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There are two commonly discrete approximations for the inverse conductivity
problem. Finite element models are heavily used in electrical impedance tomogra-
phy research as they are easily adapted to bodies of irregular shapes. The other
approximation is to use electrical resistor networks for which several uniqueness re-
sults and reconstruction algorithms are known for the inverse problem. In this thesis
the link between finite element models and resistor networks is established. For the
planar case we show how resistor networks associated with a triangular mesh have
an isotropic embedding and we give conditions for the uniqueness of the embedding.
Moreover, a layered finite element model parameterized by the values of conductivity
on the interior nodes is constructed. Construction of the finite element mesh leads
to a study of the triangulation survey problem. A constructive algorithm is given to
determine the position of the nodes in the triangulation with a knowledge of one edge
and the angles of the finite element mesh. Also we show that we need to satisfy the
sine rule as a consistency condition for every closed basic cycle that enclosing interior
nodes and this is a complete set of independent constraints.
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Chapter 1

Introduction

1.1 Aims and objectives

Inverse boundary problems deal with the determination of internal properties of a

medium from measurements at its boundary. These problems arise in a variety of

important physical situations such as geophysics and medical imaging. The physical

situation is modelled by using a partial differential equation within the medium. The

boundary measurements are represented by a map on the boundary. The inverse

boundary value problem is the recovery of the coefficients of the partial differential

equation in the interior of the medium knowing the boundary map. A typical exam-

ple of an inverse boundary problem is the inverse conductivity problem proposed by

Calderón [13]. In this inverse problem one aims to recover the electrical conductivity

within a medium from the boundary voltage to current map known as the Dirichlet

to Neumann map Λγ. Another version of the same problem is determining the con-

ductivity inside the medium from the knowledge of the Neumann to Dirichlet map.

In a mathematical context, the conductivity problem is formulated as follows: Let

Ω ⊆ Rn be a bounded domain with a smooth boundary, γ ∈ L∞(Ω) be the conduc-

tivity of Ω where γ is strictly positive and the potential u ∈ Ω with voltage f on the
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boundary ∂Ω satisfies

Lγ = ∇ · (γ(x)∇u) = 0 in Ω. (1.1)

u |∂Ω= f

Λγ(f) = ν.γu |∂Ω

where u is the solution of (1.1) and ν is the unit outer normal to ∂Ω. So the inverse

problem is to recover γ knowing Λγ. More specifically we are interested in:

• Identifiability: the map γ → Λγ is injective.

• Stability: the map γ → Λγ and its inverse, if it exists, are continuous.

• Characterization: the range of the map γ → Λγ.

• Reconstruction: finding a procedure to recover γ from Λγ.

In practice, discrete approximations to the conductivity problem are used. These

approximations rely on a finite number of voltage and current measurements at the

boundary. Discrete approximations to the conductivity problem include finite element

models and resistor networks. Finite element models are widely used in electrical

impedance tomography (EIT) [11]. Research in this area uses a technology designed

to determine spatially varying conductivity inside a body from surface measurements.

Electric currents are injected by means of electrodes attached on the surface. The

information obtained from the surface are measured voltages which correspond to a

variety of applied current patterns. This collected data is used to reconstruct the

image of the conductivity distribution within the body. There are biomedical and

geophysical applications for this method [28]. In biomedical imaging one may mon-

itor the influx or efflux of a conducting fluid such as blood flow in the brain or the

heart in a body under investigation. Similarly, in geophysics [42], through measure-

ments on the surface of a field one may monitor the fluid through rocks and soils

by reconstruction of the conductivity image. Finite element approximations provide
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useful spatial information about the body under study. Moreover, there are several

reconstruction algorithms from current to voltage map in the boundary refer to [55]

for early work and [2] for a recent survey. However, this approximation has a lack

of or indeed has no uniqueness results available. Another approximation of the con-

ductivity inverse problem is provided by electrical resistor networks. Nakayama et al.

studied the change of the conductivity on electrical resistor networks corresponding

to the change in the measured voltage [40]. Similar work by Murai and Kagawa [37]

appeared in 1985. Also, Yorkey [56] showed that (FEM) approximates the conduc-

tivity distribution with a suitable resistor network. Moreover, Yorkey, Webster and

Tompkins [55] explained how the Jacobian matrix can be computed using a discrete

formulation. In this research area, rectangular networks [17] and circular networks

[15] have been studied extensively by E. Curtis and J. Morrow. Several uniqueness

results were proved and reconstruction algorithms for γ from Λγ were obtained. Fur-

thermore, some results analogous to continuous case such as maximum principals and

discrete Green’s functions were shown [16].

The process of harmonic continuation in a domain was introduced. This idea enabled

E. Curtis and J. Morrow to prove that a harmonic function can be locally constant

without being constant in the whole domain. This property in the discrete version is

in contrast with the continuum case where the harmonic function is constant in the

whole domain if it is constant in part of the domain. This abstract theory of elec-

trical resistor networks lacks a practical application as no spatial information about

the body can be obtained. Thus, there is a need to fill such gap as resistor network

approximation is not useful without a practical application. On the other hand, for

finite element approximations uniqueness of solution for the inverse problem is not

guaranteed. This motivated us to consider the link between the two approximations.
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Questions that naturally arise:

1. Which resistor network corresponds to a finite element model?

2. Do all assignments of conductance to a resistor mesh with the same topology

as a finite element mesh correspond to a choice of vertex positions and conduc-

tivities?

3. What are the conditions needed to obtain a unique embedding of a resistor

network associated with a finite element model?

4. Can a finite element mesh equivalent to a resistor networks be constructed?

5. Is there a canonical form for triangular resistor networks?

Note that the finite element models with piece-wise linear basis functions and piece-

wise constant conductivity produce a system matrix equivalent to the Ohm-Kirchhoff

matrix for a resistor network. For the planar case we show how resistor networks

associated with a certain class of an isotropic (FEM) have an isotropic embedding

and we give conditions for the uniqueness of the embedding. Moreover, we construct

a layered finite element model parameterized by the values of conductivity on the

interior nodes. Construction of the finite element mesh leads to a study of the survey

problem. A constructive algorithm to determine the position of the nodes in the

triangulation with a knowledge of one edge and the angles of the finite element

mesh is obtained. Also we show that we need to satisfy the sine rule as a consistency

condition for every closed basic cycle enclosing interior node. Finally, an isomorphism

between the space of basic cycles in the triangulated mesh and the space of logarithm

of sines is proved.
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1.2 Thesis organization

In the context of this thesis, the first chapter starts with a brief introduction to

the inverse conductivity problem. In this introduction, the two most popular dis-

crete methods in literature used to determine the conductivity of medium are dis-

cussed and compared. Chapter 2 introduces a brief review of uniqueness results of

electrical impedance tomography (EIT) in the continuum context. The formulation

of Calderón’s Inverse Problem of conductivity is introduced. The developments of

uniqueness results in both isotropic and anisotropic conductivities are summarized.

Chapter 3 presents the resistor networks as a discrete analogue of the continuous case

of conductivity problem. We review previously known results on inverse problems of

resistor networks. The concept of harmonic continuation introduced by E. Curtis and

J. Morrow is discussed as it is an important technique to recover the conductivity on

edges in rectangular and circular planar resistor networks. One of our contributions

in this thesis is the derivation of a discrete analogue of continuum conductivity in

differential forms. Another contribution is the development of the concept of simpli-

cial complex which is useful in the discussion of necessary and sufficient consistency

condition. Also, we explain the important concepts of medial graph as it plays a role

to characterize the circular planar resistor networks. We applied the medial graph in

layered triangulated circular resistor networks and justified that they are over deter-

mined. Chapter 4 discuses the finite element models as another version of discrete

conductivity problem. This method is used to reconstruct the image of the conduc-

tivity distribution inside a body by boundary measurements. We also present the

correspondence of Ohm-Kirchhoff matrix and (FEM) system matrix as the topic of

this thesis is to study the link between the finite element models and resistor networks.

Chapter 5 deals with the classical problem of a triangulation survey considered by

early cartographers including Tycho Brahe and Snellius. Also, we go over the work

done in geometric design where the sine rule is introduced as a consistency condition.

Moreover, we illustrate the sine rule in basic cycles around each interior vertex in
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triangulated mesh. Our contribution in this chapter is to show the necessary and suf-

ficient consistency condition to be satisfied corresponding to the number of interior

nodes in the triangulation mesh. Another contribution in this chapter, we obtained

a constructive algorithm to determine the position of the nodes in the triangulation

knowing one edge and the angles of the finite element mesh. Chapter 6 is the main

contribution chapter of this thesis. We study the problem of finding a piece-wise lin-

ear invertible change of coordinates that makes the conductivity isotropic for a given

planar (FEM) with anisotropic conductivity. In the continuum setting we have an

abstract conductive manifold and embedding in Euclidean space. In discrete setting

a resistor network with the same topology as (FEM) and an embedding (position of

vertices) with a conductivity on each element is identical to Ohm-Kirchhoff system

matrix. Finding such an embedding is a discrete equivalent of isothermal coordinates.

In order to use optimisation techniques to find an isotropic embedding, it is natural to

constrain the variables to obtain a local unique solution. To do this, we assumed the

position of one boundary edge and we constrain nvb
−1 angles at the boundary. Then

we assigned one conductivity variable per interior vertex and defined conductivity in

the triangular face to be the average of these variables at each vertex in the triangle.

Numerical experiments show that a unique isotropic embedding can be found with

these constraints over a wide range of anisotropic conductivities.
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Chapter 2

Electrical Impedance Tomography

2.1 Introduction

This chapter reviews uniqueness results for Electrical Impedance Tomography (EIT)

in the continuum context. EIT is an imaging method that determines the conductivity

of the body under investigation from electrical measurements at the boundary. This

technology is designed to reconstruct the image of the conductivity distributions

inside the body Ω by measurements of the currents and voltages in the external

of the body ∂Ω. During the last three decades much research has been conducted

in different aspects of EIT. Here we will focus on the uniqueness results. Readers

interested in medical applications may refer to books by Holder [28, 29]. Geophysical

applications and reconstruction techniques can be found in the notes written by Loke

[36] or paper [42].

2.2 Sobolev spaces

As usual we take the weak solution of the ∇ · γ∇u = 0 to be in the Sobolev space

H1(Ω). Here H1(Ω) is the set of distribution u in L2(Ω) with ∇u ∈ L2(Ω). The trace

theorem tells us there is an extension of the restriction operator u → u|∂Ω which is

24



bounded from H1(Ω) to H
1
2 (∂Ω), where Hs(∂Ω) is the subset of distribution f in

L2(∂Ω) with (1−∆)sf ∈ L2(∂Ω) where ∆ is the surface Laplacian on ∂Ω, for example

∆ = ∂2

∂θ2 on the disc. The D-N map Λγ is bounded from H
1
2 (∂Ω) to H− 1

2 (∂Ω). For a

detailed description of Sobolev Spaces refer to [24].

2.3 Calderón’s inverse problem

A body is represented by a domain Ω ⊆ Rn with conductivity γ : Ω → R+. An

electrical potential u(x) produces current given by the equation

j(x) = −γ(x)∇u, (2.1)

The continuum equivalent of Ohm’s law. Also with no interior current sources, we

have the following equivalent to Kirchhoff’s law in Ω

∇ · (γ(x)∇u) = 0. (2.2)

Now we formulate Calderón’s Inverse Problem as follows. Given f ∈ H
1
2 (∂Ω), u ∈

H1(Ω) solves the Dirichlet problem

Lγu = ∇ · (γ(x)∇u) = 0, (2.3)

u |∂Ω= f.

We then define

Λγ(f) = ν.γ∇u |∂Ω, (2.4)

where ν is the unit outer normal vector and Λγ is the Dirichlet-to-Neumann map

or voltage to current map [13]. Calderón posed the question :“Decide whether γ is

uniquely determined by Λγ, if so, calculate γ in terms of Λγ”. Calderón dealt with a

domain in Rn, n ≥ 2, with Lipschitz boundary ∂Ω. He assumed that γ is a bounded
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measurable function with a positive lower bound. The quadratic form associated with

Λγ is defined by

Qγ(f) = 〈f,Λγf〉 =

∫
Ω

γ |∇u|2 dx. (2.5)

Qγ(f) is the power required to obtain electrical potential u when a direct current

is applied. The bilinear form associated with Qγ(f) is obtained by the polarisation

identity:

Bγ(f, g) =
1

2
[Qγ(f + g)−Qγ(f)−Qγ(g)]

=
1

2

[∫
Ω

γ |∇(u+ v)|2 − γ |∇(u)|2 − γ |∇(v)|2
]
dx

=

∫
Ω

γ∇u · ∇v dx

where Lγ(v) = 0 in Ω and v |∂Ω= g ∈ H
1
2 (Ω). Knowing Λγ(f) is equivalent to

knowing Qγ(f) or Bγ(f, g). Calderón focused on the forward map φ : γ → Qγ and

was able to prove that it is bounded and analytic in the space from L∞(Ω) to bilinear

forms on H
1
2 where functions γ are real with a positive lower bound. He linearized

the problem and verified the injectivity of the Fréchet derivative of φ at γ = constant.

Calderón noticed that if the linear operator at dφ |γ=constant had a closed range then

φ is injective in a sufficiently small neighbourhood of γ = constant. But the range dφ

is not closed so he was unable to show the injectivity of φ. Finally, he used harmonic

functions to approximate the conductivity γ if γ = 1 + δ for sufficiently small δ in

L∞(Ω). His method was based on the construction of the low frequency oscillating

solutions [13].
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2.4 Determination of the conductivity of isotropic

medium

In 1984 Kohn and Vogelius [31] showed that the knowledge of Qγ or Λγ determines the

boundary values and the derivatives at the boundary values of smooth isotropic con-

ductivity γ followed by an extension of their result to a piece-wise real analytic [32].

They also studied the special case of a layered structure. They proved that the

conductivity can be identified by boundary measurements if it is three times differen-

tiable. In 1987 Sylvester and Uhlmann studied complex geometrical optics solutions

(CGO) of the Schrödinger equation with potential q [49, 50]. They proved the

uniqueness of solution for the inverse Schrödinger equation for a bounded and com-

pactly supported potential. As a consequence of this result they were able to prove

uniqueness of solution for the inverse conductivity problem for three dimensions by

reducing it to the inverse problem of the Schrödinger equation. They showed that the

conductivity can be determined uniquely if the boundary is C∞. Note that there is

an important relationship between the conductivity and Schrödinger equation given

by

γ−
1
2Lγ(γ

− 1
2 ) = ∇2 − q. (2.6)

where γ ∈ C2(Ω) is strictly positive [50, 52]. Global uniqueness in two dimensions

remained open until 1995 when Nachman had the first result towards global unique-

ness by considering the conductivities with two derivatives [39]. The challenge in two

dimensions is that the problem is not over-determined. This means all the informa-

tion in Λγ must be used to recover γ. However, for n ≥ 3 the large complex frequency

information is sufficient to maintain the global uniqueness. Sylvester and Uhlmann

proved a local uniqueness for two dimensions [49]. They considered conductivities

near γ0 = constant in W 3,∞(Ω). Global uniqueness has been justified for pairs of

conductivities in a dense open subset of W 3,∞
pos (Ω) ×W 3,∞

pos (Ω) by Sun and Uhlmann

[45]. Global uniqueness holds for the special cases of conductivities γ and γα which
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are harmonic for some α in R [50, 46] or γ radially symmetric in a disc with radius

R [48]. Now we state Nachman’s result for the isotropic conductivity in bounded

domain in R2,

Theorem 2.4.1. Let Ω be a bounded Lipschitz domain in R2. Let γ1 and γ2 be in

W 2,p(Ω) for some p > 1, and have positive lower bounds: if Λγ1 = Λγ2 then γ1 = γ2.

Astala and Päivärinta finally proved Calderón’s conjecture in two dimensions.

They considered the case of isotropic conductivity where Ω ⊂ R2 is bounded, a simply

connected domain and γi ∈ L∞(Ω), i = 1, 2 with an assumption of a positive number

c such that c−1 ≤ γi ≤ c. Under this assumption Λγ determines γ uniquely [7].

2.5 Non-uniqueness for an anisotropic conductiv-

ity

In practice many materials are anisotropic conductors. This means that measured

conductivity depends upon the direction as it passes through the material. Mathe-

matically this anisotropic conductivity is represented by a positive definite symmetric

matrix function γ = [γij]ni,j=1.

Therefore, the conductivity problem should be adjusted as follows: Let Ω ⊂ Rn be a

domain with smooth boundary ∂Ω.

