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Abstract 
 

A thesis submitted to The University of Manchester by Rebecca J.  Docherty for the 

degree of Doctor of Philosophy on 31st May 2011 

EPR Spectroscopy of Antiferromagnetically-Coupled Cr3+ Molecular Wheels 

 Currently, there is interest in the development of molecular-scale devices for 

uses in quantum information processing (QIP). With this application in mind, physical 

studies on antiferromagnetically coupled molecular wheels 

[Cr7MF3(Etglu)(O2C
tBu)15(phpy)], where M is a divalent metal cation (M = Mn2+, Zn2+, 

Ni2+) have been pursued. The heterometallic wheels contain an octagon of metal 

centres, which are bridged by fluoride ions, pivalate groups and a chiral N-ethyl-D-

glutamine molecule which is penta-deprotonated and bound to the metal sites through 

all available O-donors. They are deep purple in colour and they have been named 

purple-Cr7M. There is antiferromagnetic coupling between adjacent metal centres, J  -

8 cm-1, resulting in a non-zero net spin ground state. The spin-Hamiltonian parameters 

of this family have been determined. 

At the heterometal site of purple-Cr7M wheels there is a terminal ligand which 

can be substituted for a variety of N-donor organic ligands. A series of bidentate N-

donor linkers has been used to link Cr7Ni wheels (each wheel Seff = 1/2) to create 

prototype two-qubit systems. Multi-frequency EPR spectroscopy and SQUID 

magnetometry has been used to extract the spin-Hamiltonian parameters of this family. 

It has been shown that the single wheels can be linked together electronically as well 

as chemically. It has been found that for the unsaturated linkers, there is a weaker 

interaction between Cr7Ni wheels when longer linkers are used. The strength of 

interaction is smaller for the saturated linkers than for the unsaturated linkers.  

 The formation of “green”-Cr7M wheels is different, being templated around a 

cation. Two new types of wheels have been studied: 

[tBuCONHC6H12NH2C6H12NHCOtBu][Cr7M
2+F8(O2C

tBu)16] and 

[CsCr7MF8(O2C
tBu)16]·0.5MeCN (where, M = Mn2+, Zn2+, Ni2+), where the former is 

templated around a long dialkylammonium group and the latter around a caesium 

cation.  The effect of the templating cation on spectroscopic properties has been 

determined. 

 Physical studies on a family of antiferromagnetically-coupled homometallic 

clusters have been pursued. They consist of cyclic arrays of homometallic Cr3+ ions in 

either a octametallic wheel or hexametallic horseshoes. The horseshoes have the 

general formula: [CrxFx+5L2x-2]n
3- (where L = carboxylate). Cr3+ centres are bridged by 

pivalate groups and fluorides, while Cr3+ centres at the ends of the chain have terminal 

fluorides completing their coordination sphere.  These terminal fluoride groups are 

labile enough to be substituted, e.g. [EtNH2][Cr6F7(O2C
tBu)10(acac)2] is the product of a 

substitution reaction with acetylacetone.  
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I.1 Introduction 

 

There are two distinct classes of exchange coupled oligomers which in the past two 

decades have been intensively studied. The most thoroughly investigated of the two 

are single molecule magnets (SMMs). SMMs can be magnetised as single molecules 

at very low temperatures. The first SMM that was synthesised was a dodecametallic 

manganese compound of the formula: [Mn12O12(CH3COO)16H2O4]·4H2O·2CH3COOH, 

commonly referred to as Mn12.
1  It was first reported in 1980 and its magnetic 

properties were heavily analysed in the early 1990s.2, 3 SMM such as Mn12 are 

characterised by having a large spin ground state (for Mn12, S = 10) and a large 

negative zero field splitting (ZFS). The second class of molecules which has been the 

focus of this work are antiferromagnetically-coupled molecular wheels and chains.   In 

contrast to the SMMs, they have a characteristically low or zero ground spin state. 

They provide interesting examples to study the quantum theory of total spins generated 

by coupling together several individual spins. The whole family stems from an 

octametallic Cr3+ molecular wheel, [Cr8F8(O2CCMe3)16] (1), as seen in Figure I.1.4 
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Figure I.1: The structure of octametallic Cr3+ wheel [Cr8F8(O2CCMe3)16] (1). Cr3+ atoms: 

green; O atoms: red; Fluorine atoms: yellow; Carbon atoms: black. All H atoms have 

been omitted for clarity. 

 

1 was first synthesised in 1985 in the former Soviet Union as part of a study into the 

uses of Cr3+ complexes in the catalysis of oxidation and polymerisation reactions.5 It 

was only after its later publication in 19904 that there was interest in the magnetic 

properties of this compound. 1 has antiferromagnetic coupling between neighbouring 

Cr3+ centres (S = 3/2), resulting in an S = 0 ground state.6 A rich family of molecules 

developed around 1, containing homo- and hetero-metallic wheels and chains.7 They 

are characterized by having a cyclic motif and by containing Cr3+ atoms which are 

bridged by fluorides and carboxylates. Their formation is controlled by the use of 

templating molecules, typically an ammonium cation. They have potential applications 
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in quantum information processing (QIP),8 this application will be discussed further in 

section IV.1. To investigate the physical properties of this family, typically a range of 

techniques have been used; magnetisation, inelastic neutron scattering (INS), electron 

paramagnetic resonance (EPR) spectroscopy and magnetic circular dichroism (MCD) 

spectroscopy. EPR spectroscopy has been the main technique used in this thesis. 

 

I.1 Molecular Magnetism 

 

A molecule’s magnetic behaviour is a description of its response to an applied 

magnetic field. It arises from the intrinsic spin of electrons. The nature of the magnetic 

behaviour depends upon how electrons on adjacent atoms interact with one another.   

 

An unpaired electron is attracted to an applied magnetic field, this is paramagnetism. 

This effect is temperature dependent and does not depend on the strength of the 

applied magnetic field. A pair of electrons in a single orbital, according to the Pauli 

Exclusion Principle, will be spin paired: one electron will be ms = -1/2 and the other one 

will be ms = +1/2. The spin paired electrons will be repelled by an applied magnetic field, 

this is diamagnetism. This effect is weaker than paramagnetism and is not usually 

temperature dependent and does not depend on the strength of the field.  

 

In an applied magnetic field a single unpaired electron can align with or align against 

the field. An electron being aligned anti-parallel (ms = -1/2) with the field is more 

energetically favourable; therefore there is an energy gap between the two states. The 

energy gap between the two states is known as the Zeeman splitting and is given by 
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Equation 1.1. If there is more than one electron present there will be 2S+1 spin levels, 

where S is the total spin of the system. 

 

                

Equation I.1 

An energy level diagram depicting the Zeeman splitting of a single electron in an 

applied magnetic field is shown in Figure I.2.  

 

Figure I.2: An energy level diagram of a single electron in an applied magnetic field. 

 

At RT the spins will be randomly orientated (        . At lower T the thermal 

energy is lower than the energy gap of the Zeeman splitting (        , most of the 

spins will be aligned anti-parallel with the magnetic field. High magnetic polarisation 

leads to the molecule having a magnetic field of its own and it is itself a magnet. 
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A sample in an applied homogenous magnetic field acquires a magnetisation (M), 

which is related to the applied magnetic field through Equation I.2.  

     
  ⁄   

Equation I.2 

Magnetic susceptibility () is defined as the effect which magnetic field strength has on 

the magnetisation (Eqn I.3). 

    
  ⁄  

Equation I.3 

The magnetic susceptibility is a sum of the diamagnetic and paramagnetic 

susceptibilities (Eqn I.4) 

         

Equation I.4 

The Curie Law is defined as: molar magnetic susceptibility varies as C/T as shown in 

Equation I.5. Where C is the Curie constant, the value of which depends upon the spin 

multiplicity of the spin ground state.  

 
 ⁄      

Equation I.5 

The Curie Law assumes that a there is a large separation between the ground spin 

state and the excited state(s) and that the ground state has no first order angular 

momentum. The magnetic susceptibility is determined by the thermal population of the 

mS levels. Magnetic susceptibility can be calculated with Equation I.6.9 

   
          

 
   

  Equation I.6 
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Where, S is spin on individual centres or spin states, n is the number of spin centres 

present and g is the g-value. If two types of spin centre are present which are referred 

to as a and b, Equation I.6 can be adjusted as: 

 

   
    

          

        
 

    
          

        
  

Equation I.7 

In 1932 Van Vleck proposed a very important formula in molecular magnetism (Eqn 

I.8).10 

 

  
 ∑ (  

    
       

   
)   (   

   
   ) 

∑    (   
   

   )  

   

Equation I.8 

The energy levels of a system in a magnetic field can be expanded in a power series 

(Eqn I.9).11 

     
   

   
   

    
   

      

Equation I.9 

Where, 

  
   

  energy of level n in zero field. 

  
   

  1st order Zeeman Coefficent (which splits the energy level into equally spaced 

components which are separated by gH). 

  
   

  2nd order Zeeman Coefficient (which mixes the wavefunctions of the ground 

state with the excited state). 

With Equation I.8 the magnetic susceptibility at temperature T can be calculated if En
(0) 

is known. En
(1) and En

(2) can be calculated using perturbation theory.9, 11, 12 . It is a 

particularly useful equation as only these quantities need to be known.   
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I.2 Magnetic Interactions 

 

Transition metals often contain unpaired d electrons. Within a polymetallic transition 

metal cluster two such metal ions which are in close proximity can interact. If the spins 

of the two metal ions are aligned parallel to each other, the interaction is ferromagnetic. 

If the spins are aligned anti-parallel the interaction is antiferromagnetic.9  

 

Exchange interactions between two paramagnetic centres may occur in two different 

ways. The first way is a direct interaction, when there is direct orbital overlap between 

the two metal centres. This is usually only possible for larger metal ions, the orbitals of 

3d metals tend to be too small to interact in this way.  The second way is via magnetic 

superexchange. This is when the magnetic coupling is mediated through a diamagnetic 

bridging ligand. There must be orbital overlap between the atomic orbitals of the 

bridging ligand and the metal centres. This can be via -bonding or-bonding.11 

Magnetic superexchange is the most common type of exchange interaction in 

polynuclear clusters. The sign of J is simply a matter of convention. In this thesis, a 

positive J-value indicates that there is a ferromagnetic interaction and a negative J-

value indicates antiferromagnetic interaction. An isotropic exchange Hamiltonian (Eqn 

I.10) can be constructed for two interacting spin centres (SA and SB) 

 ̂           

Equation I.10 
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I.3 Spin-Orbit Coupling 

 

An electron has spin angular momentum and orbital angular momentum. The 

interaction of these effects is known as spin-orbit coupling (SOC). Through SOC 

excited states can mix with orbitally non-degenerate ground state.13 This can cause g-

values to deviate from that of a free electron (ge = 2.0023) and for g-anisotropy to be 

present. This effect is less important for organic radicals; this is reflected in the fact 

they tend to have quasi-isotropic g-values which are close to ge. SOC is more important 

for transition metals; they often have anisotropic sets of g-values that can deviate 

significantly from ge. SOC can also lead to zero field splitting (see section I.4), therefore 

having significant effect on the spectroscopic properties of a transition metal cluster.12 

 

I.4 Zero Field Splitting  
 

When the spin ground state is S ≥ 1/2, there may be coupling to excited states through 

spin orbital coupling (SOC). This has the effect of removing the degeneracy of the ms 

levels in zero field, this is called zero field splitting (ZFS). The D terms in Equation I.11 

describe this interaction.11 

              

Equation I.11 

 It has three principal values: Dx, Dy and Dz and is a traceless tensor.14 Only two 

independent parameters are required.14 An axial term (D),  

                  

Equation I.12
 

And a Rhombic term (E),  
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Equation I.13 

For a molecule with axial symmetry D will be required and for one with rhombic 

symmetry D and E will be needed to describe the splitting of the ms states.  

The rhombicity of the system can be defined by 

  |   | 

Equation I.14 

With  = 0 (axial) up to 1/3, which is the rhombic limit.15  

 

I.5 The g-value 

 

When an external magnetic field (Hext) is applied to a molecule which contains an 

unpaired electron, it is not necessarily the only magnetic field that the unpaired electron 

is experiencing. In addition to the applied magnetic field there may be local magnetic 

fields Hlocal which add vectorially to the external field to produce the total effective Heff at 

the electron of interest (Eqn I.15).15 

             

Equation I.15 

Where ge is the g factor of a free electron and g is the effective g factor; ge has a value 

of 2.0023; for transition metal complexes, g can deviate significantly from ge. If g is 

isotropic than gx = gy = gz. If there is axial g-anisotropy than gx = gy ≠ gz. If there is 

rhombic g-anisotropy than gx ≠ gy ≠ gz. There is the following relationship between a g-

value and SOC (Eqn I.16).15 Where is the spin orbital coupling constant, ΔE is the 
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energy separation associated with the transition and c is a quantum mechanical 

coefficient which is dependent on the orbitals which are involved in the ΔE term. 

         
  

  
  

Equation I.16 

Hence the g-values of Cr3+ complexes are usually lower than ge as is small and 

positive for Cr3+.16 

 

I.6 Hyperfine Splitting 
 

If nuclear spins (I ≠ 0) are present in the sample, then an unpaired electron can couple 

with I. The resonance will be split into 2I+1 lines, which are designated as hyperfine 

splitting. This gives fine structure to a spectrum. If the electron is able to couple to 

several sets of nuclei, the overall pattern consists of the superposition of spectra due to 

different species present.14   

 

I.7 Why Cr3+ 

 

When the study of paramagnetic cluster compounds began in the 80’s and 90’s, the 

initial studies in this field were largely the result of the work of a few dominant groups: 

Lippard’s Fe3+ clusters,17 Christou’s manganese clusters18 and Gatteschi’s clusters 

(which contain a variety of different metal centres).19-21  These groups reported on all 

the common paramagnetic 3d metal ions, with the exception of chromium (S = 3/2). The 

electronic structure in a octahedral crystal field is shown in Figure I.3.13 
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Figure I.3: The electronic structure of the d orbitals of octahedral Cr3+. 

 

The absence of chromium examples is likely to be due to the considerable ligand-field 

stabilization energy that is associated with Cr3+ complexes. It is this stability which 

makes the synthesis of Cr3+ complexes difficult. Whilst the stability of these complexes 

is a challenge, it also follows that the clusters formed will be particularly chemically 

inert: an essential quality for the utilization of these compounds in quantum information 

processing (see section IV.1). It wasn't until the publication of 1 in 1991 that Cr3+ began 

to be used in spin cluster complexes.  A Cr3+ backbone favours the formation of these 

cyclic clusters, as Cr3+ is a stable oxidation state and forms predictable pseudo-

octahedral geometries, which is a requirement for the wheel motif. 

 

I.8 Templating molecules 

 

The synthesis of this family of magnetic materials is not purely serendipitous. A cation 

(typically a secondary alkylammonium cation) is found at the centre of these clusters. 

The templating cation mediates the formation of the polynuclear cluster through H-

bonding interactions. The size22 and form23 of the structure can be selected by 

choosing an appropriate templating molecule. It has been previously reported that in 

the system of (CrnNi) wheels, the size of the ring can be controlled by the choice of 

secondary ammonium templating cations. When secondary ammonium cations with 

branched alkyl chains were used, nonanuclear wheels such as [Iso2NH2][Cr8Ni 

e
g
 

t
2g
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F9(O2C
tBu)18] were formed. When a linear alkyl chain is used as a templating molecule 

an octametallic wheel such as [(C3H7)2NH2][Cr7CoF8(OOCMe3)16] will be formed.24
 

 

I.9 Heterometallic “Green” Cr7M Wheels 
 

I.9.1 A Structure Description of Heterometallic green-Cr7M Wheels 

 

 The family of isostructural heterometallic wheels [H2NMe2][Cr7MF8(O2C
tBu)16], where 

M2+ = Ni (2), Mn (3), Zn (4), Co, Cd, and Fe have been extensively studied since being 

first reported in 2003.25-29. These compounds are green and shall be named green-

Cr7M for simplicity. Seven Cr3+ and one M2+ centre form a near perfect, planar octagon, 

Figure I.4.  

 

Figure I.4: Side and top views of [H2NMe2][Cr7MF8(O2C
tBu)16], M atom: dark green; All 

other colours as before. 
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Between each metal centre there is a single bridging fluoride ion, and two pivalate 

groups. Eight of the pivalate groups take an equatorial position in the plane of the 

wheel between each metal ion. The other bridging pivalates take axial positions and 

are located alternately on either side of the plane of the wheel. There is a 

dimethylammonium templating cation at the centre of the wheel.  

 

I.9.2 The Effective Spin State of a green-Cr7M Wheel 

 

The choice of heterometal ion in a green-Cr7M wheel can be used to tune the magnetic 

and electronic properties of the wheel, whilst retaining an isostructural geometry. The 

carboxylate functionality provides delocalised π-electrons and hence a pathway for 

magnetic superexchange around the circle of metal ions. There is antiferromagnetic 

coupling between adjacent metal centres, J ≈ -6 cm-1, resulting in a non-zero net spin 

ground state. This has been determined through magnetic measurements30 Figure I.5 

is the coupling scheme for a Cr7M wheel. The red arrow is the heterometal. For Ni2+ S 

= 1, Mn2+ S = 5/2 and for Zn2+ S = 0. The light and dark green arrows are Cr3+ atoms. 

