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ABSTRACT 

A polymorphic substance is capable of forming a number of different crystalline 
phases that are referred to as its polymorphs. The critical process that determines the 
outcome of a crystallization process in a polymorphic system is thought to be the 
nucleation state, which is the self-assembled stage just prior to the formation of 
crystals with long-range order. While nucleation is well known to be influenced by 
macroscopically measurable parameters such as temperature, supersaturation and 
solvent choice our understanding of the underlying molecular self-assembly 
processes is very limited. The research described in this thesis explores a new 
approach to extending our knowledge in this area by the use of a combination of 
medium throughput crystallisation experiments together with the computation of a 
range of molecular and solute/solvent descriptors of the system under study. 

The main objective of the work was to develop a protocol for relating experimental 
and computational data via artificial neural network (ANN) analysis, to identify 
significant links between experimental polymorphic outcomes and molecular 
properties. By creating a model that can predict the polymorphic form in a given 
experiment it is anticipated that our understanding of links between nucleation and 
crystallisation will be enhanced through the determining the pivotal properties of a 
molecule that cause it to form one polymorph over another.  

The ANN method was developed in the context of the carbamazepine system, 
applying several statistical techniques to the results of 88 crystallisation experiments, 
featuring 13 solvents, 3 evaporation rates and 4 temperatures. The results show that 
this approach allows the formulation of further research hypotheses through 
examination of the physical meaning of the set of descriptors identified by the ANN 
approach. Crucially, principal component analysis (PCA) was found to be able to 
efficiently narrow down large sets of computationally derived descriptors to a 
manageable set by removing redundancy through strongly cross-correlated 
parameters. The best ANN model generated in this research was capable of 
predicting the major polymorphic form in 89 % of cross-validation experiments. 

The optimised set of descriptors included both solute and solvent properties, which 
predominantly described the intermolecular interactions in solution. The physical 
meanings of the descriptors and their impact on the molecular processes during 
nucleation has been considered and their cross correlation has been examined. Initial 
results from further experimentation with the tolbutamide and ROY systems indicate 
that the methodology is also transferable to other polymorphic systems. 
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THESIS OVERVIEW 

CHAPTER 1 - INTRODUCTION – Presents an introduction to polymorphism, nucleation 

and crystallisation and also the current research in these areas. 

 

CHAPTER 2 – METHODS AND MATERIALS – Provides information about the 

experimental techniques used and polymorphic systems analysed. Background theory 

and software information for all the computational aspects of this research is also 

provided. 

 

CHAPTER 3 – SYSTEMS STUDIES – Literature review of the polymorphic systems 

studied in this research (carbamazepine (CBZ), tolbutamide (TBA) and 

5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY).).  

 

CHAPTER 4 – ANALYSIS METHODOLOGY – An overview of the molecular modelling, 

descriptor calculation and Artificial Neural Network (ANN) analysis in this research. 

 

CHAPTER 5 – RESULTS AND DISCUSSION – MANUAL ANALYSIS – Presentation of the 

different analyses carried out using the CBZ dataset. The aim was to reduce the 

number of descriptors that could make a successful prediction of CBZ polymorphic 

form from 167 to approximately 10. The results during the development of a 

predictive ANN are presented and also an overview of the physical meanings of the 

successful descriptor set that led to a prediction. 

 

CHAPTER 6 – RESULTS AND DISCUSSION – PLS ANALYSIS – Another method of 

descriptor dataset reduction is presented, using partial least squares (PLS) analysis. 

ANN models were built by selecting important features from the data and attempting 

to predict the polymorphic outcome of crystallisation results. The initial PLS analysis 

was carried out by Dr. O. Svensson at AstraZeneca, who then provided the data for 

further analysis. 
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CHAPTER 7 – RESULTS AND DISCUSSION – PCA ANALYSIS – A further method of 

descriptor dataset reduction, using principal component analysis (PCA). As with the 

PLS analysis, this was also carried out by Dr. O. Svensson at AstraZeneca, who then 

provided the data for further analysis. Descriptors were selected and predictive 

models built in the ANN. This method led to a successful model, allowing the 

discussion of the physical meanings of these descriptors. It also demonstrated a 

transferrable method for selecting important descriptors, which can lead to a 

successful predictive ANN. 

 

CHAPTER 8 – FINAL OPTIMISATION AND DISCUSSION OF RESULTS– The predictive 

models created in chapters 5 and 7 were subject to further analysis in order to 

determine if further optimisation could occur. The descriptors in the final model for 

CBZ prediction were also discussed with regards to how they relate to nucleation and 

crystallisation. 

 

CHAPTER 9 – RESULTS AND DISCUSSION OF ANALYSIS WITH DIFFERENT TARGET 

MOLECULES – Two additional polymorphic systems were examined, TBA and ROY. 

The descriptors highlighted in the CBZ analysis (chapter 8) and also the method of 

descriptor selection highlighted in chapter 7 were assessed to see if the descriptors 

and the methods were transferrable to different polymorphic target molecules. 

 

CHAPTER 10 – CONCLUSIONS – Conclusions based upon the success of the CBZ 

predictive model for polymorphism were discussed. The preliminary results based on 

the different polymorphic target molecules were also presented. 

 

CHAPTER 11 – FURTHER WORK –Further work that may lead to an improved 

predictive model, which is also transferrable to other molecules, was presented. 

 

CHAPTER 12 – APPENDIX – Experimental polymorph screen results, descriptor 

definitions, modelling results, XRPD traces and predictive rules presented.   
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1.            INTRODUCTION 
 
 
 
The crystallisation of polymorphic molecules is an area of pivotal interest to the 

pharmaceutical industry. The ability to theoretically predict crystallisation outcomes 

for a given set of experimental conditions just from a set of molecular descriptors 

would be extremely beneficial to product development, intellectual property 

generation and its protection. This thesis aims to highlight a method whereby 

experimental data and theoretically calculated molecular descriptors are brought 

together through artificial neural network methodologies, in order to predict the 

polymorphic forms generated by crystallisation processes. 

This introductory chapter aims to provide information on the principles of the 

nucleation and crystallisation of different polymorphic forms. By using knowledge of 

the molecular descriptors gained from successful polymorph prediction, new insights 

into the nucleation of polymorphic forms may be generated. 

1.1. A Crystalline Substance 

Solids in which molecules are packed in a regular way with long range order are 

known as crystals. If however there is only short range order the solid is said to be 

amorphous[1]. In this work only crystals will be investigated and it is the subtle 

molecular packing arrangements which are of interest.  

Due to the highly ordered and symmetric nature of such molecular packings, crystals 

grow in regular shapes, for example, needle-like, plates and prisms, this is known as 

the crystals morphology[2-5]. In some situations, such as polymorphism (section 1.2) 

the morphologies can be different between the forms, which can be used as a means 

of identification. However, morphology differences are not a necessary condition of 

polymorphism. 

1.2. Polymorphism  

Polymorphism is a phenomenon that occurs in a variety of different fields of science. 

Within chemistry, a polymorph is defined as a substance that can exist in more than 

one different crystalline phases that display different chemical and physical 

properties, for example melting points, solubility, density and bioavailability[6-9]. The 
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crystals of a polymorphic substance may have conformational differences[10] or 

different molecular packings within the unit cell[11]. In the example of carbamazepine 

and 4-chlorophenol[7] all of the polymorphs have identical molecular structures 

within the unit cell, but it is the way in which they are arranged that creates the 

different forms[12]. This is not the case in all polymorphic systems such as L-glutamic 

acid[13] and 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY)[10]; in 

some systems the molecules within the unit cell are also conformationally different, 

these systems are known as conformational polymorphs. 

Closely related to conformational polymorphism is polychromism, demonstrated by 

the ROY polymorphs, N-(p-chlorobenzylidene)-p-chloroaniline[14] and 

dimethyl-3, 6-dichloro-2,5-dihydroxyterephthalate[15], but this phenomenon of 

coloured crystals is not commonly seen in organic molecules. Research suggests that 

the colour of ROY may arise from electron delocalisation between the phenyl and 

thiophene rings[16]. Yu et al.[17] suggested that the colour is due to the conformational 

differences that alter the “π-conjugation between the o-nitroaniline chromophore and 

the thiophene ring”[17]. 

 
1.2.1. Solvates and Hydrates 

Solvates and hydrates, although not strictly referred to as polymorphs, are closely 

related species that are important in crystallisation. A solvate is a crystal that 

regularly incorporates a solvent molecule within its crystal structure[7], similarly a 

hydrate incorporates a water molecule[5]. There are no clear reasons as to why a 

solvate will form, but it may be due to an increased level of stability in the crystal 

structure[7, 18]. Hydrates may form due to the small size of the water molecule that 

can easily fit within a molecule and they also have multidirectional potential for 

hydrogen-bonding,[7] which can stabilize a crystal structure.  

 

1.2.2. Relative Stability of Polymorphs 

In a polymorphic system (for example with two different forms) in equilibrium the 

two forms conform to Gibbs phase rule (Equation 1.1), with F representing the 

degrees of freedom, P being the number of phases and C the number of 

components[19]. 

 2+−= PCF  Equation 1.1 
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In an example with only two forms, there is only one degree of freedom (F=1), which 

means that if either the temperature or pressure is changed; the corresponding value 

that allows equilibrium to be retained can be found.  If however the system is 

trimorphic, F=0, there is only one value of temperature and pressure at which 

equilibrium can be retained. This temperature value is known as the transition 

temperature (Tt), and in a polymorphic systems is represented by the 

Clansius-Clapeyron equation (Equation 1.2), in which ∆V represents the difference in 

molar volume between the polymorphs; ∆Ht is the latent heat of transition, and T and 

P represent temperature and pressure[1]. 

 

 
t
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∆

∆
=  Equation 1.2 

 

Going back to a dimorphic example (forms I and II), the more stable form (II) has a 

lower solubility (independent of solvent) than form I. When a crystal of each form is 

placed into a supersaturated solution, both chemical potentials (µ) with regard to the 

solid and liquid phase become equal (Equation 1.3) and by assuming ideality, the 

solubility (xeq) of each form can be represented (Equation 1.4). 

 
 )(ln)()( 0

IIxRTIIII eqeqsolid +== µµµ  

 )(ln)()( 0
IxRTII eqeqsolid +== µµµ  

Equation 1.3 

 )()( III solidsolid µµ <  

 )()( IxIIx eqeq <  
Equation 1.4 

 

Density is also important in polymorphism and can be related to the stability of the 

form by the density rule[7, 20]. This rule states that the lower the density of a form, the 

less stable the polymorph is, due to a more dense solid having stronger 

intermolecular interactions[20, 21]. 

There are two key relationships between sets of polymorphs, these are monotropism 

and enantiotropism. For a polymorphic pair with a monotropic relationship, the 

solubilities of the forms are independent of temperature. Whereas if they are 

enantiotropically related, the relative solubilities are dependent on temperature, with 
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transformations between forms being a reversible process[6]. These concepts are most 

easily highlighted in Figure 1.1. 

 

 

Figure 1.1 Solubility curves in a) monotropic and b) enantiotropic systems[1] 

 

1.2.3. Polymorphism in the Pharmaceutical Industry 

The problem of polymorphism in the pharmaceutical industry has been demonstrated 

in a number of cases. Perhaps one of the most famous examples of polymorphism 

and the impact on the pharmaceutical industry is that of Ritonavir, a protease 

inhibitor for the treatment of Acquired Immunodeficiency Syndrome (AIDS)[22, 23]. 

Throughout development only one crystal form was ever identified, however two 

years after the drug went to market, the capsules in a new batch failed dissolution 

testing[22]. Using microscopy, a new form was identified, as it had a different crystal 

habit than observed previously. It was later revealed that this form had a much lower 

solubility and would affect the efficacy of the drug. According to Ostwald’s rule of 

stages (section 1.4.4) the least stable form crystallises first and in the case of 

Ritonavir this is what had been seen throughout manufacture. 

This is an exceptional example that has led to tighter restrictions on pharmaceutical 

drugs, however the reason polymorphism was not investigated more thoroughly in 

this case was because it was a semi-solid formulation. ICH (international conference 

on harmonisation) guidelines state that “for a drug product that is in solution, there is 

little scientific rationale for polymorphic control”[23], however this statement has now 

be proven incorrect, and the criteria amended. 

Another feature of polymorphism of interest to the pharmaceutical industry is their 

ability to disappear and in some cases reappear years later[24-27]. Dunitz and 

Bernstein[26] detail a number of examples (1,2,3,5-tetra-O-acetyl-β-D-ribofuranose, 
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benzocaine:picric acid, melibiose and mannose to name but a few) in which initially 

one form was crystallised, but after this it could not be made again. In the case of 

benzocaine:picric acid further research has been carried out[28] and the form that had 

once disappeared can now be crystallised and observed using thermal microscopy 

methods. 

 
1.2.4. Polymorph Prediction 

The ability to predict crystal structures based on only the molecular structure, by 

calculating the global minimum lattice energy[29], is an area of increasing interest in 

the scientific community. Since 1999 the Cambridge Crystallographic Data Centre 

(CCDC) has regularly sent test sets of molecules to the leading predictive crystal 

structure groups by as a challenge to the latest predictive methods [30-32]. The 5th blind 

test is being completed in 2010[33]. Advances have been made in this area which has 

then led onto the prediction of polymorphic crystal structures[34]. By calculating the 

global minimum lattice energy, other energetically feasible structures can be 

highlighted that could indicate polymorphism within a given molecule[29]. Work by 

Price[30, 34] discusses how computational calculations can be used to predict 

polymorphic outcome and states that it is important to consider kinetic factors for 

successful predictions[30]. 

Della Valle et al.[35] introduced a predictive method that combined experimental 

Raman spectroscopy data with theoretical energy minimisation of structures. For 

their model systems, sexithiophene, tetracene and pentacene, the method predicted 

experimentally known polymorphs well; however the results were inconclusive for 

many other molecules. This research highlights that there is potential for polymorph 

prediction to occur, however due to the complex nature of the task, it is very 

difficult. 

Previous work by McCabe[8] utilised bulk solvent properties to predict the 

polymorphic outcome of a carbamazepine polymorph screen using artificial neural 

networks. This work proved the concept of using solvent properties to predict 

polymorphic outcomes and led to this current study into the molecular level 

parameters. Bulk property understanding is very useful on a practical scale, 

especially in the pharmaceutical industry where efficiency is the key, it does not 

however improve our understanding of what is occurring at the molecular level when 

one polymorph is crystallised over another in solution. 



 

 29 

1.3. Crystallisation 

Crystallisation is a heavily researched field due to its widespread application in many 

of the chemical industries[36-39]; but it is within the context of the pharmaceutical 

industry that is of importance to this research. There are a number of ways to 

crystallise a product, with the two key methods being suspension and solidification. 

Suspension requires the sample to be in solution and at supersaturation. If the 

solubility curve for the solute is know, the exact method by which a product can be 

obtained is more easily determined. For example, if the solubility is heavily affected 

by temperature then cooling crystallisation would be most suitable[40, 41]. 

Alternatively, when the temperature has minimal impact on the solubility, 

evaporation is preferred as it is more likely to generate an increased yield. If however 

the sample is presented as a liquid that is above its melting point (i.e. a melt) then 

spray drying can be used, whereby the solution is sprayed and droplets solidify on 

cooling[1].  

In this research cooling and evaporative crystallisation techniques have been 

employed, because of equipment for multiple simultaneous crystallisations by these 

methods was available. 

 

1.3.1. Factors Affecting Crystallisation 

Controlling the crystallisation process can allow purer products to be generated and 

potentially polymorphic form selection. The concentration of the sample[42], 

availability of seeds[43], rate of agitation[7], temperature[41] and evaporation or cooling 

rate[40] may all contribute to the crystallisation process. Therefore is it essential to 

understand these factors in order to improve efficiency and reduce the costs of 

crystallisation in industry.  A discussion of the key factors that affect crystallisation 

in this work follows. 
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1.3.1.1. Supersaturation 

Within this research a supersaturated solution was created in two ways, which then 

led to the crystallisation of different polymorphic forms. Crystalline material was 

dissolved in a given solvent at a set temperature and nitrogen blown down onto it to 

control the evaporation rate. By evaporating the solvent at a fixed temperature the 

overall volume is reduced and therefore the concentration in solution is increased, 

creating a supersaturated solution that will then crystallise. The second method is to 

again dissolve crystalline material in a given solvent and then reduce the 

temperature. The reduction in temperature decreases the solubility and therefore 

moves the solution into the supersaturated region (Figure 1.2). 

 

 

Figure 1.2 Solubility curve, adapted from Davey et al.[1] 

 

Crystallisation will not occur when the solution is undersaturated (all of the 

crystalline material is dissolved[1]) and therefore one of the two mentioned 

techniques must be used in order to put the solution into a region of the solubility 

diagram where crystallisation can occur. When the metastable zone is exceeded, 

crystallisation is spontaneous, but if a solution falls into the metastable zone, it is 

unlikely that crystals will form spontaneously. If a seed was introduced to the 

solution, growth may occur in the metastable region[6].  

For crystallisation to occur the solution needs to be supersaturated, therefore the 

amount of dissolved solute exceeds equilibrium[1].  Supersaturation (σ) can be 

defined in thermodynamic terms (Equation 1.5), as the chemical potential difference 
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between the equilibrium (µeq) and the supersaturated (µss) state of a solute[1], with k 

being the Boltzmann constant and T the temperature of the system in kelvin. 

 
 

kT

eqss )( µµ
σ

−
=  Equation 1.5 

 
If the solution is ideal then the equation can be reduced further to enable 

supersaturation to be calculated using the composition of the solution (Equation 1.6). 

 
 

)ln(
eq

ss

x

x
=σ  Equation 1.6 

 
It is important to note that the degree of supersaturation can affect the outcome of a 

crystallisation experiment. By creating a saturated solution at varied high 

temperatures with filtration to remove all excess solid each solution can be cooled to 

a single specific temperature, which therefore achieves different supersaturation 

concentrations[44]. 

 
1.3.1.2. Seeding 

Seeding can allow control of morphology, particle size and the polymorphic form 

crystallised[45] and can also promote crystallisation in the metastable region of the 

solubility diagram[6]. Controlling the crystallisation of a particular polymorphic form 

can be influenced by the addition of seeds of the desired form, which was 

demonstrated in the literature[43, 46, 47]. He et al.[46] discussed that if the concentration 

is only a little above saturation, the form of the seeds may not always result in the 

same form being crystallised[46], demonstrating the importance of knowing the 

solubility diagram for a system. 

 
1.3.1.3. Temperature  

Temperature (T) can affect the solubility (xeq) of a crystal in solution[40, 41], with this 

relationship shown in Equation 1.7, where a, b and c are constants derived from 

experimental data (Equation 1.8)[1, 40]. 
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Cp is the molar heat capacity, with ∆CpS->L representing the difference between the 

heat capacities of the solid and solute in solution.[40] ∆HS->L the change in molar 

enthalpy and ∆SS->L the molar entropy change of the solid to the solute in liquid. R is 

the gas constant. Previous research has shown that varying the temperature of 

crystallisation can alter the polymorph crystallised[44, 48, 49]; which is an important 

factor in this research. 

 
1.3.2. Polymorph Screen 

Polymorph screening is a standard technique used in the pharmaceutical industry to 

determine if there are any polymorphic forms of a molecule[50, 51]. The screens 

usually take place early in the development of a new drug[52] so that any polymorphs 

can be included in the patent of the molecule. By varying the solvent, temperature 

and rates in different types of crystallisation, a wide range of experimental conditions 

can be covered. This allows the identification of any new polymorphic forms to be 

conducted. Characterisation techniques often include X-ray powder diffraction 

(XRPD), differential scanning calorimetry (DSC), infrared (IR) and Raman 

spectroscopies[52]. It is now becoming more common that these polymorph screens 

are automated so that a larger experimental space can be interrogated[48, 52]. 

In the research discussed in this thesis the polymorph screens were carried out to 

generate input data for the neural network analysis (detailed in 4.3). 

 

1.4. Nucleation 

Prior to crystallisation there is an aggregation of molecules in solution. Once such 

aggregations have reached a critical size, it becomes energetically favourable for 

them to grow into crystals[53]. Research is ongoing into how many molecules are 

involved when reaching a critical size nucleus. Yau et al.[54] used atomic force 

microscopy (AFM) to observe the number of molecules of protein apoferritin present 
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in a critical size nucleus. 50, 20 and 10 molecules were observed at a number of 

different supersaturations (1.1, 1.6 and 2.3 respectively)[54]. These aggregates in 

solution are held together by intermolecular interactions, such as hydrogen-bonds, 

van der Waals and coulombic interactions[55].  In some systems it is unknown as to 

whether nucleation has occurred spontaneously or due to other factors such as 

agitation, foreign particles or crystals[6]. There are two key types of nucleation, 

primary and secondary, both of which will be explained in the following section. 

 

1.4.1. Primary Nucleation 

There are a number of factors that need to be considered in the nucleation of crystals, 

the first of which is the free energy of cluster formation. When a cluster is formed 

some of the molecules are in the bulk of the crystal (Zb) and others are on the surface 

(Zs). The surface molecules of the crystal are under stress as they lack nearest 

neighbour molecules[1], therefore do not have a full compliment of intermolecular 

bonds (depicted in Figure 1.3). This stress encourages growth in order to satisfy the 

bonding requirements of the molecules, and exerts a pressure on the cluster and 

hence raises its chemical potential.  

 

Figure 1.3 Diagram of how molecules at the crystals surface do not have a full compliment of 

intermolecular interactions, adapted from Davey et al.[1] 

 
The free energy of the cluster is represented by Equation 1.9 with gb and gs being the 

solid bulk and surface free energies respectively. 
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Between the cluster and the solution the interfacial tension (γ) plays a role, as does 

the surface area of the cluster (A) which can be included in the free energy equation 

(Equation 1.10 and Equation 1.11). 

 
 

A

Zgg sbs )( −
=γ  Equation 1.10 

hence AZgg bz γ+=  Equation 1.11 

 
If a spherical cluster is formed with Z molecules then the surface area becomes 

proportional to the number of molecules (Equation 1.12). 

 
 3/2

ZA ∝  Equation 1.12 

 
When this relationship is included in the clusters free energy calculation and is 

written in terms of chemical potentials of the molecules in the bulk of the cluster 

(µb), Equation 1.13 applies. This equation also introduces the area shape factor of the 

nucleus (β). 

 
 3/2

ZZg bz βγµ +=  Equation 1.13 

 
If the cluster is made up of molecules A which are in the bulk liquid phase at mole 

fraction xss then nucleation can be represented by a quasi equilibrium which occurs 

between the cluster and monomers in solution (Equation 1.14). 

 
 

zAZA ⇔  Equation 1.14 

 
The free energy change per mole of Az upon nucleation is given by Equation 1.15. 

 
 µZgG z −=∆  Equation 1.15 

 
This equation includes a chemical potential term for the monomers (µ), and since it is 

known that µ = µ
0
+ kT lnxss, then Equation 1.16 can be formed, which shows the free 

energy change upon nucleation. 

 
 )ln()( 03/2

ssb xkTZZZG +−+=∆ µβγµ  Equation 1.16 
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When the solution is saturated, x = xeq, therefore µb = µ
0
+ kT lnxeq and thus the 

equation for free energy can be re-written (Equation 1.17). This equation also 

includes a term for supersaturation, ln(xss/xeq). 

 
 3/2ln Z

x

x
ZkTG

eq

ss βγ+−=∆  Equation 1.17  

 
Equation 1.17 states the relationship between free energy change and 

supersaturation, which is depicted in Figure 1.4. When the nuclei have reached the 

critical size (Zc) the free energy begins to decrease. As is apparent from the diagram, 

the degree of supersaturation affects the height of the free energy barrier.  

Figure 1.4 The free energy change versus the cluster size, adapted from Davey et al.[1] 

 
High supersaturations require less energy to form critically sized nuclei, which upon 

a further decrease in barrier height can lead to spontaneous nucleation. The rate at 

which clusters form and grow to their critical size is defined as the nucleation rate. 

In primary nucleation it is assumed that the formation of clusters containing the 

nuclei of molecule A is a stepwise process until the critical size (Zc) is reached[1, 55]. 

 
 

cc AAZ →  Equation 1.18 

 
The equilibrium constant (Kz) for the formation of the critical nucleus[55] of the 

system is shown in Equation 1.19. 
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By relating the equilibrium constant to the activation free energy for nucleation 

(∆Gc), Equation 1.20 can be derived, and by assuming the nucleus to be spherical 

with a radius (r), interfacial tension (γ) the equation can be rewritten (Equation 1.21). 

 
 )/exp(][][ RTGAA c

z

c
c ∆−=  Equation 1.20 

 γππ 23 4)3/4( cbcc rGrG +∆=∆  Equation 1.21 

 
Overall the rate of nucleation (J) is represented by Equation 1.22, which emphasises 

how essential the supersaturation (σ), temperature (T), molar volume in the crystal 

(νc) and interfacial tension (γ) are to the crystallisation process[1]. 

 
 )/exp( 233 σγ TBKJ JJ −=  

where 3323 3/16 TRB cνπγ=  
Equation 1.22 

 

1.4.1.1. Homogeneous Nucleation 

Homogeneous nucleation assumes a stepwise aggregation of molecules, starting 

spontaneously from a supersaturated solution without influence from other factors. 

