spectrum has
been normalised & = 103hMpc™. The dark energy parameters ave= —2/3 and
starting from the top left and moving clockwisg, = 102, ¢2 = 103, c2 = 10* and
c2=10"
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Figure 4.2: The clusteringfiect of the scalar field dark energy model. The black
line is the total power spectrum definedRgK) = |Siotal® With S = X Qidi. The
blue and red lines are the individual components making apdtal power spectrum,
matter and dark energy respectively. The total power spechas been normalised at
k = 103hMpc™. The dark energy parameters are- —2/3 and starting from the top
left and moving clockwises? = 1072, c2 = 1073, ¢2 = 10% andc2 = 10°°.

Given the fact that these models allow density perturbatiorform, we need to
know how dark energy clustering correlates with mattenpbgtions in the Universe.
An interesting suggestion was made by Dutta and Maor (20@79),evolved the equa-
tions of motion for a classical scalar field, and found that in the presence of col-
lapsing matter, the dark energy density perturbation becaegative, forming a void.

They found that the opposite was true for regions where tvasean underdensity in
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the matter density field, the dark energy density pertuobdiecomes positive.

This work was carried out in the linear regime, with the authwoting that given
the sharp increase in scalar field density at late times, alinear approach might
lead to some interesting results. Afdrent approach was undertaken in Mota et al.
(2008), where the authors used the method of matched astiogtpansion to obtain
analytical expressions for the dark energy perturbatibas are valid in the linear,
qguasi-linear, and fully non linear regimes. In the linead uasi-linear regime the
authors showed, as in Dutta and Maor (2007), that the scalar diensity contrast
became negative in the presence of collapsing matter om slyster scales. However
for virialized clusters of matter, the scalar field densigsfiound to be positive. They
argued that while in the results agree with the work of Dutiié lslaor (2007) for linear
overdensities, &, < 1), as these perturbations virialize and their growth bezm
non-linear, the dark energy perturbations become posifiv@milar result was found
by Wang and Fan (2009). They developed an iterative algaritthich was used to
examined the evolution of the density perturbations withgcalar field dark energy,
in both linear and non-linear regimes, in the presence oflagsing dark matter halo.
While using a diferent method to Mota et al. (2008), their results do broaghee, in
that underdensities can form within the scalar field, butméetering the non-linear

regime, these voids become overdensities.

In this chapter we set up a similar code used in the work ofdatd Maor (2007),
using the elastic dark energy anieetive scalar field model (we will refer to the scalar
field model we have been using as diieetive scalar field in order to distinguish it from
the model used in Dutta and Maor (2007)), and evolved ourteansof motion in the
presence of collapsing matter to ascertain if voids in th& daergy are created with

these models.
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4.1: THE APPROACH OF DUTTA AND MAOR

4.1 The approach of Dutta and Maor

Here we present a reproduction of the results of Dutta and K28®7) who solved for
d4, the density contrast of the scalar field. The line elemeatus/ Dutta and Maor
(2007) is given by,

ds® = dt? — U(t, r)dr? — V(t, r)(d¢? + sir? 6d¢?) (4.1)

whereU(t, r) = a(t)2e%tD) andV(t, r) = r2a(t)?e?", where, as befora(t) is the scale
factor,r is the distance from the centre of the perturbation @rahds are the metric

perturbations. Given the line element the Ricci tensor cumepts are found to be,

1U2 1v2 10U Vv

R“:ZWJFEW_EU_V’ (4.2)

1. 1VU 1U2 1vuU 1Vv? v
— U4+ = o 4.
Re=sUr v Tau v fave TV (4-3)

Ry 1. 1VU 1VU  1V”
L e VA = 41, 4.4
Se 2 7au Tauz TT2u " (4.4)

_1vw v 1vu
S 2V2 vV 2VU’
where dots now refers to derivatives with respect to reattiffhe Ricci scalar is given

Ry (4.5)

by,

1U2 1v2 U vV 1V? \VZE VAV VLA VZR)
Rez— 4=y J oV 2V oV ¥V YV 2 4,
202 72v2 U V22UV TCUV UV UV VY (4.6)

The Ricci tensor can be related to the energy-momentumitergsan alternate version

of Einstein’s equations than the one given in Chapter 1,

1
R, =K (Tﬂ,, - Egﬂng) , 4.7)

whereK = 8rG.
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4.1: THE APPROACH OF DUTTA AND MAOR

