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Abstract 
 

Electrical and Thermal Properties of Yttria-Stabilised Zirconia (YSZ)-based 
Ceramic Materials 

 
Fan Yang 

 
The University of Manchester for the degree of Doctor of Philosophy in the 

Faculty of Engineering and Physical Sciences 
 

2011 
 
 
Electrical and thermal conductivities of the yttria-stabilised zirconia/alumina 
(YSZ/Al2O3) composites and the yttria-zirconia-ceria (YSZ-CeO2) solid solutions are 
studied in this thesis. 
 
The electrical conductivity of the YSZ/Al2O3 composites decreases with an increase in 
the volume fraction of Al2O3 and exhibits typical percolation behaviour. The electrical 
conductivity of the YSZ/Al2O3 interface is higher than that of the YSZ grain boundary, 
but lower than that of the YSZ grains.  
 
The thermal conductivity of the YSZ/Al2O3 composites increases with an increase in the 
Al2O3 volume fraction, and it can be fitted well to the Maxwell theoretical model, which 
indicates the absence of obvious interfacial thermal resistances in the composites. The 
low interfacial thermal resistance of the YSZ/Al2O3 interface is due to the “clean” and 
coherent nature of the YSZ/Al2O3 interface, along with the small difference between the 
elastic properties of YSZ and Al2O3. 
 
The electrical conductivity of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid 
solutions has a “V-shape” variation as a function of the mole ratio of CeO2 (x). In the 
ZrO2-rich region (x < 0.5), CeO2 doping increases the concentration of defect associates 
which limits the mobility of the oxygen vacancies; in the CeO2-rich region (x > 0.5), the 
increase of x increases the lattice parameter, which enlarges the free channel for oxygen 
vacancy migration. A comparison of the YSZ-CeO2 solid solutions with the YSZ-HfO2 
series indicates the ionic radius of the tetravalent dopant determines the composition 
dependence of the ionic conductivity of the solid solutions. 
 
The thermal conductivity of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid 
solutions also has a “V-shape” variation as a function of the mole ratio of CeO2 (x), 
which indicates an incorporation of Zr4+ and Ce4+ can effectively decrease the thermal 
conductivity of the end members YSZ and yttria-doped ceria (YDC). In the ZrO2-rich 
region (0 ≤ x ≤ 0.5), the thermal conductivity is almost temperature independent; in the 
CeO2-rich region (0.5 ≤ x ≤ 1), it decreases obviously with increasing temperature. By 
calculating the phonon scattering coefficients, it is concluded that the composition 
dependence of the thermal conductivity in the ternary solid solutions is dominated by 
the mass difference between Zr and Ce at the cation sites, whereas the temperature 
dependence is determined by the order/disorder of oxygen vacancies at the anion sites. 
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Chapter 1 

Introduction 
 
 

 

 

 

1.1 Yttria-stabilised zirconia (YSZ) 

1.1.1 Crystal structure and phase transformation of YSZ 

ZrO2 is one of the most important ceramic materials because of its wide applications. 

Pure ZrO2 has three polymorphs at atmospheric pressure: monoclinic (m) [space group 

P21/c], tetragonal (t) [space group P42/nmc] and cubic (c) [space group Fm3m], as 

shown in Figure 1.1 [1]. Monoclinic is the stable phase at room temperature, which 

transforms to tetragonal phase at about 1170 ºC. The tetragonal phase remains stable up 

to 2370 ºC and transforms to cubic phase, which is stable until reaching the melting 

point at 2680 ºC.  

 

 
Figure 1.1 Crystal structure of ZrO2: (a) monoclinic (b) tetragonal and (c) cubic. The 
grey spheres represent oxygen atoms, and the black ones represent zirconium atoms. [1] 
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The high temperature phases of ZrO2 can be stabilised to room temperature by the 

addition of other oxides such as Y2O3, MgO or CaO, among which Y2O3 is the most 

commonly used stabiliser. Depending on the concentration and the type of the stabiliser, 

zirconia ceramics may conveniently be classified into three major types according to the 

crystal structure: fully stabilised zirconia (FSZ), partially stabilized zirconia (PSZ) and 

tetragonal zirconia polycrystals (TZP) [2]. In FSZ, zirconia is in its cubic phase, which 

is widely used in oxygen sensors and fuel cell electrolytes. The PSZ consists of 

nanosized tetragonal or monoclinic particles that have precipitated out in a cubic matrix. 

TZPs are monoliths of tetragonal phase, which may contain a secondary cubic phase. 

 

Figure 1.2 shows the phase diagram of the ZrO2-Y2O3 binary solid solution (zirconia-

rich corner) [3]. FSZ can be obtained at room temperature with large concentration of 

yttria, i.e., 8 mol% Y2O3-stabilised zirconia (14.8 mol% YO1.5) [4]. 

 

 

 
Figure 1.2 Phase diagram of the ZrO2-Y2O3 binary system (the zirconia rich corner). [3] 
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1.1.2 Applications of YSZ 

YSZ has some unique physical properties and therefore it has wide applications. For 

example, it can be used as implant biomaterials like tooth crowns and hip implants 

because of its high hardness and chemical inertness [5]. It can be used as the electrolyte 

material in oxygen sensors [6] or solid oxide fuel cells (SOFCs) [7, 8] due to its good 

ionic conductivity. It is also widely used as thermal barrier coatings (TBCs) material 

because of its low thermal conductivity. In the following two sessions, the two most 

important applications of YSZ, the SOFCs and the TBCs, are briefly introduced. 

 

(1) Solid oxide fuel cells  
 
Solid oxide fuel cells (SOFCs) offer a clean, low-pollution technology to 

electrochemically generate electricity. They provide many advantages over traditional 

energy conversion systems including high efficiency, reliability, modularity, fuel 

adaptability and very low levels of NOx and SOx emissions [9]. 

 

An SOFC consists of two porous electrodes separated by a dense, oxide ion conducting 

electrolyte, as shown in Figure 1.3 [9]. At the cathode side, oxygen reacts with 

incoming electrons from the external circuit to form oxygen ions, which migrate to the 

anode through the solid electrolyte. At the anode side, oxygen ions react with fuel, 

generally H2 (and/or CO), producing water and CO2 and liberating electrons. Electrons 

(electricity) flow from the anode through the external circuit to the cathode. 

 

8 mol% YSZ is the most widely used material for the electrolyte in SOFCs because of 

its sufficient ionic conductivity, chemical stability and mechanical strength [9, 10]. The 

only deficiency of YSZ is that its ionic conductivity is not high enough to meet the 

demand of lower operation temperature. Therefore, modifying YSZ to increase its ionic 

conductivity is an important issue in SOFCs. 
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Figure 1.3 Structure and operating principle of a solid oxide fuel cell. [9] 

 
 
(2) Thermal Barrier Coatings  
 
Thermal barrier coatings (TBCs) have been widely used in the hot section of aero-

turbine engines to increase turbine efficiency and to extend the life of metallic 

components [11-13]. TBCs have a multilayer structure, typically consisting of a ceramic 

topcoat, a metallic bond coat, a superalloy substrate and a thermally grown oxide (TGO) 

layer formed at the top coat/bond coat interface due to the oxidation of the bond coat at 

high temperatures. A schematic view of a TBC system, along with the requirement of 

each component, is shown in Figure 1.4 [14]. 

 

The function as a thermal barrier in a TBC system is fulfilled by the ceramic topcoat. 

The topcoat materials should be thermally insulating and therefore prohibit heat transfer 

from the hot gas in the engine to the surface of the coated superalloy components. 6 – 8 

wt% (3.5 – 4.5 mol% Y2O3) YSZ is the start-of-art TBC material because it provides the 

best performance in high-temperature applications such as diesel engines and gas 

turbines [15]. It has a temperature-independent low thermal conductivity, depending on 

the yttria concentration and the fabrication method [16-18]. It also has a relatively high 

coefficient of thermal expansion, which is close to that of the nickel based superalloy 

[19]. Furthermore, it has been proved to have better corrosion resistance against the 

corrosion of Na2SO4 than other stabilised zirconia materials [15]. 
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Although the thermal conductivity of YSZ is not the lowest among other oxides, in 

terms of the comprehensive properties, YSZ shows the best performance and it is at the 

moment the first choice of TBC material. The research of thermal conductivity of YSZ, 

e.g., the thermal conduction mechanisms, the methods to decrease the thermal 

conductivity, the development of double-layer topcoat (e.g., pyrochlore oxides/YSZ), 

etc., is a major issue in developing TBCs.  

 

 

 
Figure 1.4 The four major elements and their requirements of a thermal barrier coating 
system. [14] 
 

1.2 Goals of the dissertation 

Due to its applications as an electrolyte material in SOFCs and the top coat material in 

TBCs, understandings on the electrical (ionic) and thermal properties of YSZ are 

important for a basic understanding of the functionality of SOFCs and TBCs. Therefore, 

all the work carried out in this thesis is related to these two properties, aiming to further 

understand the fundamentals of conduction mechanisms of YSZ-based ceramic 

materials. 

 

Two material systems are chosen to investigate in this thesis. One is the YSZ/Al2O3 

composites. The reasons for choosing this system are: (1) YSZ and Al2O3 are the most 
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widely used ceramic materials and their composites may combine the merits of YSZ 

and Al2O3 and have potential in practical applications; (2) YSZ and Al2O3 are 

immiscible to each other and can generate clean heterogeneous YSZ/Al2O3 interface, 

which makes the system suitable for fundamental studies of the dual-phase composites; 

(3) Al2O3 is the main composition of the TGO, which is a critical component of TBCs 

system. Our previous studies generate questions on the role of top coat/TGO interface 

on the thermal conduction in TBCs. YSZ/Al2O3 composites can be a model system to 

figure out the effect of the interface on the thermal conduction. 

 

The second system is the ZrO2-CeO2-Y2O3 ternary solid solutions. This system is of our 

interests due to the following reasons: (1) Doped zirconia and doped ceria are the most 

important ionic conductors using as electrolyte materials in SOFCs. The intermixing of 

ZrO2 and CeO2 in the solid solutions does not introduce extra oxygen vacancies, which 

is suitable for investigating the homovalent doping effect in solid solutions; (2) Ce4+ is 

both heavier in mass and larger in size than Zr4+. It is interesting to investigate how the 

mass and the ionic size influence the thermal conductivity of the ternary solid solutions. 

 

The structure of the thesis is as following. In Chapter 2, the fundamentals of electrical 

and thermal conduction mechanisms in YSZ are reviewed, which provide basic 

understanding and are helpful in further discussions of the YSZ-based materials.  

 

In Chapter 3, the electrical properties of YSZ/Al2O3 composites, with a focus on the 

YSZ/Al2O3 interface are studied from impedance spectroscopy coupled with finite 

element modelling. The thermal properties of YSZ/Al2O3 composites, also focusing on 

the YSZ/Al2O3 interface, are described in Chapter 4. 

 

Chapter 5 and 6 are based on the electrical and thermal properties of the ZrO2-CeO2-

Y2O3 ternary solid solutions, in which the effect of homovalent doping (intermixing of 

Zr and Ce) on the electrical and thermal properties is discussed. 

 

In Chapter 7, the main results and conclusion are summarized, along with the 

inspirations obtained from current studies and the outlook for further research. 
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Chapter 2 

Literature review 

 

 

 

PART 1.  Electrical conduction mechanism of YSZ 

 

 

 

2.1 Ionic conduction in fluorite-type oxides 

 

The history of fast ionic conductors can be traced back to 1839, when Faraday observed 

high ionic conductivity in lead fluoride (PbF2) at high temperature. Thereafter the 

investigation of ionic conduction in the oxides with fluorite-type structure was largely 

inspired.  Nowadays the fluorite-type oxide ionic conductors have been widely used as 

electrolyte materials in solid oxide fuel cells (SOFCs), oxygen pumps and oxygen 

sensors [1]. 

 

2.1.1 Defect fluorite structure and defect chemistry 

As illustrated in Figure 2.1, fluorite-structured oxides are of the type MO2, where M is a 

tetravalent cation (Zr, Ce, etc). M atoms in a face-centered pattern contain a cube of 

oxygen atoms. Fluorite has a simple structure belonging to space group Fm3m. A 

structural unit cell contains fully four M and eight oxygen ions, maintaining the 1:2 

stoichiometry.  
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When lower-valent (divalent or trivalent) oxides are doped into MO2, the host cations 

are replaced by lower-valent cations, and oxygen vacancies are consequently generated 

in the anion sublattice to compensate the charge missing. The defect chemistry of the 

above solid reactions is described by the following equations: 
×•• ++⎯⎯→⎯ OOM

MO OVXXO ''2 ,                                            (2.1a) 

×•• ++⎯⎯→⎯ OOM
MO OVROR 32 '

32
2 ,                                         (2.1b) 

where X presents divalent metal (Ca, Mg, etc.) and R presents trivalent metal (Y, Sm, 

Gd, etc.). 

 

However, due to Coulomb and elastic attractive forces between the negatively charged 

substitutional defects ( ''
MX or '

MR ) and the positively charged oxygen vacancies ( ••
OV ), it 

is possible to form defect associates: 

( )xOMOM VXVX •••• →+ '''' ,                                               (2.2a) 

RM
' +VO

••→ RM
' VO

••( )• .                                                 (2.2b) 

At high dopant concentrations, more complex defect associates can be generated: 

( )xMOMOM RVRVR '''2 •••• →+ .                                                (2.3) 

 

 

 
Figure 2.1 The fluorite structure of solid oxides. [2] 
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2.1.2 Ionic conductivity and activation energy 

Under an elevated temperature, the oxygen ions in the fluorite-type oxides can 

overcome an energy barrier, known as the activation energy, to move diffusively by 

hopping to the neighbouring vacant sites. The ionic conductivity has the Arrhenius 

expression, given by:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Tk
E

T
A

B

aexpσ ,                                                   (2.4) 

where A is the pre-exponential factor, T is the absolute temperature, kB is the Boltzmann 

constant and Ea is the activation energy. Because the temperature dependence is 

dominated by the exponential term, the expression for conductivity is also frequently 

written as [3]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Tk
E

B

aexp0σσ .                                                   (2.5) 

 

The activation energy is the utmost important factor that influences the ionic 

conductivity due to the exponential dependence. It can be obtained from the slope of the 

logσ versus T-1 plot. At high temperatures, Ea corresponds to the migration enthalpy 

(∆Hm). In the intermediate temperature range, Ea consists of migration enthalpy (∆Hm) 

for the oxygen ion and the association enthalpy (∆Ha) of the local defect structures. In a 

general expression, the activation energy is the sum of the migration enthalpy and the 

association enthalpy, written as [4]: 

ama HnHE ∆+∆=
2

,                                                (2.6) 

where n equals 1 for divalent dopants and 2 for trivalent dopants [4]. Kilner and Brook 

[5] pointed out that ∆Hm is determined by the host oxides whereas the ∆Ha is 

determined by the dopant level and distribution [6]. 

 

The pre-exponential factor, A, includes the other factors that influence the ionic 

conductivity, expressed as [7]: 

A =
n ze( )2 γd 2ω0

6kB

,                                                    (2.7) 



 

CHAPTER 2                                                                                                      LITERATURE REVIEW 

 PAGE 29

where n is the concentration of mobile charge carriers, ze is the electric charge, γ is the 

correlation factor, d is the ion mean jump distance and ω0 is related to the phonon 

frequency of the lattice vibrations. 

 

Eq.(2.5) indicates that high ionic conductivity can be achieved by maximizing σ0 and 

minimizing Ea. Two parameters, d and n, are critical to maximize σ0, as indicated by 

Eq.(2.7). The factors that control the ionic conductivity are summarized in the following 

section. 

 

2.1.3 Factors controlling the ionic conductivity 

2.1.3.1 Ionic size of dopant cation 

Van Gool [8] and Pouchard and Hagenmuller [9] have outlined some criteria that should 

favour high ionic conductivity in fluorite oxides, which are 1) High concentration of 

mobile charge carriers, i.e., oxygen vacancies; 2) The lattice energy of the dopant is 

equal to or only slightly different from that of the host oxides; 3) Weak bonding energy 

resulting in relatively low melting point; 4) Open paths between oxide ion sites. Among 

the above the mobile charge carrier concentration and the open path between oxide ion 

sites have been considered as the most important factors, which are both dominated by 

the ionic size of the dopant cation. 

 

Kilner and Brook [5] proposed that maximum ionic conductivity in oxide fluorites 

could be achieved when the addition of dopant causes minimum elastic strain in the host 

crystal lattice. Kim [4] proposed a critical ionic radius (rc), with which the dopant 

causes neither expansion nor contraction in the host fluorite oxide lattice. Cation with 

ionic radius equal to rc should be the ideal dopant to show the highest ionic conductivity. 

 

Mogensen et al. [10] summarized the values of Kim’s rc for four different fluorites, as 

listed in Table 2.1, where some near matching trivalent ions are also included. Also it is 

found from the table that neither the lattice energy nor the melting point of the host 

material has obvious correlation with the ionic conductivity. Thus, the ionic radius of 

the dopant is the dominant parameter that determines the concentration and the mobility 

of mobile oxygen vacancies. 
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Table 2.1 A collection of values relevant to the oxide ionic conductivity of doped 
fluorites M1-xLnxO2-δ. [10] 

Host cation, M4+ Zr4+ Ce4+ Hf4+ Th4+ 

Radius of M4+ in eight-fold 

coordination (Å) 
0.84 0.97 0.83 1.05 

Critical ionic radius rc  (Å) 0.95 1.04 0.94 1.10 

Near matching ion, Ln3+  

and radius (Å) 

Yb3+ 

0.99 

Gd3+ 

1.05 

Yb3+ 

0.99 

Nd3+ 

1.11 

Born-Haber lattice energy of MO2 

(MJ/mol) 
5.4 5.1 5.6 5.3 

Melting point of MO2 (ºC) 2680 2750 2770 3390 

Conductivity of M0.8Ln0.2O1.9 at 

800 ºC (mS/cm)   
40 40 30  

 

 

Omar et al. [11] studied the relationship between the trivalent dopant cation size and the 

ionic conductivity and the activation energy in doped ceria, as shown in Figure 2.2. 

They found the maximum ionic conductivity is achieved in Nd-doped ceria instead of 

Gd-doped ceria as predicted by Kim’s critical ionic radius theory. Also they found the 

migration enthalpy is dependent on dopant type, which is also against the previous 

reported data. They concluded that the ionic conductivity is not a function solely elastic 

strain, and rc is not sufficient to predict the ionic conductivity in doped ceria. 

 

Yamamoto et al. [12] studied the ionic conductivity of trivalent doped ZrO2 and found a 

continuous decrease of conductivity with an increase in the dopant cation radius, as 

shown in Figure 2.3.  Since their measurement was carried out at high temperature, the 

activation energy equals the migration enthalpy, which increases with an increase in the 

dopant cation radius. The highest ionic conductivity, as well as the lowest migration 

enthalpy, is obtained in Sc-doped ZrO2, in which the dopant cation (Sc3+) has the closest 

size as the Zr4+. Similar results have also been reported by Stafford et al. [13] that the 

activation energy increases monotonously with an increase in the dopant cation size, 

and therefore a decrease in ionic conductivity in doped ZrO2. 
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Figure 2.2 (a) Ionic conductivity of doped ceria with different trivalent dopant (10 
mol% dopant content) at different temperatures; (b) Migration and association 
enthalpies for oxygen vacancy diffusion, and pre-exponential coefficient in doped ceria. 
[11] 
 

 

 
Figure 2.3 Maximum conductivity in Ln2O3 doped ZrO2 systems at 1273 K, and the 
migration enthalpies as function of dopant cation radius. After [12, 14]. 
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Although there remain unclear issues, previous research results do indicate the 

importance of dopant cation size on the ionic conductivity and the activation energy in 

fluorite-type oxides. Now it is generally accepted that undistorted lattice results in the 

highest concentrations of oxygen vacancies and the highest mobility of the charge 

carriers, and thus the highest ionic conductivity. 

 

2.1.3.2 Dopant concentration 

Dopant concentration directly determines the oxygen vacancy concentration, as 

indicated by the defect reaction described in Eq.(2.1). A high dopant concentration leads 

to a high charge carrier concentration and thus a high ionic conductivity. However, on 

the other hand, high dopant concentration decreases the mobility of oxygen vacancies 

by the formation of defect associates, as described in Eq.(2.2) and (2.3). Therefore, 

there exists an optimum dopant concentration to obtain the highest ionic conductivity. 

As shown in Figure 2.4, the highest ionic conductivity and the lowest activation energy 

are obtained in ~ 5 mol% Y2O3 doped CeO2.  

 

 

 
Figure 2.4 Variation of activation energy and the ionic conductivity at 182 ºC as a 
function of yttria concentration in ceria. After [15]. 
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In ZrO2 or HfO2, similar phenomena have also been observed [16, 17]. The highest 

ionic conductivity is obtained in 8 mol% YSZ and 10 mol% yttria stabilised hafnia 

(YSH), respectively. However, there are phase changes when the dopant concentration 

increases in YSZ and YSH, which makes the systems complicated to attribute the ionic 

conductivity increase to the dopant concentration change only. However, in fully-

stabilised cubic YSZ and YSH, further increase of yttria deteriorates the ionic 

conductivity, which can be attributed to the formation of defect associates. 

 

In 2.1, the fundamentals of the ionic conduction in fluorite-type oxides are briefly 

introduced and the main factors that determine the ionic conductivity are summarized. 

In the next following parts, the ionic conductivity of YSZ, the most widely used 

electrolyte material for SOFCs, will be introduced. 

 

2.2 Ionic conduction of YSZ 

 

YSZ is a typical fluorite-type ionic conductor. Oxygen vacancies, generated by the 

substitution of Zr4+ by Y3+, move diffusively under the electric field as charge carriers. 

The fundamentals of the ionic conduction in bulk YSZ have no difference with those in 

other fluorite-type oxide conductors. Therefore, in this session, only several factors that 

influence the ionic conductivity of YSZ are briefly specified. The main focus is on the 

grain boundary blocking effect, which is an important factor that determines the ionic 

conductivity of YSZ. 

 

2.2.1 Effect of yttria concentration and temperature 

The ionic conductivity increases with increasing Y2O3 concentration until about 8 - 9 

mol% Y2O3 is reached, further increases in dopant concentration decrease the 

conductivity. Arachi et al. [16] found the highest ionic conductivity of 0.14 S/cm at 

1000 ºC in 8 mol% YSZ, as shown in Figure 2.5. This indicates that the concentration 

of free oxygen vacancies decreases when the dopant concentration is greater than 8 

mol%, suggesting the formation of defect associates YZr
' +VO

•• ⎯→⎯ YZr
' VO

••( )•  becomes 

significant at high-dopant concentrations. 
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On the other hand, it is also noticeable that the Arrhenius plot shows a curvature as 

indicated by the red lines in Figure 2.5. The activation energy at low temperatures 

(below 650 ºC) is higher than that at high temperatures, which indicates that the 

formation of defect associates are conspicuous at low temperatures. As described in 

Eq.(2.6), the association enthalpy can be obtained by comparing the activation energies 

at high and low temperatures. Arachi et al. [16] reported a value of 0.28 eV for the 

association enthalpy. 

 

Both the yttria concentration effect and the temperature effect indicate that the defect 

associates are important to the ionic conductivity of YSZ. 

 

 
Figure 2.5 Temperature and composition dependences of the ionic conductivity for 
(ZrO2)1-x(Y2O3)x. [16] The red lines indicate the slope change on the Arrhenius plot. 
 

 

2.2.2 Effect of grain size 

The influence of grain size on the bulk conductivity of YSZ is shown in Figure 2.6. The 

bulk conductivity initially increases with increasing grain size and then keeps constant. 
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As pointed out by Guo and Waser [18], the increase of bulk conductivity with 

increasing grain size is probably due to the grain-size-dependent grain-boundary 

segregation [19]: the grain boundary area reduces as the grain size increases, therefore, 

less solute within grains is “drained” to the grain boundaries [18]. For 8 mol% YSZ, the 

bulk conductivity is independent on the average grain size when it is larger than 5 µm. 