Lγ(u) = ∇ · γ∇u =
n∑

i,j=1

∂

∂xi
(γij ∂

∂xj
u) = 0 in Ω, (2.7)

u|∂Ω = f,

where f ∈ H 1
2 (∂Ω).
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The Dirichlet-to-Neumann map will be written as:

Λγf =
n∑

i,j=1

(γij
∂u

∂xj
)νi|∂Ω, (2.8)

where ν = (νi)
n
i=1 is the unit outer normal to Ω. The weak formulation of the

Dirichlet-to-Neumann map associated with the conductivity problem is

Λγ : H
1
2 (∂Ω) → H− 1

2 (∂Ω)

given by

〈Λγf, η〉 =

∫
Ω

σ(x)∇u(x) · ∇φ(x)dx, (2.9)

for any f ,η ∈ H
1
2 (∂Ω), u,φ ∈ H1(Ω), φ|∂Ω = η and u are the weak solution of (2.7).

In the previous section it is clearly understood that the uniqueness of the isotopic

conductivity inverse problem is completely solved. However, the anisotropic conduc-

tivity in general cannot be determined by the Dirichlet-to-Neumann map Λγ.i.e. the

solution is non-unique. This was observed by Tartar [2] while a detailed derivation is

missing in the literature, therefore, a proof is given below.

Proposition 2.5.1. If Ψ : Ω → Ω is a C1 diffeomorphism such that Ψ(x) = x, for

each x ∈ ∂Ω, then γ and γ̂ = (DΨ)γ(Dγ)T

det(DΨ)
◦ Ψ−1 have the same Dirichlet-to-Neumann

map.

Proof. Let y = Ψ(x) and make change of variable in the Dirichlet integral

∫
Ω

γij(x)
∂u

∂xi

∂u

∂xj
dx =

∫
Ω

γ̂ij(y)
∂û

∂yi

∂û

∂yj
dy, (2.10)

where γ̂(y) = (DΨ)γ(Dγ)T

det(DΨ)
◦Ψ−1(y) and û(y) = u ◦Ψ−1(y), note that the solution u of

the Dirichlet problem

∇ · γ∇u = 0 in Ω,

u|∂Ω = f,
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minimizes the left hand side integral of (2.10), therefore û minimizes the right hand

side of the same. This means û is a solution of

∇ · γ̂∇û = 0 in Ω,

û|∂Ω = f̂ = u ◦Ψ−1.

Let v be a solution of

∇ · γ∇v = 0 in Ω,

v|∂Ω = g,

and let v̂ be obtained by v by the change of variable, therefore v̂ solves

∇ · γ̂∇v̂ = 0 in Ω,

v̂|∂Ω = ĝ = g ◦Ψ−1.

By the change of variables in the Dirichlet integrals we have

∫
Ω

γij(x)
∂u

∂xi

∂v

∂xj
dx =

∫
Ω

γ̂ij(y)
∂û

∂yi

∂v̂

∂yj
dy,

that can be written as

∫
Ω

γ∇u · ∇vdx =

∫
Ω

γ̂∇û · ∇v̂dy.

This is equivalent to

∫
Ω

∇ · (vγ∇u)dx−
∫

Ω

v∇ · (γ∇u)dx =

∫
Ω

∇ · (v̂γ̂∇u)dy −
∫

Ω

v̂∇ · (γ̂∇û)dy.

Apply the divergence theorem

∫
∂Ω

vγ∇u · νds =

∫
∂Ω

v̂γ̂∇û · νds,
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since v̂ = v ◦Ψ−1 = v = g and û = u ◦Ψ−1 = u = f at the boundary ∂Ω, then

∫
∂Ω

gΛγ(f)ds =

∫
∂Ω

gΛγ̂(f)ds.

Then Λγ = Λγ̂.

Definition 2.5.1. Given a diffeomorphism Φ we define the push forward

Φ∗γ = (DΦ)γ(Dγ)T

det(DΦ)
◦ Φ−1

2.6 Uniqueness up to-diffeomorphism in

two dimensions

Research on anisotropic conductivity in two dimensions is focused on uniqueness up

to-diffeomorphism. Sylvester showed in [47] that the anisotropic conductivity can be

reduced to isotropic in two dimensions using isothermal coordinates. This argument

together with Nachman’s previous result Theorem (2.4.1) [39] enabled him to prove

the following theorem

Theorem 2.6.1. Let Ω be a bounded domain in R2 with a C3 boundary, and let

γ1, γ2 be anisotropic C3 conductivities in Ω. If Λγ1 = Λγ2 , then there exists a C3

diffeomorphism Φ of Ω such that γ2 = Φ∗γ1 and Φ |∂Ω= I

Astala and Päivärinta examined [6] anisotropic conductivity as well. They were

able to show the uniqueness of the anisotropic conductivity up to diffeomorphism.

Moreover they studied the inverse problem in the half-space and in the exterior do-

main. As we have seen from Proposition (2.5.1)

ΛΦ∗γ = Λγ.

Therefore, the change of variable indicates that there is a large class of conductiv-

ities that result in the same electrical measurements at the boundary. Astala and

31



Päivärinta studied the opposite of this statement for two dimensions: if we have two

conductivities that have the same Dirichlet-to-Neumann map, then either of the con-

ductivities is a push forward of the other.

They considered the class of matrix functions γ = [γij] such that

[γij] ∈ L∞(Ω; R2×2), (2.11)

[γij]t = [γij],

The main theorem of Astala and Päivärinta on anisotropic conductivity states:

Theorem 2.6.2. Let Ω be a simply connected bounded domain in R2 and γ ∈

L∞(Ω; R2×2). Suppose that the assumptions 2.11 are valid . Then the Dirichlet-to-

Neumann map Λγ determines the equivalence class

Eγ = {γ1 ∈
∑

(Ω)|γ1 = F∗γ, F : Ω → Ω is W 1,2 -diffeomorphism and F |∂Ω = I},

where
∑

(Ω) = {γ ∈ L∞(Ω; R2×2) | C0 <∞}.

{C−1
0 I ≤ [γij] ≤ C0I},

where C0 > 0

As a consequence of Theorem (2.6.2) Astala and Päivärinta were able to solve the

uniqueness problem of the inverse problem in the half-space. This inverse problem

has great importance in geophysical prospecting, seismological imaging and non-

destructive testing. At least, in the case where a two dimensional approximation is

valid, as there is a diffeomorphism that maps the half space to the unit disc, the

previous result is applicable.
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2.7 Uniqueness of predetermined anisotropic con-

ductivity

Another way to recover the anisotropic conductivity is to assume that it is of a

predetermined type. In 1984 Kohn and Vogelius studied the case where the entries of

the conductivity matrix are known except one eigenvalue [31]. In 1990, Alessandrini

treated the case in which the conductivity γ has the form γ = A(a(x)). Where

A(a(x)) is a matrix function and a(x) is piece-wise real-analytic perturbation. He

used the monotonic assumption

DtA(t) ≥ CI,

where C > 0 is a constant [3]. In 1997, Lionheart showed that a piece-wise analytic

conductivity is determined up to a multiplicative scalar field [34]. Alessandrini and

Gaburro improved the result in 2001. They considered a conductivity of the type

γ(x) = A(x, a(x)),

where A(x, t) is given and satisfies the monotonicity condition with respect to the

parameter t

DtA(x, t) ≥ CI,

where C > 0 is constant [4]. Recently Gaburro and Lionheart extended the result to

manifolds [25]. Finally, Alessandrini and Gaburro considered the case where the local

Dirichlet-to-Neumann map is prescribed on an open portion of the boundary [5].

2.8 Geometric formulation

Anisotropic electrical conductivity problems can be considered in differential geo-

metric context. This approach is well-known for those familiar with the work by
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Lee and Uhlmann [33], Silvester [47], Astala and Päivärinta [7] and Lionheart [34].

Instead of dealing with electric field and current density as a vector field in Carte-

sian coordinates we treat them to be differential forms. The vector space of forms

consists of functions, zero forms, and one-forms, two-forms, etc, up to n-forms. In

two dimensions we have zero forms, functions, and one-forms which can be written

as α =
∑n

i=1 aidx
i where ai are functions and the coordinates are xi. In differential

forms Ohm’s law is given by

i(x) = σ(x)du(x). (2.12)

It is clear from Ohm’s law in two dimensions the voltage u(x) is a zero form, the

current density is one-form. The total current passing through the surface is the

integration of i(x) over the surface. The conductivity σ is a mapping from one-form

du to one-form i(x). Then σ(x) is positive definite and symmetric which means in

differential forms:

σα ∧ β = σβ ∧ α, (2.13)

σα ∧ α = φ(x)dx1 ∧ dx2, (2.14)

where α(x) 6= 0 and φ(x) > 0. If there is no source of internal current the current

density is a closed form i.e

−d(σdu) = 0. (2.15)

A discrete analogy of the continuum conductivity in forms will be discussed later in

this thesis Section (3.4).
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Chapter 3

Electrical Resistor Networks

3.1 Introduction

In this chapter we review previously known results on inverse problems for resistor

networks. Electrical resistor networks are a discrete analogue of the continuous case of

inverse conductivity problem introduced by E. Curtis and J. Morrow. As well as being

of interest as a discrete analogue of the continuum problem, resistor networks are also

used to test EIT measurement systems [26]. First the definitions of graph, resistor

networks and an example is given. Second, some fundamental electrical principles are

discussed including the maximum principle for the discrete resistor networks. Then,

matrix theory related to resistor networks represented by planer graph is explained.

Next, harmonic continuation process in resistor networks is introduced since it is an

important procedure for determining the conductivity from boundary measurements

in resistor networks. Medial graph for circular planar resistor network is constructed

as it plays a role in characterizing the circular planar resistor networks. Some useful

definitions and results about well-connected graphs are also presented. Finally, we

discuss the resistor networks with the same topology as finite element mesh.
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Figure 3.1: Graph of five nodes.

3.2 Resistor networks

A graph G is an ordered pair (V,E) where V is the set of all nodes (vertices) and E

is the set of unordered pairs {u, v} [8, 9]. The elements of the set E are called edges.

Figure (3.1) is an example of a graph with five nodes and seven edges.

The set of nodes are: V = {v1, v2, v3, v4, v5} while the set of edges are:

E = {{v1, v2}, {v1, v5}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v4, v5}}.

The graph is simple if it has no loops and no two edges that share the same pair of

nodes. From the graph G = (V,E) we define a digraph G = (V,E) by choosing an

orientation. Therefore, digraph is an ordered pair (V,E) where V is a finite set of

nodes and E ⊂ V × V is the set of ordered pairs (u, v) i.e. E is a binary relation on

V . The elements of V are called vertices or nodes and the elements of E are arcs. An

oriented graph is a digraph where the relation E is antisymmetric. Before we define

an immersion, note that V is an abstract finite set, essentially just labels.

Definition 3.2.1. A graphG is immersed in the plane if there is a map (immersion)f :

G→ R2 such that:

1. The vertices of G are mapped to distinct points in R2.

2. The edges of the graph are mapped to simple curves joining the nodes.

Definition 3.2.2. An embedding of a graph in the plane is an immersion such that

two edges may intersect only at the end points.
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Definition 3.2.3. Any graph embedded in a two dimensional plane is called a planar

graph.

A network of resistors (V,E, γ) is defined by a simple graph (V,E) and a function

γ : E → R+ which represents the conductance.

This is a model for a collection of resistors with resistance 1
γ(e)

. Here, V represents

the set of nodes while E represents the set of conductors. Now, we will construct two

specific types of resistor networks: circular networks and rectangular networks.

Each resistor networkG has interior nodes denoted by V0 and boundary nodes denoted

by Vb. The boundary nodes of a network of resistors varies from one network to

another. Therefore, we will define the boundary nodes for every considered network.

The interior nodes in any network of resistors are simply V \ Vb. Each node in the

network of resistors has neighbours i.e. when there is an edge that connects the pair.

The set of all neighbours of the node p will be denoted by N(p). The edge that

connects an interior node to a boundary node is called a boundary edge.

A circular resistor network is a planar graph embedded in a disc D in the plane such

that the boundary nodes Vb lie on the outer circle and the rest of the nodes are inside

the disc [14]. E. Curtis and J. Morrow studied special types of embedded circular

networks that are constructed as follows : Let G = (V,E) = C(m,n) where m is the

number of circles and n the number of rays. The nodes are the points p(i,j) in the plane

centred at the origin p0 = (0, 0) where p(i,j) has the coordinates expressed in polar

coordinates by p(i,j) = (i, πj
n

). The nodes are labelled cyclically and the boundary

nodes are given by pj = (m+ 1, j) where 1 ≤ j ≤ n. Note that the central node has

n neighbouring nodes while the other interior nodes have only four neighbours and

the boundary nodes have exactly one neighbour.

An example of circular network of resistors is shown in Figure (3.2).
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Figure 3.2: Circular network of resistors.

Figure 3.3: Rectangular network of resistors.

Now we will construct a rectangular embedded network of resistors. The nodes of

the network of resistors lie at the lattice points given by pi,j = (i, j) where 0 ≤ i ≤ m+

1 and 0 ≤ j ≤ n+1 with the four corner points (0, 0), (m+1, 0), (m+1, n+1), (0, n+1)

omitted. The interior points in the rectangular networks have four neighbouring nodes

while the boundary nodes have only one neighbour [18]. Figure (3.3) is an example

of rectangular network resistors. In this thesis we deal with another type of circular

networks. Our resistor network has the same topology as a finite element triangular

mesh that is simply a mesh with triangular faces.

An example of our circular resistor network is shown in Figure (3.4).
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Figure 3.4: Triangulated network of resistors.

3.3 Electrical principles

Let Γ = (V, Vb, E, γ) be a network of resistors with conductivity function γ where

γ : E → R+ and γ(pq) is the conductance through the arc (p, q) and Vb ⊂ V is the

set of all boundary nodes of Γ. If u : V → R is a function defined in the nodes of

the network Γ then the current passing through the conductance γ(pq) is defined by

Ohm’s law:

I(p, q) = γ(pq)[u(p)− u(q)]. (3.1)

If p is an interior node with neighbours q ∈ N(p) then according to Kirchhoff’s law

the currents that enter the node p are equal to the algebraic sum of the currents

leaving the node p. That is:

(Lγu)(p) =
∑

q∈N(p)

γ(pq)[u(p)− u(q)]. (3.2)

Note that the algebraic sum of the currents over the whole network is zero. That is

∑
p∈V

Lγ(p) = 0. (3.3)
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u is said to be γ-harmonic if Lγ(p) = 0 at every interior node p ∈ V0 .

Thus Eq. (3.2) becomes

∑
q∈N(p)

γ(pq)[u(p)− u(q)] = 0. (3.4)

and the sum of the currents over the boundary nodes will be zero. That is:

∑
p∈Vb

Lγ(p) = 0. (3.5)

If u is γ-harmonic then Eq.( 3.4) can be written by

 ∑
q∈N(p)

γ(pq)

u(p) =
∑

q∈N(p)

γ(pq)u(q), (3.6)

or

u(p) =

∑
q∈N(p) γ(pq)u(q)∑

q∈N(p) γ(pq)
. (3.7)

Since, assuming that the conductances γ(pq) are positive real numbers, Eq.( 3.7)

imply that the value of u(p) is a weighted average of the values at the neighbouring

nodes. Now if the value of u at some neighbouring nodes is less than u(p) then the

value of u must be more than the value of u(p) at some other neighboring nodes [16].

This proves the following lemma:

Lemma 3.3.1. Suppose u is a γ-harmonic function on Γ, and let p be an interior

node. Then either u(p) = u(q) for all nodes q ∈ N(p) or there is at least one node

q ∈ N(p) for which u(p) > u(q) and there is at least one node r ∈ N(p) for which

u(p) < u(r).

The importance of the previous lemma is that it leads to any γ-harmonic function

attaining its extremum at the boundary in the network of resistors.

Theorem 3.3.1. Let u be a γ-harmonic function on V then the maximum and

minimum values of u occur on the boundary.
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Proof. Suppose on the contrary that the maximum value occurs at p0 ∈ V0, such

that u(p0) > u(q) for every q ∈ Vb. Let {p0, ..., pn} be a sequence of nodes in

V such that pjpj+1 is an edge in E and pn ∈ Vb. Then let j be the first index

for which u(pj) < u(p0). This means that u(pj−1) = u(p0) ≥ u(q) for all q ∈

N(pj−1) and u(pj−1) > u(pj). This contradicts Lemma (3.3.1) same arguments for

the minimum.

As a consequence of the maximum principle for the network of resistors any γ-

harmonic function that is zero at every node in the boundary, is identically zero at

all nodes [18].

3.4 Discrete geometric formulation

In this section we derive a discrete analogue of continuum conductivity in differential

forms discussed earlier in Section (2.8). This is a discrete version of exterior derivative.