For a Cr7Ni wheel the ground spin state will be: S = 4 x 3/2-(3x3/2+1) = 1/2. For a Cr7Mn 

wheel: S = 4 x 3/2-(3x3/2+
5/2) = 1.  For a Cr7Zn wheel: S = 4 x 3/2-(3x3/2+0) = 3/2. The total 

spin of the excited state increases in integer steps from the ground state, i.e. for Cr7Mn 

the first excited state S = 2. 
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Figure I.5: Vector coupling scheme of a Cr7M wheel 

 

I.9.3 The EPR Spectroscopy of green-Cr7M Wheels 

 

An EPR spectroscopy study has been conducted on 2, 3 and 4. The spin-Hamiltonian 

parameters provided in Tables I.1 and I.2 have been fitted to EPR measurements 

performed on single crystal and polycrystalline samples using the strong exchange limit 

(SEL).30 

Table I.1: Spin-Hamiltonian parameters of the ground states of compounds 2, 3 and 4. 

 2 3 4 

Ground Spin State S = 1/2  S = 1 S = 3/2 

D (cm-1) N/A 0.800 -0.41 

E (cm-1) N/A -0.085 -0.041 

g-value gxy = 1.78 

gz = 1.74 

giso = 2.00 gxy = 1.955 

gz = 1.945 
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Table I.2: The spin-Hamiltonian parameters of the first excited states of compounds 2, 

3 and 4. 

 2 3 4 

Excited Spin State S = 3/2 S = 2 S = 5/2 

D (cm-1) 0.56 0.185 0.04 

E (cm-1) Not determined Not determined Not determined 

B4
0 (cm-1) Not determined -7.5 x 10-4 8 x 10-5 

g-value gxy = 2.00 

gz = 2.05 

gxy = 2.000 

gz = 1.980 

gxy = 1.955 
 
gz = 1.945 

 

These spin-Hamiltonian parameters will be compared those determined for the new 

heterometallic wheels provided in this thesis. 

 

I.10 Measurement Techniques Used 
 

A brief introduction to the principal concepts of the measurement techniques used in 

this Ph.D. thesis is provided in this section. 

 

I.10.1 EPR Spectroscopy 

 

EPR spectroscopy is a spectroscopic technique which was first discovered during 

World War II by Soviet physicist Zavoisky.31 EPR spectroscopy is a very useful tool in 

the investigation of the lowest lying energy levels of transition metal clusters. EPR is 

the primary technique used to analyse the compounds presented in this thesis. EPR 

utilizes microwaves ranging in frequency from 1 GHz to 254 GHz28 along with magnetic 
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fields to study species with one or more unpaired electrons. A fairly wide range of 

substances can be investigated in this manner including organic radicals and many 

transition metal compounds. 15 

 

I.10.1.1 The Experimental Set-up 

 

Figure I.6 is a block diagram of a perpendicular mode continuous wave (cw)-EPR 

spectrometer  which has been adapted from reference.15 

 

Figure I.6: A block diagram of a cw-EPR spectrometer adapted from reference15. 
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The sample is mounted inside the spectrometer perpendicular to the applied magnetic 

field. The applied magnetic field is generated by an electromagnet and is swept during 

the experiment. In addition to this applied magnetic field, there is a smaller oscillating 

magnetic field which is applied continuously throughout the experiment to the sample 

via Zeeman modulation coils. The signal response from the cavity is modulated at the 

Zeeman modulation frequency. The direction of the perturbation frequency is 

perpendicular to the electromagnet’s magnetic field. The microwave bridge supplies 

microwaves which are transmitted to the sample via the waveguide. Table I.3 shows 

the nominal microwave frequencies and the bands which have been used for 

experiments reported in this Ph.D. thesis.  

 

Table I.3: Approximate Microwave Frequencies and Bands 

Band (GHz) 

S 3.5 

X 9.25 

K 20.0 

Q 35.0 

W 95.0 
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I.10.1.2 What can happen to an unpaired electron in a cw-EPR experiment 

 

The simplest case we can have in EPR is a single unpaired electron with an S = 1/2 spin 

state. The applied magnetic field has the effect of lifting the degeneracy of the ms = ± 

1/2 due to the Zeeman effect. Once the Zeeman splitting matches the microwave 

energy, due to the Maxwell-Boltzmann distribution there are typically more electrons in 

the lower state, there is a net absorption. The first derivative of the absorption spectrum 

is recorded. 

\ 

Figure I.7: An energy level splitting diagram depicting the splitting of ms states and the 

spectrum that is recorded during a cw-EPR experiment. Where H is the applied 

magnetic field, and g value is a proportionality factor, equivalent to NMR’s chemical 

shift, which will be discussed in section I.5. 

 

Selection rules can be derived from transition probabilities. For perpendicular mode cw-

EPR they are: ΔS = 0, ΔmS = ± 1. 
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I.10.1.3 A Spin Triplet 

 

The energy level diagram for a spin triplet (S = 1) is shown below (Figure I.8) 

 

Figure I.8: An energy level diagram of a spin triplet 

 

The ms states are split by D, and the transitions in the EPR experiment are split by a 

function of D and centred on a certain g-value. This gives the EPR spectrum fine 

structure. The EPR spectrum shown in Figure I.8 is for a single orientation. In a powder 

EPR spectrum, for each orientation there will be a pair of peaks. 

 

I.10.1.4 Strong Exchange Limit 

 

A widely used approach in the interpretation of EPR and magnetic data of exchange 

coupled systems is the strong exchange limit (SEL). This method assumes J>>D, thus 

D is treated as a small perturbation on the total effective spin state. The EPR spectra 
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are treated as superpositions of the different total effective spin states which are 

thermally populated at the temperature at which the measurement is performed.33 Each 

spin state is modelled independently and then added together. This has been the main 

technique used to model EPR data in this thesis. 

Equation I.17 is a SEL spin-Hamiltonian.  

 ̂     ̂        ̂       ⃑      ̂     

Equation I.17 

Where Deff is the axial zero field splitting parameter of the total effective spin state and 

geff corresponds to the g-value of the total effective spin state.  

 

I.10.2 Magnetic Measurements 

 

The magnetisation and the magnetic susceptibility data presented in this thesis have 

been recorded using a Superconducting Quantum Interference Device (SQUID). A 

SQUID magnetometer has a superconducting magnet which provides a longitudinal 

uniform magnetic field (up to ~7 T). The superconducting magnet magnetizes the 

sample. A superconducting detection coil is coupled inductively to the sample and is 

located in the uniform region of the magnetic field. The sample is moved through the 

superconducting detection coil and the magnetic moment of the sample induces a 

current in the coil. The SQUID device converts the current to voltage, a change in 

magnetic flux in the superconducting detection coil causes a variation in the SQUID 

output voltage. The change in voltage is proportional to the magnetic moment of the 

sample. The magnetic moment can be detected as a function of temperature or 

magnetic field. There are other variables possible.12 The experimental details of the 

SQUID measurements presented in this Ph.D. thesis are in section VI.3. 



48 

 

I.10.3 Inelastic Neutron Scattering 

 

During an inelastic neutron scattering (INS) experiment, a monochromatic neutron 

beam is directed at a polycrystalline sample. When the neutron beam hits the sample 

three things can happen. (i) The neutron beam can be scattered by the nuclei. (ii). The 

neutron beam can be absorbed by the nuclei. (iii). The neutron beam can be scattered 

through magnetic interactions between the intrinsic magnetic moment of the neutrons 

and the magnetic field generated by the unpaired electrons in the sample. The third 

case provides information about the electronic structure of the molecule being 

investigated.34-38 The INS presented in chapter V was recorded using a time-of-flight 

neutron scattering spectrometer using non deuterated polycrystalline samples.39 Figure 

I.9 below is reproduced from reference34 and depicts a time-of-flight neutron scattering 

spectrometer.  

 

 

Figure I.9:  A schematic representation of a time-of-flight inelastic scattering 

spectrometer, reproduced from reference34. 
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The polychromatic neutron beam is generated in a neutron reactor and passes through 

a monochromator which are a series of choppers. The choppers select the energy and 

the wavelength of the neutrons, producing a monochromatic beam with a precise initial 

energy (Ei) and wave-vector (ki). The monochromatic beam is directed through the 

sample and is scattered. The scattered neutrons are collected in an array of time-

resolved detectors. The time of arrival of the neutrons is recorded, from which the final 

neutron energy (Ef) is calculated. Ef experience energy loss or energy gain from 

transitions in the sample. The final wave-vector (ki) is deduced from the scattering 

angle 2θ. Q is the scattering vector (Q = ki - kf). The Q-dependence of a transition is 

used to obtain information about its magnetic properties. The selection rules for INS 

are: ΔS = 0, ±1 and ΔMS = 0, ±1. 

The INS in this Ph.D. thesis was measured at zero applied magnetic field. This is in 

contrast to EPR spectroscopy which must be measured with an applied magnetic field. 

This makes INS a very useful technique for determining ZFS directly. 

 

 

 

 

 

 

 

 



50 

 

I.11 Project Aims 

 

The first aim of this Ph.D. thesis is to determine the effect of templating cation on the 

spectroscopic properties on a Cr7M wheel; this shall be discussed in Chapter II. The 

second aim is to determine the spin-Hamiltonian parameters of a family of purple-Cr7M 

molecular wheels. This is discussed in Chapter III. The purpose of the first two aims is 

to characterize the electronic structure of single Cr7M wheels, this is important as the 

single wheels can be linked into larger supramolecular structures for applications in 

quantum information processing (QIP). A detailed understanding of the electronic 

structure of the single wheels is required to understand the properties of the larger 

supramolecular structures. Thirdly, a series of organic linkers have been used to link 

purple-Cr7Ni wheels into dimers, EPR spectroscopy has been used to determine the 

interaction between the two wheels. The purple-Cr7Ni dimers are prototype two-qubits 

systems, which have potential applications in QIP. The structure-property relationship 

of the organic linkers has been determined. This is discussed in Chapter IV. The fourth 

aim is to determine the effect of capping ligand on the exchange coupling of a family of 

hexanuclear horseshoes. This chapter aims for a better understanding how electronic 

structure is affected by choice of capping ligand and to establish structure-property 

relationships. This shall be discussed in Chapter V.  
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II Physical Studies on a Family of Green-Cr7M Wheels: 

Investigating the Influence of Templating Cation on 

Spectroscopic Properties 
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II.1 Introduction  

 

As mentioned in chapter one the formation of Cr7M wheels is templated around a mono 

cation. This chapter will discuss two new types of templating molecules; long chain 

alkylammonium cations and caesium cations. The first family of compounds consists of 

a series of isostructural heterometallic wheels, 

[tBuCONHC6H12NH2C6H12NHCOtBu][Cr7MF8(O2C
tBu)16], where M = Ni2+ (5), Mn2+ (6) 

and Zn2+ (7). The structure can be described as a rotaxane, as it consists of a long 

dialkylammonium cationic axle group which is threaded through a heterometallic 

macrocycle. There are numerous examples in the literature of the use of 

dialkylammonium groups acting as axle groups in the synthesis of rotaxanes; for 

example they have been used in cyclic peptides1, crown ethers2 and in cucurbituril 

which is a nonadecacyclic cage compound.3 Dialkylammonium salts have been 

selected for these studies as the ammonium group has been found to effectively bind 

with the molecular ring torus through hydrogen bonding interactions.4 The ends of the 

axle groups are typically bulky tert-butyl groups, or large aromatic groups. This 

functionality has the effect of stoppering the axle, thus preventing the two molecules 

from dissociating.  

 

The second templating group is a caesium cation. The cavity at the centre of a 

polymetallic wheel can be utilized for host-guest chemistry, providing the cavity is of a 

reasonably large size.  Several research groups have used this as a method to control 

the properties of polymetallic wheels. For example Saalfrank and co-workers in 1996 

controlled the size of a polymetallic Fe wheel by choice of guest alkali metal. The size 

of the wheel is increased from 6-membered to 8-membered by increasing the size of 

the cation giving: Na[Fe6{N(CH2CH2O)3}6] and Cs[Fe8{N(CH2CH2O)3}8].
5 It has been 
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reported that the treatment of [H3N
nPr][Cr7MF8(O2C

tBu)16] with an excess of caesium 

pivalate followed by recrystallization from diethyl ether / acetonitrile, yields the caesium 

templated wheel [CsCr7MF8(O2C
tBu)16]·0.5MeCN, where M2+ = Ni2+ (8), Mn2+ (9) and 

Zn2+ (10) . This compound can also be made directly from a direct reaction of pivalic 

acid, chromium(III) tetrahydrate, the appropriate metal carbonate and caesium pivalate. 

Further details of this synthesis can be found in the literature.6  

 

An EPR study has been conducted on compounds 5 to 10. With the aim of 

investigating the influence of the templating cation on the spectroscopic and magnetic 

properties of Cr7M wheels. The strong exchange limit has been used to fit the 

experimental data (see section I.10). All the EPR data in this chapter has been 

modelled with the following spin-Hamiltonian: 

         ̂   [ ̂ 
          ]  

Equation II.1 

Where S is the total spin quantum number of the molecule.  
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II.2 Structural Description of the Rotaxane Wheels: Compounds 

5, 6 and 7 

 

Compounds 5 to 7 are isostructural (Figure II.1) 

 

Figure II.1:  Top and Side view of 

[tBuCONHC6H12NH2C6H12NHCOtBu][Cr7M
2+F8(O2C

tBu)16], M
2+ = Mn, Zn, Ni. Colours; Cr 

atoms: light green; M2+ atom: dark green; C atoms: black; F atoms: yellow; N atoms: 

blue; O atoms: red. All H atoms have been removed for clarity. 

 

 The molecular wheel is assembled around a long dialkylammonium cationic axle 

group, which is terminated at each end with a bulky tertiary butyl group (Figure II.2). 

There is a hydrogen bonding interaction between the ammonium group of the axle 

moiety and the bridging fluorides within the molecular wheel. 
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Figure II.2: The dialkylammonium templating molecule of compounds 5, 6 and 7. 

  

The wheel formed is not a perfect octagon. A mean plane of the metal centres can be 

calculated and the mean deviation from the mean plane of the 8 metal centres (MDMP) 

has been determined with the MPLN command of the crystallographic program 

SHELX-97.7  For compounds 8 to 10, MDMP = 0.175 Å. This is close to the calculated 

MDMP value for dimethylammonium-templated Cr7M wheels (5 to 7) which is 0.180 Å. 

Hence inclusion of the longer chain templates does not significantly distort the wheels. 

 

II.3 Structural Description of Caesium Templated Wheels: 

Compounds 8, 9 and 10 

 

The structure of [CsCr7MF8(O2C
tBu)16]·0.5MeCN can be seen in Figure II.3. 

Compounds 8, 9 and 10 are isostructural. At the centre of the structure there is a 

caesium cation, which is bound to all eight bridging fluoride ions and takes a position 

which is co-planar to the eight metal centres of the wheel. The Cs∙∙∙F bond distances 

range from 3.131 Å to 3.381 Å. 
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Figure II.3: Top and side view of the caesium centred wheel.  

[CsCr7MF8(O2C
tBu)16]·0.5MeCN. Hydrogen atoms have been moved for clarity and 

the following colours have been used: light green: chromium atoms; dark green: 

heterometal; Pink: caesium atom; Yellow: fluoride atoms; Black: carbon atoms; Red; 

Oxygen atoms. 

 

As with the dimethylammonium templated wheels there are equatorial and axial 

pivalate groups. However, on one side of the wheel the axial pivalate groups lean in 

towards the caesium cation and on the other side of the wheel they lean away from the 

caesium (see Figure II.4). This distortion allows for the inclusion of the partial 

occupancy of an acetonitrile molecule which is coordinated to the caesium cation. 

When a Cr7M wheel is templated around an alkylammonium group the axial pivalate 
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groups have a geometry which is perpendicular to the plane of the metal centres. 

Figure II.4 is the molecular structure of a caesium templated wheel with the equatorial 

pivalate groups removed. This has been done so that the reader can clearly see the 

stereochemistry of the axial pivalate groups. 

 

 

Figure II.4: The molecular structure of [CsCr7NiF8(O2C
tBu)16]·0.5MeCN 

in the crystal, with the equatorial pivalate groups removed for clarity. 

 

 In comparison to the dialkylammonium-templated wheels, the caesium-templated 

wheels have a more planar arrangement of metal centres. The MDMP of the eight 

metal centres is 0.148 Å.  
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II.4 Results 
 

II.4.1 EPR study of [tBuCONHC6H12NH2C6H12NHCOtBu][Cr7NiF8(O2C
tBu)16] 

 

Variable temperature EPR spectra were measured at X- and Q-band frequencies 

(Figure II.5 and II.6). There is a single anisotropic resonance due to a S = ½ ground 

state. The coupling scheme (Figure I.5) which was used by Dr. S. Piligkos to model the 

EPR spectra of compounds 2 to 4 can be used for 5. Hence, unsurprisingly 

replacement of dimethylammonium with a long chain template has not changed the 

coupling scheme. 
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Figure II.5: Variable temperature EPR spectra of a powdered polycrystalline sample of 

[tBuCONHC6H12NH2C6H12NHCOtBu][Cr7NiF8(O2C
tBu)16] (5) at X-band frequency. 
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Figure II.6: Variable temperature EPR spectra of a powdered polycrystalline sample of 

[tBuCONHC6H12NH2C6H12NHCOtBu][Cr7NiF8(O2C
tBu)16] (5) at Q-band frequency. 