 

 

 
Figure 2.6 Bulk conductivity as a function of average grain size for 3 mol% Y2O3-doped 
ZrO2 (3Y-ZrO2) at 550 ºC (black circle, after [20]), 8.2 mol% Y2O3-doped ZrO2 (8Y-
ZrO2) at 450 ºC (red triangle, after [18, 21]).  
 

 

2.2.3 Effect of grain boundary 

Grain boundary is a crucial part of the microstructure of a polycrystalline material, and 

it plays an important role in the ionic conduction of YSZ. In the past decade, the 

electrical properties of the YSZ grain boundaries attracted much interest and have been 

extensively studied. Now it has been well accepted that the grain boundaries of YSZ 

block the ionic transport across them (blocking effect) that the specific grain-boundary 

conductivity of YSZ is usually at least two orders of magnitude lower than that of the 

bulk [22], as shown in Figure 2.7. 
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Figure 2.7 Bulk and grain-boundary conductivities of 8 mol% YSZ of high purity as a 
function of temperature. After [22]. 
 

 

2.2.3.1 Origin of the blocking effect 

The grain-boundary blocking effect originates from two aspects. In the early studies, the 

blocking effect was usually attributed to the impurity segregations at grain boundaries, 

especially the intergranular siliceous phase [23-47]. However, later studies found the 

blocking effect still exists in highly pure YSZ materials in which the siliceous phase is 

not observed. The oxygen vacancy depletion in the grain-boundary space charge layer 

was proposed as another origin of the blocking effect [20, 22, 48-58]. Now it has been 

accepted as the decisive reason for the low grain-boundary conductivity. 

 

(1) Impurities at grain boundaries 

Based on the TEM observations of the siliceous phase morphology, a model has been 

proposed to explain the role of siliceous phase on the ionic conduction path of the grain 

boundary. As illustrated in Figure 2.8(a), the grain-to-grain contact is interrupted by the 

siliceous phase inclusions. Because of the very low ionic conductivity of the siliceous 

phase, the ionic conduction across the grain boundaries can occur only through the 
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grain-to-grain contact. The resistive siliceous phase restricts the ionic transport across 

the grain boundary by reducing the grain-to-grain contact area. 

 

On the other hand, finite element calculations by Fleig and Maier [59] show the highly 

resistive phase has additional contribution to the grain-boundary resistance by the 

constriction of current lines, as shown in Figure 2.8(b). In the case of a circular grain-to-

grain contact area, the resistance resulting from the current constriction by the siliceous 

phase, )1(
gbR , can be calculated by: 

w
d

f
R
R g

geo
bulk

gb =
><

)1(

,                                                  (2.8) 

where <Rbulk> is the resistance of a grain, w is the diameter of the grain-to-grain contact 

area,  dg is the average grain size, and fgeo is the geometric correction factor, given by: 

)2/(1
/1

g

g
geo dw

dw
f

+

−
= .                                                 (2.9) 

The above two equations indicate the morphology and location determines the blocking 

effect contributed by the grain-boundary siliceous phase. 

 

 

 

 
 
Figure 2.8 (a) Schematic representations of grain boundaries with highly resistive 
siliceous phase. [18] (b) Frequency-dependent potential distributions within a single 
grain showing the effect of the highly resistive phase. The distortion of the current line 
at low frequency leads to additional resistance to the grain boundary. [59] 
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 (2) Oxygen vacancy depletion in the space charge layer 

In the electrical point of view, an “electrical grain boundary” includes a grain boundary 

core and two adjacent space charge layers, as illustrated in Figure 2.9(a). The thickness 

of an “electrical grain-boundary” is expressed as δgb = 2λ* + b, where λ* is the width of 

the space charge layer, and b is the thickness of the grain-boundary core. The YSZ grain 

boundary core has a high concentration of oxygen vacancies and it is positively charged, 

which has been proven by several theoretical studies [60-64] as well as experimental 

evidence [65] in other electroceramics. The positive charge of the grain boundary core 

is compensated by the accumulation of yttrium and the depletion of oxygen vacancies in 

the space charge layers. The oxygen vacancy profile is schematically presented in 

Figure 2.9(b).   

 

 

 
Figure 2.9 (a) Schematic representation of an “electrical grain boundary”. At the 
interface between the space charge layer and the grain-boundary core x = 0, while far 
into the bulk x = ∞; (b) Oxygen vacancy concentration profiles in the space charge 
layers and grain-boundary core. After [18]. 
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The concentration of the oxygen vacancy in the space charge layer can be expressed by: 

  ))(exp(
)(
)(

Tk
xze

c
xc

B

ϕ∆
−=

∞
,                                           (2.10)  

where ∆φ(x) is the electrostatic potential in relation to the bulk, z is the charge number 

(z = 2 for oxygen vacancies) and x is defined in Figure 2.9(a). Eq.(2.10) can be written 

as: 

))(exp()(
Tk

xzex
B

bulk
ϕσσ ∆

−= ,                                       (2.11) 

where σ(x) is the conductivity at x, σbulk is the bulk conductivity. The resistance of a 

space charge layer is: 

∫
∆

=>=<
*

0

*

)2(
)2( ))(exp(11 λ ϕ

σ
λ

σ
dx

Tk
xze

SS
R

Bbulkgb
gb  .                    (2.12) 

The resistance of the bulk with the same size (area S and width λ*) is: 

S
R

bulk
bulk

*1 λ
σ

=  .                                                  (2.13) 

The width of the space charge layer λ* is expressed by: 

2
1* ))0((2

Tk
eL

B
D

ϕλ ∆
=  .                                            (2.14) 

where LD is the Debye length, given by: 

2
1

2 )
)(2

(
' ∞

=
ZrY

B
D ce

TkL ε  ,                                              (2.15) 

where )(' ∞
ZrY

c is the concentration of yttrium in the bulk. ∆φ(0) is the electrostatic 

potential of the grain boundary core relative to the bulk (Schottky barrier height), and ε 

is the dielectric constant. 

 

From Eq.(2.12) to (2.15), the relationship between σgb and σbulk can be established as 

[22, 66]: 

Tkze
Tkze

B

B

gb

bulk

/)0(2
)/)0(exp(

ϕ
ϕ

σ
σ

∆
∆

= .                                              (2.16) 

Considering the grain boundary structure in Figure 2.8(a), the space charger layer only 

occurs around the grain-to-grain contact area. Thus the grain-boundary resistance, )2(
gbR , 

can be written as: 
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ϕ
ϕ

∆
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=
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.                                (2.17) 

To summarize, the low conductivity of YSZ grain boundary originates from two effects. 

One is the current constriction by the resistive siliceous phase (extrinsic effect), and the 

other one is the oxygen vacancy depletion in the space charge layer (intrinsic effect). 

The total grain boundary resistance (Rgb) is therefore a sum of the above two resistances, 

i.e., 
)2()1(

gbgbgb RRR += .                                              (2.18) 

 

 

2.2.3.2 Factors that influence the grain boundary conductivity 

(1) Impurity concentration 

The impurity concentration can be represented by the value of w/dg.  A large value of 

w/dg indicates a low impurity concentration, whereas a small w/dg indicates a high 

impurity concentration. The influence of impurity concentration (w/dg) on each 

contribution of grain boundary resistance ( )1(
gbR  and )2(

gbR ) is illustrated in Figure 2.10, 

where it shows both )1(
gbR and )2(

gbR decrease with an increase of w/dg. 

 

In the case of very low impurity concentration, w/dg ≈ 1. From Eq. (2.8) and (2.9), it can 

be derived that )1(
gbR ≈ 0. The contribution from the impurity phase to the grain boundary 

resistance is negligible. Therefore, )2(
gbgb RR ≈ , which is determined by the Schottky 

barrier height ∆φ(0) and will be discussed later. On the contrary, when the impurity 

concentration is extremely high (e.g. w/dg ≤ 0.052), considering reasonable ∆φ(0) 

values of 0.25 – 0.30 V for 8 mol% YSZ, the grain boundary resistance is also 

dominated by the oxygen vacancy depletion in the space charge layer. However, since 

the coverage of the grain boundaries by the siliceous phase is too high, this case is 

unlikely to happen in the reality. Excluding the above two extreme situation, in a wide 

range of normal impurity concentration, the w/dg value is within the shaded area in 

Figure 2.10. The relative magnitude of )1(
gbR and )2(

gbR is determined by the Schottky 

barrier height ∆φ(0). When ∆φ(0) is low (e.g., 0.25 V), )1(
gbR > )2(

gbR , the siliceous phase 
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contributes more to the grain boundary resistance than the space charge effect. However, 

with an increase of ∆φ(0), the concentration range within which )1(
gbR > )2(

gbR becomes 

narrower, thus the space  charge effect becomes more and more effective. When ∆φ(0) 

is very high (e.g., 0.35 V) the space charge effect is dominant in the grain boundary 

resistance at all impurity concentrations. 

 

 

 

Figure 2.10 Calculated >< bulkgb RR /)1(  and >< bulkgb RR /)2(  at 500 ºC as a function of 
w/dg for 8 mol% YSZ. After [56]. 
 

 

(2) Schottky barrier height 

Schottky barrier height determines the “intrinsic” grain boundary conductivity 

(contribution from the space charge effect), as described by Eq.(2.16). It also determines 

the relative magnitude of )1(
gbR and )2(

gbR at a certain impurity level, as stated in the 

previous paragraph. Numerical analysis of Eq.(2.16) shows the grain boundary 
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conductivity decreases with an increase in the Schottky barrier height providing the 

bulk conductivity is constant, as displayed in Figure 2.11. 

 
Figure 2.11 σgb/σbulk as a function of the Schottky barrier height ∆φ(0). The range within 
the two dash lines is the reasonable ∆φ(0) for 8 mol% YSZ. 
 

 
(3) Grain size 

Within a wide grain size range (tens of nanometers to tens of micrometers), the specific 

grain boundary conductivity decreases with an increase in the average grain size in YSZ 

and other element doped-ZrO2, as illustrated in Figure 2.12.  The decrease of grain 

boundary conductivity is more pronounced when the grain size is small (less than 2 µm 

for YSZ and less than 4 µm in CaO-doped zirconia). Guo and Zhang [20] calculated the 

Schottky barrier height and the concentration of oxygen vacancies as a function of 

average grain size. They found the Schottky barrier height increases with increasing 

grain size, which leads to a decrease of the oxygen vacancy concentration in the space 

charge layer and consequently results in the decreasing grain boundary conductivity. 

 

Further decrease of grain size to less than 10 nanometers in YSZ will cause the overlap 

of the neighbouring space-charge layers (usually the width of a space charge layer in 
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YSZ is around 5 nm). In this case the electrical conductivity can be very different from 

the coarse-grained materials. However, such a tiny grain size is difficult to obtain in 

sintered YSZ bulk samples (the material of interest in this thesis), further discussion 

won’t be carried out here. 

 

 
Figure 2.12 Specific grain boundary conductivity as a function of average grain size for 
3 mol% Y2O3-doped ZrO2 (3Y-ZrO2) at 550 ºC (black circle, after [20]), 8.2 mol% 
Y2O3-doped ZrO2 (8Y-ZrO2) at 450 ºC (red triangle, after [18, 21]). 
 

 

2.3 Characterisation of electrical properties -- Impedance spectroscopy 

2.3.1 Fundamentals [67] 

When a small amplitude sinusoidal voltage signal )sin()( tVtv m ω= , where ω is the 

angular velocity (ω=2πf, where f is the frequency), is applied to a material, a steady 

state current )sin()( θω += tIti m  will be generated. Here θ is defined as the phase angle, 

which represents the phase difference between the current and the voltage. The ratio of 

the applied voltage to the current is known as the impedance of the material, defined 

as )(/)()( titvZ =ω , with a modulus of mm IVZ /)( =ω  and a phase angle, θ. 
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Impedance is a vector quantity which can be expressed by the sum of a real part Z’ and 

an imaginary part Z’’, ''' jZZZ −= . The imaginary number 1−=j indicates an anti-

clockwise rotation by π/2 relative to the real axis. The magnitude and direction of the 

impedance, Z, can be represented by a planar vector in a right-hand orthogonal system, 

as plotted in Figure 2.13.  

 

 

                                
Figure 2.13 The impedance Z plotted as a planar vector. 

 

 

From Figure 2.13, the relationships among the parameters can be obtained: 

)'/''(tan

)''()'(

sin''

cos'

1

22

ZZ

ZZZ

ZZ

ZZ

−=

+=

=

=

θ

θ

θ

.                                            (2.19) 

 

2.3.2 Impedance response of dielectric materials 

For an ideal dielectric material, the electrical response to an AC voltage can be 

represented by a R (Resistor)-C (Capacitor) parallel circuit (illustrated in Figure 2.14(a)). 

The impedance is expressed as: 
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ω+=
11 .                                                   (2.20) 

Therefore: 
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ω
;                         (2.21) 
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2

()
2

'()''( RRZZ =−+ .                                        (2.22) 

Consequently, the Nyquist plot (Z’’ versus Z’) for the R-C parallel circuit is a single 

semicircle with the centre located at (R/2, 0) (shown in Figure 2.14(b)). The diameter of 

the semicircle equals the resistance of the sample. When Z’’ reaches the maximum 

value R/2, the angular velocity )/(1max RC=ω , corresponds to a relaxation 

frequency )2/(max πω=f , which is an important parameter related to the physical nature 

of the material. 

 

 

 
Figure 2.14 Schematic of (a) equivalent circuit (b) Nyquist plot of an ideal dielectric 
material. 
 

 

However, when there exists chemical inhomogeneity or geometrical non-uniformity in a 

material, the capacitance response is often not as a pure capacitor. This deviation can be 

modelled by using a constant phase element (CPE) instead of an ideal capacitor in the 

equivalent circuit. The impedance of a CPE, ZCPE, is given by [67-69]: 

11 )]
2

sin()
2

[cos(
)(

1 −−− +==
ππω

ω
njnQ

jQ
Z n

nCPE  ,                  (2.23) 
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where Q is a parameter independent of frequency. When n = 0, the CPE represents a 

pure resistor and Q equals
R
1 . When the exponential factor n = 1, the CPE functions as 

an ideal capacitor and Q is equal to the capacitance C.  In the case of non-ideal 

capacitive response, the value of Q can not be used to represent the capacitance of the 

material. An equivalent capacitance C is adopted to represent the capacitive behaviour, 

which is defined as [70]: 
nnn QRC /1/)1( −= .                                             (2.24) 

 

 

2.3.3 Typical impedance spectra of YSZ 

A typical impedance spectroscopy (Nyquist plot) of YSZ is shown in Figure 2.15. Three 

arcs are displayed on the Nyquist plot, from high frequency to low frequency (left to 

right), corresponding to the responses from grain, grain boundary and electrode, 

respectively. The equivalent circuit, therefore, is three R-CPE elements in parallel 

connection, as shown in the inset. From the impedance spectroscopy and equivalent 

circuit fitting, the resistance and capacitance of YSZ grain and grain boundary can be 

obtained. The conductivity of grain and grain boundary can be calculated using the 

following equations [18]: 

A
d

RGrain
Grain

1
=σ ,                                                 (2.25) 

A
d

C
C

R GB

Grain

GB
GB

1
=σ ,                                              (2.26) 

where d is the sample thickness, A is the cross section area of the sample. The dielectric 

constant of the sample can also be obtained, by: 

A
ndC GrainGrain

r
0ε

ε = ,                                               (2.27) 

where dGrain is the average grain size, and n the number of grains to be trespassed in the 

current direction. The dielectric constant of YSZ grain boundary is approximately the 

same as that of grain [22,71]. 
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Figure 2.15 Typical impedance spectroscopy (Nyquist plot) and equivalent circuit of 

YSZ (8 mol% YSZ, cold-pressed and sintered at 1500 ºC, measured at 300 ºC). 

 
 

2.3.4 Finite element modelling 

The finite element method (FEM) (sometimes referred to as finite element analysis) is a 

numerical technique for finding approximated solution of partial differential equations 

(PDE) as well as of integral equations. The application of FEM in impedance spectra 

simulation was firstly proposed by Fleig et al. The fundamentals are described below 

[72, 73].  

 

The impedance can be determined by the calculation of the exact potential distribution 

within the sample. This implies the numerical solving of the underlying differential 

equation. As long as time-dependent magnetic fields can be neglected, the Poisson’s 

equation can be written in terms of a scalar electrical potential: 

                      ),(1),(
0

trtrdivgrad
r

ρ
εε

−=Φ ,                               (2.28) 

where Φ is the electrical potential, ε0 is the vacuum dielectric constant, εr is the relative 

dielectric constant, and ρ is the charge density. In a two-dimensional case, if we ignore 
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the space charges and only take the surface charges into account, Eq.(2.28) can be 

reduced to Laplace’s equation: 

                           02

2

2

2

=
∂
Φ∂

+
∂
Φ∂

yx
.                                               (2.29) 

For an applied AC voltage U0ejωt of angular frequency ω between the two electrodes the 

potential Φ within the sample is given in complex representation by 

                       ))(()(ˆ)(ˆ),(ˆ rtjtj erertr αωω ϕϕ +≡=Φ ,                            (2.30) 

provided the deviations from equilibrium are small (linear regime). 

 

The boundary conditions are defined as the follows: 

(1) Dirichlet boundary condition, which means the electrical potential of the 

electrode (position-independent) is identical to the potential of the solid electrolyte, is 

applied to the electrode/solid electrolyte interface, where the electrochemical effects are 

ignored. 

(2) Neumann boundary condition: 0=⋅Φ ngrad , where n  is the normal vector of 

the relevant interface or surface. Dielectric displacement currents crossing the free 

surfaces are neglected (analogous to an ideal plate capacitor). 

(3) Inner interface: the continuity of the normal component of the complex current 

density must be warranted: 

                         ngradkngradk ⋅Φ=⋅Φ 2211
ˆˆˆˆ .                                       (2.31) 

 

The complex conductivity k̂  is defined by: 

                                rjk εωεσ 0
ˆ += ,                                                 (2.32) 

with σ being the conductivity and ω the angular frequency of the applied AC voltage. 

Eq.(2.31) can be derived by combining Poisson’s equation (Eq.(2.28)) and the 

continuity equation for the Faraday current density (total current density minus 

displacement current density, i.e., true conducting current density -- Φ̂gradσ ) 

                               
t

graddiv
∂
∂

=Φ
ρσ
ˆ

)ˆ( ,                                             (2.33) 

using Eq.(2.30) and integrating over the surface of a thin volume element at the phase 

boundary.  
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For the potential difference Û  between the two electrodes, the total complex impedance 

can be calculated as: 

                                
∫ Φ−

=
A

dsgradk
UZ ˆˆ
ˆˆ ,                                              (2.34) 

The integration is carried out along an equipotential line, ds being the differential 

normal vector element of the line. Once the potential distribution ),(ˆ yxΦ  is known, the 

impedance can be calculated for a given complex conductivity. By varying frequency 

and thus the complex conductivity, it is possible to simulate the entire impedance 

spectrum for a given sample geometry. The finite element method was used to solve the 

partial differential equation numerically in order to obtain the complex electrical 

potential. 

 

An example of the FE modelling of the impedance spectroscopy of YSZ is shown in 

Figure 2.16. Based on the real microstructure of the sintered YSZ, a geometric model is 

established as shown in Figure 2.16(a). By defining the physical properties of each 

component (e.g., grain and grain boundary) and applying the boundary conditions to 

each surface and interface (as indicated in the numbers), the impedance spectroscopy of 

the model can be worked out, as shown in Figure 2.16(b). FE modelling is an effective 

and convenient method to study the structure- property relationship. 

 

 
Figure 2.16 (a) A geometric model for FE modelling. The numbers indicate the 
boundary condition used. (b) The calculated impedance spectroscopy of the model, 
along with the equivalent circuit and the fitting curve. 
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2.4 Summary of part I 

Part I of this chapter reviewed the ionic conduction of YSZ. Information obtained from 

the references is summarized below. 

(1) YSZ is a typical fluorite-type ionic conductor. Oxygen vacancies, generated by 

substitution of Zr4+ by Y3+, move diffusively under the electric field as charge 

carriers; 

(2) Ionic conductivity of YSZ depends on the yttria concentration. The highest ionic 

conductivity is obtained in 8 mol% YSZ. Further increase of yttria concentration 

decreases the ionic conductivity because the formation of defect associates becomes 

significant at high dopant concentration. 

(3) Activation energy equals migration enthalpy at high temperatures, whereas it is a 

sum of the migration enthalpy and the association enthalpy at low temperatures (< 

650 ºC).  

(4) The grain boundary conductivity is 2 or 3 orders of magnitude lower than the bulk 

(grain) conductivity of YSZ (so called blocking effect). The blocking effect 

originates from the impurity segregation at grain boundaries or the space charge 

effect, with the latter one as the dominant mechanism. 

(5) Impedance spectroscopy is an effective method to study the electrical and dielectric 

properties of YSZ grain and grain boundary. 
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PART 2.  Thermal conduction mechanism of YSZ 

 

 

 

 

2.5 Fundamentals of thermal conduction in dielectric materials 

 

The thermal conductivity of a material, k (W·m-1·K-1), is a measure of heat flow in a 

temperature gradient, as described by the Fourier’s law [74]: 

Tkq ∇⋅−= ,                                                    (2.35) 

where q is the heat flux density through the cross-section per unit time (W·m-2) 

and T∇ is the temperature gradient (K·m-1).  

 

By analogy with the kinetic theory of gases, Debye derived an expression of the thermal 

conductivity, written as [75]: 

Λ⋅⋅= vCk
3
1 ,                                                   (2.36) 

where C is the specific heat, v is the phonon velocity and Λ is the phonon mean free 

path. In the form of lattice waves, over a spectrum of frequencies ω, Eq.(2.36) can be 

rewritten as [76]: 

( ) ( ) ωωω
ω

dvTCk D

∫ Λ⋅⋅=
0

,
3
1 ,                                    (2.37) 

where ωD is the Debye frequency; C(ω)dω is the contribution to the specific heat from 

the vibration modes having a frequency between ω and ω+dω.  
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In a polycrystalline ceramic material, the phonon mean free path usually includes the 

contributions from phonon-phonon scattering, phonon-point defect scattering and 

phonon-grain boundary scattering. The contributions from the above processes are 

introduced in the following parts.  

 

2.5.1 Umklapp phonon-phonon process [77] 

At temperatures higher than the Debye temperature ΘD, the specific heat C(ω) is 

proportional to ω2 and it is independent of temperature, expressed as: 

( ) 2, ωω ⋅= BTC ,                                                  (2.38) 

where B is a constant. The mean free path associated with Umklapp phonon-phonon 

interactions, ΛU, is proportional to ω-2 and T-1 at high temperatures, expressed as: 

T
D

T U
U 2),(

ω
ω =Λ ,                                                   (2.39) 

where DU is a parameter independent of temperature and frequency.  

 

Substitute Eq.(2.38) and (2.39) into Eq.(2.37), the classical T-1 variations of the intrinsic 

thermal conductivity is obtained: 

T
Ad

T
D

vBk D U =⋅⋅= ∫ ω
ω

ω
ω

0 2
2

3
1 ,                                       (2.40) 

where DUBvDA ω
3
1

= . 

 

In Eq.(2.39), it is indicated that the phonon mean free path decreases continuously with 

increasing temperature. However, due to the fact that the phonon mean free path can not 

be shorter than the distance between two neighbouring atoms, there exists a minimum 

mean free path Λmin, as suggested by Roufosse and Klemens [78], that 

( )
T

D
T U

2,
ω

ω =Λ , if min2 Λ>
T

DU

ω
,                                     (2.41) 

( ) min, Λ=Λ Tω , if min2 Λ<
T

DU

ω
.                                     (2.42) 

Consequently, integration of Eq.(2.37) gives: 
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where D
U

T
T

T
D

ωω 1

min

' =
Λ

= and 
( )2

min
1

D

UD
T

ωΛ
= . Eq.(2.43) indicates the thermal 

conductivity of the a solid material might decrease less rapidly than the T-1 law. 