Definition 3.4.1. Let φ : V → R be a 0-cochain C0(G) and ψ : E → R+ be

1-cochain C1(G)

The co-differential d : C0(G) → C1(G) is :

dφ(ij) = φ(j)− φ(i). (3.8)

The boundary operator ∂ : C1(G) → C0(G) is:

(∂j)(i) =
∑

j:(i,j)∈E

J(e). (3.9)

γ is a diagonal linear map C1(G) → C1(G)

41



we define Lγ to agree with Eq. (3.2) as

Lγ = ∂γd. (3.10)

3.5 Response and Kirchhoff matrix

If a voltage function f is applied at the boundary of a resistor network then a current

will pass through the conductances γij of the network. If the network has n nodes

then the voltage to current function will be represented by n × n matrix called a

response matrix. The response matrix has three properties:

1. Λ is symmetric:

Λij = Λji.

2. The sum of entries in each row is equal to zero

3. For i 6= j, Λij ≤ 0

Let Γ = (Ω, γ) is a network of resistors consisting of n nodes {v1, v2, ..., vn} and γij are

the conductances on the edges of the network. Note that if there is no edge between

vi and vj then γij = 0 and if there is an edge between vi and vj then γij > 0. The

Kirchhoff matrix is defined as follows:

1. If i 6= j then ki,j = −γij.

2. If i = j then ki,j =
∑

i6=j γij.

If u is a voltage whose components are (uj) = (u(vj)) then φ(vi) =
∑

j Ki,juj is the

current passing through the node vi in the network [18, 14].
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Figure 3.5: Square network of resistors.

3.6 Harmonic continuation

Kirchhoff’s law is useful to construct a γ-harmonic function with a pre-assigned

boundary condition at some nodes in the network and the current is also known

for some of the nodes. Let u be a γ-harmonic function and consider a rectangular

network similar to the one shown in Figure (3.5). Recall Kirchhoff’s law written in

the form  ∑
q∈N(p)

γ(pq)

u(p) =
∑

q∈N(p)

γ(pq)u(q). (3.11)

Note that the above equation is a five point formula. That is, when the values of

u(q2), u(q3), u(q4), u(p) are known u(q1) can be determined provided that the con-

ductances are known. Moreover, if the current passing through q3p is known, to-

gether with the values of u(q2), u(q3), u(q4), then u(p) and u(q1) can be calculated

by using Ohm’s law and Kirchhoff’s law. A similar idea can be used if we replace

u(q2), u(q3), u(q4) by the South (S), West (W ) and North (N) respectively. If the val-

ues of the γ-harmonic function are known in the (W ), (S) and (N) and a current is

applied in the west (W ) then we can construct the γ-harmonic function in the interior

of the network and in the East (E). This process is called harmonic continuation.

Example 3.6.1. Let the conductors in Figure (3.5) have the value 1, and assume the

γ-harmonic function u has the boundary values 0 for all nodes in South, West and

north faces and the current imposed in the West face is given by φ(0, j) = (−1)j for

1 ≤ j ≤ 3. The γ-harmonic function with these boundary values can be constructed

as follows: first we use Omh’s law in the horizontal conductors joining Y0 and Y1 to
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find the values of the γ-harmonic values in Y1

u(0, 1)− u(1, 1) = φ(1) = −1 ⇒ u(1, 1) = 1

u(0, 2)− u(1, 2) = φ(2) = 1 ⇒ u(1, 2) = −1

u(0, 3)− u(1, 3) = φ(3) = −1 ⇒ u(1, 3) = 1

Since we assume all the conductors have the same value 1 Kirchhoff’s law will be

4u(p) =
∑

q∈N(p)

u(q).

Now we use Kirchhoff’s law in the nodes of Y1 to obtain the values of the γ-harmonic

function in Y2

4u(1, 1) = u(1, 0) + u(0, 1) + u(1, 2) + u(2, 1) ⇒ u(2, 1) = 5

4u(1, 2) = u(1, 1) + u(0, 2) + u(1, 3) + u(2, 2) ⇒ u(2, 2) = −6

4u(1, 3) = u(1, 2) + u(0, 3) + u(1, 4) + u(2, 3) ⇒ u(2, 3) = 5

Similarly, apply Kirchhoff’s law on the nodes of Y2 to get the values in Y3

4u(2, 1) = u(2, 0) + u(1, 1) + u(2, 2) + u(3, 1) ⇒ u(3, 1) = 25

4u(2, 2) = u(2, 1) + u(1, 2) + u(2, 3) + u(3, 2) ⇒ u(3, 2) = −33

4u(2, 3) = u(2, 2) + u(1, 3) + u(2, 4) + u(3, 3) ⇒ u(3, 3) = 25

By applying the harmonic continuation process one may extend a γ-harmonic

function on a larger set. Consider the network of resistors in Figure (3.6). Let Ci

represent the nodes lying on the vertical line x = i. The vertical lines in Ω0 are

numbered from left to right as C0, ..., Cn. Take the set S ⊂ Ω0 which consist of the

columns C0, ..., Ck.

Lemma 3.6.1. Let u be a γ-harmonic function defined in the set S then u can be
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Figure 3.6: Harmonic continuation extension.

extended to be γ-harmonic function on the set S
⋃
{Ck+1}. The definition of u is

uniquely determined on the interior nodes of Ck+1 and can be given arbitrary values

at the end of column Ck+1.

Proof. The assumed harmonicity of u at any of the nodes in columns {C0, ..., Ck−1}

will not be affected by the definition of u on the nodes of column Ck+1.

Apply Kirchhoff’s law in the node p in column Ck and you get

 ∑
q∈N(p)

γ(pq)

u(p) =
∑

q∈N(p)

γ(pq)u(q).

u(q4) is determined by the values of u(q1), u(q2), u(q3), u(p). Similarly, all the interior

nodes of Ck+1 will be calculated. The value of u at the end nodes will be assigned

arbitrarily.

In the continuous case, if a harmonic function is constant in an open domain then

it will be identically constant in the whole domain. The next lemma will show this

is not the case in the discrete harmonic functions. The γ-harmonic function can be

locally constant.

Lemma 3.6.2. Let (Ω0,Ω1, γ) be a network of resistors. Suppose a function u is

defined to be constant on the nodes of columns C1, ..., Ck. Then u can be continued

as γ-harmonic function where u is constant on or below the diagonal indicated by
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Figure 3.7: γ-harmonic continuation.

the dotted line in Figure (3.7). The values of u at the boundary nodes at the tops of

columns {Ck+1, ..., Cn} are arbitrary [16].

Proof. Immediate from previous lemma.

3.7 Uniqueness for rectangular resistor network

In [16] E. Curtis and J. Morrow studied the rectangular network of resistors. They

introduced the γ-harmonic and the process of harmonic continuation explained in the

previous section. Using this process they proved global uniqueness and continuity

of Λγ. Moreover, they obtained a reconstruction procedure to recover γ from the

Neumann to Dirichlet map Λγ on the boundary. They also characterized the Dirichlet

to Neumann map for square networks of resistors and they provided a reconstruction

algorithm to determine the conductivity γ from Dirichlet to Neumann map on the

boundary [17].
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Figure 3.8: Y −∆ transformation.

3.8 Uniqueness of circular resistor network

E. Curtis, D. Ingerman and J. Morrow dealt with circular graphs and circular planar

resistor networks in [14]. They introduced the concept of k-connection between se-

quences of boundary nodes through a circular planar graph that is if P = (p1, ..., pk)

and Q = (q1, ..., qk) are two sequences of boundary nodes then there is a set of dis-

joint paths pi ↔ qi. They even calculated the possible number of pairs of sequences

connected through the circular planar graph. Also they defined the critical circu-

lar planar graphs and showed that any two critical circular planar graphs are Y -∆

equivalent if, and only if, they have the same connections. The Y -∆ transformation

is a well-known electrical transformation which does not affect the response of the

network. This transformation is shown in Figure (3.8). Readers interested in detailed

discussion of Y -∆ transformation may refer to [18, 20]. Using the concept of medial

graph that will be discussed in detail in the next section, they proved that two cir-

cular graphs are Y -∆ if, and only if, their medial graphs are equivalent. Moreover,

they gave a reconstruction algorithm of the conductivity on a circular planar network

of resistors from a voltage to current map measurements on the boundary. Finally,

they described the set of network response matrices that happen for circular planar

networks. In another work, E. Curtis, E. Mooers and J. Morrow [15] character-

ized the boundary measurements data that resulted from circular networks. Also, an

algorithm for determining the values of the conductors from Dirichlet to Neumann

map on the boundary was given for special types of circular planar resistor networks.
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Moreover, they obtained some numerical reconstruction results of the values of the

conductors from boundary measurements.

3.9 Medial graphs

Medial graphs, described by Colin de Verdière [20] are an important tool in under-

standing resistor networks. Consider networks of resistors with circular planar graphs

G that are embedded in a disc D in the plane such that the boundary nodes lie on a

circle C that bounds D and the rest of the nodes are inside the circle. As in [14, 15]

the boundary nodes Vb = {v1, ..., vn} are arranged in clockwise circular order around

C. The medial graph is constructed as follows:

1. For each vi lying on the circle C place one point vi− before vi and vi+ after vi

2. Put a 4-valent vertex on each edge with two medial graph edges on each side

of the original edge in the mid point me

3. The vertices of the medial graph M are the points vi− , vi+ and me.

4. Moving in an anti-clockwise direction along the circle C join the vertex vi− to

the mid point of the edge incident to vi then moving in clockwise direction along

the circle C join the vertex vi+ to the mid point of the edge incident vi.

5. If e and f are edges in G having a common vertex and incident to the same

face in G then the line memf joining the mid points me and mf is an edge of

M . Figure (3.9) illustrates a medial graph of a circular planar resistor network

with a topology similar to finite element mesh.

The vertices of the medial graph me inside D are 4-valent while the vertices of the

medial graph that lie along C are one-valent. Any 4-valent vertex v of M an edge

uv has a direct extension vw. A path u0u1, ..., uk in M is called a geodesic fragment
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Figure 3.9: Medial graph from a triangular mesh.

if each edge ui−1ui has a direct extension uiui+1. A geodesic is a geodesic fragment

which satisfies one of the following conditions:

1. u0 and uk are points on the circle C.

2. uk = u0 and uk−1uk has a direct extension u0u1.

A chord is an arc which starts and ends on the boundary circle C and has no self

intersection.

Colin de Verdière [20] made the following definition of taut ( “tendu” in French).

Definition 3.9.1. A medial graph M is a taut if it has no cycles and if any two

chords have at most one intersection point.

Taut graphs are useful in light of the following:

Proposition 3.9.1. Two graphs are equivalent taut if and only if their chords have

the same end points. One can be obtained from the other by Y -∆ transformation.
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Figure 3.10: Medial graph of three layered triangulated network.

A circular planar graph with triangular faces is called triangular mesh. For the

special case of a layered triangular mesh with no more then two inward pointing

triangles for one outward pointing triangle we prove the following:

Proposition 3.9.2. A layered triangulated mesh is a taut graph.

Proof. In a medial graph of layered triangulated mesh the arc of that crosses another

arc on an edge of non-spoke triangle will not meet this arc again because their direct

extensions are in opposite directions. Also an arc which crosses another arc on a spoke

triangle will not meet the same arc again as one arc has a direct extension moving

upwards to next layer, while the other with direct extension is moving downwards in

the opposite direction. Hence, in any case the arcs cross each other at most once.

Figure (3.10), Figure(3.11), Figure (3.12) and Figure (3.13) are taut graph of

triangulated circular planar networks.
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Figure 3.11: Medial graph of two layered triangulated network.

Figure 3.12: Medial graph of four layered triangulated network.
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Figure 3.13: Medial graph of a four layered triangulated network.

3.10 Well-connected circular planar resistor net-

work

Consider networks of resistors with circular planar graph G that is embedded in a disc

D in the plane such that the boundary nodes lie on circle C that bounds D and the

rest of the nodes inside the circle. As in [14, 15] the boundary nodes Vb = {v1, ..., vn}

are arranged in clockwise or anticlockwise circular order around C. Let a pair of

sequences (P ;Q) to be subset of Vb such that P = {p1, ..., pk} and Q = {q1, ..., qk}

belong to disjoint arcs. The pair is circular if the nodes {p1, ..., pk, qk, ..., q1} are in

circular order in Vb. A circular pair (P ;Q) is called connected through G if there are

k disjoint paths {α1, ..., αk} in G such that for each i we have a path αi starting with

pi ending with qi passing through non boundary nodes other then pi and qi. Let π(G)

be the set of all connected circular pairs, then the graph is said to be well-connected

if all circular pairs are in π(G). Consider a graph G
′
obtained from G by removing
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one edge by deleting or contracting. The network G is said to be critical if removal

of an edge breaks some connection in π(G). Colin de Verdière in [20] characterized

the minimal planar resistor networks using the medial graph as a tool. He proved the

following theorem which gives the necessary condition for planar resistor network to

be well-connected i.e γ can be determined from Λγ. Let ε(G) be the number of edges

in the planar resistor network and nvb
be the number of boundary nodes.

Theorem 3.10.1. The well-connected planar resistor network from a connected com-

ponent of ζ must satisfy the property ε(G) =
nvb

(nvb
−1)

2
. If ε(G) <

nvb
(nvb

−1)

2
then the

planar resistor network is not well-connected.

If a planar resistor network is not well-connected then we have over determined

network of resistors because the number of data is more than the number of un-

knowns. We are interested in planar resistor networks that have the same topology

as triangulated mesh. Triangular meshes suitable as FEM meshes for the conduc-

tivity equation generally have smaller triangles near the boundary, where current

densities are high. Such meshes generally correspond to resistor networks that are

over determined. As an example we show that this is the case assuming the sides

of the triangles are no smaller than 2π
nvb

and the angles are bounded away from π
2
.

Figure (3.14) shows an example of circular planar resistor network associated with

triangulated mesh. The number of triangles nt <
π
A

where A is the minimum area of

the triangles and A > αl2 for some 0 < α < 1 . So we have

nt <
π

αl2
=

n2
vb

4απ
⇒ 4απnt < n2

vb
.

Also we know

nt =
2ne − nvb

3
.

Hence

4απ(
2ne − nvb

3
) < n2

vb
⇒ 2

3
απ(2ne − nvb

) <
1

2
n2

vb
,
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Figure 3.14: Triangulated mesh.

Therefore we have

4απ

3
ne <

1

2
nvb

(nvb
+

4

3
απ) <

1

2
nvb

(nvb
− 1).

This means

ne < (
3

4απ
)
1

2
nvb

(nvb
− 1).

Choose α = 3
2π

ne <
1

2
nvb

(nvb
− 1).

So we conclude that a circular planar resistor networks associated with a layered

finite element mesh is over determined.
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3.11 Simplicial complex

In this section we will develop abstract complexes that are useful in the discussion of

necessary and sufficient consistency condition that will follow later in Section (5.10).

Moreover, an embedded conductive simplicial complex gives rise to a system matrix

equivalent to the Ohm-Kirchhoff matrix. This correspondence will be discussed in

Subsection (4.2.4).

Definition 3.11.1. Consider a non oriented abstract simplicial complexK = (V,E, T )

in two dimensions where V is set of vertices, E is the set of edges and T is the set of

faces. The graph G = (V,E) is called one-skeleton

Definition 3.11.2. Consider an oriented abstract simplicial complex K = (V,E, T )

in two dimensions where V is the set of vertices, E is the set of arcs with arbitrary

direction and T is the set of faces. The digraph (V,E) is directed one-skeleton.

Definition 3.11.3. Consider a conductive abstract simplicial complex (K, γ) where

γ is a quadratic form defined on arcs. Let the map ω : E → R+ be a one-cochain

which represents the current in each arc then

γ(ω) =
∑
e∈E

γ(e)ω(e). (3.12)

Let the voltage u be the 0-cochain, then the power anticipated in the conductive

abstract simplicial complex is given by

Qγ(u) =
∑

(v1,v2)∈E

γ(v1,v2)(u(v2)− u(v1))
2. (3.13)

Define the Dirichlet problem:

minimise

Qγ(u), (3.14)
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subject to

u|Vb
= f,

for which the minimum is the Ohm’s-Kirchhoff’s solution.

Definition 3.11.4. A conductive simplicial complex has embedding if there is a map

φ : K → R2 that maps V to points, E to line segments and T to triangles.