The dark energy component is modelled as a classical sagldyfj which has an

energy-momentum tensor given by,

Tyv = u¢av¢ - g/JVL > (48)

and the Lagrangian is,

L= 20,07 ~V(©). (4.9)

The matter component is modelled by a perfect, pressuréiedswhich, following

Dutta and Maor (2007) has an energy-momentum tensor,

00O
00O
00O
0 00O

(4.10)

o o ©

Being uncoupled, both energy-momentum tensors are subjsefparate energy con-

servation constraints, given by,

v, T (m) =0, V,T"(¢)=0. (4.11)

From these equations we can now describe the unperturbé&drobaad evolution of

H, p, andg from the following diferential equations,

3H?-K p+V+%¢2]:O, (4.12)
. 2 1
H+3H?-K|5p+V|=0, (4.13)
p+3Hp =0, (4.14)
. . av
H¢ + — =0. 4.1
¢+3 ¢+d¢ 0 (4.15)

The next step is to introduce a perturbation in the mattesitieand scalar field,
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4.1: THE APPROACH OF DUTTA AND MAOR

p(t.1) = p(t) + op(t.1), (4.16)
(L, r) = o(t) + oo(t, 1), (4.17)
V(g + 6¢) = V(¢) + 0V(p, 6¢) . (4.18)

By defining the parametgr= /+2y, which is ¥H, the variation in the Hubble param-
eter around the perturbation, Dutta and Maor (2007) obthaihe perturbed Einstein
equations, along with the equations of motion. When usinghascal coordinate sys-
tem, problems can arise when equations hramehe denominator, since when- 0,
infinities can arise. Dutta and Maor (2007) avoid such pnoisléy combining sev-
eral of the perturbation equations in such a way thattérms cancel. There are three

perturbation equations to solve, which to linear order are,

6p +3Hdp +py =0, (4.19)

. : ) 1
8¢ + 3HOp + 6V’ + py — ¥V25¢ =0, (4.20)
X +2Hy + K (6p — 6V + 2¢64) = 0. (4.21)

We consider the potentid(¢) = 3mP¢?, as in Dutta and Maor (2007). They also
considered a more complex double exponential, but find tbtt potentials produce
the same qualitative result. In our analysis, we choosedimifahe units out of the

evolution equations by the following redefinitions,

t = Hot, (4.22)
~ H
H=—, 4.23
o (4.23)
p=-—L-, (4.24)
Perit
~ ¢
-2 4.25
¢ M (4.25)
m
= 4.2
M= (4.26)
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4.1: THE APPROACH OF DUTTA AND MAOR

p=2
Ho’

where M, is the Planck mass. These redefinitions give us the follovewmution

(4.27)

eqguations, where we have moved to Fourier space,

a= a\/ D+ :—é (552 + ﬁr?&)] , (4.28)
p=-3Hp, (4.29)
¢ = —3A¢ - A7, (4.30)
6Py + 3HPK + pri = 0, (4.31)
% A~ & k2 ” .
5¢y + 3HOP, + (rh2 + H2a2) Sk + dix = 0, (4.32)
0

X ~ A 3 . oA A P

Xkt 2H)(k + (§5pk - rr12¢5¢k + 2¢5¢k) =0. (433)

We then evolved these equations with the same matter pattoinkgiven in Dutta and
Maor (2007),
r2

Om = Aexp(—;). (4.34)
We setM = 1, o = 0.01H,1, and set other initial conditions so that they give the
present day value2, = 0.3 andQ, = 0.7. We find that, as in Dutta and Maor
(2007), at the centre of an initial matter perturbation,gbalar field component forms
underdensities, thus confirming their work. Figure 4.3 shawlot of the scalar field

density perturbation at the centre of the matter perturbati
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Figure 4.3: Scalar field density plotted against redshifylzerez = %— 1, at the centre
of the initial matter perturbation. The scalar field dengtgegative at late times, thus

forming a void.