 

Based on the above theory, the minimum high temperature thermal conductivity (kmin) 

of one material can be predicted from its physical properties, expressed as [79,80]: 

3/2

2/16/13/2
3/23/2

min 87.087.0
M

EmNkEkk ABaB
ρ

ρ
→Ω→ − ,                  (2.44) 

where
ρA

a mN
M

=Ω is the average volume per atom; kB and NA are Boltzmann’s and 

Avogadro’s constant, respectively; m is the number of atoms per molecule; M is the 

molecular mass; ρ is the density and E is the Young’s modulus. The minimum thermal 

conductivity, calculated from Eq.(2.44), of a variety of materials is plotted in Figure 

2.17, indicating that materials with high average atomic volume (Ωa) and low specific 

elastic modulus (E/ρ) have low thermal conductivities.  

 

 

 
Figure 2.17 Minimum thermal conductivity of a variety of materials, calculated from 
Eq.(2.44). [79,81] 
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2.5.2 Phonon-point defect scattering [77] 

The point defects in the material interact with phonons and contribute to a phonon mean 

free path ΛD, which is dependent on the point defect concentration (cD) and frequency, 

but independent of temperature. It is expressed as: 

4)(
ω

ω
⋅

=Λ
D

D
D c

D ,                                             (2.45) 

where DD is a parameter independent of temperature and frequency. 

 

Assuming the phonon-phonon and the phonon-point defect scattering are independent 

procedures, the total phonon mean free path, Λ, can be written as: 

( ) ( ) ( )ωωω DU TT Λ
+

Λ
=

Λ
1

,
1

,
1 .                                  (2.46) 

Combining Eq.(2.39), (2.45) and (2.46), the mean free path is: 
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Employing the concept of minimum mean free path, then: 
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Then integration of Eq.(2.37) gives: 
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where
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2.5.3 Phonon-grain boundary scattering [82] 

Grain boundaries are important components of polycrystalline ceramic materials. They 

scatter phonons and contribute to a phonon mean free path, ΛGB, which is a frequency-

independent constant corresponding to a characteristic length L: 

LGB =Λ .                                                       (2.51) 

Thus in a polycrystalline ceramic material without point defects, both the Umklapp 

phonon-phonon scattering and the phonon-grain boundary scattering contribute to the 

thermal conduction, with a phonon mean free path of: 

( ) ( ) ( ) LTT UGBU

1
,

11
,

11
+

Λ
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Λ
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Λ
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Λ ωωω
.                        (2.52) 

The reduction in thermal conductivity caused by phonon-grain boundary scattering is 

given by: 
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where ωB is the frequency at which LBU =Λ )(ω . And from Eq.(2.39), ωB is obtained 

as
TL
DU

B =ω .  

 

Grain boundaries are effective of scattering low frequency phonons. Assuming the 

phonons are randomly scattered at each grain boundary, the characteristic length L can 

be identified as the average grain size. Consequently the grain boundary can effectively 

scatter the phonons only when the grain size is small enough, i.e., in nano-metre scale. 

 

2.6 Thermal conductivity of YSZ 

 

As stated in Chapter 1, YSZ is the state-of-art TBC material because it provides the best 

performance in high temperature applications. It has a low and temperature-independent 

thermal conductivity, which is usually attributed to the presence of a high point defect 

concentration caused by the substitution of Zr4+ by Y3+ ions in the fluorite structure, 

producing a small spacing between point defects [81]. Thermal conductivity of YSZ, 

both its bulk material and coating, has been extensively studied. In the mean time, lots 
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of efforts has been devoted to modify YSZ, e.g., by adding other dopants, to decrease its 

thermal conductivity.  

 

2.6.1 Phonon-phonon and phonon-defect scattering in YSZ 

In YSZ, the thermal conductivity is determined by the phonon-phonon scattering 

process (intrinsic) and the phonon-defect scattering process. The intrinsic thermal 

conductivity of pure ZrO2, considering the minimum phonon mean free path, is 

described in Eq.(2.43). Mévrel et al. [77] fitted their experimental results by Eq.(2.43) 

and reported the constant A is 2400 W/m and T1 = 420 K. 

 

The mean free path caused by phonon-defect scattering, as described in Eq.(2.44), can 

be rewritten as [83]:  

1
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ω 4,                                       (2.54) 

where M is the atomic mass of the host atom, ∆M is the mass difference between the 

host and the substitutional atom; a3 is the mean atomic volume and v is the averaged 

sound velocity. In the presence of point defects, the thermal conductivity is written as 

[84,85]: 
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where ωm is the Debye frequency of the acoustic branch, given by 3
1−

= mDm ωω with m 

is the number of atoms per molecule. And [85]: 
12

3

22

0 4
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
M
Mc

a D
m µ

γ
ω
ω ,                                (2.56) 

where γ is the Grüneisen constant and µ is the shear modulus.  

 

In YSZ, two types of point defects are created: (1) sustitutional solute atoms (Y on Zr 

sites); (2) oxygen vacancies due to the aliovalent nature of the dopant (anion sites). 

Thus the term ( )2/ MMcD ∆ in Eq.(2.54) is composed of two parts corresponding to the 

two types of point defects. Also according to the defect chemistry, adding x mol Y2O3 

into ZrO2 can generate 2x mol '
MY  and x mol ••

OV , therefore: 
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where M is the average atomic weight in a unit cell. For oxygen vacancies [85]: 

 2−−=
∆ −

M
M

M
M OVacanciesO ,                                         (2.58) 

where the term -2 arises because the number of broken bonds at the vacancy is twice the 

number of bonds per atom [83,85]. Due to the small difference between the atomic mass 

of Y and Zr, the contribution from the cation sites is minor compared with that from the 

anion sites in YSZ. 

 

2.6.2 Effect of yttria concentration 

From part 2.6.1, it is known that the oxygen vacancies in YSZ are the most effective 

scattering sites for phonons. The yttria concentration determines the oxygen vacancy 

concentration in YSZ and thus influences the thermal conductivity of YSZ. From 

Eq.(2.54) it is expected that the thermal conductivity decreases monotonously with 

increasing yttria concentration. However, the experimental results show no further 

decrease of thermal conductivity when yttria concentration is higher than 9 mol% [86], 

which is attribute to the formation of defect associates at high yttria concentrations.  

 

On the other hand, with an increase in the yttria concentration, there is a change of 

phase composition in YSZ, from monoclinic, via a mixture of cubic and tetragonal, to 

fully stabilised cubic phase. Different phases have different lattice parameters and 

various physical properties, i.e., Young’s modulus, density, etc., which might also have 

influences on the thermal conductivity. The phase change might be another reason for 

the reduction of thermal conductivity with increasing yttria concentration. 

 

In all, the introduction of yttria into ZrO2 changes the oxygen vacancy concentration, as 

well as the phase composition of YSZ. An overall picture showing the effect of yttria 

content on thermal conductivity of YSZ is shown in Figure 2.18. 
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Figure 2.18 Effect of yttria content on thermal conductivity of YSZ. Phases are 
indicated, where M represents monoclinic, C cubic and T tetragonal. After [80,86]. 
 

 

2.6.3 Effect of grain size 

As stated in 2.5.3, grain boundaries in the polycrystalline material scatter the phonons 

and decrease the phonon mean free path. In YSZ, however, due to its highly defective 

crystal structure and the small phonon mean free path, the effect of phonon-grain 

boundary scattering is not significant. Only when the grain size is very small, i.e., tens 

of nanometers, the grain boundary effect can be observed. For example, Raghavan et al. 

[87] found that in 5.8 wt% YSZ, a grain size of around 80 nm is still not small enough 

to observe any reduction of thermal conductivity. 

 

Yang et al. [88] studied the grain boundary effect in nanocrystalline YSZ with grain 

size ranging from 10 to 100 nm. As shown in Figure 2.19(a), a rapid decrease of thermal 

conductivity can be observed when grain size is smaller than 40 nm. They proposed a 

general formalism for determining the grain boundary thermal resistance in 

polycrystalline materials. 
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Figure 2.19(b) shows the temperature profile across a polycrystalline material with a 

grain width of d in response to an applied heat flux q. The temperature drop across a 

single grain is: 

GBTTT += 0
* ,                                                  (2.59) 

where T0 is the temperature drop across a single grain interior region, and TGB is the 

average temperature discontinuity at each grain boundary. According to Fourier’s law, 

the effective thermal conductivity of a polycrystalline material can be defined as: 

d
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where k0 is the bulk or single-crystal thermal conductivity and RGB is the grain boundary 

thermal resistance, which is the reciprocal of thermal conductance by 
GB

GB R
G 1

= .  

 

However, when the experimental results in Figure 2.19(a) are fitted using Eq.(2.60), the 

k0 values obtained from fitting deviate from literature values by 20%. To solve this 

problem, the authors modified Eq.(2.60) by introducing an additional temperature factor 

β. The effective thermal conductivity is therefore written as: 

dG
k

k
TT

qdk

GB

GB 0

0

0 1 ++
=

++
−

=
µβ

,                                  (2.61) 

where µ is a dimensionless parameter equal to β/T0.  

 

Using the reference values of k0 and fitting k vs. d (Figure 2.19(a)) to Eq.(2.61), the 

thermal conductance of YSZ grain boundary is obtained, as shown in Figure 2.20. GGB 

increases with increasing temperature and then plateaus. The room temperature thermal 

resistance is around 4.5×10-9 m2·K/W, which is quite low compared with materials like 

Si0.8Ge0.2 [89]. From the practical side, using nanocrystalline YSZ to decrease the 

thermal conductivity can not be effective because of the rapid grain growth above 900 

ºC [90], which is much lower than the operating temperatures for TBCs applications.  
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Figure 2.19 (a) Thermal conductivity of nanocrystalline YSZ as a function of grain size 
at 25 K (open circles) and 480 K (solid circles); (b) Schematic representation of the one-
dimensional temperature profile across a polycrystalline sample in response to an 
applied heat flux (blue line). After [88]. 
 

 

 
Figure 2.20 Grain boundary thermal conductance GGB and resistance RGB for YSZ 
derived from the measured grain-size dependent thermal conductivity data fit to 
Eq.(2.61). [88] 
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2.6.4 Effect of porosity 

The presence of porosity has the greatest effect in decreasing the thermal conductivity 

of a material. The reduction of thermal conductivity depends on not only the volume 

fraction of pores but also the spatial distribution and the shape of the pores. An 

empirical expression of the effective thermal conductivity, keff, is written as [91]: 

( )......1 2Φ−Φ−= dckkeff ,                                       (2.62) 

where Φ is the volume fraction of pores, c and d are constants describing the pore shape 

and pore distribution. 

 

For sintered bulk YSZ, the pores can be treated as randomly distributed spheres. Over a 

range of volume fraction, the constant c then has a value of ~2.5 [91] the effective 

thermal conductivity can be approximated by: 

( )Φ−= 5.21denseporous kk .                                        (2.63) 

On the other hand, from Maxwell model [92], another expression of the effective 

thermal conductivity can be obtained, written as: 

⎟
⎠
⎞

⎜
⎝
⎛

Φ+
Φ−

=
5.01

1
denseporous kk .                                       (2.64) 

The other frequently used relationship between thermal conductivity of porous sample 

and fully-dense sample is [93]: 

⎟
⎠
⎞

⎜
⎝
⎛ Φ−=

3
41denseporous kk .                                        (2.65) 

The above three equations are compared, as shown in Figure 2.21. It can be seen that 

Eq.(2.64) and (2.65) give very close values for zero-porosity correction whereas 

Eq.(2.63) is quite different with the other two. When the volume fraction of pores is low 

(less than 10%), Eq.(2.64) and (2.65) are almost identical. 
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Figure 2.21 Effect of porosity on thermal conductivity of bulk sintered samples. Line (1) 
to (3) describe the relationship in Eq.(2.63) to (2.65) respectively.  
 

2.6.5 Effect of co-doping 

Dopants are important to zirconia on both stabilising its tetragonal or cubic phase and 

decreasing its thermal conductivity. Additions of other metal oxides into YSZ can result 

in further thermal conductivity reduction. The mechanisms of the reduction of thermal 

conductivity are different according to the valence of the metal oxides. For example, 

additions of trivalent oxides into YSZ generate more oxygen vacancies, which strongly 

scatter phonons, and thus decrease the thermal conductivity. Additions of tetravalent 

oxides into YSZ do not usually generate any vacancy. The reduction of thermal 

conductivity is due to the substitutional defects, which are less effective in decreasing 

thermal conductivity than vacancies [94]. Additions of pentevalent oxides into YSZ 

decrease the oxygen vacancy concentration but they still result in a thermal conductivity 

close to or lower than that of YSZ. Both the oxygen vacancies and the substitutional 

defects are responsible for the reduction of thermal conductivity, depending on the 

relative amount between the pentevalent oxides and yttria. Details of the effect of 

doping trivalent, tetravalent and pentevalent oxides are described in the following 

paragraphs. 
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2.6.5.1 Trivalent oxides: Sc2O3 and Yb2O3 

Doping a small amount of trivalent oxides into YSZ can further decrease the thermal 

conductivity by increasing the oxygen vacancy concentration in the ternary solid 

solutions. It is predictable that the effect of doping trivalent oxides into YSZ is similar 

to that of increasing the yttria concentration, as illustrated in Figure 2.18. 

 

Huang et al. [94] doped 3.9 mol% YSZ with 5 mol% Sc2O3 or Yb2O3 and found a 

reduction of room temperature thermal conductivity from 3.99 W/m·K for YSZ to 2.35 

W/m·K for Sc-YSZ and 2.30 W/m·K for Yb-YSZ. The reduction of thermal 

conductivity is more significant in Yb-YSZ than in Sc-YSZ at high temperatures. For 

example, the thermal conductivity at 800ºC decreases from 4.51 W/m·K for YSZ to 3.5 

W/m·K for Sc-YSZ and to 1.9 W/m·K for Yb-YSZ. The authors attribute the lower 

thermal conductivity in Yb-YSZ to the larger atomic mass of Yb (173.04 g/mol) than 

that of Sc (44.96 g/mol). However, it is noticeable that the amount of monoclinic phase 

is different in YSZ (46 mol%), Sc-YSZ (6 mol%) and Yb-YSZ (0 mol%), which could 

also be a reason for the decreased thermal conductivity.  

 

2.6.5.2 Tetravalent oxides: TiO2, CeO2 and HfO2  

TiO2 has a solution limitation in ZrO2 of 40 mol% [95] and in YSZ of 20 mol% [96-98]. 

Miyazaki [99] studied the effect of doping TiO2 into 3 mol% YSZ and found a 

continuous reduction of thermal conductivity with increasing TiO2 content. The room 

temperature thermal conductivity decreases from ~ 4.0 W/m·K for 3 mol% YSZ to ~ 2.1 

W/m·K for 20 mol% TiO2 doped YSZ, as shown in Figure 2.22. The authors briefly 

attributed the reduction of thermal conductivity to the mass defect at the cation sites, 

caused by the substitution of Y or Zr by Ti. However, with an increase in the TiO2 

content, the phase of the solid solution changes from a mixture of monoclinic, 

tetragonal and cubic in 3YSZ and 4 mol% TiO2-3YSZ, a mixture of tetragonal and 

cubic for 8 - 16 mol% TiO2-3YSZ, to a tetragonal single phase for 20 mol% TiO2-3YSZ. 

How the phase change influences the thermal conductivity is unknown. 
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Figure 2.22 Thermal conductivity of TiO2-3 mol% yttria-stabilized zirconia ceramics at 
room temperature as a function of TiO2 content. Phases are indicated: M represents 
monoclinic, T tetragonal and C cubic. After [99]. 
 

 

Reduction of thermal conductivity by doping CeO2 into YSZ has also been reported by 

several studies. Huang et al. [94] added 5 mol% ceria into 7 wt% YSZ and found the 

thermal conductivity was lowered from 3.99 W/m·K (for YSZ) to 3.23 W/m·K at room 

temperature, and from 3.96 W/m·K to 3.78 W/m·K at 600 ºC. However, the introduction 

of ceria significantly decreases the fraction of monoclinic phase in 7 wt% YSZ. Again 

the phase composition difference might be responsible for the reduction of thermal 

conductivity.  

 

HfO2 has similar physical and chemical properties with ZrO2 and it has a complete 

solubility with ZrO2. Winter and Clarke [100] studied the thermal conductivity of HfO2-

YSZ solid solutions over the whole composition range, from YSZ to yttria-stabilized 

hafnia (YSH). The high concentration of yttria (24.6 m/o YO1.5) leads to fully cubic 

phase for all compositions. They found the solid solution alloying (intermixing of HfO2 

and ZrO2) leads to lower thermal conductivity than either YSZ or YSH. Within the 
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whole composition range the thermal conductivity is almost independent on temperature, 

as shown in Figure 2.23(a). For a clear comparison of the composition dependence, the 

thermal conductivity is converted to the thermal resistance, as shown in Figure 2.23(b). 

The “alloyed” compositions have thermal resistances higher than those suggested from 

the simple rule-of-mixture between the end members of YSZ and YSH (the dash line in 

Figure 2.23(b)). 

 

 
Figure 2.23 (a) Temperature dependence of the thermal conductivity for the solid 
solution, (Zr1-xHfx)0.754Y0.246O, as a function of hafnia concentration. (b) Thermal 
resistance at 400 ºC across the solid solution series with 24.6 m/o YO1.5. After [100]. 
 

 

To understand why the intermixing of HfO2 and ZrO2 leads to lower thermal 

conductivity than either YSZ or YSH, the authors employed several models which have 

been developed to account for alloying effects on thermal conductivity. However, none 

of them is entirely successful for explaining the experimental observations. First, 

considering the Umklapp and the phonon-defect scattering, the thermal conductivity is 

described in Eq.(2.50). The thermal conductivity decreases with increasing temperatures 

until reaching a minimum value given by
1

min 3T
Ak = . T1 is an effective temperature that 

for any given material is a constant [77]. The coefficient A is dependent on the atomic 

mass M, the number of atoms per unit cell volume m and the Debye temperature ΘD, 

and other fundamental constants, in the form of: 
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where Q is a numerical constant. Considering the dependence of the Debye temperature 

on atomic mass, kmin is dependent on the atomic mass as M-1/2. This predicts a 

monotonic decrease with increasing HfO2 concentration due to the larger atomic mass 

of Hf, which contradicts to the experimental observations. 

 

The second consideration is the phonon scattering from the alloy element as a result of 

both the mass difference and the ionic size difference. Due to the fixed yttria 

concentration in the solid solutions, the ionic size effect is ignored. Then the phonon 

scattering coefficient, Γ, of a random mixture of two different atoms Hf and Zr, is 

expressed in terms of the concentration and atomic mass as: 

( )( )
( )[ ]2

2

1
1

ZrHf

ZrHf

MxxM
MMxx

−+

−−
=Γ .                                     (2.67) 

According to Eq.(2.67), the scattering coefficient increases with increasing HfO2 

concentration, reaching its highest value when x is around 0.34, and then decreases 

afterward. Because the elastic modulus and the volume of the unit cell for the solid 

solutions are independent of composition, the thermal resistance is proportional to the 

scattering coefficient [100]. This can explain the nonlinear variation of thermal 

conductivity as a function of HfO2 concentration, however, it failed to explain why the 

highest thermal resistance is observed when x = 0.8. 

 

Although there remains unclear issue, this work suggests that solid solution alloying can 

be a viable strategy for further reducing the thermal conductivity of solids. 

 

2.6.5.3 Pentavalent oxides: Ta2O5 and Nb2O5 

When pentavalent oxides and yttria are doped into zirconia, the defect chemistry is 

described by the following equation [101]: 
••• −++++=+ OOZrZr VxyOyxyYxZOyYOxZ )()35(22 '

3252 .          (2.68) 

Therefore the final ternary solid solutions can have various concentrations of oxygen 

vacancies and substitutional defects depending on the relative amount of pentavalent 

oxides and yttria.  
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Raghavan et al. [102] studied the thermal conductivities of Ta2O5 and Nb2O5 co-doped 

YSZ and found some interesting phenomena which contradict, to some extent, to the 

theoretical predictions. First, when Nb2O5 and Y2O3 are equimolar (x = y), oxygen 

vacancies are not generated in the ternary solid solutions. Plus the similar atomic mass 

between Nb (92.91) and Zr (91.22), the Nb2O5-Y2O3-ZrO2 solid solution, YNbO4, 

should have a thermal conductivity that is similar to that of pure monoclinic zirconia. 

On the other hand, due to the large difference in atomic mass between Ta (180.95) and 

Zr, the equimolar Ta2O5-Y2O3 co-doped ZrO2, YTaO4, should have much lower thermal 

conductivity than a pure monoclinic zirconia or YNbO4. However, as shown in Figure 

2.24(a), the thermal conductivity of YNbO4 is much lower than that of pure monoclinic 

ZrO2, whereas thermal conductivity of YTaO4 is lower, but not as significantly as 

expected, than that of YNbO4. Second, in yttria-excess samples, oxygen vacancies are 

generated in the ternary solid solutions. In Nb2O5 co-doped YSZ, due to the similar 

atomic mass between Nb and Zr, it should have similar value with that of YSZ having 

the same concentration of oxygen vacancies. In Ta2O5 co-doped YSZ, the thermal 

conductivity should be lower than that of YSZ with same concentration of oxygen 

vacancies due to additional scattering because of the large mass difference between Ta 

and Zr. However, as shown in Figure 2.24(b), the Nb-YSZ sample has lower thermal 

conductivity than those Ta-YSZ samples. 

 

 

   
Figure 2.24 (a) Comparison of the thermal conductivities of pure monoclinic zirconia 
with that of the Ta or Nb co-doped YSZ containing no oxygen vacancies. (b) Thermal 
conductivities of the Ta or Nb co-doped YSZ containing oxygen vacancies. The 
concentrations of oxygen vacancies in the co-doped samples are indicated in the 
blankets. After [102].   
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The discrepancies between theoretical predictions and experimental observations might 

due to the underestimation of the ionic size effect, as well as the different phase 

compositions in those samples. However, it does point out that the phonon scattering 

due to mass difference alone is inadequate to predict the thermal conductivity of the co-

doped YSZ solid solutions. 

 

2.7 Techniques for thermal conductivity measurement 

2.7.1 Axial flow methods [103] 

In steady-state conduction, the thermal conductivity is defined as the heat flux over the 

temperature gradient. Thermal conductivity therefore can be obtained from measuring 

the heat flux and the temperature difference across the sample. Axial flow methods are 

based on this concept.  

 

One of the most widely used axial flow methods is the comparative cut bar method 

(ASTM E1225). The principle of the measurement lies with passing the heat flux 

through a reference sample with known thermal conductivity (kR) and the test sample 

(kS), and comparing their temperature gradients which are inversely proportional to their 

thermal conductivities. To minimize the heat loss, the sample is commonly sandwiched 

between two reference samples. A schematic of the comparative cut bar test method is 

shown in Figure 2.25. The thermal conductivity of the sample can be calculated as: 

L
TTk

L
T

k
A
Q

R
S

S
1

2
21 ∆+∆

=
∆

= ,                                     (2.69) 

where Q is the heat input and A is the cross-section area. 

 

The steady-state measurements have been long established. They are easy, direct and 

accurate at low temperatures. However, the heat losses are difficult to control at high 

temperatures, which decreases the accuracy. The measurement also takes long time and 

requires a large specimen. 
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Figure 2.25 Schematic of the comparative cut bar test method for thermal conductivity 
measurement. 
 