Classical nucleation theory is based on work by Gibbs, Volmer, Becker and Döring, 

where crystallisation from solution is compared to the condensation of a vapour into 

liquid[6]. Homogenous nucleation is a rare occurrence in systems with a volume over 

100 µL, and due to the presence of impurities that may induce nucleation, 

heterogeneous nucleation is more commonly observed[45]. 

 
1.4.1.2. Heterogeneous Nucleation 

When a foreign body is found in a supersaturated solution it may inhibit or accelerate 

the nucleation rate, and is referred to as heterogeneous nucleation. Whether this 

substance was added intentionally[56] or is a contaminant in the system it can lead to 

nucleation of a crystal product. The presence of a surface allows adsorption of the 

molecules that lowers the activation free energy for nucleation[1, 45]. 

 
1.4.2. Secondary Nucleation 

When a seed of the desired product is presented to a solution in order to induce 

nucleation, this is termed secondary nucleation. This method is employed in industry 

as a means to control polymorphic outcome, morphology and particle size[45], and 
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will often play a dominant role in large scale crystallisations[56]. However, the 

secondary nucleation rate (B) induced by the addition of seeds is not only affected by 

the concentration of the seeds (MT), but also on the stirrer speed (N) which affects the 

solution-crystal interactions and supersaturation (σ) (Equation 1.23). 

 
 bkj

T cNMB ∆= k  Equation 1.23 

 

1.4.3. The Nucleation of Polymorphs 

An expression for the rate of nucleation has been presented in Equation 1.22, but it 

can also be expressed in the following way when addressing the issue of more than 

one polymorphic form (Equation 1.24). JI represents the nucleation rate of metastable 

form I, JII the nucleation rate of stable form II and K the equilibrium constants. 

 
 [ ]2

, )/(exp xiIIJI BKJ σσ −−=  

and [ ]2
, /exp iIIIIJII BKJ σ−=  

Equation 1.24 

 
These equations come from the supersaturations of the solution initially ( iσ ) 

(Equation 1.25) and when the solution is saturated with form I, xσ  (Equation 

1.26)[1]. 

 
 

IIIIii xxx /)( −=σ  Equation 1.25 

 
IIIIIx xxx /)( −=σ  Equation 1.26 

 
When B is defined (Equation 1.27) dimensionless variables can also be defined 

(Equation 1.28), leading to the two rate equations being solved. 
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The solved rate equations for a polymorphic systems highlight under what conditions 

form I or II have the higher nucleation rate. 
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If KJ,I > KJ,II  then above a certain supersaturation value the metastable form I has the 

higher nucleation rate, but below this value form II would nucleate more quickly. 

This was shown in work by Cornel et al.[57] with the polymorphs of D-mannitol, 

whereby low supersaturations nucleated the most stable form initially. 

If KJ,II > KJ,I  and (1 - a/c)
3
 < b, then the more stable form II has the higher nucleation 

rate across the whole range of supersaturation values. 

If KJ,II > KJ,I  and (1 - a/c)
3
 > b, then the metastable form I has the higher nucleation 

rate over the whole range of supersaturation values. 

These three conditions go against what is known as Ostwalds’s rule of stages, which 

shall now be discussed. 

 

1.4.4. Ostwald’s Rule of Stages 

Ostwald’s rule of stages formulated in 1897[55] suggested that the change from 

supersaturation to equilibrium, involves a number of steps. Each of these steps 

represent the smallest change in free energy possible[1]. To apply this to a 

polymorphic system, the changes in free energy represent the movement from the 

least stable polymorphic form through to the thermodynamically stable form, going 

through all other possible forms. By following this rule of stages, the least stable 

form will always be crystallised first[1] and a slurry should allow full conversion to 

the thermodynamically stable form.  

Ostwald acknowledged that there would be exceptions to this rule[6], and current 

research supports these deviations, but, in many cases this rule is true. 

Concomitant polymorphism deviates from Ostwald’s rule of stages by suggesting 

that two or more forms can simultaneously crystallise[21, 58]. However, the major 

deviation that concerns the research discussed in this thesis is the phenomenon of 

cross-nucleation, whereby seeds of one form nucleate another[59]. There are relatively 

few examples of cross-nucleation in the literature; ROY (discussed in section 3.2) is 

one, another D-Mannitol[59-63]. Tao et al.[62] highlight that the early nucleating form 

“does not consume the entire liquid”[62], and can go on to nucleate a more or less 

thermodynamically stable form. This highlights that the stability of a form does not 

affect whether is can cross-nucleate[63]. Desgranges et al.[61] suggested that cross-

nucleation is governed by kinetic factors and that it occurs between stable and 

metastable forms that have very similar free energies. It has also been suggested that 

there is a need for the cross-nucleated form to grow comparably or faster than the 
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form that initially nucleated[36, 60, 62, 63], but this does not guarantee that it will occur. 

Chen et al.[60] stated that it is important that the nucleation of the new form is a rapid 

process, otherwise it may not occur. There is little literature on this topic, and only a 

few examples of cross-nucleation exist, but it is an important process to note within 

this research. 

Research has been conducted by Cornel et al.[57] into the nucleation of the three 

polymorphs of D-mannitol. They have observed that the degree of supersaturation 

affects which form is crystallised first, highlighting another deviation from Ostwald’s 

rule of stages. The observation that at a low supersaturation the most stable γ 

polymorph nucleated directly[57] rather than initially nucleating as the less stable 

form, was made experimentally.  

 
1.4.5. Detection of Nucleation 

There are a number of macroscopic parameters that can be monitored in order to 

confirm that nucleation has occurred in a system, these are temperature, light 

transmittance and concentration. Nucleation causes a reduction in free energy and 

therefore heat is produced, DSC or simply a thermometer can be used to monitor 

this[1]. The optical transmittance can be monitored as nucleation causes a change in 

solution clarity due to increased number of particles. Density, refractive index and 

conductivity can also all be monitored in order to asses the concentration changes, 

and it is expected that the concentration of the solution will decrease upon 

nucleation[1]. 

The induction time can also be characterised by measuring the time difference 

between the establishment of supersaturation and the occurrence of nucleation (τind), 

which is useful in determining the rate of nucleation (Equation 1.29)[1]. 
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The induction time is heavily influenced by the degree of supersaturation, levels of 

agitation, viscosity and presence of impurities or seeds[6]. 
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1.4.6. Current and Previous Research into Nucleation 

Detection and analysis of the nucleation state is an important research area that could 

give new insight into the mechanism of crystallisation. Particularly relevant to this 

work would be the discovery of why one polymorph is crystallised over another 

under certain experimental conditions, and to highlight whether there is order within 

the solution that is then carried through to the crystallised product. Experimental 

analysis and theoretical modelling has been carried out in order to learn more about 

nucleation, with a number of examples presented here.  

Experimental interrogation of the nucleation state has met with some success in the 

protein[54] and colloidal[53] fields due to the larger size of particles involved. However 

moving to small molecules presents further problems. Yau et al.[54] observed using 

atomic force microscopy (AFM) that the molecular arrangement of proteins within 

the nuclei was similar to that found in the crystal structure. 

An insight into the nucleation of small molecules was generated by Banerjee et al.[64] 

by determining the crystal structure of Na(saccharinate).nH2O. Although this 

molecule has been known for over 100 years, the crystal structure was never solved. 

In solving the structure they uncovered a number of unusual features not commonly 

found in a crystal, earning it the title of a “model for nucleation”[64] as they believe it 

to be a close representation of a crystal nucleus. The unusual features were a large  

asymmetric unit in which there are areas of order and disorder and the presence of 

extra solvent, suggesting full crystallisation has not yet occurred[64]. 

Prior to the work of Banerjee et al.[64] there have been a number of studies into 

nucleation, using a variety of techniques and molecules. Davey et al.[55] analysed the 

polymorphic systems of sulfathiazole and 2,6-dihydroxybenzoic acid to probe 

molecular self-assembly in solution. This was monitored by introducing an additive 

that inhibits nucleation of one of the polymorphs. This work suggested that 

molecular assembly in solution does indeed direct nucleation, and that by using 

different solvents the nucleation of different forms may be obtained[55]. 

Different experimental techniques have also been utilised in the study of nucleation 

for example NMR[49, 65], Infrared (IR) spectroscopy[66, 67] and neutron scattering[68]. 

Spitaleri et al.[65] use 1H-NMR to study the nucleation of sulfamerizine with a degree 

of success. They suggested that by using the changing chemical shift influenced by 

the change in concentration, combined with genetic algorithm and NMR analysis 
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software shifty, insight can be gained into the packing of the molecules in 

solution[65]. Davey et al.[66] assessed the difference in molecular structure of 

carboxylic acids in solution and when crystalline using IR spectroscopy. Benzoic and 

tetrolic acids have evidence of a dimeric structure in solution that is also evident in 

the solid form, a conclusion also expressed by Parveen et al.[66]. In contrast, racemic 

mandelic acid was more complex. Features known to be present in the crystal 

structure were not observed in solution and also no distinction could be made 

between racemic and pure enantiomers in solution[66]. More recent work by Burton et 

al.[68] generated structural information on the metastable solution of urea using 

neuron scattering combined with molecular simulations[68]. It was found that 

hydration played an important role in this metastable solution, and that a urea 

molecule was surrounded by seven other urea and eight water molecules. These 

findings are in contrast to molecular packing observed in the solid state, in which 

fourteen urea molecules are found at equivalent radial distances[68].  

Directly relevant to this current research is the investigation of the nucleation of 

polymorphic systems, for example inosine[49] and tetrolic acid[67]. Chiarella et al.[49] 

worked with inosine which has two forms and a dihydrate, and interrogated the 

saturated solution using NMR spectroscopy. In solution there was evidence of 

molecular stacking and also the presence of dimer-like structures that translated into 

the solid α form of inosine. It was also noted that the temperature affected the 

polymorphic outcome and below 10°C the formation of the dihydrate was favoured, 

but with no differences seen in the solution structure. This raises the question as to 

the relationship between the solution structure and the solid form. Parveen et al.[67] 

investigated dimorphic tetrolic acid in different solvents using IR spectroscopy. 

Dimers were observed in solution, but in polar solvents dimerisation was disrupted 

and the catemeric form was formed[67]. Their research highlights the important role 

solvent plays in polymorphic crystallisation, which will be addressed in the research 

discussed in this thesis. 

Understanding the nucleation state has also led to computational modelling of the 

phenomenon. Browning et al.[69] interrogated different levels of undercooling and 

found that with a small level of undercooling, metastable crystals were theoretically 

observed, whereas for strong undercooling it was the most stable crystal[69]. Work 

has also been conducted using small molecules, namely yellow isoxazolone dye, 

paracetamol and L-Glutamic acid by Deij et al.[70] using molecular dynamic 
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simulations. These three molecules are polymorphic and the structures were built up 

assuming that the correct molecular orientation are determined at the nucleation 

stage[70].  Deij et al.[70] highlighted the importance of interfacial energy, and 

commented upon how the use of different solvents can alter this energy and direct 

the formation of the desired polymorph[70]. To further consolidate the effect of 

solvent on polymorph selection, Sharma et al.[71] modelled the effect of solvents on 

polymorphic form and noted that there is clearly an influence on the crystalline 

product.  

 

1.5. Growth of Polymorphic Crystals 

Once the nuclei have reached a critical size and crystallisation has begun, the crystals 

in solution continue to grow. Within the supersaturated environment the number of 

molecules joining the crystal surface exceeds the number leaving and therefore leads 

to crystal growth. How able a crystal is to capture these molecules and incorporate 

them into the crystal lattice is determined by the strength of the interactions between 

the surface molecules and molecules in solution[1]. Figure 1.5 highlights the growth 

of a two-dimensional crystal and demonstrates the differing growth rates of the 

crystal surfaces. 

 
 Figure 1.5 2D-crystal growth. Dashed lines show the potential growth based on different growth rates 

of the crystal faces, with a growing faster than b, leading to a decreased a surface. 

 
There are two intermolecular interactions on face a and only one on face b. When 

molecules join face a, more energy is provided to the system by binding to the site 

with most interactions and therefore it will grow faster[4].  

a

b

a

b
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The situation is slightly more complex with respect to a three-dimensional crystal 

(Figure 1.6). A maximum of three intermolecular interactions can occur, which are 

found at kinked (K) sites. When only two intermolecular interactions are possible the 

attachment site is stepped (S) and if there is only one possible intermolecular 

interaction, the site is flat (F). 

 

Figure 1.6 3D-crystal growth. Schematic of kink, step and flat sites of intermolecular binding to the 

crystal surface 

 
Equation 1.31 shows the relationship between the linear growth rates at the different 

sites of binding on a three-dimensional crystal. 

 
 

FSK υυυ >>  Equation 1.31 

 

As discussed previously (section 1.1), many crystals have different morphologies. 

These morphological differences are determined by the growth speed of the crystal 

faces.  In cases of polymorphism, where solvent plays a determinant role in which 

form is crystallised, the morphological differences that are sometimes seen may be 

due to the way in which the solvent interacts with the growth face[3, 72].  

The growth of a crystal can also be affected by the simultaneous growth of other 

crystals,[5] something that is highlighted in polymorphic system ROY (see section 

1.4.4). There is also a well documented affect of additives on crystal growth, which 

can inhibit or accelerate the growth of polymorphic forms by mimicking the 

conformation of the molecule and inhibiting growth[38, 73, 74]. 
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1.5.1. Polymorphic Phase Transitions 

There are both solvent-mediated and solid state phase transitions. In solvent-

mediated phase transitions the crystallised metastable form is dissolved into the 

solution allowing the renucleation and recrystallisation of the stable form[1, 75]. As the 

activation energy for this process is lower[56] than that of a solid state transformation, 

this method is more favourable when the transition is taking place below the melting 

point of the polymorph[1]. Solution-mediated phase transformations are observed in 

numerous systems, for example 2,6-dihydroxybenzoic acid[56], paclobutrazol[75], 

D-mannitol[57] but most importantly to this research carbamazepine[76].  

In a solid state phase transition the stable phase is nucleated and grows in the 

unstable crystals in a reversible reaction[1]. This is often seen between enantiotropic 

polymorphs, and therefore by changing the temperature the forms can interconvert 

and recrystallise. Anwar et al.[77] observed the phase transformation of form IV to 

form I of sulfathiazole upon heating. They monitored this transition using time-

resolved powder x-ray diffraction and observed the decrease in form IV peaks and 

the increase in those attributed to form I. Li et al.[78] have observed a similar 

transition in a derivative of ROY[78].  

 

1.6. Summary 

This chapter aimed to highlight the principles of the nucleation and crystallisation of 

different polymorphic forms and why polymorph investigation is relevant to the 

pharmaceutical industry. By increasing knowledge surrounding the molecular level 

factors that may impact which polymorph is crystallised, more controlled 

experimental work can be carried out, insights into nucleation may be generated and 

predictions of crystallisation experiments could be made. 
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2. METHODS AND MATERIALS 
 

 

 

The research presented in this thesis utilises both experimental and theoretical 

methods in order to understand and predict the formation of polymorphic forms. This 

chapter provides an overview over the techniques and materials in this work. 

 

2.1. X-Ray Powder Diffraction 

X-ray powder diffraction (XRPD) has been used in this research to identify which 

polymorph has been formed in the crystallisation work. XRPD uses X-rays of a 

known wavelength, 1.5406 Å, to probe the crystal structure of a molecule. The 

monochromatic x-ray beam is directed at the crystalline sample, which then produces 

a diffraction pattern, giving information about the crystal lattice. With the knowledge 

of d spacing and the angle at which the peak was generated, the structure can be 

characterised. This information is generated by understanding the Bragg equation 

(Equation 2.1), in which n represents the order of diffraction, λ  is the wavelength 

and d is the distance between planes in the crystal[1, 2]. 

 

 θλ sin2dn =  Equation 2.1 

 

 

 

 

 

Figure 2.1 Diagram highlighting the d spacing and angles of diffraction of the X-rays, adapted from 

Byrn[1] 
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XRPD is useful for polymorphic identification as different crystal lattices, which 

polymorphs have, will produce unique diffraction patterns. This technique has been 

noted as a valuable tool for identification of polymorphs[2-5], and in some cases can 

be used in quantitative analysis[1, 6, 7], which may be useful in future work. 

Three different powder diffraction instruments were used in this research for analysis 

of the different polymorphs formed. The main analyses were carried out using the 

Bruker D8 instruments at AstraZeneca and within the Chemistry department. CBZ 

samples were flatted onto a wafer using a microscope slide prior to analysis and 

ROY samples were lightly ground before flattening onto the wafer due to their 

needle-like morphology.[8] 

2.1.1. XRPD Instruments 

All sampled were analysed over 2° to 40° 2θ, at 25°C with slightly different step 

sizes and speeds depending upon the instrument. 

Table 2.1 XRPD instrument details 

XRPD Instrument Location of 
Instrument Step Size (°) 

Speed 
(Seconds 
per step) 

Number of 
scans 

Bruker D8 AstraZeneca 0.014 0.2 1 

Bruker D8 
The University of 

Manchester 
0.014 0.2 3

*
 

Bruker D4 AstraZeneca 0.0057 0.03 1 
Rigaku miniflex 

benchtop 
The University of 

Manchester 
0.03 1.2 1 

*
Three scans were required to achieve comparable resolution 

2.2. Polymorph Screen 

The evaporative crystallisations were conducted on a small scale simultaneously 

(maximum of 24 at once) using a Radleys greenhouse blowdown head (Figure 2.2). 

This apparatus allowed control of temperature and evaporation rate, with the 

experimental conditions of 5, 15 and 25 L/min of nitrogen at temperatures of 25, 50, 

75 and 100°C being used in all possible combinations. The results of the 

carbamazepine polymorph screen can be found in Appendix 12.1. 
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Figure 2.2 Radleys greenhouse blowdown head[9] 

 

2.3. Carbamazepine Experimental Details 

From the commercially available carbamazepine (CBZ), forms I, II, III, Dihydrate 

and the DMSO solvate can be readily made. Form IV requires addition of a second 

component but can be produced successfully as shown by Lang et al.[10]. 

2.3.1. Form I 

Form I is the triclinic form of CBZ and can be made by heating commercial CBZ at 

150˚C for 3 hours[3]. The XRPD trace obtained from this material was used as the 

standard form I diffraction pattern in this work (Figure 2.3). 
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Figure 2.3 XRPD of carbamazepine form I used as the standard diffraction pattern in this research 
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2.3.2. Form II 

Form III was dissolved into chloroform aided by heat (⅓ total volume of vessel). The 

vessel was then filled with petroleum ether and vacuum filtered immediately. This 

preparation resulted in the crystallisation of form II, with the standard XRPD trace 

highlighted in Figure 2.4. 
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Figure 2.4 XRPD of carbamazepine form II used as the standard diffraction pattern in this research 

2.3.3. Form III 

Form III is commercially available from Sigma Aldrich, but can also be crystallised 

by slow evaporation from ethanol[3]. The XRPD trace of this thermodynamically 

stable form can be seen in Figure 2.5. 
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Figure 2.5 XRPD of carbamazepine form III used as the standard diffraction pattern in this research 
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2.3.4. Form IV 

The crystallisation of form IV requires the addition of hydroxypropyl cellulose to a 

methanol solution, which upon slow evaporation will produce form IV[3, 10]. Pure 

form IV was never obtained in this research; therefore the theoretical XRPD trace 

from the CSD (ref code CBMZPN12[10]) has been used as the standard (Figure 2.6). 

0

2000

4000

6000

8000

0 5 10 15 20 25 30 35 40 45 50

2-theta scale

L
in

 (
co

u
n

ts
)

 

Figure 2.6 XRPD of carbamazepine form IV used as the standard diffraction pattern in this research. 

Taken from the theoretical powder patter from CSD reference CBMZPN12 

2.3.5. Dihydrate 

Evaporative crystallisation from water produced the CBZ dihydrate, with the XRPD 

trace in Figure 2.7. 
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Figure 2.7 XRPD of carbamazepine dihydrate used as the standard diffraction pattern in this research 
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2.3.6. DMSO Solvate 

Slow evaporation of a stoichiometric mixture of CBZ and DMSO will result in the 

DMSO solvate[11]. The standard XRPD trace used is shown in Figure 2.8. 
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Figure 2.8 XRPD of carbamazepine DMSO solvate used as the standard diffraction pattern in this 

research 

2.4.   ROY Experimental Details 

The thermodynamically stable form of ROY (Y) was received as a gift from Dr. C. 

Nicholson of The University of Durham. The standard XRPD traces for the Y and R 

forms are presented here (Figure 2.9 and Figure 2.10 respectively), as they were the 

only forms crystallised in this research. The XRPD traces of the other polymorphs of 

ROY may be found in Electronic Appendix, chapter 2, file 1.1. 
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Figure 2.9 XRPD of ROY form Y used as the standard diffraction pattern in this research 
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Figure 2.10 XRPD of ROY form R used as the standard diffraction pattern in this research 

 

2.5. Tolbutamide Experimental Details 

2.5.1. Form I 

The most common method for the preparation of form I is using the method of 

Simmons  et al.[12], whereby 25 g of tolbutamide (TBA) was dissolved in 50 mL of 

benzene at 50°C. To this solution 25 mL of a 40°C hexane solution was added 

slowly, and crystallisation occurred at room temperature. The XRPD trace generated 

for this form can be seen in Figure 2.11. 
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Figure 2.11 XRPD of TBA form I used as the standard diffraction pattern in this research 
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2.5.2. Form II 

The method of preparing form II used by Burger[13] was to dissolved TBA in boiling 

carbon tetrachloride and slowly cool. Al-Saieq et al.[14] produced form II by slow 

evaporation from methanol or ethanol. The standard form II XRPD trace is shown in 

Figure 2.12.  
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Figure 2.12 XRPD of TBA form II used as the standard diffraction pattern in this research 

2.5.3. Form III 

20 g of TBA was added to 20 mL of water and 40 mL of ethanol at a temperature of 

40 °C, as presented in research by Simmons et al.[12]. This solution was then 

crystallised at room temperature. Thirunahari et al.[15] reported that this method 

generated a mixture of form I and III crystals and in order to produce pure form III 

they carried out the same method at RT and left the crystals to grow for one day. No 

pure form III was obtained in this research therefore the XRPD trace in the work by 

Thirunahari et al.[15] was used as the standard and is presented in Figure 2.13. 
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Figure 2.13 XRPD of TBA form III used as the standard diffraction pattern in this research, taken 

from the supporting information of Thirunahari et al.[15] 

2.5.4. Form IV 

Sonoda et al.[16] crystallised form IV in the presence of 

2,6-Di-O-methyl-β-cyclodextrin that inhibits solution mediated transformation to 

form I. The crystallisation takes place in pH 8.0 sodium phosphate buffer. It was 

noted in Sonoda et al.[16] research that form IV crystallises initially in this buffer, 

even when the 2,6-Di-O-methyl-β-cyclodextrin is not present. However, it quickly 

transforms to form I.[16] Thirunahari et al.[15] found that slow evaporation from an 

acetonitrile solution at room temperature also produced form IV. Pure form IV was 

never obtained in this work, therefore the XRPD trace from the research of Sonoda et 

al.[16] was used as a standard. 

 

Figure 2.14 XRPD of TBA form IV used as the standard diffraction pattern in this research, adapted 

from Sonoda et al.[16] 
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2.5.5. Form V 

Form V is a very new polymorph of tolbutamide discovered by Nath et al.[17] and 

was crystallised whilst searching for cocrystals. The addition of 1 mL of a cooled 

(-20°C) solution of 0.5 mL conc. HNO3 and 10 mL methanol, to a tolbutamide 

solution (-20°C, 30 mg TBA in 10 mL methanol) that was then allowed to crystallise, 

formed this new polymorph.  Form V has not been seen in this research, but for 

reference the XRPD trace has been presented in Figure 2.15.  

Figure 2.15 XRPD of TBA form V used as the standard diffraction pattern in this research, taken from 

Nath et al.[17] 

 

2.6. Theoretical Calculations 

The polymorphic and solvent molecules were modelled within solvent force fields, 

and from these optimised structures, molecular descriptors were calculated. 

 

2.6.1. Molecular Modelling 

Two different software packages were used in this research to compute molecular 

models; these were Hyperchem™[18] and Gaussian 03[19]. Hyperchem™[18] was used 

primarily for the early calculations with relatively low theory levels (OPLS and 

PM3). OPLS (Optimized Potentials for Liquid Simulations) is a molecular mechanics 

force field that represents the simplest form of molecular modelling and was initially 
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devised to model proteins and nucleic acids[20]. Molecular mechanics force fields 

allow the prediction of molecular geometry using previously derived data from 

related molecules.[21] The derived data used is a combination of different parameters 

and equations that define the energy and was demonstrated in early work using a 

collection of hydrocarbons to refine the model[22].  

PM3 (Parametric Method 3) is a semi-empirical calculation method that is an 

improvement upon the MNDO (Modified Neglect of Diatomic Overlap) and AM1 

(Austin Model 1)[23] models. Semi-empirical methods consider the valence electrons 

within the system and incorporate core electrons by implementing a reduction in 

nuclear charge[24, 25]. These calculations are also less computationally expensive than 

higher level calculations because they are fitted to experimental results, and do not 

calculate every parameter used. The key assumption in semi-empirical methods is the 

zero-differential overlap (ZDO) that sets the overlap between pairs of different 

orbitals, commonly the s and p-orbitals to zero[24]. 

B3LYP/6-31G* is the basis set used in the high level calculations in Gaussian 03[19]. 