  

Figure II.7 compares the Q-band EPR spectra of compounds 2 and 5 at 5 K. In the 

EPR spectrum of 5 the axial nature of the g-values is resolved; there are two 

overlapping resonances at ~13,850 G (g = 1.78) and ~14,000 G (g = 1.74). This 

splitting is unresolved in 8.  The EPR spectrum of 5 can be modelled as S = 1/2 with the 

following spin-Hamiltonian parameters: gxy = 1.780, gz = 1.740 and an isotropic 

Gaussian line width of 100 G.8 



63 

 

12000 13000 14000 15000

D
e

ri
v

a
ti

v
e

 I
n

te
n

s
it

y
 (

A
rb

. 
U

n
it

s
)

Magnetic Field (G)

 Compound 5

 Compound 8

 

Figure II.7: Comparison of powder EPR spectra of [H2NMe2][Cr7NiF8(O2C
tBu)16] (2) 

and [tBuCONHC6H12NH2C6H12NHCOtBu][Cr7NiF8(O2C
tBu)16] (5) at Q-band frequency. 

 

Compound 8 can be modelled with slightly different spin-Hamiltonian parameters:  

gxy = 1.780, gz = 1.745 and isotropic line widths of 100 G (Figure II.8) 
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Figure II.8: 5 K Q-band spectrum of a powdered sample of 5 and simulation. 
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II.4.2 EPR Study of [tBuCONHC6H12NH2C6H12NHCOtBu][Cr7MnF8(O2C
tBu)16]  

  

Variable temperature EPR measurements were performed on powdered samples of 6, 

in a similar fashion to 5. The EPR spectra obtained give evidence of the population of 

two different total spin states between 5 K and 20 K.  By observing the temperature 

dependences of the resonances the transitions have been assigned to a S = 1 spin 

ground state and an S = 2 excited state.  The S = 1 transitions decrease in intensity 

with increasing temperature. The S = 2 transitions increase in intensity with increasing 

temperature. Figure II.9 shows the assignment of these transitions. 

 

Figure II.9: EPR spectrum of a powdered polycrystalline sample of 6 at W-band 

frequency at 5 K and 10 K. Blue stars indicate that the resonance originates from the 

ground spin state and green stars are from the next adjacent excited state. 

 

The two spin states have been modelled independently. Then each calculated 

spectrum is normalized to the most intense transition of that spin state. The two 

calculated spectra are then added together. Figure II.10 shows the modelled and 
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experimental spectra of 6. The following parameters were obtained: S = 1, Ds = 1 = 

+0.800 cm-1, ES = 1 = 0.085 cm-1, gxy = 2.00 and gz = 2.05; S = 2, DS = 2 = +0.185 cm-1, E 

not determined, B4
0 = -7.5 x 10-4 cm-1, gxz = 2.00, gy = 1.98 with a Gaussian isotropic 

line width of 200 G,  where B4
0 is a fourth order term in the SEL spin Hamiltonian, this 

term removes the degeneracy of the ms states of the S = 2 spin state in zero field. 

These are the same parameters as those previously determined for single crystal and 

powder samples of [H2NMe2][Cr7MnF8(O2C
tBu)16] (6).8 
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Figure II.10: 5 K W-band experimental powder EPR spectrum and simulation of 6. The 

following spin-Hamiltonian parameters that have been used to fit the experimental 

spectrum; S = 1: D = +0.800 cm-1, E = 0.085 cm -1, gxy = 2.00 and gz = 2.05; S = 2: D = 

0.185 cm-1, B4
0 = -7.5 x 10-4 cm-1, gxz = 2.00 and gy = 1.98. At frequency ν = 94.5186 

GHz, with Gaussian isotropic line-widths of 200 G. 
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Figure II.11: 5 K W-band spectrum of a powdered sample of 6 and S = 1+ S = 2 

simulation. 

A good fit of the S = 1 resonances is achieved with these parameters. However the 

amplitude of the S = 2 resonance at ~30,875 G (pink asterisk) is not very well 

reproduced in the simulation. This is probably due to a D-strain effect which we have 

not included in the model. Figure II.12 compares the 5 K W-band spectra of 

compounds 28 and 6, showing that the spin Hamiltonian parameters are unchanged 

with the change in templating cation. 
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Figure II.12: Comparison of powder EPR spectra of compounds 6 (red line) and 3 

(black line) at W-band frequency. 

 

II.4.3 EPR Study of [tBuCONHC6H12NH2C6H12NHCOtBu][Cr7ZnF8(O2C
tBu)16]  

 

Compound 7 gives rich, temperature dependent EPR spectra between 5 and 20 K. 

EPR measurements were performed on a powdered sample of 7 at Q- and W-band 

frequencies in a similar fashion to the previous compounds. By observing the 

temperature dependence of the EPR resonances recorded between 5 K and 20 K, they 

can be assigned to two different spin states (Figure II.13). The ground state is S = 3/2, 

with an excited state of S = 5/2. 
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.  

Figure II.13: EPR spectrum of a powdered polycrystalline sample of 7 at W-band 

frequency at 5 K and 10 K. Blue stars indicate that the resonance originates from the 

ground spin state and green stars are highlighting the resonances from the next excited 

spin state. 

 

The following spin-Hamiltonian parameters are used to model the spin ground state, 

D3/2 = 0.41 cm-1, E3/2 = 0.051 cm-1, giso = 2.00. The S = 5/2 resonances can be modelled 

with D5/2 = 0.035 cm-1 and giso = 2.00 (Figure II.14).  
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Figure II.14: 5 K W-band experimental powder EPR spectrum and simulation of 7. The 

following spin-Hamiltonian parameters that have been used to fit the experimental 

spectrum; S = 3/2: D = 0.41 cm-1, E = 0.041 cm -1, and giso = 2.00. S = 5/2: D = 0.035 cm-

1 and giso = 2.00. At frequency, ν = 95.31050 GHz and with Gaussian isotropic line-

widths of 200 G. 
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Figure II.15: 5 K W-band spectrum of a powdered sample of 7 and S = 3/2+ S = 5/2 

simulation. 
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The spin-Hamiltonian parameters that have been used are identical to those used in 

the modelling of the EPR spectra of compound 4,8 (Figure II.16) and there are only 

minor differences in the spectra. 

  

Figure II.16: Comparison of powder EPR spectra of compounds 4 (black line) and 7 

(red line) at W-band frequency. 

 

However, one notable difference is that ratio of the resonances at 33,400 G and 34,050 

G is not the same for compounds 7 and 10. Attempts have been made to recreate this 

feature in the modelling, but have been unsuccessful. 
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II.4.4 EPR Study of  [CsCr7NiF8(O2C
tBu)16]·0.5MeCN 

 

Multi-frequency spectra of polycrystalline samples were recorded at X- and Q-band 

frequencies. Low temperature Q-band spectra (Figure II.17) are consistent with an S = 

1/2 ground state, as with the Cr7Ni wheels with other templates. However, there is a 

significant variation in g-values. Compound 8 has considerable less g-anisotropy than 

2.  
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Figure II.17: Comparison powder EPR spectra of compound 2 and 8 at Q-band 

frequency. The black lines are experimental data and the red lines are simulation. 

Compound 2: gxy = 1.79, gz = 1.74, isotropic Gaussian line widths of 100 G. Compound 

8: gxy = 1.79, gz = 1.77, isotropic Gaussian line widths of 100 G. 

 

The EPR spectra of 8 can be modelled with the following spin-Hamiltonian parameters: 

gxy = 1.79 and gz = 1.77. Compound 2 can be modelled with gxy = 1.780 and gz = 1.740. 

Isotropic Gaussian line widths of 100 G have been used in both simulations. 
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II.4.5 EPR Study of [CsCr7MnF8(O2C
tBu)16]·0.5MeCN  

 

Variable temperature EPR measurements were performed at X-, Q- and W-band 

frequencies on powdered samples of 9. Analysis of the wheel within the coupling 

scheme given in Figure II.18 indicates that 9 has a ground spin state of S = 1, this is 

confirmed by the EPR measurements.  The S = 1 spin ground state of compound 9 can 

be modelled with the following spin-Hamiltonian parameters: DS = 1 = 0.700 cm-1, ES = 1 = 

0.07 cm-1, gxy = 2.00 and gz = 2.02. The S = 2 excited state can be modelled with: DS = 1 

= 0.075 cm-1 and giso = 1.98. Gaussian line widths of 200 G have been used 

throughout. The 5 K W-band spectrum of compound 9 and simulation are shown in 

Figures II.18 and  II.19. 
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Figure II.18: 5 K W-band experimental powder EPR spectrum and simulation of 9. The 

following spin-Hamiltonian parameters that have been used to fit the experimental 

spectrum; S = 1: D = 0.70 cm-1, E = 0.07 cm -1, gxy = 2.00 and gz = 2.02. S = 5/2: D = 

0.075 cm-1 and giso = 1.98. At frequency, ν = 95.31050 GHz and with Gaussian 

isotropic line-widths of 200 G. 
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Figure II.19 consists of the S = 1 + S = 2 simulation and 5 K W-band experiment 

overlaid, the simulation is a good fit of the experimental data. 
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Figure II.19: 5 K W-band frequency spectrum of compound 9 and simulation. 

 

The D values for the S = 1 ground state and the S = 2 excited state are significantly 

smaller in compound 9 than 3. Figure II.20 compares the W-band 5 K spectra of 9 and 

3, highlighting the much narrower spread of resonance fields. 
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Figure II.20: Comparison of powder EPR spectra of compounds 3 (black line) and 9 

(red line) at W-band frequency. 

 

II.4.6 EPR study of [CsCr7ZnF8(O2C
tBu)16]·0.5MeCN] 

 

EPR spectra were measured at Q- and W-band frequencies of a powdered sample of 

compound 10. Confirming that there is an spin ground state of S = 3/2 and an excited 

state of S = 1/2. The S = 3/2 spin ground state can modelled with the following spin-

Hamiltonian parameters: DS = 3/2 = 0.32 cm-1, ES = 3/2 = 0.035 cm-1, gxy = 2.00 and gz = 

2.03. The S = ½ excited state can be modelled with an isotropic g-value of 2.00. 
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Figure II.21: 5 K W-band experimental powder EPR spectrum and simulation of 10. 

The following spin-Hamiltonian parameters that have been used to fit the experimental 

spectrum; S = 3/2: D = 0.32 cm-1, E = 0.035 cm -1, gxy = 2.00 and gz = 2.03. S = 1/2: giso = 

2.00. At frequency, ν = 93.3338 GHz and with Gaussian isotropic line-widths of 200 G. 

 

0 10000 20000 30000 40000 50000 60000

D
e

ri
v

a
ti

v
e

 I
n

te
n

s
it

y
 (

A
rb

. 
U

n
it

s
)

Magnetic Field (G)

 5 K experiment

 S = 
3
/
2
 +S = 

1
/
2

          simulation

 

Figure II.22: 5 K W-band spectrum of compound 10 and S = 3/2 + S = 1/2 simulation. 
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Figure II.23 compares the 5 K W-band EPR spectra of compounds 4 and 10. Again, 

there is a significantly smaller D value for the caesium templated wheel, shown by the 

smaller spread of the resonances. Compound 10 is different from the other Cr7Zn 

wheels with other templating cations, because there is an S = 1/2 excited state rather 

than an S = 5/2 excited state.   
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Figure II.23: Comparison of powder EPR spectra of compounds 4 (black line) and 10 

(red line) at W-band frequency. 

 

II.5 Discussion and Conclusions 

 

The rotaxane-Cr7M wheels (6 and 7), can be modelled with identical ground state D 

and E values to those provided for the dimethylammonium templated wheels (3 and 

4).8 The EPR spectra of compound 5 has a very similar set of g-values as previously 

reported for compound 2. The caesium templated wheels are spectroscopically 
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different. The D value for the ground spin state of 9 and 10 is significantly smaller than 

those determined for the dimethylammonium templated wheels, D = +0.70 cm-1 for 9, 

+0.80 cm-1 for 3, +0.32 cm-1 for 10 and +0.41 cm-1 for 4. The rhombicity (λ = E/D) of the 

two families is very different. For the ground spin state of 9 and 10, λ = 0.109. For 3 λ = 

0.106 and for 4 λ = 0.100. Apart from 2 and 5, line widths of 200 G have been used 

throughout the green wheel family to model the spectroscopic data. Two different types 

of Cr7M wheels have been discussed: rotaxane-Cr7M wheels and caesium templated 

Cr7M wheels. It has been found that when the wheels are templated with a long 

dialkylammonium group, the spectroscopic properties of the wheel are not altered. This 

is an expected result; The MPLN for compounds 5 to 7 is 0.175 Ǻ and for 2 to 4 is 

0.180 Ǻ. The MPLN values are similar; therefore the wheels have very similar 

geometries and we should not expect any significant change in electronic structure. 

There are more significant differences in the spin Hamiltonian parameters of the 

caesium templated wheels. There is a ~20 % decrease in the ground state D values of 

9 and 10 in comparison to the dialkylammonium templated wheels. The ground state g-

values of 8 are more isotropic than the g-values of the Cr7Ni dialkylammonium 

templated wheels. The local coordination spheres of the metal ions are identical in all 

“green” wheels; therefore it is unlikely that there are significant differences in the local 

ZFS of the metal centres. It is more likely that the differences in spectroscopic 

parameters originate from the differences in MPLN values, the MPLN of 8 to 10 is 

0.148 Å. This means the metal ions have a more planar arrangement in comparison to 

the dimethylammonium templated wheels. This increase in symmetry is induced by the 

templating caesium ion. The central caesium ion is coordinated to all of the bridging 

fluoride atoms, inducing a greater symmetry. Whereas in the dialkylammonium 

templated molecular wheels there are only hydrogen bonding interactions between two 

of the bridging fluoride ions and the hydrogen’s of the dialkylammonium cation. This will 

affect the relative orientations of the local ZFS and hence their projection onto the total 
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D of the ground spin state. The caesium templated wheels may have greater alignment 

of local ZFS, which would result in a smaller D of the total spin state. 
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Wheels: Isostructural Compounds with Different Ground 
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III.1 Introduction  
 

The physical properties of a family of isostructural heterometallic wheels of the form 

[Cr7M
2+F3(Etglu)(O2C

tBu)15(L)], where M is a divalent metal cation (M2+ = Mn, Zn, Ni; 

Etglu = N-ethyl-D-glucamine) have been investigated. These compounds are a vibrant 

purple colour and hereafter for simplicity shall be named purple-Cr7M. These single 

purple-Cr7M wheels can be linked together through coordination chemistry into larger 

supramolecular structures. The purpose of this project is to determine the spin-

Hamiltonian parameters and therefore the electronic structure of purple-Cr7M wheels. 

The characterization of the single purple-(Cr7Ni) wheels will aid the understanding of 

the subtle interactions between wheels in the larger linked supramolecular systems. 

 

III.2 A Structural Description of the Purple-Cr7M Wheels 

 

The octanuclear wheel is formed in the reaction of N-ethyl-D-glucamine (Figure III.1), 

chromium(III) fluoride tetrahydrate, the appropriate metal carbonate and an excess of 

pivalic acid. The yield of this reaction is around 30 %.1 

 

7CrF3
.4H2O + 1/5[2NiCO3

.3Ni(OH)2
.4H2O] + H5Etglu + xs HO2C

tBu  

[Cr7MF3(Etglu)(O2C
tBu)15(H2O)] 

 

 

Figure III.1: The templating molecule N-ethyl-D-glucamine. 

HO

N
H

CH3

OH

OH

OH

OH
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There are seven Cr3+ ions and a single heterometal ion which form an octagon of metal 

centres (Figure III.2) The formation of the cluster is templated around a chiral N-ethyl-

D-glucamine molecule which is penta-deprotonated and bound to the metal sites 

through all available O-donors, forming five bridging alkoxide groups inside the wheel. 

The other three remaining sites inside the wheel are bridged by fluoride ions. For seven 

of the eight edges of the octanuclear wheel there are two bridging carboxylate groups 

and at the eighth edge there is only a single bridging pivalate and one bridging fluoride 

ion. At the heterometal site there is a terminal ligand, which is a water molecule in the 

original preparation. If the compound is recrystallized, the terminal ligand can be an 

acetonitrile or diethyl ether molecule, this ligand is circled in Figure III.2. To summarize 

there are five different metal coordination environments, making this a rather complex 

system.  
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Figure III.2: Side and top views of [Cr7M
2+F3(Etglu)(O2C

tBu)15(Et2O)], M2+ = Mn, Zn, Ni. 

Colours; Cr atoms: purple; M atom: green; C atoms: black; F atoms: yellow; N atoms: 

blue; O atoms: red. All H atoms have been removed for clarity. The labile terminal 

ligand at the heterometal site is circled in pink.1 

  

The terminal ligand can also be substituted for a variety of N-donor organic ligands. For 

example 4-phenylpyridine, which occupies a site which is perpendicular to the plane of 

the wheel (Figure III.3) 
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Figure III.3: Side and top views of [Cr7MF3(Etglu)(O2C
tBu)15(phpy)], M2+ = Mn, Zn, Ni.  

 

This chapter will discuss the physical properties of the purple-Cr7M wheels with 4-

phenylpyridine at the heterometal site. These types of wheels have been chosen as it 

closely models “half” of the dimeric systems formed when N,N-bridging ligands (e.g. 