 

2.7.2 Laser flash technique [104, 105] 

Laser flash is a transient-state method of measuring the thermal diffusivity/conductivity 

of materials. It was proposed by Parker et al. [104] in 1961 and now it has become a 

most widely used method for high temperature thermal conductivity measurement. 

 

A schematic view of the laser flash system is shown in Figure 2.26. During the 

measurement, a high-intensity short-duration laser pulse is applied to the front surface 

of the sample. The temperature rise at the backside is measured by an infra-red detector. 

The thermal diffusivity (α) can be determined from the temperature versus time curve at 

the rear surface by: 

5.0

2

5.0
2

2 1388.038.1
t

d
t
d

==
π

α ,                                       (2.70) 

where d is the sample thickness and t0.5 is the time required for the back surface to reach 

half of the maximum temperature rise. The thermal diffusivity value can be converted to 

thermal conductivity by multiplying the specific heat capacity (Cp) and the density (ρ): 

ρα pCk = .                                                (2.71) 

 

The thermal diffusivity measurement by laser flash technique is fast and convenient, 

especially at high temperatures. Only a small amount of material is needed for the 

measurement. However, depending on the flash duration, a minimum thickness of the 

sample is required. The sample should be thick enough to guarantee that the time the 
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temperature begins to raise at the back surface is longer than the flash duration. For a 

low thermal diffusivity material, the satisfactory thickness is about 1 mm.  

 

 

 
Figure 2.26 A schematic view of the laser flash system. 

 

 

2.7.3 Micro-Raman scattering [106] 

Micro-Raman scattering is a noncontact and non-destructive method to measure thermal 

conductivity, proposed by Périchon et al.. The concept of this technique is based on two 

complementary effects in micro-Raman spectroscopy. The first effect is the local 

heating in the surface layer caused by the laser beam focused on the sample. It causes a 

temperature rise, which is directly related to the sample’s thermal conductivity. The 

second effect is the shift of the Raman peak with temperature, which can be used to 

obtain the local temperature rise. 

 

When the sample thickness is far (at least one order) larger than the heat source 

diameter, the distribution of isotherms is hemispherical. Neglecting the heat losses in 

the air, a linear relationship between the heating power P, the local temperature Tj and 

the thermal conductivity k can be obtained: 
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where Tb is the bulk temperature and a is the heating source diameter. During the 

measurement, a low laser power PL, by which no surface heating is induced, is applied 

to the sample to calibrate the relationship between Raman peak shift and the 

temperature. After that, Raman measurement is carried out at given laser power. From 

the Raman peak position, the local temperature Tj is obtained from the peak shift- 

temperature relationship. The local temperature rise and thus the thermal conductivity of 

the sample can be obtained from Eq.(2.72). 

 

This technique can be applied to bulk or layered materials whose thickness is larger than 

the laser beam diameter. The main random error is from the uncertainty on the Raman 

peak position, which is estimated to be ± 0.5 cm-1, leading to a relative error on the 

measured thermal conductivity of 16%. Improvement of Raman spectra acquisition can 

enhance the accuracy of this method. 

 

Other techniques, for example, 3ω method [107], thermography [86], time-domain 

thermoreflectance (TDTR) [108], are also widely used to determine the thermal 

conductivity of materials, especially for thin films. The details of those techniques can 

be found in relevant references. 

 

2.8 Summary of part II 

In part II of this chapter, the fundamentals of the thermal conduction mechanism of 

YSZ are reviewed. The information obtained is summarized as the following: 

(1) YSZ has a temperature independent low thermal conductivity which is attributed to 

the existence of oxygen vacancies; 

(2) Thermal conductivity of YSZ depends on the yttria concentration. The lowest 

thermal conductivity is obtained in 8 mol% YSZ, with a value of around 2.2 W/m·K. 

(3) The grain boundary effect can be neglected when the average grain size is larger 

than 100 nm. 
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(4) Doping other metal oxides into YSZ is an effective method to decrease the thermal 

conductivity is YSZ. Depending on the valence of the metal, the mechanism of the 

reduction of thermal conductivity is different. 

(5) Laser flash is a convenient method to obtain the thermal diffusivity/conductivity 

values of YSZ bulk samples. 
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Electrical properties of YSZ/Al2O3 composites  

 

 

3.1 Introduction 

 

Yttria stabilized zirconia (YSZ) and Al2O3 are important ceramic materials and have 

wide range of applications in industry. Their YSZ/Al2O3 composite, which should 

combine the properties of individual component, might increase the range of its 

application. For example, the YSZ/Al2O3 composite has been proposed as electrolyte 

for planar Solid Oxide Fuel Cell (SOFC) because of its enhanced mechanical and 

thermal properties compared with conventional YSZ [1]. On the other hand, owing to 

the immiscibility of YSZ and Al2O3 (the solubility of Al2O3 in 8 mol% YSZ is around 1 

wt.% when sintered at 1500 °C [2]), YSZ/Al2O3 composite is also of scientific interest 

in understanding the fundamental behaviours of a diphase system [3]. It is also a good 

system for studying the physical properties of the ceramic/ceramic interface. 

 

Electrical properties of the YSZ/Al2O3 composite are not new topics and have been 

investigated by a number of researchers [1-8]. However, most of the studies have been 

focused on the effect of adding a small amount of Al2O3 (less than 5 wt%) to YSZ [4-8]. 

A review on the effect of the Al2O3 addition on the electrical properties of YSZ grain 

and grain boundary can be found in Ref. [9] and [10]. It is summarized that the Al2O3 

addition below the solubility limit decreases the grain boundary conductivity by 

increasing the Schottky barrier height, while the Al2O3 addition above the solubility 

limit increases the grain boundary conductivity by increasing the grain-to-grain contact 

area by scavenging SiO2 from the boundaries between grains [9, 10].   For a much wider 
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range of composition, most of work has reported the electrical properties of YSZ/Al2O3 

composite with the Al2O3 fraction less than 30 wt% (around 40 vol%). For example, 

Feighery and Irvine [2] doped up 24 wt% Al2O3 into 8 mol% YSZ and found that 10 

wt% Al2O3 can be added to 8 mol% YSZ without any significant decreases in ionic 

conducting properties. Further additions of Al2O3 cause a rapid decrease in conductivity 

due to the large volume fraction of insulating Al2O3 phase. Mori et al. [1] studied the 

composite with Al2O3 content up to 30 wt%, and found the conductivity only decreased 

less than one order of magnitude.  

 

Although it is predictable that the conductivity of the YSZ/Al2O3 decreases with further 

increase in the Al2O3 volume fraction, it is still of interest and importance to study the 

electrical properties of the composite covering the whole composition range because it 

can provide valuable information on the diphase system. However, the only work that 

includes the whole composition range of YSZ/Al2O3 composite, limited to the authors’ 

knowledge, is reported by Peko et al. [3]. They found a strong influence from the 

microstructural features on the final electrical response of the composite. 

 

On the other hand, among numerous studies related to the electrical properties of the 

YSZ/Al2O3 composite, the effect of the YSZ/Al2O3 interface has been rarely discussed.  

Kumar et al. [11, 12] examined the normalized conductivity (conductivity of a 

composite/volume fraction of active phase) and proposed that the transport of oxygen 

ions was enhanced at the YSZ/Al2O3 interface because of the creation of space charge 

regions in the vicinity of the YSZ-Al2O3 phase boundary. However, due to the blocking 

effect of Al2O3, the enhancement of conductivity is not obvious. Guo [5] studied the 

grain boundary resistance in yttria and alumina co-doped zirconia and discussed the 

effect of the ZrO2/Al2O3 interface. It was proposed the resistance of the Al2O3/ZrO2 

interface is reduced because of the Al2O3/ZrO2 interface potential is lower than the grain 

boundary interface potential of ZrO2. However, the resistance-reducing effect was not 

obvious due to the pores and the amorphous phases covering the Al2O3 particles [5]. 

Therefore, a further investigation of the electrical properties of the YSZ/Al2O3 interface 

is desirable. 
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In this chapter, we studied the electrical properties of the YSZ/Al2O3 composite 

covering a whole composition range. The effect of the YSZ/Al2O3 interface is discussed 

from relaxation frequency analysis coupled with finite element modelling. The purpose 

of this study is to present an overall picture of the electrical properties of the composite 

system, and to promote the understanding of the YSZ/Al2O3 interface. 

 

3.2 Experiments 

 
8 mol% YSZ powder (average particle size of 0.25 µm, PI-KEM, UK) and α-Al2O3 

powder (average particle size of 0.1-0.3 µm, PI-KEM, UK) were used as starting 

materials. The YSZ/Al2O3 composite samples with 20, 40, 60, 80, 85, 90% (volume 

percentage) Al2O3 were produced. Appropriate amounts of YSZ and Al2O3 powders 

were mixed by ball milling for 24 hours in 2-propanol, using zirconia balls as grinding 

media. The resulting mixtures were subsequently dried in air overnight, and then milled 

by mortar and pestle and passed through a 45-micron sieve. The final mixed powders 

were cold-pressed into cylindrical tablets under a uniaxial pressure of 100 MPa, and 

then sintered at 1500ºC for 4 hours in air with a heating and cooling rate of 3°C/min. 

Pure YSZ and Al2O3 tablets were also obtained using the same cold press and sintering 

procedures.  

 

Theoretical full density of the YSZ/Al2O3 composite was obtained according to the 

mixing rule ie, 
3232 OAlOAlYSZYSZ ρνρνρ +=  (Eq.(3.1)), where νYSZ and νAl2O3 are the 

volume fractions of YSZ and Al2O3, and ρYSZ and ρAl2O3 are the theoretical densities of 

pure YSZ and Al2O3, which are 5.96 and 3.98 g/cm3, respectively. The density of a 

sintered specimen was estimated based on its weight and geometrical dimension, and 

the relative densities were found to be over 95 %. Therefore, the porosity effect has 

been neglected in this study.   

 

Phase compositions of the YSZ/Al2O3 composite were identified by X-ray diffraction 

(XRD, Philips X’Pert) method using Cu Kα radiation. The measurements were 

performed on the sample surfaces with a step scanning mode (step size of 0.05°) at a 
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rage of 0.1° min-1.  Microstructure of the YSZ/Al2O3 composite was examined using a 

scanning electron microscope (SEM, Philips XL30).   

 

Electrical properties of the YSZ/Al2O3 composites were determined with AC impedance 

spectroscopy measurements using a Solatron SI 1255 HF frequency response analyser 

coupled with a Solatron 1296 Dielectric Interface (Solartron, UK). Silver paint was 

coated on two polished surfaces of a tablet and fired at 350ºC for 1 hour to serve as 

electrodes. During impedance measurements, an AC voltage of 0.1 V was applied to the 

sample over a frequency range from 0.1 to 107 Hz at various temperatures. Equivalent 

circuit fittings of the measured impedance spectra were carried out using Zview 

Impedance Analysis software (Scribner Associates, Inc., Southern Pines, NC). For a 

clear comparison, all the impedance spectra were normalized by a geometric 

factor 2

4
D
t

π
α = , where t and D denote to sample thickness and diameter, respectively, to 

eliminate the influence of sample geometry. 

 

Finite element modelling was carried out using the electromagnetic module in the 

COMSOL 3.3 software [13] coupled with MATLAB. The application of the finite 

element method in impedance spectra simulation was proposed by Fleig et al. and the 

fundamentals can be found in Ref. [14]. Descriptions of the boundary conditions and 

calculation procedures can be found in Ref. [14, 15]. Geometric models and physical 

parameters used for the calculation are described in part 3.3.  

 

 

3.3 Results and discussion 

3.3.1 Phase composition and microstructure 

Figure 3.1 illustrates the X-ray diffraction pattern of the YSZ/Al2O3 composite, which 

reveals the composite consists of cubic YSZ and α-Al2O3. No obvious peak shift has 

been observed, which confirms the solid solubility between Al2O3 and YSZ is very 

limited. 
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Figure 3.1 X-ray diffraction pattern of the YSZ/Al2O3 composite. 

 

 

The microstructure of the YSZ/Al2O3 composite is shown in Figure 3.2. The white 

phase and the dark phase in the images correspond to YSZ and Al2O3 respectively. It 

can be seen that the minor phase disperses randomly in the major phase without large 

scale agglomerations. The average grain size of YSZ decreases dramatically with 

increasing Al2O3 volume fraction, from around 10 µm for pure YSZ (not shown) to 0.5 

µm in the composite with 80% of Al2O3. The change of the component volume fraction 

and the grain size consequently changes the quantity of the YSZ/Al2O3 interface.   

Although it is rather difficult to quantify those interface fractions, it can be roughly 

estimated from the images that, the YSZ/Al2O3 interface first increases with increasing 

Al2O3 concentration and then decreases with further increasing of Al2O3. For example, 

from the SEM images in Figure 3.2, the composite with 60% Al2O3 has more 

YSZ/Al2O3 interface than the other three. 
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Figure 3.2 Scanning electron micrographs of the YSZ/Al2O3 composite with different 
volume percentage of Al2O3. (a) 20% (b) 40% (c) 60% and (d) 80%. The bright area 
corresponds to YSZ grains and the dark area corresponds to Al2O3. The four images 
have the same scale bar. 
 

 

3.3.2 Electrical properties  

Impedance spectra of the YSZ/ Al2O3 composite are shown in Figure 3.3. Figure 3.3(a)-

(f) show the impedance spectra of the composite when volume percentage of Al2O3 

varies from 0 to 85%, measured at 350°C. The Nyquist plot of pure YSZ in Figure 

3.3(a), which is typical for YSZ, shows two well resolved semicircles, from left to right 

(high frequency to low frequency), representing the response from grain and grain 

boundary, respectively. The Nyquist plots of the YSZ/Al2O3 composites have similar 

features with that of pure YSZ: two semicircles are displayed in their Nyquist plots, as 

can be seen in Figure 3.3(b)-(f), indicating the existence of Al2O3 does not add new 

features (e.g., one or more semicircles) to their impedance spectra. However, the shape 
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of the impedance curve changes with the increase of Al2O3 volume fraction: the 

semicircle at low frequency increases much faster than the high frequency semicircle, 

therefore at high Al2O3 fraction (e.g., 80 and 85%), the two semicircles become 

overlapping with each other so that the two semicircles are not well resolved. The 

impedance spectra in Figure 3.3 (a)-(f) can be fitted by an equivalent circuit of two 

parallel-aligned resistance-constant phase element (R-CPE) in series connection (see the 

solid lines). However, in the cases of the composite with 90% Al2O3 and pure Al2O3, 

the impedances are too large to be measured at low temperatures. The Nyquist plot 

measured at 800°C has only one semicircle in each case, as shown in Figure 3.3(g) and 

(h), and the impedance spectra can be fitted by an equivalent circuit of one parallel-

aligned R-CPE.  

 

The total resistance (sum of the high frequency and low frequency resistance) of the 

YSZ/Al2O3 composite at various temperatures was obtained from the equivalent circuit 

fitting and subsequently converted to conductivity. Figure 4.4 shows the composition 

and temperature dependence of the conductivity of the composite. It can be seen that 

conductivity decreases with increase of volume percentage of Al2O3. On the other hand, 

the temperature dependence of the YSZ/Al2O3 composite obeys Arrhenius law that 

good linear relationship can be observed without turning points within the measured 

temperature range. Activation energy of each sample can be obtained from the slope of 

Arrhenius plot. When volume fraction of Al2O3 varies from 0 to 85%, the activation 

energy is independent on the volume fraction of Al2O3, with a value of around 1.07 eV 

which is similar to that of pure YSZ. However, with further increase of Al2O3, the 

activation energy increases to 1.54 eV and 1.68 eV for YSZ + 90 % Al2O3 and pure 

Al2O3, respectively. The activation energy values indicate that the conduction is mainly 

dominated by the YSZ phase even with high volume fraction of Al2O3 (e.g., 80 %). 
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Figure 3.3 Impedance spectra of the YSZ/Al2O3 composite. (a)-(f) volume percentage of 
Al2O3 varies from 0 to 85%, measured at 350°C; (g) and (h) YSZ + 90 % Al2O3 and 
pure Al2O3, measured at 800°C. The red hollow circles represent measured data, while 
the black solid lines represent the equivalent circuit fitting results. All the impedance 
data were normalized by the sample geometry. 
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Figure 3.4 Arrhenius plots of YSZ/Al2O3 composites. The inset shows the cases of high 
volume percentage of Al2O3 (90%) and pure Al2O3 measured at high temperatures. σ 
corresponds to the total conductivity of the sample, which is calculated 

by
)(

1

LFHF RRA
t

+
=σ , where t and A refer to the thickness and cross-section area of the 

sample; RHF and RLF represent the resistance of the high and low frequency response 
respectively. 
 

 

Figure 3.5 shows the dependency of conductivity of YSZ/Al2O3 composites on the 

volume fraction of YSZ at 350°C. The conductivity of the composites increases with 

increase in the YSZ volume fraction and exhibits a typical insulator-conductor transition 

with an increase of more than five orders of magnitude when volume fraction of YSZ 

increases from 10% to 15%. According to the percolation theory, above the percolation 

threshold, the conductivity follows the power laws [16-18]:    

for f

t
cYSZYSZcomp ff )( −=σσ

YSZ > fc,   (Eq.(3.2)), where σcomp is the conductivity of the composite, σYSZ is the 

conductivity of the conductive YSZ component; fYSZ is the volume fraction of YSZ and 

fc is the critical volume fraction (the percolation threshold); t is the conductivity 

exponent. Using a least-squares fit, we obtain the percolation threshold of fc = 13.9 ± 0.4 

%. This value is close to, but slightly lower than the theoretical value of 16% expected 
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in two phase random composite system [3, 19], and it is in agreement with the reported 

value of 14 ± 0.2  % in similar composite system in Ref. [3].  

 

 
Figure 3.5 Plot of conductivity (350ºC) of the YSZ/Al2O3 composite as a function of the 
volume percentage of YSZ. Symbols with asterisk indicate the values are obtained by 
extrapolation the Arrhenius plot from high temperature to 350ºC. 
 

 

3.3.3 Effect of YSZ/Al2O3 interface 

The Nyquist plot in Figure 3.3 does not show additional features related to the 

YSZ/Al2O3 interface, which makes it difficult to obtain the electrical property of the 

YSZ/Al2O3 interface. However, further analysis of the relaxation frequencies from the 

Bode plot (imaginary impedance vs frequency) gives some information about the 

electrical property of the YSZ/Al2O3 interface, as discussed in the following parts.  

 

Figure 3.6 shows the Bode plot of the composite with the volume fraction of Al2O3 

varying from 0 to 85 %, measured at 350ºC. For a clear comparison, the imaginary 

impedance was scaled by its maximum value. The relaxation frequencies can be 

obtained by the peak positions, and are listed in Table 3.1.  It should be pointed out that 

when the volume fraction of Al2O3 exceeds 80%, the high frequency (HF) response 

overlaps with the low frequency (LF) response, and therefore only the LF relaxation 
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frequency can be obtained from the Bode plot. Fortunately, this does not affect the 

discussion, since we mainly focused on the LF relaxation frequency change. 

 

 
Figure 3.6 Bode plot (imaginary impedance versus frequency) of the YSZ/Al2O3 
composite when volume fraction of Al2O3 varies from 0 to 85%, measured at 350ºC. 
The imaginary impedance was scaled by its maximum value.  
 

 

Table 3.1 Relaxation frequencies of the YSZ/Al2O3 composite when volume fraction of 
Al2O3 varies from 0 to 85%, measured at 350ºC. LF and HF stand for low frequency and 
high frequency respectively. 

Relaxation frequency (Hz) 
 

LF HF 

YSZ 3.98×102 2.51×105

YSZ+20% Al2O3 6.31×102 2.51×105

YSZ+40% Al2O3 2.51×103 2.51×105

YSZ+60% Al2O3 5.01×103 1.58×105

YSZ+80% Al2O3 3.98×103 -- 

YSZ+85% Al2O3 1.00×103 -- 
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The relaxation frequency (f) of a material is determined by its conductivity and 

dielectric constant by the following relationship: 

r
r t

A
A
tRC

f
εε
σ

εε
σ

π
0

0 )()1(

112 =
⋅

== ,                                     (3.3) 

where R and C represent the resistance and capacitance; t and A denote sample thickness 

and cross section area; σ, ε0 and εr have their commonly used meanings. In Table 1, the 

LF relaxation frequency shows obvious change with Al2O3 volume fraction, indicating 

an obvious change of either conductivity or dielectric constant. Since the dielectric 

constant of YSZ-based ceramic materials does not differ significantly, it is considered 

the shift of relaxation frequency is mainly caused by the conductivity change.  

 

Compared with pure YSZ, the composite samples have higher LF relaxation frequencies, 

as listed in Table 3.1. With increase of Al2O3 volume fraction, the LF relaxation 

frequency shifts to higher frequency, reaching its highest value when Al2O3 volume 

fraction is 60%, and decreases afterward. This trend is generally in agreement with the 

change of YSZ/Al2O3 interface fraction in the composite. Therefore, the YSZ/Al2O3 

interface might be a possible reason for the LF relaxation frequency change.  

 

In order to testify the validity of the above statement, the conductivities (at 350ºC) of 

the two responses were calculated separately and they were plotted as a function of the 

volume fraction of Al2O3, as shown in Figure 3.7. The HF conductivity was calculated 

by
HF

HF RA
t 1

=σ , and it shows an obvious decrease with an increase of Al2O3 volume 

fraction. The decrease of HF conductivity is considered to be caused by the reduction of 

the conductive YSZ volume fraction, which is confirmed by the little change of 

normalized conductivity (conductivity divides YSZ volume fraction) with increasing 

Al2O3 volume fraction (see the open triangles). On the other hand, the LF conductivity 

(calculated by 
LF

HF

LF

sp
LF C

C
RA

t 1
=σ  [10]) shows an obvious up-going trend when Al2O3 

volume fraction varies from 0 to 60%, while it goes downward with further addition of 

Al2O3. This trend is in agreement with the LF relaxation frequency change, proving the 
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validity of Eq.(3.3) and confirming the claim that the change of LF relaxation frequency 

is mainly caused by the conductivity change. 

 

 
Figure 3.7 High-frequency (HF) and low-frequency (LF) conductivities of the 
YSZ/Al2O3 composites as a function of Al2O3 volume fraction. The black solid triangles 

represent the HF conductivity calculated by 
HF

HF RA
t 1

=σ ; the black open triangles 

represent the HF conductivity normalized by the volume fraction of YSZ ( YSZHF νσ / ); 

the LF conductivity was calculated according to
LF

HF

LF

sp
LF C

C
RA

t 1
=σ . 

 

 

From Table 3.1 it can be seen that, with increase of Al2O3 volume fraction, the LF 

relaxation frequency shifts to higher frequency, reaching its highest value when Al2O3 

volume fraction is 60%, and decreases afterward (The LF conductivity in Figure 3.7 

shows the same trend). This trend is generally in agreement with the change of 

YSZ/Al2O3 interface fraction in the composite. Therefore, the YSZ/Al2O3 interface 

might be a possible reason for the LF relaxation frequency change.  

 

However, before we can attribute the LF relaxation frequency shift to the YSZ/Al2O3 

interface, other factors that may influence the LF relaxation frequency should be 

excluded. First, the existence of the Al2O3 phase might influence the relaxation 
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frequency and its effect is discussed as follows. Because of the electrical insulative 

property of Al2O3, its effect on the impedance spectroscopy is analogous to the porosity 

effect, which has already been well established. The early work of Brailsford and 

Hohnke [20] demonstrated that the presence of pores does not introduce a new arc or 

other feature in the impedance spectra, but it alters the diameters of the grain or grain 

boundary impedance arc, dependent on the pore location (intragranular or intergranular), 

by decreasing the “effective” grain or grain boundary conductivity. The “effective” 

conductivity decreases monotonically with increasing porosity [21]. Therefore, the 

existence of Al2O3 should decrease either the HF or the LF relaxation frequency. With 

increasing Al2O3 volume fraction, the relaxation frequency should keep shifting to 

lower frequency range. This is in disagreement with our experimental observations, thus 

the shift of the LF relaxation frequency is not caused by the existence of Al2O3.  