An embedded conductive simplicial complex is equivalent to a FEM as we shall

see in the next chapter.
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Chapter 4

Finite Element Models

4.1 Introduction

Most methods for image reconstruction of the conductivity distribution inside a body

by boundary measurements need a solution of the forward problem for assumed con-

ductivity to compare the predicated voltages with the measured data. Also the

interior electric field E = −∇u is required to calculate the Jacobian. Analytical

methods can solve the forward problem only in a limited, simple geometry, and ho-

mogeneous or simple conductivity distributions. In dimension two irregular bodies

can be handled to some extent using conformal mapping techniques although this

can be difficult. This makes analytical methods useful to determine approximation

of the potential from an initial guess of the conductivity. After the approximation

of the conductivity it is essential to use numerical techniques. Numerical methods

for general geometry and inhomogeneous conductivity need the discretization of both

the body and the conductivity. There are various numerical methods used in EIT for

forward solution such as the Finite Element Method (FEM) [51], the Finite Differ-

ence Method (FDM) [41], the Finite Volume Method (FVM) [22] and the Boundary

Element method (BEM) [19]. The Finite Element Method decomposes the domain

into irregular elements (triangular or quadrilaterals) for dimension two and polyhedra
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(tetrahedra, prisms or hexahedra) for dimension three. Basis functions interpolate

between specified nodal values to approximate the potential. On each element the

potential is represented by a polynomial and the resulting approximation space is

piece-wise polynomial. There are two advantages of the Finite Element Method: ir-

regular bodies can be accurately approximated by irregular elements and the size of

the elements may vary to have a better approximation to the electrical field. The

Finite Difference Method and the Finite Volume Method are very similar to FEM.

The potential is approximated by its values at the nodes of a regular rectangular

elements. These methods have the advantage that their regular grids are easily gen-

erated. Also, their implementation is fairly easy and the result is easy to display.

Another advantage is that more efficient solvers can be used to accurately represent

curved boundaries or smooth interior structures. The Boundary Element Method

discretizes the surface of the body and an analytic Green’s function is used within en-

closed homogeneous volumes. In forward modeling of EIT boundary element method

is used with piece-wise constant homogeneous conductivity on a smooth boundary.

This method has an advantage of dealing with unbounded domains. Those working

on EIT reconstruction typically prefer to use FEM due to the close integration of the

Jacobian calculation and the FEM forward problem [11]. Moreover, the Complete

Electrode Model (CEM) is a non-standard type of boundary condition not included

in commercial FEM software implementation. So implementation of FEM specific to

EIT are used in [54]

4.2 Finite element formulation

4.2.1 Approximation space

The starting point in constructing the approximation space of the domain Ω is to

divide the domain into a finite number of irregular elements called simplices. Usually

the simplex in two dimensions is a triangle and in three dimensions is tetrahedron.
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Each element involves a number of nodes that include the vertices of the element

and possibly a point in the interior or boundary point. The division of the domain

into elements must be consistent. That is, if a node belongs to two faces it must

be a node in both elements, also no coincident faces are parallel. The union of the

elements is called the finite element mesh. In the case of a simplicial mesh in two

dimensions consisting from a set of triangular elements {Tk}, the union
⋃

k Tk is an

approximation to the domain Ω.

4.2.2 Approximation of the potential

We also need to approximate the potential function u. On each triangular element

consider a nodal basis functions φi(x) to be a piece-wise linear function such that

φ(xi) = 1 and φ(xj) = 0, j 6= i. Then the approximation of the potential will be:

u(x) =
∑

i

uiφi(x). (4.1)

4.2.3 The system matrix

The finite element equivalent to the operator Λγ defined earlier, is called the system

matrix. Assign a positive definite matrix σk to each simplex Tk. The finite element

system matrix K ∈ Rnv×nv where nv is the number of nodes in a simplicial mesh is

defined by

Kij =
∑

k:{xi,xj}⊂Tk

∇φi · σk∇φj|Tk|, (4.2)

where |Tk| is the area of the triangular element. Note that ∇φi is constant on Tk.

Now, we will derive the cotangent formula referring to Figure (4.1).

L1 =| x3 − x2 |,

∇N1 =
(x2 − x3)

⊥

(x1 − x2) · (x2 − x3)⊥
,
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∇N2 =
(x3 − x1)

⊥

(x2 − x3) · (x3 − x1)⊥
,

∇N1 · ∇N2 =
(x2 − x3)

⊥ · (x3 − x1)
⊥

(x1 − x2) · (x2 − x3)⊥ · (x2 − x3) · (x3 − x1)⊥

=
(x2 − x3) · (x3 − x1)

(x1 − x2) · (x2 − x3)⊥ · (x2 − x3) · (x3 − x1)⊥

=
L1L2 cos θ3

L3L1 sin θ2L1L2 sin θ3

=
cot θ3

L1L3 sin θ2

=
cot θ3

2|Tk|
,

so we have local system matrix:

k12 = σ∇N1 · ∇N2 · |Tk|

=
σ

2
cot θ3.

Note kij = kji, kij = 0 for any nodes i, j not sharing an edge and kii = −
∑

i6=j kij.

Now consider a boundary current density

J = σ∇u · ν, (4.3)

where ν is an outer normal.

Define the current vector I ∈ Rnv by

Ii =

∫
∂Ω

Jφidx. (4.4)

The finite element system will be

Ku = I. (4.5)

An extra condition is needed to have uniqueness because the voltage is only deter-

mined up to an additive constant. For a chosen vertex ig we can force uig = 0 by
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Figure 4.1: Cotangent formula.

deleting the ig row and column from the system [35].

4.2.4 Correspondence of Ohm-Kirchhoff matrix and FEM

system matrix

Consider an embedded simplicial complex Ω(V,E, T ) associated with FEM triangular

mesh, where V is the set of vertices, E is the set of all edges and T is the set of all

triangles. Let the angle in the triangle (i, j, k) and opposite to the edge (i, j) be

denoted by α
(i,j,k)
(i,j) . Define J : RE → R, φ : RV → R and γ : RE → R+. Then, Ohm’s

law is given by:

J(i, j) = γ(i,j)(φ(j)− φ(i)), (4.6)

where (i, j) ∈ E. For each interior node i ∈ V0 we have Kirchhoff’s law

∑
i∈e∈E

J(e) = 0. (4.7)
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Figure 4.2: Assembled triangles in a mesh.

Finite element models with piece-wise linear basis functions and a piece-wise constant

conductivity produce a system matrix equivalent to the Ohm-Kirchhoff matrix for

resistor networks. The construction of a resistor network that is equivalent to the

finite element model is summarized as follows:

1. Consider a triangle with angles numbered such that α
(i,j,k)
(i,j) is the opposite to

the edge (i, j)

2. The conductance on each side (i, j) is given by σ(i,j,k) cotα
(i,j,k)
(i,j) .

3. If the triangles are assembled into a mesh the conductances are added in parallel

for the coincide edges from adjacent triangles and the conductance on edges is

given by

kij =
1

2
(σ(i,j,k) cotα

(i,j,k)
(i,j) + σ(i,j,k∗) cotα

(i,j,k∗)
(i,j) ). (4.8)

Figure (4.2) shows two assembled triangles in resistor networks.
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4.2.5 Prior knowledge of conductivity

Some finite elements models in EIT assume the conductivity to be piece-wise constant

on elements. However, it is more accurate to approximate the conductivity distribu-

tion of a body as a piece-wise constant by assuming that each organ is homogeneous.

It is impossible to have the boundary of the organ lying on the boundary of the ele-

ments, unless we have prior knowledge of the shape and position of the organ. Since

this information is not available, it is required to add the position of the elements as

a free variable to be fitted to the observed measurements.

4.3 Mesh generation

Mesh generation is an important research area that has several challenges. The

predicted measured voltage as a function of conductivity needs a fine enough mesh

to approximate the potential with sufficient accuracy. This should include the shape

of the surface of the body under investigation, and the geometry of the electrodes.

The regular meshes on rectangular surfaces are fairly easy to generate. However, for

circular domains meshing has few difficulties. Since the electrical field varies with the

used current pattern, the mesh should be suitable for all current patterns.

The mesh generator requires structural information to approximate the geometry

of the domain to be meshed and the external boundary shape. Also, the internal

structures and the contact area of the electrodes should be known. Several generator

programs are available and a simple one is rmesh [53]. The rmesh program generates

a triangular mesh for a circular domain. The number of nodes ni in the circle with

radius ri and a decreasing order sequence of radii will be the input of the program.

The number of nodes must satisfy the condition k(ni − ni+1) = ni for some integer

k. The number of triangles will be decreased in a successive annuli. The maximum

radius of the elements affects the accuracy of the finite elements approximation.

It is important to be able to refine an existing finite element. This will help to
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verify the experimental stability of the approximation of both forward modeling and

inverse problem solution. Moreover, representing the conductivity on a coarser mesh

than the potential, will require a finer mesh. A mesh refinement program divides

each triangular element into four smaller triangles similar to the ordinal one. This

guarantees that the radii of the elements will decrease uniformly with the increasing

number of elements. Finally, we point out that the standard results for FEM [44]

require that the ratio of the circumscribing circle of the triangular element to the

inscribing circle is bounded away from zero as the size of the triangle tends to zero.

That is, for an isotropic medium without a prior knowledge of the field strengths,

triangles close to equilateral are the best while those with high aspect ratio are the

worst.
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Chapter 5

Survey Problem

5.1 Introduction

Studying the planar case of resistor networks associated with an isotropic conductiv-

ity turns out to be a construction of triangulation with a knowledge of angles and

position of two nodes as we will show in this chapter. This requires us to look in the

literature for similar work. We find that it had been considered by several people.

Triangulation is an old problem initiated by the Dutch geographer G. Frisius. Next,

the famous Danish astronomer T. Brache (1546− 1601) who set the basis of the map

of the kingdom of Denmark, borrowed his triangulation idea from Frisius’s scientific

work. Then, Snellius used the triangulation to invent the famous meridian chain. We

summarize the triangulation work done by these authors for more details we refer

to [27]. Then we go on to the work that has been done in Computer Geometric

Design. We then illustrate the sine rule consistency condition. Moreover, we will

show the necessary and sufficient consistency condition that needs to be satisfied.

Finally, a constructive algorithm is needed, to determine the position of the nodes in

the triangulation where we know one edge and the angles of the finite element mesh.
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5.2 Description of Frisius’s triangulation

G. Frisius who lived between 1508 and 1555 defined the magnetic bearings and in-

vented the principles of triangulation. The measurements of the bearings of the whole

province, including the surrounding town and villages, needs an instrument. The in-

strument consists of a circle that is divided into four quadrants. Each quadrant is

decomposed to 90◦. The centre of the circle is attached to one end of a sight rule and

the other end of the sight rule is attached, with a sighting device moving along the

circumference. This very basic goniometer was set up at a station called tower A in

the area that needed to be measured. The plane of the circle has to be horizontal and

the line that connects the centre to the zero of the graduation, must point towards

the magnetic North using a compass. The instrument now has an orientation and

the compass is then replaced by the sighting device to read the magnetic bearings

on the horizontal circle of the instrument. The bearing to a tower B or to another

place in the area was plotted by a protractor. It could be said that knowing bearings

without distances between towers was not useful. However, they may travel to an-

other tower called B, and make similar measurements to surrounding locations. On

the map with the bearings in A, a choice of a point B on the line AB will be made

at an arbitrary distance. The line to the magnetic north is plotted in B, parallel to

that in tower A, and the bearings in B are drawn in a similar way to those in A.

The intersection point of the radii in both A and B will represent the tower C at the

assumed scale. As they moved from tower to tower, in each tower two bearings were

drawn. A third bearing is necessary to fix the intersection point if the point to be

drawn lies on the connecting line of the points from which the bearings are measured.

An example given by Frisius describing his method is shown in Figure (5.1). On the

tower of Antwerp the following measurements were obtained by Frisius: Gent 80◦

North West, Lier 30◦ South East, Mechelen approximately 8◦ South West, Leuven

4◦ South East, Brussels 25◦ South West, Middelburg 30◦ North West and Bergen

op Zoom 20◦ North West. Then theoretically he moved to Brussels and made the
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Figure 5.1: Frisius measurements.

following measurements: Leuven almost 14◦ South East, Mechelen and Lier are on

one line 47◦ North East, Gent 29◦ is North West, Middelburg 33◦ is North West and

Bergen op Zoom 9◦ is North East. It is important to point out the triangulations of

Brahe, Gemma and Snellius are:

1. Non planar networks.

2. Networks are immersed rather than embedded.

5.3 Brahe’s triangulation network

The second triangulation is made by T. Brahe. Figure (5.2) is the geometrical network

measured by T. Brahe which served as the base of the map of Denmark. Some angles

in the network were derived from his observations. The centre of the network is

Uraniborg from where no angle was measured, instead astronomical azimuths were

used [27]. The astronomical azimuths and the distances from Uraniborg are shown
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Figure 5.2: T. Brahe’s geometrical network.

in Table (5.1).
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Angular points Distance in (km) Series a Series b Differences angles

Copenhagen 26.6 197◦18.5
′

Malmo 38.6 150◦15
′

47◦03.5
′

15
Lund 38.5 126◦10

′
24◦05

′
16

Landskrona 9.3 115◦18
′

10◦52
′

17
Helsingborg Krnan 15.6 0◦17.5

′
115◦00.5

′
18

Kronborg 15.3 342◦31
′

17◦46.5
′

19
Helsingr Skt .Olai kirke 15.1 340◦23

′
2◦08

′
20

Skt.Ibs gamle 1.3 283◦25
′

86◦25
′

21

Table 5.1: Azimuths in Uraniborg to other angular points.

5.4 Snellius triangulation network

5.4.1 Motivations of Snellius

Snellius measured a meridian chain between Alkmaar and Bergen op Zoom that are

separated from each other by 130 km. These measurements lead to the determination

of the earth’s circumference. He was the first to determine the arc of the meridian by

triangulation. His network of triangulation between Alkamaar and Bergen op Zoom

enabled him to determine the distance between these locations. He was also the first

geodesist to compute the length of a side of a network using only real measurements.

He transferred the measured length of a specific base and measured angles by com-

putation to a side of the triangulation. Snellus realized that the unit of length (a

Rhineland rood) must be defined accurately. He paid more attention to this area of

study than any one else previously. The Snellius triangulation is shown in Figure

(5.3)

5.4.2 Snellius’ triangulation network

The construction of the Snellius network consists of several stages. In the first stage he

considered the measured length of the base line tc and the measurement of angles to

calculate the side of the network (Leiden-The Hague) see Figure (5.4). He considered

part of the network which contains the triangles surrounding the base line tc in

69



Figure 5.3: Snellius triangulation (Note: It is not planar - see the Oudewater-
Zaltbmmel).
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Figure 5.4: Leiden-The Hage side.

Figure (5.5). Using the measured length of the base line tc and the measured angles

in the triangle tce, the other sides of the triangle were computed. Similarly, all

the sides of the triangles summarized in Table (5.2) were computed. In the second

stage he considered the base ig and calculated all the sides of the triangles in Table

(5.3) using similar methods done in the previous stage. In both stages he obtained

almost the same result for the side of the network LHg. In the first stage he got

LHg = 4103.21rood while in the second stage he got LHg = 4103.36rood, which are

both excellent results. He repeated his method several times in different towers and

obtained the triangulation which is shown in Figure (5.6).

All the calculations are summarized in Table (5.4), Table (5.5) and Table (5.6).
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Figure 5.5: The base line tc.
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No. Triangle angles Opposite sides (roods)

1 t 54◦00
′

79.66
c 63◦52

′
88.40

e 87.05

2 t 78◦30
′

257.34
c 82◦8.5

′
260.15

a 87.05
3 a 88.40

t 132◦30
′

326.45
e 260.15

4 a 79.66
c 146◦0.5

′
326.45

e 257.34

5 a 67◦44
′

624.45
e 83◦20

′
670.20

L 326.45

6 a 61◦38
′

478.60
e 81◦29

′
537.91

Zo 326.45
7 L 537.91

a 128◦52
′

1093.55
Zo 670.20

8 L 478.60
e 164◦49

′
1093.55

Zo 624.45

9 L 60◦32
′

Zo 104◦32
′

4107.87
Hg 1093.55

Table 5.2: Measurement of the base and its extension to side (Leiden-The Hague).