4,4’-bipyridine) are used. These systems shall be discussed in chapter IV. 
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III.3 Results and Discussion 

III.3.1 Magnetic Measurements of the Purple-Cr7M Wheels 

 

Magnetic susceptibility measurements were performed on compounds 

[Cr7NiF3(Etglu)(O2C
tBu)15(phpy)] (11), [Cr7MnF3(Etglu)(O2C

tBu)15(phpy)] (12) and 

[Cr7ZnF3(Etglu)(O2C
tBu)15(phpy)] (13). For compounds 11 to 13 the mT at 300 K has a 

value of 11.66 emu K mol-1 for 11, 17.03 emu K mol-1 for 12 and 11.37 emu K mol-1 for 

13. These values are somewhat smaller the calculated values (
 
  ∑  

  
 

 
         , 

where g = 2.00) for seven non interacting Cr3+ ions and the appropriate heterometal, 

which is 14.13 emu K mol-1 for 11, 17.50 emu K mol–1 for 12 and 13.13 emu K mol-1 for 

13. The value of mT falls as the temperature falls for each of the compounds; which 

indicates that there is antiferromagnetic exchange within the rings. The 2 K value of 

mT for 11 is 0.31 emu K mol-1, for 12 is 0.99 emu K mol-1 and for 13 is 1.76 emu K mol-

1. This is consistent with ground spin states of S = 1/2 for 11, S = 1 for 12 and S = 3/2 for 

13. The ground spin states are confirmed further by field dependent magnetization 

measurements at 2 K, the Brillouin function saturates at 0.99 Nβ for 11, 2.09 Nβ for 12 

and 3.02 Nβ for 13 (Msat = gS). 

 

The magnetic susceptibility and magnetization data has been modelled with the 

following exchange spin-Hamiltonian: 

 ̂          ∑ ̂ 

 

   

 ̂  

Equation III.1 
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The magnetic data and simulations of are shown in Figures: III.4 and III.5 (11); III.6 III.7 

(12); III.8 III.9 (13). Best fit parameters are in Table III.1 using the exchange scheme 

defined  in Figure III.10. 

 

Figure III.4: The magnetic susceptibility data of [Cr7NiF3(Etglu)(O2C
tBu)15(phpy)] (11) 

measured on a polycrystalline powdered sample which was fixed with eicosaine. Left: 

temperature dependent susceptibility at 0.1 T, Right: temperature dependent 

susceptibility at 0.1 T plotted as mT vs. T. The solid black lines were calculated with 

the parameters given in Table III.1. 
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Figure III.5: The field dependent magnetization at 2 K of 

[Cr7NiF3(Etglu)(O2C
tBu)15(phpy)] (11) measured on a polycrystalline powdered sample 

which was fixed with eicosaine.  
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Figure III.6: The magnetic susceptibility data of [Cr7MnF3(Etglu)(O2C
tBu)15(phpy)] (12) 

measured on a polycrystalline powdered sample which was fixed with eicosaine. Left: 

temperature dependent susceptibility at 0.1 T, Right: temperature dependent 

susceptibility at 0.1 T plotted as mT vs. T.  
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Figure III.7: The field dependent magnetization at 2 K of 

[Cr7MnF3(Etglu)(O2C
tBu)15(phpy)] (12) measured on a polycrystalline powdered sample 

which was fixed with eicosaine.  
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Figure III.8: The magnetic susceptibility data of [Cr7ZnF3(Etglu)(O2C
tBu)15(phpy)] (13) 

measured on a polycrystalline powdered sample which was fixed with eicosaine. Left: 

temperature dependent susceptibility at 0.1 T, Right: temperature dependent 

susceptibility at 0.1 T plotted as mT vs. T. 
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Figure III.9: The field dependent magnetization at 2 K of 

[Cr7ZnF3(Etglu)(O2C
tBu)15(phpy)] (13) measured on a polycrystalline powdered sample 

which was fixed with eicosaine.  
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Figure III.10: An annotated picture of a purple-Cr7M wheel defining the differing J-

values used to model the magnetic susceptibility data. 

 

Table III.1:  The spin-Hamiltonian parameters which have been used to model 

compounds 11, 12 and 13. 

 

Parameter Purple-Cr7Ni (11) Purple-Cr7Mn (12) Purple-Cr7Zn (13) 

J1 -5.90 cm-1 - 5.90 cm-1 - 5.90 cm-1 

J2 - 8.66 cm-1 - 6.01 cm-1 n.a. 

J3 - 8.66 cm-1 - 4.00 cm-1 n.a. 

J4 - 8.00 cm-1 - 8.00 cm-1 - 8.00 cm-1 

giso (susceptibility) 1.99 1.98 2.01 

giso (magnetization) 1.88 2.01 1.96 
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The simplest model would be to model the magnetic data with a single isotropic 

exchange interaction. The magnetic data of compound 11 has been previously 

modelled with a single J-value of 8.00 cm-1, a good fit of the experimental data has 

been achieved with this method.2 However the magnetic data of compounds 12 and 13 

cannot be fitted with a single J-value. Plus it makes little chemical sense to have a 

single exchange term when there are 8 unique interactions. However there is a need to 

avoid over-parameterization, so the structure has been analysed and certain 

parameters have been fixed to literature values. There are four chemically distinct 

bridging arrangements: (i) Cr-Cr involving a fluoride and two carboxylates, (ii) Cr-M 

involving one fluoride and two carboxylates, (iii) Cr-M involving one fluoride and (iv) 

one carboxylate and Cr-Cr involving an alkoxide and two carboxylates. Hence, in our 

model we use four distinct J-values, J1-4 respectively (see Figure III.10). The J1 

interaction is equivalent to what has been determined for the Cr∙∙∙Cr interaction of 

green-Cr7M wheels from the modeling of INS and EPR data.3, 4 The J2 interaction is 

also equivalent to Cr∙∙∙MII interaction in green-Cr7M wheels, hence the J2 term has also 

been fixed to literature values. This gives one free variable for 13, namely J4, and two 

for 11 and 12, namely J3 and J4.  The J4 term has been fixed to be common to all three 

compounds, hence reducing the number of variables further. The g-values have been 

restrained to be within sensible values. Using this procedure and fitting to the 

magnetization and the magnetic susceptibility data simultaneously, a good fit of the 

experimental data has been achieved. Different g-values have been used to model the 

magnetic susceptibility and the magnetization; this is due to limitations of the 

MAGPACK software.5  From the J-values which have been determined a zero-field 

energy level diagram can be calculated using MAGPACK.5 The 12 lowest lying spin 

states of compounds 11, 12 and 13 are shown in Figure III.11.   
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Figure III.11: An zero field energy level diagram of the 12 lowest lying total spin states 

of 11 purple-(Cr7Ni), 12 purple-(Cr7Mn) and 13 purple-(Cr7Zn). The parameters used to 

calculate the energy levels are given in Table III.3. This energy level diagram was 

calculated using the program “MAGPACK”. 

 

The calculated ground states of compounds 11, 12 and 13 are S =1/2, 1 and 3/2 

respectively, consistent with the low temperature limit of mT and Msat values. There is 

a gap between the ground state and the first excited state of 13.46 cm-1 for 11, 13.76 

cm-1 for 12 and 8.27 cm-1 for 13. Therefore we should not expect the effective spin 

ground state to be thermally isolated from the first excited state at the liquid helium 

temperatures.  
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III.3.2 UV / Visible Absorption Spectroscopy of Purple and Green Cr7M Wheels 
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Figure III.12: UV/visible spectra of compounds 2-4 and 11-13, recorded at room 

temperature. 

 

The UV/visible spectra of the purple-Cr7M wheels (11 to 13) and the green-Cr7M (2 to 

4) have been recorded in hexane at room temperature (Figure III.12). The UV/visible 

spectra consist of two broad peaks which resemble that of monomeric Cr3+ with two of 

the three expected spin allowed d-d absorptions.6 The electronic ground state of a d3 

metal ion in octahedral symmetry is 4A2. The peak which is observed in both families at 

425 nm, originates from a 4A2 → 4T1 transition. The peak which is at 560 nm in the 

purple family and 625 nm in the green family corresponds to a 4A2 → 4T2 transition.  The 

longest wavelength transitions give Δoct directly: for the purple wheel family this is 

17,874 cm-1 and for the green family 16,177 cm-1.  The value of Δoct is bigger in the 

purple wheel family. This is due to the replacement of five very weak field fluorine 

ligands with stronger field alkoxide ligands in the purple wheels. The molar extinction 
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coefficients of the purple wheel family are much higher than those of the green wheel 

family. 

 

III.3.3 EPR Study of [Cr7NiF3(Etglu)(O2C
tBu)16(phpy)]   

 

EPR spectra of the molecular wheel [Cr7NiF3(Etglu)(O2C
tBu)16(phpy)] (11) have been 

previously reported.1 As described in section III.3.1, the magnetic measurements show 

a doublet ground spin state and quartet excited spin state. The EPR data has been 

modelled with the spin-Hamiltonian shown in Equation II.1. The EPR spectrum of 11 at 

5 K shows a resonance from an S = 1/2 state which can be fitted with an axially 

symmetric set of g-values, gxy = 1.84, gz = 1.78 and isotropic line widths of 65 G. The 

EPR spectrum of the green analogue [H2NR2][Cr7NiF8(O2C
tBu)16] (2) can be modelled 

with an axially symmetric set of g-values, gxy = 1.84 and gz =1.74 and isotropic line 

widths of 100 G (Figure III.13).7 
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Figure III.13: EPR spectra of polycrystalline samples of 

[Cr7NiF3(Etglu)(O2C
tBu)16(phpy)] (11)  and [H2NR2][Cr7NiF8(O2C

tBu)16] (2)  at 5 K Q-

band frequency. 

 

The g anisotropy is considerably better resolved in compound 11 than in compound 2. 

This can be partially attributed to the slightly larger g anisotropy in 11, but it is largely 

due to the reduction in line width. The narrower line width of 11 could be due to there 

being five less bridging fluoride ions (19F, I = ½) which may be a source of unresolved 

hyperfine interactions. 

 

III.3.4 EPR Study of [Cr7MnF3(Etglu)(O2C
tBu)15(phpy)]    

 

A EPR study of the molecular wheel [Cr7MnF3(Etglu)(O2C
tBu)16(phpy)], compound 12, 

was carried out at X-, Q- and W-band frequencies (Figures III.14, III.15 and III.16 

respectively).  
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Figure III.14: Variable temperature EPR spectra of a powdered polycrystalline sample 

of [Cr7MnF3(Etglu)(O2C
tBu)15(phpy)] (12) at X-band frequency. 
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Figure III.15: Variable temperature EPR spectra of a powdered polycrystalline sample 

of [Cr7MnF3(Etglu)(O2C
tBu)15(phpy)] (12) at Q-band frequency. 
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Figure III.16: Variable temperature EPR spectra of a powdered polycrystalline sample 

of [Cr7MnF3(Etglu)(O2C
tBu)15(phpy)] (12) at W-band frequency. 

 

Magnetic measurements and fitting with MAGPACK (see section III.3.1), lead to a 

picture of the electronic structure where there is an effective ground spin state of S = 1, 

with the first excited spin state being S = 2.  Below 20 K EPR measurements of 

polycrystalline powders give rich temperature dependent spectra. At all of the 

frequencies which were measured, the spectra become much broader above 20 K. By 

observing the temperature dependences of the resonances it is clear that more than 

one spin state is populated even at 5 K. This is most apparent at W-band frequency, 

where the high resolution allows assignment of each resonance to either S = 1 or S = 2 

(Figure III.17).  
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Figure III.17: EPR spectrum of a polycrystalline sample of  

[Cr7MnF3(Etglu)(O2C
tBu)15(phpy)] (12) at W-band frequency at 5 K and 10 K. Blue stars 

indicate that the resonance originates from the ground spin state and green stars are 

highlighting the resonances from the first excited spin state. 

 

The SEL approach has been used to model the data. Using this assumption, for the 

purple-(Cr7M) family the ground spin state and the first excited spin state have been 

modelled independently, and then summed.  The S = 1 ground state can be modelled 

with the following parameters: D = -0.547 cm-1, E = 0.09 cm-1 and giso = 2.01 (Figure 

III.18). There is not enough resolution to model the S = 2 spin state. To provide enough 

information to determine the spin-Hamiltonian parameters of the S = 2 spin state a 

single crystal EPR study needs to be performed. 
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Figure III.18: 5 K W-band experimental powder EPR spectrum and simulation of 

[Cr7MnF3(Etglu)(O2C
tBu)15(phpy)] (12) using the following spin-Hamiltonian parameters: 

S = 1: D = -0.547 cm-1, E = 0.09 cm -1, and giso = 2.01. At frequency  = 93.9538 GHz 

and with Gaussian isotropic line-widths of 100 G. 

 

The resonance at ~ 16,000 G originates from a formally forbidden ∆Ms = ± 2 transition 

in the S = 1 spin state (Figure III.19), and is sometimes called the half field transition. 

This formally forbidden transition may be observed when    ⁄   
 ⁄ .8 It is observed at 

a field position which is roughly half of that for g ≈ 2.  
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Figure III.19: (a) An energy level diagram depicting the ∆ms = ± 2 transition which is 

the origin of the half field transition. (b) 5 K W-band experimental spectrum of 12 (red 

line) and simulation (black line). The hyperfine splitting was modelled with 

 Aiso = 0.0146 cm-1.   

 

The manganese (55Mn I = 5/2) hyperfine structure of this transition has been resolved in 

the 5 K to 20 K W-band spectra and is also the cause of the unusual “squaring” of the 

half field resonance in the Q-band spectra.   

 

Figure III.20 compares the 5 K W-band spectra of compound 12 with the green 

analogue which is  [H2NR2][Cr7MnF8(O2C
tBu)16]  (3). The EPR spectrum of 3 can be 

modelled with the following spin-Hamiltonian parameters: D = + 0.800 cm-1, E = 0.085 

cm-1,  = 0.106, giso = 2.00 and isotropic line widths of 200 G.7 
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Figure III.20: EPR spectrum of a powdered polycrystalline samples of 12 (red line) and 

3 (black line) at W-band frequency at 5 K.  

 

III.3.4.1 Interpretation of the EPR Data of [Cr7MnF3(Etglu)(O2C
tBu)15(phpy)] (12)    

 

In comparison to 3, compound 12 has considerably narrower line widths, possibly due 

to the reduction of 19F unresolved hyperfine interactions. Due to the narrower line 

widths, the 55Mn2+ hyperfine splitting of the half-field resonance of compound 12 has 

been resolved. The hyperfine structure of the green-Cr7M family has never been 

resolved. The hyperfine splitting in the 5 K W-band spectrum of 3 can be fitted with Aiso 

= 0.0147 cm-1. This value is larger than a typical Mn2+ ion in an octahedral geometry. 

For example the hyperfine splitting of an Mn2+ ion surrounded by an octahedron of 

fluoride doped in a single crystal of K2MgF4, Aiso was found to be  ~0.0090 cm-1.9 A 

crude explanation of the large hyperfine value can be found by analysis of the single 

ion projection coefficients, ci, (Appendix VIII.2) of the eight metal ions. The ci 

coefficients relate the total spin hyperfine coupling constants with those of the eight 

individual metal centres. The values of ci for Cr7Mn are shown in Table III.2. Under the 
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SEL approximation we only need to consider the projection coefficient of the 55Mn2+ ion, 

and from this we should expect to see a hyperfine splitting of x 1.75 that of an isolated 

55Mn2+ ion (1.75 x 90 G = 157.5 G). This is in good agreement with the experimental 

value of 147 G. This assumes that the hyperfine coupling to 55Mn2+ is only due to the 

electrons on the Mn2+ ion. 

 

 Table III.2: Single ion projection coefficients (ci) and zero field splitting projection 

coefficient (di) of the ground spin state S =1 of Cr7Mn. The vector coupling scheme 

used is described in Figure I.5.10 

 

Metal  

Site 
Cr(1) Cr(2) Cr(3) Cr(4) Cr(5) Cr(6) Cr(7) Mn(8) 

ci -0.525 0.45 -0.525 0.45 -0.525 0.45 -0.525 1.750 

Di 0.095 0.060 0.095 0.060 0.095 0.060 0.095 2.800 

 

Compound 12 has a smaller value of D than compound 3 the S = 1 ground state. Table 

III.2 shows the zero field splitting (d) projection coefficients of a Cr7Mn wheel, they 

relate the D tensor of the effective spin state of the wheel with the D tensors of the 

individual metal centres. The Mn2+ centre has a higher di projection coefficient than the 

seven other metal centres (DS=1 = 0.56 DCr + 2.80 DMn). At the Mn2+ centre we have a 

coordination environment of MnO3F2N in 12 and in 3 MnO4F2; we have replaced one 

oxygen donor (pivalate) with a nitrogen donor (phenyl-pyridine) in 12. In the 

spectrochemical series of ligands the N atom of a phenyl-pyridine is a stronger field 

ligand than the O atom of a pivalate group. A stronger field ligand has the effect of 

increasing ∆oct; therefore ∆oct will be larger in compound 5. An increase in ∆oct will mean 
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reduced mixing with excited states via SOC (see section I.3). This means that we 

should expect a smaller value of D in compound 12. Examples of the relationship 

between ligand field strength and the D tensor can be found in the literature.11 12 

 

The E/D () ratio is a measure of rhombicity. In compound 12,  is higher than 

compound 3 for both spin states. This can be rationalized as there are 5 different 

coordination geometries in compound 12 and just three in compound 3 The higher of 

12 indicates lower symmetry. 

 

III.3.5 EPR Study of [Cr7ZnF3(Etglu)(O2C
tBu)16(phpy)]  

 

Multi-frequency (W-, Q- and X-band) powder spectra were obtained for 

[Cr7ZnF3(Etglu)(O2C
tBu)16(phpy)] (13) giving well resolved, temperature dependent 

spectra below 20 K. At 5 K, there are features in the spectrum for the spin ground state 

of S = 3/2 and the sharp feature at g ≈ 2.00 arises from the S = 1/2 first excited state. The 

temperature dependence of the resonances can be used to assign the spin state that 

they originate from. This analysis has been done in a similar fashion to compound   12. 

W-band EPR spectra measured at 5 and 10 K are shown in Figure III.21. The green 

star indicates a resonance which originates from an excited state and the blue stars 

highlight those from the ground spin state. 
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Figure III.21: EPR spectra of a polycrystalline sample of 

[Cr7ZnF3(Etglu)(O2C
tBu)15(phpy)] (13) at W-band frequency at 5 K and 10 K. Blue stars 

indicate that the resonance originates from the ground spin state and green stars 

highlight the resonances from the first excited spin state. 