 

Second, as described in part 3.3.1, the grain size of YSZ decreases obviously with 

increase in the Al2O3 volume fraction, thus the influence of grain size should be 

clarified first. In Ref [10] and [22], Guo et al. studied and summarized the grain size 

dependences of bulk and grain boundary conductivity in YSZ. In the case of 8.2 mol% 

YSZ, the conductivity of YSZ grain is almost independent on the grain size, while the 

grain boundary conductivity increases with decrease in grain size [23]. However, the 

variation of grain boundary conductivity of YSZ over a wide range of grain size, from 

several nanometers to tens of micrometers, is less than half order of magnitude. In 

addition, in the references, the samples with different grain sizes were obtained by 

controlling the sintering temperature. High sintering temperature causes more yttrium 

element or impurity segregations at the grain boundary, leading to more oxygen 

vacancy depletion in the grain boundary space charge region, and consequently 

decreases the grain boundary conductivity. But in our case, all the samples were 

sintered at the same temperature and heat treated for the same period. YSZ grain size 

decreases because the presence of Al2O3 inhibits the grain growth. Therefore, it is 

reasonable to believe that the grain boundary conductivity change caused by grain size 

difference is minor in our composite system. 

 

The third possible reason for the shift of LF relaxation frequency is that the existence of 

Al2O3 changes the YSZ grain boundary conductivity. Feighery and Irvine [2] studied 
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the Al2O3 content dependence of the grain boundary conductivity of 8 mol.% YSZ. 

They found the grain boundary conductivity increases by 1.5 orders of magnitude when 

the Al2O3 content increases from 0 to 1 wt%, but it then decreases gradually with 

further increasing Al2O3 addition. For the composite with 13 wt.% Al2O3, the grain 

boundary conductivity is around one order of magnitude higher than of the pure YSZ. 

Similar phenomenon is also reported in Ref. [8] and [24]. Therefore, the grain boundary 

conductivity for the composite is higher than that for the pure YSZ, but it decreases 

with increasing Al2O3 content. If the LF relaxation frequency change is caused by the 

grain boundary conductivity change, it is expected the LF relaxation frequency shifts to 

lower frequency range when the volume fraction of Al2O3 increases from 20% to 60%, 

which is against the results in Table 3.1.  

 

Excluding the above three factors, we assume the presence of the YSZ/Al2O3 interface 

as the possible reason for the LF relaxation frequency shift. And according to Eq.(3.3), 

a shift toward higher frequency range indicates an increasing conductivity, thus it can be 

deduced that the YSZ/Al2O3 interface is more conductive than the YSZ grain boundary. 

However, there is still a question to be answered before we draw any conclusion: does 

the YSZ/Al2O3 interface really contribute to the LF relaxation frequency? In order to 

answer this question and investigate the interface effect, a 2-dimensional finite element 

modelling was employed to simulate the impedance spectra of the composite. The 

geometric models were established based on the microstructure of YSZ, as illustrated in 

Figure 3.8. In the modelling, the following simplifications were employed. First, in the 

real case, the thickness of grain boundary is around several nanometers, which is far 

smaller than the grain size. However, for finite element calculation, too thin grain 

boundary will lead to difficulties in meshing and extensively increase the computation 

work. Therefore the YSZ grain boundary and the YSZ/Al2O3 interface are treated as 

thin layers with certain thickness comparable to grain size. On the other hand, we ignore 

the effect of Al2O3 grain boundary due to the insulative property of Al2O3. Isolated 

Al2O3 grains randomly substitute the position of YSZ grains, as shown in Figure 3.8(c). 
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Figure 3.8 Geometric models for finite element modelling. Green, white, orange and 
yellow colours represent YSZ grain, YSZ grain boundary, Al2O3 and YSZ/Al2O3 
interface, respectively. The side length of the model is 1, and the grain boundary 
thickness is 0.01 (arbitrary unit). 
 

 

In the calculation, the conductivity of YSZ grain was fixed at 1.0×10-3 S/m (close to the 

value at 350 ºC); for the YSZ grain boundary, values of 1.0×10-5 and 5.0×10-6 S/m were 

chosen based on the fact that the YSZ grain boundary conductivity is usually two or 

three orders of magnitude lower than the YSZ grain conductivity [10]; the conductivity 

of Al2O3 was seven orders of magnitude lower than that of the YSZ bulk, which was 

estimated from Figure 3.5 as well as Ref. [25]. Dielectric constants of YSZ and Al2O3 

were obtained from Ref. [26] and [27]. Dielectric constant of YSZ grain boundary is the 

same as its bulk value since the dielectric constant of ZrO2 is insensitive to its 

composition [28]. The conductivity of the YSZ/Al2O3 interface varies from 10-2 to 10-6 

S/m, and its dielectric constant is assumed to be the same as either YSZ or Al2O3. The 

above physical parameters were listed in Table 3.2.  

 

The calculated relaxation frequencies of the above models were also listed in Table 3.2. 

Model (a) and (b) illustrate the effect of grain size in pure YSZ. The results confirm that 

the LF relaxation frequency is only determined by the physical parameters (conductivity) 

of grain boundary. In model (b), when the grain boundary conductivity increases, the 

LF relaxation frequency shifts to higher frequency range, as predicted by Eq.(3.3).    

 

Model (c) simulates the microstructure of the YSZ/Al2O3 composite, where YSZ is the 

major phase. Compared with pure YSZ (model (b)), both the LF and HF relaxation 

frequency are influenced by the physical parameters of the YSZ/Al2O3 interface. The 
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LF relaxation frequency combines the contributions from YSZ grain boundary and the 

YSZ/Al2O3 interface, and its shift direction is determined by the relative conductivity 

magnitude of YSZ grain boundary and YSZ/Al2O3 interface. When σYSZ/Al2O3>σgb, it 

shifts to higher frequency range; when σYSZ/Al2O3<σgb, it shifts to lower frequency range.  

For the HF relaxation frequency, it moves to higher frequency range only in the case 

when σYSZ/Al2O3>σg. In the remaining cases, the HF relaxation frequency remains 

constant, and shifts to lower frequency range compared with pure YSZ. The modelling 

results confirm that the YSZ/Al2O3 interface has an obvious effect on the LF relaxation 

frequency of the composite system. 

 

There comes an argument that in the YSZ/Al2O3 composites, the oxygen vacancies are 

blocked by the insulative Al2O3 phase and therefore they move within the YSZ phase 

under the electric field. Therefore the YSZ/Al2O3 interfaces seem to be “parallel” to the 

motion of the oxygen vacancies. Usually it is accepted that the parallel boundaries affect 

the first semicircle and not the second one [29]. However, in this study, both the 

experimental evidences and the modelling results indicate the YSZ/Al2O3 interface 

contributes to the LF response (second semicircle) on the impedance spectroscopy. This 

is possibly due to the fact that, the YSZ/Al2O3 interface is not continuously connected 

inside the composite, especially when the volume fraction of Al2O3 is low. Therefore, 

although the charge carriers (oxygen vacancies) move along the YSZ/Al2O3 interface, 

they have to move towards the adjacent YSZ grain for further transportation under the 

electric field. When the charge carriers move from the YSZ/Al2O3 interface to the YSZ 

grain, they actually move across the interface (or the space charge region), as illustrated 

in Figure 3.9. Therefore, the YSZ/Al2O3 interface is still “perpendicular” to the electric 

field and consequently contributes to the second semicircle on the Nyquist plot. 
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Figure 3.9 Schematic of the current flow in the YSZ/Al2O3 interface. The arrows 
indicate the current direction. 
 

 

Combining the above modelling results with the experimental results, the following 

information can be obtained. (1) Both the YSZ grain boundary and the YSZ/Al2O3 

interface contribute to the LF relaxation frequency. (2) The YSZ/Al2O3 interface can not 

be more conductive than the YSZ grain. Otherwise the HF relaxation frequency will 

shift to higher frequency range, which is in disagreement with the experimental 

observations. (3) The YSZ/Al2O3 interface should be more conductive than the YSZ 

grain boundary. The YSZ grain boundary and the YSZ/Al2O3 interface contribute to an 

effective conductivity of the LF response. Because the electrical conduction tends to 

transport through the “easy path”, the effective conductivity is determined by the 

fraction of the relatively conductive YSZ/Al2O3 interface. When the Al2O3 volume 

fraction increases from 20 to 60%, the number of YSZ/Al2O3 interface increases and 

therefore the effective conductivity increases, which causes the LF relaxation frequency 

moving to higher frequency range. With further increasing Al2O3 fraction to 85%, the 

number of YSZ/Al2O3 interface decreases and therefore causes a decreasing of the LF 

relaxation frequency. From the above analysis, it can be concluded that, the YSZ/Al2O3 

interface conductivity is higher than the YSZ grain boundary, but lower than or similar 

to the YSZ grain. 
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Possible reasons for the relatively conductive YSZ/Al2O3 interface are proposed as 

following. (1) Less siliceous phase exists in the YSZ/Al2O3 interface because of the 

“scavenging” effect of Al2O3; (2) Less yttrium element segregates at the YSZ/Al2O3 

interface, which releases the depletion of oxygen vacancies at the heterogeneous 

boundary; (3) As proposed by Kumar et al., Al2O3 removes the electron concentration 

gradient which impedes the transport of the oxygen ions [11, 12]; (4) The lattice strain 

due to the lattice mismatch between the two materials might be reason for the enhanced 

conductivity at the interface, as reported in some YSZ/oxide multilayered thin films in 

Ref. [30, 31]. Further work will be carried out to clarify these points. 

 

3.4 Conclusions 

Electrical properties of YSZ/Al2O3 composite and the YSZ/Al2O3 interface were studied 

by impedance spectroscopy coupled with finite element modelling. The conductivity of 

the composite shows the typical characteristics expected from the percolation theory, 

with a critical YSZ volume fraction of 13.9 ± 0.4 % for the onset of conduction. Above 

this YSZ volume fraction, the activation energy has a similar value with pure YSZ and 

it is independent of the Al2O3 fraction because the electrical (ionic) conduction is 

mainly dominated by the YSZ phase. The YSZ/Al2O3 interface is discussed from the 

relaxation frequency analysis and finite element modelling. It is found the low 

frequency response combines the contribution from both the YSZ grain boundary and 

the YSZ/Al2O3 interface and the conductivity of the YSZ/Al2O3 interface is higher than 

YSZ grain boundary but similar to, or lower than the YSZ grain. Although the presence 

of Al2O3 leads to a blocking effect which suppresses the composite conductivity 

because of its intrinsic electrical insulation, the conductive YSZ/Al2O3 interface 

provides a possible way to enhance the ionic conductivity of YSZ/Al2O3 composite, 

which is beneficial to its application in SOFC. 
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Chapter 4 
 
Thermal conductivities of YSZ/Al2O3 composites 
 

 

 

 

4.1 Introduction 
 

A YSZ/Al2O3 composite is of both fundamental and practical interest. Because of the 

immiscibility of YSZ and Al2O3 [1], the YSZ/Al2O3 composite is of scientific 

importance in understanding the physical properties of a diphase system and 

ceramic/ceramic interfaces [2]. On the practical side, a YSZ/Al2O3 composite which 

combines the properties of the individual components has a wide range of applications. 

For example, a YSZ/Al2O3 composite has been proposed as an electrolyte for a planar 

Solid Oxide Fuel Cell (SOFC) because of its enhanced mechanical and thermal 

properties compared with conventional YSZ [3]. A YSZ/Al2O3 composite has the 

potential of being used as a thermal barrier coating (TBC) material because of its 

enhanced hardness, improved oxidation resistance for the substrate, and longer thermal 

cycling life than a conventional YSZ coating [4]. Therefore, an investigation of the 

thermal conductivity, which is an important physical property of a YSZ/Al2O3 

composite, is necessary. 

 

Another reason for studying the thermal conductivity of a YSZ/Al2O3 composite is to 

obtain the thermal properties of its interfaces. The existence of interfaces usually 

impedes the heat conduction by scattering the incident phonons and contributes to an 
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interfacial thermal resistance (also known as the Kapitza resistance), which plays an 

important role in the thermal transport in nano-scale structures and devices [5]. The 

interfacial thermal resistance is also proposed as an important factor in selection of TBC 

candidate materials [6]. The Kapitza resistance of a YSZ/Al2O3 interface is also of 

special interest because during the high temperature service of a TBC, a thermally 

grown oxide (TGO) layer, which is mainly composed of α-Al2O3, forms at the 

substrate/coating interface [7]. Whether this YSZ/TGO (Al2O3) interface has influence 

on the thermal conductivity and how large this influence is, is an unsolved issue in the 

thermal conduction of TBCs. Consequently, an estimation of the Kapitza resistance of 

YSZ/Al2O3 interfaces is important. 

 

The interfacial thermal resistance can be estimated by studying the thermal conductivity 

of the two-phase composite. Usually the effective thermal conductivity of a two-phase 

composite material without any interfacial thermal resistance can be predicted by the 

Maxwell theoretical model [8]. With the existence of a Kapitza resistance, the thermal 

conductivity of the composite will be lower than the value predicted by the Maxwell 

model. The interfacial thermal resistance can be estimated by the equation proposed by 

Hasselman and Johnson [9]: 
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where k is the thermal conductivity; the subscripts c, m and d represent the composite, 

matrix and dispersed phase; a is the particle radius, h is the interfacial thermal 

conductance (i.e., the reciprocal of the interfacial resistance) and νd is the volume 

fraction of the dispersed phase. When h = ∞, this indicates an absence of the interfacial 

thermal resistance, Eq.(4.1) is an expression of the Maxwell model. 

 

In this chapter, the thermal conductivity of a YSZ/Al2O3 composite was studied. The 

purpose of this study is not only to give an overall picture of the thermal conductivity of 

the composite, but also to promote an understanding of the Kapitza resistance of the 

YSZ/Al2O3 interfaces. The results may provide useful information for further 
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application of the composite, as well as for further understanding of the thermal 

conduction in TBCs. 

 

4.2 Experiments 
 

Procedures for sample preparations, details of XRD and SEM measurements are 

described in Chapter 3.  

 

Since thermal conductivity is sensitive to porosity of the sample, a precise measurement 

of the sample density is necessary. Besides the calculated values based on the sample’s 

weight and geometries, the densities of the sintered specimens were also measured by 

Archimedes’ method. The theoretical full densities were calculated according to the rule 

of mixtures, using theoretical densities of 5.96 g/cm3 for YSZ [1] and 3.98 g/cm3 [10] 

for Al2O3. The measured densities, theoretical densities and the relative densities of the 

YSZ/Al2O3 composites are listed in Table 4.1. 

 

Table 4.1 Measured densities, theoretical densities and relative densities of the 
YSZ/Al2O3 composites. 

 Measured Density 
(g/cm3) 

Theoretical Density 
(g/cm3) 

Relative Density 
(%) 

YSZ 5.86 ± 0.03 5.96 98.3 ± 0.5 

YSZ+20%Al2O3 5.43 ± 0.03 5.56 97.7 ± 0.4 

YSZ+40%Al2O3 4.94 ± 0.03 5.17 95.6 ± 0.6 

YSZ+60%Al2O3 4.55 ± 0.02 4.77 95.4 ± 0.5 

YSZ+80%Al2O3 4.14 ± 0.02 4.38 94.6 ± 0.5 

Al2O3 3.83 ± 0.02 3.98 96.5 ± 0.5 
 

 

The thermal diffusivity measurements were conducted with a laser flash system 

(Manchester, UK) from 50 ºC up to 900 ºC in an argon atmosphere. The specimens 

were in the form of disks, 1.5 mm thick and 11 mm in diameter. Before the 

measurements, the samples were mechanically ground to obtain coplanar surfaces. Both 

surfaces were coated with a thin layer of carbon using colloidal graphite (Agar 

Scientific Ltd., UK) to ensure complete and uniform absorption of the laser pulse. The 
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samples were then dried to remove the remaining solvents. During the measurements, 

the front face of the samples was subjected to a short-duration heat pulse which was 

supplied by a neodymium-glass laser of 0.67 ms pulse duration. A liquid nitrogen 

cooled InSb infra-red detector was used to measure the temperature rise on the backside 

of the samples. Measurements were made at various chosen temperatures during the 

heating procedure. For each temperature, ten measurements were made to obtain the 

mean value of the thermal diffusivity. 

 

The temperature dependence of the specific heat capacities of ZrO2, Y2O3 and Al2O3 

were obtained from references [11-13]. The specific heat of 8 mol% YSZ was 

consequently calculated from the values of ZrO2 and Y2O3 according to the Neumann-

Kopp rule [14]. The calculated specific heat values for YSZ were compared with the 

reference values [15] and found to be consistent. The specific heat capacity values of 

the YSZ/Al2O3 composites at various temperatures were calculated from the rule of 

mixtures. The specific heat values are listed in Table 4.2.  

 

Table 4.2 The specific heat capacities of ZrO2, Y2O3, Al2O3, 8 mol% YSZ and the 
YSZ/Al2O3 composites at various temperatures. 

Specific heat capacity 

(J.g-1.K-1) 

YSZ/Al2O3 composites with Al2O3 
volume fractions of: 

Temperature

(ºC) ZrO2 

[11] 

Y2O3 

[12] 
YSZ 

Al2O3

[13] 
20 % 40 % 60 % 80 % 

50 0.476 0.465 0.475 0.820 0.524 0.580 0.646 0.725

140 0.523 0.497 0.521 0.959 0.583 0.654 0.738 0.838

250 0.555 0.520 0.552 1.060 0.623 0.706 0.804 0.920

300 0.565 0.528 0.562 1.091 0.636 0.723 0.824 0.945

400 0.581 0.541 0.578 1.136 0.656 0.747 0.854 0.982

500 0.593 0.552 0.590 1.167 0.671 0.765 0.876 1.008

600 0.603 0.562 0.600 1.190 0.683 0.779 0.892 1.027

700 0.612 0.571 0.609 1.209 0.693 0.791 0.906 1.043

800 0.621 0.580 0.617 1.226 0.703 0.802 0.919 1.058

900 0.628 0.588 0.625 1.241 0.712 0.812 0.930 1.071
 



 
CHAPTER 4                                        THERMAL CONDUCTIVITIES OF YSZ/AL2O3 COMPOSITES 

 PAGE 110

The microstructure of the YSZ/Al2O3 interface was observed by transmission electron 

microscopy (TEM). The sintered sample was ground to a thickness of approximately 

100 µm and ultrasonically cut into discs of 3 mm diameter. The specimen thickness was 

further reduced to around 30 µm using a dimpling machine (Model D500, VCR Group, 

San Fransisco, CA). After that, the specimen was cleaned in acetone and mounted onto 

a molybdenum grid and ion beam thinned using a Gatan (Oxford, UK) precision ion 

polishing system model 691 (PIPSTM) operating at 4 – 6 kV.  TEM observations were 

carried out using a FEI FEG TEM (Tecnai G2, Eindhoven, the Netherlands) operating at 

300 kV. 

 

4.3 Results and discussion 
 

The phase compositions and the microstructures of the YSZ/Al2O3 have been described 

in Chapter 3.  

 

The variations in the thermal diffusivity with temperature for the YSZ/Al2O3 

composites are shown in Figure 4.1. For all the compositions, the thermal diffusivity 

decreases monotonically with an increase in the temperature. The thermal conductivities 

(k) of the YSZ/Al2O3 composites were obtained from the heat capacity (Cp), density (ρ) 

and thermal diffusivity (α) values using the relationship:  

   αρ ⋅⋅= pCk .                                                   (4.1) 

The temperature dependence of the thermal conductivity is presented in the open 

symbols in Figure 4.2. The thermal conductivity of YSZ has a temperature-independent 

value of around 2.1 W/(m·K), which is in agreement with the reference value for 15 

wt% YSZ with a relative density of 98% [15]. For Al2O3, an obvious decrease in the 

thermal conductivity can be observed with an increase in the temperature. The thermal 

conductivity of Al2O3 is close to, but slightly lower than the reported values in the 

reference [16], which is possibly due to the slightly lower density in the present study. 

For the YSZ/Al2O3 composites, as may be expected, the thermal conductivity increases 

with an increase in the Al2O3 volume fraction because of the intrinsic thermal 

conductive property of Al2O3.  
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Figure 4.1 Temperature dependence of the thermal diffusivities of the YSZ/Al2O3 
composites.  
 
 

 
Figure 4.2 Temperature dependence of the thermal conductivities of the YSZ/Al2O3 
composites. The open symbols represent the measured values of the samples, while the 
solid lines represent the thermal conductivity of fully-dense samples calculated by 
Eq.(4.2) and (4.3). 
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Before going on with further analysis, the effect of porosity on the thermal conductivity 

of the YSZ/Al2O3 composites should be eliminated to obtain the thermal conductivity 

values of the composites at full density. The YSZ/Al2O3 composites with pores can be 

treated as a “two-inclusion-phase composite” [17], and the thermal conductivity of the 

fully-dense composite (kcf) can be evaluated with the following relationship [17]:  

mpcfmf

mfcfmpmf

mfcf

mf

cp kkk
kkkk

kk
k

k 3
))((1 −−

+= ,                                (4.2) 

where the subscripts cp, cf, mp and mf stand for composite with pores, fully dense 

composite, matrix with pores and fully dense matrix, respectively. The relationship 

between kmf and kmp is expressed as [17]: 
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νη
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1

,                                            (4.3)  

where νp is the volume fraction of the porosity and η is a parameter which is related to 

the pore shape. For spherical pores, η equals 1.5. For pure YSZ and Al2O3, the thermal 

conductivity at full density (kmf) was evaluated with Eq.(4.3). When the volume fraction 

of Al2O3 is below 50 %, YSZ is considered to be the matrix and therefore the calculated 

kmf of YSZ was used in the subsequent calculations for the composite using Eq.(4.2). By 

contrast, when the volume fraction of Al2O3 exceeds 50 %, Al2O3 is the matrix and the 

kmf of Al2O3 was used for the subsequent calculations. The calculated thermal 

conductivities of fully-dense YSZ/Al2O3 composites at various temperatures are shown 

by the solid lines in Figure 4.2. Only a slight increase of the thermal conductivity can be 

observed after correction.  

 

Figure 4.3 shows the thermal conductivity of the YSZ/Al2O3 composites as a function 

of the volume fraction of Al2O3, along with a fitting curve using the Maxwell model. It 

can be seen that the thermal conductivities predicted by the Maxwell model is in good 

agreement with the experimental values, which indicates the absence of an obvious 

interfacial thermal resistance in the YSZ/Al2O3 composite system, as discussed in the 

following paragraphs. 
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Figure 4.3 Thermal conductivity of the YSZ/Al2O3 composites (corrected to zero 
porosity) as a function of the volume fraction of Al2O3 at 400 ºC.  
 