B3LYP stands for Becke’s correlation exchange combined with Lee, Yang and 

Parr’s correlation function that allows the full computation of the correlation energy 

of a system[26].  

6-31G* is a split valence method that means there are 6 core orbitals considered, in 

which 3 are inner and 1 is an outer valence orbital, with a Gaussian function, and a 

single point geometry optimisation (*). 

To visualise all of the models, Molden[27] and Gaussview[28] were used. 

2.6.2. Geometry Optimisation 

Geometry optimisation was used within this research to find the minimum energy 

structure that is thought to be the most stable molecular conformation [29]. A three-

dimensional structure is presented that requires optimisation and its energy is 

calculated, V(0). Once the starting energy is known, the atomic coordinates are 

moved and the energy recalculated until the lowest energy compared to the initial 

structure is found (depicted in Figure 2.16). The derivative of the energy with respect 

to the molecular coordinates (qk) is known as the gradient (gk). 
[29] At the minimum 
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point the gradient is equal to zero, and therefore optimisation occurs until this is 

achieved. This process is linearly represented by Equation 2.2[30]. 

 k

k

kk qgVqV ∑+= )0()(  Equation 2.2 

Within these types of calculation there can often be a number of minimum energy 

points. However, these are often a local minima and an extensive optimisation is 

required to obtain the global minimum (Figure 2.16). 

Figure 2.16 Simplified representation of a potential energy surface showing both global and local 

minimum 

2.6.2.1. Solvent Force Fields in DFT Calculations 

In this research it is important to consider the interaction of the molecule with the 

solvents used in crystallisation. In Gaussian 03[19], a number of pre-formed implicit 

solvent force fields are available, which have been utilised within this work. Solvent 

force fields have to be explicitly included in the Gaussian 03[19] calculations, with a 

polarisable continuum model (PCM) being used in this research. The PCM model 

creates a cavity in which the molecule is placed and exerts bulk effects (dielectric 

properties most importantly) of the solvent upon the molecule, slightly affecting its 

geometry[24, 31]. 

The background to this approach is based on the solvation free energy (represented 

by Equation 2.3) which takes into account electrostatic components, elecG∆ , van der 
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Waals interactions of the solvent and solute, vdwG∆  and also the energy required to 

form the solute cavity, cavG∆ [24]. 

 
cavvdwelecsol GGGG ∆+∆+∆=∆  Equation 2.3 

 

The electrostatic component is particularly important in charged or highly polar 

molecules, as the PCM method will use an average value for the dielectric 

constant[31]. This component is based on the Born model whereby a charge is placed 

into a solvent cavity and it is the work required to transfer an ion from the vacuum 

into the medium that is the electrostatic component[24]. This is shown in Equation 2.4 

where q is the ions charge, a is the radius of the solvent cavity and ε is the dielectric 

constant. 
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Gelec  Equation 2.4 

 
This is a relatively simplistic overview of the electrostatic component, whereas in 

quantum mechanical calculations the process is more complex. One of the key 

features within these advanced calculations is the shape of the solvent cavity. In 

PCM calculations the cavity is calculated using the van der Waals radii of the solute 

molecule, rather than a sphere[24, 32]. To improve the accuracy of these calculations 

the cavity surface is divided into many sections, each with an associated point 

charge. Polar coordinates for each atom are determined at the centre of their van der 

Waals sphere, therefore placing a charge at each point upon the surface of the cavity. 

This leads to more accurate determinations of the solute-solvent electrostatic 

interactions. 

The non-electrostatic terms, van der Waals interaction component and the free 

energy of cavity formation, are also important in the free energy of solvation 

calculations, especially when the solvent is not highly charged or polar[24]. These 

terms can be combined in Equation 2.5, where γ and b are constants within this 

equation and A is the total solvent accessible surface area of the solute molecule. 

 
 bAGG cavvdw +=∆+∆ γ  Equation 2.5 
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The free energy of cavity formation refers to the work required to create the solute 

cavity,[33] whilst acting against the solvent pressure and the entropy change due to the 

reorganisation of the solvent molecules around the molecule being analysed. The 

solvents most affected by the reorganisation are those closest to the solute molecule 

(within the first solvation shell), which is proportional to the solvent accessible 

surface area of the solute, A. The van der Waals interactions between solute and 

solvent are also affected by the number of solvent molecules within the first 

solvation shell, as these interactions are heavily affected by the distance between the 

molecules of interest. These factors highlight why both terms are proportional to the 

solvent accessible surface area of the solute. The constants γ and b are often 

experimentally determined, with γ having the value 7.2 cal/(molÅ2) and b often set as 

zero[24]. 

Although Gaussian 03[19] has many predefined solvent force fields, it is also possible 

for the user to define force fields of solvents that are not represented. Four different 

variables are required for the created of a solvent force field; these are the static 

dielectric constant (EPS), the dielectric constant at infinite frequency (EPSINF), the 

solvent radius (RSOLV) and the density (DENSITY) of the solvent. The dielectric 

constants are accessible within the literature and the other values can be calculated 

simply. 

EPSINF ( ∞ε ) can be calculated by using the refractive index of the solvent (nd), 

calculated using the relative permittivity ( rε ) and permeability ( rµ ) of the material 

(Equation 2.6). rµ  is often close to 1, which therefore means nd approximately 

equals rε , leading to Equation 2.7[34]. 

 
 

rrdn µε=  Equation 2.6 

 

 ( )2
dn=∞ε  Equation 2.7 

 
RSOLV is a value that relates the molar volume(  V ) to the radius of the solvent and 

is based on  research by Stearn and Eyring[35] (Equation 2.8).   V can be calculated 

(Equation 2.9) using the molecular weight (MW) and density ( ρ , g mL-1) of the 

solvent and Avogadro’s constant (NA). 
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DENSITY values are available in the literature for common solvents, but Equation 

2.10 needs to be used in order to calculate the values in terms of Å-3. 
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2.6.3.   Modelling Software Used 

Hyperchem™[18] version 8 Student edition by Hypercube Ltd. was used in this 

research to model the molecules, geometry optimise and perform conformational 

searches at low levels of theory. This was followed by higher level calculations in 

Gaussian 03, Revision D.01[19].  

2.6.4. Molecular Representation 

In order to calculate molecular descriptors a numerical representation of the 

molecular structure needs to be created. In some software, such as Hyperchem™[18] a 

molecule can be drawn by hand and from this, based on average bond lengths and 

angles, the molecular structure is optimised. Cartesian coordinates were created in 

Hyperchem™[18] that were then used as the starting geometry for Gaussian 03[19] 

optimisations. 

2.6.5. Molecular Descriptors 

Molecular descriptors are a numerical representation of molecular properties. In this 

research both the polymorphic molecule and the solvents used in crystallisation have 

been modelled to allow descriptors to be calculated. Two different pieces of software 

have been used in these calculations (MOE[36] and software from the book Molecular 

Descriptors in QSAR/QSPR [37]) to allow a large range of descriptors to be 

generated. There are two types of descriptor used in this research, these are empirical 

and theoretical. Within these types there are different classes of descriptor, for 
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example structural descriptors which are mainly concerned with intramolecular 

interactions and solvational descriptors which explain intermolecular interactions in 

solution[37]. Within the theoretical class of descriptors there are constitutional, 

topological and geometrical descriptors which are the most simple. These describe 

the atoms, bonding and shape of the molecule, whereas there are the more complex 

charge-distribution, molecular-orbital and thermodynamic descriptors[37]. Empirical 

descriptors can be generated experimentally, which in many cases is impractical due 

to the molecule or time and cost of experiments. Theoretical descriptors on the other 

hand are mathematical representations, based on fundamental physical equations. 

Details of all the molecular descriptors used in this research can be found in 

Appendix section 12.2. 

2.6.6. Molecular Descriptor Software Used 

Molecular descriptors were calculated using software from a book entitled, 

Molecular descriptors in QSAR/QSPR[37] and also by commercially available 

software, MOE[38] (molecular operating environment) from the Chemical Computing 

Group. 

 

2.7. Artificial Neural networks 

Artificial Neural Networks (ANN) have found relatively new applications within the 

chemical sciences[39, 40], whereas previously they have been more heavily used in 

other fields such as biological sciences[41-44], economics[45] and physics[46], 

highlighting their diversity as a analytical tool. However, ANNs are now becoming 

more common in the chemical literature with various applications, from predicting 

physicochemical values[47-53] to determining chemical shifts in 13C NMR data[54]. Not 

only can ANNs predict outputs from a given set of numerical data, but they can also 

be applied to imaging. A good example of this application is seen in work that 

monitors receptor binding with UV/Vis spectroscopy[55]. The network monitors 

specific wavelengths and creates an output based on this. Earlier examples use an 

ANN to predict structure-activity relationships of carboquinone derivatives[56], and 
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others use modelled molecular descriptors to predict aqueous solubility of organic 

molecules[49-52]. 

ANNs are based on the human brain and the concept of learning through experience. 

As a child you learn to read and write and this is through looking at letters and 

remembering shapes and patterns. ANNs do something similar to the brain but in the 

case of this research, with numbers. Figure 2.17 shows a simplified diagram of the 

human neuron and it is this architecture that is the foundations of ANNs. 

 

Figure 2.17 A simplified biological neuron 

In human brains there are billions of neurons or nerve cells that relay impulses of 

information to other neurons within the body by the transportation of ions across 

synapses. The dendrites of one neuron provide the cell body with chemical signals 

that can act to either excite or inhibit[57] the action potential. Within the cell body 

there is a potential threshold. If the impulses received by the dendrites are above the 

threshold, an impulse or action potential is passed along the axon (of which there is 

only one per neuron). As shown in Figure 2.17 the axon can branch at the end and 

can transfer the chemical impulses to the dendrites of other neurons. The area at 
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which these impulses are passed from the axon of one neuron to the dendrites of 

another is called a synapse, which is diagrammatically represented at the top of 

Figure 2.17. Across a synapse there is a potential difference and as an impulse is 

passed along the axon, if the impulse is great enough it will be passed through the 

synapse by neurotransmitters. This impulse travels into the dendrite of the next 

neuron, creating a postsynaptic potential. However, if the impulse can not overcome 

the potential difference of the synapse, the signal is passed no further, demonstrating 

the “all-or-nothing”[57, 58] impact of these impulses. It is important to note that the 

synapses only operate in one direction, and therefore the signals can not pass back 

through the axon to the cell body[59]. 

The artificial neuron is based on the human neuron, with the threshold logic unit 

(TLU) being one of the earliest examples[60]. Early work by McCulloch and Pitts[60] 

is the basis of modern artificial neural networks, with further advances being made 

by Hopfield[58, 61] some years later, introducing the idea of nonlinearity between the 

input and output values[62, 63]. 

 

Figure 2.18 Representation of a Threshold Logic Unit 

Figure 2.18Figure 2.18 represents a TLU, where x is an input, resembling the 

chemical impulse passed through the dendrites in the human neuron. The size of x 

can vary; for example your input data is melting points so they are mainly different 

values. The differences visible in this diagram compared to the human neuron are the 

weights (w) which are similar to the synapses in the biological neuron. All inputs are 
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multiplied by the corresponding weights, with the results of each input line being 

summed. Similarly to the action potential in the human neuron it is only when a 

specific threshold (θ) is reached that an impulse is fired, in this case, y. TLUs are 

binary systems and therefore if the threshold is reached, y = 1, but if the value is 

below, the output is 0 (Equation 2.11)[57]. 
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Figure 2.19 graphical representation of a threshold function 

In an ANN the weights can be modified either manually or by the network whilst 

training. This is done to reduce the error between the predicted and desired output. 

Both the inputs and outputs are given to the network, allowing the adjustment of the 

weights automatically during training using an algorithm[64]. Once the error meets the 

convergence criterion the training is complete. 

In the simplest example of a TLU with only two inputs, a linear decision surface is 

created to allow the classification of the networks outputs. For example in Table 2.2, 

weights have been set to 1 and therefore the summation of the inputs determines 

whether the output is 1 or 0. In this example the threshold is set to 1.75, therefore all 

inputs that add up to less than this value will show an output of 0, highlighted in the 

plot (Figure 2.20). 
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Table 2.2 TLU example inputs 

X1 X2 Sum of inputs Output 

0 0 0 0 

0 1 1 0 

1 1 2 1 

1 0 1 0 

0 1 1 0 

1 1 2 1 
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Figure 2.20 the pattern space for the two input TLU showing the threshold which determines whether 

the output is 1 or 0 

Clearly this is a very simplified case but it highlights the idea of a decision surface. 

When the network becomes complicated it is more favourable to represent the values 

in terms of vectors, of which there are two of interest, the weight and input. Also, as 

one moves towards more complex systems, the decision surface will no longer be 

linear in 2D space[64]. With this, having such a simple threshold characterisation 

method is not practical and there is a move towards nonlinear functions.   

2.7.1. Multilayer Perceptron (MLP)  

A perceptron “is an enhancement of the TLU”[57] with a single layer and is concerned 

with a non-linear neuron (unlike the TLU). External bias can be placed on each 

input, and the learning is iterative rather than continuous[65]. 

Multilayer perceptrons (MLPs) are a combination of a number of perceptrons often 

trained using a back-propagation algorithm. Hidden layers are not input or output 
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layers (see Figure 2.21) but are commonly used in complex networks as they have 

the ability to extract the relevant information from the inputs that can train the 

network. They consist of different nodes that are connected and pass information 

between them[66], leading to the development of complex relationships. At every 

node there is a summation of information as every connection is weighted.  

 

Figure 2.21 Simplified two hidden layer neural network, with light blue shapes representing the nodes 

The number of hidden layers to use within a network is an area of much research, 

with a number of guidelines in the literature[62, 67-69]. If there are too few, the learning 

process may be hindered, too many and the network may overtrain and not generalise 

well[62]. Bourquin et al.[62] and Plumb et al.[69] both state that using Kolmogorov’s 

theorem, which suggests twice the number of inputs plus one, would be a good 

starting value. 

The INForm[70] software automatically detects the number of hidden layers required 

for the dataset and implements that value. In future, a full interrogation of the effects 

of the number of hidden layers on the data should be attempted. 

There are basically two steps in the training process of a MLP; initially the inputs are 

propagated through the network, layer by layer to produce an output[65]. If this output 

does not correspond to the actual output given to the network, then the information is 

fed back through the network to propagate through once again. When the process is 

restarted the weights are altered automatically by the network to try and reduce the 

error on the output, which is known as backpropagation.  
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There are two key features to the backpropagation algorithm, the learning rate (η) 

and the momentum (µ). An often used method in backpropagation is the delta-rule, 

which states that a change in any of the parameters should be proportional to the 

input and the output layer error[59]. The proportionality constant used in this rule is η, 

the learning rate, which controls the average size of the change in the weights. The 

momentum term decreases training times in regions of constant error values[71], 

allowing escape from local minima and prevents sudden changed in the direction of 

the weight values[59].  
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Equation 2.12 shows the calculation of the weight to be used in the next iteration 

based on the previous change in weight ( )( previousl

jiw∆ ), the network output ( 1−l

jout ) and 

the learning rule and momentum terms. The l term signifies the layer, i the input 

source and j the current neuron with l

jδ  being the error in that neuron[59]. 

The error term is treated differently if it is within a hidden layer (Equation 2.13) or in 

the output layer (Equation 2.14). 
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If the two equations shown in Equation 2.13 and Eqaution 2.14 are substituted into 

Equation 2.12 the full equation for weight correction in a hidden layer can be 

presented (Equation 2.15)[59]. 

 
 

( ) )(1

1

11 1 previousl

ji

l

j

l

j

l

j

r

k

l

kj

l

k

l

ji woutoutoutww ∆+−







=∆ −

=

++∑ µδη  Equation 2.15 

 

This equation highlights that information from three different layers is used in order 

to correct the weights[59], the previous, current and next weight. Based on this 

information it is therefore very difficult to gather information about the inputs 

influence on prediction based on the weight values[59].   
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2.7.2. Transfer Functions 

As depicted in Figure 2.18, a threshold function is one transfer function method of 

determining the output of the ANN. However, this function may be too simplistic in 

many cases and therefore by using a nonlinear transfer function, a range of outputs 

can be determined rather than either 0 or 1. In this research a sigmoidal nonlinearity 

transfer function is utilised and is defined by Equation 2.16 and graphically 

represented in Figure 2.22, where the shape of the sigmoid is controlled by ρ[66].  

 

[ ]ρθ
σ

/)(exp1
1

)(
−−+

==
a

ay  Equation 2.16 

a) -1

0

1

 b)
0

1

-6 0  

Figure 2.22 a) hyperbolic tangent sigmoid, tanh and b) logistic nonlinear functions 

2.7.3. Artificial Neural Network Software Used 

Two different pieces of software were used in this research, these were INForm[70] 

version 3.7, an Intelligensys Ltd. Product and also Neurosolutions™[72] version 5 

from NeuroDimensions. 

 

2.8. Neurofuzzy logic 

Fuzzy logic is an alternative method to the traditional logic methods, which have 

binary outputs, utilising intermediate positions for its output[73, 74]. In an example 

taken from the FormRules manual[73], temperature control is an ideal way to explain 

the difference between what is now know as ‘crisp’ logic and fuzzy logic. If ideal 

room temperature is 20°C you would not say that 19°C or 21°C was too cold or hot 

respectively. Crisp logic would draw these conclusions, whereas fuzzy logic allows 

intermediate values such as cool or warm to be determined. A thermostat would be 

constantly turning on and off if ‘crisp’ logic was used to control room temperature, 

f 

f 
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whereas when fuzzy logic is used, the thermostat would have predetermined rules to 

decide if a little heating was required to keep the room temperature stable, or if it 

should be left off to cool down. 

This is a very simplistic view of fuzzy logic, but, it can be very useful if you know 

the rules to generate outputs you desire i.e. temperature control. When the system has 

no predefined rules, neurofuzzy logic needs to be employed to understand the “cause 

and effect relationships”[73] of the input data and the desired output. Neurofuzzy logic 

uses the learning abilities of an ANN in combination with the linguistic output of 

fuzzy logic to generate “IF, THEN” rules for a problem[73]. In FormRules[75] the 

network architecture used in the training is predefined in the software as an 

associative memory network[73]. This network structure differs from a MLP network, 

which has been used in this work also, by having different types of nodes. Figure 

2.23 shows the simplified structure of a neurofuzzy system taken from Shao et al.[76]. 

FormRules[75] employs the ASMOD (Adaptive Spline Modelling of Data) algorithm 

whereby multiple training models are generated and tested within the software to see 

which matches the data most closely[76]. 

 

Figure 2.23 A schematic of a simple neurofuzzy system, adapted from Shao et al[76]. 

The transfer functions shown here are the Gaussian type, there are also triangular 

functions and on-off type functions,[73] which are automatically assigned to the data 

by the software. These functions determine where the high and low boundaries in the 

data are and are used in the output of the rules. 
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The result of using neurofuzzy logic is a set of simple rules based on the input data 

that highlight if a certain input variable is set at a particular level, what the output 

will be. In this research, the descriptors have been input and FormRules[75] 

determines the rules that lead to the different polymorphic outcomes. Structure Risk 

Management (SRM) is the training method used in FormRules[75]. SRM uses the bias 

(number of free parameters) and variance (training data error) to look at the 

prediction error[73], and is the most effective method for data sets of this size.[73] 

Table 2.3 Example of the rules generated by FormRules[75] using neurofuzzy logic (please note, this is 

not a real result and has only been used for illustration purposes) 

Rule Output 

IF rate is LOW THEN Form III is HIGH (1.00) 

IF rate is MID THEN Form III is LOW (1.00) 

IF rate is HIGH THEN Form III is LOW (1.00) 

 

2.8.4. Fuzzy Logic Software Used 

FormRules[75]  version 3.3, an Intelligensys Ltd. product has been used in this result 

to produce fuzzy logic rules. 

 

2.9. Principal Component Analysis 

Principal component analysis (PCA) has been applied to numerous different 

scientific problems, [77-81]  but most importantly in this research as a data reduction 

technique. PCA is a multivariate data analysis method that aims to reduce the 

dimensionality of a dataset. It constructs linear combinations of the variables to 

account for as much of the total variation in the whole dataset as possible[82]. 

Therefore reducing the amount of variables, but still containing all of the information 

presented within the dataset.  

A square correlation matrix, R, of n variables (X1…Xn) is generated based upon all of 

the correlations in the data. Entry Rij in the matrix represents the correlation of the 

variables (Xi, Xj). Equation 2.17 shows the covariance in the variables, where E is the 

expectation function[64] and µ represents the expected value of Xi, also equal to E(Xi). 
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Equation 2.18 shows the correlation between the variables (Xi, Xj), with σ 

representing the standard deviation of the corresponding variables.[64, 83] 

 )])([(),(cov jjiiji XXEXXariance µµ −−=  Equation 2.17 
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Equation 2.18 

 

 

Based on these equations, the square correlation matrix is a combination of the 

diagonal matrix of eigenvalues presented as L, and a matrix of eigenvectors, with 

one vector per eigenvalue, V, along with its transpose V’, shown in Equation 2.19 

 'VLVR =  Equation 2.19  

The square root of the eigenvalues are taken, leading to Equation 2.20. 

 

)')((

'

VLLVR

VLLVR

=

=
 Equation 2.20  

 

If LV  is represented by A and 'VL  by A’ then the equation can be further 

simplified to that in Equation 2.21[84], with A representing the factor loading matrix. 

 
 'AAR =  Equation 2.21  

 
The factor loading matrix is a very useful tool as it shows the correlations between 

the variable and component of which it is a part. When a variable has a highly 

positive or large negative value, it signifies the strongest correlation with that 

component. 

As each component is a representation of single linear combination identified within 

the data, with the first component (PC(1)) contains the largest variation and 

subsequent components contain less. For every input there is an associated score 

values for each component. This score value incorporates all of the information 

within the variables for that component. This score is generated by multiplying the 

loading matrix values (A) with the inversed correlation matrix variables (R-1) to 

generate a component score correlation matrix (B). This value (B) is then multiplied 



 

 74 

by the variable matrix (Z) in order to give the component score matrix (F)[84], shown 

in Equation 2.22 and Equation 2.23. 

 

ZBF

ARB

=

= −1

 
Equation 2.22 

Equation 2.23 

 
When the second component is calculated, it is uncorrelated to PC(1) and contains the 

maximum variation in the remaining data[84].  Equation 2.24 and Equation 2.25 show 

the linear equations for PC(1) and the other components (PC(m)), with w representing 

the weighting placed on each variable and X representing the variable[82]. 

 
 

xx XwXwXwPC )1(22)1(11)1()1( ...... +++=  Equation 2.24  

 
xxmmmm XwXwXwPC )(22)(11)()( ...... +++=  Equation 2.25 

 

Determining the number of principal components to extract is an importation feature 

of PCA, with it being possible to extract the same number of components as 

variables. The goal of PCA within this research was to be a data reduction method, 

therefore the number of components needed to be selected. One of the most straight 

forward ways to do this is by looking at the amount of variance of the data each 

component represents. When the variance is small, no additional information about 

the dataset is being communicated. Scree plots may be utilised to identify when most 

of variance in the dataset has been represented. The eigenvalues for each component 

are plot against the components number, thus illustrating the amount of variance 

contained within each PC. By drawing a straight line through the points from the 

highest PC, when the eigenvalues deviate from the line, this is taken to be the point 

when the components should be retained[82]. In the example in Figure 2.24 the 

eigenvalues deviate from the line at PC(3) and therefore the first three components 

contain most of the variation in the dataset. 
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Figure 2.24 An example of a scree plot 

 
PCA is a highly effective data reduction method that not only allows components 

that represent all of the information within the dataset to be produced, but also allow 

the selection of the most influential variables in each of the PCs. This was highly 

valuable within this research as it is the specific information that individual variables 

(or descriptors) contain that is of most interest. 

2.10. Partial Least Squares Analysis 

Partial least squares (PLS) analysis, like PCA can be used as a data reduction method 

and has been utilised within this research to highlight important descriptors. The 

overall aim of this technique is to determine independent linear correlations within 

the data and highlight the most important variables[85], an approach that has been 

used in other scientific research[85-90].  

A matrix (X) of N experiments with J variables and matrix (Y) of N experiments 

with M outputs are produced and components (a) are created. ( ijii xxx ...., 21 ), 

( imii yyy ...., 21 ), ( jaaa www ...., 21 ) and ( maaa ccc ...., 21 ) can be represented by the 

vectors ix , iy , aw and ac  respectively for input, output, input weighting and output 

weighting values[86]. With the aim of PLS being to determine linear correlations (ta) 

within the input data and to generate fewer correlations than variables (J), 

where ),.....1( Aa = , Equation 2.26 shows the construction of these linear 

combinations for input and output (uia) variables. 
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 Equation 2.26  

 

The weight values placed upon each variable are there to maximise the covariance 

between the input and output variables, and can highlight a variables influence upon 

the components (a), with larger values having the most effect.  

Determining the number of components to calculate presents a similar problem to 

that seen in the PCA analysis, and like PCA the first component contains the most 

information about the dataset, with subsequent components containing less. 

For every component there is a loading vector (pa) which is equal to ( jaaa ppp ...., 21 ).  