 

The resonances for the S = 3/2 ground state can be simulated with an axially symmetric 

set of g values: gxy = 1.96, gz = 1.98, with zero field splitting parameters of D = -0.329 

cm-1 and   E = 0.076 cm-1. The S = 1/2 excited state can be simulated with: gxy = 1.97 

and gz =1.98 (Figure III.22). 
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Figure III.22: 5 K W-band experimental powder EPR spectrum and simulation of 

[Cr7ZnF3(Etglu)(O2C
tBu)15(phpy)] (13). The following spin-Hamiltonian parameters that 

have been used to fit the experimental spectrum; S = 3/2: D = -0.329 cm-1, E = 0.076 cm 

-1, gxy = 1.96 and gz =1.98. S = 1/2: gxy = 1.97 and gz = 1.98. At frequency  = 93.06387 

GHz, with Gaussian isotropic line-widths of 100 G. 

 

Figure III.23 compares the W-band spectra of compound 13 with the green analogue 

[H2NR2][Cr7ZnF8(O2C
tBu)16] (compound  4). 
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Figure III.23: EPR spectra of a powdered polycrystalline samples of 4 (red line) and 13 

(black line) at W-band frequency at 5 K. 

 

The W-band spectra of compounds 4 and 13 are considerably different from one 

another. 

 

III.3.5.1 Interpretation of the EPR Data of [Cr7ZnF3(Etglu)(O2C
tBu)15(phpy)] (13)    

 

Compound 13 has narrower line widths than compound 4. A possible explanation of 

this is analogous to that given for compounds 3 and 12.  

 

The value of the ground state D tensor is much larger in compound 4 compared to 13. 

This can be explained by analysis of the coordination environment of the seven 

paramagnetic Cr3+ metal centres. The di projection coefficients for the ground state are 

given in Table III.3, derived from the coupling scheme given in Figure III.10. 
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Table III.3: Single ion projection coefficients (ci) and zero field splitting projection 

coefficient (di) of the ground spin state S = 3/2 of Cr7Zn. The vector coupling scheme 

used is described in Figure I.5.10 

Metal  

Site 

Cr(1) Cr(2) Cr(3) Cr(4) Cr(5) Cr(6) Cr(7) Zn(8) 

ci 0.700 -0.600 0.700 -0.600 0.700 -0.600 0.700 0.00 

Di 0.318 0.200 0.318 0.200 0.318 0.200 0.318 0.00 

 

The di projection coefficients of the seven Cr3+ ions take values of 0.318 and 0.200, 

which alternate around the wheel, the total zero field splitting arises from these 

individual Cr3+ ions. From this it can be seen that it is sensible to look towards the 

coordination chemistry of the Cr3+ metal centres.  In compound 13 there are five 

bridging alkoxide groups, replace the bridging fluoride ligands in compound 4. Fluoride 

ligands are a weaker field ligand than an alkoxide ligand, therefore 13 will have a larger 

value ∆oct than 4. This has been confirmed by UV/visible spectroscopy in section III.3.2. 

We can therefore expect there to be less SOC in compound 13, and the D tensor to be 

smaller.  

 

The  value is larger for 13 and this can be explained by the larger number of different 

coordination environments at the metal centres in comparison to compound 4. There is 

a greater deviation away from axial symmetry in 4. This is reflected in the larger value 

of , which is close to the rhombic limit of E/D = 1/3.  
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III.3.6 Single Crystal Study of [Cr7NiF3(Etglu)(O2C
tBu)15(H2O)] 

 

A partial single crystal EPR study at K-band frequency of 

[Cr7NiF3(Etglu)(O2C
tBu)15(H2O)] (14) was attempted in order to determine the principal 

directions of the g-matrix in relation to the structure of the octametallic wheel.  

Compound 14 crystallizes in an orthorhombic P212121 space group and a single crystal 

was indexed (see Figure III.24). In a general orientation there will be 4 magnetically 

inequivalent sites, collapsing to 2 when the field is along a crystal plane and 1 when the 

field is orientated along a crystal axis. 

 

Figure III.24: A schematic diagram demonstrating how the Cr7Ni orthorhombic crystal 

has been indexed. 

 

Preliminary rotation experiments, performed normal to the large flat face of the plate 

crystal that contains the crystallographic a axis, show considerable anisotropy (Figure 

III.25). At certain orientations there is a clear structure in the spectra, with separations 

of ca. 30 G. It is possible that these features could be due to hyperfine interaction with 

bridging F- ions within the wheel. 
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Figure III.25: EPR spectra at K-band frequency of a orthorhombic single crystal of 

[Cr7NiF3(Etglu)(O2C
tBu)15(H2O)] (14) at 10 K.  

 

This study is incomplete, as spectra from two further, mutually orthogonal planes of 

rotation will be required in order to perform the required analysis using the method of 

Schonland.13 The resolution is insufficient to resolve the magnetically inequivalent 

sites, thus making analysis impossible. 
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III.4 Conclusions 

 

The spin-Hamiltonian parameters which have been determined for the ground states of 

the purple-Cr7M and green-Cr7M wheels are summarized in Table III.4. 

Table III.4: The spin-Hamiltonian parameters of the ground states of the green and 

purple Cr7M wheels. 

Compound D (cm-1) E (cm-1)  = E/D g-value Line width 

(G) 

(11) 

Purple-Cr7Ni 

 

N/A N/A N/A 
gxy = 1.84 

gz = 1.78 
65 

(2) 

Green-Cr7Ni 
N/A N/A N/A 

gxy = 1.84 

gz = 1.74 
100 

(12) 

Purple-Cr7Mn 
-0.547 0.090 0.165 giso = 2.01 100 

(3) 

Green-Cr7Mn 
+0.800 0.085 0.106 giso = 2.00 200 

(13) 

Purple-Cr7Zn 
-0.329 0.076 0.231 

gxy = 1.96 

gz = 1.98 
100 

(4) 

Green-Cr7Zn 
+0.410 0.041 0.106 giso = 2.00 200 

 

Magnetic and EPR measurements have confirmed that the purple wheels have the 

same ground spin states as the green wheels. Hence an equivalent coupling scheme 

can be used for both the green and purple wheels. The purple wheels have a larger 

gap between the ground state and the first excited state in comparison to the green 
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wheel family. For the purple wheel family this gap is ~13.5 cm-1 for 11, ~13.7 cm-1 for 

12 and ~8.2 cm-1 for 13. For the green wheel family, there is a gap of ~10.0 cm-1 for 2, 

~12.9 cm-1 for 3 and ~7.0 cm-1 for 4. The JCrCr-values are larger for the purple wheel 

family. There is a 35% increase in JCrCr-values from 5.90 cm-1 to 8.00 cm-1. This must 

mean that there is a better exchange pathway via bridging alkoxide groups compared 

to bridging fluoride ions. The ground states of the purple wheel family have smaller D 

values than the green wheel family. This is due to crystal field effects. The ground state 

of the purple wheel family also has larger  values; this is due to the purple wheels 

being less symmetrical. 

 

The purple wheel family has narrower EPR line widths than the green wheel family; this 

is partly due to the larger ground state- to excited state energy gap. The narrower line 

widths can also be attributed to a reduction in the number of bridging 19F- ions, which 

may be a source of unresolved hyperfine interactions. It is likely that longer spin 

relaxation times will be measured for the purple wheel family due to the larger ground 

state to excited state energy gap and the reduction in 19F- hyperfine. The narrow line 

widths of 11 will allow for more accurate determination of the interaction between linked 

dimers of 11 (see chapter IV).  
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IV.1 Introduction 

 

Recent times have seen the advent of several powerful quantum algorithms.1-3 This 

has sparked a considerable research effort into development of molecular-scale 

devices for uses in quantum information processing (QIP).4-8 It has been proposed that 

linked dimers of [Cr7NiF3(Etglu)(O2C
tBu)15(Et2O)] (purple-Cr7Ni) may have applications 

in QIP.9, 10  

 

This introduction will briefly discuss some of the concepts in QIP that are relevant to 

the implementation of the purple-{Cr7Ni} wheels in devices. No attempt has been made 

at an in depth discussion, as there are several good, accessible, introductory books 

available on the subject.11, 12 In classical computing, a bit is a basic unit of information 

and can only have one of the two states: 0 or 1. A quantum bit (qubit) is a unit of 

quantum information, which consists of a two-level quantum mechanical system, where 

the two states are conventionally written as 0  and 1 , which corresponds to the 0 or 

1 state of a classical bit. 

 

There are two important differences between a qubit and a classical bit. Firstly a qubit 

can exist as a linear combination of states, which are known as superpositions. 

Secondly, multiple qubits can exhibit quantum entanglement, which is a quantum 

phenomenon in which the states of two or more quantum systems cannot be described 

independently from one another. For QIP to be implemented, there must controlled 

generation of quantum entanglement between qubits. A result of this phenomenon is 

that the amount of information that can be contained in an entangled state of n qubits 

grows exponentially with n, and not linearly as in the case of classical bits. The 

combination of these two properties, linear superposition and entanglement, enable the 
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possibility of performing a large number of operations in parallel. This would enable 

Shor’s2 and Grover’s1 algorithms to be implemented. In 2003 Loss proposed that QIP 

could be implemented with antiferromagnetically coupled molecular spin clusters with 

an effective spin state of S = 1/2 .
13  His proposal was that two of these S = 1/2 clusters 

could be joined together to form a two-qubit gate, where between the two halves of the 

dimer there is a weak and switchable interaction (J*). A schematic diagram of this 

proposal can be seen in Figure IV.1. The inter-cluster exchange interaction J* must be 

much weaker than the intra-cluster exchange interaction J. The Manchester Magnetism 

group is working towards finding a physical realisation of this proposal. 

 

 

 

Figure IV.1 A picture of the proposed two-qubit gate taken from reference13.  

 

There are several examples in the literature of linking discrete polymetallic cages into 

larger supramolecular structures by coordination chemistry. An example of this is the 

work of Yamashita’s group where they have linked together {Mn4} single molecule 

magnets into 2D and polymer networks. The magnetic properties of the polymers are 

controlled by the choice of organic linker.14, 15 There is only one example of a dimer of 

clusters. Hill and co-workers conducted EPR studies on two dimers of the SMMs 

[Mn4O3Cl4(O2CEt)3(py)3]2∙R (R = MeCN or C6H14).
16 These two dimers are formed by 
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crystallization from different solvents and the dimer is formed only via H-bonding. 

Therefore the chemistry of these dimers is not easily controllable. 

 

 In contrast, the chemistry of purple-(Cr7Ni) wheels is highly controllable allowing 

covalent linking of the clusters. Purple-(Cr7Ni) wheels have a rich coordination 

chemistry and are robust building blocks. We are able to engineer weak magnetic 

couplings between purple-Cr7Ni wheels by relatively simple synthetic chemistry. 

Purple-(Cr7Ni) wheels have been identified as being well suited to applications in QIP 

as they have a suitable energy level structure. The seven chromium atoms and the 

single Ni are antiferromagnetically coupled resulting in an effective spin-1/2 system at 

sufficiently low temperatures.10   They have few proximal F- ions (I = 1/2) and as a result 

long decoherence times have been measured for [Cr7NiF3(Etglu)(O2C
tBu)15(phpy)] (11) 

in comparison to [H2NMe2][Cr7NiF8(O2C
tBu)16] (5).17  The magnitude of the exchange 

coupling J between the two wheels can be controlled by choice of the N-donor linker.  

 

IV.2 The Coordination Chemistry of the Purple-Cr7M Wheels 

 

As described in chapter three, at the heterometal site of a purple-{Cr7Ni} wheel, there is 

a labile ligand which can be a water molecule, acetonitrile or diethyl ether. This labile 

ligand can be substituted for a variety of organic ligands. It is through this functionality 

that the single purple-(Cr7Ni) wheels can be linked together into oligomers through the 

use of diimines.10  The organic linkers which have been used are shown in Figure IV.2. 
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Figure IV.2: Organic Linkers: 4,4’-bipyridine (15), 4,4’-azopyridine (16), 1,2-di(4-

pyridyl)ethyne (17), trans-(1,2)-di(4-pyridyl)ethene (18), 1,2-bis(4-pyridyl)ethane (19) 

and 1,2-ethanediol-1,2-di-4-pyridine (20).  

 

Organic linkers of varying length have been selected, for example 4,4’-bipyridine is 

shorter than trans-(1,2)-di(4-pyridyl)ethane. This is to test if there is a relationship 

between D and the length of organic linker. The series contains unsaturated and 

saturated molecules, this to test the effect of conjugation on magnetic superexchange. 

1,2-bis(4-pyridyl)ethane, trans-(1,2)-di(4-pyridyl)ethene and 1,2-di(4-pyridyl)ethyne 

have been selected because they contain single, double and triple bonds respectively. 

This is to test if the strength of interaction is dependent on the hybridisation of the 

carbon-carbon bonds. 4,4’-azopyridine and trans-(1,2)-di(4-pyridyl)ethene  are 

isoelectronic, they have been chosen to test if there is more efficient magnetic 

superexchange between nitrogen or carbon atoms. Figure IV.3 is a reaction scheme 

depicting the coordination chemistry of the purple Cr7Ni wheels. In this study EPR 

spectroscopy has been used to determine electronic interaction between the two 

halves of a series of (Cr7M)2-L dimers.  

(15) 4,4’-bpy 

(16) pyN=Npy 

(17) pyCCpy 

(18) pyCHCHPy 

(19) pyCH
2
CH

2
py 

(20) pyCH(OH)CH(OH)Py 
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Figure IV.3: Reaction scheme depicting the coordination chemistry of purple-Cr7Ni 

wheels. All hydrogen atoms have been removed for clarity. 

 

The synthesis has been designed so that [Cr7NiF3(Etglu)(O2C
tBu)15(phpy)] (11) 

approximately equals one half of the dimeric [{Cr7NiF3(Etglu)(O2C
tBu)15}2(4,4’-bpy)]  

  

[Cr
7
NiF

3
(Etglu)(O

2
C

t

Bu)
15

(phpy)] (11) 
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[{Cr
7
NiF

3
(Etglu)(O

2
C

t

Bu)
15

}
2

(4,4’-bpy)] (15) 

  

  

[Cr
7
NiF

3
(Etglu)(O

2
C
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Bu)
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(Et
2
O)] (14) 

  

SUBSTITUTION 

SITE 



118 

 

 (15). Figure IV.4 shows Q-band EPR spectra of powdered samples of 

[Cr7NiF3(Etglu)(O2C
tBu)15(Et2O)] (14) and 11. The EPR spectrum of 14 shows an 

asymmetric single resonance at 4 K due to its Seff = 1/2 ground spin state. When the 

solvent molecule is substituted for 4-phenylpyridine, a spin doublet is still observed but 

with increased g-anisotropy. Compound 11 can be modelled with an axially symmetric 

set of g-values, gxy = 1.84 and gz = 1.78.  
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Figure IV.4: EPR spectra of powdered sample of compounds 

[Cr7NiF3(Etglu)(O2C
tBu)15(Et2O)] (14) and [Cr7NiF3(Etglu)(O2C

tBu)15(phpy)] 

(11) at 4 K at Q-band frequency. 

  

When 4,4’-bipyridine is used in the substitution reaction, compound 15 is formed where 

the two wheels are coupled through the 4,4’-bipyridine. When trans-(1,2)-di(4-

pyridyl)ethene is used in a substitution reaction with 11 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2](pyCHCHpy)] (18) is formed. A spin triplet is observed for 

both 15 and 18 at low temperatures, which proves that the wheels are also coupled 

electronically. Figure IV.5 shows the 5 K Q-band frequency EPR spectra and 

simulations of compounds 11, 15 and 18. 
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Figure IV.5: EPR spectra at Q-band frequency of compounds 

[Cr7NiF3(Etglu)(O2C
tBu)15(phpy)] (11), [{Cr7NiF3(Etglu)(O2C

tBu)15}2(4,4’-bpy)] (15) and 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2](pyCHCHpy)] (18), the black lines are experimental spectra 

and the red lines are simulations. 

 

The powder EPR spectrum of 15 can be modelled as S = 1 with an axially symmetric 

set of g-values, which deviate slightly from those of 11, and a small positive zero-field 

splitting parameter: D = + 0.013 cm-1, gxy = 1.84 and gz = 1.77. The EPR spectrum of 

18 can be fitted with: D = + 0.009 cm-1, gxy = 1.84 and gz = 1.77. Compound 15 has a 

larger D value than 18, this implies that there is stronger exchange between the wheels 

when there is a shorter organic linker. This indicates that the interaction between the 
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wheels in a dimer can be tuned. This chapter will investigate further whether the 

strength of the exchange interaction between a dimer of purple-{Cr7Ni} wheels can be 

controlled by the choice of bridging ligand, and what factors will afford a stronger or 

weaker interaction. 

 

IV.3 Generation of a Spin Triplet within Di-ring Cluster 15 

 

The interaction between the two molecular wheels in dimer 15 is directly routed through 

the nickel centres via the organic linker. Specific heat and magnetic measurements 

performed at 30mK by W. Wernsdorfer and co-workers have characterized this 

interaction.9 They have found that for 15 the wheel-wheel interaction is weakly 

antiferromagnetic, giving an S = 0 spin ground state (which is EPR inactive) and an S = 

1 excited state (which is EPR active). There is very small gap between the singlet and 

triplet state (≈ 0.04 cm-1) therefore the triplet excited state is thermally accessible at the 

liquid helium temperature (4.2 K) at which EPR measurements are performed. The 

microscopic intermolecular coupling between the two wheels (named A and B) of 15 

was modelled with the following Hamiltonian: 

 

        
    

  

Equation IV.1 

 

It was reported that the wheel-wheel J’-value of 15 was ≤ 0.1 cm-1.  As a wheel-wheel 

J-value of this magnitude is too small to be measured by following VT intensity of triplet 

transitions in the EPR. However, the triplet ZFS is reporting on the anisotropic part of 
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the exchange and can therefore be used as a simple gauge of the interaction without 

the need for mK micro-squid measurements.  