No. Triangle angles Opposite sides (roods)

1 i 92◦10
′

938.71
g 66◦05

′
874.65

Ws 348.10

2 i 60◦11
′

347.06
g 59◦20

′

V 348.10
3 Ws 347.06

g 125◦25
′

1174.40
V 938.71

4 L 23◦36
′

Hg 17◦09
′

1855.69
Ws 4107.98

Table 5.3: Measurement of the base line ig.
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No. Triangle angles Opposite sides (roods)

1 L 97◦13.67
′

7604.4
H 50◦22.00

′
5903.4

G 32◦24.33
′

4107.92

2 L 25◦45.39
′

5880.3
G 128◦22.67

′
10608.1

D 25◦51.94
′

5903.4

3 L 71◦28.27
′

10085.1
Hg 85◦48.60

′
10608.1

D 22◦43.13
′

4107.92

4 Hg 90◦19.50
′

6984.5
L 53◦38.98

′
5625.4

R 36◦01.52
′

4107.92

5 L 43◦34.68
′

4888.0
G 80◦03.69

′

R 56◦21.63
′

5903.4

6 L 37◦41.20
′

7817.6
G 114◦49.17

′
11606.5

R 27◦29.63
′

5903.4

7 L 63◦26.59
′

11711.1
G 62◦26.22

′
11606.5

U 54◦07.19
′

10608.1

8 L 20◦22.83
′

4980.1
D 125◦44.67

′
11606.5

U 33◦52.50
′

7970.7

9 L 17◦18.37
′

2921.3
O 36◦57.14

′
5903.4

G 125◦44.49
′

7970.7

10 Hg 20◦45.12
′

7047.3
L 147◦19.71

′
10736.8

Hl 11◦55.17
′

4107.92

11 Am 75◦23.93
′

11606.5
L 50◦38.68

′
9274.0

U 53◦57.39
′

9697.9

Table 5.4: Computation of the length of side (Alkmaar-Bergen op Zoom).
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No. Triangle angles Opposite sides (roods)

12 L 77◦45.42
′

12234.6
Hl 67◦59.12

′
11606.5

U 34◦15.46
′

7047.3

13 L 27◦06.74
′

4695.3
Hl 109◦43.69

′
9697.9

Am 43◦09.57
′

7047.3

14 Hl 77◦58.72
′

8145.3
Am 67◦42.14

′
7705.2

Al 34◦19.14
′

4695.3

15 O 65◦27.36
′

8535.3
U 82◦29.31

′
9302.6

Z 32◦03.33
′

4980.1

16 D 44◦18.87
′

8535.3
U 62◦14.62

′
10811.9

Z 73◦26.51
′

11711.1

17 D 72◦18.42
′

10944.8
Z 37◦27.02

′
6985.7

B 70◦14.56
′

10811.9

18 D 54◦14.00
′

4888.0
G 48◦18.98

′
4499.0

R 77◦27.02
′

5903.4

19 D 86◦21.72
′

6822.5
W 41◦09.36

′
4499.0

R 52◦28.92
′

5422.3

20 D 66◦12.72
′

6902.5
W 67◦49.87

′
6985.7

B 45◦57.41
′

5422.3

21 W 89◦23.66
′

9402.6
B 43◦22.67

′
6458.1

Bz 47◦13.67
′

6902.5

Table 5.5: Computation of the length of side (Alkmaar-Bergen op Zoom).
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No. Triangle angles Opposite sides (roods)

22 Am 110◦51.71
′

14719.3
L 31◦08.27

′
8145.3

Al 38◦00.02
′

9697.9

23 L 4◦01.52
′

7705.2
Hl 172◦17.59

′
14719.3

Al 3◦40.89
′

7047.3

24 L 81◦46.95
′

17393.4
U 56◦53.04

′
14719.3

Al 41◦20.01
′

11606.5

25 L 26◦24.82
′

8535.3
U 116◦21.80

′
17191.4

Z 37◦13.38
′

11606.5

26 Al 39◦06.71
′

17191.4
L 108◦11.78

′
25889.0

Z 32◦41.51
′

14719.3

27 Al 2◦13.31
′

8535.3
U 173◦14.83

′
25889.0

Z 4◦31.86
′

17393.4

28 D 53◦49.12
′

9402.6
B 89◦20.08

′
11648.4

Bz 36◦50.80
′

6985.7

29 B 159◦34.64
′

20027.0
Z 9◦25.75

′
9402.6

Bz 10◦59.61
′

10944.8

30 Bz 47◦59.15
′

25889.0
Z 96◦55.92

′
34590.1

Al 35◦04.93
′

20027.0

Table 5.6: Computation of the length of side (Alkmaar-Bergen op Zoom).
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Figure 5.6: Angles of Snellius triangulation.

5.4.3 Snellius’ solution to the resection problem

Snellius performed his astronomical measurements in Leden on the Town Hall tower

instead of on the roof of his house, see Figure (5.7) [27]. To determine the latitude of

L and the azimuth LHg we need to compute the distance OL. The mutual position

of the spires P , L and Ho were known. Two more independent data were needed

to find OL in quadrangle PLHoO. He measured the two angles POL = 32◦57
′
and

POHo = 64◦40
′

and using this information he solved the resection problem. Note

n and m are the centres of the circumscribed circles of the triangles OPHo and

OPL The line connecting the centres passes through the mid-point of the line OP

is perpendicular to OP . Since all sides of triangle PLHo are known, we have the

following:

Pn =
PHO

2 sin(POHo)
, (5.1)

Pm =
PL

2 sin(POL)
. (5.2)
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Figure 5.7: Resection problem.
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Since LPm = 90◦ − POL = 32◦57
′
= 57◦03

′
and HoPn = 90◦ − POHo = 25◦20

′

npm = Lpm−HoPn− LPHo

= (90◦ − POL)− (90◦ − POHo)− LPHo

= POHo− POL− LPHo.

Note that the angle LPHo can be calculated from the sides of the triangle PLHo.

Also the angles m and n can be found from:

sinn =
PO

2Pn
, (5.3)

sinm =
PO

2Pm
. (5.4)

So we have:

OP = 2Pn sinn = 2Pm sinm. (5.5)

Finally, OL follows from the sine rule in triangle OPL and OHo and can be computed

from the sine rule in the triangle OPHo.

5.5 Parameterizations of triangulated surfaces

Planar triangulation meshing is considered in computer geometric designs in a prob-

lem called flattening or triangular surface parametrization. M. Floater [23] consid-

ered the flattening problem as a mapping of three-dimensional node positions to the

plane. Based on graph theory the nodes xi ∈ R3 of a surface S are mapped to points

ωi = (ui, vi) ∈ D where D ⊂ R2 is convex. His parameterizations set each ωi to be a

convex combination of its neighbours. The flattened surface was computed by solving

a linear system. A major disadvantage of this parametrization is the requirement of

the boundary of the two dimensions mesh to be predefined and convex. On the other
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hand [43] Sheffer and Sturler defined the flattening problem as a constrained optimi-

sation problem in terms of angles only. They computed a projection that minimised

the distortion of the surface metric structures (length, angles, etc). Their method

requires solving a non linear system of equations. The algorithm used constraints

for a valid two dimensional triangulation. They were aware of the consistency condi-

tion of the sine rule that needs to be satisfied on a cycle enclosing an interior node.

However, it was not clear that they knew how many linearly independent sine rule

equations we have in the entire triangulation mesh. In the coming sections we will

discuss this issue in details.

5.6 Number of equations and variables

In this section we need to determine the degrees of freedom of the survey problem.

Since we have two vertices for each edge, we will show that the degrees of freedom

is less than twice the number of vertices by four, as we will fix the position of two

vertices. Assuming one sine rule per interior vertex we will show that nθ−neq = 2nv−4

where nθ is the number of angle in the triangulation, neq is the number of equations

and nv is the number of vertices in the triangulation. This is previously needed to

be known that these equations are independent and a complete set. Let nt be the

number of triangles in the triangulation, nv is the number of vertices, nv0 is the

number of interior vertices, ne is the number of edges in the triangulation and nvb
is

the number of boundary vertices. There are three well-known relations available for

any triangulation.

nv = nv0 + nvb
, (5.6)

nv − ne + nt = 1, (5.7)

3nt = 2ne − nvb
. (5.8)
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The number of angles in the triangulation is obviously 3nt, we also assume one sine

rule per interior node so we have nv0 . Moreover, we have nt equations from the fact

that the sum of angles is π in each triangle and nv0 equations from the fact that the

sum of angles is 2π on each interior vertex.

degrees of freedom = nθ − neq

= 3nt − (2nv0 + nt)

= 2nt − 2nv0

= 2nt − 2(nv − nvb
)

= 2nt − 2nv + 2nvb

= 2nt − 2nv + 2(2ne − 3nt)

= 2nt − 2nv + 4ne − 6nt

= −2nv + 4ne − 4nt

= −2nv + 4(nv − 1)

= 4nv − 2nv − 4

= 2nv − 4.

Thus we have the correct number of degrees of freedom since knowing an edge means

we have 2nv − 4 number of variables.

5.7 The space of cycles

A plane graph is a one dimensional complex consisting of zero-dimensional simplices

(nodes) and one-dimensional simplices (branches) [38]. A cycle that encloses exactly

one interior node forms a basis cycle.

For example, in Figure (5.8) {e1, e2, e3, e4, e5} and {e6, e7, e8, e9, e10, e11} are basis

cycles while the {e1, e2, e7, e8, e9, e10, e5} is not a basis cycle because it encloses two

interior nodes. The number of basis cycle is denoted by k.
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Figure 5.8: Oriented cycles.

Definition 5.7.1. A one-dimensional chain is the function which takes values equal

in absolute value but opposite in sign at the opposite orientations of one dimensional

simplices.

Let us represent the chains as Z =
∑

e∈E zee. Let Z1 and Z2 be two chains defined

on the adjacent basis cycles. If all the one-dimensional simplices are oriented as in

Figure (5.8), then any cycle containing two interior nodes can be written as a sum of

the two basis cycles i.e the cycle containing the interior nodes of Z1 and Z2 can be

written as Z1 + Z2. In general the chain Z defined on an arbitrary closed cycle can
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be written as a linear combination of chains defined on the basis cycles:

Z = {α1Z1 + α2Z2 + ...+ αkZk}. (5.9)

Note that the system of basis cycles {Z1, Z2, ..., Zk} is linearly independent and any

cycle of a one-dimensional chain is a linear combination of basis cycles. The set of

cycles of one-dimensional chain Z is a formal vector space generated by E.

5.8 Sine rule consistency condition

This section illustrates the sine rule consistency condition. We will use the terminol-

ogy of wheel and spoke edges in the construction procedure. We define a wheel as

a set of triangles enclosing a vertex and an edge joining the enclosed vertex to the

base of triangle which is called a spoke edge. The sine rule consistency condition that

needs to be satisfied by the triangles enclosing a vertex is explained as follows: Refer

to Figure (5.9), using the sine rule in the first face on the spoke edges:

L1

L2

=
sin θ1

sin β1

. (5.10)

Also by applying the sine rule in the second face, we get:

L2

L3

=
sin θ2

sin β2

. (5.11)

Eq.(5.10) and Eq.(5.12) can be combined by:

L1

L3

=
L1

L2

· L2

L3

=
sin θ1

sin β1

· sin θ2

sin β2

. (5.12)
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Figure 5.9: Illustration of sine rule.

Continuing in the same way in all faces we end up with the following sine rule:

L1

L9

=
L1

L2

· L2

L3

· L3

L4

· L4

L5

· L5

L6

· L6

L7

· L7

L8

· L8

L9

=
sin θ1

sin β1

· sin θ2

sin β2

· sin θ3

sin β3

· sin θ4

sin β4

· sin θ5

sin β5

· sin θ6

sin β6

· sin θ7

sin β7

· sin θ8

sin β8

= 1.

The sine rule can be written in the following form:

n∑
i=1

[ln sin θi − ln sin βi] = 0 (5.13)

where n is the number of triangles in the wheel
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Figure 5.10: Sum of sine rules.

5.9 Sine rule of a cycle enclosing two vertices

Consider the sine rule in the cycle enclosing the interior node V0 in Figure (5.10)

sinα1

sin β1

· sinα2

sin β2

· sinα3

sin β3

· sinα4

sin β4

· sinα5

sin θ5

= 1,

this can be written as :

G1 = log

[
sinα1

sin β1

· sinα2

sin β2

· sinα3

sin β3

· sinα4

sin β4

· sinα5

sin θ5

]
= 0. (5.14)

Also consider the sine rule in the cycle enclosing the interior node V1 in Figure (5.10)

sin β5

sinα5

· sin β4

sin θ4

· sinα7

sin β7

· sinα8

sin β8

· sinα9

sin β9

· sinα10

sin β10

= 1,
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which can be written in the form:

G2 = log

[
sin β5

sinα5

· sin β4

sin θ4

· sinα7

sin β7

· sinα8

sin β8

· sinα9

sin β9

· sinα10

sin β10

]
= 0. (5.15)

Now we consider the sine rule in the cycle enclosing both interior nodes :

sinα1

sin β1

· sinα2

sin β2

· sinα3

sin β3

· sinα4

sin θ4

· sinα7

sin β7

· sinα8

sin β8

· sinα9

sin β9

· sinα10

sin β10

· sin β5

sin θ5

= 1,

that is equivalent to

sinα1

sin β1

· sinα2

sin β2

· sinα3

sin β3

· sinα4

sin β4

· sinα5

sin θ5

· sin β5

sinα5

· sin β4

sin θ4

· sinα7

sin β7

· sinα8

sin β8

· sinα9

sin β9

· sinα10

sin β10

= 1.

If we take the logarithm of both sides then this can be written as:

G1 +G2 = 0. (5.16)

5.10 The necessary and sufficient consistency con-

dition

In the previous section we saw that we needed to satisfy a sine rule consistency

condition for any closed cycle enclosing a vertex. A typical dual graph of triangular

mesh has several closed cycles. A question arises naturally: how many independent

consistency conditions need to be satisfied in the dual graph of a triangular mesh?

It turns out that there is an elegant way to determine the necessary and sufficient

consistency constraints that need to be satisfied. Let K = (V,E, T ) be a connected

homogeneous abstract simplicial complex of two dimensions, f is a piece-wise linear

immersion of K in R2 and G = (V
′
, E

′
) be the dual graph of K, that is {t, t′} ∈ E

′

if and only if t∩ t′ ∈ E. Of course there is a natural correspondence between E
′
and

E: for any {t, t′} ∈ E
′
, t ∩ t′ is the edge shared by the two faces. Let G = (V

′
, E)
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be a digraph obtained from G by assigning an arbitrary orientation of the edges. Let

W ⊂ V × T be (v, t) ∈ W if and only if v ∈ t, the relation, vertex incident on a face.

For any t ∈ T the radius of the circumcircle r(t) = |f(e)|
2 sin θt

v
for any v with (v, t) ∈ W

and e ∈ E the edge opposite v, e = t \ v and | f(e) | is the length of the edge. Define

ρ : T → R as:

ρ(t) = ln(2r(t)). (5.17)

We consider ρ(t) to be 0-cochain on G. For any e ∈ E, e = (t, t
′
), define:

σ(e) = ρ(t
′
)− ρ(t), (5.18)

which can be extended uniquely to a 1-cochain with dρ where d is the co-boundary

differential operator. Let c ∈ C1(G) be a chain then by definition of d we have (the

discrete version of Stokes’ theorem)

〈c, dρ〉 = 〈∂c, ρ〉, (5.19)

where 〈., .〉 is the dual pairing between chains and co-chains. We see that for any

cycle c ∈ Z1(G) we have:

〈c, dρ〉 = 0. (5.20)

This is exactly the consistency condition derived from applying the sine rule around

that cycle. It is clear then that given a basis of cycles {ck|k = 1, ..., dimZ1(G)} a

complete and independent set of sine rule constraints is given by 〈c, dρ〉 = 0. In

particular the set of basic cycles of G form a basis, and the set of basis cycles of G is

in one to one correspondence with the interior vertices of K. Note that the interior

vertices are simply the vertices in V that are in an edge in E that is a member of

two faces of T .
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5.11 Isomorphism

Theorem 5.11.1. The vector space of basic cycles Z is isomorphic to the vector

space of sine rule consistency condition.

Proof. For every oriented cycle there is only one sine rule. This means the map from

the space of cycles Z to the vector space of sine rules is one to one. Conversely, for

every sine rule there is only one oriented cycle, that is the map from the vector space

of sine rules to the vector space of cycles Z. Therefore, we have a bijective map

between the two vector spaces, so they are isomorphic to each other.

Since the space of cycles is spanned by the basis cycles, the space of sine rules is

spanned by the image of the basis cycles. So, we can conclude that one sine rule per

interior node is needed in a triangulated mesh.

5.12 Construction of triangulated mesh

This section introduces a method to construct a triangulated mesh given the angles

and the position of two vertices.

Theorem 5.12.1. If the coordinates of two vertices of an edge and the angles of

triangulation are given, then the triangulation can be constructed.

Proof. By knowing the coordinates of vertices of an edge and the angles, the coordi-

nate of the third vertex is determined as follows:

referring to Figure (5.11), since we know the angles α and β then γ = π − α− β.

The length of the given edge is calculated by:

d = V1 − V2,

L3 = ‖d‖.

88



Since we know the angles and the length of one side L3 we apply the sine rule to

determine the length of the two other sides of the triangle. A perpendicular unit

vector to d is given by:

p =
(d2,−d1)

L3

.