These loadings contain the regression equations for the columns of matrix X and the 

linear correlations, (ta)
[86] and are useful to determine which variable has the most 

influence on a component. Coefficient mjb takes into account the correlations 

between input variables, producing better predictions, and uses a modified weight 

term, *
jaw , which improves the prediction further (Equation 2.27). 
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The importance of each variable for the projection (VIP) in PLS analysis can be 

calculated, allowing the removal of those that do not provide additional 

information[86]. Each variable (vj) is given a number between 0 and 1, with higher 

values indicating importance within the dataset. The variable importance values can 

be calculated based on the regression coefficient ( mjb ), the weights ( jaw ), the 

modified weights ( *
jaw ), the weight and fraction of variance in Y, and the loadings 

( jap )[86]. In this research the VIP values were calculated based upon the weights, 

using Equation 2.28. 
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jaw  represents the absolute value of the weight on variable j and 2
YaR is the fraction 

of variance explained by the component with regards to the output Y[86]. 

 

2.10.1. Chemometric data analysis software 

The PCA and PLS analysis was conducted in collaboration with Dr. O. Svensson at 

AstraZeneca. All chemometric analysis was carried out using SIMCA-P+[91], version 

12.01, a Umetrics AB product. The number of components used in the PCA analysis 

was set to the number of solvents used in the experimental work. The number of 

components used in PLS analysis are variable and dependent on the output. Initially 

two components were created, and further components added until the percentage 

variance of the data was high in order to retain most of the information from the 

descriptors. In the CBZ analysis only form II and III were predicted with seven and 

six components respectively. PLS analysis was not carried out for the ROY and TBA 

data. 
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3. SYSTEMS STUDIED 
 
 
 
 
Three different polymorphic systems were examined by the research described in this 

thesis: carbamazepine (CBZ), tolbutamide (TBA) and 

5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY). Most of the 

work focused on the generation of a large set of carbamazepine data and its analysis; 

ROY and tolbutamide were used at an advanced stage of the project as validation 

systems. This chapter summarises previously published research on these 

polymorphic systems. 

 

3.1. Carbamazepine 

5H-Dibenz[b,f]azepine-5-carboxamide (Figure 3.1) more commonly known as 

carbamazepine (CBZ), has been selected for analysis within this study. 

Carbamazepine is administered as a treatment to epilepsy and bipolar disorder 

worldwide due to its  “analgesic and anticonvulsion properties”[1-4]. CBZ has four 

anhydrous[2, 5-8] polymorphs, a dihydrate[9-11] and a number of solvates[12, 13] making it 

an ideal initial system to work with in this research as there are a number of possible 

outcomes for polymorph screen experiments.  

 

N

O
NH

2

 

 
Figure 3.1 The molecular structure of carbamazepine 

 

3.1.1. Why Carbamazepine for this Research? 

There are a number of reasons for the selection of this molecule; from its chemical 

structure to the number of polymorphs it is known to exist in. From the schematic of 

CBZ (Figure 3.1) it is evident that the molecule is quite rigid, with the only area 
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allowing for bond rotation being between the N attached to the ring and the C of the 

amide group (Figure 3.2). 

 

 

 

 

 

 

Figure 3.2 Highlighting bond rotation in CBZ molecule   

 
When modelling this molecule it is treated as rigid as is done in the literature,[14, 15] 

which is beneficial because it allows the minimum energy structure to be located 

more easily.[15] A more practical advantage of the rigid structure is that it may be 

clearer to discover molecular subtleties when modelling CBZ in different solvent 

force fields (explained in section 2.6.2.3) 

Having more than two polymorphs is advantageous in this study also, as it may allow 

identification of experimental patterns. When the outcome of the polymorph screen 

experiments is limited to two, there are less areas of obvious difference between each 

form.  

 
3.1.2. The Carbamazepine Polymorphs 

CBZ is readily available from Sigma Aldrich in the P-monoclinic form (form III). 

From this commercial CBZ, the four characterised polymorphic forms, solvates and 

dihydrate can be made following the methods stated in section 2.3. All of the CBZ 

polymorphs have identical molecular conformations within the unit cell, but it is the 

way that they are arranged that creates the different polymorphic forms[2]. What is 

also notable in the CBZ polymorphic forms is that they all exist in hydrogen-bonded 

dimers[16]. This is due to the strong hydrogen-bonding between the carboxamide 

groups of two molecules, shown in Figure 3.3. 
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Figure 3.3 CBZ hydrogen-bonded dimmer 

 
The four anhydrous forms vary in stability, but the order follows the density rule, 

which states that the more dense the form, the more stable it is likely to be[17]. The 

densities of the anhydrous forms (in g/cm3) as determined by DSC analysis by 

Grzesaik et al.[2] are shown in brackets and the order of stability shown below. 

 

Form III (1.34) > Form I (1.31) > Form IV (1.27) > Form II (1.24) [2] 

 

3.1.2.1. Form I 

CBZ form I is a triclinic[6] crystal that is unique with regard to the other anhydrous 

forms due to the number of molecules in the unit cell. Unlike forms II-IV, form I has 

four molecules in the unit cell[2], whereas the others have only one. The structure for 

this polymorph (Figure 3.4) may be found in the Cambridge structural database 

(CSD), reference CBMZPN11[2]. 

 

Figure 3.4 Packing diagram for form I, taken from the CSD (reference CBMZPN11[2]) 
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Form I and III are enantiotropically related[18], with form III being the most stable 

until temperatures exceed 100°C[6], however in other research this temperature is 

quoted as being 71°C[19]. All CBZ anhydrous forms transform into form I upon 

heating which is highlighted in thermomicroscopy work by Grzesiak et al.[2]. 

 
3.1.2.2. Form II  

The trigonal form of CBZ (CSD reference CBMZPN03[7]) is often found to 

crystallise when solvents with low dielectric constants are used[7, 20]. As with forms 

III and IV, form II melts and recrystallises to give form I. In this case, the melt is not 

as obvious and easily overlooked, but a small endotherm has been reported between 

140-160°C[2]. This endotherm was  not reported in work by Lowes et al.[7], only the 

melt of form I.  

Form I and II are structurally similar due to the weak hydrogen-bonding, whereby 

the oxygen atom will accept the hydrogens from the nearest two carbons[2]. However, 

unlike form I, it has been reported that if solvent is included into the structure, the 

stability of the form is increased[21, 22]. This research stemmed from the observation 

that over one hundred hypothetical polymorphs of CBZ could be computationally 

predicted with greater stability than form II.[21] By including solvent into the unit 

cell, the stability is improved[22]. The research suggested that less than 7 % of the 

CBZ unit cell could accommodate a solvent molecule, and therefore it is highly 

likely to have been missed in previous work. The solvent may also be rapidly 

released at room temperature providing another reason why it has not been reported 

earlier. The model established in work by Cruz Cabeza et al.[21], calculated that when 

3-4.5 wt.% of toluene is included in the unit cell, the stability dramatically improved. 

Figure 3.5 clearly shows the voids in the structure that could contain solvent 

molecules. 
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a)                                                           b) 

Figure 3.5 a) packing diagram of form II, taken from the CSD (reference CBMZPN03[7]) b) space 

filled model highlighting the possible site for solvent inclusion 

 

3.1.2.3. Form III  

CBZ form III is the thermodynamically stable polymorph that crystallises in a 

primitive monoclinic cell[1, 2, 23] and can be found in the CSD (reference  

CBMZPN01[23]). The packing of this crystal structure is shown in Figure 3.6.  

 

 
Figure 3.6 Packing diagram for CBZ form III, taken from the CSD (reference CBMZPN01[23]) 

 
Form III is most often formed when crystallised from solvents with high dielectric 

constants or at slow cooling rates[7], and is the desired output in industrial 

manufacture of CBZ as a drug. 

 
3.1.2.4. Form IV  

Form IV has a crystal structure in the C-monoclinic[5] form, which like the other 

forms is dominated by hydrogen-bonded dimers, shown in Figure 3.7 (CSD reference 

CBMZPN12[5]).  
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Figure 3.7 Packing diagram of form IV, taken from the CSD (reference CBMZPN12[5]) 

 

Throughout this current research and polymorph screens documented by Florence et 

al.[24] form IV does not crystallise using conventional cooling methods. There have 

been a number of methods noted that may cause this form to crystallise and these are 

by dehydration of the dihydrate which acts as a precursor for form IV crystallisation, 

salting out from ethanol solutions and spray drying[25]. 

 
3.1.2.5. CBZ Dihydrate 

It is thought that anhydrous CBZ is insoluble in water and readily converts into the 

CBZ dihydrate on contact with water[11, 26, 27]. Laine et al.[11] suggested that the 

anhydrous CBZ in water acts as “nucleation centres”[11] for the dihydrate needles to 

grow onto. Later work by Reck et al.[28] noted that the XRPD traces shown by Laine 

et al.[11] did not agree with their own theoretically calculated trace, leading them to 

believe there was more than one dihydrate form. This phenomenon was investigated 

at a later date by forming the dihydrate from forms I and III. Although initial 

differences were seen in the DSC analysis, they concluded on further analysis that 

there was in fact only one dihydrate form of CBZ[26]. Reck et al[28] stated that there 

was only half a CBZ molecule and one water in the asymmetric unit. However, 

newer research by Harris et al.[18] and Gelbrich et al.[29] determined that there are two 

water molecules and one CBZ molecule in the asymmetric unit (CSD reference 

FEFNOT02[18]). The CBZ dihydrate is monoclinic and shares the hydrogen-bonded 

dimers feature seen in the polymorphs of CBZ (Figure 3.8). 
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Figure 3.8 Packing of CBZ dihydrate, taken from the CSD (reference FEFNOT02[18]) 

 

3.1.2.6. CBZ Solvates 

CBZ is known to form a number of different solvates, with Fleischman et al.[12] 

identifying acetone, DMSO, methanol, ethanol, acetic acid, formic acid and butyric 

acid solvates, Lohani et al.[30] presented a trifluoroethanol solvate and Johnston et 

al.[31] presented a DMF solvate. Within this research only acetone and DMSO 

solvates have been crystallised. The DMSO and acetone solvates are both triclinic 

and both have the hydrogen-bonded dimers seen in other forms of CBZ (Figure 3.9 

and Figure 3.10), their CSD references are UNEYIV[12] and CRBMZA01[12] 

respectively. 

 

Figure 3.9 Packing of the CBZ DMSO solvate, taken from the CSD (reference UNEYIV[12]) 
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Figure 3.10 Packing of the CBZ acetone solvate, taken from the CSD (reference CRBMZA01[12]) 

 

Table 3.1 Selected parameters of CBZ anhydrous polymorphs and dihydrate, taken from Grzesiak et 

al.[2] unless stated 

Name Morphology Crystal System Space Group 
[No.] 

Melting point 
(°C)a 

Form I Needle-like Triclinic P-1
[16]

 193.5 

Form II Needle-like Trigonal R-3
[7]

 140-160 

Form III Prism P-monoclinic P21/n
[5]

 174.8 

Form IV Needle-like
[32]

 C-monoclinic
[5]

 C2/c
[5]

 187.7 

Dihydrate Needle-like
[11]

/ 
Plates

[27]
 

P-monoclinic
[25]

 P21/c
[18]

 48-80
b[27]

 

a
 Calculated from DSC analysis at a heating rate of 20°C/min b

 Calculated from DSC analysis at a 

heating rate of 100°C/min 

 

 



 

 

3.2. 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile 

5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile or ROY (Figure 3.11) is 

an intermediate in the synthesis of Olanzapine, an Eli Lilly antipsychotic drug[33, 34]. 

ROY stands for Red, Orange, Yellow, which are the colours of the different 

polymorphic forms arising from the differing levels of conjugation between the 

thiophene and phenyl rings in each polymorphic form[35]. 

N

N
H

N
+

S

O O

 

Figure 3.11 Structure of ROY 

3.2.1. Using ROY for Polymorphic Investigation 

The ROY polymorphs are conformational, with different crystal habits and colours 

that may aid this investigation in a number of ways. 

Being conformationally flexible allows multiple computer simulations of the 

different orientations of ROY. This could then enable a deeper understanding as to 

why different solvents interact with a particular conformation more than others, and 

perhaps give insight of interactions at the molecular level. 

With each polymorph having a different habit and colour this would make 

identification of each form easier. The colour of the crystal could instantly rule out 

certain forms and microscopy could be used to identify the habit, making 

identification of the forms more efficient (see Figure 3.12). XRPD data from the 

CSD shows that the different forms have distinct patterns and this can and has been 

used in identification. 

Yu et al.[36] stated that the polymorphic forms generated from different solvents are 

not very selective. This could be viewed in a number of ways, firstly as a means to 

identify subtle parameters that influence polymorph selection within the solution 

phase, done with a controlled polymorph screen. Alternately it could be viewed as a 

potential barrier in providing these crucial parameters if multiple forms were 

generated concomitantly.   
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3.2.2. The ROY Polymorphs 

ROY currently holds the record for the highest number of characterised polymorphs 

in the CSD[35]. Seven of these forms have been reported[36, 37] within the (CSD) and it 

is known that there are currently three other forms[38] that have been crystallised. 

Figure 3.12 shows the ten polymorphs and clearly demonstrates the colour and 

morphological differences between forms. The three forms that are yet to be 

characterised have been found by other methods of polymorph analysis, for example 

melt crystallisation[38], solid state conversion[37] and cross nucleation[38]
, opposed to 

the conventional methods of evaporation and cooling crystallisation. This highlights 

the fact that different forms may be missed during a traditional solvent screen. 

 

 
Figure 3.12 Taken from a paper by Yu, this diagram shows the different morphologies and colours of 

the ROY polymorphs[35] 

 

The major differences visually between the polymorphs would allow identification of 

each form using microscopy. However, it would be more difficult if mixtures were 

crystallised, and due to this, XRPD has been used for identification purposes. Not 

only does each polymorph have a unique trace, but by using XRPD, quantitative 

analysis can be undertaken that is useful for the ANN analysis. Table 3.2 highlights 

key differences between the different forms, crystal information and melting points. 
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Table 3.2 Select parameters of the ROY polymorphs, taken from Yu[36] unless stated. 

Name Morphology and 
colour Crystal System Space Group 

[No.] 
Melting point 

(°C) 

R Red Prisms Triclinic P1 [2] 106.2 

Y Yellow Prisms Monoclinic P21/n [14] 109.8 

OP Orange Plates Monoclinic P21/n [14] 112.7 

ON Orange Needles Monoclinic P21/c [14] 114.8 

YN Yellow Needles Triclinic P1 [2] 
Thermally 
unstable 

ORP Orange-Red Plates Orthorhombic Pbca [61] 
Thermally 
unstable 

YT04
a 

Yellow Prism Monoclinic P21/n [14] 106.9 

Y04
b
 Yellow Prism Unknown 

Structure not 
solved 

Thermally 
unstable 

RPL
b
 Red Plate Unknown 

Structure not 
solved 

Thermally 
unstable 

R05
b
 Red Prism Unknown 

Structure not 
solved 

Thermally 
unstable 

aDetails taken from Chen et al.[37]   bDetails taken from Chen et al.[38] 

 
The first seven forms in Table 3.2 are known to have only one molecule in each 

asymmetric unit[39], and the way in which they pack is varied (Figure 3.13, Figure 

3.14, Figure 3.15). This information is not available in the literature for the other 

forms of ROY. 

a) b)  

Figure 3.13 ROY crystal structures, a) form R (CSD reference QAXMEH02[36]) and b) ORP (CSD 

reference QAXMEH05[36]) 
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a) b)  

c)  

Figure 3.14 ROY crystal structures, a) form Y (CSD reference QAXMEH01[36]), b) YN (CSD 

reference QAXMEH04[36]) and c) YT04 (CSD reference QAXMEH12[37]) 

a) b)  

Figure 3.15 ROY crystal structures, a) form ON (CSD reference QAXMEH[36]) and b) OP (CSD 

reference QAXMEH03[36]) 

 

The stability order of the forms varies with temperature and are highlighted below[38]. 

 
Between 40-70°C:  Y > ON ≈ OP > YT04 > R > YN 

Above 70°C:  ON > OP > Y > YT04 > R > YN 
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Y is accepted as the thermodynamically stable polymorph, with Y, ON and OP being 

kinetically stable at room temperature. 

It should also be noted that in most of the ROY polymorphs there are only 

intramolecular hydrogen-bonding between the amine and nitro groups.[40] However, 

the Y and YT04 forms also have a weak intermolecular hydrogen-bond[37] shown in 

Figure 3.16.  

a) b)  

Figure 3.16  a) intramolecular H-bond in ORP b) intermolecular H-bond in Y 

 

3.3. Tolbutamide 

Tolbutamide (1-butyl-3-(4-methylphenylsulfonyl)urea, TBA) is a hypoglycemic 

agent, taken orally in the treatment of insulin-dependent diabetes sufferers[41-43]. 

There are five known anhydrous forms of TBA[42, 44-47] and no currently reported 

hydrate or solvate structures. 

 

 

 

 

Figure 3.17 The molecular structure of tolbutamide 

 

3.3.1. Why Tolbutamide for this Research? 

TBA was chosen for this research because it has a high number of different 

polymorphic forms and unlike CBZ it is conformationally flexible. When this 

research was initiated only two of the polymorphic forms crystal structures were 

characterised (form I and III), but now, crystal structure data is available for all five 

forms. 

S

O O

N

H

O

N

H
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3.3.2. The Tolbutamide Polymorphs 

TBA is available from Sigma Aldrich in the orthorhombic form (form I) and from 

this commercial form, the five characterised polymorphic forms can be made 

following the methods stated in section 2.5.  

TBA is a flexible molecule, with different conformations being adopted in the 

different polymorphic forms[46]. A conformational search was carried out in 

Hyperchem™[48] and the minimum energy structure was taken forward for further 

geometry optimisation calculations. Based on the small amount of information 

known about TBA in the initial stages of this research, the method used was to take 

the minimum energy structure without regard for the conformation in the crystal 

structure. The intention behind this was to replicate the situation of a new drug 

molecule that has no other data associated with it other than the molecular structure. 

If this overall method was to perform well without any solid state knowledge of the 

molecule, then it would be highly valuable in drug discovery as a method for 

identifying potentially polymorphic molecules. 

Research by Thirunahari et al.[46] described the conformations of TBA in the crystal 

structures of the different polymorphic forms as either U or chair like. These 

representations are based on whether the phenyl ring and alkyl chain are on the same 

side of the S-N1-C8-N2-C9 plane[46]. 

 

 
Figure 3.18  U and chair type configurations of TBA polymorphs taken from Thirunahari et al.[46] 
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3.3.2.1. Form I 

The crystal structure of form I can be found in the CSD (reference ZZZPUS01[49] and 

ZZZPUS02[50]) and displays the U type configuration (Figure 3.19).  

 

 
Figure 3.19 Packing diagram for form I, taken from the CSD (reference ZZZPUS02[50]) 

 
This form is commercially available with a melting point of 127°C that is reported 

consistently throughout the literature. However, an unexpected peak at 39°C is 

present in the DSC trace (Figure 3.20).  

 

 
Figure 3.20 DSC of form I, run at 2°C/min 

 
This small endotherm was commented upon in only some of the literature[43, 45, 46, 51-

53] and was attributed to the “rearrangement of hydrogen bonds”[45] during a solid-

solid transition[52]. This transition is also known to be kinetically reversible, as when 

the heating rate and direction of temperature change is altered, the position of this 

peak does not change[54] (Figure 3.21, Figure 3.22). 
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Figure 3.21 DSC of small endotherm, run at 10°C/min 

 

 
Figure 3.22 DSC of small endotherm, run at 1°C/min 

 
Hasegawa et al.[51] analysed the form I sample above and below 39°C and observed a 

change in the XRPD pattern. The structure of the form IH (above the transition temp.) 

was solved from powder and generated a structure very similar to that of form I 

(denoted IL here). Figure 3.23 shows the structural difference in the low and high 

temperature polymorphs of form I.[51] The hot-stage XRPD analysis that was 

repeated in this work and is shown in Figure 3.24 
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Figure 3.23 Taken from Hasegawa et al.[51] the molecular structure and torsion angles of the two 

forms, a)Form IL b) form IH 
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Figure 3.24 Hot-stage XRPD of TBA form I above and below small endotherm seen in DSC analysis. 

Blue line is the form I sample at 25°C and the pink is the form I sample at 50°C 

 

3.3.2.2. Form II  

In the literature there is a discrepancy in the identity of form II, with Kimura et al.[42] 

first publishing a crystal structure identified as form II in 1999 (CSD reference 

ZZZPUS03). Unfortunately there are no coordinates with this input and therefore a 

theoretical powder pattern could not be calculated, so data from the paper has to be 
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used. However, in 2010 Thirunahari et al.[46] determined that this published crystal 

structure is for form III and not in fact form II, and produced their own crystal 

structure of form II (Figure 3.25). The data generated by Thirunahari et al.[46] 

matches what was determined in this work and therefore the polymorphs will be 

named accordingly.  

 
Figure 3.25 Packing diagram for form II, taken from the CSD (reference ZZZPUS03[42]) 

 
The TBA molecules are in the chair configuration in form II, and show both C and D 

packing types seen in Figure 3.18 and in Figure 3.26. 

 

 
Figure 3.26 C and D chair type conformations seen in the form II crystal structure, taken from 

Thiranuhari et al.[46] 

 
The XRPD trace presented by Kimura et al.[42] matches that of this work and 

Thirunahari et al.[46]. However, the DSC value of 100°C for form II is much lower 

than 111-117°C stated in other literature[44, 46, 51]. The assessment made by 

Thirunahari et al.[46] that the data presented as form II (with the exception of the 

XRPD) is in fact form III seems to stand. 
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3.3.2.3. Form III  

The crystal structure of form III was determined by Leary et al.[45] without presenting 

coordinates and does not appear in the CSD. The unit cell parameters given were 

a = 8.11, b = 8.96, c = 10.19 in the space group P21. In more recent work by 

Thirunahari et al.[46] they stated that none of their polymorphs generated unit cell 

parameters like that of Leary, and gave a new set of unit cell parameters (a = 11.74, 

b = 9.04, c = 13.73), which are also known by Kimura et al.[42] as form II. The XRPD 

pattern that was presented in their work has been used as the form III standard and 

does match previous patterns found in the literature[42, 51, 55, 56]. Although the crystal 

structure coordinates are not currently available for this monoclinic structure, the 

literature states that the TBA molecules are arranged in the packing arrangement A, 

seen in Figure 3.18 and Figure 3.27[46]. 

 

 

 
Figure 3.27 U type packing motif of TBA form III, taken from Thirunahari et al.[46] 

 
There is again some discrepancy in the literature over the melting point of form III,  

Thirunahari et al.[46] gave a value of 106°C, which closely matches work by Ueda et 

al[57], Umeda et al.[58] and Hasegawa et al.[51]. Simmons et al.[59], Burger[44], Leary et 

al.[45] and Kimura et al.[42] stated values of between 113-117°C. 

 
3.3.2.4. Form IV  

The crystal structure of monoclinic form IV was determined by Thirunahari et al.[46] 

from powder data, determining that there is only one U-type molecule in the 

asymmetric unit, arranged in packing motif B shown in Figure 3.18 and Figure 3.28. 
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Figure 3.28 U type packing motif of form IV taken from Thirunahari et al.[46] 

 
The unit cell parameters are a = 10.09, b = 15.65, c = 9.26 in the P21/c space group 

which is consistent with the space group stated in earlier work by Sonoda et al.[60]. 

 
3.3.2.5. Form V 

A fifth form of TBA was discovered recently by adding conc. HNO3 to a TBA and 

methanol solution and allowing slow evaporation.[47] The crystal structure for this 

polymorph is not yet present in the CSD. It is a highly metastable form and readily 

converts to form I at RT, therefore the crystal structure was determined at 100 K to 

prevent moisture speeding up the polymorphic transformation. The space group was 

determined to be Pbcn, which is unlike any other form, with the unit cell parameters 

of a = 15.85, b = 9.29, c = 19.69. The molecules pack in a similar way to form IV 

which is the U type motif seen in Figure 3.28. 

 
Table 3.3 Selected parameters of TBA anhydrous polymorphs  

Name Morphology Crystal System Space 
Group [No.] 

Melting point 
(°C)a 

Form I Prismatic
[59]

 Orthorhombic
[45]

 P21a n
[45]

 127°C
[59]

 

Form II Needles
[46]

 Monoclinic
[46]

 P21/n
[46]

 117°C
[46]

 

Form III 
Plates

[59]
 and 

needles
[45]

 
Monoclinic

[45]
 P21/n

[46]
 

113
[59]

 -
114°C

[45]
 

Form IV Needles
[46]

 Monoclinic
[46]

 P21/c
[46]

 88°C
[46]

 

Form V - - Pbcn
[47]

 - 



 

 

3.3.3. Stability 

The stability order of the TBA polymorphs is an area of much conflict within the 

literature. Early work by Burger[44] stated that form I was the thermodynamically 

stable form at room temperature. This conclusion was drawn from the conversion of 

form II to form I upon stirring at room temperature in a pH 1.5 buffer solution. 

Hasegawa et al.[51] stated that form II is the most stable form, as form I converts to 

form II in ethanol. Similarly, Ikeda et al.[61] suspend form I in ethanol at 40 °C and 

saw the same conversion. The research presented in this thesis confirms these 

findings, with form I converting to form II in ethanol and methanol solutions at room 

temperature. Based on this work, it would suggest that form II is the 

thermodynamically stable form of TBA. Interestingly, early work by Burger[44] states 

that in solution form II is a solvated structure and upon drying converts to what is 

known to be form II. This perhaps lends to why ethanol and methanol both convert 

form I to form II. No further details about this solvated product are presented other 

than there is a change in crystal morphology, thin plates to needles upon desolvation. 