In the YSZ/Al2O3 composites, there are three types of interfaces: YSZ/YSZ (YSZ grain 

boundaries), Al2O3/Al2O3 (Al2O3 grain boundaries) and the YSZ/Al2O3 interfaces. The 

thermal resistance of the YSZ and the Al2O3 grain boundaries has been reported in the 

previous studies, i.e., Yang et al. studied the interfacial thermal resistance of 

nanocrystalline YSZ by measuring the grain-size-dependent thermal conductivity and 

obtained a value of 4.5 × 10-9 m2·K/W for YSZ grain boundaries at room temperature 

[6]; Smith et al. investigated the thermal resistance of grain boundaries in Al2O3, and 

evaluated a value of 0.9 ~ 1.3 × 10-8 m2·K/W in dense Al2O3 [18]. However, the effect 

of grain boundaries can be observed only with the existence of a large number of 

interfaces (a small grain size of tens of nanometres) in YSZ. For example, Raghavan et 

al. found no obvious change of thermal conductivity in 5.8 wt% YSZ when the grain 

size is larger than 100 nm [15]. For Al2O3, the early work by Charvat and Kingery [19] 

reported almost identical thermal conductivity of dense Al2O3 with grain sizes of 9 and 

17 µm above 300 ºC, indicating a negligible influence of grain boundaries. In the 

present study, the average grain size of YSZ changes from ~ 10 µm in the pure YSZ to 

~ 0.5 µm in the YSZ/Al2O3 composite with 80 v% Al2O3, while the average grain size 

of Al2O3 varies from ~ 1 µm in the YSZ/Al2O3 composite with 20 v% Al2O3 to ~ 5 µm 

in the pure Al2O3. It is known that the phonon mean free path in YSZ has a temperature-
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independent value of around 0.2 nm [20], which is much smaller than the YSZ grain 

size in the composite. The phonon mean free path in Al2O3 is about 3 nm at room 

temperature [19], and it decreases with increasing temperature following a T-1 law [20], 

thus the phonon mean free path can be estimated to be 1.5 nm at 400 ºC, which is more 

than 500 times smaller than the minimum Al2O3 grain size in the composite. Therefore, 

it can be concluded that neither the YSZ nor the Al2O3 grain boundaries have an 

influence on the thermal conductivity of the composites. 

 

It is usually believed that an interface between two materials with different crystal 

structures and chemical natures has a larger thermal resistance than a grain boundary in 

a single-phase material [18]. The interfacial thermal resistance in a composite system 

can arise from the following aspects. First, the thermal expansion mismatch between the 

two components can cause imperfect mechanical contact [21,22] or interfacial 

separation [23]. However, this could not happen in the YSZ/Al2O3 composites since the 

thermal expansion coefficients of YSZ and Al2O3 have values close to each other, which 

are 8 × 10-6 and 10 × 10-6 ºC-1, respectively [24]. The YSZ/Al2O3 interface is adhesive 

and coherent without the existence of cracks, as can be seen in the TEM image in Figure 

4.4. 

 

 
Figure 4.4 High-resolution transmission electron microscopy (HRTEM) image of a 
YSZ/Al2O3 interface. The dark and bright regions represent YSZ and Al2O3 grains, 
respectively. 
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Second, dislocations and impurity segregations at the interface can act as scattering sites 

and contribute to the interfacial thermal resistance. However, the YSZ/Al2O3 interface is 

a “clean” interface: only atomic level lattice distortions can be observed without regions 

of large scale disorder, as also shown in Figure 4.4. Also, impurity segregation is not 

observed at a YSZ/Al2O3 interface because of the “scavenging” effect of Al2O3 [25].   

 

Another origin of the Kapitza resistance is the elastic discontinuity at the heterogeneous 

interface [26]. It is well known that the thermal conductivity of a material is expressed 

as: 

  Λ= Cvk
3
1 ,                                                        (4.4) 

where C is the specific heat, v is the phonon velocity and Λ is the phonon mean free 

path. The phonon velocity is correlated to the elastic property of the material by [27]: 

  
ρ
Ev 87.0= ,                                                      (4.5) 

where E and ρ are the Young’s modulus and the density respectively. When propagating 

across a heterogeneous interface, the phonons will be scattered to change their velocity, 

and consequently decrease the transmission probability of the phonons from one side to 

the other side. According to the diffuse mismatch model (DMM) [28], the phonon 

transmission probability is determined by the phonon velocity inside the two materials, 

as expressed by [28]: 

    
∑∑

∑
−−

−

+
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j jj j

j j

vv

v
2

,1
2
,2

2
,2

α ,                                             (4.6) 

where the subscripts “1”, “2” and “j” refers to the side with the lower phonon velocity, 

the side with higher phonon velocity and the phonon mode (longitudinal or transverse) 

respectively. It can be seen from Eq.(4.6) that, a larger difference between the phonon 

velocity inside the two materials leads to a lower transmission probability. Since the 

interfacial thermal resistance is inversely proportional to the phonon transmission 

probability, it is expected that a large interfacial thermal resistance will exist between 

the two materials with significantly different Young’s moduli. In the YSZ/Al2O3 

composite system, the difference between the Young’s moduli of YSZ and Al2O3 
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) is not large enough to have an obvious influence on the phonon 

transmission probability.  Hasselman et al. [26] found the interfacial thermal barrier in a 

cordierite-diamond composite is less than 1.0 × 10-8 m2·K/W at 400 ºC, while the 

Young’s modulus of diamond is almost ten times higher than that of cordierite (the 

density of diamond and cordierite is 3.51 and 2.52 g/cm3 respectively). Therefore, it is 

possible that the thermal resistance of the YSZ/Al2O3 interface is even smaller than that 

value. 

 

From the above analysis, it can be concluded that: (1) the negligible thermal resistance 

effect from the YSZ and Al2O3 grain boundaries is caused by the much lower phonon 

mean free path compared with the grain size in the composite; (2) The low Kapitza 

resistance is caused by the “clean” and coherent nature of the YSZ/Al2O3 interfaces, 

together with the small difference between the elastic properties of YSZ and Al2O3. 

Therefore, the thermal conductivity of the composite can be predicted well by the 

Maxwell model because of the absence of any interfacial thermal resistance. 

 

Finally, there is a little remark on the good fitting of the experimental values with the 

Maxwell model on the YSZ/Al2O3 composites, especially when YSZ and Al2O3 have 

comparable volume fractions. Usually, Maxwell model requires dilute dispersions to 

avoid the interactions between the local temperature fields of neighbouring dispersions 

[9]. In YSZ/Al2O3 composites, the thermal conductivity values of YSZ and Al2O3 are 

not significantly different (for example, kAl2O3 is only five times higher than kYSZ at 400 

ºC). Therefore, the distortion of temperature gradient around the dispersed phase should 

be quite mild. In this case, the interaction of the temperature field between two 

inclusions is very small, as illustrated in the Figure 4.5(a), and consequently extends the 

application range of Maxwell model. Only when the thermal conductivity values of the 

two phases are significantly different from each other, the temperature gradient around 

the dispersed phase is severely distorted (Figure 4.5(b)). In this case the interaction of 

the temperature field between the two dispersions can not be neglected and the Maxwell 

model is not usable. On the other hand, because of the small difference between the 

conductivity of the two phases, the temperature gradient is less dependent on the shape 

of the dispersed phase, as illustrated in Figure 4.5(c)-(f). Therefore, in the YSZ/Al2O3 
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composites, although the shape of the minor phase is not perfect spherical, the Maxwell 

model is still applicable.  

 

 

    

 
Figure 4.5 Schematics of the temperature profile around dispersions in a diphase 
material. (a), (c) and (d) are the case when the conductivities of the two phases are 
comparable, whereas (b), (e) and (f) are the cases when the conductivities of the two 
phases are significantly different. 
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4.4 Conclusions 
 

The thermal conductivities/diffusivities of the YSZ/Al2O3 composites have been 

investigated by a laser flash technique from 50 ºC to 900 ºC. The thermal conductivity 

of the composites increases with an increase in the Al2O3 volume fraction, and it can be 

fitted well by the Maxwell theoretical model. The consistency of the thermal 

conductivity of the composite with the predicted values indicates the absence of 

interfacial thermal resistance in the composite. The negligible thermal resistance effect 

from the YSZ and Al2O3 grain boundaries is due to the low phonon mean free path 

compared with the grain size in the composite. The absence of a Kapitza resistance of 

the YSZ/Al2O3 interface is discussed from the “clean” and coherent nature of the 

YSZ/Al2O3 interface, together with the small difference between the elastic properties 

of YSZ and Al2O3. Although an exact value of the Kapitza resistance of the YSZ/Al2O3 

interface was not obtained in this study, the results indicate the YSZ/Al2O3 interface is 

not thermally resistive.  
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Chapter 5 
 
Electrical properties of [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08     
(0 ≤ x ≤ 1) solid solutions 
 

 

 

 

5.1 Introduction 

Oxide ion conductors with cubic fluorite structure are important electrolyte materials for 

solid oxide fuel cells (SOFCs) [1,2], oxygen sensors [3] and oxygen pumps [4]. High 

ionic conductivity is achieved in such a structure when the host cations are replaced by 

lower valence cations, which generates oxygen ion vacancies to compensate the charge 

missing and to act as charge carriers [5]. The oxygen ions overcome an energy barrier to 

hop to neighbouring vacant sites and move diffusively to fulfil long-range transport in 

the material [6]. 

  

Among numerous oxide ion conductors, ZrO2- and CeO2-based ceramic attract large 

interest and have been extensively studied [7-15]. They possess many unique physical 

properties which make them promising materials for practical or potential application in 

technologically important devices. For example, yttria-stabilized zirconia (YSZ) is the 

conventionally employed electrolyte material in SOFCs because of its good mechanical, 

chemical and electrolytic properties [16]. Doped-ceria has higher ionic conductivity, 

good thermodynamic stability [17] and good catalytic activity [18], therefore it is a 

prime candidate for the intermediate temperature SOFCs.  
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The ZrO2-CeO2-Y2O3 ternary solid solution, which keeps the cubic fluorite structure is 

also a material of interest both from the practical side and the fundamental side. From 

the practical side, the idea of a double-layer electrolyte with YSZ on the anode side and 

doped CeO2 on the cathode side has been proposed for SOFC [19, 20]. The double-layer 

electrolyte combines the advantages of YSZ and CeO2: it suppresses the electronic 

conduction caused by the reduction of Ce4+ at the anode side and retains the high ionic 

conductivity of doped-CeO2 [21]. However, the reaction of ZrO2 and CeO2 leads to the 

formation of the ZrO2-CeO2-Y2O3 ternary solid solution between the two layers. 

Therefore, an investigation of the ionic conductivity of the ternary solid solution is 

necessary. On the fundamental side, it is a system to study the homovalent doping effect 

on the ionic conductivity of the solid solutions if the concentration of Y2O3 is constant.  

 

Several studies on the electrical properties of the ZrO2-CeO2-Y2O3 solid solutions have 

been reported. However, most of the studies are focused on the mixed conduction of the 

solid solutions caused by the reduction of Ce4+ to Ce3+ at various oxygen partial 

pressures and at high temperatures (> 800 ºC). For example, Cales and Baumard [22] 

studied the total conductivity of the ternary solid solutions in a large range of oxygen 

partial pressures from 1000 to 1400 ºC. They discussed the mixed conduction and the 

defect structure caused by the reduction of Ce4+ to Ce3+, and determined the 

concentrations of the various charge carriers by thermogravimetry and the measurement 

of the magnetic susceptibility. Arashi et al. [23] studied the electrical conduction of the 

ZrO2-CeO2-Y2O3 solid solutions at even higher temperatures (> 1200 ºC). They 

employed the electron blocking method to separate the ionic and electronic 

conductivities and found that the reduction of Ce4+ to Ce3+ not only influences the 

relationship between ionic conductivity and the oxygen partial pressure, but also 

influences the electronic contribution to the total conductivity. Ananthapadmanabhan et 

al. [24] studied the composition dependence of the electrical conductivity in [(ZrO2)1-

x(CeO2)x]0.9(Y2O3)0.1 solid solutions from ~700 to 1300 ºC in air and they proposed a 

simple model for the oxygen path length to explain the observed composition 

dependence of the conductivity.  

 

The reduction of Ce4+ at high temperatures makes the ZrO2-CeO2-Y2O3 solid solution a 

complicated system to study the effect of tetravalent doping on the ionic conductivity. 
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On the other hand, most of the current studies on the electrical properties of the ZrO2-

CeO2-Y2O3 solid solutions were studied by DC four-probe measurement. The 

conductivity obtained from the dc measurement is an overall conductivity from both 

grain (bulk) and grain boundary. In polycrystalline ceramic materials, the grain 

boundary has a large influence on the electrical conductivity because of impurity 

segregations or the space charge effect [25]. For studying the intrinsic property of the 

ternary solid solution, the contribution of grain boundary to the overall conductivity 

should be excluded. 

 

Therefore, in this chapter, the electrical properties of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 

(0 ≤ x ≤ 1) were studied in an intermediate temperature range (200 - 500 ºC) by 

impedance spectroscopy. The relative low temperatures were chosen to avoid the 

reduction of Ce4+ and to ensure the electrical conduction in the solid solutions is purely 

ionic. Impedance spectroscopy was employed to separate the bulk and the grain 

boundary contributions to the electrical conductivity. The purpose of this work is to 

study the effect of homovalent doping on the ionic conductivity of the solid solutions. 

 

5.2 Experiments 

The samples, formulated as [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1), were 

synthesized by a solid state reaction method. ZrO2 (99.6%, PI-KEM, UK), Y2O3 

(99.99%, PI-KEM, UK) and CeO2 (99.95%, PI-KEM, UK) powders were used as the 

starting materials. The powder mixing and drying procedures are the same as those 

described in Chapter 3. The final mixtures were cold pressed into tablets under a 

uniaxial pressure of 100 MPa and then sintered at 1500 ºC for 10 hours in air. The other 

series of solid solutions for comparison, formulated as [(ZrO2)1-x(HfO2)x]0.87(Y2O3)0.13 

(0 ≤ x ≤ 0.8), were synthesized by the same powder mixing method, and sintered at 

1600 ºC for 4 hours. 

  

Phase compositions and lattice parameters of the solid solutions were identified by X-

ray diffraction (XRD, Philips X’Pert) method using Cu Kα radiation. The details of 

XRD measurement were the same as those described in Chapter 3. Microstructures of 

the samples were observed by scanning electron microscope (SEM, Philips XL30). 
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Theoretical density of each composition of the solid solutions was calculated using the 

lattice parameter obtained from XRD and the molecular weight of a unit cell. Densities 

of the sintered specimens were measured by Archimede’s method.  

 

Electrical properties of the solid solutions were obtained from ac impedance 

spectroscopy measurements. The detailed descriptions of the impedance measurement 

can be found in Chapter 3. The conductivity of the sample was corrected to fully-dense 

value by the Maxwell model, assuming the pores are spherical shape, randomly 

distributed inside the sample and electrically insulative, written as: 

⎟
⎠
⎞

⎜
⎝
⎛

Φ−
Φ+

=
1

5.01σσ dense .                                                (5.1) 

 

 

5.3 Results 

5.3.1 Phase composition, lattice parameter and microstructure 

Figure 5.1 shows the X-ray diffraction patterns of the solid solutions, which confirms 

that all the samples are single phase with cubic structure. The lattice parameters of the 

solid solutions are shown in Figure 5.2, where a linear relationship between the lattice 

parameter and the mole ratio of CeO2 can be observed, indicating it follows the 

Vegard’s rule for solid solutions. 

 

Figure 5.3 shows the SEM images of the solid solutions with selected compositions.  

The grain sizes of the solid solutions vary from 2 – 5 µm, without a clear trend as a 

function of x. For the binary solid solutions YSZ and yttria-doped ceria (YDC), the 

sintered samples are quite dense, as shown in Figure 5.3(a) and (d). However, for the 

ternary solid solutions, a certain amount of pores remains in the sintered samples, as 

illustrated in Figure 5.3(b) and (c).  
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Figure 5.1 X-ray diffraction patterns of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) 
solid solutions. 
 

 
Figure 5.2 Lattice parameters of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid 
solutions. 
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Figure 5.3 Scanning electron micrographs of the solid solutions with selected 
compositions. (a) x = 0; (b) x = 0.3; (c) x = 0.7 and (d) x = 1.0. 
 

5.3.2 Densities 

According to the defect reaction: 
x
OOM

MO OVYOY 32 '
32

2 ++⎯⎯→⎯ •• ,                                       (5.2) 

the composition of the solid solutions can be rewritten as (Zr1-xCex)0.852Y0.148O1.926 (0 ≤ 

x ≤ 1). Thus the theoretical densities of the solid solutions can be calculated by: 

 3
00

]926.1148.0852.0)1(852.0[4
aN

MMxMxM OYCeZr
ltheoretica

+++−
=ρ  ,   (5.3)  

where M is the atomic weight, N0 is the Avogadro’s constant and a0 is the lattice 

parameter. The calculated theoretical densities and the measured values of selected 

compositions of the solid solutions are listed in Table 5.1.  
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Table 5.1 Densities of the solid solutions. 

x 
Theoretical density 

(g/cm3) 

Measured density   

(g/cm3) 

Relative density 

(%) 

Porosity 

(%) 

0 5.96 5.78 ± 0.04 97.0 3.0 

0.1 6.17 5.93  ± 0.02 96.1 3.9 

0.3 6.31 5.90  ± 0.07 93.5 6.5 

0.5 6.47 5.84  ± 0.05 90.3 9.7 

0.7 6.65 5.99  ± 0.08 90.1 9.9 

0.8 6.73 6.01  ± 0.04 89.3 10.7 

1.0 6.85 6.81  ± 0.02 99.4 0.6 

 

5.3.3 Typical impedance spectra of the solid solutions 

First of all, one composition of the solid solutions [(ZrO2)0.6(CeO2)0.4]0.92(Y2O3)0.08 (x = 

0.4) was selected to present the typical ac impedance behaviours of the solid solutions. 

Figure 5.4 shows typical impedance spectra (Nyquist plots) of the solid solutions at 

various temperatures. Similar to the well-known impedance spectroscopy of YSZ, two 

semicircles are displayed on the Nyquist plot of the solid solution, from left to right 

(high frequency to low frequency), representing the response from grain (bulk) and 

grain boundary, respectively. The measured impedance spectra can be fitted by an 

equivalent circuit of two parallel-aligned resistance-constant phase element (R-CPE) in 

series connection, as illustrated by the top-left inset in Figure 5.4.  The bulk and grain 

boundary resistances were obtained from the equivalent circuit fitting results and 

subsequently converted to conductivity by: 

 
A
t

Rbulk
bulk

1
=σ                                                       (5.4) 

and 

 
A
t

C
C

R GB

bulk

GB

sp
GB

1
=σ ,                                                (5.5)  

where t is the sample thickness and A is the cross section area. The grain boundary 

conductivity is 2 orders of magnitude lower than the bulk conductivity, which is caused 

either by the impurity segregation at the grain boundary or the space charge effect due 

to the oxygen vacancy depletion near the grain boundary region [25]. The temperature 
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dependence of the bulk and the grain boundary conductivity is shown in the top-right 

inset figure in Figure 5.4. Both the bulk and the grain boundary conductivity shows a 

typical thermally activated process that it increases with an increase in the temperature 

and its dependence on the temperature obeys the Arrhenius law in the form of: 

)exp( ,
0, Tk

E

B

ai
ii −= σσ ,                                             (5.6) 

where i represents bulk or grain boundary, σ0 is a pre-exponential factor, kB is the 

Boltzmann constant, T is the absolute temperature and Ea is the activation energy. The 

activation energies can be obtained from the slope of the Arrhenius plots, with values of 

1.08 ± 0.01 eV for bulk conduction and 1.09 ± 0.05 eV for grain boundary conduction.  

 

 
Figure 5.4 Typical Nyquist plots of the solid solutions at various temperatures (x = 0.4 
in this case). The red open circles are experimental values, while the black solid lines 
are the equivalent circuit fitting results. The inset figure on the top-left is the equivalent 
circuit, and the top-right inset figure shows the Arrhenius plots of the bulk and grain 
boundary conductivity. 
 

 

Figure 5.5 shows the Bode plots (imaginary impedance vs frequency) of the selected 

composition (x = 0.4) at various temperatures. The two peaks on the Bode plot 

correspond to the two semicircles on the Nyquist plot and the peak height is 
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proportional to the resistance of each response (diameter of each semicircle). Because 

the grain boundary resistance is much smaller than the bulk resistance in this sample 

(see Figure 5.4), the low frequency peak corresponding to the grain boundary response 

is not obviously distinguished on the Bode plot, but this does not influence the 

discussion since we mainly focus on the high frequency response (bulk conduction). 

The frequency at which the peak reaches its maximum is defined as a relaxation 

frequency (fZ’’). As shown in the top-left inset in Figure 5.5, the temperature-

dependence of fZ’’ follows the Arrhenius law given by: 

)exp(0'' Tk
Eff

B

Za
Z −= ,                                             (5.7)  

where f0 is the pre-exponential factor, EZa is the activation energy. The activation energy 

obtained from fZ’’ is 1.05 ± 0.02 eV. The top-right inset in Figure 5.4 shows the scaling 

results at different temperatures of the imaginary impedance where ρ’’max and fZ’’max are 

used as the scaling parameters for ρ’’ and f, respectively. It can be seen all the 

imaginary impedance collapses into one master curve, indicating the conduction 

mechanism remains unchanged within this temperature range [26]. 

 

The frequency dependence of the imaginary electric modulus (M’’) at various 

temperatures is shown in Figure 5.6. The electric modulus is defined as M = jωC0Z , 

where ω is the angular frequency and C0 is the capacitance of an empty cell. In the 

modulus plot, only one peak corresponding to the bulk is displayed because of its much 

smaller capacitance value than that of grain boundary. The peak maximum M’’max 

slightly increases with increasing temperature indicating a weak temperature 

dependence of the dielectric constant of the sample. Similarly, the relaxation frequency 

at which the imaginary electric modulus reaches its maximum value, defined as fM’’, 

shifts to higher frequency range with increasing temperature, and its temperature-

dependence also obeys the Arrhenius law, as shown in the top-left inset of Figure 5.6. 

The activation energy (EMa) value is 1.07 ± 0.03 eV, which is similar to EZa. In a scaled 

coordinate, as shown in the top-right inset in Figure 5.6, all the curves collapse into a 

single master curve, indicating the relaxation describes the same mechanism at various 

temperatures [27]. 
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Figure 5.5 Bode plots (imaginary impedance vs frequency) of the solid solution (x = 0.4) 
at various temperatures. The top-left inset figure shows the Arrhenius plot of the bulk 
relaxation frequency. The top-right inset figure shows the scaling behaviour of the 
imaginary impedance.   
 

 
Figure 5.6 Frequency dependence of the imaginary electric modulus (M’’) of the solid 
solution (x = 0.4) at various temperatures. The top-left inset figure shows the Arrhenius 
plot of the bulk relaxation frequency. The top-right inset figure shows the scaling 
behaviour of the imaginary electric modulus.   
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In Figure 5.7, the imaginary impedance (ρ’’) and the imaginary modulus (M’’) were 

plotted as a function of frequency. The peaks are not overlapped: the peak position for 

M’’ shifts to a higher frequency region compared to the ρ’’ peak. According to 

reference [28], the overlapping peak position of imaginary impedance and imaginary 

modulus is evidence of delocalized or long-range relaxation. Therefore, the slight 

separation of the two peaks (the peak position of M’’ is around half magnitude higher 

than that of ρ’’) suggests the components from both long-range and localized relaxation 

[29]. 

 

 
Figure 5.7 Frequency dependence of the imaginary impedance (ρ’’) and the imaginary 
electric modulus (M’’) of the solid solution (x = 0.4) at 300 ºC. 
 

5.3.4 Composition dependence of the bulk conductivity 

Figure 5.8 shows the composition dependence of the bulk conductivity of the solid 

solutions at various temperatures. The bulk conductivity has been corrected into fully-

dense value according to Eq.(5.1). With the increase in the CeO2 mole ratio, the 

conductivity first decreases, reaching a minimum around x = 0.5, and increases 

afterward. The “V-shape” variation of the bulk conductivity as a function of the mole 



 
CHAPTER 5                         ELECTRICAL PROPERTIES OF ZrO2-CeO2-Y2O3 SOLID SOLUTIONS 

 PAGE 133

ratio of CeO2 indicates that the ternary solid solution deteriorates the electrical 

conductivity of (ZrO2)0.92(Y2O3)0.08 and (CeO2)0.92(Y2O3)0.08 binary systems. The inset 

in Figure 5.8 shows the relaxation frequencies obtained from imaginary impedance and 

imaginary modulus and their dependence on the composition of the solid solutions at a 

chosen temperature. It is noticeable that fZ’’ is lower than fM’’ for all the compositions, 

indicating the existence of both long-range and localized relaxations in the solid 

solutions. On the other hand, the composition dependence of fZ’’ and fM’’ has a similar 

trend as the bulk conductivity. 