Then the coordinates of the third vertex are given by:

V3 = V2 + s · d
L3

+ h · p,

where h = L1 sinα is scalar quantity, p is a unit vector perpendicular to (V1 − V2)

and s = L1 cosα is a scalar quantity. Now we need a way to move from one triangle

to another. To do so, we choose any spanning tree of the dual graph rooted at this

triangle. Moving along the edges of the spanning tree we pass a known edge in

the triangle of the previously calculated triangle. We have also the angles, so the

coordinates of any vertex are determined by the procedure explained in the previous

step. By induction, let us assume that the position of the vertices in k triangle are

computed. Then there is a connected path on the spanning tree to the root through

the k triangles. So we have a known edge and the angles, consequently the position

of the vertices are determined. This position is independent of the choice of triangle

containing the vertex.

5.13 Numerical results

We used the MATLAB graph theory tool box adopted by Sergii Iglin [30] to construct

a spanning tree, then traverse this tree calculating vertex positions using Theorem

(5.12.1). An example is given in Figures (5.12) and (5.13). The function grMinSpan-

ningtree uses greedy algorithm followed by my own treesort routine. We show an

example of finding an embedding where angles are calculated from edge conductances

as in the next chapter.
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Figure 5.11: Determination of third vertex in a triangle.
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Figure 5.12: Spanning tree.
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Figure 5.13: Triangulation.
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Chapter 6

Isotropic Embedding of Planar

Resistor Network

6.1 Introduction

This chapter deals with an isotropic embedding of planar resistor networks associated

with anisotropic FEM. Our result relies on the inverse function theorem so will only

apply to an open neighborhood conductivities close to one that is known to have an

isotropic embedding. We give sufficient conditions for the existence of the uniqueness

of the embedding. This is a discrete analogy of isothermal coordinates. We begin

by discussing the requirements needed to obtain an isotropic embedding of planar

resistor networks and explain the system of equations produced by these requirements.

Moreover, we propose a parametrization of the conductivity through an assignment

of conductivity to each interior node to get a correctly determined system. Then we

move to justify that we have the correct number of equations and variables. Next we

discuss the Jacobian of the obtained system of equations. This system of equations

applies to a general planar resistor network associated with a finite element model.

Although we believe this system of equations to be linearly independent we do not

have a complete proof for a general resistor network with the same topology of a
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finite element model. Therefore, we consider the system of equations in a layered

triangulated mesh where two inward pointing triangles are between any two upward

pointing triangles. For this special case we were able to prove that the Jacobian of

the system has full rank using a colouring approach where we assign to each equation

a label representing a pivot element. Using this method we show that the Jacobian

of the system can be written as a Gaussian elimination form without losing any

pivot which implies the Jacobian has full rank. Finally, we test our result using

the MATLAB optimisation toolbox function fsolve and our own implementation of

Newton’s method.

6.2 Description of the system of equations

An isotropic embedding of planar resistor network associated with an isotropic FEM

has to satisfy geometric and consistency conditions together with cotangent equations,

which relate the conductances on the edges with the conductivity of the triangular

faces. As we previously mentioned in Section (5.6) we have a 2π condition around

each interior vertex, a π condition for each triangle and the sine rule consistency

condition around each basic cycle of the dual graph. In addition, we need to satisfy the

cotangent equation (4.8) stated before in Section (4.2). The number of independent

angles from the survey problem is known to be 2nv−4 as we showed before in Section

(5.6). Compared to the survey problem, we have an additional cotangent equation for

each interior edge, but we also have potentially added nt new isotropic conductivity

variables. To find a solution for the angles with specified edge conductance we would

expect to have nt−ne degrees of freedom. This suggests that there is typically a non-

unique solution to the isotropic embedding problem. For the system to be correctly

determined we propose that a conductivity is assigned to each interior vertex, and

the conductivity on each triangle is taken to be the average value of all the interior

vertices in the triangle. We also impose an additional nvb
− 1 constraints to the

exterior angles to produce a formally correctly determined system. Once existence
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and uniqueness of solution, with these additional constraints, has been proved, the

set of unconstrained solutions can easily be identified. Numerically it is simpler to

solve a correctly determined system as we can use Newton’s method.

6.3 Number of equations and variables

In Section (5.6) we showed that we have 2nv − 4 independent angles in the survey

triangulation. Now we have added nv0 equations as we have one cotangent equation

for each interior edge and nvb
− 1 equations from the exterior angles condition. Since

we know

nv − ne + nt = 1 ⇒ 3nv − 3ne + 3nt = 3. (6.1)

Also we have, from counting edges,

3nt = 2ne − nvb
. (6.2)

So we have

3nv − 3ne + 2ne − nvb
= 3

⇒ ne = 3nv − nvb
− 3

⇒ ne0 + neb
= 3nv − nvb

− 3.

The number of boundary edges and vertices are the same, so

ne0 + nvb
= 3nv − nvb

− 3

⇒ ne0 = 3nv − 2nvb
− 3

⇒ ne0 = 2nv + nv0 + nvb
− 2nvb

− 3

⇒ ne0 = 2nv + nv0 − nvb
− 3,
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so the total number of equation is

2nv + nv0 − nvb
− 3 + nvb

− 1 = 2nv − 4 + nv0

Thus we have nv0 more equations than the survey triangulation which is equal to the

number of added variables because we parameterized the conductance in each triangle

as the average value of conductances in each interior node in the triangulation mesh.

6.4 Jacobian of the system

We need to show that the Jacobian of the system defined in Section (6.2) has full

rank to show that the formally correctly determined system has a unique solution.

We believe this system has full rank for general planar resistor networks associated

with isotropic finite element models because two thirds of the equation were shown

to be linearly independent in Section (5.6) and adding cotangent equations may

not affect the linear independence. However, we consider the special case of lay-

ered triangulated mesh explained in detail in Section (6.6). We write the angles of

triangle i as θj
i , j = 1, 2, 3 and we assign conductivity values S1

i , S
2
i , S

3
i to the inte-

rior vertices of triangle i. If the variables in the Jacobian have the following order

∂θ1
1, ∂θ

2
1, ∂θ

3
1, ∂θ

1
2, ∂θ

2
2∂θ

3
2, ..., ∂S

1
1 , ∂S

2
1 , ∂S

3
1 , ∂S

1
2 , ∂S

2
2 , ∂S

3
2 , ... then the Jacobian of this

system has the following pattern
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A careful look at the Jacobian shows it consists of four blocks. The first block

comes from the π condition in each triangle which gives a row with entry 1 and the

rest are zeros. The second block has 1 in different places because it is produced

from the 2π condition around each interior node. Another block has rows with

random entry ai = − cotα1
i and bi = − cotα2

i produced from the sine rule consistency

condition around each interior vertex. The last block introduced by the cotangent

equations where we have in each row few entries in random places. These entries are

ci = −
∑

Si

3
csc2 α1

i , di = −
∑

Si

3
csc2 α2

i and ki = cotαj
i where j = 1, 2, 3.

6.5 Labelling method

To show the Jacobian of the system of equations discussed in the previous section

has full rank, we identify pivots in Gaussian elimination. We use a labelling system

to determine the equation in which each variable is used as a pivot. The constraints

of the labelling method need to be specified. The sum of angles in each triangle is π

therefore we have one pivoting equation per triangle. Let (+) be the label used to

indicate this pivoting element. So the first constraint we need to satisfy is to have

one (+) in each triangle. Also, the sum of angles around each vertex is 2π. Assume

the pivoting element of this equation is indicated by (×). The second constraint

in our labelling method is one (×) per vertex. For each interior vertex the edges

incident to the vertex in the triangles that enclose this vertex must satisfy one sine

rule. Labelling the pivoting equation produced by (◦) imposes a constraint (◦) on

one of the corner angles of the triangles enclosing each interior vertex. We also have

one cotangent equation relating the conductances of the triangular faces and the

conductance in the shared edge. Therefore, one pivoting equation corresponds to

each interior edge which will be labelled by (∆). Labelling each angle to indicate the

equation will be used as a pivot to eliminate each variable in the following equations.

This is a colouring approach to write the Jacobian in Gaussian elimination form, i.e.

full rank. The labelling is summarized in the Table (6.1).
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Label Equation Constraint
+ Sum of angle equal π One per triangle
× Sum of angle equal 2π one per vertex
◦ Sine rule consistency condition one corner of triangles centred at interior node
∆ cotangent one per interior edge

Table 6.1: Summary of the labelling system

6.6 Layered triangulated mesh

We now describe a special class of circular planar network of resistors called layered

triangulated mesh.

Definition 6.6.1. A wheel is the set of triangles incident on an interior vertex.

Definition 6.6.2. A layered triangulated mesh is a set of triangles joined together

and described as follows: The zero layer consists of a set of triangles joined together

centred at the origin forming a wheel. This wheel has spoke edges joining the central

node with the nodes in the first layer. The base of the triangles in the wheel joining

two nodes in the first layer are called radial edges. In general, any edge joining two

layers is a spoke edge and any edge which is a base of triangle is a radial edge. A

spoke triangle is a triangle whose base is positioned on a radial edge. Any two spoke

triangles are joined by at least two non spoke triangles between them.

Our next result is useful to show that the Jacobian discussed in Section (6.4) has

full rank for the layered triangular mesh.

Lemma 6.6.1. Any layered triangulated mesh admits an ordered labelling such that

each triangle has exactly one (+), each node has exactly one (×), there is one (◦) on

a corner of one of the triangles around each interior node, for each two consecutive

triangles the angle opposite to the edge between them in the first triangle is labelled

by (∆) and one angle opposite to each radial edge is labelled by (∆). The variables

in this labelled ordering guarantees that later pivots are not removed.
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Proof. Number the triangles in the mesh counterclockwise starting from the central

node.

Then we start labelling the zero layer using the following steps:

1. Label the angle with a vertex as the central node in the last triangle of this

layer by (×), and another angle by (◦) and the last by (+).

2. Label the angle with a vertex as the central node in the first triangle by (+).

3. Label the remainder of the angles around the central node of the wheel by (∆).

4. For each two consecutive triangles, the angle opposite to the shared edge in the

triangle with minimum numerate is labelled by (∆).

5. Label the remaining angle of each triangle by (+).

Then we move to label the first layer as follows:

1. Label the angle opposite to each radial edge by (+) if the angle opposite to this

edge in the zero layer is marked by (∆) otherwise by (∆)

2. For each two consecutive triangles, the angle opposite to the shared edge in the

triangle with minimum numerate is labelled by (∆).

3. (a) If the angle of the vertex opposite to the base of a spoke triangle has (∆)

then mark the remaining angle by (+)

(b) If the angle of the vertex opposite to the base of the spoke triangle is

labelled by (+) then mark the remaining angle by (×)

4. Mark the remaining angle in the first triangle of this layer by (+).

5. Mark the angle with a vertex in the first radial edges in the last triangle of this

layer by (×), one angle by (◦) and the last by (+).

6. Mark one angle opposite to the base of the two non-spoke triangles by (×) if

the shared vertex has no (×), otherwise mark both by (+).
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7. Label the remaining angle in the triangle following each spoke triangle (◦).

8. If the angle opposite to the base of the second non-spoke triangle is (+) then

the left angle is labelled by (×), otherwise mark it (+).

Let us suppose, by induction, that we label up to layer k then we obtain the labels

in the next layer as follows:

1. Label the angle opposite to each radial edge by (+) if the angle opposite to this

edge in the kth layer is marked by (∆), otherwise by (∆).

2. For each two consecutive triangles, the angle opposite to the shared edge in the

triangle with minimum numerate is labelled by (∆).

3. (a) If the angle of the vertex opposite to the base of a spoke triangle has (∆)

then mark the remaining angle by (+).

(b) If the angle of the vertex opposite to the base of the spoke triangle is

labelled by (+) then mark the remaining angle by (×).

4. Mark the remaining angle in the first triangle of this layer by (+).

5. Mark the angle with a vertex in the kth radial edges in the last triangle of the

this layer by (×),one angle by (◦) and the last by (+).

6. Mark one angle opposite to the base of the two non-spoke triangles by (×), if

the shared vertex has no (×), otherwise mark both by (+).

7. Label the remaining angle in the triangle following each spoke triangle (◦).

8. If the angle opposite to the base of the second non spoke triangle is (+) the the

left angle is labelled by (×), otherwise mark it (+).

Figure (6.1) Illustrates the labelling procedure.
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Figure 6.1: Illustration of labelling in layered triangulated mesh

6.7 Limitations of labelling method

The Jacobian of the system discussed in Section (6.4) has full rank for a more general

planar resistor network associated with FEM. The labelling method discussed in

Section (6.6) shows the Jacobian has full rank for the special class layered triangulated

mesh. However, the resistor network in Figure (6.2) shows the limitation of the

labelling method. This is an example of a resistor network associated with a finite

element mesh for which the Jacobian is shown numerically to have a full rank and

the solution of the system of equations converges in six iterations. This Jacobian

can not be shown to have full rank using labelling method. The triangles 44 and 67

indicate the corner marked by (◦,+) at the same time, which violates the constraints

of labelling method.
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Figure 6.2: An example of limitation of labelling method

6.8 Embedding of a finite element model

Finite element models (FEM) with piece-wise linear basis functions and piece-wise

constant conductivity give rise to a system matrix equivalent to the Ohm-Kirchhoff

matrix for a resistor network with the same topology. For the planar two dimensional

case we show how a resistor network close to those associated with an isotropic FEM

can be embedded.

Definition 6.8.1. An isotropic conductivity on a finite element mesh is said to be

parameterized by values at interior nodes (PVIN) if there is an s ∈ Rnv , where nv is

the number of interior nodes, such that for each triangle t, σ(t) is the mean of s(v)

for each interior node v ∈ t.

We will use the well known Inverse Function Theorem.

Theorem 6.8.1. Let F : Rn → Rn be a C1 and F (x0) = y0. Suppose DF (x0) 6= 0

is invertible, then for any neighborhood of y0 there is a unique neighborhood of x0

such that F (x0) = y0.

103



Theorem 6.8.2. Given a layered finite element mesh F0 with a conductivity σ0 ∈ Rq,

where q is the number of triangles in the mesh and edge conductanceK0 ∈ Re, where e

is the number of edges, then there is an ε > 0 such that for all k with |k−k0| < ε there

is a finite element mesh F with the same topology as F0 and a PVIN conductivity

σ such that F has edge conductance k. Moreover, F is uniquely determined by the

condition that nvb
− 1 exterior angles in F and two vertices in a specific edge are the

same as F0 and orientation.

Proof. Lemma (6.6.1) implies the Jacobian of the system has full rank. Therefore the

proof is immediate from Inverse Function Theorem (6.8.1) and theorem (5.12.1).

6.9 Numerical results

We tested this method using both the optimization toolbox function fsolve (refer to

MATLAB documentation) and our own implementation of Newton’s method. Start-

ing with a mesh generated by rmesh we assigned conductivities to vertices using

uniform pseudo random numbers (rand in MATLAB). We then calculated edge con-

ductances using the cot formula Eq.(4.8). These edge conductances are perturbed by

a vector generated by calling rand again, scaled by some positive ε. In all meshes we

tested, the Jacobian matrix was found to be non-singular as expected from Theorem

(6.8.2). The singular values for one example are shown in Figure (6.9). In all cases we

tested, a solution was found with edge conductances agreeing to specified tolerance

(we used 10−7) for some value of ε. While for large enough values of ε a solution was

not found. Tables (6.2),(6.3) and (6.4) summarize some tested meshes also some of

the figures are drawn. Refer to appendix for MATLAB codes.
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Figure 6.3: Original mesh 1 (16,8,6,1)
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Figure 6.4: New mesh 1 (ε = 0.02)(16,8,6,1)
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Figure 6.5: New mesh 1 (ε = 0.2)(16,8,6,1)
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Figure 6.6: New mesh 1 (ε = 0.3)(16,8,6,1)
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Figure 6.7: New mesh 1 (ε = 0.5)(16,8,6,1)
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Figure 6.8: New mesh 1 (ε = 0.9)(16,8,6,1)
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Figure 6.9: New mesh 1 singular values (16,8,6,1)
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Figure 6.10: Original mesh 2 (40,20,10,1)
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Figure 6.11: New mesh 2 (ε = 0.02)(40,20,10,1)
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Figure 6.12: New mesh 2 (ε = 0.1)(40,20,10,1)
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Figure 6.13: New mesh 2 (ε = 0.2)(40,20,10,1)
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Figure 6.14: New mesh 2 (ε = 0.2)(40,20,10,1)
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Figure 6.15: Singular values (40,20,10,1)
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Figure 6.16: Original mesh 3 (40,20,10,5,1)
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Figure 6.17: ew mesh3 (ε = 0.02)(40,20,10,5,1)
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ε Convergence Iterations a Smallest Singular Values Residual
0.02 Yes 4 0.0935 9.98338e−012

0.2 Yes 5 0.0935 1.81544e−011

0.5 Yes 6 0.0935 8.09155e−010

0.3 Yes 5 0.0935 4.9508e−010

0.9 Yes 8 0.0935 2.55176e−008

Table 6.2: Mesh 1 (16,8,6,1)

ε Convergence Iterations a Singular Values Residual
0.02 Yes 4 0.0592 4.58981e−010

0.1 Yes 5 0.0592 9.17411e−08

0.2 Yes 7 0.0592 1.35819e−008

0.25 Yes 8 0.0592 5.9740e−008

0.3 No

Table 6.3: Mesh 2 (40,20,10,1)

ε Convergence Iterations a Singular Values Residual
0.02 Yes 4 0.0539 9.8510e−010

0.1 Yes 5 0.0539 1.85653e−08

0.2 Yes 6 0.0539 3.81123e−011

0.25 No

Table 6.4: Mesh 3 (40,20,10,5,1)
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Studying the link between finite element models and resistor networks opens several

points and questions that need to be answered.Which resistor networks corresponds

to a finite element model and what are the possible assignments of conductance to a

resistor mesh with the same topology as a finite element mesh corresponds to a choice

of vertex positions and conductivities? Moreover, one may think about the conditions

needed to obtain a unique embedding for a general resistor network associated with

finite element models. Another question we could ask “Is there a canonical form for

special cases of triangular resistor networks”? Note that the planar resistor networks

associated with the mesh we study is over-determined which means that one may use

the least squares method to find the best fit data. Moreover, we can have a special

class of triangular meshes that is well-connected and can be determined.