Dutta and Maor (2007) reasoned that a dark energy void isextahue to the fact
that in a region of space containing a matter overdensigyeipansion is slower than
the background due to the force of gravity. This in turn meéas the local Hubble
value within a matter perturbation is lower than the backgrbvalue and softers
less Hubble damping t@p. This allows the scalar field to accelerate down its poténtia
at an increased rate to the background. The linear scaldrdak energy density
perturbation is given byp, = #5¢ + mPpép where the first term is the kinetic term and
the last is the potential term. Initially the kinetic partdimates and the dark energy
density increases. The absolute valuédfinitially grows, and then weakens at lower
redshift but crucially does not change sign. As sagliends toward a constant value,

andésg continues to grow. Therefore, at late times thi@dg part of 5p, becomes the
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4.2: ELASTIC DARK ENERGY AND EFFECTIVE SCALAR FIELD CLUSTERING

dominate term, and sine® and¢ have opposite signsy¢d¢ is negative, and hence

a dark energy void is formed.

4.2 Elastic dark energy and #ective scalar field clus-
tering

Having written a code that confirmed the results found by ®attd Maor (2007), we
now turn our attention to modifying the equations to inclateelastic dark energy
and dfective scalar field with constant equation of state, to aaitehow the models

respond to collapsing matter.

4.2.1 Hfective scalar field

We can show that a classical scalar field with constgnivherep = %g}sZ + V and
P = %¢2 — V is the same as thefective scalar field model we used earlier in the
CMB codes, with the sound speed setat= 1. Working in conformal time, where

dots indicate derivatives with respect to conformal timeandH = 192 whenw is

adr’

constant,

¢* = a%(1 + W)p, (4.35)

and,

V= %(1 — W)py. (4.36)

Then, using the chain rule,

SRR
dv v 3(1-w)py —_i(l—w)\/mﬂ{\/p_, (4.37)

dp ¢ aT+wp, 2a

and,
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4.2: ELASTIC DARK ENERGY AND EFFECTIVE SCALAR FIELD CLUSTERING

d?v _3(1- W)
dg2 ~ 2a2
The equations of motion for the classical scalar field aremgin (Hu et al. (1998)),

(5 + 3W)H 2) (4.38)

. . 2d_V B
¢+ 2H¢ + & b =0, (4.39)

. : ,d?V
8¢ + 2Hop + [K* + @2 de2 0p =Sy, (4.40)
5 039 + (4.41)

Py = a2 d¢ ¢ .
2

0y = % (4.42)

whereS, is the perturbed metric term, which in the synchronous gasi§g = 2he.

The conformal time derivative of the density contragt,is,

d (5’) "’) %P\ 3311+ w) P (4.43)
dt Py Py

which, when combining the equations above, becomes,

6 = 31— W)H (5,,, +3H(1+ W)%) + (1 +W)(Sy—Vy). (4.44)

In a similar manner, the divergence of the fluid velocity, is,
By = kZ(‘Si’ _ @) , (4.45)
which, after substitution, becomes,

k2
0y, = —2H0
¢ 74¢+1+

O - 4.46
WO (4.46)

These equations are the same as used in our modified CMBFASTANIB codes
whencZ = 1.
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4.2.2 Method

We follow a similar method to that shown previously, but wsthme diferences. First
we choose to work in the conformal Newtonian gauge for siaiglisince we are only
interested in scalar perturbations, coupled with the faetanalysis is done within
the horizon. The conformal Newtonian gauge has a line elemiesn in Ma and
Bertschinger (1995),

ds® = () (—dn® [1 + 29] + dX'dx; [1 - 20]) . (4.47)

We are also now working in conformal time. The elastic darkrgy equations of
motion, along with the Einstein equations must be worked @k curvature part of
the Einstein equations are already well known, and are dgivéa and Bertschinger
(1995), as,

KD + 3H (0 + HY) = ~4nGalsp , (4.48)

k(@ + HY) = 4rGalp(1 + W)v°, (4.49)

O+ H(WY + 20) + (22 - 2—2)\}' + k;(cp ~ V) = —4nGasP, (4.50)
KD - ¥) = 127Gap(1 + W)O . (4.51)

By combining equations 4.48 and 4.49 we arrive at an expre$er @,

K2D = —4nGa’p |6 + 3H(1 + w)% . (4.52)