 

 
Figure 5.8 Composition dependence of the bulk conductivity of the [(ZrO2)1-

x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions at various temperatures. The inset 
figure shows the composition dependence of relaxation frequencies obtained from 
imaginary modulus (fM’’) and imaginary impedance (fZ’’) at 300 ºC. 
 

 

Figure 5.9 shows the composition dependence of the activation energy for the bulk 

conduction. The activation energy has a decreasing trend, although not linearly, with an 

increase in x. Slight decrease of the activation energy is observed when x < 0.5, while a 

rapid drop of the activation energy occurs when x > 0.5. 
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Figure 5.9 Composition dependence of the activation energy for the bulk conduction. 
The hollow triangles are the experimental values obtained from the Arrhenius plot of 
the bulk conductivity. The red dot is the trend line.  
 
 

5.4 Discussions 

5.4.1 Relationship between the relaxation frequencies and the conductivity 

On the Bode plot (imaginary impedance vs frequency), a relaxation frequency is 

obtained where the imaginary impedance reaches its maximum value. In an ideal case of 

an equivalent circuit of a resistor and a capacitor in parallel connection, the imaginary 

impedance is expressed as: 

222

2

1
''

CR
CRZ

ω
ω

+
=− ,                                                  (5.8) 

where ω is the angular frequency, R is the resistance and C is the capacitance. 

Maximum of – Z’’ is obtained when
RC
1

=ω . The bulk resistance and capacitance are 

determined by its conductivity (σ), dielectric constant (ε) and its geometries (t and A as 

defined in Eq.(5.4) and (5.5)). Therefore the relaxation frequency fZ’’ can be expressed 

by: 
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In ZrO2 based ceramics, the dielectric constant is usually insensitive to the composition 

of the material [30, 31] As a result, fZ’’ is only determined by the conductivity (fM’’ has 

the same expression as fZ’’ in Eq.(5.9)). A direct proportional relationship can be 

established between the relaxation frequency and the conductivity.  

 

In the real case, the capacitance response is not a pure capacitor, thus the expression for 

fZ’’ will be different from Eq.(5.9). But for bulk impedance (high frequency response on 

the Nyquist plot), the deviation from a capacitor is small. Therefore, Eq.(5.9) can still be 

used to describe the relationship between fZ’’ and σ. Comparing the relaxation frequency 

can be a simple method to rank the bulk conductivity of the solid solutions.  

 

5.4.2 Origin of the localized relaxation/conduction 

When ZrO2 or CeO2 is doped with Y2O3, oxygen vacancies are generated via the defect 

reaction as described in Eq.(5.2). However, due to the coulomb interaction, some of the 

oxygen vacancies ••
OV  may bind to the dopant ions and form the defect 

associates )( ' ••− OM VY . It is usually accepted the orientation of the defect associates 

under an applied electric field contributes to the localized relaxation [32]. On the other 

hand, the free oxygen vacancies also contribute to a localized conduction, as discussed 

below. 

 

The ionic radii of Zr4+ and Y3+ are 0.084 and 0.1019 nm respectively [33], while the 

ionic radius of Ce4+ has different reference values, varies from 0.097 [34], 0.101 [35] to 

0.110 nm [36]. However, it is clear that the ionic radius of Y3+ is close to Ce4+ but it is 

significantly larger than Zr4+. Density functional theoretical studies by Andersson et al. 

[37] reported that the formation of an anionic vacancy is correlated to the ionic radius of 

the dopant ion. With respect to the dopant ion, there are three positions, named the first 

nearest neighbour (1NN), second nearest neighbour (2NN) and third nearest neighbour 

(3NN), for the oxygen vacancy to locate, as illustrated in Figure 5.10. 1NN position is 
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favourable for the oxygen vacancy when the dopant ion has an ionic radius closer to the 

host cation, and the 2NN position is favourable when the dopant ion has an ionic radius 

considerably larger than the host cation. Therefore, when Y3+ ions substitutes Zr4+ ions, 

oxygen vacancy locates at the 2NN positions (close to Zr centre); when Y3+ ions 

substitutes Ce4+ ions, oxygen vacancy locates at the 1NN positions (close to Y centre).  

 

Dholabhai et al. calculated the activation energies for vacancy migration along different 

paths in Praseodymium doped ceria [38] and gadolinium doped ceria [36]. The former 

can be extended to represent the cases where the ionic radius dopant ion is larger than 

that of the host ion; while the latter can be extended to represent the case where the 

ionic radii of the dopant and the host have similar values. According to their calculation 

results, in both cases the preferred migration pathway for oxygen vacancy diffusion is 

between 1NN and 2NN sites. For example, in yttria-doped ceria, the oxygen vacancy is 

located at the 1NN position. For migration, it will jump to 2NN position first, and then 

it is of high possibility that it jumps back to the 1NN site because the jump from 2NN to 

1NN has lower activation energy compared with the jumps from 2NN to 2NN or from 

2NN to 3NN sites. The back-and-forth jump between two sites contributes to the 

localized conduction.  

 

 
Figure 5.10 A schematic top view of the possible sites of oxygen vacancies around a 
dopant ion. Numbers 1, 2 and 3 represent 1NN, 2NN and 3NN oxygen ions with respect 
to the dopant (Y) ion. 
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To sum up, the localized relaxation is from the orientation of the defect associates under 

the electric field and the back-and-forth jump between two sites of a free oxygen 

vacancy. 

 

5.4.3 Composition dependence of the ionic conductivity and the activation energy 

In Figure 5.8, a “V-shape” variation of the bulk conductivity as a function of x is 

observed. Similar trend of the composition dependence of the electrical conductivity in 

ZrO2-CeO2-Y2O3 solid solutions has been reported by Ananthapadmanabhan et al. [24]. 

They attributed this V-shape variation to the increased scattering of the oxygen ions by 

the substitution of Zr by Ce atoms or Ce by Zr atoms, which is analogical to the 

mechanism of enhanced electrical resistivity in an alloy system. This interpretation is 

unconvincing to some point that the hopping mechanism in an ionic conductor is totally 

different from the scattering mechanism of electrons in metals and alloys. Kawamura et 

al. [20] also found the “V-shape” composition dependence of the conductivity in CaO 

doped ZrO2-CeO2 solid solutions, however they did not give any further explanations on 

the results. In the following paragraphs the composition dependence of the conductivity 

will be discussed. 

 

Within the studied temperature range, the electrical conduction in the solid solutions is 

purely ionic. Therefore, the variation of the bulk conductivity as a function of the 

composition is either caused by the change of the oxygen vacancy concentration or its 

mobility. Here we divide the “V-shape” variation as a function of the composition in 

Figure 5.8 into two regions: the CeO2-rich (x > 0.5) and the ZrO2-rich (x < 0.5) regions 

and discuss them separately.  

 

The increase of the ionic conductivity with the increase of x in the CeO2-rich region is 

easier to understand to some extent. In the fluorite structure, the ionic conduction is 

caused by the migration of oxygen vacancies through channels formed by the 

neighbouring cations. As discussed by Ananthapadmanabhan et al. [24] and Tsoga et al. 

[20], the radius of the free channel increases with the lattice parameter. Larger channel 

radius is favourable for the charge carriers to migrate. Since the amount of Y2O3 is set 

constant for all the compositions, the concentration of oxygen vacancies remains almost 
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the same (the slight increase in the lattice volume leads to a slight decrease of the defect 

concentration, but this effect is negligible [24]). Therefore, the increase of ionic 

conductivity in the CeO2-rich region with increasing x can be attributed to the increased 

oxygen vacancy mobility through a larger channel. 

 

However, in the ZrO2-rich region (x < 0.5), the increased channel radius fails to explain 

the decreased ionic conductivity with increasing x. The possible reason for the 

decreased conductivity in the ZrO2-rich region with increasing CeO2 mole ratio is the 

formation of complex defect associates or clusters. It is well known that 8 mol% YSZ 

has the highest electrical conductivity. Further increases in dopant concentration 

decrease the conductivity in YSZ because of the formation of defect associates, which 

bind the oxygen vacancies to the yttrium ions, making the oxygen vacancies unavailable 

for conduction [25]. The introduction of CeO2 into YSZ has similar effect: when CeO2 

is introduced into ZrO2, additional oxygen vacancies can be generated due to the 

significant difference of the ionic radius between Ce4+ and Zr4+ (which is called “size 

effect”) by the following reaction [39]: 

 ''
2 222

iO
x
Zr

ZrO OVCeCeO ++⎯⎯→⎯ •• .                                (5.10) 

The oxygen vacancies generated by CeO2 addition makes the formation of  

)( ' ••
OZrVY becomes more significant, and possibly leads to more complex defect 

associates x
ZrOZr YVY )( '' •• , which has been found in 9 mol% Y2O3 doped ZrO2 [40]. The 

formation of defect associates has stronger effect over the increase in the lattice 

parameter, and consequently leads to a decreasing conductivity.  

 

To sum up, the “V-shape” variation of the bulk conductivity as a function of x in the 

solid solutions is a competition between two factors. The first one is the formation of 

defect associates, which limits the mobility of the oxygen vacancies and therefore 

decreases the conductivity; the second one is the increase of lattice parameter, which 

enlarges the free channel for oxygen vacancy migration and therefore increases the 

conductivity. In the ZrO2-rich region (x < 0.5), the formation of defect associates 

overshadows the effect of the increased lattice parameter, therefore the conductivity 

decreases with increasing x; in the CeO2-rich region (x > 0.5), the increase of lattice 

parameter is the dominant factor which leads to an up-going trend on the conductivity. 
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A schematic of the defect associates profile and lattice parameter as a function of x and 

their competitive effect on the bulk conductivity of the solid solutions is shown in 

Figure 5.11(a). 

 

 

 
Figure 5.11 (a) Schematic of the defect associates profile (black dash line) and lattice 
parameter (red dot line) as a function of the composition (x). The black solid line 
illustrates the conductivity decrease caused by increasing defect associates; the red solid 
line illustrates the conductivity increase due to larger lattice parameter; the blue solid 
line shows the competitive effect of the two factors on the bulk conductivity of the solid 
solutions. (b) Schematic of the competitive effect of lattice parameter and the defect 
associates on the activation energy for the bulk conduction. 
 

 

The defect associates and the lattice parameter also influence the activation energy for 

the bulk conduction, as illustrated in Figure 5.11(b). It is accepted that the activation 

energy for the oxygen diffusion (oxygen vacancy diffusion in an opposite direction) in 

the intermediate temperature range is comprised of migration energy for a free oxygen 

vacancy (EM) and the dissociation energy (EO) to extricate an oxygen vacancy from the 

defect associates. As discussed above, the increase of lattice parameter leads to more 

free space and makes it much easier for an oxygen vacancy to migrate, and therefore a 

lower EM. EO is dependent on the concentration of defect associates. More defect 

associates, more energy required to dissociate them. Therefore EO varies as a function 

of x in the same way as the concentration of defect associates. Since EM has higher 

values than EO [41], in the ZrO2-rich region, the increased EO slows down the decrease 
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of EM, therefore the activation energy shows quite smooth variation; while a rapid drop 

of the activation energy can be observed in the CeO2-rich region because EM and EO 

both decrease as a function of x. The experimental observation in Figure 5.9 is in 

agreement with the above analysis. 

 

From the above analysis it can be concluded that the “V-shape” variation of the bulk 

conductivity with increasing CeO2 mole ratio is because the ionic radius of Ce4+ is 

significantly larger than Zr4+. Therefore, the ionic radius of the tetravalent dopant 

determines the composition dependence of the ionic conductivity of the solid solutions. 

It can be predicted if Zr is substituted by another tetravalent element with the similar 

ionic radius with Zr4+, “V-shape” composition dependence of the bulk conductivity may 

not be observed. 

 

In order to testify the above prediction, another series of binary solid solution [(ZrO2)1-

x(HfO2)x]0.87(Y2O3)0.13 (0 ≤ x ≤ 0.8) has been investigated. The bulk conductivity and the 

activation energy were obtained using the same method as the ZrO2-CeO2-Y2O3 series. 

The ionic radius of Hf4+ is 0.083 nm, almost the same as Zr4+ (0.084 nm), thus the 

substitution of Zr4+ by Hf4+ will not cause the re-arrangement of oxygen vacancies (no 

“size effect”). Besides at given yttria concentration, yttria-stabilized hafnia has lower 

ionic conductivity and higher activation energy than YSZ [42], therefore we expect a 

monotonously decrease of the bulk conductivity, along with a monotonously increase of 

the activation energy as a function of x. As shown in Figure 5.12(a) and (b), both the 

variations of the bulk conductivity and the activation energy as a function of x are in 

accordance with the expectations. No “V-shape” composition dependence of the bulk 

conductivity is observed, which confirms the prediction and from the other side 

supports the validity of the above explanation of the “V-shape” composition 

dependence of the bulk conductivity in ZrO2-CeO2-Y2O3 solid solutions.  
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Figure 5.12 Composition dependence of (a) bulk conductivity and (b) activation energy 
of the [(ZrO2)1-x(HfO2)x]0.87(Y2O3)0.13 (0 ≤ x ≤ 0.8) solid solutions at various 
temperatures. 
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5.5 Conclusions 

In this chapter, the bulk conduction and relaxation of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 

(0 ≤ x ≤ 1) solid solutions were studied using impedance spectroscopy at intermediate 

temperatures (200 - 500 ºC). The main conclusions are:  

(1) The impedance spectra of the solid solutions of all the compositions show similar 

characteristic of the well-established impedance spectra of YSZ;  

(2) The relaxation frequencies determined from the Bode plots (fZ’’ and fM’’) is 

proportional to the bulk conductivity. Comparing the relaxation frequency can be a 

simple method to rank the bulk conductivity of the solid solutions;  

(3) The electrical response of the solid solutions for all the compositions under the ac 

electrical field shows both long-range and localized relaxations. It is assumed that the 

localized relaxations are from the orientation of the defect associates under the electric 

field, as well as the back-and-forth jumping of a free oxygen vacancy between the two 

sites through which the diffusion path has the lowest activation energy;  

(4) The bulk conductivity has a “V-shape” variation as a function of the composition: it 

decreases with an increase of the mole ratio of CeO2 (x), reaching the lowest value when 

x = 0.5 (Zr/Ce = 1), and then goes up with further increase of x. The decrease of the 

bulk conductivity with increasing x in the ZrO2-rich region (x < 0.5) is due to the 

formation of the defect associates which limits the mobility of the oxygen vacancies, 

while the increase of the bulk conductivity with increasing x in the CeO2-rich region (x 

> 0.5) is due to the increase of the lattice parameter which enlarges the free channel for 

oxygen vacancy migration. These two factors also influence the activation energy for 

the bulk conduction;  

(5) The ionic radius of the tetravalent dopant determines the composition dependence of 

the ionic conductivity of the solid solutions. When doping YSZ with other tetravalent 

dopant with similar ionic radius with Zr4+, e.g., Hf4+, such “V-shape” composition 

dependence of the bulk conductivity can not be observed. 
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Chapter 6 
 
Thermal conductivity of                                             
[(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions 
 

 

 

 

6.1 Introduction 

Zirconia-based ceramics are the state-of-art materials for thermal barrier coatings 

(TBCs). Pure zirconia is not suitable for such application due to two main disadvantages. 

First, the thermal conductivity of pure zirconia is not low enough to meet the demand of 

a thermal barrier function. Second, its phase transformation from the high temperature 

tetragonal phase to the room temperature monoclinic phase causes volume expansion 

and leads to crack and failure of the coating. The above two disadvantages can be 

overcome by doping other metal oxides into zirconia. Numerous studies have found that 

dopants play an important role both in decreasing the thermal conductivity and 

stabilizing the high temperature tetragonal or cubic phases of zirconia [1].  

 

The effectiveness of a dopant in the reduction of thermal conductivity of zirconia is 

largely dependent on the valence of its metal cation. Subtetravalent oxides are the most 

effective dopants in decreasing the thermal conductivity because of the existence of 

oxygen vacancies, which are generated to compensate the charge missing caused by the 
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substitution of Zr4+ by the lower-valent dopant cations. The oxygen vacancies strongly 

scatter phonons and therefore significantly decrease the thermal conductivity. A good 

example is yttria-stablizied zirconia (YSZ), the most successfully developed TBCs 

material, which shows an almost temperature-independent low thermal conductivity due 

to the high concentration of oxygen vacancies [2-4]. In the case of tetravalent oxides, 

the substitution of Zr4+ by homovalent cations does not create any vacancy in zirconia 

lattice. The reduction of thermal conductivity is only attributed to the substitutional 

defects on the cation sites, which have been proven to be less effective than the oxygen 

vacancies in decreasing the thermal conductivity [1]. 

 

It can be expected that the thermal conductivity can be further decreased by doping 

subtetravalent and tetravalent oxides simultaneously into zirconia, utilizing the effects 

from both the vacancies on the anion sites and the substitutional defects on the cation 

sites. Several studies have reported the thermal conductivity of zirconia co-doped with 

yttria and some tetravalent oxides, i.e. titania, hafnia and ceria. For example, Miyazaki 

[5] studied the influence of titania on the thermal property of 3 mol% yttria partially 

stabilized zirconia (Y-PSZ) and found a continuous reduction of thermal conductivity 

from ~ 4.0 W/m·K for Y-PSZ to ~ 2.1 W/m·K for up to 20 mol% titania doped Y-PSZ. 

The author briefly discussed the above effect and also attributed the reduction of 

thermal conductivity to the mass disorder at the cation site generated by substitution of 

Zr4+ or Y3+ by Ti4+. However, phase compositions of the solid solutions vary with 

titania concentration: from a mixture of monoclinic, cubic and tetragonal for low titania 

content (< 8.0 mol%), to a mixture of cubic and tetragonal for medium titania content (8 

– 16 mol%) and to tetragonal for high titania content (~ 20 mol%). The effect of Ti4+ 

substitution at the cation site could be overshadowed by the effect caused by phase 

composition difference. 

 

Unlike titania, which has a solution limit of 40 mol% with zirconia [6], hafnia has 

complete solubility with zirconia. Winter and Clarke [7] studied the yttria-stabilized 

zirconia-hafnia solid solutions over the whole composition range from YSZ to yttria-

stabilized hafnia (YSH) at given yttria concentrations. They found a strong alloying 

effect that the solid solutions with the mixed zirconia-hafnia compositions having lower 

thermal conductivity than either YSZ or YSH, and the lowest thermal conductivity is 
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obtained in the composition of approximately equimolar zirconia and hafnia. Since the 

yttria concentration is high enough to stabilize all the compositions to the cubic phase, 

the reduction of thermal conductivity is attributed to mass disorder on the cation 

sublattice when Zr4+ is partially substituted by Hf4+ ions. 

  

Similar to hafnia, ceria also has a complete solubility with zirconia. Since they are all 

tetravalent ions, it may be expected the substitution of Zr4+ by Ce4+ in YSZ has the same 

effect as the substitution of Zr4+ by Hf4+ on the thermal conductivity of YSZ. The 

composition dependence of thermal conductivity of the ceria-zirconia-yttria ternary 

solid solutions at given yttria concentration might have the same tendency as the hafnia-

zirconia-yttria solid solutions. However, our previous work shows ceria-zirconia-yttria 

and hafnia-zirconia-yttria solid solutions have totally different composition dependence 

of electrical conductivity [8] because of the different nature between Hf4+ and Ce4+, 

therefore it is of interest to investigate the thermal conductivity of the ceria-zirconia-

yttria ternary solid solutions over the full composition range at given yttria 

concentration, which leads to further understanding on the role of homovalent 

substitution on the thermal conductivity of YSZ. 

 

Several previous studies have shown that incorporation of ceria into YSZ also decreases 

the thermal conductivity. For example, Huang et al. [1] added 5 mol% ceria into 7 wt% 

YSZ and found the thermal conductivity was lowered from 3.99 W/m·K (for YSZ) to 

3.23 W/m·K at room temperature, and from 3.96 W/m·K to 3.78 W/m·K at 600 ºC. 

However, the introduction of ceria significantly decreases the fraction of monoclinic 

phase in 7 wt% YSZ. Again the phase composition difference might be responsible for 

the reduction of thermal conductivity rather than the substitution of Zr4+ by Ce4+.  

 

Therefore in this chapter, a high concentration of yttria is used to ensure the non-

existence of monoclinic phase in the solid solutions. Thermal conductivities of the 

zirconia-ceria-yttria solid solution, covering a full composition range from YSZ to 

yttria-doped ceria (YDC) at a given yttria concentration, were investigated. There is a 

striking difference between the temperature dependence of the thermal conductivities in 

ZrO2-rich (0 ≤ x ≤ 0.5) region and those in CeO2-rich region (0.5 ≤ x ≤ 1.0) of the ZrO2-

CeO2-Y2O3 ternary solid solutions. In addition, the thermal conductivity is less 
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dependent on the composition in the in ZrO2-rich (0 ≤ x ≤ 0.5) region, but it is strongly 

dependent on the composition in the CeO2-rich region (0.5 ≤ x ≤ 1.0) of the ZrO2-CeO2-

Y2O3 ternary solid solutions. The purpose of this paper is to further understanding on 

the influence of homovalent substitution, size and mass of dopants on the thermal 

conductivity of zirconia-based materials, in particular, the effect of oxygen vacancy 

disorder has been indentified as a possible major factor to affect thermal conductivity of 

the ZrO2-CeO2-Y2O3 ternary system. 

 

6.2 Experiments 

Procedures of sample preparation and general characterizations of the samples, e.g., 

XRD, SEM and densities, have been described in Chapter 5. Details of the thermal 

diffusivity measurement can be found in Chapter 4. 

 

The specific heat capacitance values of the solid solutions at various temperatures were 

calculated according to the Neumann-Kopp rule [9] based on the reference specific heat 

values of ZrO2, CeO2 and Y2O3. The specific heat values of selected compositions at 

various temperatures are listed in Table 6.1. 

 

Thermal conductivities of the solid solutions were obtained from the density (ρ), 

specific heat (Cp) and thermal diffusivity (α) using the relationship: 

αρ ⋅⋅= pCk  .                                                       (6.1) 

The thermal conductivities were corrected to fully-dense values (kdense) using [13] 

Φ−=
3
41

densek
k ,                                                        (6.2) 

where Φ is the volume fraction of porosity. 
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6.3 Results 

Figure 6.1 shows the thermal diffusivities of the solid solutions as a function of 

temperatures. For all the compositions, the thermal diffusivities decrease with 

increasing temperature. When x < 0.5, the thermal diffusivity for each composition has 

a low value and it is close to each other. On the contrary, when x > 0.5, the thermal 

diffusivity has a distinguishable dependence on the composition: it increases with an 

increase in x. In addition, the effect of temperature on thermal conductivity becomes 

more significant with increasing x. Since the influence of porosity is included, further 

discussion will eliminate the effect of porosity on thermal conductivity. 

 

Figure 6.2 shows the thermal conductivities of the solid solutions at different 

temperatures. All the thermal conductivity values have been corrected to the fully-dense 

values according to Eq.(6.2). Two features are noticeable in Figure 6.2. First, the 

thermal conductivities of YSZ and YDC exhibit totally different temperature 

dependence: thermal conductivity of YSZ has an almost temperature-independent value 

within the temperature range, whereas the thermal conductivity of YDC shows an 

obvious decrease with an increase in the temperature. Second, when x < 0.5, the 

substitution of Zr4+ by Ce4+ only slightly decreases the thermal conductivity of YSZ, 

and the thermal conductivities of the solid solutions are almost temperature-independent; 

whereas when x > 0.5, the substitution of Ce4+ by Zr4+ significantly decreases the 

thermal conductivity of YDC, and the thermal conductivities of the solid solutions all 

decrease with an increase in the temperature. 