However, during this research it has been observed that form II often crystallises as a 

thin sheet of needles. 

There is also evidence in the literature that form III is the most stable polymorph of 

TBA below 75°C. Rowe et al.[62] found form I converted to form III in water and that 

the aqueous solubility of form III was also lower than that of form I 

(13.03 mg/100 mL and 14.61 mg/100 mL at 37°C respectively) leading to the 

conclusion that form III is the thermodynamically stable polymorph. In the same 

work it was also stated that there was only a small free energy difference at room 

temperature between form I and III, possibly explaining the slow conversion rates[62], 

something also noted by Burger[44]. 

There was however no disputes that form IV was the least stable form of TBA, and 

readily converts to form II upon standing, but with the discovery of form V it is 

unknown as to which is the least stable. 
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Table 3.4 Summary of stability orders from literature 

Literature cited 
Most Stable 

form 
  

Least stable 

form 

Burger[44]
 I III II IV 

Rowe[62]
 III I Below 75°C  

Rowe[62] I III Above 75°C  

Kimura[42]
 I III II~IV  

Hasegawa[51] II I
L
 III Below 80°C 

Hasegawa[51] II III I
L
 and I

H
 Above 80°C 

Thirunahari[46]
 II Below 80°C   

Thirunahari[46]
 I

H
 Above 80°C   

 
A slurry of form I in methanol, ethanol, dichloromethane and acetone has been 

carried out at room temperature in order to determine the stability order. A summary 

of the results gathered using XRPD to identify polymorphic form is shown in Table 

3.5, with XRPD traces in appendix section 12.3. The results confirm that form I does 

convert to form II in both methanol and ethanol, but in other solvents the conversion 

did not occur in the time frame assessed. Seeds of form II were placed into the 

slurrys of dichloromethane to aid the possible conversion, but generated inconclusive 

results. Further analysis over a longer period of time needs to be conducted. 

 

Table 3.5 Summary of form I slurry in different solvents 

Form identification by XRPD after 
Solvent 

2 days 3 days 5 days 7 days 8 days 10 days 

Methanol II   II   

Ethanol II      

Dichloromethane I      

Seeded 

dichloromethane 
I/II I/II I/II    

Acetone I/II   I/II I/II I/II 



 

 

3.4. Summary 

The three systems used within this research are all highly polymorphic but offer a 

range of different challenges to this work. CBZ is a thoroughly researched 

polymorphic system, with all experimental properties well know. The polymorphs 

are not conformational and the molecular structure is very rigid, which aids the 

molecular modelling. ROY offers a degree of conformational flexibility that adds 

complexity to the modelling. It also has conformational polymorphs that may not 

respond as well to the molecular descriptor analysis as molecules in which the 

structure is rigid. Finally TBA is a highly flexible molecule with relatively little 

published literature. This molecule more closely resembles a pharmaceutical 

molecule, which can then lead to the assessment and development of the methods 

presented in this thesis.   
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4. ANALYSIS METHODOLOGY 

 

 

It is the aim of this chapter to demonstrate the procedures used within this research 

from the initial molecular modelling to the final artificial neural network (ANN). 

This will cover molecular modelling, calculation of descriptors, fuzzy logic and 

artificial neural network analysis. 

 

4.1. Molecular Modelling 

Initial molecular modelling was carried out at a low level of theory to perform a 

conformational search and optimise the geometry. The resulting structures were then 

taken to higher theory levels for further optimisation. 

 

4.1.1. Hyperchem™ 

Hyperchem™[1] was used in this research to build the initial molecular structure of 

each target molecule and the solvents under investigation .  

The solvent models taken forward to higher level calculations were initially 

geometry optimised in 3D at the highest level available in Hyperchem™[1], PM3[2, 3].  

The carbamazepine (CBZ) molecule was also geometry optimised in 3D and 

modelled using all available molecular mechanics and semi-empirical force fields 

available (MM+, AMBER, OPLS, BIO+, AM1, and PM3). Using the optimised 

structure in each force field, the molecules were compared with literature values for a 

number of bond lengths and angles[4] (Figure 4.1). The OPLS force field produced an 

optimised structure that was most like that reported experimentally[4], with the results 

presented in Table 4.1, (complete results in appendix section 12.4).  
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Figure 4.1 Assignments of CBZ bond lengths and angles 

 

Table 4.1 Comparison of OPLS geometry optimised CBZ with literature values[4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using a similar method as stated for CBZ, a 2D structure of the 

5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY) and tolbutamide 

(TBA) molecules were drawn and then optimised as 3D structures. In both cases the 

torsion angles within the molecules were close to zero, which deviates from 

experimentally determined structures[5]. A conformational search was therefore 

carried out upon both molecules to determine the minimum energy conformer.  

In the ROY polymorphs the conformational differences between forms are well 

documented[5], with the known rotatable bonds highlighted in Figure 4.2.  

 CBZ OPLS Literature values 

Bond length 1 1.35 Ǻ 1.38 Ǻ 

Bond length 2 1.411 Ǻ 1.437 Ǻ 

Bond length 3 1.411 Ǻ 1.434 Ǻ 

Bond angle 1 115.8° 116.8° 

Bond angle 2 123.2° 121.9° 

Bond angle 3 120.5° 120.9° 

Bond angle 4 120.8° 121.4° 

Bond angle 5 120.8° 116.0° 

Torsion angle C-O -4.1° -9.1° 

Torsion angle C-N 2.7° -2.2° 
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2 3
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Figure 4.2 The rotatable bonds in ROY (highlighted in green with a red line) 

 

The PM3 method found thirteen different conformations (see appendix section 12.5 

for details), with a number of these closely resembling those present in known 

polymorphic structures. Therefore, the minimum energy PM3 structure was used in 

the higher level calculations.  

The TBA molecule provided a further challenge to the initial geometry optimisation 

because it is highly flexible. For this model no experimental data was consulted in 

order to generate a minimum energy structure based on only basic molecular 

structure knowledge. Initial 3D geometry optimisation was carried out, followed by 

the identification of the torsion angles (Tx) (Figure 4.3) and subsequent 

conformational search. 

Figure 4.3 Highlighted torsion angles (Tx) within the TBA molecule that were subjected to a 

conformational search 

 

The OPLS[3] method generated 339 conformers, and the minimum energy structure 

of these conformers was taken forward for further optimisation (Electronic appendix, 

chapter 4, 4.1). 
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A flow chart of the Hyperchem™[1] modelling procedure is shown in Figure 4.4. 

Figure 4.4 Summary of the flow of work carried out in Hyperchem™[1] 

 

4.1.2. Gaussian 03 

Using the cartesian coordinates generated in Hyperchem™[1], a gas phase optimised 

structure was generated for each solvent, CBZ, ROY and TBA molecule using the 

parameters shown in Table 4.2.  

The optimised structure was then subject to polarisable continuum model (PCM) 

calculations that modify the geometry of the molecule in response to solvent 

interaction (See section 2.6.2.3). Gaussian 03[6] has predefined PCM models for 

many common solvents. However, it is possible for the user to define other solvents 

if required. In order to do this, knowledge of the static dielectric constant (EPS), the 

dielectric constant at infinite frequency (EPSINF), the solvent radius (RSOLV) and 

density (DENSITY) are required (See section 2.6.2.3). Example input parameters for 

both the predefined and user defined PCM methods are highlighted in Table 4.2. 
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Table 4.2 Input parameters for Gaussian calculations 

 

Calculation type Input parameters 

Gas phase 
geometry 

optimisation 

#p B3LYP/6-31G opt=tight freq scf=(tight,save,maxcycle=256) 
int=ultrafine pop=full gfinput iop(6/7=3) 

Predefined PCM 
force field 

optimisation 
(Acetone example) 

#p B3LYP/6-31G* opt freq scf=(save,maxcycle=256) 
scrf=(pcm,read,solvent=acetone) pop=reg gfinput iop(6/7=3) 

User defined PCM 
force field 

optimisation         
(n-Butanol 
example) 

 
#p B3LYP/6-31G* opt freq scf=(Tight,save,maxcycle=256) 
scrf=(pcm,read) pop=reg gfinput iop(6/7=3) 

Below Cartesian coordinates 

EPS=17.84 
EPSINF=1.957 
RSOLV=2.669 
DENSITY=0.00658 

 

An example input file can be found in Electronic Appendix, Chapter 4, file 4.2 for 

the predefined and user defined PCM calculations. 

When each solvent is modelled, the procedure is the same but it is only modelled 

within its own PCM force field. This differs to the CBZ, ROY and TBA calculations 

as they are modelled in each different solvent force field. By generating an optimised 

structure of the solvent, CBZ, ROY and TBA in solvent force fields, molecular 

descriptors can be calculated. A summary of the Gaussian 03[6] work is presented in 

Figure 4.5. 

 

 

Figure 4.5 Summary of Gaussian 03[6] work flow 
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4.2. Bulk and Molecular Descriptors 

The optimised structures were presented to descriptor software from the book 

“Molecular Descriptors in QSAR/QSPR”,[7] in .mol file format. 78 descriptors (22 of 

which were unique) were calculated for each optimised CBZ, ROY and TBA 

structure in the solvent force field. A further 78 descriptors were calculated for each 

solvent in their own specific force field. To increase the number of molecular 

descriptors available for analysis, a second program was used to calculate further 

values, MOE[8].  MOE[8] was used to calculate only descriptors for the polymorphic 

molecule in the solvent force fields due to the volume of data it generated, with the 

optimised structures being presented as .pdb files. 

Figure 4.6 Summary of the molecular descriptor calculation process 

 

As well as molecular descriptors, a number of bulk properties of the solvents used in 

the crystallisations have been included. These were primarily taken from the 

literature (see Electronic Appendix, Chapter 4, file 4.3) and from previous work 

carried out in-house at AstraZeneca.  

 

4.2.1. Descriptor Reduction Methods 

If all 167 descriptors were used as inputs in INForm[9] and the FormRules[10] 

software, not only would no specific descriptors be highlighted as useful, the 

network would also overtrain. When too many data are presented to a network it 

loses its ability to predict outside of the data seen. The network essentially learns the 

data it has been given and does not generalise, leading to poor predictive ability[11, 12]. 
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De Matas et al.[13] suggested that the input data used in the training should be at least 

three or four times larger than the number of descriptors presented, therefore the total 

number of descriptors needed to be reduced. On average, twelve descriptors were 

used to train the networks, which fit within the recommended strategy and also 

allowed meaning to be gathered from the descriptors present. A number of methods 

were utilised to reduce the descriptor number, which will be discussed in detail in 

chapters 5, 6 and 7. These were a manual search of the descriptor space, linear 

correlations, partial least squares (PLS) and principal component analysis (PCA). 

 

4.3.    Artificial Neural Network (ANN) Input File 

The input file for the ANN needs to be created as a text file and contains the 

experimental information, the bulk and molecular descriptors that correspond to the 

solvent used in a particular experiment and also the experimental outcome, i.e. 

polymorphic form crystallised (Table 4.3). For training to occur successfully it is 

important to present the network with all the possible outcomes of the experiment, 

with values between 0 and 1. It is equally essential to inform the network that a set of 

parameters does not lead to one output, as the parameters that do, and based on this 

the experimental results were assigned a weighting. The weightings for each sample 

total 1 and involve all the possible CBZ forms that could be crystallised. 

 

Table 4.3 Examples of ANN input data 

 INPUT  OUTPUT 

Solvent Rate Temp 
Bulk and 
Molecular 

descriptors 

Form  
I 

Form  
II 

Form  
III Dihydrate Solvate 

EtOH 5 25 167 values 0 0 1 0 0 

AcCN 15 25 167 values 0 0.5 0.5 0 0 

 
 
A large spreadsheet of all the experimental results combined with 167 different bulk 

and molecular descriptors has been created and can be found in Electronic Appendix, 

Chapter 4, file 4.4.  
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4.4. FormRules Analysis 

FormRules[10] uses fuzzy logic to create “IF, and THEN” rules that can be used to 

identify which descriptors have an effect on the crystallisation of different 

polymorphic forms.  

An example dataset using ten descriptors (AM1_HOMO, dsolv13, dsolv75, E, VSA, 

dsolv47, d73, d69, dsolv72 and dsolv8 (detailed in appendix section 12.2), rate and 

temperature will be used to demonstrate the FormRules[10] analysis methodology. 

The text file of these inputs and outputs is loaded into FormRules[10] and the user 

selects those columns that are the ingredients (inputs) and those that are properties 

(outputs) shown in Figure 4.7. 

 

 
 
Figure 4.7 Screen shot of how the inputs and outputs are identified 

 
At this stage the data is ready to train and the user is asked to select the model to use 

in the training. Structure Risk Minimisation (SRM) is the default setting and has 

been used in this research. This method does not require any validation data to be 

used and therefore creates the rules based on all of the experimental information. 

SRM uses the bias (no. of free parameters) and variance (training data error) to look 

at the prediction error, and is suggested for data sets of this size[14]. 
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When the training is complete there are a number of tools that can be utilised to look 

at the results. The most straightforward method is to look at the list of rules 

generated in table form (Table 4.4). Each output (polymorphic outcome) has its own 

set of rules; in some cases a number of different models are produced. Colour coding 

is used in the output spreadsheet to guide the eye to the rules that have the largest 

positive contribution to a particular output (blue), or the smallest positive 

contribution to the output (red)[14]. Each rule is also given a confidence level (number 

in brackets after the prediction), with values between 0 and 1, with 1 representing the 

highest level of confidence.  

 
Table 4.4 Example of the rules generated for analysed data in FormRules[10] 

Rules generated for the example set of inputs 

--- Rules for property Form I ---   

IF d73 is LOW THEN Form I is LOW (1.00) 

IF d73 is HIGH THEN Form I is LOW (0.96) 

--- Rules for property Form II ---   

SubModel:1                                                   IF d73 is LOW THEN Form II is HIGH (1.00) 

IF d73 is HIGH THEN Form II is LOW (1.00) 

SubModel:2                                             IF dsolv13 is LOW THEN Form II is LOW (1.00) 

IF dsolv13 is HIGH THEN Form II is HIGH (1.00) 

SubModel:3                                                   IF rate is LOW THEN Form II is LOW (1.00) 

IF rate is HIGH THEN Form II is HIGH (0.72) 

SubModel:4                                                   IF d69 is LOW THEN Form II is HIGH (1.00) 

IF d69 is HIGH THEN Form II is LOW (1.00) 

--- Rules for property Form III ---   

SubModel:1                                             IF dsolv47 is LOW THEN Form III is HIGH (1.00) 

IF dsolv47 is HIGH THEN Form III is LOW (1.00) 

 SubModel:2                                            IF dsolv13 is LOW THEN Form III is HIGH (1.00) 

IF dsolv13 is MID THEN Form III is LOW (1.00) 

IF dsolv13 is HIGH THEN Form III is LOW (1.00) 

--- Rules for property Form III continued ---   

SubModel:3                                                   IF rate is LOW THEN Form III is HIGH (1.00) 
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Rules generated for the example set of inputs -continued 

IF rate is HIGH THEN Form III is LOW (0.55) 

SubModel:4                                             IF dsolv75 is LOW THEN Form III is LOW (1.00) 

IF dsolv75 is HIGH THEN Form III is HIGH (1.00) 

--- Rules for property DiHydrate ---   

IF d73 is LOW AND dsolv47 is LOW AND Temp is LOW THEN DiHydrate is LOW (1.00) 

IF d73 is LOW AND dsolv47 is LOW AND Temp is HIGH THEN DiHydrate is HIGH (0.55) 

IF d73 is LOW AND dsolv47 is HIGH AND Temp is LOW THEN DiHydrate is LOW (0.90) 

IF d73 is LOW AND dsolv47 is HIGH AND Temp is HIGH THEN DiHydrate is LOW (1.00) 

IF d73 is HIGH AND dsolv47 is LOW AND Temp is LOW THEN DiHydrate is LOW (0.57) 

IF d73 is HIGH AND dsolv47 is LOW AND Temp is HIGH THEN DiHydrate is LOW (1.00) 

IF d73 is HIGH AND dsolv47 is HIGH AND Temp is LOW THEN DiHydrate is LOW (1.00) 

IF d73 is HIGH AND dsolv47 is HIGH AND Temp is HIGH THEN DiHydrate is LOW (0.88) 

--- Rules for property Solvate ---   

IF E is LOW AND dsolv13 is LOW THEN Solvate is LOW (1.00) 

IF E is LOW AND dsolv13 is MID THEN Solvate is LOW (0.74) 

IF E is LOW AND dsolv13 is HIGH THEN Solvate is LOW (1.00) 

IF E is MID AND dsolv13 is LOW THEN Solvate is LOW (1.00) 

IF E is MID AND dsolv13 is MID THEN Solvate is LOW (1.00) 

IF E is MID AND dsolv13 is HIGH THEN Solvate is LOW (1.00) 

IF E is HIGH AND dsolv13 is LOW THEN Solvate is LOW (1.00) 

IF E is HIGH AND dsolv13 is MID THEN Solvate is HIGH (1.00) 

IF E is HIGH AND dsolv13 is HIGH THEN Solvate is LOW (1.00) 

 

The descriptors that feature in the rules for different outputs can also be graphically 

represented (Figure 4.8). This functionality has not been used extensively within this 

research because it does not add any further understanding to the rules. 

 



 

 118 

 

 

 

Figure 4.8 Two examples of the graphical representation of the rules for different output predictions 

 
FormRules[10] also generates model statistics that are useful for an immediate 

overview of how well the model has trained. ANOVA (analysis of variance) statistics 

are calculated and use the following equation for the non-linear analysis of the 

variables, with ŷ representing the predicted value and y the average of the dependent 

variables (Equation 4.1)[14]. 
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This equation can also be represented in a simpler form, with SST representing the 

total, SSR the model and SSE is the error sum of squares[14].  
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 SSESSRSST +=  Equation 4.2 

 
The details provided on the model statistics spreadsheet have been generated in the 

following way (Table 4.5). The degree of freedom (k) is equal to the number of 

weights and biases throughout the network. Each hidden and output layer has a bias 

and the hidden layers have a variable number of nodes, each with a weight.[14] 

Occasionally the degrees of freedom for the error can be negative, which most often 

occurs when there is very little data for a specific output,[14] with n representing the 

number of data records. The f ratio can be used to test that “the variation in the 

dependent variable arises from random fluctuations independent of the value of the 

independent (input) variable.”[14] 

 
Table 4.5 The methods used to generate the data in the model statistics table. Taken from FormRules 

manual[14] 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Squares 

Computed f ratio 

Model SSR 
K (number of 

weights and biases) 
SSR/k (SSR/k)/(SSE/(n-k-1)) 

Error SSE n-k-1 
SSE/(n-k-

1) 
 

Total SST n-1   

 
R2 values are also calculated for the prediction of each form using Equation 4.3[14, 15]. 
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All of these values are combined into another spreadsheet with a typical set of results 

shown in Table 4.6. 

It should be noted that occasionally the R2 value is negative, highlighting the models 

inability to predict a given output. From Equation 4.3, if the total sum of errors (SSE) 

is larger than the total variance of the data (SST) a negative value is calculated.  
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Table 4.6 Model statistics produced by FormRules[10] 

Source 
of 

Variation 

Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Squares f ratio Covariance 

term 
Sum of 
Errors 

Train 
Set R2 

(%) 

Form I       3 

Model 0.007 2 0.004 1.186    

Error 0.249 85 0.003     

Total 0.256 87   1.93×10
-07

 
-1.78 
×10

-06
 

 

Form II       54 

Model 8.604 5 1.721 19.236    

Error 7.336 82 0.090     

Total 15.940 87   1.62×10
-05

 
1.67 

×10
-05

 
 

Form III       51 

Model 8.875 6 1.479 14.087    

Error 8.505 81 0.105     

Total 17.380 87   2.70×10
-05

 
-4.12 
×10

-06
 

 

Dihydrate          49 

Model 0.155 8 0.019 9.599    

Error 0.159 79 0.002     

Total 0.314 87   5.51×10
-06

 
8.16 

×10
-06

 
 

Solvate       97 

Model 7.119 9 0.791 281.865    

Error 0.219 78 0.003     

Total 7.341 87   0.0033 
9.09 

×10
-05
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4.5. INForm Analysis 

The input file is presented in the same way as in the FormRules[10] analysis, but in 

order to determine whether the network built has predictive capabilities, a test set has 

to be generated. This test set is used during the training of the network to assess 

whether the network is generalising correctly. Within the INForm[9] software there 

are a number of ways to select a test set, the method utilised in this research takes 

15 % of the data (which is 13 rows of data) and uses what is known as the smart 

selection method. This method randomly selects rows for the test set, but avoids the 

extreme results on the edge if the experimental area [16]. A note of the test set values 

in every analysis was made, so the range of outputs tested could be monitored.  

In this example, INForm[9] suggested a network with one hidden layer that contains 4 

nodes, using the default transfer functions of the asymmetric sigmoid and a linear 

function. Throughout this analysis the default networks have been used to run each 

set of descriptors and in future, different approaches should be considered.  

 

Table 4.7 Summary of the network architecture used in this analysis 

Steps Chosen method 

Selection of the test set - 15 % of data using Smart Selection 

Training parameters - RPROP type of back propagation selected 

Hidden layers and nodes - 
1 hidden layer. Number of nodes is varied by the 
software depending on the input data. Their default 
settings are always used 

Hidden layer transfer function - Asymmetric sigmoid 

Output transfer function - Linear 

Outputs trained - Separately 

 
 
Similarly to FormRules[10] there are a number of different ways to view the results 

generated in INForm[9]. The table of model statistics presented to the user is similar 

to that in FormRules[10], but with R2 values for both the training and test sets. This 

allows the user to see immediately whether the training has been successful. 
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Table 4.8 Model statistics generated in INForm[9] 

Source 
of 

Variation 

Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Squares F ratio Covariance 

term 

Sum 
of 

Errors 

Test 
Set 
R2 

(%) 

Train 
Set 
R2 

(%) 

Form I       95 100 

Model 0.216 57 0.004 4.807     

Error 0.013 17 0.001      

Total 0.255 74   0.026 -0.030   

Form II       80 59 

Model 10.335 57 0.181 1.204     

Error 2.560 17 0.151      

Total 12.886 74   -0.009 0.008   

Form III       84 39 

Model 11.955 57 0.210 1.504     

Error 2.370 17 0.139      

Total 14.331 74   0.006 -0.005   

Dihydrate      95 100 

Model 0.267 57 0.005 4.911     

Error 0.016 17 0.001      

Total 0.313 74   0.030 -0.025   

Solvate       99 99 

Model 6.159 57 0.108 18.520     

Error 0.099 17 0.006      

Total 6.413 74   0.154 -0.021   

 
The data in Table 4.8 indicate that the training has performed very well and the 

network has the ability to predict whether form I, dihydrate or solvates are formed 

successfully from the test set. However, the prediction of forms II and III is less 

effective from the test set and suggests that perhaps these are not the most 

informative descriptors. 
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4.6. Combined FormRules and INForm analysis 

A number of different methods have been determined to analyse the results and data 

produced in INForm[9] and FormRules[10]. One method is a more rapid method of 

using values generated by the software, the other is a more detailed approach. 

 

4.6.1. Rapid Analysis of Combined Data 

One method of using the results from INForm[9] and FormRules[10] was to calculate 

an average R2 value. This generated an instant value for the success of a set of inputs 

at predicting the polymorphic outcome. This method has been often used within this 

research as an immediate identifier for successful networks and thus informative 

descriptors. 

 
4.6.2. Detailed Analysis of Combined Data using the 3D Explorer 

A second method has also been employed to analyse the results from both pieces of 

software using the 3D explorer facility within INForm[9]. The 3D explorer 

application generates 3D plots of different descriptors versus polymorphic outputs. 

The plots use the predicted values from the network and can be utilised to observe 

general trends in the data. All descriptors in a set may be plotted against one and 

another, with the remaining descriptor values adjustable, for observation of the effect 

on the polymorphic prediction. As there are many possible combinations of 

descriptor values it is impractical to analyse every one, therefore the rules generated 

in FormRules[10] serve as a guide as to which descriptors to initially plot. 

Before a plot can be generated, a set of descriptor values need to be entered as a 

starting point. This is done by asking the network to find a set of descriptor values 

that gives a high form III output (Figure 4.9). The user could ask for any of the 

available outputs, but form III was chosen as it occurs most frequently in the data set. 
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Figure 4.9 Screen shot of how the starting descriptor values are selected 

 
Figure 4.9 shows a set of descriptor values that lead to a form III prediction. The 

record number (16) is shown in the bottom corner so these starting values can always 

be found at a later stage. 

In the 3D explorer feature in INForm[9] the rules that have been previously generated 

are used to interrogate the networks predictive capabilities. Two examples are going 

to be used to highlight how the analysis is carried out. The first shows a case where 

the rule is very good and other descriptors have little effect on the prediction, the 

second shows a different result. 

 
Table 4.9 A rule for form II prediction from FormRules[10] 

Form II rule SubModel:1  

IF d73 is LOW THEN Form II is HIGH (1.00) 

IF d73 is HIGH THEN Form II is LOW (1.00) 

 
In this example, d73 is the descriptor that was highlighted to affect the prediction of 

form II. The three axis of the plot need to be selected, two are known from the rule 

and the third needs to be decided upon. All the available descriptors are plotted 

against d73 and form II and the descriptor that conforms to the rule most successfully 

is used in the analysis. The figure below shows d73 being plot against form II and 

rate. 
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Figure 4.10 Screen shot from the 3D explorer feature showing a plot of d73 and rate against form II. 