Using Battye and Moss (2007) and Carter (1982), we find theduations of motion

for an elastic dark energy model in the conformal Newtoniangg are,

§=—(1+w)|kv® - 30|, (4.53)
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. c2o
vS:—7{(1—3W)vs+3(D(W—c§)k+(1+w)k+‘1’k. (4.54)

As a quick check, we can confirm these are the correct eqabipiconverting them
from the conformal gauge to the synchronous gauge, whelattiee appear in Battye
and Moss (2007). To convert we use the following substihgjavhich are given in
Ma and Bertschinger (1995),

Scon = Ogyn — 3Ha(1 + W), (4.55)
Voon = Van + ak, (4.56)
Q) = ]7—7‘{(}’, (457)
¥=a+Ha, (4.58)
where,
1, .
a=o5 (h+67) . (4.59)

Substituting these expressions into (4.53) and (4.54%, giv

§=—(1+w) kvs+g , (4.60)

V> = —VPH(1 - 3w) + 3kn(w — ) + ( csko ) , (4.61)

1+w
which are the equations given in Battye and Moss (2007), ¢on§irming that (4.53)

and (4.54) are correct. We evolve the spatial perturbatidhd metric®, using equa-
tion (4.48). By rearranging equation (4.51) we can get amesgion for the temporal

perturbation to the metri¢¥/, given by,
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_ —127Ga’p(1 +w)® .

¥ e D, (4.62)
where® is given by,
o=2 W H—(cz—w)( ~ +3(q>—q>--)) (4.63)
31+w S 1+w nye '

We use the same initial conditions as in the previous secsi@mting the equations at

z = 35, and define the same matter perturbation given by,

r2
Om = Aexp( ) (4.64)

0—2

When converting this to Fourier space, we note that the insagipart is an odd inte-
grand, so integrating over a symmetrical range is just Zén@ Fourier Transform of
a Gaussian is another Gaussian. We are also only consiasrengerturbation and as
such, no phase information is lost in our approach. WeAset0.1 ando- = 0.01H;y,.
We set all other values to zero, exceptwhich is dependent oé,,. Since we are
using the conformal Newtonian gauge we choose to outputehsity contrast in the
gauge invariant quantityy = dcon + 3H(1 + W)v./k, which is the density contrast in
the rest frame of the fluid. We only consider what happenseat#émtre of the matter

perturbationy = 0.
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Figure 4.4: Plots showing how the density perturbation efdark energy, at the centre
of the matter perturbation, evolve with time. From bottorft, lenoving clockwise,
elastic dark energy witlv = —0.9, scalar field withw = —0.9, scalar field withw =
-0.4, and elastic dark energy withh = —0.4. The black lines have? = 10* and the

red lines have? = 1.

We see that in figure 4.4 neither the elastic dark energy, moefective scalar
field model form voids. Instead the density perturbatioms\wgwith the gradient being
relatively large at first. The gradient weakens, beforedasmg again for all models.
Larger equations of state for the dark energy give a smadasitly perturbation for
both matter and dark energy components. This is not sungras looking at equation
(4.60), the term (& w) means that the largam, the larger the absolute value &f

Lowering the sound speed increases the magnitude of thetylpesturbation which
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has been shown earlier. If we display the matter and darlggreEnsity perturbations

on the same plot we see that the dark energy density permbatfter increasing by

several orders of magnitude in a short time scale, beginviel leut and follow the

matter density perturbation, as we can see in figure 4.5.
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Figure 4.5: Plots showing the dark energy, and matter depsiturbation evolving as

a function ofa, and 1+ z. The plots on the left hawe = —0.4, the plots on the right

havew = -0.9. The sound speed is set@t= 10*. The dotted lines are the matter

density perturbations and the solid lines the dark energgitieperturbations. Top

plots are against the scale factpand the bottom plots are against . The red line

corresponds to using afftective scalar field model, and the black line corresponds to

an elastic dark energy model.
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4.3 Conclusion