We also showed that angles need to satisfy the sine rule as a consistency condition

for every closed basic cycle enclosing interior nodes in two dimensions. Analogous

consistency conditions need to be developed for three dimensions. The extension of

the work done in this thesis to three dimensions remains an open problem.

In two dimensions an improvement of the result for a more general class of meshes
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needs to be studied.

7.2 Future work

The Jacobian of the system of equation obtained in the embedding of the layered

triangulated mesh can be reduced by Gaussian elimination method. We are very

close to finding a constructive proof for this special case. Given that the survey

solve problem has a constructive solution using a spanning tree of the dual graph

we hope to find a systematic solution to the nonlinear isotropic embedding problem

in a similar way. Furthermore, as we noted, the isotropic embedding is a discrete

version of the problem of isothermal coordinates [12]. Another approach might be

to discretize the nonlinear partial differential equations for isothermal coordinates

( for example as a FEM approximation) and show the existence of a solution for

this. So far we have not been able to interpret the system of equations that we have

solved in this way. Another possibility for future work is to consider other discrete

approximation to the inverse conductivity equation. For example [10] use the finite

volume method and show that this is equivalent to a resistor mesh in the isotropic

case. Other possibilities include the finite integral method and higher order finite

element methods. Also we believe that our result is true for more general meshes.

The difficulty is to obtain proof of full rank for the Jacobian. The extension of the

problem to three dimensions requires an analogues consistency condition similar to

the sine rule in two dimensions. Discrete analogous of the differential forms in three

dimensions also needs to be obtained. There are no isothermal coordinates in three

dimensions only orthogonal coordinates [21]. This suggests that we find conditions

on resistor networks derived from three dimensional anisotropic finite element models

which guarantees the existence of orthogonal coordinates, that is an embedding in

which conductivity is diagonal. The existence of such an embedding was assumed

implicitly in the paper of [1] but not proven. Finally, as in the continuum problem,
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the existence of isothermal coordinates (in two dimensions) and orthogonal coordi-

nates (in three dimensions) is known. One would expect to be able to prove that in

the limit as the mesh size tends to zero, the discrete isothermal (orthogonal) coordi-

nates converge to the isothermal (orthogonal) coordinates of the limiting continuum

conductivity problem. The implication for practical EIT includes the design of re-

sistor networks to test EIT system [26]. It is important to know if resistor networks

are constant with some isotropic conductivity, if the EIT system is to be applied to

isotropic objects.
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Appendix A

MATLAB Codes

A.1 Test mesh MATLAB code

% Some test code for circular grids

% Bill Lionheart, Abdul−Aziz al Humaidi 2010

addpath ../graph ’ theory ’/

% Global variables passed to the optimization function

5 global H vtoe twinelts bdryverts g edges nedges btris C

global x_to_corner corner_to_x angs xlastang

nvint Xtocond EdgeCond intverts

global firstcall

%global H g centroids

10 % Radii of each ring

r=[2 ,1.5 ,1 ,0.5 ,0];

% Numbers of vertices in each ring

N=[40 ,20 ,10 ,5 ,1];

eI=[1 ,0];

15 % Make a mesh

[g,gp,H,E]= cirgrid_eit (r,N,eI);

H=orientH(H,g);
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% Here g is the x and y coordinates of vertices and

% H is the element topolgy ie a list of vertices

20 %in each traingel Plot the mesh

f igure ,plcigrid(g,H);

bdryverts = 1:N(1);

centroid =[];

for el=1: s i ze (H,1)

25 els=H(el ,:);

xs=g(els ,1);

%xs=vtx(els,1);

ys=g(els ,2);

%ys=vtx(els,2);

30 Mx=mean(xs);

My=mean(ys);

centroids(els ,1)=Mx;

centroids(els ,2)=My;

centroids =(g(H(: ,1) ,:)+g(H(: ,2) ,:)+g(H(: ,3) ,:))/3;

35 end

nvint = s i ze (g,1)- length(bdryverts );

[th,r]= cart2pol(centroids (:,1), centroids (: ,2));

intverts=setdiff (1: s i ze (g,1), bdryverts)

% Now our conductivites are one per interior vertex

40 %and are in

% X(xlastang+1) to X(xlastang+nintv);

% We need a matrix to multiply the conductivities

%at each int vertex to give us a conductivity

% on each element (ie the average)

45 Xtocond= sparse( s i ze (H,1),nvint );

for ie=1: s i ze (H,1)

for iv =1: nvint; % non boundary verts
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i f ismember(intverts(iv),H(ie ,:))

Xtocond(ie ,iv)=1;

50 end

end;

end;

sums= sum(Xtocond ’); % row sum

for ie=1: s i ze (H,1)

55 i f (sums(ie)~=0)

Xtocond(ie ,:)= Xtocond(ie ,:)./ sums(ie);

end;

end;

% Make a PIV conductivity

60 vcond=ones( s i ze (intverts ))+0.1*rand( s i ze (intverts ));

Conductivity = Xtocond*vcond ’;

K= zeros ( s i ze (g,1), s i ze (g,1));

z= s i ze (g,1);

vtoe = cell ([ z ,1]);

65 for ie=1: s i ze (H,1)

for k=1:3

b=H (ie,k);

vtoe{H(ie ,k)}=[ vtoe{b},ie];

side1 = g(H(ie,mod(k,3)+1) ,:) -g(H(ie,k),:);

70 side2 = g(H(ie,mod(k-2 ,3)+1) ,:) -g(H(ie,k),:);

angles(ie ,k)=

acos( side1*side2 ’/( norm(side1 )*norm(side2 )));

end

75 K(H (ie ,1), H(ie ,2))=K(H (ie ,1), H(ie ,2))+

Conductivity(ie)* cot(angles(ie ,3))/2;

K(H (ie ,2), H(ie ,3))=K(H (ie ,2), H(ie ,3))+
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Conductivity(ie)* cot(angles(ie ,1))/2;

K(H (ie ,3), H(ie ,1))=K(H (ie ,3), H(ie ,1))+

80 Conductivity(ie)* cot(angles(ie ,2))/2;

end

K= K+K’;

rowsums = sum (K,1);

Ksu = sparse ( tr iu (K)-diag (diag (K)));

85 Ks= sparse (K);

[ied ,jed ,s]= f ind (Ksu);

edges =[ied ,jed];

nedges= s i ze (edges ,1);

for ie = 1: nedges

90 EdgeCond(ie) =K(edges(ie ,1),edges(ie ,2));

end;

% Now to perturb EdgeCond

EdgeCond= EdgeCond + 0.1*rand( s i ze (EdgeCond ));

95 % we need to know the indices of the two angles in each edge

btris =[]; % outward facing triangles with no partner

for ied =1: nedges

[r1 ,c]= f ind (H== edges (ied ,1));

[r2 ,c]= f ind (H== edges (ied ,2));

100 twinelt=intersect (r1 ,r2);

i f length (twinelt )==1

btris=[btris ,twinelt ]; % it is only one!

e l se

twinelts (ied ,:)= twinelt;

105 end;

end

btris=unique (btris );
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% Assemble indexing arrays for x variables

% Find the triangles on the boundaryand

110 %the angle which is outward

corner_to_x=ones( s i ze (H));

nbtris= length (btris);

for ibt =2: nbtris %miss off the first

insideone=setdiff (H (btris (ibt),:)

115

,bdryverts );

ind= f ind (H (btris (ibt) ,:)== insideone );

% Now triangle btris(ibt) has angle ind facing outwards

corner_to_x(btris(ibt),ind )=0;

120 end

count_angles =0;

for ie=1: s i ze (H,1)

for k=1:3

i f corner_to_x(ie,k)==1

125 count_angles=count_angles +1;

corner_to_x(ie,k)= count_angles;

end

end

end

130 % now construct theinverse of this index array

x_to_corner= zeros (3* s i ze (H,1)-nbtris ,2);

xcount =0;

for ie=1: s i ze (H,1)

for k=1:3

135 i f corner_to_x(ie,k)~=0

xcount=xcount +1;

x_to_corner(xcount ,:)=[ie,k]’;
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end

end

140 end

xlastang=xcount;

% we need to know the indices of the two angles in each edge

btris =[]; % outward facing triangles with no partner

for ied =1: nedges

145 [r1 ,c]= f ind (H== edges (ied ,1));

[r2 ,c]= f ind (H== edges (ied ,2));

twinelt=intersect (r1 ,r2);

i f length (twinelt )==1

btris=[btris ,twinelt ]; % it is only one!

150 e l se

twinelts (ied ,:)= twinelt;

end;

end

btris=unique (btris );

155

% Now we attempt to find a distribution of angles

%that give us the \same system

% matrix K but with homogeneous conductivity

% global variable angs is used to pass the fixedangles

160 angs=angles;

% Initalize X

i f xlastang ~= 3* s i ze (H,1)- nbtris +1

error(’xlastang = %d, but 3*size(H,1)- nbtris +1= %d’

, xlastang ,

165 1+3* s i ze (H,1)- nbtris );

end

X= zeros(xlastang + nvint ,1);
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X(( xlastang +1):( xlastang + nvint ))=1; % initial conductivity

count_angles =0;

170 for ie=1: s i ze (H,1)

for k=1:3

i f corner_to_x(ie,k)~=0

count_angles=count_angles +1;

X(count_angles )=angs(ie,k);

175 end

end

end

options = optimset(’Jacobian ’,’on’);

options = optimset(’DerivativeCheck ’,’on’);

180 options = optimset(’FunValCheck ’,’on’);

options = optimset(’Display ’,’final ’);

options = optimset(’MaxFunEvals ’ ,1000);

firstcall =1;

[F,J]= myfunc5(X);

185 f igure ,s=svd(J);plot (s); t i t l e (’Singular values of Jacobian ’);

%if exist(’fsolve’)

% Xnew=fsolve(@myfunc5,X,options);

%else

Xnew=myfsolve(@myfunc5 ,X);

190 %end

angsnew= zeros( s i ze (H,1) ,3);

count_angles =0;

for ie=1: s i ze (H,1)

for k=1:3

195 i f corner_to_x(ie,k)~=0

count_angles=count_angles +1;

angsnew(ie ,k)=Xnew(count_angles );
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e l se

angsnew(ie ,k)=angs(ie ,k);

200 end

end

end

C=centroids;

% The old centroids just for plotting in survey solve

205 Vnew =surveysolve(H,angsnew ,[1,2],g([1,2],:),’disp’);

f igure ,plcigrid(Vnew ,H);

A.2 Survey solve MATLAB code

function V =surveysolve(H,angles ,e1,v,op)

% V =surveysolve(H,angles,e1,v,op)

% given an "element topology" matrix H, that is

% a list of vertex numbers for the traingles

5 %in a triangulation of a % polygon, the angles

%in each triangle angles and and edge

%e1 (that is a pair of vertices) and the

% cooridinates of % the two vertices of that edge,

% this function calculates the vertex coordiantes V.

10 %g Cjust for plotting for the moment

global newV plothandle g C

[E,D]= meshtograph(H);

i f op==’disp’

f igure ,grPlot(g,E);

15 end

s=grMinSpanTree(D);

i f op==’disp’

plothandle= f igure ;
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mygrplot(C,D(s,:), plothandle );

20 f igure (plothandle );

hold on

axis auto

end

% Edges of min spanning tree of dual graph

25 Dm=D(s,:);

% The root of the tree is edge e1, find this in edge in E

[r1,c]= f ind (E==e1(1));

[r2,c]= f ind (E==e1(2));

r = intersect(r1,r2);

30 i f length(r)~=1

error( spr int f (’Not found edge [%d, %d]’,e1));

e l se

e1n=r;

end

35 %Which triangle is this edge in?

[r1,c]= f ind (H==e1(1));

[r2,c]= f ind (H==e1(2));

r = intersect(r1,r2);

roottri=r;

40 Dm=treesort(Dm ,roottri );

nv = max(max(H));% number of vertices

newV= zeros(nv ,2);

newV(e1(1) ,:)=v(1,:);

newV(e1(2) ,:)=v(2,:);

45 traversetriangles(H,Dm,angles ,roottri ,e1,v,op);

V=newV;
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A.3 f solve MATLAB code

function xn=myfsolve (fun ,x0)

nmax =10000;

err = 1e-6;

xn=x0;

5 for n=1: nmax

[F,J]=fun (xn);

jsize= s i ze (J);

i f jsize (1) ~= jsize (2)

s i ze (J)

10 error (’Jacobian is not square ’)

end

% if jsize (1) ~= size (F,1)

% size (J)

% size (F)

15 % error (’Jacobian size does not match F’)

% end

i f norm (F)<err

f p r in t f (’Converged after

%d iterations with a residual of %10.5e\n’,n,norm(F));

20 return

end

xn=xn -(J’*J+0.000001*eye( s i ze (J ,2)))\J’*F’;

end

fpr in t f (’Quit after)

25 %d iterations with a rsidual of %10.5e’,nmax ,norm(F));

end
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A.4 Myfunction MATLAB Code

function [F,J]= myfunc (X)

global H vtoe g bdryverts edges nedges twinelts nbtris

global x_to_corner corner_to_x

angs xlastang nvint Xtocond EdgeCond intverts

5 % F function values

% J jacobian

%angs is a global used to pass the FIXED angles

%angs= zeros(size (H,1),3);

%angs=zeros(1+3∗size(H,1)−nbtris,2);

10 %cond_homog=X(1); % Homogeneous conductivity

fnum =1; % number of equations

% Conductivity here is local, calculated from X

Conductivity = Xtocond*X(( xlastang +1):end);

angs1=angs; % includes those that do not vary!

15 for ie=1: s i ze (H,1)

for k=1:3

i f corner_to_x(ie,k)~=0

angs1(ie ,k) =X(corner_to_x(ie,k));

end

20 end

end

% First sum of angles in each triangle

for el = 1: s i ze (H,1)

F (fnum) = angs1 (el ,1)+ angs1 (el ,2)+ angs1 (el ,3)-pi;

25 for k=1:3

i f corner_to_x(el,k)~=0

J (fnum ,corner_to_x(el,k))=1;

end
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30 end

fnum=fnum +1;

end

% now sum of angles around interior verices

for iv=intverts (1:end-1);

35 % We need just the interior vertices

vinele=vtoe {iv};

% List of elements around this vertex

angsum =0;

for el=vinele

40 % all the elements that include this vertex

% Within this element which of the three vertices is iv?

thisone= f ind (H (el ,:)== iv);

angsum=angsum+ angs1 (el ,thisone );

i f corner_to_x(el,thisone )~=0

45 J (fnum ,corner_to_x(el,thisone ))=1;

end

end

F(fnum)= angsum - 2*pi;

fnum=fnum +1;

50 end

%Now the sine rule formulae around interior vertices.

for iv=intverts; % We need just the interior vertices

vinele=vtoe {iv};

% List of elements around this vertex

55 logsinsum =0;

for el=vinele

% all the elements that include this vertex

% Within this element which two vertices are not iv?

outsideverts= f ind (H (el ,:)~= iv);
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60 % so outside verts is eg [1,3], or [1,2] [2,3]

i f outsideverts (1)==1 & outsideverts (2)==3

outsideverts=outsideverts ([2 ,1]);

% to keep cyclic ordering

end

65 logsinsum = logsinsum +

log( s in (angs1(el,outsideverts (2)))) ...