The blue colouring on the plot indicates a high prediction value, and the red region is a low predictive 

value 

 
Once a plot has been generated that conforms to the rule, the other descriptor values 

are altered one by one to see if there is any affect on the plots surface shape or 

prediction values. All other descriptor values are held the same, which in this case 

are the values from record number 16. Figure 4.11 shows the panel used to change 

the descriptor values that contain a list of descriptors and their maximum, minimum 

and current values. 

 
Figure 4.11 The panel used to change the axis and descriptor values in the 3D explorer 
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In turn, each descriptor is changed from its maximum to minimum value. 

Occasionally a mid range value is recorded when a large change in shape or 

prediction has occurred.  

In Figure 4.12 the descriptor dsolv75 has been changed to highlight that in some 

cases other descriptors in the set do not affect the rule or prediction. When this is the 

case, only the axis descriptors are taken forward for further analysis. 

 

 
Figure 4.12 The plot of d73, rate and form II when dsolv75 is at its highest value (initially it was a 

very low value) 

 
In a second example, form III is being predicted by using dsolv47 as shown in Table 

4.10. 

 

Table 4.10 Summary of the rule to predict form III 

Form III rule SubModel:1     

IF dsolv47 is LOW THEN Form III is HIGH (1.00) 

IF dsolv47 is HIGH THEN Form III is LOW (1.00) 

 
VSA was chosen as the third axis (Figure 4.13) as it most closely follows the rule 

generated in FormRules[10], with the other descriptors being altered as mentioned 

previously. 
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Figure 4.13 3D explorer plot of dsolv47 and VSA against form III 

 
Within this set of descriptors there were a number of small changes in plot shape, but 

when dsolv13 is maximised and minimised the change is clear. The initial value of 

dsolv13 was mid range (its influence on the shape is demonstrated in Figure 4.13). 

When dsolv13 is at its maximum (Figure 4.14) and minimum (Figure 4.15) values, 

the plot shape changes, as does the value of the prediction of form III. 

 

 
Figure 4.14 Shows the difference in plot shape when dsolv13 is set to its maximum value  
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Figure 4.15 Shows the difference in plot shape when dsolv13 is set to its minimum value 

 
The differences in plots that have occurred due to a change in the dsolv13 value are 

more easily compared in Figure 4.16. Although in this case the changes to the plot 

are not drastic, it can clearly be seen that as dsolv13 decreases, form III is the more 

favoured output. 

 

 
 
Figure 4.16 The differences in plots when dsolv13 is changed. From left to right: Maximum value, 

original value (mid-range) and minimum value 

 
When results like this are observed the descriptors taken for further analysis are 

dsolv47, VSA and dsolv13. It is important to note that it is not only descriptors that 

improve the prediction of a certain form, but also those that have a negative impact 

that are taken forward. A negative impact on prediction would suggest it is relevant 

to the prediction of a different form and therefore still an important descriptor. 
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4.7. Summary of Analysis Methodology 

This chapter has highlighted the molecular modelling of the polymorphic systems, 

from the conformational search  in Hyperchem™[1] to the solvent force field 

optimisations in Gaussian 03[6]. A discussion of how to calculate molecular 

descriptors and how to reduce them in number has been made. The creation of the 

input file and subsequent FormRules[10] and INForm[9] analysis has been 

demonstrated. Figure 4.17 summarises the overall structure of the analysis. 

 

Figure 4.17 Summary of the overall analysis process 
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5. RESULTS AND DISCUSSION – MANUAL ANALYSIS 

 

 
As stated previously, the number of descriptors needs to be reduced in order to create 

a predictive model that can generalise the data and not overtrain. It also allows 

meaning to be placed upon molecular descriptors that lead to successful polymorphic 

predictions. This chapter presents the complete data set and linear correlation data 

reduction methods undertaken in this research that try to determine an optimised 

predictive model.  

 

5.1. Complete Dataset Analysis 

Initially all 167 descriptors were given a random number, placed in ascending order 

and the first ten placed into sets. This was repeated until all descriptors were 

represented, generating 22 sets in which some descriptors were represented more 

than once. These sets of ten descriptors, combined with rate and temperature values, 

were then analysed using INForm[1] and FormRules[2]. The analysis technique used 

in this research was the detailed method (outlined in section 4.6.2) whereby the rules 

generated in FormRules[2] were used in conjunction with the predictions made in 

INForm[1]. This method was not time effective and therefore this data analysis 

technique did not progress.  

A more rapid analysis technique was sought and found by using only the average R2 

values from both INForm[1] and FormRules[2] (discussed in section 4.6.1). Figure 5.1 

summarises the method used to generate the sets of descriptors for the rapid analysis, 

which is discussed in the following sections.  
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Figure 5.1 Summary of how the descriptor sets were created 

 
16 descriptor sets were generated and were used as the starting point in both the 

INForm,[1] FormRules[2] and combined analysis (for details see appendix section 

12.6). After the first generation of analysis the two least successful sets of descriptors 

at predicting the polymorphic outcome of the crystallisation experiments were 

discarded. The remaining descriptors were then assigned a new random number, 

reordered and placed into new sets. This meant that different sets of descriptors were 

analysed each time, but a path could be traced through each generation if certain 

descriptors often featured in successful sets. At each generation the two least 

successful sets were discarded, and the remaining descriptors randomised and put 

into new sets. Figure 5.2 highlights the number of sets of descriptors in each 

generation of analysis. 

 

Figure 5.2 Summary of the number of descriptor sets within each generation of analysis 
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5.1.1. Complete Dataset Analysis – FormRules 

Analysis of all 167 descriptors was carried out using the method outlined above 

using only the average R2 values generated in FormRules[2]. A full table of results 

can be found in Electronic Appendix, Chapter 5, file 5.1, with the final set, the first 

and second most successful sets (Table 5.1) presented for further analysis.  

 
Table 5.1 The final set and first and second most successful descriptor sets in FormRules analysis 

Sets Descriptors FormRules 
average R2 (%) 

Final Set                    
(Gen 8, Set 2gg) 

Dsolv4, dsolv18, dsolv49, dsolv50, dsolv65, 
dsolv71, d73, MNDO_HF, Vol, vapour density, 

polarisability parameter 
78.31 

Best Overall Set              
(Gen 1, Set 2) 

Dsolv26, dsolv34, dsolv47, dsolv63, dsolv68, 
dsolv69, dsolv71, dsolv74, dsol79, RMM, 

81. 26 

Second Best Set              
(Gen 1, Set 5) 

Dsolv24, dsolv32, dsolv62, d67, d71, d77, pmiZ, 
AM1_HOMO, PM3_LUMO, dielectric constant 

80.94 

 
The two most successful sets were both found in generation 1, which meant both sets 

contained unique descriptors. Therefore the linear correlations between the final, first 

and second most successful sets have been calculated to determine if the descriptors 

are linearly correlated (Table 5.2). The correlations were not only calculated between 

the sets, but also within the set.  
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Table 5.2 Linear correlations between the best set of descriptors and the final and second best set in 

the FormRules analysis. Number in brackets are the correlation coefficients 

Best Overall 
Set              

(Gen 1, Set 2) 

Total 
Number of 

Correlations 
with all 167 
Descriptors    
(±  0.8 - 1) 

Correlations 
within the Best 

Overall Set         
(± 0.8 - 1) 

Correlations 
with Final Set 

(Gen 8,         
Set 2gg) 

Correlations 
with Second 

Best Set    
(Gen 1,      
Set 5) 

Dsolv26 27 
Dsolv47, dsolv63, 
dsolv71, dsolv79 

Dsolv4 (0.81) 
dsolv18 (0.85)  
dsolv71 (0.88) 

Dsolv62 
(0.81) 

Dsolv34 14 Dsolv47, dsolv71 Dsolv71 (0.81) 
Dsolv62 
(0.87) 

Dsolv47 25 
Dsolv26, dsolv34, 

dsolv71 
Dsolv18 (0.86) 
dsolv71 (0.84) 

Dsolv24 
(0.86)  

dsolv62 (0.80) 

Dsolv63 12 Dsolv26 - - 

Dsolv68 11 Dsolv71, dsolv79 
Dsolv50 (0.98) 
dsolv71 (-0.84) 

Dsolv62       
(-0.85) 

Dsolv69 2 - - - 

Dsolv71 31 
Dsolv26, dsolv34, 
dsolv47, dsolv68, 

dsolv79 

Dsolv18 (0.98) 
dsolv71 (1) 

Dsolv62 
(.096) 

Dsolv74 5 - Dsolv65 (0.96) 
Dsolv32 
(0.86) 

Dsolv79 27 
Dsolv26, dsolv68, 

dsolv71 
Dsolv50 (-0.83) 
dsolv71 (0.97) 

Dsolv62 
(0.96) 

RMM 8 - 
Vapour density 

(1) 
- 

  

Only 3 descriptors 
are not correlated 
with others in the 

best set 

6 out of 11 of 
the final set 

descriptors are 
correlated with 

the best set 

3 out of 10 of 
the second 

best set 
descriptors 

are correlated 
with the best 

set 

 

Table 5.2 shows that only three descriptors in the most successful set are not 

correlated with others within that set. This fact may potentially allow further 

descriptor reduction. Six out of the eleven descriptors in the final set were correlated 

with descriptors in the most successful set. However, only three out of ten descriptors 

in the second most successful set were correlated with the most successful set. 
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Optimisation of the set was undertaken based on the correlations between the 

descriptors (Table 5.3). Dsolv71, dsolv74, RMM and d71 were chosen as the starting 

descriptor set. The reasons for this choice were that dsolv71 was featured in two of 

the three analysed sets, with a correlated descriptor in the third; therefore appearing 

to be an important descriptor. Dsolv74 was not correlated to any other descriptors in 

the best set, but was correlated to a descriptor in the final and second best sets. RMM 

was also not correlated to other descriptors in the best set, but highly correlated to 

vapour density in the final set. D71 was featured in the second best set and was the 

only other descriptor that was correlated between two sets that is not represented by 

dsolv71, dsolv74 or RMM. The addition of further descriptors was based upon which 

descriptors were uncorrelated in the most successful set, the final set and the second 

most successful set. 
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Table 5.3 Optimisation of the FormRules (FR) descriptor sets. X denotes the presence of the 

descriptor in the set 

Descriptors 
Best Overall 

Set            
(Gen 1, Set 2) 

FR 
Optimised 

set 1 

FR 
Optimised 

set 2 

FR 
Optimised 

set 3 

FR 
Optimised 

set 4 

Dsolv26 X     

Dsolv34 X     

Dsolv47 X     

Dsolv63 X     

Dsolv68 X     

Dsolv69 X  X   

Dsolv71 X X X X X 

Dsolv74 X X X X X 

Dsolv79 X     

RMM X X X X X 

D71  X X X X 

Dsolv49    X  

MNDO_HF    X  

Vol    X  

D67     X 

D77     X 

AM1_HOMO     X 

PM3_LUMO     X 

PmiZ     X 

Dielectric 
constant 

    X 

FormRules 
average R2 (%) 

81. 26  75.60 70.89 73.60 78.02 

INForm 
average R2 (%) 

71.99 70.54 78.56 84.72 82.83 

Overall 
average R2 (%) 

76.62 73.07 74.56 79.16 80.43 
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No overall improvement in FormRules[2] average R2 values were observed. However, 

FR optimised set 4 produced a high overall average result when both FormRules[2] 

and INForm[1] are used (80.43 %). The descriptors within the most successful set and 

also FR optimised set 4 will be taken forward for further analysis. 

 

5.1.2. Complete Dataset Analysis – INForm 

Using the same starting sets of descriptors as in the FormRules[2] work, the analysis 

was carried out in the same way, but using the INForm[1] average R2 values. A full 

table of results can be found in Electronic Appendix, Chapter 5, file 5.2, with the 

final set, the first and second most successful sets presented for further analysis 

(Table 5.4).  

 

Table 5.4 The final set and first and second most successful descriptor sets in FormRules analysis 

Sets Descriptors INForm 
average R2 (%) 

Final Set       
(Gen 8, Set 2g) 

Dsolv9, dsolv27, dsolv76, d67, d71, d81, d84, 
AM1_E, MNDO_dipole, E 

82.81 

Best Overall Set             
(Gen 6, Set 5e) 

Dsolv9, dsolv10, dsolv17, dsolv45, d81, 
AM1_LUMO, MNDO_dipole, E, Vol, Glob, logP 

87.12 

Second Best Set             
(Gen 1, Set 3) 

Dsolv1, dsolv39, dsolv60, d83, AM1_dipole, 
MNDO_E, E, E_Eele, dP, boiling point 

85.23 

 

The linear correlations between the final, first and second most successful sets have 

been calculated, with the results presented (Table 5.5). The correlations were again 

calculated between and within the sets. Table 5.5 highlights that there are no 

correlated descriptors within the best set, which means that a range of molecular 

properties is represented. Seven of the ten descriptors found in the final set are 

correlated to those in the best set, with four descriptors (dsolv9, d81, MNDO_dipole 

and E) being present in both. Six descriptors from the second best set are also 

correlated and E is found in all three sets. 
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Table 5.5 Linear correlations between the best set of descriptors and the final and second best set in 

the INForm analysis. Number in brackets are the correlation coefficients 

Best Overall 
Set             

(Gen 6, Set 
5e) 

Total Number 
of Correlations 

with all 167 
Descriptors   

(± 0.8 - 1) 

Correlations 
within the Best 

Overall Set    
(± 0.8 - 1) 

Correlations 
with Final Set 

(Gen 8, Set 2g) 

Correlations 
with Second 

Best Set    
(Gen 1, Set 3) 

Dsolv9 12 - Dsolv9 (1) 
Dsolv1(0.89) 

dsolv39 (0.83) 

Dsolv10 5 - - - 

Dsolv17 8 - Dsolv27 (0.92) - 

Dsolv45 21 - - - 

D81 4 - D81 (1) d84 (-1) - 

AM1_LUMO 5 - AM1_E (-0.94)  
AM1_dipole     

(-0.91) 

MNDO_dipole 0 - MNDO_dipole (1) - 

E 7 - E (1) 
E (1)        

E_ele (-0.92) 

Vol 1 - - - 

Glob 13 - D71 (0.80) - 

LogP 12 - D71 (-0.87) dP (-0.85) 

  

None of the 
best set 

descriptors are 
correlated 

7 out of 10 final 
set descriptors 
are correlated 

with the best set 
and 4 are the 

same 

6 out of 10 of 
the second 

best set 
descriptors are 
correlated with 

the best set 
and 1 is the 

same 

 

Optimisation was carried out using the correlation results, with no improvement in 

INForm average R2 values observed (Table 5.6). The initial descriptors used in this 

analysis were dsolv9, dsolv17, d71, d81, MNDO_dipole, AM1_LUMO and E. E was 

found in all three sets analysed here and dsolv9 was found in two sets and had a 

correlated descriptor in the third. D81 and MNDO_dipole were present in two of the 

sets. AM1_LUMO and d71 were found in only one set, but had correlated descriptors 

in the other two sets. Dsolv17 was only correlated with one other descriptor, but was 

the only correlated descriptor not represented in some way. The additional 
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descriptors used in the optimised sets were the uncorrelated descriptors in the most 

successful set, final set and second most successful set. 

 
Table 5.6 Optimisation of the INForm (IN) descriptor sets. X denotes the presence of the descriptor in 

the set 

Descriptors 

Best 
Overall Set             

(Gen 1,    
Set 2) 

IN 
Optimised 

set 1 

IN 
Optimised 

set 2 

IN 
Optimised 

set 3 

IN  
Optimised 

set 4 

Dsolv9 X X X X X 

Dsolv10 X  X   

Dsolv17 X X X X X 

Dsolv45 X  X   

D81 X X X X X 

AM1_LUMO X X X X X 

MNDO_dipole X X X X X 

E X X X X X 

Vol X  X   

Glob X     

LogP X     

D71  X X X X 

Dsolv27    X  

Dsolv76    X  

D67    X  

Dsolv60     X 

MNDO_E     X 

Boiling point     X 

FormRules 
average R2 (%) 41.70 50.40 50.40 51.25 50.40 

INForm 
average R2 (%) 

87.12 81.02 77.50 44.15 79.36 

Overall 
average R2 (%) 

64.41 65.71 63.95 47.70 64.88 
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Overall the initial set in this analysis produced the most successful INForm result and 

therefore will be taken forward for further analysis. IN optimised set 1 generated the 

highest overall average R2 value and therefore these descriptors will also be 

considered. However, it should be noted that the overall performance of IN 

optimised set 1 is not as successful as other results and therefore less emphasis will 

be placed on this set of descriptors. 

 

5.1.3. Complete Dataset Analysis – FormRules and INForm 

Using a similar approach as discussed in 5.1.1 and 5.1.2, both the average R2 values 

from INForm[1] and FormRules[2] have been used. The final, first and second most 

successful sets have been analysed further (Table 5.7). All results can be found in 

Electronic Appendix, chapter 5, file 5.3. 

 
Table 5.7 The final set and first and second most successful descriptor sets in FormRules analysis 

Sets Descriptors 
FormRules 
average R2 

(%) 

INForm 
average R2 

(%) 

Overall 
average R2 

(%) 

Final Set       
(Gen 8, Set 2t) 

Dsolv42, dsolv50, 
dsolv65, dsolv67, 
dsolv68, dsolv79, 

AM1_E, E_strain, ASA 

77.88 80.28 79.08 

Best Overall Set 
(Gen 3, Set 11y) 

Dsolv8, dsolv22, dsolv41, 
dsolv49, dsolv66, 

MNDO_HF, Rgyr, ASA, 
ASA_H, RMM, logP 

80.17 86.89 83.53 

Second Best 
Set               

(Gen 3, Set 5y) 

Dsolv32, dsolv36, 
dsolv39, dsolv51, d73, 

d83, AM1_dipole, 
AM1_LUMO, E, E_vdw 

77.90 86.97 82.44 

 

The first and second most successful sets are from the same generation, therefore 

containing unique descriptors. Although the descriptors are unique, there may be 

linear correlations between the sets, which were therefore analysed (Table 5.8). 

The overall results in this combined analysis are much higher than those seen when 

only either FormRules[2] or INForm[1] are used; suggesting valuable information may 

be lost through using only one analysis method. The correlations within and between 

the sets have been calculated with results presented in Table 5.8. 
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Table 5.8 Linear correlations between the best set of descriptors and the final and second best set. 

Number in brackets are the correlation coefficients 

Best Overall 
Set          

(Gen 3,     
Set 11y) 

Total Number 
of Correlations 

with all 167 
Descriptors     

(± 0.8 - 1) 

Correlations 
within the Best 

Overall Set      
(± 0.8 - 1) 

Correlations 
with Final Set 
(Gen 8, Set 2t) 

Correlations 
with Second 

Best Set    
(Gen 3, Set 5y) 

Dsolv8 28 Dsolv22 
Dsolv42 (0.84) 
dsolv79 (0.82) 

Dsolv39 (0.87) 

Dsolv22 29 - 
Dsolv42 (0.98) 
dsolv79 (0.84) 

Dsolv39 (0.80) 
E_vdw (0.80) 

Dsolv41 0 - - - 

Dsolv49 3 - - Dsolv51 (0.91) 

Dsolv66 4 - Dsolv65 (0.96) Dsolv32 (0.94) 

MNDO_HF 2 - - - 

Rgyr 14 logP - E_vdw (0.82) 

ASA 1 ASA_H ASA (1) - 

ASA_H 1 ASA ASA (1) - 

RMM 8 - - - 

logP 12 rgyr - 
D73 (-0.81) 

E_vdw (0.84) 

  
5 of the best set 
descriptors are 

correlated 

4 out of 10 final 
set descriptors 
are correlated 

with the best set 
and 1 is the 

same 

5 out of 10 of 
the second best 
set descriptors 
are correlated 

with the best set  

 
Overall, there are fewer correlations in this analysis than have been seen in the 

previous work (Table 5.2 and Table 5.5). Only ASA was present in more than one of 

the three sets. Dsolv42 and dsolv65 have correlated descriptors in all three sets, with 

AM1_E, E, E_vdw and dsolv51 representing the remaining correlations. 

Optimisation was carried out based on this information (Table 5.9). 
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Table 5.9 Optimisation of the FormRules descriptor sets. X denotes the presence of the descriptor in 
the set 

Descriptors 
Best Overall 

Set               
(Gen 3, Set 11y) 

Combined 
Optimised 

set 1 

Combined 
Optimised 

set 2 

Combined 
Optimised 

set 3 

Combined 
Optimised 

set 4 

Dsolv8 X     

Dsolv22 X     

Dsolv41 X  X   

Dsolv49 X     

Dsolv66 X     

MNDO_HF X  X   

Rgyr X     

ASA X X X X X 

ASA_H X     

RMM X  X   

logP X     

Dsolv42  X X X X 

Dsolv65  X X X X 

AM1_E  X X X X 

E  X X X X 

E_vdw  X X X X 

Dsolv51  X X X X 

Dsolv50    X  

Dsolv67    X  

Dsolv68    X  

Dsolv69    X  

D83     X 

FormRules 
average R2 (%) 80.17 81.05 79.93 79.02 81.04 

INForm 
average R2 (%) 86.89 73.78 84.16 45.30 77.44 

Overall 
average R2 (%) 

83.53 77.41 82.04 62.16 79.24 
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The additional descriptors in the optimisation sets are the uncorrelated descriptors in 

the most successful, final and second most successful sets. The results (Table 5.9) 

show no improvement in the average R2 values, and all but one set performing well. 

The descriptors in the overall best set will be taken forward for further analysis. 

 

5.1.4. Optimisation of the High Performing Sets 

Analysis of using FormRules[2] and INForm[1] separately and in combination has 

been carried out and has produced five sets of descriptors for further analysis (Table 

5.10). From the average R2 values presented here, two of the sets generated 

percentages below 70 %, which from earlier research is known to have under 

performed. Therefore analysis of the three remaining sets will be carried out in order 

to assess whether the descriptors presented are correlated. 

 
Table 5.10 The final set and first and second most successful descriptor sets in the high performing 

sets analysis 

Sets Descriptors 
FormRules 
average R2 

(%) 

INForm 
average R2 

(%) 

Overall 
average R2 

(%) 

FR Best 
Overall Set  

(Gen 1, Set 2) 

Dsolv26, dsolv34, dsolv47, 
dsolv63, dsolv68, dsolv69, 
dsolv71, dsolv74, dsolv79, 

RMM 

81. 26 71.99 76.62 

FR Optimised 
set 4 

Dsolv71, dsolv74, d67, d71, 
d77, AM1_HOMO, dielectric 

constant, PmiZ, RMM, 
Pm3_LUMO 

78.02 82.83 80.43 

IN Best Overall 
Set            

(Gen 6, Set 5e) 

Dsolv9, dsolv10, dsolv17, 
dsolv45, d81, AM1_LUMO, 
MNDO_dipole, E, Vol, Glob, 

logP 

41.70 87.12 64. 41 

IN Optimised 
set 1 

Dsolv9, dsolv17, d81, 
AM1_LUMO, d71, E, 

MNDO_dipole 
50.40 81. 02 65. 71 

Combined Best 
Overall Set 
(Gen 3, Set 

11y) 

Dsolv8, dsolv22, dsolv41, 
dsolv49, dsolv66, 

MNDO_HF, rgyr, ASA, 
ASA_H, RMM, logP 

80.17 86.89 83.53 

 

The correlations within and between the three sets have been calculated with results 

presented in Table 5.11. There are a high number of correlated descriptors within the 
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sets and the molecular mass of the solvent (RMM) was present in all three. This 

demonstrates that the different analysis methods used on the large dataset can 

produce similar final results.  

 

Table 5.11 Linear correlations between the best set of descriptors and the final and second best set. 

Number in brackets are the correlation coefficients 

Combined 
Best Overall 
Set (Gen 3,     

Set 11y) 

Total Number 
of Correlations 

with all 167 
Descriptors     

(± 0.8 - 1) 

Correlations 
within the 

Best Overall 
Set            

(± 0.8 - 1) 

Correlations 
with FR Best 
Overall Set  

(Gen 1, Set 2) 

Correlations with 
FR Optimised set 

4 

Dsolv8 28 Dsolv22 

Dsolv26 (0.90) 
dsolv34 (0.91) 
dsolv47 (0.87) 
dsolv63 (0.87) 
dsolv71 (0.85) 
dsolv79 (0.82) 

dsolv71 (0.85) 

Dsolv22 29 Dsolv8 

Dsolv26 (0.96) 
dsolv47 (0.86) 
dsolv71 (0.90) 
dsolv79 (0.84) 

dsolv71 (0.90) 

Dsolv41 0 - - - 

Dsolv49 3 - - - 

Dsolv66 4 - Dsolv74 (0.90) Dsolv74 (0.90) 

MNDO_HF 2 - - - 

Rgyr 14 logP - 

D71 (-0.87)     
pmiZ  (-0.87) 

Dielectric constant 
(-0.83) 

ASA 1 ASA_H - - 

ASA_H 1 ASA - - 

RMM 8 - RMM (1) RMM (1) 

logP 12 rgyr - 

D71 (-0.87)     
pmiZ  (-0.82) 

Dielectric constant 
(-0.90) 

  

6 of the best 
set 

descriptors 
are correlated 

7 out of 10 final 
set descriptors 
are correlated 

with the best set 
and 1 is the 

same 

6 out of 10 of the 
second best set 
descriptors are 

correlated with the 
best set and 1 is 

the same  
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Optimisation was carried out based on the correlations between the three sets but no 

overall improvements were observed (Table 5.12). 