 

IV.4 Results and Discussion 

 

IV.4.1 EPR Study of [{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)]   

 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)]  (16) is a dimer of Cr7Ni molecular wheels. The 

two Cr7Ni wheels are linked via 4,4’-azopyridine, which coordinates to the Ni2+ site of 

each wheel. The structure of 16 in the crystal is shown in Figure IV.7. 

 

Figure IV.6: [{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)] (16). Colours; Cr atoms: purple; Ni 

atom: green; C atoms: black; F atoms: yellow; N atoms: blue; O atoms: red. All H 

atoms have been removed for clarity. The pink asterisked atoms have been used to 

define a Cr∙∙∙Ni∙∙∙Ni∙∙∙Cr torsion angle.  

 

* 

* * 

* 
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The two wheels of the dimer are in a staggered conformation to one another. To 

quantify the conformation of the two wheels and to aid comparison to other members of 

the wheel dimers family, a mean plane has been calculated through the eight metal 

centres in each of the purple-(Cr7Ni) wheels in the dimer. The angle between the two 

planes was found to be 21.37° for 16 (Figure IV.8). An alternative measure is the 

Cr∙∙∙Ni∙∙∙Ni∙∙∙Cr torsion angle as defined in Figure IV.7. The torsion angle for 16 is 

130.74°. A through bond measurement between Ni centres has been made to 

determine if there is a relationship between the length of the organic linker and the 

magnitude of the D tensor of the S = 1 spin state. For 16 this measurement is 16.33 Å. 

The through-space distance between Ni2+ centres is 13.12 Å for 16. 

 

Figure IV.7: Angle between the mean planes of each wheel in 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)]  (16). 

 

EPR spectra have been obtained of powdered samples of 16 at Q-, S- and X-band 

frequencies (figures IV.9, IV.10 and IV.11).  
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Figure IV.8: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)]  (16) at Q-band frequency. 
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Figure IV.9: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)] (16) at X-band frequency. 
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Figure IV.10: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)] (16) at S-band frequency. 

 

Below 20 K at S-, X- and Q-band frequencies the EPR resonances are well resolved 

and are clearly due to an S = 1 spin state. Above 20 K the spectra become much 

broader and single isotropic resonances are observed due to population of further 

excited states.  Figures IV.12 and IV.13 show 5 K Q-band and S-band experimental 

EPR spectra of 16 and simulations. 
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Figure IV.11: EPR spectrum (black line) and simulation (red line) of a powdered 

sample of compound [{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)]  (16) at Q-band 

frequencies. 
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Figure IV.12: EPR spectrum (black line) and simulation (red line) of a powdered 

sample of compound [{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyN=Npy)] (16) at S-band 

frequencies. 

. 
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 All of the (Cr7Ni)2 wheel dimers in this section have been modelled with Equation II.2, 

which is a SEL spin-Hamiltonian for a total spin S = 1. The following spin-Hamiltonian 

parameters have been used to fit the experimental spectra: D = + 0.011 cm-1, gxy = 1.84 

and gz = 1.78. The simulation is sensitive to the sign of D and has been found to be 

positive. 

 

IV.4.2 EPR Study of [{Cr7NiF3(Etglu)(O2C
tBu)15}2](pyCCpy)]      

 

Figure IV.14 shows a crystal structure of [{Cr7NiF3(Etglu)(O2C
tBu)15}2](pyCCpy)] (17). 

The two wheels are linked by 1,2-di(4-pyridyl)ethyne.  

 

Figure IV.13: [{Cr7NiF3(Etglu)(O2C
tBu)15}2](pyCCpy)] (17) Colours are the same as 

before. All H atoms have been removed for clarity. 

 

The torsion angle, calculated in a similar fashion to 16, is 135.30°. There is an angle of 

21.37° between the two planes of the metal centres and a through-bond distance 
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between Ni atoms of 16.34 Å. There is a through-space Ni2+ to Ni2+ distance of 13.68 Å. 

EPR spectra of powdered samples of 17 were performed at Q-, X- and S-band 

frequencies (Figure IV.14, IV.15 and IV.16). 
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Figure IV.14: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCCpy)] (17) at Q-band frequency.
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Figure IV.15: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCCpy)] (17) at X-band frequency. 
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Figure IV.16: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCCpy)] (17), at S-band frequency. 

 

At Q-band frequency the EPR spectrum is clearly a spin triplet. At X-band frequency 

the spin triplet is less well resolved and at S-band (the lowest frequency) the fine 

structure is not resolved. This is due the D tensor of the spin triplet being smaller than 

that was determined for 15 and 16. The powder EPR spectra can be modelled with: D 

= + 0.008 cm-1, gxy = 1.84 and gz = 1.77. The simulations of 17 at Q- and S-band 

frequencies are shown in Figure IV.17 and IV.18 respectively. 

 



129 

 

12000 13000 14000 15000

D
e

ri
v

a
ti

v
e

 I
n

te
n

s
it

y
 (

A
rb

. 
U

n
it

s
)

Magnetic Field (G)

 simulation

 5 K experiment

 

Figure IV.17: EPR spectrum (black line) and simulation (red line) of a powdered 

sample of compound [{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCCpy)] (17) at Q-band frequency. 
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Figure IV.18: EPR spectrum (black line) and simulation (red line) of a powdered 

sample of compound [{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCCpy)] (17) at S-band frequency. 
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IV.4.3 EPR Study of [{Cr7NiF3(Etglu)(O2C
tBu)15 }2(pyCH2CH2py)]  

 

The next purple-(Cr7Ni) dimer in the series is 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCH2CH2py)]  (19). The two wheels of the dimer are 

linked together through 1,2-bis(4-pyridyl)ethane. The two wheels are in a staggered 

conformation to one another. The torsion angle was found to be 133.59° for 19, the 

through-bond Ni2+ to Ni2+ distance is 16.59 Å, the through-space Ni2+ to Ni2+ distance is 

12.89 Å and the angle between the two planes of the metal centres is 33.06°.  The 

structure of 19 in the crystal is shown in Figure IV.19. 

 

 

Figure IV.19: [{Cr7NiF3(Etglu)(O2C
tBu)15 }2(pyCH2CH2py)] (19). 

Colours: same as before. All H atoms have been removed for clarity. 

 

EPR spectra of a powdered sample of 19 were obtained at Q-.S- and X-band 

frequencies (Figures IV.20, IV.21 and IV.22 respectively).  
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Figure IV.20: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15 }2(pyCH2CH2py)] (19), at Q-band frequency. 
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Figure IV.21: Variable temperature EPR spectra of a powdered sample 

of[{Cr7NiF3(Etglu)(O2C
tBu)15 }2(pyCH2CH2py)] (19), at X-band frequency. 
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Figure IV.22: Variable temperature EPR spectra of a powdered sample of  

[{Cr7NiF3(Etglu)(O2C
tBu)15 }2(pyCH2CH2py)] (19), at S-band frequency. 

 

At all the frequencies which have been measured there is no resolved fine structure. 

Hence, the spectra resemble the S = 1/2 spectra of the free wheel. However, the peaks 

are broader than those of 11. This indicates that there is a weak interaction between 

the two halves of the (Cr7Ni)2 dimer. Therefore the spectra have been modelled as S = 

1. The simulation and 5 K experiment at Q-band frequency are shown in Figure IV.23 
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Figure IV.23: EPR spectrum (black line) and simulation of a powdered sample of 

compound 19 at Q-band frequency. 
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Figure IV.24: EPR spectrum (black line) and simulation of a powdered sample of 

compound 19 at S-band frequency. 
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The following spin-Hamiltonian parameters were used to model the experimental EPR 

data: D = +0.005 cm-1, gxy = 1.84 and gz = 1.77. A D value of +0.005 cm-1 is the upper 

limit of the anisotropic exchange. 

 

IV.4.4 EPR Study of [(Cr7NiF3(Etglu)(O2C
tBu)15)2(pyCH(OH)CH(OH)py)] 

 

A multi-frequency, variable temperature EPR study was performed on 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCH(OH)CH(OH)py)] (20). The crystal structure of 

compound 20 is shown in Figure IV.25. The conformation of the two wheels in the 

dimer is atypical to the rest of the family. The two wheels are orientated at almost right 

angles to one another. The measured angle between the two mean planes of the eight 

metal centres in each wheel within the dimer is 72.48°: This is the largest angle in the 

series. The through bond Ni2+-Ni2+ distance was also found to be the longest in the 

series, at 16.78 Å. However the Ni2+ to Ni2+ distance is very short at 10.84 Å. 
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Figure IV.25: [{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCH(OH)CH(OH)py)] (20). Colours; Cr 

atoms: purple; Ni atom: green; C atoms: black; F atoms: yellow; N atoms: blue; O 

atoms: red. All H atoms have been removed for clarity. 

 

The powder EPR spectra of compound 20 are shown below. Measurements were 

made at Q-, X- and S-band frequencies. (Figure IV.26, IV.27 and IV.28 respectively). 
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Figure IV.26: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCH(OH)CH(OH)py)] (20), at Q-band frequency. 
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Figure IV.27: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCH(OH)CH(OH)py)] (20), at X-band frequency. 
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Figure IV.28: Variable temperature EPR spectra of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCH(OH)CH(OH)py)] (20), at S-band frequency. 

 

At all frequencies there are single broad resonances, which are broader than that of 2. 

This indicates a weak interaction, therefore the spectra have been modelled as S = 1. 

The D value determined is the upper limit of the anisotropic exchange. The spectra can 

be modelled with: D = + 0.004 cm-1, gxy = 1.84 and gz = 1.77. The Q- and S-band 

experimental spectra and simulations are shown in Figures IV.29 and IV.30.  
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Figure IV.29: EPR spectrum (black line) and simulation of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCH(OH)CH(OH)py)] (20) at Q-band frequency. 
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Figure IV.30: EPR spectrum (black line) and simulation of a powdered sample of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(pyCH(OH)CH(OH)py)] (20) at S-band frequency. 
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IV.5 Conclusions 

 

Figure IV.31 shows Q-band frequency EPR spectra recorded at 5 K of compounds 15 

to 20. They are ordered by the magnitude of their D tensor. Black dashes have been 

used to highlight the decreasing value of D along the series, by marking equivalent 

transitions within the series. The table below summarizes the spin-Hamiltonian 

parameters of compounds 15 to 20, along with measurements which were taken from 

the crystal structures. 
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Figure IV.31: Q-band spectra of polycrystalline samples of compounds 15 to 20. The 

black dashes highlight the decreasing value of |D|. 
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Table IV.1: Summary of D tensor, through-bond and through space Ni2+ to Ni2+ 

distance, the angle between mean planes of the metal centres in each wheel in a 

dimer, and torsion angle through wheel-linker-wheel for compounds 15 to 20. 

 

Compound Number 

and 

Organic Linker 

D (cm
-1

) 

Through- 

Space 

Ni∙∙∙Ni 

distance 
(Å) 

Through- 

Bond 

Ni∙∙∙Ni 

Distance 
(Å) 

Angle 

Between 

Best 

Planes (
o
) 

Cr∙∙∙Ni∙∙∙ 

Ni∙∙∙Cr 

Torsion 

Angle (
o
) 

15 

 

 

 

+ 0.013 11.218 13.796 8.37 89.90 

16 

 

 

+ 0.011 13.115 16.331 

 

21.37 

 

130.74 

17 

 

 

+ 0.008 13.680 16.339 

 

31.75 

 

135.30 

18 

 

 

+ 0.009 13.430 16.591 33.06 133.59 

19 

 

 

+ 0.005 12.898 16.469 

 

31.75 

 

135.30 

20 

 

 

+ 0.004 10.824 16.784 

 

72.48 

 

113.36 
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 The single purple-(Cr7M) wheels have been linked electronically as well as chemically.  

The individual purple-(Cr7Ni) wheels in the dimers behave as effective S = ½ spin 

clusters at sufficiently low temperatures. Hence a wheel dimer will produce a spin triplet 

and a singlet if there is communication between the two purple-(Cr7Ni) wheels. For 

compounds 15 to 18 there is clearly a spin triplet EPR spectrum below 10 K. For 

compounds 19 and 20 the spectrum is not well resolved, however the EPR spectra of 

these compounds is distinctly broader than that of a single purple-(Cr7Ni). Therefore 

they have been modelled as spin triplet spectra.  

 A relationship between |D| and the organic linker has been established 

It is apparent is that there is a decrease in the magnitude of the D tensor for the 

unsaturated linkers from 15 to 18. When rationalizing these results with molecular 

structure it is evident that there does not appear to be a direct correlation between the 

torsion angles or with the angle between the planes of the metal centres with the D 

tensor. However there does appear to be a trend between the through bond Ni2+∙∙∙Ni2+ 

distance and the D tensor. The shorter unsaturated linkers, when calculated through 

bond, exhibit a larger value of D. This is an intuitive result, as you would expect there to 

be more efficient electronic communication between the two wheels via a shorter 

organic linker. The magnitude of the D tensor is smaller when the wheels are linked by 

an saturated linker, such as compounds 19 and 20. There is a clear difference between 

saturated and unsaturated linkers. There is more efficient magnetic superexchange 

through a fully conjugated -system. Compounds 16 and 18 have isoelectronic organic 

linkers, however 16 has a larger value of D. This may be due to 4,4’-azopyridine being 

a shorter linker. An unexpected result is that 17 has a smaller D value than 18. This 

result is anomalous and further investigation between D and the structure of the 

organic linker is required. 1,2-di(4-pyridyl)ethyne has a shorter through-bond Ni2+∙∙∙Ni2+ 

distance than trans-1,2-di(4-pyridyl)ethene. Perhaps the orientation of the wheels in 18 

promotes more efficient magnetic superexchange between the two wheels. 
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 Quantum computing demands certain pre-requisites; The (Cr7Ni) family can fulfil at 

least some of them already.  

It has been demonstrated that the purple-{Cr7Ni} wheels are robust enough to be linked 

together into larger supramolecular structures. This is important as it would be 

advantageous to use supramolecular chemistry to produce qubits as the synthetic 

techniques which are used are very simple, and they allow for the production of vast 

numbers of regular arrays of molecules. What is now desirable would be to introduce 

switch-ability of the interaction within a {Cr7Ni}2-L dimer, possibly by the use of redox- 

or photo-active linking molecules. This would be an essential feature to implement the 

design of a two-qubit gate, which was given by Loss in 2003.13 A single crystal EPR 

spectroscopy experiment has been attempted on compound 15, these initial rotations 

show considerable anisotropy (See Appendix VIII.3 for further details). Completion of 

this study will be able to relate the electronic structure with the molecular structure of 

the prototype two-qubit gate. 
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V Homometallic Cr3+ Horseshoes and Wheels 
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V.1 Introduction  
 

Physical studies on a family of antiferromagnetically coupled homometallic clusters 

have been pursued. They consist of cyclic arrays of homometallic Cr3+ metal centres in 

either a wheel or horseshoe shaped formation. The structure of [Cr8F8(O2C
tBu)16] (1) 

was first published in 1990.1 Since then it has been the subject of numerous physical 

studies to investigate its magnetic properties. The metal centres within 1 are 

antiferromagnetically coupled to their nearest neighbours, resulting in an S = 0 ground 

state. High frequency (230 GHz) EPR measurements and cantilever torque 

magnetometry have been used to determine the axial zero field splitting of the first two 

excited states. This was found to be D = 1.68 cm-1 for the first S = 1 excited state and D 

= 0.405cm-1 for the next adjacent S = 2 excited state, with an isotropic g-value of 1.98 

for both spin states.2 More recently a new type of Cr8 wheel has been synthesised: 

[Cr8F4(Etglu)(O2C
tBu)15] (21), essentially the homometallic analogue of the purple-Cr7M 

discussed in Chapter III.3 Magnetic susceptibility measurements have been performed 

on both 1 and 21 to determine the exchange interaction between Cr3+ centres. The 

following exchange Hamiltonian was used: 

 ̂          ∑  

 

   

   

Equation V.1 

 

For 20, an exchange interaction between neighbouring Cr3+ centres of J = -5.9 cm-1 has 

been determined.2 For compound 21, much larger J-values of ~-11.5 cm-1 have been 

fitted to SQUID magnetometry and INS measurements.4 The large difference in J-

values has led to further investigation by EPR spectroscopy.  
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Molecular Cr3+ horseshoes are finite metal chains. There are very few examples of 

such species in the literature. Those that have been synthesised include systems 

which consist of long linear chains of metal ions which have been studied for possible 

applications as molecular wires. For example, metal centres are bridged by oligo--

dipyridylamines are known for Ni2+,5 Co2+ 6 and Cr2+.7 Strong exchange terms have 

been determined for these compounds. The Cr3+ horseshoe studied here exist as the 

general formula [CrxFx+5L2x-2]2
3- (where L = carboxylate and x = 6 or 7) and are formed 

from the reaction of pivalic acid, hydrated chromium fluoride and either diethyl amine or 

propylamine, at 140 °C for 16h; for example, [Et2NH2]3[Cr6F11(O2CCMe3)10]2 (22) is 

formed with the following stoichiometry:8 

12CrF3·4H2O + 20HO2C
tBu  + 6HNEt2 →[Et2NH2]3[Cr6F11(O2C

tBu)10]2 

Figure V.1 shows the structure of 22. 