 



 
CHAPTER 6                              THERMAL PROPERTIES OF ZrO2-CeO2-Y2O3 SOLID SOLUTIONS 

 PAGE 153

 
Figure 6.1 Thermal diffusivities of the of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) 
solid solutions at different temperatures. The error bar for each sample and each 
temperature is quite small to be seen clearly. 
 
 

 
Figure 6.2 Thermal conductivities after zero-porosity correction of the [(ZrO2)1-

x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions at different temperatures. 
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In Figure 6.3 the thermal conductivities of the solid solutions were plotted as a function 

of the composition (x). The thermal conductivities of the solid solutions vary 

nonlinearly with the composition, and they are lower than the values calculated from the 

rule of mixture, as suggested by the dash dot line. The solid solutions in the ZrO2-rich 

region (x < 0.5) have lower thermal conductivities and show less temperature or 

composition dependence than those in the CeO2-rich region (x > 0.5). 

 

 
Figure 6.3 Thermal conductivities of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) 
solid solutions as a function of the composition (x) at different temperatures. 
 

6.4 Discussion 

The major findings of this work are: (1) the striking difference between the temperature 

dependence of the thermal conductivities in ZrO2-rich (0 ≤ x ≤ 0.5) region and those in 

CeO2-rich region (0.5 ≤ x ≤ 1.0) of the ZrO2-CeO2-Y2O3 ternary solid solutions. This is 

quite different from the ZrO2-HfO2-Y2O3 solid solutions, in which no temperature 

dependence has been observed for the thermal conductivities over the entire 

composition range [7]; (2) the thermal conductivity is less dependent on the 

composition in the in ZrO2-rich (0 ≤ x ≤ 0.5) region, but it is strongly dependent on the 
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composition in the CeO2-rich region (0.5 ≤ x ≤ 1.0) of the ZrO2-CeO2-Y2O3 ternary 

solid solutions. 

Therefore the main purpose of this session is to discuss the temperature dependence and 

the composition dependence of the thermal conductivity in the ZrO2-CeO2-Y2O3 solid 

solutions. In part 6.4.1, we discuss why the system exhibits totally different temperature 

dependence of the thermal conductivity with different composition, starting from the 

binary systems YSZ and YDC, in comparison with YSH studied previously. Then in 

part 6.4.2, the temperature dependence of the thermal conductivity of the ZrO2-CeO2-

Y2O3 solid solutions is further discussed based on the understanding of the binary 

systems. Finally in part 6.4.3, discussion on the composition dependence of the thermal 

conductivity is carried out. 

 

6.4.1 Temperature dependence of thermal conductivity in YSZ and YDC 

In this work, YSZ and YDC have the same fluorite structure with the same 

concentration of oxygen vacancy, however their thermal conductivities exhibit totally 

different temperature dependence: kYSZ is almost temperature independent, whereas 

kYDC decreases monotonously with increasing temperature. Yttria-stablised Hafnia 

(YSH) with the same fluorite structure has been reported a temperature independent 

thermal conductivity. Why YDC behaves differently from YSZ and YSH is the first 

issue to be discussed. Because of the large grain sizes (~ 10 µm) in all the samples, the 

grain boundary effect is negligible in the following discussions. 

 

(1) phonon-phonon and phonon-defect scattering  

It is well known that in a ceramic material with point defects, the phonon mean free 

path Λ(ω) consists of two independent components and it can be written as [14]: 

)(
1

)(
1

)(
1

ωωω DU Λ
+

Λ
=

Λ
,                                               (6.3) 

Where ΛU(ω) is the mean free path due to Umklapp phonon-phonon scattering and 

ΛD(ω) is the mean free path from the phonon-defect scattering. ΛU(ω) is temperature 

dependent, as described by [14]: 
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UU D
T2

)(
1 ω
ω

=
Λ

,                                                           (6.4) 

whereas ΛD(ω) is temperature independent,  and it is determined by the defect 

concentration (cD) by [14]: 

D

D

D D
c4

)(
1 ω
ω

=
Λ

,                                                    (6.5) 

where DU and DD are temperature and frequency-independent parameters characterizing 

the Umklapp process and the phonon-defect collision respectively. Therefore, when the 

phonon-phonon scattering (Umklapp process) dominates, the thermal conductivity 

decreases with increasing temperature. On the contrary, when the phonon-defect 

scattering dominates, the thermal conductivity is temperature-independent. In the 

following part, the parameters for phonon-phonon and phonon-scattering processes of 

YSZ, YDC and YSH are calculated and compared. 

 

(a) Umklapp phonon-phonon process 

The parameter DU can be evaluated by the following expression [15, 16]: 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

B
U k

vM
a
vD 2

22

4
2

γπ
,                                                 (6.6) 

in which a3 is the mean atomic volume, M  is the mean atomic mass, γ is the Grüneisen 

constant and v is the averaged sound velocity which has a relationship with the Debye 

frequency by [16]: 

 3
12 )6( −

= πωDav .                                               (6.7) 

Combine Eq.(6.6) and (6.7), DU is rewritten as: 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

−

B

D
U k

aM
D 2

3
4

243 6
4

2
γ

πω
π

.                                            (6.8) 

The parameters used in Eq.(6.8) of pure zirconia, ceria and hafnia are listed in Table 6.2. 

Despite of the scattering reference values of ΘD and γ, the calculated DU of zirconia, 

ceria and hafnia are still within the same order of magnitude, indicating the contribution 

from phonon-phonon scattering to the thermal conductivity of ZrO2, CeO2 and HfO2 is 

similar. This is in consistence with the theoretical prediction of the minimum thermal 

conductivities of these three oxides, which have close values with each other [17].   
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Table 6.2 The parameters used in Eq.(6.8) and the calculated DU values of ZrO2, CeO2 
and HfO2. 

 
 

 

(b) Phonon-defect scattering 

The parameter describing the phonon-defect scattering DD, is expressed as [31]: 

0

44
ΓΩ

=
mvDD
π ,                                                         (6.9) 

in which Ω0 is the volume of the unit cell, m is the number of atoms; Γ is a scattering 

coefficient, which is determined by the mass difference between the substitutional atom 

and the host atom, in the form of 
2

⎟
⎠
⎞

⎜
⎝
⎛ ∆=Γ

M
M . The sound velocity v is related to the 

elastic modulus (E) and the density (ρ) by
ρ
Ev 87.0= [32]. Therefore Eq.(6.9) is 

rewritten as: 

      
2

0

4

0

4 )87.0(44
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΓΩ

=
ΓΩ

=
ρ

ππ EmmvDD .                                      (6.10) 

 

In YSZ and YDC, there are two types of point defects. One is is the substitutional defect 

caused by the replacement of Zr4+ or Ce4+ by Y3+ at the cation site, and the other one is 

the oxygen vacancies generated to keep the electroneutrality. According to the defect 

reaction x
OOM

MO OVYOY 32 '
32

2 ++⎯⎯→⎯ •• , adding b mol Y2O3 into MO2 can generate 2b 

mol '
MY  and b mol ••

OV . Thus the total defect concentration (cD = cDY + cDO) is 3b mol. 
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Therefore, the scattering coefficient is composed of tow parts corresponding to the two 

types of point defects, in the form of [33]: 
2222

3
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⎛ ∆=Γ ,  (6.11) 

where M is the average atomic weight in a unit cell. For oxygen vacancies, the effective 

value of 2−−=
∆ −

M
M

M
M OVO , in which the term -2 arises because the number of broken 

bonds at the vacancy is twice the number of bonds per atom [31]. 

 

The parameters used for calculating DD for YSZ, YDC and YSH, along with the 

calculated Γ and DD are listed in Table 6.3. Although the calculated DD value of YDC is 

the lowest, considering the scattered reference values for the Young’s modulus, the DD 

values are quite close for these three materials.  

 

Comparing the DU and DD values of YSZ, YDC and YSH in Table 6.2 and 6.3, it can be 

seen that the calculated DU and DD values of YDC are not significantly different from 

those of YSZ and YSH, indicating the contributions from the phonon-phonon scattering 

and the phonon-defect scattering are similar in the three materials, which fails to explain 

the strikingly different thermal conductivity-temperature relationship of YDC compared 

with that of YSZ and YSH. On the other hand, this also indicates the existence of 

oxygen vacancies in YSZ and YSH is not the decisive factor that causes the temperature 

independent thermal conductivity. 
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(2) Ordering of defects  

In a defect fluorite structure the oxygen vacancies are disordered (unlike the ordered 

vacancies in a pyrochlore structure). However the extent of the disordering is 

determined by the relative size of the dopant and the host cations. At low/medium 

dopant concentrations, when the ionic radius of the dopant cation is larger than that of 

the host cation, the oxygen vacancies are statistically distributed; on the contrary, when 

the dopant and the host cations have the similar radii, the long-range superstructures 

(ordered vacancies) are generated [38]. The ionic radii of Zr4+, Hf4+, Ce4+ and Y3+ are 

0.084 [7], 0.083 [7], 0.097 [39] and 0.102 nm [7], respectively. In YSZ or YSH, the 

dopant cation (Y3+) is much larger than the host cation (Zr4+ or Hf4+), whereas in YDC 

the dopant and the host cations are of the similar size. Therefore at given yttria 

concentration, the oxygen vacancies in YDC are less disordered than those in YSZ or 

YSH.  

 

An evidence for the above statement is from the nuclear magnetic resonance (NMR) 

spectroscopy studies on the structural disorder in YSZ and YDC [40]. The average 

coordination numbers of Y, Zr and Ce in YSZ and YDC obtained from the NMR 

spectra all deviate from their “ideal” values (which correspond to a random distribution 

of vacancies without any preference for any particular cation [40,41]), indicating the 

existence of oxygen vacancy ordering in both YSZ and YDC. In YSZ, the oxygen 

vacancies prefer to be associated with Zr atoms; on the contrary, in YDC the oxygen 

vacancies prefer to be associated with Y atoms. Also the extent of the oxygen vacancy 

ordering is obviously different between YSZ and YDC. At a given Y concentration (15 

mol% for example), if oxygen vacancies are randomly distributed (totally disordered), 

the ideal coordination number Cideal = 8 – 2×0.15 = 7.7 [40]. The average coordination 

number of Zr (CZr) obtained from NMR spectroscopy of YSZ is 7.65, which is only 

slightly lower than Cideal; however, CY in YDC is 7.13, which is much lower than Cideal. 

The results indicate that at the yttria concentration in this study, the defect ordering is 

more severely in YDC than in YSZ. In other words, the oxygen vacancies are mostly 

disordered (randomly distributed) in YSZ but they are ordered to some extent in YDC.    

 

The disordered defects are more effective at scattering phonons than the ordered ones 

and therefore cause the temperature independent thermal conductivity of YSZ. On the 
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contrary, the ordering of oxygen vacancies causes the YDC behaves like a typical 

crystal with point defect scattering. In other words, the defect disorder/ordering may be 

the decisive factor that determines the temperature dependence of thermal conductivity 

of YSZ and YDC. 

 

6.4.2 Temperature dependence of thermal conductivity in ZrO2-CeO2-Y2O3 

ternary solid solutions 

Based on the understanding of temperature dependence of thermal conductivity of YSZ 

and YDC, further discussions are carried out on the ZrO2-CeO2-Y2O3 ternary solid 

solutions. From Figure 6.2 and 6.3, it can be seen that the thermal conductivities show 

totally different temperature dependences in the ZrO2-rich region (0 ≤ x < 0.5) and in 

the CeO2-rich region (0.5 < x ≤ 1.0). Since the intermixing of Zr4+ and Ce4+ does not 

create any oxygen vacancy, the concentration of oxygen vacancies remains constant 

within the whole composition range of the ternary solid solutions. And according to the 

conclusion in part 6.4.1, the temperature dependence of thermal conductivity is mainly 

dominated by the disorder/ordering of oxygen vacancies. Therefore in this part we will 

focus on the oxygen vacancy ordering in the ZrO2-CeO2-Y2O3 system to discuss the 

temperature dependence of thermal conductivity. 

 

The work by Chen et al. has pointed out the Zr4+ has the ability to attract oxygen 

vacancies in the YSZ-YDC ternary solid solutions [42]. Therefore in the CeO2-rich 

region (0.5 < x ≤ 1.0), when ZrO2 is doped into YDC, the Zr4+ traps the oxygen 

vacancies from the nearest neighbouring sites of Y3+ to the nearest neighbouring sites of 

Zr4+ and “releases” the ordered oxygen vacancies in YDC. The more ZrO2 is doped, the 

more ordered oxygen vacancies are released from YDC. In other words, the undersized 

Zr4+ causes the redistribution of oxygen vacancies, which gradually change from the 

ordered ones in YDC to the disordered ones in the ternary solid solutions. Consequently 

the thermal conductivities of the solid solutions show less temperature dependence with 

an increase in the ZrO2 concentration in the CeO2-rich region.  
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However, in the ZrO2-rich region (0 ≤ x < 0.5), when CeO2 is doped into YSZ, the 

oxygen vacancies are not redistributed due to the large ionic size of Ce4+. NMR study 

[43] reveals that when CeO2 is doped into YSZ, the oxygen vacancies are still located at 

the nearest neighbouring sites of Zr4+ (or Ce4+). The average coordination number of the 

tetravalent cations remains nearly constant with an increase of the CeO2 concentration 

and it is close to the ideal coordination number corresponding to a random distribution 

of oxygen vacancies. Therefore, in the ZrO2-rich region, the oxygen vacancies are 

randomly distributed around the Zr4+ or Ce4+ ions, which is similar to the oxygen 

vacancy distribution in YSZ. Consequently the thermal conductivities of the solid 

solutions in this region have similar temperature dependence with YSZ.  

 

To sum up, the different temperature dependence of the thermal conductivity in ZrO2-

rich region and in CeO2-rich region is attributed to the significantly different ionic size 

between Zr4+ and Ce4+, which causes different oxygen vacancy distribution in the two 

regions.  

 

6.4.3 Composition dependence of thermal conductivity in ZrO2-CeO2-Y2O3 ternary 

solid solutions 

As illustrated in Figure 6.2 and 6.3, the composition dependence of the thermal 

conductivity of the solid solutions could also be divided into two regions. In the ZrO2-

rich region where x < 0.5, substitution of Zr4+ by Ce4+ has marginal effect in decreasing 

the thermal conductivity of YSZ. On the contrary, in the CeO2-rich region where x > 0.5, 

substitution of Ce4+ by Zr4+ significantly decreases the thermal conductivity of YDC.  

 

In the ZrO2-CeO2-Y2O3 ternary solid solutions, similar as in the binary systems, the 

phonons are scattered both from the cation site (Zr, Ce, Y) and the anion site (O and 

oxygen vacancy ••
OV ). The scattering coefficient of the ternary solid solution is also 

determined from Eq.(6.11). However, in the case of ternary solid solutions, there are 

three types of atoms on the cation sites. The scattering coefficient of the cation site is 

expressed as [44, 45]:  
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where M(Zr,Ce,Y) is the average mass of the cation site and M is the average mass of (Zr1-

xCex)0.852Y0.148O1.926.  

 

In Figure 6.4, the scattering coefficient of each scattering site has been plotted as a 

function of x. The scattering coefficient of the cation site increases with an increase of x, 

reaching its highest value when Zr and Ce are around equal molar (x ≈ 0.5), and 

decreases with further increase of x. At the anion site, the scattering coefficient slightly 

decreases due to the increase of average mass of the solid solution. The overall 

scattering coefficient calculated from Eq.(6.11) has the same trend with that of the 

cation site Γ(Zr,Ce,Y). Because the thermal conductivity
1

4
0

−

⎟
⎠
⎞

⎜
⎝
⎛ ΓΩ

=∝
v

k , it is expected that 

the thermal conductivity has a V-shape variation as a function of x. This is generally in 

agreement with the experimental observations as shown in Figure 6.3. Specifically it 

accords with the experimental results in the CeO2-rich region, but shows deviation in 

the ZrO2-rich region, where thermal conductivity has little composition dependence.  

 
Figure 6.4 Scattering coefficient Γ as a function of the composition x at constant yttria 
concentration.  
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The possible reason for the deviation in the ZrO2-rich region is that the contribution 

from the ionic size difference between Zr4+ and Y3+, which causes the lattice strain, is 

not considered when calculating the scattering coefficient. The ionic size difference 

decreases with an increase in the CeO2 concentration because of the similar size 

between Y3+ and Ce4+. It can be predicted that the scattering coefficient caused by the 

ionic size difference monotonously decreases with x. This part of contribution smoothes 

the sharp increase of Γ(Zr,Ce,Y) in the ZrO2-rich region and consequently causes the 

composition independent thermal conductivity in the ZrO2-rich region.  

 

6.4.4 Comparison with the ZrO2-HfO2-Y2O3 solid solutions 

Now we briefly compare the thermal conductivities of zirconia-ceria-yttria with the 

reported zirconia-hafnia-yttria solid solutions. One common feature exists in these two 

series of solid solutions that the intermixing of Zr4+ with either Hf4+ or Ce4+ can 

decrease the thermal conductivity of YSZ, YSH and YDC, indicating the effectiveness 

of mass disorder at the cation site in scattering phonons.  

 

A striking difference between these two series is that the zirconia-hafnia-yttria series 

has almost temperature independent thermal conductivity within the whole temperature 

range; however, the zirconia-ceria-yttria series has clear temperature dependence in the 

CeO2-rich region. Because of the significantly larger ionic size of Y3+ than that of Zr4+ 

and Hf4+, the oxygen vacancies are randomly distributed (disordered) in the solid 

solutions, which causes the temperature independent thermal conductivity; on the 

contrary, the similar ionic size of Y3+ and Ce4+ causes a long range ordering of oxygen 

vacancies, which leads to a typical temperature dependence of crystal with point defects.  

 

The comparison between these two series of ternary solid solutions indicates the both 

the atomic mass and the ionic size of the tetravalent cations are important factors that 

influence the thermal conductivity of the solid solutions.  

 



 
CHAPTER 6                              THERMAL PROPERTIES OF ZrO2-CeO2-Y2O3 SOLID SOLUTIONS 

 PAGE 165

6.5 Conclusions 

Thermal conductivities of [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions 

were investigated in this study. The main conclusions are: 

(1) The incorporation of ZrO2 and CeO2 in the solid solutions decreases the thermal 

conductivity compared with their end members (YSZ and YDC). The lowest 

thermal conductivity is obtained at the compositions of x = 0.3~ 0.5, which is 

around 10% lower than YSZ and 33% lower than YDC at 500 ºC.  

(2) The thermal conductivities of the solid solutions in ZrO2-rich region are almost 

temperature-independent, and show marginal composition dependence. On the 

contrary, the thermal conductivities of the solid solutions in CeO2-rich region 

decrease with increasing temperature, and show significant composition dependence.  

(3) The reduction of thermal conductivity due to doping should be mainly caused by the 

mass disorder at the cation site; the different temperature dependence of thermal 

conductivity may be due to the significant different ionic size between Zr4+ and Y3+ 

which leads to highly disordered oxygen vacancies, whereas the similar ionic size 

between Ce4+ and Y3+ which leads to a long range ordering of oxygen vacancies.  

(4) A comparison with the ZrO2-HfO2-Y2O3 series indicates that both the atomic mass 

and the ionic size of the tetravalent cations are important factors that influence the 

temperature and composition dependence of thermal conductivity in the ternary 

solid solutions.  
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7.1 Conclusions 

The electrical and thermal properties of YSZ/Al2O3 composites and ZrO2-CeO2-Y2O3 

solid solutions are investigated in this thesis. The main conclusions are: 

(1) The electrical conductivity of the YSZ/Al2O3 composite shows the typical 

characteristics expected from the percolation theory, with a critical YSZ volume 

fraction of 13.9 ± 0.4 % for the onset of conduction. Above this YSZ volume 

fraction, the activation energy has a similar value with pure YSZ and it is 

independent on the Al2O3 fraction because the electrical (ionic) conduction is 

mainly dominated by the YSZ phase.  

(2) The information of the YSZ/Al2O3 interface can be obtained indirectly from the low 

frequency response on the impedance spectroscopy. The electrical conductivity of 

the YSZ/Al2O3 interface is higher than YSZ grain boundary but similar to, or lower 

than the YSZ grain.  

(3) The thermal conductivity of the composites increases with an increase in the Al2O3 

volume fraction, and it can be fitted well by the Maxwell theoretical model. The 

consistency of the thermal conductivity of the composite with the predicted values 

indicates the absence of interfacial thermal resistance in the composite.  
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(4) The absence of a Kapitza resistance of the YSZ/Al2O3 interface is due to the 

“clean” and coherent nature of the YSZ/Al2O3 interface, together with the small 

difference between the elastic properties of YSZ and Al2O3.  

(5) The electrical conductivity of ZrO2-CeO2-Y2O3 ternary solid solutions has a “V-

shape” variation as a function of the composition: it decreases with an increase of 

the mole ratio of CeO2 (x), reaching the lowest value when x = 0.5 (Zr/Ce = 1), and 

then goes up with further increase of x. The ionic radius of the tetravalent dopant 

determines the composition dependence of the ionic conductivity of the solid 

solutions. When doping YSZ with other tetravalent dopant with similar ionic radius 

with Zr4+, e.g., Hf4+, such “V-shape” composition dependence of the bulk 

conductivity can not be observed. 

(6) The incorporation of ZrO2 and CeO2 in the solid solutions decreases the thermal 

conductivity compared with their end members (YSZ and YDC), which is mainly 

due to the mass disorder at the cation site. 

(7) The temperature and composition dependence of thermal conductivities of the solid 

solutions show different features in ZrO2-rich region and in CeO2-rich region, 

which is correlated to the different ionic size between Ce4+ and Zr4+. A comparison 

with the ZrO2-HfO2-Y2O3 series indicates that both the atomic mass and the ionic 

size of the tetravalent cations are important factors that influence the temperature 

and composition dependence of thermal conductivity in the ternary solid solutions.  

 

7.2 Future work 

(1) Study the defect structures in ZrO2-CeO2-Y2O3 solid solutions by high temperature 

Raman spectroscopy. 

The conclusions of Chapter 5 and 6 indicate that both electrical and thermal properties 

of the ZrO2-CeO2-Y2O3 solid solutions are closely related to the oxygen vacancy 

disorder/order at the anion site. Since Raman spectroscopy is sensitive to the anions and 

it can reflect the vibration modes of the lattice, it could be an effective way to 

investigate the defect structure in the ternary solid solutions. The relationship between 
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defect structure and the material properties, especially the thermal conductivity, could 

be established. 

 

(2) Study the thermal conductivity of YSZ/Pt composites. 

The conclusion of Chapter 4 indicates that large interfacial resistance exists when the 

two components have significantly different elastic properties (e.g., Young’s modulus, 

density, etc.). This leads to the thought of utilizing the YSZ/metal interface to decrease 

the thermal conductivity of YSZ. Pt is stable at high temperatures and thus is the first 

candidate metal material. There are two ideal structures of this composite. One is nano-

size Pt agglomerations evenly distributed inside the YSZ matrix to generate large 

amount of interfaces. The other one is Pt segregates inside the YSZ grain boundaries to 

“strengthen” the grain boundary-phonon scattering. The difficulty of this thought is how 

to produce dense bulk samples of the above two structures. 

 

(3) Study the thermal conductivity of multilayer TBC system. 

TBC has a multilayer structure. Some issues related to the thermal conductivity of the 

real TBC system, for example, how the bond coat/TGO interface or the bond coat/YSZ 

interface influences the heat conduction through the TBCs, are still unclear. Finite 

element modelling can be employed to assist understanding of the experimental results. 

 

 