 
Table 5.12 Optimisation of the top performing descriptor sets. X denotes the presence of the 

descriptor in the set 

Descriptors 
Combined Best 

Overall Set (Gen 3,   
Set 11y) 

Optimised 
set 1 

Optimised 
set 2 

Optimised 
set 3 

Optimised 
set 4 

Dsolv8 X                                 

Dsolv22 X     

Dsolv41 X  X   

Dsolv49 X  X   

Dsolv66 X     

MNDO_HF X  X   

Rgyr X     

ASA X  X   

ASA_H X  X   

RMM X X X X X 

logP X     

Dsolv71  X X X X 

Dsolv74  X X X X 

D71  X X X X 

Dsolv69    X  

D67     X 

D77     X 

AM1_HOMO     X 

PM3_LUMO     X 

FormRules 
average R2 (%) 80.17 70.54 79.95 70.89 77.65 

INForm average 
R2 (%) 86.89 56.58 62.38 77.40 70.75 

Overall average 
R2 (%) 83.53 63.56 71.17 74.15 74.20 
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This analysis has generated a set of eleven descriptors that can predict the 

polymorphic form crystallised to 83.53 %. The eleven descriptors are dsolv8, 

dsolv22, dsolv41, dsolv49, dsolv66, MNDO_HF, rgyr, ASA, ASA_H, RMM and 

logP. These descriptors are a mixture of bulk and molecular solvent properties and 

also molecular properties of the carbamazepine (CBZ) molecule. 

The relative molecular mass (RMM), partition coefficient (logP) and number of 

bonds (dsolv8) of the solvent are represented in this set. Also molecular level solvent 

properties such as the Randić index (dsolv22), bonding information content 

(dsolv41), 3D-Kier and Hall index (dsolv49) and the moment of inertia A (dsolv66). 

The CBZ molecule is represented by the calculated heat of formation (MNDO_HF), 

radius of gyration (rgyr) and the water accessible surface area of all atoms (ASA) 

and all hydrophobic atoms (ASA_H). Details of which can be found in appendix 

section 12.2. 

These eleven descriptors will be compared to those highlight in the linear correlation 

work in order to generate the most successful set from the manual analysis research. 

A discussion of the final descriptors will then be made relating the properties to the 

nucleation and growth of different polymorphic forms.  

 

5.2. Linear Correlations Analysis 

Linear correlations of all the 167 descriptors were calculated, with highly positively 

and negatively correlated descriptors grouped. This was carried out in order to reduce 

the dataset. Initially, all descriptors that were correlated between ± 0.95 and ± 1 were 

clustered together, which resulted in 69 descriptors being uncorrelated. When one 

descriptor from each correlated cluster was added to the uncorrelated descriptors, the 

dataset was reduced to 84. However, further reduction was desirable, and therefore 

all correlations between ± 0.8 and ± 1 were clustered. This reduced the number of 

uncorrelated descriptors to 18. One descriptor from each correlation cluster was 

selected and in the case of the largest cluster (shown in appendix section 12.7 and 

Electronic Appendix, Chapter 5, file 5.4, 5.5 and 5.6), 7 different descriptors, 

reducing the dataset to 40 values. 

The 40 descriptors selected were given a random number and then numerically 

ordered. Four sets were created for analysis by placing the top 10 descriptors in set 1, 

the next 10 into set 2 and so on. The 40 selected descriptors and the initial analysis 
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sets they were placed in are presented (Table 5.13). This process was then repeated 

three times, generating four different groups of four descriptor sets (in the following 

tables). FormRules[2] and INForm[1] analysis was carried out upon each set with the 

results presented in Table 5.13, Table 5.14, Table 5.15 and Table 5.16. 

Table 5.13 The 40 descriptors selected for analysis from the correlations analysis 

Sets Descriptors 
FormRules 
average R2 

(%) 

INForm 
average R2 

(%) 

Overall 
average R2 

(%) 

Correlation    
Set 1 Run 1 

AM1_Eele, dsolv41, VSA, 
d72, dsolv11, 

MNDO_LUMO, dsolv76, 
ASA, d77, gutmann donor 

number 

52.38 32.96 42.67 

Correlation    
Set 2 Run 1 

D70, MNDO_dipole, d75, 
PM3_E, PM3_HF, 

MNDO_Eele, solubility, 
dsolv65, rgyr, Henry’s law 

constant 

79.96 63.66 71.81 

Correlation    
Set 3 Run 1 

D67, AM1_E, d86, dsolv2, 
d69, dsolv57, vol, dsolv43, 
MNDO_E, vapour pressure 

50.42 61.67 56.04 

Correlation    
Set 4 Run 1 

Dsolv78, density, dsolv71, 
E_nb, dsolv31, E, dipole, 

d82, dsolv70, E_vdw 
42.82 84.38 63.60 

 
Table 5.14 The descriptors and results of the second group of 4 sets 

Sets Descriptors 
FormRules 
average R2 

(%) 

INForm 
average R2 

(%) 

Overall 
average R2 

(%) 

Correlation    
Set 1 Run 2 

D67, d70, dsolv31, dsolv70, 
MNDO_LUMO, ASA, VSA, 
density, solubility, Henry’s 

law constant 

60.31 49.91 55.11 

Correlation    
Set 2 Run 2 

D69, d72, d77, dsolv11, 
dsolv57, dsolv76, AM1_E, 

E, PM3_E, rgyr 
42.69 66.47 54.58 

Correlation    
Set 3 Run 2 

D82, d86, dsolv41, dsolv71, 
MNDO_E, MNDO_Eele, 

PM3_HF, vapour pressure, 
gutmann donor number 

52.82 74.13 63.47 

Correlation    
Set 4 Run 2 

D75, dsolv2, dsolv43, 
dsolv65, dsolv78, E_nb, 

E_vdw, AM1_Eele, 
MNDO_dipole, vol 

75.84 81.75 78.80 
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Table 5.15 The descriptors and results of the third group of 4 sets 

Sets Descriptors 
FormRules 
average R2 

(%) 

INForm 
average R2 

(%) 

Overall 
average R2 

(%) 

Correlation    
Set 1 Run 3 

D67, d82, dsolv65, dsolv71, 
ASA, MNDO_Eele, 

PM3_HF, VSA, rgyr, 
solubility 

78.76 51.59 65.17 

Correlation    
Set 2 Run 3 

Dsolv2, dsolv31, dsolv70, 
E_nb, E, AM1_Eele, 

MNDO_E, MNDO_LUMO, 
vol, vapour pressure 

43.31 66.71 55.01 

Correlation    
Set 3 Run 3 

D69, d70, d72, d75, d77, 
dsolv11, dsolv43, E_vdw, 

MNDO_dipole, density 
52.12 66.29 59.20 

Correlation    
Set 4 Run 3 

D86, dipole, dsolv41, 
dsolv57, dsolv76, dsolv78, 
AM1_E, PM3_E, gutmann 
donor number, Henry’s law 

constant 

51.69 79.80 65.75 

 

Table 5.16 The descriptors and results of the fourth group of 4 sets 

Sets Descriptors 
FormRules 
average R2 

(%) 

INForm 
average R2 

(%) 

Overall 
average R2 

(%) 

Correlation    
Set 1 Run 4 

Dsolv65, dsolv71, dsolv76, 
AM1_E, AM1_Eele, ASA, 
E_vdw, PM3_E, PM3_HF, 

solubility 

75.30 66.50 70.90 

Correlation    
Set 2 Run 4 

D70, d72, dsolv31, dsolv70, 
E, E_nb, MNDO_Eele, rgyr, 

vol, vapour pressure 
44.78 81.78 63.28 

Correlation    
Set 3 Run 4 

D67, d69, d75, d82, 
dsolv43, dsolv57, 

MNDO_dipole, 
MNDO_LUMO, VSA, dipole 

53.40 62.32 57.86 

Correlation    
Set 4 Run 4 

D77, d86, dsolv11, dsolv2, 
dsolv41, dsolv78, 

MNDO_E, gutmann donor 
number, Henry’s law 

constant, density 

52.08 73.22 62.65 
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5.2.1. Linear Correlation Analysis – FormRules 

Using only the results acquired from the FormRules[2] analysis, the top set was taken 

from each group of 4 (Table 5.17). This was to assess whether any of the descriptors 

were featured in more than one successful set. The aim of this analysis was to 

highlight consistently high performing descriptors. 

 

Table 5.17 The top set from each group based on the results of FormRules analysis 

Sets Descriptors FormRules 
average R2 (%) 

Correlation Set 2 
Run 1 

D70, MNDO_dipole, d75, PM3_E, PM3_HF, 
MNDO_Eele, solubility, dsolv65, rgyr, Henry’s 

law constant 
79.96 

Correlation Set 4 
Run 2 

D75, dsolv2, dsolv43, dsolv65, dsolv78, E_nb, 
E-vdw, AM1_Eele, MNDO_dipole, vol 

75.84 

Correlation Set 1 
Run 3 

D67, d82, dsolv65, dsolv71, ASA, 
MNDO_Eele, PM3_HF, VSA, rgyr, solubility 

78.76 

Correlation Set 1 
Run 4 

Dsolv65, dsolv71, dsolv76, AM1_E, AM1_Eele, 
ASA, E_vdw, PM3_E, PM3_HF, solubility 

75.30 

 

From the 40 descriptors in this analysis, 24 unique descriptors were present in the top 

four sets of the FormRules[2] analysis (Table 5.18). Twelve of these descriptors 

featured more than once in the four sets, with dsolv65 being present in all four sets. 

Dsolv65 was used in the prediction of form I and dihydrate in all cases, and also for 

form II on one occasion. PM3_HF and solubility featured in three of the sets, but 

solubility was not present in any of the rules. PM3_HF was used in form III rules on 

two occasions, but not in the third. The rules from each of these top sets can be found 

in Electronic Appendix, Chapter 5, file 5.7. 
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Table 5.18 Monitoring the repeat occurrence of descriptors in the top sets of FormRules analysis. X 

denotes the presence of the descriptor in the set 

 
Correlation 
Set 2 Run 

1 

Correlation    
Set 4 Run 

2 

Correlation    
Set 1 Run 

3 

Correlation    
Set 1 Run 

4 

Total number 
of 

occurrences 

D70 X    1 

D75 X X   2 

Dsolv65 X X X X 4 

MNDO_dipole X X   2 

MNDO_Eele X  X  2 

PM3_E X   X 2 

PM3_HF X  X X 3 

Rgyr X  X  2 

Solubility X  X X 3 

Henry’s law 
constant 

X    1 

Dsolv2  X   1 

Dsolv43  X   1 

Dsolv78  X   1 

AM1_Eele  X  X 2 

E_nb  X   1 

E_vdw  X  X 2 

Vol  X   1 

D67   X  1 

D82   X  1 

Dsolv71   X X 2 

ASA   X X 2 

VSA   X  1 

Dsolv76    X 1 

AM1_E    X 1 
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Analysis of the 24 unique descriptors was carried out generating good results in 

FormRules[2], but mediocre results in INForm[1], 79.17 % and 66.71 % respectively 

(Table 5.19). Using a high number of descriptors makes it difficult to determine the 

most informative factors in polymorphic form prediction. Therefore, further analysis 

was carried out to reduce the number of descriptors used. By using only the 12 

descriptors that occurred more than once in the top 4 sets, a slight reduction in the 

FormRules[2] average R2 value was observed (78.26 %). However, an improvement 

in the INForm[1] and overall average R2 values were observed, 78.08 % and 78.17 % 

respectively. What is noticeable about this result is that perhaps descriptors within 

correlation set 2, run 1 (the top performing set) that did not occur more than once 

were important in rule formation. Also, INForm[1] perhaps performs better when 

there are less descriptors used in the analysis. The rule descriptors from the 

correlation set 2, run 1, and also the 12 most occurring descriptors were analysed 

further (Table 5.19).  
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Table 5.19 Further analysis of FormRules results. X denotes the presence of the descriptor in the set 

Descriptors 
Correlation       
Set 2 Run 

1 

25 
unique 

12 most 
occurring 

Correlation 
Set 2 Run 1 

Rule 
descriptor 

only 

25 unique 
Rule 

descriptor 
only 

12 most 
occurring 

Rule 
descriptor 

only 

D70 X X  X X  

D75 X X X X  X 

Dsolv65 X X X X X X 

MNDO_ dipole X X X X X X 

MNDO_Eele X X X    

PM3_E X X X X   

PM3_HF X X X    

Rgyr X X X    

Solubility X X X    

Henry’s law constant X X  X   

Dsolv2  X     

Dsolv43  X     

Dsolv78  X   X  

AM1_Eele  X X    

E_nb  X   X  

E_vdw  X X  X X 

Vol  X     

D67  X     

D82  X     

Dsolv71  X X  X X 

ASA  X X    

VSA  X   X  

Dsolv76  X     

AM1_E  X     

FormRules average R2 (%) 79.96 79.17 78.26 79.96 79.17 78.26 

INForm average R2 (%) 63.66 66.71 78.08 71.55 72.36 77.75 

Overall average R2 (%) 71.81 72.94 78.17 75.76 75.77 78.01 
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When only the rule descriptors of correlation set 2, run 1 are analysed, the  

FromRules[2] R2 value is at its highest (79.96 %). An improvement in INForm[1] 

performance from 63.66 % to 71.55 % was also observed when the none rule 

descriptors are removed. When the overall averages are used to determine the most 

successful set, the 12 most occurring descriptors generate the highest value 

(78.17 %). These 12 descriptors and also the rule only descriptors from correlation 

set 2, run will be considered in further analysis. 

 

5.2.2. Linear Correlation Analysis – INForm 

Similar analysis has been carried out using the same correlation sets (Table 5.13, 

Table 5.14, 5 and Table 5.16) but on this occasion analysing the top R2 values from 

INForm[1]. 

 

Table 5.20 The top set from each group based on the results of INForm analysis 

Sets Descriptors INForm 
average R2 (%) 

Correlation Set 4 
Run 1 

Dsolv78, density, dsolv71, E_nb, dsolv31, E, 
dipole, d82, dsolv70, E_vdw 

84.38 

Correlation Set 4 
Run 2 

D75, dsolv2, dsolv43, dsolv65, dsolv78, E_nb, 
E_vdw, AM1_Eele, MNDO_dipole, vol 

81.75 

Correlation Set 4 
Run 3 

D86, dipole, dsolv41, dsolv57, dsolv76, 
dsolv78, AM1_E, PM3_E, gutmann donor 

number, Henry’s law constant 
79.80 

Correlation Set 2 
Run 4 

D70, d72, dsolv31, dsolv70, E, E_nb, 
MNDO_Eele, rgyr, vol, vapour pressure 

81.78 

 

Out of the 40 descriptors present, there are 30 unique descriptors that generated the 

highest INForm[1] prediction values (Table 5.21), with only 8 of these occurring 

more than once. An interesting result is that 7 out of 8 of these descriptors are present 

in the highest performing set (correlation set 4, run 1). Optimisation was carried out 

based on these results (Table 5.22). 

In both Table 5.21 and Table 5.22 X denotes the presence of the descriptor in the set. 
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Table 5.21 Monitoring the repeat occurrence of descriptors in the top sets of FormRules analysis 

 
Correlation    
set 4 Run 1 

Correlation    
set 4 Run 2 

Correlation    
set 4 Run 3 

Correlation    
set 2 Run 4 

Number of 
occurrences 

D82 X    1 

Dsolv31 X   X 2 

Dsolv70 X   X 2 

Dsolv71 X    1 

Dsolv78 X X X  3 

E X   X 2 

E_nb X X  X 3 

E_vdw X X   2 

Density X    1 

Dipole X  X  2 

D75  X   1 

Dsolv2  X   1 

Dsolv43  X   1 

Dsolv65  X   1 

AM1_Eele  X   1 

MNDO_ dipole  X   1 

Vol  X  X 2 

D86   X  1 

Dsolv41   X  1 

Dsolv57   X  1 

Dsolv76   X  1 

AM1_E   X  1 

PM3_E   X  1 

Gutmann donor number   X  1 

Henry’s law constant   X  1 

D70    X 1 

D72    X 1 

MNDO_Eele    X 1 

Rgyr    X 1 

Vapour pressure    X 1 
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Table 5.22 Analysis of descriptors highlighted in the INForm analysis 

 
Correlation    
set 4 Run 1 

30 unique 
descriptors 

8 most 
occurring 

30 unique 
descriptors 
Rule only 

D82 X X   

Dsolv31 X X X  

Dsolv70 X X X  

Dsolv71 X X  X 

Dsolv78 X X X X 

E X X X  

E_nb X X X  

E_vdw X X X X 

Density X X   

Dipole X X X  

D75  X  X 

Dsolv2  X   

Dsolv43  X   

Dsolv65  X  X 

AM1_Eele  X   

MNDO_ dipole  X  X 

Vol  X X  

D86  X   

Dsolv41  X   

Dsolv57  X  X 

Dsolv76  X   

AM1_E  X   

PM3_E  X   

Gutmann donor number  X  X 

Henry’s law constant  X   

D70  X   

D72  X  X 

MNDO_Eele  X   

Rgyr  X   

Vapour pressure  X   
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Correlation    
set 4 Run 1 

30 unique 
descriptors 

8 most 
occurring 

30 unique 
descriptors 
Rule only 

FormRules average R2 (%) 42.82 79.55 41.33 79.55 

INForm average R2 (%) 84.38 82.63 35.70 83.46 

Overall average R2 (%) 63.60 81.09 38.52 81.51 

 

Analysis of the 30 unique descriptors generated high INForm[1] and FormRules[2] R2 

values, at 82.63 % and 79.55 % respectively. However, by using 30 descriptors it is 

difficult to know which of those are directing the correct prediction of polymorphic 

form. Therefore, further analysis was carried out using the descriptors present in the 

rules only, to reduce the number of descriptors (Table 5.22). Analysis of the 8 most 

occurring descriptors was also carried out, generating surprisingly poor results. 

INForm[1] and FormRules[2] both performed very badly in this analysis, with average 

R2 values of 35.70 % and 41.33 % respectively. This suggests that the descriptors in 

correlation set 4, run 1, that were not analysed (d82, dsolv71 and density) added a 

high amount of value to the set. Alternatively, the inclusion of vol may mask 

essential descriptors by being present. 

Analysis of this hypothesis was conducted and it was established that when d82, 

dsolv71 and density were added both individually and in pairs the results improved 

(Table 5.23).  

Overall the best predictive model was created by using the rule descriptors from the 

30 unique descriptors analysis (overall average R2 value of 81.51 %). The descriptors 

involved in this model were d72, d75, dsolv71, dsolv78, dsolv57, dsolv65, E_vdw, 

MNDO_dipole, gutmann donor number. The descriptors involved in correlation set 

4, run 1 (d82, dsolv31, dsolv70, dsolv71, dsolv78, E, E_nb, E_vdw, density and 

dipole) will also be taken forward for further analysis as they generated the highest 

INForm[1] average R2 value. 

 

 

 

 



 

 

Table 5.23 Analysis of the effect of d82, dsolv71 and density. X denotes the presence of the descriptor in the set 

 
Correlation 
set 4 Run 1 

(Best) 

8 most 
occurring 

Best + 
vol 

8 most 
occurring  

+ d82 

8 most 
occurring  
+ density 

8 most 
occurring  
+ dsolv71 

8 most 
occurring  + 

d82 + 
density 

8 most 
occurring  + 

d82 + dsolv71 

8 most 
occurring         
+ dsolv71            
+ density 

D82 X  X X   X X  

Dsolv31 X X X X X X X X X 

Dsolv70 X X X X X X X X X 

Dsolv71 X  X   X  X X 

Dsolv78 X X X X X X X X X 

E X X X X X X X X X 

E_nb X X X X X X X X X 

E_vdw X X X X X X X X X 

Density X  X  X  X  X 

Dipole X X X X X X X X X 

Vol  X X X X X X X X 

FormRules average R2 (%) 42.82 41.33 42.82 41.04 41.33 41.33 42.82 41.02 41.33 

INForm average R2 (%) 84.38 35.70 62.26 67.22 73.51 84.29 79.34 77.61 70.34 

Overall average R2 (%) 63.60 38.52 52.54 54.12 57.42 62.81 61.08 59.31 55.83 



 

 

5.2.3. Descriptor Overlaps in FormRules and INForm Analysis 

The highest overall performing sets from the linear correlation INForm[1] and 

FormRules[2] analysis have been compared (Table 5.24). Five overlapping 

descriptors were observed and analysed and optimised, with results in Table 5.25. 

 
Table 5.24 Comparison of the descriptors in the most successful FormRules and INForm sets. X 

denotes the presence of the descriptor in the set 

Descriptors Best Set from FormRules  Best Set from INForm 

D75 X X 

Dsolv65 X X 

MNDO_dipole X X 

MNDO_Eele X  

PM3_E X  

PM3_HF X  

Rgyr X  

Solubility X  

AM1_Eele X  

E_vdw X X 

Dsolv71 X X 

ASA X  

Dsolv78  X 

Dsolv57  X 

Gutmann donor number  X 

D72  X 

FormRules average R2 (%) 78.26 79.55 

INForm average R2 (%) 78.08 83.46 

Overall average R2 (%) 78.17 81.51 

 
Analysis of the overlapping descriptors resulted in high R2 values. However, the 

average R2 value (78.64 %) was a reduction of that seen in the best INForm[1] 

analysis. Therefore the remaining descriptors in the set were added to see what 

impact each of them had on prediction (Table 5.25). 



 

 

Table 5.25 Analysis of overlapping descriptors with those found in INForm and FormRules best sets 

 

Descriptors Overlap Set A Set B Set C Set D Set E Set F Set G Set H Set I Set J Set K Set L Set M Set N 

Dsolv65 X X X X X X X X X X X X X X X 

Dsolv71 X X X X X X X X X X X X X X X 

Dsolv78 X X X X X X X X X X X X X X X 

MNDO_dipole X X X X X X X X X X X X X X X 

E_vdw X X X X X X X X X X X X X X X 

D72  X    X X X    X X  X 

D75   X   X   X X  X  X X 

Dsolv57    X   X  X  X  X X X 

Gutmann 
donor number 

    X   X  X X X X X  

FormRules 
average R2 

(%) 
78.44 78.59 78.38 79.90 80.12 77.81 80.06 80.28 79.90 80.07 80.12 79.50 80.27 80.12 79.33 

INForm 
average R2 

(%) 
78.82 82.38 72.48 73.55 42.14 89.64 84.77 86.88 65.52 79.04 85.19 75.04 84.18 87.43 84.54 

Overall 
average R2 

(%) 
78.64 80.47 75.43 76.73 61.13 83.72 82.42 83.58 72.71 79.56 82.66 77.27 82.23 83.78 81.94 



 

 

This optimisation has shown that by removing d72 from the initial best INForm[1] set 

of descriptors the results for both INForm[1] and FormRules[2] are improved. The 

following descriptors will be taken forward for further analysis, d75, dsolv57, 

dsolv65, dsolv71, dsolv78, MNDO_dipole, E_vdw and gutmann donor number. 

 
5.2.4. Linear Correlation Analysis – FormRules and INForm 

From analysis in section 5.1.3, using the combined average R2 value from INForm[1] 

and FormRules[2] leads to a more successful network. Analysis has been carried out 

in a similar manner as the previous work in this chapter, with the most successful 

sets from each run being grouped together to identify any frequently occurring 

descriptors (Table 5.26 and Table 5.27). 