In this chapter we set out to determine whether, using thesaathod as in Dutta and
Maor (2007), elastic dark energy and theeetive scalar field would create voids as a
response to collapsing matter. Considering only two corepts) non relativistic mat-
ter and dark energy, we evolved the cosmological equatadarg with the perturbed
equations of motion for the matter and dark energy compaen&# set a positive ini-
tial Gaussian matter perturbation and kept the initial dar&rgy perturbation at zero.
Looking at figures 4.4 and 4.5 we see that the growth of the elagkgy perturbation is
initially very rapid. This is a consequence of the artifieratial conditions, where the
dark energy perturbation has been set to zero. This shadpegtaoccurs in the first
few time steps, no matter what time we start evolving our g#goa from. In the case
studied in Dutta and Maor (2007), after an initial growthe #talar field density con-
trast become negative, turning overat 10— 11, depending on the initial width of the
matter perturbation. In both the elastic dark energy, dfeteve scalar field models,
the density contrast remains positive, and continues te.gRerhaps unsurprisingly
the elastic dark energy density contrast is always larger the &ective scalar field’s.
We have seen that elastic dark energyfe& on observable quantities is to in general
enhance them over théfective scalar field model. An interesting observation ig tha
the matter density contrast is lower when using an elasticelsergy model than when
using the &ective scalar field model. In figure 4.6 we have replotted dipeléft plot

of figure 4.5 to better illustrate this.
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o(r=0)

0.1 '
0.25 0.5 0.75 1

Figure 4.6: A plot highlighting the reduced power in the raaerturbation when
using an elastic dark energy model. The dotted lines coorespo 6, and the solid
lines todpe. The red lines indicate when aiffective scalar field is used, and black
when an elastic dark energy model is used. The equationtefista = —0.4, and the
sound speed i€ = 107

In figure 4.7 we have plotte(2ES2 — 1) x 100% against the scale factor, where
om(ESF) refers to the matter density perturbation using féectve scalar field, and
om(EDE) refers to the matter density perturbation using astielaark energy model.
We see that the suppression of the matter density contragthyy dependent on both
the dark energy equation of state, with a largggrausing a greater fierence, and the

sound speed, with a lower sound speed increasing tfereice. It must be stressed
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that our analysis has only be conducted in the linear regand,our results are ap-
plicable on the order of the supercluster scaledlQ0 Mpc), since elastic dark energy
is a linear theory. Therefore whether this lack of growthtoares into the non-linear

regime is unknown.

15 — 15 .
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Figure 4.7: Highlighting the percentagefiérence between the matter perturba-
tion, when using anfeective scalar field, and elastic dark energy. We have plotted

(3=ES8 — 1) x 100% against the scale factar, The top plots have? = 10 and the

bottom havee2 = 1. The plots on the left hawg = —0.4 and the plots on the right have
w = -0.9.

The fact that the matter density contrast is lower when uslagtic dark energy than

when using the féective scalar field can also be seen when using the CMB codes. A
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4.3: CONCLUSION

w — -1 andc2 — 1, the diferences become increasingly small. Since the equation of
state is measured to be close to -1, and because fficulli to separate matter and dark
energy perturbations, such affiext will be very dificult to detect observationally.

We can now say why our models did not produce the voids seen ugiag a clas-
sical scalar field. In the classical scalar field casé¢he potential term ia, ultimately
becomes dominate in the presence of collapsing matterhanis twhy the void is cre-
ated. When we fixv, we fix the perturbed potential, and so this term can neverecom

to dominate. When w is constant the density of the scalar ifsedien by,

1-w
1+w

1+ . (4.65)

1.,
P—§¢

The term in the square brackets is a constant, and so by utiragl a perturbation,

¢ + 6¢, this becomes

1+ (4.66)

% = 93¢ 1+w

The termgép continues to grow, as it does in the Dutta and Maor (2007).cBse

l_Wl'

unlike that case where th¢ term grows and becomes dominant over gfie term,
the potential is unable to change. It is for this reason thagfective scalar field and

the elastic dark energy models cannot form voids.
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5