 

Figure V.1: The structure of [Et2NH2]3[Cr6F11(O2C
tBu)10]2 (22) in the crystal. Colours; 

Cr atoms: light green; C atoms: black; F atoms: yellow; N atoms: blue; O atoms: red. 

All H atoms have been removed for clarity. 
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 Between adjacent Cr3+ centres, there is a bridging fluoride ion and two pivalate 

groups, as in the parent molecule compound 1. The horseshoes share the same cyclic 

motif as 1, with either one or two metal centres missing. The two terminal Cr3+ cations 

at the tips of the horseshoe each have three terminal fluoride anions completing the 

coordination sphere. These fluoride anions are involved in hydrogen bonding 

interactions with the secondary ammonium cations at the centre of the structure, thus 

forming a dimer. The terminal fluoride groups have been shown to be labile enough for 

substitution reactions. Thus, the di-horseshoe structures can be split apart into single 

horseshoes by a substitution reaction with a β-diketonates. The β-diketonate ligand 

chelates to the terminal chromium ions of each horseshoe, replacing two of the 

terminal fluorides and breaking the H-bonding interaction between the horseshoe and 

the dialkyl ammonium cation.  

 

V.2 Results and Discussion 

 

V.2.1 An EPR Study of [Cr8F4(Etglu)(O2C
tBu)15]  

 

An EPR study of [Cr8F4(Etglu)(O2C
tBu)15] (21) was performed. The wheel consists of 

eight Cr3+ centres in an octagon. A chiral glutamine molecule is penta-deprotonated 

and bound to the metal centres through all available metal donors. There are three 

bridging fluoride ions. There is one terminal fluoride ion at one of the metal centres. 

This is in an analogous position to the uncharged terminal ligand in purple-Cr7M, thus 

maintaining charge balance. The compound is a deep purple colour and the chromium 

ions are depicted as purple in Figure V.2 to highlight the difference between the green 

homometallic wheel 1. 
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Figure V.2: Top and side views of [Cr8F4(Etglu)(O2C
tBu)15] (21) in the crystal. Colours; 

Cr atoms: purple; C atoms: black; F atoms: yellow; N atoms: blue; O atoms: red. All H 

atoms have been removed for clarity. 

 

Polycrystalline samples of 21 were measured at X-, Q- and W-band frequencies at VT. 

The first two excited states are observed by EPR. Figure V.3 shows the W-band 5 K 

EPR spectrum of 21 and simulation. This simulation was modelled within the SEL, 

using the spin Hamiltonian given in Equation II.1. The following spin-Hamiltonian 

parameters were used to model the S = 1 first excited state: D = 1.215 cm-1, E = 0.15 

cm-1, gxz = 1.97, gy = 2.01; and for the S = 2 next excited state: D = 0.17 cm-1, E = 
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0.003 cm-1, B4
0 

= 0.002 cm-1, giso = 1.97. The B4
0 term is required to account for the 

resonance at 34.780 cm-1. Isotropic line widths of 200 G were used throughout. 
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Figure V.3: 5 K W-band EPR spectrum of [Cr8F4(Etglu)(O2C
tBu)15] (21) and simulation. 

DS=1 = 1.215 cm-1, E = 0.15 cm-1, gxz = 1.97, gy = 2.01. DS=2 = 0.17 cm-1, E = 0.003 cm-1,  

B4
0 = 0.002 cm-1, giso = 1.97. Isotropic line widths of 200 G have been used throughout. 

At  = 94.756 GHz. 
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Figure V.4: 5 K W-band EPR spectrum of [Cr8F4(Etglu)(O2C
tBu)15] (21) and S = 1 + S = 

2 simulation. 
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The magnitude of D for the S = 1 first excited state is in good agreement with INS 

measurements that have been performed by Dr. M. L. Baker of Institute Laue-

Langevin, Grenoble, France using IN5b (Figure V.5) There is zero field splitting of 0.15 

meV (1.215 cm-1) between 0,1  MS  and 1,1  MS .4 
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Figure V.5: Inelastic-neutron-scattering results for [Cr8F4(Etglu)(O2C
tBu)15] (21) 

obtained with an incident wavelength of 6 Å at 2 K, 6 K and 15 K. 

 

Figure V.6 compares the Q-band EPR of 1 and 21. The spectra are distinctly different, 

proving that different spin-Hamiltonian parameters are required to model the EPR data 

of the two compounds.  



152 

 

 

 

Figure V.6: Q-band 5 K EPR spectra of [Cr8F8(O2C
tBu)16] (1) and 

[Cr8F4(Etglu)(O2C
tBu)15] (21). 

 

Compound 21 has a smaller value of D than 1 (for 21, D = 1.68 cm-1 and for 1, D = 

1.215 cm-1). The explanation for this is analogous to what was given for the magnitude 

of the spin-Hamiltonian parameters of the purple-Cr7M wheels in Chapter III. The 

smaller D-value is possibly due to the replacement of fluoride ions with alkoxide 

donors. Oxygen donors are stronger field ligands than fluoride anions. This results in 

21 having a larger value of ∆oct and therefore less SOC, leading to a smaller D tensor. 

The percentage decrease in D-value of 20 and 21 is ~30 %. The percentage decrease 

in D of the purple-Cr7M wheels in comparison to the green-Cr7M (Chapter III) is also 

~30 %.  is larger for compound 21, this can be simply explained by the increased 

number of different coordination environments in 21, thus increasing the rhombicity of 
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the system.  Larger  values were also observed for the purple-Cr7M wheels in 

comparison to the green-Cr7M wheels. 

 

V.2.2 Synthetic and Structural Studies of Hexanuclear Horseshoes 

 

A family of hexanuclear Cr3+ horseshoes were studied. The dimeric horseshoe 22 is the 

parent molecule to two types of monomeric {Cr6} horseshoes 

[Et2NH2][Cr6F7(O2C
tBu)10(acac)2] (23, Figure V.7) and [EtNH2][Cr6F7(O2C

tBu)10(Hfa)2] 

(24, Figure V.9). They are formed from 22 by substitution reactions with acetylacetone 

(acacH) and hexafluoroacetylacetone (hfaH) respectively. The formation of 23 

proceeds with the following stoichiometry: 

[Et2NH2]3[Cr6F11(O2C
tBu)10]2 + 4 Hacac →  

[EtNH2][Cr6F7(O2C
tBu)10(acac)2] + 4 [Et2NH2]F + 4 HF. 

 

Compound 23 is a new compound, details of the synthetic preparation are given in 

section VI.1. It crystallizes in a triclinic P ̅ space group. Crystallographic information of 

23 is given in Appendix VIII.4. Figure V.8 is a crystal packing diagram of 23, it shows 

that the horseshoes are not arranged in pairs. The {Cr6} polymeric horseshoe, 

[Et2NH2]3[Cr6F11(O2C
tBu)10]∙{C6H4-1,4-(OH)2}2 (25) is formed from the crystallization of 

22 with hydroquinone from Et2O/ THF. The horseshoes are arranged in pairs and the 

dimers are connected in a polymeric structure through H-bonding interactions with 

hydroquinone. A packing diagram of 25 is shown in Figure V.8 to show the 

intermolecular arrangement of the horseshoes. There are 3 types of terminating groups 

in this family: 3F-, acac and Hfa.  
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Figure V.7: The structure of [EtNH2][Cr6F7(O2C
tBu)10(acac)2] (23) in the crystal. The 

colours are as before. All H atoms have been removed for clarity. 

 

 

Figure V.8: Packing diagram of [EtNH2][Cr6F7(O2C
tBu)10(acac)2] (23) in the crystal. 
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Figure V.9: The structure of [EtNH2][Cr6F7(O2C
tBu)10(Hfa)2] (24) in the crystal. The 

colours are as before. All H atoms have been removed for clarity. 

 

 

 

Figure V.10: Packing diagram of [Et2NH2]3[Cr6F11(O2C
tBu)10]∙{C6H4-1,4-(OH)2}2 (25) in 

the crystal. 
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Table V.1 shows bond lengths and bond angles of compounds 22 to 25 (Average Esd 

= 0.006 Å and 0.2 °). There are small variations in bond lengths and bond angles 

between the four compounds. The Cr-O (diketonate) bond lengths are slightly longer in 

24 in comparison to 23. Also the Cr-F (terminal) bond lengths are slightly longer in 23. 

The Cr-O (carboxylate) bond lengths are longer in 22 and 25, than in the {Cr6} 

monomers. All of the horseshoes have very similar Cr∙∙∙Cr distances. 

 

Table V.1: The bond angles (o) and bond lengths (Å) of compounds 22, 23, 24 and 25. 

Average Esd = 0.006 Å and 0.2 °. 

 

Compound 22 23 24 25 

Cr-F (bridging) 1.891-1.943 1.893-1.945 1.902-1.934 1.883-1.950 

Cr-O 

(carboxylate) 
1.930-2.006 1.943-1.992 1.962-1.969 1.913-2.003 

Cr-O 

(diketonate) 
N/A 1.930-1.951 1.960-1.980 N/A 

Cr-F (terminal) 1.852-1.879 1.873 1.842 1.847-1.909 

O-Cr-O cis 87.04-91.00 87.5-92.9 85.8-97.2 87.66-92.91 

O-Cr-O trans 177.8-179.1 176.3-178.8 176.2-179.6 178.0-179.6 

O-Cr-F cis 90.27-93.28 86.5-93.8 87.8–93.0 88.57-92.77 

O-Cr-F trans 177.4-79.5 177.3–179.7 174.3–179.8 176.84-79.66 

F-Cr-F cis 87.85-89.10 87.4–89.8 87.6–90.6 88.5 – 91.14 
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V.2.3 EPR Studies of Cr3+ Hexanuclear Horseshoes 

 

The Q-band 5 K EPR spectra of 22 to 25 are shown in Figure V.11. What is 

immediately apparent is that the EPR of 22 and 25 are very similar and that 23 and 24 

are very similar. The half field resonance at ~3,800 G in 22 and 25 is due to a formally 

forbidden ∆Ms = ± 2 transition in the S = 1 spin state. At Q-band frequency this 

transition is not observed in 23 and 24, but it is observed at W-band frequency. The 

other features in the spectra are mostly due to the spin quintet state. 
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Figure V.11: Q-band EPR of polycrystalline samples of compounds 22 to 25. 

 

The EPR data of the four compounds were modelled with the SEL, using the 

Hamiltonian given in Equation II.2. In summary: 

 The EPR of 22 can be modelled with the following spin Hamiltonian parameters 

for the S = 1 excited state: D = -0.713 cm-1, E = 0.146 cm-1, gx = 1.995, gy 

=1.980, gz = 1.970. For the S = 2 excited state, D = +0.1377 cm-1, E = 5.67 x 
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10-3 cm-1, B0
4 = 2.754 x 10-4 cm-1 gxy = 1.976 and gz = 1.972.9 The B0

4 term is 

required to model the intensity of the highest field feature of the S = 2 state. 

 The EPR spectra of 23 can modelled with the following spin Hamiltonian 

parameters for the S = 1 excited state: D = -1.07 cm-1, E = 0.15 cm-1, giso = 1.97. 

The S = 2 excited state: D = -0.19 cm-1, E =0.006 cm-1, giso = 1.97 and isotropic 

Gaussian line widths of 200 G. The simulation is shown in Figures V.12 and 

V.13. 
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Figure V.12: 5 K W-band EPR spectrum of [Et2NH2][Cr6F7(O2C
tBu)10(acac)2] (23) and 

simulation. S = 1: D = -1.07 cm-1, E = 0.15 cm-1, giso = 1.97. S = 2: D = -0.19 cm-1, E 

=0.006 cm-1, giso = 1.97 and isotropic Gaussian line widths of 200 G. At frequency, = 

95.119 GHz. 
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Figure V.13: 5 K W-band EPR spectrum of [Et2NH2][Cr6F7(O2C
tBu)10(acac)2] (23) and 

S = 1 + S = 2 simulation. 

 

 Compound 24 can be modelled with the following spin Hamiltonian parameters:  

D = -1.07 cm-1, E = 0.15 cm-1, giso = 1.97. The S = 2 spin state can be modelled 

with D = 0.135 cm-1, E = 0.003 cm-1, gxz = 1.97 and gy = 1.94.10 

 Compound 25 can be modelled with the same spin-Hamiltonian parameters as 

22 (Figure V.14 and V.15). 
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Figure V.14: 5 K W-band spectrum of [Et2NH2]3[Cr6F11(O2C
tBu)10]∙{C6H4-1,4-(OH)2}2 

(25) and simulation. S = 1: D = -0.713 cm-1, E = 0.146 cm-1, gx = 1.995, gy =1.980, gz = 

1.970. S = 2: D = +0.1377 cm-1, E = 5.67 x 10-3 cm-1, B0
4 = 2.754 x 10-4 cm-1 gxy = 

1.976, gz = 1.972 and isotropic Gaussian line widths of 200 G.  

At frequency,  = 98.199 GHz. 
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Figure V.15: 5 K W-band Experiment and S = 1 + S = 2 simulation of 

[Et2NH2]3[Cr6F11(O2C
tBu)10]∙{C6H4-1,4-(OH)2}2 (25). 
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V.2.4 Inelastic Neutron Scattering Measurements on 

[Et2NH2][Cr6F7(O2C
tBu)10(acac)2]  

 

INS measurements were performed on 23. Figure V.6 shows 6 Å incident neutron 

wavelength measurements on a polycrystalline non-deuterated sample of 23. The 

broad peak at ~-0.2 meV to ~+0.2 meV has a non-magnetic origin and is due to the 

large incoherent scattering cross section of hydrogen. The sharp doublet at ~0.4 meV 

can be assigned to magnetic excitations, this feature is labeled in Figure V.16. These 

are cold transitions, the intensity of these transitions increases with decreasing 

temperature. They are most intense at 1.8 K, therefore they originate from the S = 0 

ground state to a transition to the zero field split S = 1 excited state. 
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Figure V.16: INS spectrum of [Et2NH2][Cr6F7(O2C
tBu)10(acac)2] (23). Obtained with an 

incident wavelength of 6 Å at 6 K. 
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Figure V.17 shows INS which was measured at 15 K using an incident wavelength of 

6.5 Å. These measurements also show a transition from the S = 0 ground state to the S 

= 1 excited state of 23.  

 

Figure V.17: .S = 1 INS doublet of [Et2NH2][Cr6F7(O2C
tBu)10(acac)2] (23). Obtained with 

an incident wavelength of 6.5 Å at 15 K. 

 

The S = 1 transition is split into a doublet by zero field splitting. As the INS experiment 

has been done at zero magnetic field. The zero field splitting of the S = 1 spin state can 

be directly read from the INS spectrum. There is a gap of 1.07 cm-1 between the peaks 

of the doublet. The broadening of the higher energy resonance is due to a rhombic 

splitting of the ms states and confirms a negative D value. This is in agreement with the 

EPR measurements. The following microscopic Hamiltonian has been used to fit the 

INS data: 
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The first two terms describe the isotropic exchange between nearest neighbouring Cr3+ 

atoms, where Ja and Jb are exchange coupling constants. The definition of Ja and Jb is 

given in Figure V.18 Different exchange interactions are needed for the terminal Cr3+ 

atoms and their nearest neighbour. The third term is the axial ZFS of each Cr3+ ion, 

where DCr is the single ion axial ZFS parameters. The fourth term describes the 

rhombic ZFS anisotropy, where ECr is the single ion rhombic ZFS parameter.  

 

Figure V.18: Coupling Scheme used to model the INS data of 23. 

 

 Figure V.19 shows experimental data recorded with an incident wavelength of 3.2 Å at 

2 K (blue) and 15 K (red) and simulation (solid lines). The energy level diagram in 

Figure V.20 shows the origin of the transitions in the INS. The energy level diagram is 

colour coded and the transition in the INS spectrum are asterisked 
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Figure V.19: INS experimental data and simulation of [Et2NH2][Cr6F7(O2C
tBu)10(acac)2] 

(24). 

 

Figure. V.20: Energy level diagram of 24, the energy levels are obtained by observing 

the temperature dependence and energy of the INS transitions. 
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The following parameters have been used in the simulation: Ja = - 11.4 cm-1, Jb = 11.8 

cm-1, DCr = -0.045 cm-1 and ECr = 0.007 cm-1. A good fit of the experimental data has 

been achieved. 

 

V.2.5 Comparison of [Et2NH2][Cr6F7(O2C
tBu)10(acac)2] to Other Wheels and 

Horseshoes. 

 

Table V.2 compares J-values and single ion ZFS tensors of selected homometallic Cr3+ 

clusters. The same DCr and ECr have been used to fit the INS data of 24 and 25. The Jb 

exchange term is for the neighboring Cr3+ atoms in the body of the horseshoe. Ja 

relates to the exchange between terminal Cr3+ atoms and the adjacent Cr3+ atom. Jb is 

the same for all horseshoes and 1. Different Ja-values are required for 22, 23 and 24. 

The nature of the β-diketonate capping ligand has an effect on the exchange coupling 

between the terminal Cr3+ and its neighbouring Cr3+ atom. 