- log( s in (angs1(el,outsideverts (1))));

% as the cyclic order of the vertices in each triangel is

% anticlockwise the first is plus and the second is minus

70 i f corner_to_x(el,outsideverts (1))~=0

%the ones that are not fixed

J (fnum ,corner_to_x(el,outsideverts (1)))= ...

cot(angs1(el,outsideverts (1)));

% deriv of log sin is cot

75 end

i f corner_to_x(el,outsideverts (2))~=0

J (fnum ,corner_to_x(el,outsideverts (2)))= ...

-cot(angs1(el,outsideverts (2)));

end

80 end

F(fnum)= logsinsum; % should be zero

fnum=fnum +1;

end

85 % Now the cot formulae

% We have to loop over edges that share two triangles

for ied= 1: nedges

i f twinelts (ied ,1)~=0 && twinelts (ied ,2)~=0

t1=twinelts (ied ,1);
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90 t2=twinelts (ied ,2);

tl1=H (t1 ,:);

tl2=H (t2 ,:);

ti1= f ind (setdiff (tl1 ,edges (ied ,:))==H (t1 ,:));

ti2= f ind (setdiff (tl2 ,edges (ied ,:))==H (t2 ,:));

95 a1 = angs1 (t1 ,ti1);

a2 = angs1 (t2 ,ti2);

F (fnum)= Conductivity(t1)* cot(a1)/2 +

Conductivity(t2)* cot(a2)/2 -EdgeCond(ied) ;

J (fnum ,corner_to_x(t1,ti1))=

100 -Conductivity(t1 )/(2*( s in (a1 ))^2);

J (fnum ,corner_to_x(t2,ti2))=

-Conductivity(t2 )/(2*( s in (a2 ))^2);

J(fnum ,1) = (cot (a1)+ cot (a2) )/2;

fnum=fnum +1;

105 end

end
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A.5 Meshtograph MATLAB code

function [E,D,C]= meshtograph(H,V);

% [E,D,C]=meshtograph(H,V)

% From the matrix H listing vertices

%for each triange produce

5 % the list of edges and the dual graph D

% the centroids of the triangles

%are returned in C and can be used

% for plotting the dual graph.

nt = s i ze (H,1);

10 E=[];

% This will produce interior edges twice

for it=1:nt

E=[E;H(it ,[1 ,2])];

E=[E;H(it ,[2 ,3])];

15 E=[E;H(it ,[3 ,1])];

end

E= sort (E,2);

E=unique(E,’rows’);

i f nargout >1

20 ne= s i ze (E,1);

D=[];

for ie=1:ne

[ts1 ,j]= f ind (H==E(ie ,1));

[ts2 ,j]= f ind (H==E(ie ,2));

25 ts=intersect(ts1 ’,ts2 ’);

i f length(ts)==2

D=[D;ts];

end

end;
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30 i f nargout >2 & nargin ==2

C=[];

for it=1:nt

Hii=V(H(it ,:) ,:);

com = mean(Hii);

35 C=[C;com];

end

end

end
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A.6 Mygrplot MATLAB Code

function h1=mygrplot(V,E,h)

f igure (h);

axis equal

hold on

5 for ie = 1: s i ze (E,1)

x= V(E(ie ,:) ,1);

y= V(E(ie ,:) ,2);

plot ( x,y)

end

10 plot (V(:,1),V(:,2),’k.’,’MarkerSize ’ ,20)

h1=h;
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A.7 OrientH MATLAB Code

function H1= orientH(H,V)

nt= s i ze (H,1);

nv= s i ze (V,1);

5

for it = 1:nt

v1 = V(H(it ,1) ,:);

v2 = V(H(it ,2) ,:);

v3 = V(H(it ,3) ,:);

10 s = det( [v2-v1;v3-v1]);

i f s<0

H(it ,:)=H(it ,[2 ,1 ,3]);

end

end

15 H1=H;
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A.8 Plcigrid MATLAB code

function []= plcigrid (g,H)

% plcigrid Plots a 2D FEM mesh

% Function []=plcigrid (g,H,E);

% plots a given 2D FEM mesh.

5 %

% INPUT

%

% g = node coordinate matrix

% H = topology

10 % E = elements under the electrodes (can also be empty)

% co = colour of the mesh

% J. Kaipio, 11.4.1994.

% Modified by M. Vauhkonen 1999,

% University of Kuopio,

15 % Department of Applied Physics, PO Box 1627,

% FIN−70211 Kuopio, Finland, email: Marko.Vauhkonen@uku.fi

% Stripped down by Bill Lionheart 06/05/2010

nH=max ( s i ze (H));

axis (’xy’), axis (’square ’)

20 hold on

% loop

for ii=1:nH

Hii=g (H (ii ,:) ,:);

com = mean(Hii);

25 Hii=[Hii;Hii (1 ,:)];

hHii=plot (Hii (:,1),Hii (: ,2));

text (com(1),com(2), spr int f (’%d’,ii));

end
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A.9 Isinorder MATLAB code

function isit=isinorder(a,b)

% checks if two element list b

% is in the same cyclic order as list a

aa=[a,a(1)];

5 [r,c]= f ind (aa==b(1));

i f aa(c(1)+1)==b(2)

isit =1;

e l se

isit =0;

10 end
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A.10 Trisolve MATLAB code

function v3=trisolve(v1 ,v2 ,a1 ,a2)

% Finds the third vertex given

%two vertices and two angles of a triangle

a3= pi - a1 -a2;

5 d = v1-v2;

l3=norm(d);

p = [d(2),-d(1)]./ l3; % unit vec perp to d c/w

l1 = s in (a1)*l3/ s in (a3); %sin rule

s= l1*cos(a2);

10 h= l1* s in (a2);

v3 = v2 + s*d./l3 + h*p;
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A.11 Treesort MATLAB code

function Ts=treesort(T,root);

% sortes the vertices in the edges

%of a rooted tree to make a directed

% tree (edges have diferent numbers)

5 Ts=[];

nr= s i ze (T,1);

[r,c]= f ind (T==root); % edges containing root

r=r’;

i f length(r)>0

10 for ir=r

i f T(ir ,2)== root

nextroot(ir)=T(ir ,1);

e l se

nextroot(ir)=T(ir ,2);

15 end

Ts=[Ts;root ,nextroot(ir)];

end

% call recursively on sub trees

setdiff (1:nr ,r);

20 prunings= T(setdiff (1:nr,r),:);

for ir=r

Ts=[Ts;treesort(prunings ,nextroot(ir))];

end

end
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A.12 Traverse triangles MATLAB code

function traversetriangles(H,Dm,angles ,troot ,edgein ,v,op)

global newV plothandle

troot and entered it from edgein

nextvertex = setdiff(H(troot ,:), edgein );

5 i f length(nextvertex )~=1

error(’Next vertex not unique!’);

e l se

% if newV(nextvertex,:)==[0,0]

10 r1= f ind (H(troot ,:)== edgein (1));

r2= f ind (H(troot ,:)== edgein (2));

r1;

r2;

troot ;

15 angles(troot ,r1);

angles(troot ,r2);

newV(nextvertex ,:) = trisolve(v(1,:),v(2,:),

angles(troot ,r1),... angles(troot ,r2));

i f op==’disp’

20 f igure (plothandle)

hold on

plot (newV(nextvertex ,1),newV(nextvertex ,2),’ob’)

plot (newV(edgein ,1),newV(edgein ,2),’-b’)

pause(1)

25 end

[r,c]= f ind (Dm(: ,1)== troot );

for ir =r’

nexttri=Dm(ir ,2); %The next triangle

nextedge=intersect(H(troot ,:),H(nexttri , :));
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30 nextv (1 ,:)= newV(nextedge (1) ,:);

nextv (2 ,:)= newV(nextedge (2) ,:);

%to be positively ordered wrt the ordering of nexttri

i f isinorder(H(nexttri ,:), nextedge )==0

nextedge=nextedge ([2 ,1]);

35 nextv=nextv ([2 ,1] ,:);

end

traversetriangles(H,Dm,angles ,nexttri ,nextedge ,nextv ,op);

end

%end

40 end
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A.13 Testssol MATLAB code

% Test harness for surveysolve

global H vtoe twinelts bdryverts

g edges nedges angles btris C

%Radii of each ring

5 r=[1 ,0.5 ,0.25 ,0];

%Numbers of vertices in each ring

N=[16,8,4 ,1];

eI=[1 ,0];

%Make a mesh

10 [g,gp,H,Ejunk ]= cirgrid_eit(r,N,eI);

H=orientH(H,g);

% Here g is the x and y coordinates

%of vertices and H is the element

% topolgy

15 % ie a list of vertices in each traingel

%Plot the mesh

f igure ,plcigrid(g,H);

bdryverts = 1:N(1);

%The vertices on the boundary for a more general

20 % mesh we will need to do this betetr

%Make a list (cellarray) of the elements meeting

% at each vertex and angles

vtoe = cell([ s i ze (g,1) ,1]);

% so vtoe{i} is going to be a list (of variable length)

25 % of the triangles (elements)

% that inclued the vertex numbered i. Cell arrays

%can have any type in them

angles = zeros( s i ze (H,1) ,3);

% this will be the three angles in each triangle
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30 % in the same order as in H

% we will have to flatten it to a vector for the fsolve part

for ie=1: s i ze (H,1)

for k=1:3

vtoe{H(ie ,k)}=[ vtoe{H(ie ,k)},ie];

35 side1 = g(H(ie,mod(k,3)+1) ,:) -g(H(ie,k),:);

side2 = g(H(ie,mod(k-2 ,3)+1) ,:) -g(H(ie,k),:);

angles(ie ,k)=

acos( side1*side2 ’/( norm(side1)*norm(side2 )) );

end

40 end

% centroids

C= zeros( s i ze (H,1) ,2);

for ii=1: s i ze (H,1);

Hii=g(H(ii ,:) ,:);

45 C(ii ,:) = mean(Hii);

end

angles=angles + 0.0003*randn( s i ze (angles ));

% errors for test

%bdryverts = 1:N(1);

50 % The vertices on the boundary for a more \general

%mesh we will need to do this betetr

%centroid=[];

%for el=1:size(H,1)

%els=H(el,:);

55 %xs=g(els,1);

%xs=vtx(els,1);

%ys=g(els,2);

%ys=vtx(els,2);

%Mx=mean(xs);

149



60 %My=mean(ys);

%centroid(els,1)=Mx;

%centroid(els,2)=My;

%centroids=(g(H(:,1),:)+g(H(:,2),:)+g(H(:,3),:))/3;

%end

65 %[th,r]=cart2pol(centroid(:,1),centroid(:,2));

%Conductivity=ones(size(H,1),1);

%Conductivity (find(r<0.3))=1.5;

V =surveysolve(H,angles ,[1,2],g([1,2],:),’disp’);

f igure ,plcigrid(V,H);
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II. Comment. Math. Helvetici, 71(2010.35):144–167, 1996.

[21] D. DeTurck and D. Yang. Existence of elastic deformations with prescribed

principal strains and triply orthogonal systems. Duke Mathematical Journal,

51(2):243–260, June 1984.

[22] G. Dong, H. Endo, S. Hayano, S. Gao, and Y. Saito. GVSPM for recon-

struction in electrical impedence tomography. IEEE Transaction on Magnetics,

39(3):1630–1633, May 2003.

[23] M. Floater. Parametrization and smooth approximation of surface triangula-

tions. Computer Aided Geometric Design, 14:231–250, 1997.

[24] G. Folland. Introduction to partial differential equations. University of Tokyo

Press, Princeton University Press, 1976.

[25] R. Gaburro and W. Lionheart. Recovering riemannian metrics in monotone

families from bounary data. Inverse Problems, 25(045004), 2009.

[26] H. Gagnon, A. Hartinger, M. Cousineau, A. Adler, and R. Guardo. A resistive

mesh phantom for assesing the performance of EIT systems. IEEE Biomedical

Engineering, 57:2257–2266, 2010.

[27] N.D. Haasbroek. Gemma Frisius,Tycho Brahe and Snellius and their triangula-

tions. Publication of the Netherlands Geodetic Commission, 1968.

[28] D. Holder. Clinical and physiological applications of electrical impedance tomog-

raphy. London: UCL Press, 1993.

[29] D. Holder. Electrical impedance tomography. Institute of Physics, Bristol, 2005.

153



[30] Sergii Iglin. http://www.iglin.exponenta.ru, Accessed on November 2010.

[31] R. Kohn and M. Vogelius. Identification of an unknown conductivity by mea-

surements at the bounary. SIAM-AMS Proceedings, 14:113–123, 1984.

[32] R. Kohn and M. Vogelius. Determining conductivity by boundary measurements

II.Interior results. Communications on Pure and Applied Mathematics, 38:643–

667, 1985.

[33] J. Lee and G. Uhlmann. Determining anisotropic real-analytic conductivities by

boundary measurements. Communications on Pure and Applied Mathematics,

42(8):1097–1112, 1989.

[34] W. Lionheart. Conformal uniqueness results in anisotropic electrical impedance

imaging. Inverse Problems, 13:125–134, 1997.

[35] W. Lionheart and K. Paridis. Finite elements and anisotropic EIT reconstruc-

tion. Journal of Physics: Conference Series, 224(1):12–22, 2010.

[36] Loke. MH(2010)Tutorial: 2-D and 3-D electrical imaging surveys, geotomo soft-

ware. www.geoelectrical.com, 2010.

[37] T. Murai and Y. Kagawa. Electrrical impedence computed tomography based

on a finite element model. IEEE Transactions on Biomedical Engineering, BME-

32:177–184, 1985.

[38] A. Myl’nikov and A. Prangishvili. Homological and cohomological invariants of

electric circuts. Automation and Remote Control, 63(4):578–586, 2002.

[39] A. Nachman. Global uniqueness for two-dimensional inverse boundary value

problem. Annals of Mathematics, 142:71–96, 1995.

[40] K. Nakayama, W. Yagi, and S. Yagi. Fundamental study on electrical impe-

dence plethsmography. In Proceedings Vth International Conference on Electri-

cal Bioimpedance, Tokyo, Japan, pages 99–102, 1981.

154



[41] R. Patterson and J. Zhang. Evaluation of an EIT reconstruction algorithm using

finite difference human thorax models as phantoms. Physiological Measurements,

24:467–475, 2003.

[42] A. Ramirez, W. Daily, A. Binley, D. LaBreque, and D. Roelant. Detection of

leaks in underground storage tanks using electrical resistance methods. Journal

of Environmental and Engneering Geophysics, 1(297-330), 1996.

[43] A. Sheffer and E. de Sturler. Parametrization of faceted surfaces for meshing

using angle-based flattening. Engineering with Computers, 17:326–337, 2001.

[44] G. Strang and G. Fix. An analysis of the finite element method. Prentice-Hall,

New york, 1973.

[45] Z. Sun and G. Uhlmann. Generic uniqueness for an inverse boundary value

problem. Duke Mathematical Journal, 62:131–155, 1991.

[46] J. Sylvester. Remarks on an inverse boundary value problem. Lecture Notes in

Mathematics, Springer-Verlag, 1256:430–441, 1986.

[47] J. Sylvester. An anisotropic inverse boundary value problem. Communications

on Pure and Applied Mathematics, 43:201–232, 1990.

[48] J. Sylvester. A convergent layer stripping algorithm for the radially symmetric

impedence tomography problem. Communications in Partial Differential Equa-

tions, 17:1955–1994, 1992.

[49] J. Sylvester and G. Uhlmann. A uniqueness theorem for an inverse boundary

problem in electrical prospection. Communications on Pure and Applied Math-

ematics, 39:92–112, 1986.

[50] J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse bound-

ary value problem. Annals of Mathematics, 125:153–169, 1987.

155



[51] L. Tarassenko. Electrical impedance techniques for the study of cerebral circu-

lation and granial Imaging in the newborn. PhD thesis, University of Oxford,

1985.

[52] G. Uhlmann. Topical review: electrical impedance tomography and Calderón’s

problem. Invrse Problems, 25(123011), 2009.

[53] M. Vauhkonen. Electrical impedance tomography and prior information. PhD

thesis, Kuopio University, 1997.

[54] M. Vauhkonen, W. Lionheart, L. Heikkinen, P. Vauhkonen, and J.P. Kaipio.

A MATLAB package for the EIDORS project to reconstruct two-dimensional

EIT images. Physiological Measurements, 22(1):107–111, February 2001.

[55] T. Yorkey, J. Webster, and W. Tompkins. Comparing reconstruction algorithms

for electrrical impedence tomography. IEEE Transaction on Biomedical Engi-

neering, 34(11):843–851, November 1987.

[56] T.J. Yorkey. Comparing reconstruction methods for electrical impedance tomog-

raphy. PhD thesis, Department of Electrical and Computer Engineering, Uni-

versity of Wisconsin, 1986.

156