Discussion of results and future work

The aim of the work contained within this thesis was to exanain elastic dark energy
model and highlight observationalfférences between such a model, and féecéve
scalar field model (Bean and Doré (2004), and Weller and £€2103)). It was shown
in the work by Battye and Moss (2007), that when Elastic Darkrgy’s sound speed
is lowered, it starts to exhibiting clustering properti@sitar to CDM. If the cluster-
ing is suficiently large, it will &fect a range of cosmological measurements. With
this direct relation between dark energy, and what we caeraxggntally observe, we
are able to constrain dark energy parameters ffiedint models. Using the CMB
codes, CMBFAST (Seljak and Zaldarriaga (1996)), CAMB (Lewt al. (2000)) and
CosmoMC (Lewis and Bridle (2002)), coupled with WMAPS5 (Dimket al. (2009)),
SNla (Kowalski et al. (2008)), weak lensing (Fu et al. (200&)d ISW (Gaztanaga
et al. (2006)) data, we were able to show that while there igmibon the sound speed
of the dfective scalar field model, there is a lower bound on the elastik energy
sound speed. While using WMAPS5 and SNIa data, no such lowandwas evident,
but when either weak lensing or ISW data was included tferginces in the models
become apparent. Using WMAPS5, SNla and weak lensing data gdower bound
of log,,cs > —3.84 at the 2 level, while using WMAPS5, SNla and ISW data gave
a lower bound of log,cs > —3.22 at the 2r level. Our work is consistent with that

of other authors performing similar analysis on tlfi@etive scalar field model, in that
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no lower limit was found for the sound speed (see for examplnBand Doré (2004),
Weller and Lewis (2003) and Hannestad (2005)).

The equation of state was more tightly constrained for thastal dark energy model
than for the éective scalar field model, when using both weak lensing akd diata.
Using WMAP5, SNla and weak lensing data, we foundea uper limit onw <
—0.872, while for the &ective scalar fieldw < —0.787. Using the ISW data combined
with WMAP5 and SNla data, we find for the elastic dark enevgy, —0.808 and for
the dfective scalar fieldw < -0.791, also at the@ level. An obvious first step to
attempt to improve our constraints on elastic dark energytsd speed and equation
of state would be to combine the weak lensing, ISW, WMAP5, 8Ntk data.

Using a model proposed in Ferramacho et al. (2008) for théugwa of SNia,
we repeated our analysis, and including the paramsti€r which represented the
change in magnitude at a given redshift. In both the weakingrend ISW cases, we
were still able to show a lower bound to the elastic dark gnemund speed, where
log,pcs > —3.50, and log,cs > —2.09 respectively. No bound was found for the
effective scalar field. While the cuffdn sound speed is still present, the values of the
cosmological parameters are not similar, due to the bimsolation when using the
ISW data. It would be interesting to combine the weak lensing ISW data together
with the WMAPS and SNla data as this could possibly removébtiredal solution.

We also showed that the elastic dark energy model does notoids, as classical
scalar fields have been noted to do in the linear regime (RuidaMaor (2007), Mota
et al. (2008), and Wang and Fan (2009)). We noted that eldaticenergy clustering
does &ect the amplitude of the CDM clustering, by lowering it retatto an €fective
scalar field model. This property is heavily dependent oretheation of state, and the
difference between the two models becomes greatertesds towards zero. In order
to improve this analysis, we would need develop a non-litleaory of elastic dark

energy, and probe smaller length scales.
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5.1: FUTURE RELEVANT MISSIONS

5.1 Future relevant missions

Our CosmoMC analysis relies on the quality of the data we hepesl, after all, we
are testing a theoretical model against what is actuallgesl. Planck is an upcom-
ing mission to map out full sky maps of the CMB anisotropiegranine frequency
bands, improving upon the resolution mapped out by WMAP. él@w given that our
work is based in the linear regime, and the low multiple aincgmes are already well
constrained, Planck won’'t make a significanftelience to our work. It will however
be an important tool for cosmology, improving both consttsion cosmological pa-
rameters, and astrophysical foreground models. What woelchore significant in
improving our work, is improved large scale structure dataering more of the sky.
There are a few experiments currently being developed hith goal in mind. A
relevant upcoming mission is the Dark Energy Survey (DE&g DES will build a
galaxy catalogue containing more than 300 millions objettsasuring the number,
and spatial distribution of galaxy clusters in th& & z < 1.4 range, and the record
the luminosity distances for around 2000 supernovae in Bie® < 0.8 range. The
DES will also measure weak lensing shear out to 1. The Large Synoptic Survey
Telescope (LSST) is another planned survey that is intetaeathp out the entire sky
in multiple frequency bands. Due to its unique setup, theITL®8# be able to measure
weak lensing shear, supernovae, baryonic acoustic dgmilia and map out clusters,
all as a function of redshift. By combining this data, furthenstraints on dark energy

should be possible.
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