 

Table V.2: Single ion ZFS tensors and J-values (cm-1) of selected homometallic Cr3+ 

clusters. The spin Hamiltonian parameters for 22 come from reference9, for 23 and 24 

from reference11 and 1 from reference12 

 

 Ja-value Jb-value DCr ECr 

{Cr6}2 (22) -8.8 cm-1 -11.8 cm-1 -0.23 cm-1 

 

0.041 cm-1 

 

{Cr6}Hfa (24) -12.0 cm-1  -11.8 cm-1 -0.36 cm-1  0.057 cm-1  

{Cr6}acac (23) - 11.34 cm-1 -11.8 cm-1 -0.36 cm-1  0.057 cm-1 

{Cr8} ring (20) -11.8 cm-1 -11.8 cm-1 -0.31 cm-1  0.032 cm-1 
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From the J-values which have been determined, a zero field energy level diagram can 

be calculated.  An isotropic model has been used for simplicity. The 12 lowest lying 

spin state of compounds 1, 22, 23 and 24 are shown in Figure V.21. 
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Figure V.21: An zero field energy level diagram of the 12 lowest lying total spin states 

of compounds 1,22, 23 and 24. The parameters used to calculate the energy levels are 

given in Table V.2 This energy level diagram was calculated using “MAGPACK”. 

 

From this energy level diagram we can see there are significant differences in 

electronic structure across the series. For compound 23 there is a gap of 6.7 cm-1 

between the ground state and the first excited state. This is smaller than the ground 

state-excited state gap of 24, which is 7.06 cm-1. Hence, having a acac capping ligand 

instead of a Hfa has reduced the gap between the ground state and the first excited 
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state. The gap is smaller still for 22, at 5.3 cm-1. Therefore when the horseshoes are 

arranged in dimers, there is a smaller gap between the ground state and the first 

excited state. The capping ligand in both cases has increased the gap between the 

ground state and the first excited state. Compound 1 has the largest gap in the series 

between the ground state  and the first excited state, at 13.2 cm-1. Therefore, a wheel 

formation has the effect of increasing the gap between the ground state and the first 

excited state.  

 

V.3 Conclusions 

 

 Alkoxide bridging ligands in 21 provide a better pathway for magnetic superexchange, 

this is reflected in the ~49 % increase in J-values of 21 in comparison to 1. 

 Compound 21 has a smaller D tensor than 1, D = 1.215 cm-1 for 21 and D = 1.68 cm-1 

for 1. This is due to crystal field effects, which have been explained in the discussion. A 

similar trend has been determined in the purple-Cr7M wheels discussed in Chapter III. 

 The ZFS tensor of 21 is more rhombic than 1. This is due to a greater number of 

different coordination environments in 21. This has also been observed in purple-Cr7M 

wheels. 

 The first two excited states (S = 1 and S = 2) of 25 and 22 can be modelled with 

identical spin Hamiltonian parameters. The polymeric nature of 25 does not affect its 

electronic structure.  

 The Ja-value of the single horseshoe is different when different β-diketonate ligands are 

used. The choice of capping ligand has been found to affect the electronic structure of 

the single horseshoes. 

 The Ja-value of the horseshoe dimer 22 is smaller than the analogues term in the single 

horseshoes 24 and 25. The J-values have been used to calculate an zero field energy 
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level diagram; a dimeric horseshoe has been found to have a larger ground state to 

excited state gap than the two single horseshoes 

  The electronic structure of 1 is different to both the single horseshoes and the 

horseshoes dimer. There is a much larger gap between the ground state and the first 

excited state. 

 The D value of the S = 1 excited state of 21 and 23, has been determined by both INS 

and EPR. INS is a useful technique to determine the zero field splitting of a spin state. 
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VI.1 Synthesis 

 

Compounds 2-4 were synthesized by Dr. G. A. Timco of The University of Manchester 

and were published in reference1. The rotaxane templated wheels (5-7)  which were 

discussed in Chapter II were also synthesized by Dr. G. A. Timco and were published 

in reference2 The linked purple-Cr7Ni dimers (15-20) which were discussed in chapter 

IV were synthesized by Mr. T. B. Faust of The University of Manchester.3 Compound 

25 was synthesized by Dr. G. A. Timco,4 24 was synthesized by Dr. Marzio Rancan of 

The Univeristy of Manchester and is published in reference5 and 23 was synthesized 

by the author, was published in reference6. The author is very grateful for these 

contributions. The synthetic details are given below.  

All reagents were purchased from Aldrich and were used as received. 

 

Synthesis of Compounds 15, 16, 18 and 19 

 

11 (650 mg, 0.293 mmol) was refluxed in a 1:2.5 molar ratio with the appropriate ligand 

in acetone (50 mL) for 1 h. The reaction mixture was left to cool to RT and a crystalline 

product was formed. The solution was then left for 12 h, after which time the product 

was filtered off and was washed in acetone, until the washing were colourless.  15 (460 

mg, 0.100 mmol, 89.3%), microanalysis for (C176H306N6O70F6Cr14Ni2), calcd: C, 46.09; 

H, 6.73; N, 1.83; Cr, 15.87; Ni, 2.56%, found: C, 45.74; H, 6.47; N, 1.78; Cr, 15.94; Ni, 

2.52%. A crystallographic data file (cif) can be found on the CD provided with this 

thesis it is labeled 15.cif. 16  (320 mg, 0.070 mmol, 62.5%), microanalysis for 

(C178H306N4O70F6Cr14Ni2) calcd: C, 46.66; H, 6.73; N, 1.22; Cr, 15.89; Ni, 2.56%, found: 

C, 46.40; H, 7.02; N, 1.13; Cr, 15.90; Ni, 2.47%. A cif file can be found on the CD 

provided with this thesis it is labeled 16.cif. 18 (490 mg, 0.107 mmol, 95.5%), 
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microanalysis for (C178H310N4O70F6Cr14Ni2), calcd: C, 46.62; H, 6.81; N, 1.22; Cr, 15.87; 

Ni, 2.55%, found: C, 46.43; H, 7.05; N, 1.08; Cr, 15.69; Ni, 2.46%. A cif file can be 

found on the CD provided with this thesis it is labeled 18.cif. 19 (334 mg, 0.072 mmol, 

64.6%), microanalysis for (C178H310N4O72F6Cr14Ni2), calcd: C, 46.30; H, 6.77; N, 1.21; 

Cr, 15.76; Ni, 2.54%, found: C, 45.72; H, 6.91; N, 1.18; Cr, 15.83; Ni, 2.45%. A cif file 

can be found on the CD provided with this thesis it is labeled 19.cif.  

 

Synthesis of Compound 23 

 

Synthesis of 23: 3.00 g (0.85 mmol) of 22 and 3.4 g (3.4 mmol) of Hacac were 

dissolved in toluene (200 ml) producing a deep green solution. This solution was stirred 

and refluxed for 24 h at 130 oC.  After this time the solution was left to cool to RT. The 

solvent was removed and the product was purified by column chromomatography using 

THF/n-hexane (1:2) (with increasing proportions of THF). The product was the third 

fraction. The product was crystallized from acetone/acetonitrile, affording X-ray quality 

crystals; yield 1.1g (37.4 %). Elemental analysis: (calculated (%) for C64H116Cr6F7N1O24) 

: Cr 18.20. C 44.47, H 6.76, N 0.81; found Cr 17.90, C 44.63, H 6.95, N 0.85. ES MS 

(sample dissolved in THF/MeOH, run in MeOH): m/z: - 1654 [M – (Et2NH2)]
-, 1802 [M + 

(Et2NH2)]
+ 

 

Synthesis of Compound 25 

 

To a solution of [(Et2NH2)3Cr6F11(O2C
tBu)10]2 (1.2 g, 0.342 mmol) dissolved in Et2O (55 

mL) and THF (25 mL), hydroquinone (300 mg,  2.725 mmol) was added and stirred for 
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15 min at RT. A green microcrystalline product started to form during this time, which 

was collected by filtration 24 h later. The product was washed with Et2O, and then 

extracted with THF (100 mL). The product was then filtered off and dissolved in MeCN 

(10 mL). Slow evaporation of the solution yielded a crystalline product. Yield 1.15 g. A 

cif file can be found on the CD provided with this thesis, it is labeled 25.cif 

 

VI.2 X-ray Crystallography 

 

All crystal structures have been published previously in the same references which 

provide the synthetic details, crystallographic information files (cif files) have been 

provided on the CD which accompanies this Ph.D. thesis 

 

VI.3 Magnetic Measurements 

 

The super conducting quantum interference device (SQUID) magnetometry 

measurements were performed on a Quantum Design MPMS-XL SQUID 

magnetometer, which was equipped with a 7 Tesla magnet. The samples were 

polycrystalline and were fixed in eicosaine to prevent the sample from orientating in the 

field.  The diamagnetic susceptibility of the molecule was estimated using Pascal’s 

constants and was subtracted from the experimental data. The diamagnetism of the 

sample holder and of the eicosaine was also subtracted from the experimental data. 

 

The SQUID magnetometry calculations were performed using the isotropic version of 

Magnetic Properties Analysis Package for Spin Clusters (MAGPACK).7 
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VI.4 EPR Measurements 

 

The Q- and K-band EPR spectra were recorded on a Bruker Elexsys Spectrometer, 

which uses a 2 T Bruker electro magnet and a Oxford Instruments helium cryostat. The 

S- and X-band spectra were recorded on a Bruker EMX system, which uses a 1.5 T 

Varian electro magnet and an Oxford Instruments helium cryostat. The W-band EPR 

spectra were recorded on a Bruker Elexys Spectrometer which was equipped with a 

helium cryostat and a 6 T superconducting magnet. Baseline corrections were applied 

to the spectra when necessary and were done in a manner not to distort the spectral 

features. Polycrystalline samples were measured. The samples were lightly powdered. 

When required the samples were immobilized in eicosaine, this was to prevent the 

sample orientating in the strong magnetic fields which were applied to the sample. This 

is not required at lower frequencies such as S-band. In order to record accurate g-

values, the magnetic field was field corrected using a radical for which the g-value is 

accurately known. The organic radical 2,2-diphenyl-1-picrylhydrazyl (g = 2.0037 ± 

0.0002) was used.8 A unknown g-value can be obtained with Equation VI.1. 

 

 

        
       

    
      

Equation VI.1 

 

The EPR spectra were modelled using Weihe’s EPRSIM program.9 The program works 

by generating an energy matrix for each orientation of the molecule relative to the 

magnetic field. The resonance of each transition is determined by successive 
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diagonalizations and iterations. The relative intensity is calculated from the 

eigenvectors. The transitions are summated over the whole space, and each transition 

is represented by a Gaussian curve produces the simulated spectra.  

The simulated spectra are compared by eye to the experimental spectra, the spin-

Hamiltonian parameters are then varied until a good fit of the experimental spectrum is 

achieved. 

 

VI.5 Inelastic Neutron Scattering Measurements 

 

Inelastic neutron scattering measurements discussed in chapter V were performed in 

IN5b time of flight inelastic spectrometer10 at Institute Laue-Langevin, Grenoble, 

France. These measurements were performed in collaboration with Dr. M. L. Baker. A 

non deuterated, polycrystalline sample of 23 was put in a hollow aluminium cylinder 

and was measured. 
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VII Concluding Remarks and Future Work 
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A spectroscopic study has been carried out on two types of green-Cr7M wheels; 

rotaxane-Cr7M wheels and caesium-templated Cr7M wheels.  

 It has been found that when the wheels are templated with a long 

dialkylammonium group, the spectroscopic properties of the wheel are the 

same as the dimethylammonium templated wheels. Both of these families have 

very similar MPLN values, therefore the wheels have very similar geometries 

and we should not expect any significant change in electronic structure. 

 It has been found that the caesium templated wheel are spectroscopically 

different There is a ~20 % decrease in the ground state D values of 9 and 10 in 

comparison to the dialkylammonium templated wheels. The ground state g-

values of 8 are more isotropic than the g-values of the Cr7Ni dialkylammonium 

templated wheels. The differences in spectroscopic parameters, originate from 

the differences in MPLN values. 

  Magnetic measurements could be carried out in the future to determine if the 

caesium templated wheels have different JCrCr-values in comparison to 

dialkylammonium-templated wheels. 

 Future work could include templating the formation of a Cr7M wheel around a 

rubidium ion and conducting an EPR study to see if the spectroscopic 

properties are altered in the same manner as the caesium templated wheels. 

 

The spin-Hamiltonian parameters of a family of purple-Cr7M wheels have been 

determined. 

 Magnetic measurements and EPR have confirmed that the purple-Cr7M 

wheels have the same ground spin state as the green wheels. Hence 

equivalent coupling schemes can be used for both families. The reduced 
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symmetry of a purple-Cr7M has not disrupted the exchange coupling 

between neighbouring metal ions. 

 Magnetic measurements have confirmed that the purple-Cr7M wheels have 

35 % larger JCrCr-values (from 5.90 cm-1 to 8.00 cm-1) than the green-Cr7M 

wheels. This must mean that there is a better exchange pathway via 

bridging alkoxide groups compared to bridging fluoride ions. The purple-

Cr7M wheels have a larger ground state to excited state gap than Cr7M 

wheels which are templated around a dialkylammonium group. 

 The purple-Cr7M wheels have smaller D-values than the green wheel family; 

this is due to crystal field effects. The ground state of the purple wheel 

family also has larger  values; this is due to the purple wheels being less 

symmetrical. 

 The purple wheel family has narrower EPR line widths than the green wheel 

family; this is partly due to the larger ground state- to excited state energy 

gap. The narrower line widths can also be attributed to a reduction in the 

number of bridging 19F- ions, which may be a source of unresolved hyperfine 

interactions. It is likely that the purple-Cr7M family will have longer spin 

decoherence times. Pulsed EPR studies are currently being carried out to 

determine if this is correct. 

 

EPR spectroscopy has been used to study the interaction between linked dimers of 

purple-Cr7Ni wheels. 

 Single purple-Cr7M wheels have been linked chemically as well as 

electronically. For compounds 15 to 18 there is clearly a spin triplet EPR 

spectrum below 10 K. For compounds 19 and 20 the spectrum is not well 

resolved, however the EPR spectra of these compounds is distinctly broader 
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than that of a single purple-(Cr7Ni). This confirms that there is electronic 

communication between the wheels. 

 A relationship between D and the organic linker has been established. D is 

smaller for the saturated linkers. There is more efficient communication through 

an unsaturated linker. This means that there is more efficient magnetic 

superexchange through a fully conjugated -system. 

 The shorter unsaturated linkers (when calculated through bond) exhibit a larger 

value of D. This is an intuitive result, as you would expect there to be more 

efficient electronic communication between the two wheels via a shorter organic 

linker. 

 Future work will include introducing switch-ability of the interaction within a 

purple-Cr7Ni dimer. This could possibly be done by the use of redox or photo-

active linking molecules. This would be an essential feature to implement the 

design of a two-qubit gate. 

 

A family of homometallic Cr3+ cluster have been studied. 

 The alkoxide bridging ligands of 21, provide a better pathway for magnetic 

superexchange, there is a 49 % increase in J-values of 21 in comparison to 1. 

21 also has a smaller D-value and larger than 1. This is what has also been 

determined for the purple-Cr7M wheels in Chapter III, the same explanation can 

be used. 

 The choice of β-diketonate capping ligand can be used to alter the electronic 

structure of a single horseshoe. 24 has a larger gap between the ground state 

and the excited state than 23. Having an acac capping ligand instead of Hfa 

reduces the gap between the ground state and excited state and has the effect 
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of reducing the exchange interaction between the terminal Cr3+ ion and its 

nearest neighbour. 

 Future work could include investigating the effect of other β-diketonate capping 

ligands on spectroscopic properties of hexanuclear Cr3+ horseshoes. 
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VIII  Appendix 
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VIII.1 Appendix: Definition of the single ion projection 

coefficient (ci) of the hyperfine splitting tensor for an 

exchanged coupled dinuclear system AB 

 

Adapted from reference1 

 

For a dinuclear systems the total spin is defined as: 

BA SSS ˆˆˆ   

There are the following relationships between the Hyperfine splitting tensors, g tensors 

and ZFS tensors of the coupled pair and the individual metal centres: 
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    1. A. Bencini and D. Gatteschi, EPR of Exchanged Coupled System, Springer-Verlag, 

Berlin, 1989. 
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VIII.2 Appendix: Results of Single Crystal Study of 

[{Cr7NiF3(Etglu)(O2C
tBu)15}2(4,4’-bpy)] (15)  

 

Road map of the resonances of 15 at Q-band 

Frequency 5 K, bc plane of a monoclinic crystal and molecular orientation with respect 

to applied magnetic field: 

 

 

 

Road map of resonances of 15 at Q-band frequency, 5 K, ac* plane of a monoclinic crystal and 

molecular orientation with respect to field: 
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VIII.3 Appendix: Crystallographic Data of 23 

 

Analysis after data collection showed that the crystal of 23 was twinned. The twins 

were reduced individually and were then combined to make a HKLF5 file.  

 

Table VIII.4.1: Crystallographic data of 23 

Empirical formula C66H119Cr6F7N2O24 

Formula weight 1769.63 

Temperature 100(2) K 

Crystal system Triclinic 

Space group P -1 

Unit cell dimensions a = 11.8455(5) Å,  = 100.750(4)° 

b = 17.3967(9) Å,  = 98.088(4) 

c = 24.6928(11) Å,  = 108.911(4) 

Volume 4617.3(4) Å3 

Z 2 

Density 1.226 g cm-1 

Shape and colour green plate 

Crystal size 0.8 x 0.4 x 0.1 

 0.757 cm-1 

Unique data 32120 

Absorption correction Multi-scan 

Transmission max/min 0.9281, 0.5825 

Unique data (F0>4F0) 23612 

Parameter/retraints 1042/1919 

R1, wR2a 0.0982, 0.2775 

Weighting schemeb(w-1) 

F2

0) + (0.0898 P)2 + 84.9472P 

Goodness of fit 1.102 

Largest residuals +1.256 Å-3, -1.239 Å-3 

 