 

Table 5.26 The top performing set from each group, based on the average result from FormRules and 

INForm analysis 

Sets Descriptors 
FormRules 
average R2 

(%) 

INForm 
average 
R2 (%) 

Overall 
average 
R2 (%) 

Correlation    
Set 2 Run 1 

D70, MNDO_dipole, d75, 
PM3_E, PM3_HF, MNDO_Eele, 
solubility, dsolv65, rgyr, Henry’s 

law constant 

79.96 63.66 71.81 

Correlation 
Set 4 Run 2 

D75, dsolv2, dsolv43, dsolv65, 
dsolv78, E_nb, E_vdw, 

AM1_Eele, MNDO_dipole, vol 
75.84 81.75 78.80 

Correlation 
Set 4 Run 3 

D86, dipole, dsolv41, dsolv57, 
dsolv76, dsolv78, AM1_E, 
PM3_E, gutmann donor 

number, Henry’s law constant 

51.69 79.80 65.75 

Correlation    
Set 1 Run 4 

Dsolv65, dsolv71, dsolv76, 
AM1_E, AM1_Eele, ASA, 
E_vdw, PM3_E, PM3_HF, 

solubility 

75.30 66.50 70.90 
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Table 5.27 Comparison of the descriptors in the top performing sets using average FormRules and 

INForm results. X denotes the presence of the descriptor in the set 

Descriptors Correlation    
Set 2 Run 1 

Correlation    
Set 4 Run 2 

Correlation    
Set 4 Run 3 

Correlation    
Set 1 Run 4 

Number of 
occurrences 

D70 X    1 

MNDO_dipole X X   2 

D75 X X   2 

PM3_E X  X X 3 

PM3_HF X   X 2 

MNDO_Eele X    1 

Solubility X   X 2 

Dsolv65 X X  X 3 

Henry’s law 
constant 

X  X  2 

Rgyr X    1 

E_nb  X   1 

Vol  X   1 

Dsolv78  X X  2 

AM1_Eele  X  X 2 

Dsolv2  X   1 

E_vdw  X  X 2 

Dsolv43  X   1 

Dsolv57   X  1 

Dipole   X  1 

D86   X  1 

Gutmann 
donor number 

  X  1 

Dsolv76   X X 2 

Dsolv41   X  1 

AM1_E   X X 2 

Dsolv71    X 1 

ASA    X 1 
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Table 5.28 Optimisation of the descriptors highlighted in the combined analysis. X denotes the 

presence of the descriptor in the set 

Descriptors Correlation     
Set 4 Run 2 

26 unique 
descriptors 

12 most 
occurring 

26 unique descriptors 
Rule only 

D70  X   

MNDO_dipole X X X X 

D75 X X X  

PM3_E  X X  

PM3_HF  X X  

MNDO_Eele  X   

Solubility  X X  

Dsolv65 X X X X 

Henry’s law 
constant 

 X X  

Rgyr  X   

E_nb X X  X 

Vol X X   

Dsolv78 X X X X 

AM1_Eele X X X  

Dsolv2 X X   

E_vdw X X X X 

Dsolv43 X X   

Dsolv57  X  X 

Dipole  X   

D86  X  X 

Gutmann donor 
number 

 X  X 

Dsolv76  X X  

Dsolv41  X   

AM1_E  X X  

Dsolv71  X  X 

ASA  X   
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Descriptors Correlation     
Set 4 Run 2 

26 unique 
descriptors 

12 most 
occurring 

26 unique descriptors 
Rule only 

FormRules 
average R2 (%) 75.84 79.99 77.97 79.99 

INForm 
average R2 (%) 

81.75 79.69 76.32 82.00 

Overall 
average R2 (%) 78.80 79.84 77.15 81.00 

 

There were 26 unique descriptors out of a possible 40 in this analysis, with 12 of 

these occurring more than once in the top 4 sets. In an attempt to reduce the dataset 

further, the rule descriptors were used from the 26 unique descriptor FormRules[2] 

analysis (Table 5.28). 

Analysis of the 26 unique descriptors generated an improved overall average R2 

value compared to the previous highest value. Further improvements were also seen 

when the rule descriptors from the 26 unique descriptor analysis (MNDO_dipole, 

dsolv65, E_nb, dsolv78, E_vdw, dsolv57, d86, gutmann donor number and dsolv71) 

were analysed (81.00 %).  

 

5.2.5.   Optimisation of the Linear Correlation Best Set 

Two highly successful sets of descriptors have been highlighted in the linear 

correlation analysis, these were the optimised set generated by comparing the best set 

from FormRules[2] and INForm[1] analysis (set M) and the rule only descriptors from 

the combined analysis of the 26 unique descriptor optimisation. The descriptors are 

presented (Table 5.29) and it can be observed that there are only 3 descriptors that 

differ between these sets, d75, d86 and E_nb. Therefore, further analysis has been 

conducted to determine if further optimisation may occur. 
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Table 5.29 Optimisation of the best sets from the linear correlation analysis. X denotes the presence of 

the descriptor in the set 

Descriptors 
26 unique 

descriptors 
Rule only 

Set M All 10 Set 1a Set 2a Set 3a Set 4a 

D86 X  X  X X  

Dsolv57 X X X X X X X 

Dsolv65 X X X X X X X 

Dsolv71 X X X X X X X 

Dsolv78 X X X X X X X 

MNDO_dipole X X X X X X X 

E_vdw X X X X X X X 

Gutmann donor 
number 

X X X X X X X 

E_nb X  X X   X 

D75  X X X X   

FormRules 
average R2 (%) 79.99 80.12  79.99 80.60 80.12 80.12 80.60 

INForm 
average R2 (%) 82.00 87.43 74.27 77.71 74.00 78.35 78.13 

Overall 
average R2 (%) 

81.00 83.78 77.13 79.16 77.06 79.24 79.37 

 
The optimisation results show that there is no improvement to be made on the 

previously highly performing set of descriptors. What is interesting to conclude from 

this analysis is that by using the results from INForm[1] and FormRules[2] 

individually and in combination there is a large degree of descriptor overlap, which 

suggests that useful results can be generated using this analysis technique. 

 

5.3. Overall Optimisation of Best Descriptor Set 

The linear correlation analysis and analysis of all 167 descriptors each generated an 

optimised set (Table 5.30). These two sets were compared and further optimised in 

order to determine the best set of descriptors for polymorphic form prediction. From 

this point forward the linear correlation best set (set M) shall be referred to as Corr. 
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Best Set. The best set from the analysis of all 167 descriptors (Combined Best 

Overall Set, Gen 3, Set 11y) shall be referred to as All Best Set. 

 
Table 5.30 The two most successful sets from linear correlation and all descriptor analysis 

Sets Descriptors 
FormRules 
average R2 

(%) 

INForm 
average 
R2 (%) 

Overall 
average 
R2 (%) 

Corr. Best 
Set 

Dsolv57, dsolv65, dsolv71, 
dsolv78, MNDO_dipole, E_vdw, 

gutmann donor number, d75 
80.12 87.43 83.78 

All Best Set 
Dsolv8, dsolv22, dsolv41, 

dsolv49, dsolv66, MNDO_HF, 
rgyr, ASA, ASA_H, RMM, logP 

80.17 86.89 83.53 

 
There are no overlapping descriptors between the two sets; therefore the linear 

correlations were calculated to determine if similar descriptors had been highlighted 

by the two different analysis techniques (Table 5.31). The correlation with All Best 

Set are presented, as it generated the highest average R2 value. 

 
Table 5.31 Linear correlations between the two most successful sets from linear correlation and all 

descriptor analysis. Number in brackets is the correlation coefficient 

All Best Set Correlations within the All 
Best Set (± 0.8 - 1) 

Correlations with Corr. Best 
Set (± 0.8 - 1) 

Dsolv8 Dsolv22 Dsolv71 (0.85) 

Dsolv22 Dsolv8 Dsolv71 (0.90)  E_vdw (0.80) 

Dsolv41 - - 

Dsolv49 - - 

Dsolv66 - Dsolv65 (0.96) 

MNDO_HF - - 

Rgyr LogP E_vdw (0.82) 

ASA ASA_H - 

ASA_H ASA - 

RMM - - 

LogP Rgyr E_vdw (0.84) 

 
6 of the best set descriptors 

are correlated 
3 out of 8 final set descriptors 

are correlated with the other set  
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The correlation analysis showed that 6 of the descriptors within All Best Set are 

positively correlated. This therefore suggests that further descriptor reduction may be 

possible. Table 5.32 details the descriptor reduction analysis, which highlights that 

further optimisation, was not possible. It should also be noted that different test sets 

are used in each run, which can therefore affect the success of the prediction. This 

method has been utilised throughout this research as a means to determine how 

robust the model created by a set of descriptors is. It is interesting to observe that 

when dsolv22 and ASA are removed from the set, the average R2 value is reduced 

significantly, even though a correlated descriptor is present in each case. 

 
Table 5.32 Reduction of descriptors in All Best Set. X denotes the presence of the descriptor in the set 

Descriptors 
All 

Best 
Set 

All 
Best 
Set 

Opt 1 

All 
Best 
Set 

Opt 2 

All 
Best 
Set 

Opt 3 

All 
Best 
Set 

Opt 4 

All 
Best 
Set 

Opt 5 

All 
Best 
Set 

Opt 6 

All 
Best 
Set 

Opt 7 

Dsolv8 X  X X X X X  

Dsolv22 X X  X X X X X 

Dsolv41 X X X X X X X X 

Dsolv49 X X X X X X X X 

Dsolv66 X X X X X X X X 

MNDO_HF X X X X X X X X 

Rgyr X X X X X X   

ASA X X X  X X X X 

ASA_H X X X X  X X  

RMM X X X X X X X X 

LogP X X X X X  X X 

FormRules 
average R2 

(%) 
80.17 80.17 75.07 80.17 80.17 81.04 80.17 80.17 

INForm 
average R2 

(%) 
86.89 85.06 51.19 56.25 72.02 72.87 75.91 74.18 

Overall 
average R2 

(%) 
83.53 82.62 63.13 68.21 76.10 76.96 78.04 77.18 
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Only 3 of the 8 descriptors in the Corr. Best Set were correlated with those in the All 

Best Set, therefore optimisation of all 19 descriptors presented is shown in Table 

5.33. Since dsolv8, dsolv22, dsolv66, rgyr and logP are correlated with descriptors in 

the more successful Corr. Best Set, only the remaining six descriptors will be 

analysed. 



 

 

Table 5.33 Linear correlations between the two most successful sets from linear correlation and all descriptor analysis 

 Descriptors Corr. Best Set Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6 Opt 7 Opt 8 

Dsolv57 X X X X X X X X X 

Dsolv65 X X X X X X X X X 

Dsolv71 X X X X X X X X X 

Dsolv78 X X X X X X X X X 

MNDO_dipole X X X X X X X X X 

E_vdw X X X X X X X X X 

Gutmann donor number X X X X X X X X X 

D75 X X X X X X X X X 

Dsolv41  X      X X 

Dsolv49   X     X X 

ASA    X    X  

ASA_H     X   X  

MNDO_HF      X  X  

RMM       X X X 

FormRules average R2 (%) 80.12 80.12 80.12 80.12 80.12 80.12 80.12 80.12 80.12 

INForm average R2 (%) 87.43 83.02 80.90 76.46 75.54 76.45 82.57 68.57 79.75 

Overall average R2 (%) 83.78 81.57 80.51 78.29 77.83 78.29 81.35 74.35 79.94 

Descriptors Corr. Best Set Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6 Opt 7 Opt 8 

Dsolv57 X X X X X X X X X 

Dsolv65 X X X X X X X X X 

Dsolv71 X X X X X X X X X 

Dsolv78 X X X X X X X X X 

MNDO_dipole X X X X X X X X X 

E_vdw X X X X X X X X X 

Gutmann donor number X X X X X X X X X 

D75 X X X X X X X X X 

Dsolv41  X      X X 

Dsolv49   X     X X 

ASA    X    X  

ASA_H     X   X  

MNDO_HF      X  X  

RMM       X X X 

FormRules average R2 (%) 80.12 80.12 80.12 80.12 80.12 80.12 80.12 80.12 80.12 

INForm average R2 (%) 87.43 83.02 80.90 76.46 75.54 76.45 82.57 68.57 79.75 

Overall average R2 (%) 83.78 81.57 80.51 78.29 77.83 78.29 81.35 74.35 79.94 



 

 

Analysis of the descriptors in All Best Set and Corr. Best Set has not led to a further 

optimised model. This therefore suggests that the eight descriptors in Corr. Best Set 

are the most important in polymorphic form prediction. In this research it is 

interesting to observe which descriptors have been associated with the different 

polymorphic form prediction. This information can be obtained by using the rules 

generated in FormRules[2] (summarised in Table 5.34).  

 
Table 5.34 Rules generated in FormRules when the Corr Best Set is analysed 

Rules generated for Corr. Best Set   

--- Rules for property Form I ---   

IF dsolv65 is MID AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is HIGH AND Temp is 
HIGH 

THEN Form I is HIGH (1.00) 

--- Rules for property Form II ---   

SubModel:1                                         IF E_vdw is LOW THEN Form II is LOW (1.00) 

IF E_vdw is HIGH THEN Form II is HIGH (1.00) 

SubModel:2                             IF MNDO_dipole is LOW THEN Form II is LOW (0.84) 

IF MNDO_dipole is MID THEN Form II is HIGH (1.00) 

IF MNDO_dipole is HIGH THEN Form II is LOW (1.00) 

 SubModel:3                                             IF rate is LOW THEN Form II is LOW (0.91) 

IF rate is HIGH THEN Form II is HIGH (0.78) 

--- Rules for property Form III ---   

SubModel:1   

IF MNDO_dipole is LOW AND Gutman donor no. is 
LOW 

THEN Form III is HIGH (1.00) 

IF MNDO_dipole is LOW AND Gutman donor no. is 
HIGH 

THEN Form III is LOW (1.00) 

IF MNDO_dipole is HIGH AND Gutman donor no. is 
LOW 

THEN Form III is LOW (1.00) 

IF MNDO_dipole is HIGH AND Gutman donor no. is 
HIGH 

THEN Form III is HIGH (1.00) 
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Rules generated for Corr. Best Set continued   

--- Rules for property Form III ---   

SubModel:2                                         IF E_vdw is LOW THEN Form III is HIGH (1.00) 

IF E_vdw is HIGH THEN Form III is LOW (1.00) 

SubModel:3                                              IF rate is LOW THEN Form III is HIGH (0.80) 

IF rate is HIGH THEN Form III is LOW (1.00) 

--- Rules for property Dihydrate ---   

IF dsolv65 is HIGH AND Temp is LOW AND rate is 
MID AND dsolv71 is LOW 

THEN Dihydrate 
is 

HIGH (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is 
MID AND dsolv71 is HIGH 

THEN Dihydrate 
is 

LOW (1.00) 

--- Rules for property Solvate ---   

IF MNDO_dipole is LOW AND dsolv57 is LOW THEN Solvate is LOW (1.00) 

IF MNDO_dipole is LOW AND dsolv57 is HIGH THEN Solvate is HIGH (0.94) 

IF MNDO_dipole is MID AND dsolv57 is LOW THEN Solvate is LOW (0.98) 

IF MNDO_dipole is MID AND dsolv57 is HIGH THEN Solvate is LOW (1.00) 

IF MNDO_dipole is HIGH AND dsolv57 is LOW THEN Solvate is LOW (1.00) 

IF MNDO_dipole is HIGH AND dsolv57 is HIGH THEN Solvate is HIGH (0.61) 

 

When the rules are examined it becomes apparent that only one descriptor does not 

feature, d75. This suggested that the descriptor d75, which is the partial negative 

surface area of the CBZ molecule, is not important in the predictions. FormRules[2] 

and INForm[1] analysis were then conducted with d75 removed, to observe the 

impact on prediction (Table 5.35). 

 

Table 5.35 The comparison of Corr Best Set with and without d75 

 Corr. Best Set Corr. Best Set without d75 

FormRules average R2 (%) 80.12 80.12 

INForm average R2 (%) 87.43 87.96 

Overall average R2 (%) 83.78 84.04 
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The removal of d75 slightly improves the INForm[1] result and overall performance 

of prediction, creating a further optimised model. Therefore the final set of 

descriptors as determined by these techniques are dsolv57, dsolv65, dsolv71, 

dsolv78, MNDO_dipole, E_vdw and gutmann donor number. These seven 

descriptors were taken forward for validation and analysis of their meaning. 

 

5.4. Discussion of the Descriptors in the Optimised Set 

The seven descriptors found in the most successful set for predicting polymorphic 

form, represent a range of solvent and CBZ properties, summarised in Table 5.36. 

 

Table 5.36 Summary of the descriptors in the most successful set 

Descriptor Meaning Type of descriptor 
Calculated from 
Solvent or CBZ 

molecule 

Dsolv71 
Total molecular surface 

area 
Geometrical Solvent 

Dsolv78 
Difference in partial 

surface areas 
Charge distribution Solvent 

Dsolv57 
3D bonding information 

content (order 0) 
Topological Solvent 

Dsolv65 
3D bonding information 

content (order 2) 
Topological Solvent 

MNDO_dipole 
Calculated (MNDO theory) 

dipole moment 
Quantum chemical CBZ 

E_vdw 
Van der Waals 

contribution to the 
potential energy 

Quantum chemical CBZ 

Gutmann donor 
number 

Electron donating ability Bulk Solvent 

 
As previously mentioned, it is very interesting to assess which descriptors have 

contributed to the prediction of polymorphic form. Much of this thesis discusses the 

reduction of the number of descriptors used in prediction, but it is of great 

importance to understand what the descriptors physically mean. This manual analysis 

method has created a predictive model comprised of seven descriptors. Each of these 

seven descriptors are featured within the rules generated in FormRules[2], allowing 

discussion of their contribution in polymorphic form prediction. 
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5.4.1. The Prediction of Form I 

The crystallisation of form I has been often noted in the literature,[3-5] but under the 

experimental conditions used within this work, pure form I was never crystallised. 

Trace amounts of form I were observed within two crystallisations (see Electronic 

Appendix, Chapter 4, file 4.4 for details) and therefore the prediction of form I was 

included in the model. However, very little training data was available and therefore 

the model produced for form I is likely to be unreliable. Rules were also generated to 

predict form I (Table 5.37), again based upon a very small amount of training data. 

 

Table 5.37 Rules generated in FormRules for form I prediction 

Rules generated for Form I prediction 

IF dsolv65 is LOW AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is LOW AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is HIGH AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is LOW AND Temp is HIGH THEN Form I is LOW (0.90) 

IF dsolv65 is MID AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is HIGH AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is LOW AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is HIGH AND Temp is HIGH THEN Form I is HIGH (1.00) 
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The rules have highlighted that dsolv65, rate and temperature are important in form I 

prediction. However, from Table 5.37 it is clear that in most cases the prediction for 

form I will be low, except when all three values are high. This is in fact comparable 

with the outcomes of the two experiments that produced form I. Figure 5.3 displays 

the normalised descriptor values for the experiments producing form I and shows 

that in both cases at least one of the three descriptors has a mid range or lower value. 

Since neither experiment produced a high level of form I as their product, the 

experimental results obey the rules. 

 

Figure 5.3 Crystallisation solvents in which form I is produced plot against the three rule descriptors, 

rate (blue), temperature (red) and dsolv65 (cream). The shaded area highlights the most favourable 

descriptor values for form I production. 

 
Dsolv65 is a 3D bonding information content (BIC) topological descriptor for the 

solvent molecules. It is a measure of the structural diversity[6], which incorporates the 

branching and connectivity of the molecule. It is a second order descriptor, which 

means that the values are based upon the connectivity of the atoms within the 

molecule, two bonds away from each atom in turn.[7, 8] It is calculated using Equation 

5.1[7, 9], where r represents the order of calculation, q is the “number of edges in the 

structural graph of the molecule”[9], n the total number of atoms and ni the number of 

atoms in the ith class in the molecule. 
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q

IC
BIC r

r

2log
=  Equation 5.1 

 
n

n

n

n
IC i

k

i

i

r 2
1

log∑
=

−=  Equation 5.2 

 

The BIC descriptor, although not frequently observed in the literature, has been used 

in the prediction of quaternary ammonium ionic liquid melting points[10], assessing 

correlations between the molecular structure and solubility[11] and in research into the 

solvent effects on decarboxylation[6]. Katritzky et al.[6] reported that the branching 

and connectivity of the solvent must impact upon solvent-solute interactions, and 

perhaps it is related to hydrogen bonding abilities. In other work it has been linked 

loosely to cavity formation during solvation[11] because it is a size related descriptor. 

This again suggests the link to solvent-solute interactions.[11] 

Within the context of nucleation and crystallisation from solution, the interactions 

between the solvent molecule and the solute may play a pivotal role in which 

polymorphic form or solvate will be crystallised. In the case of solvate formation the 

solvent-solute interaction is clear, due to the presence of the solvent within the 

crystal structure. Perhaps the solvent-solute interactions can inhibit or promote a 

defined polymorph to grow based on the position and strength of the interactions. 

There are examples of additives that inhibit the nucleation and growth of specific 

polymorphs in the literature[12] and a number of discussions into the role of solvent in 

polymorphic crystallisation.[13-15] Sulfathiazole is a specific example of a solvent 

stabilising a metastable form and inhibiting conversion to a more stable 

polymorph.[13] This effect occurs because of a specific solvent’s ability to promote or 

inhibit different types of intermolecular interactions. 

High rates and temperatures have been commented upon in the literature as they 

often lead to the crystallisation of metastable forms.[16-19] A more definite picture of 

polymorph selection based on the descriptors in the form I rules cannot be made; this 

is due to the small amount of data used in the training. With an increased training set, 

perhaps a more obvious relationship will prevail and more firm conclusions can be 

made. 
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5.4.2. The Prediction of Form II 

20 of the experiments carried out resulted in the crystallisation of pure form II, with a 

further 21 having a mixture of form II with another polymorph. These data suggest 

that the ability to predict this metastable form would be valuable, as it often occurs. 

The rules generated are presented in Table 5.38, and show the contribution to 

prediction of two descriptors and one experimental condition. 

 
Table 5.38 Rules generated in FormRules for form II prediction 

Rules generated for Form II prediction 

SubModel:1                                         IF E_vdw is LOW THEN Form II is LOW (1.00) 

IF E_vdw is HIGH THEN Form II is HIGH (1.00) 

SubModel:2                             IF MNDO_dipole is LOW THEN Form II is LOW (0.84) 

IF MNDO_dipole is MID THEN Form II is HIGH (1.00) 

IF MNDO_dipole is HIGH THEN Form II is LOW (1.00) 

SubModel:3                                              IF rate is LOW THEN Form II is LOW (0.91) 

IF rate is HIGH THEN Form II is HIGH (0.78) 

 
E_vdw, MNDO_dipole and rate have all been highlighted by FormRules[2] as 

important descriptors in form II prediction. Each of the experiments that crystallised 

pure form II were plotted with these descriptors to assess the immediate accuracy of 

the rules. E_vdw was highlighted to be the most confident rule (demonstrated by the 

colouring in Table 5.38 and when the normalised values were plotted (Figure 5.4), it 

shows that the majority of the results match the rule. 
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Figure 5.4 The pure form II experiments plot against the normalised E_vdw values. The green shaded 

area highlights the most favourable descriptor values for form II production. 

 
The E_vdw descriptor is the van der Waals contribution to the potential energy of the 

CBZ molecule in a solvent forcefield. The van der Waals term can be used to 

describe the interactions of solvent and solute molecules[20, 21]. This descriptor was 

calculated for the CBZ molecule and therefore the differences between each value 

are very small. The slight differences in the geometry of the CBZ molecules are 

brought about by the modelled solvent forcefield, with these subtle changes altering 

the E_vdw value.  Figure 5.5 shows the van der Waals interaction surface of the CBZ 

molecule (calculated in MOE[22]). If the CBZ molecular geometry was more 

compact, the interaction surface would be reduced, potentially affecting the 

molecular interactions. 

 

Figure 5.5 Diagram of the van der Waals interactions represented as a molecular surface. H-bonding 

region (pink), hydrophobic region (green) and mild polar region (blue) coloured upon the surface[22] 
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There are examples in the literature suggesting that the solvent-solute interactions are 

very important in the crystallisation of different polymorphic form.[13, 15, 23] Dunitz[23] 

commented specifically on the stabilising effect of coulombic interactions in the 

polymorphs of ROY.  

The rule states that a high E_vdw value will lead to a high form II prediction, which 

perhaps indicates a greater interaction with the molecules in solution. When the 

crystal structure of form II is observed, there are voids within the structure, unlike 

other CBZ polymorphic forms. Previous research[24, 25] has suggested that solvent 

molecules may be included in the crystal structure of form II a very low levels, with 

toluene being used as an example[24]. This suggests there is a greater interaction with 

the solvent molecules than in other polymorphic forms. The experimental work in 

this thesis indicated that crystallisation in toluene often leads to form II, which 

supports the inclusion solvent modelling.[24] 

It is interesting that a subtle solute descriptor that describes the van der Waals 

interactions has been highlighted. Based on the knowledge of an inclusion solvent 

within the form II crystal structure, perhaps this descriptor is directing our attention 

towards van der Waals interactions between solute and solvent molecule. 

These rules hold well for pure form II experiments. However, when all of the 

experiments that produce any amount of form II combined with another polymorph 

are analysed, the majority of the E_vdw values are low (Figure 5.6).  

 
Figure 5.6 The experimental results that produced a mixture of form II and another form plot against 
the normalised E_vdw values. The shaded area highlights the most favourable descriptor values for 
form II production. 
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This could suggest that unless the solvent-solute interactions are strong, form II is 

unlikely to be crystallised as a pure form. 

 Figure 5.7 shows all the crystallisation solvents used within this research and 

demonstrate that from solvents with high E_vdw values, form II is the most likely 

product. There are no examples of high E_vdw values that do not crystallise form II. 

Figure 5.7 All crystallisation solvents plot against E_vdw normalised values. The shaded area 

highlights the most favourable descriptor values for form II production. 

A notable correlation between the E_vdw descriptor values and the dielectric 

constant of the solvent has been observed (Figure 5.8). Dielectric constant is used 

within the solvent forcefield calculations and therefore plays a part in the geometry 

optimisation calculations. However, dielectric constant was one of the descriptors 

used in this analysis, but it failed to progress through the analysis individually to an 

optimum set of descriptors.  

Figure 5.8 correlation of E_vdw and the dielectric constant of the solvents. Most favourable form II 

producing region is represented by the shaded area 
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Dielectric constants have been used in previous work[16, 26] that stated the metastable 

form II is most likely to be crystallised from a low dielectric solvent. The trend in 

Figure 5.8 agrees with this, showing that when the dielectric constant is low, the 

E_vdw value is at its highest and the rule suggests this is the most favourable region 

for form II crystallisation (green area on graph). 

Similar analysis was carried out with the MNDO_dipole and rate descriptors (Figure 

5.9 and Figure 5.10). The rule generated for the MNDO_dipole descriptor suggests 

that a medium value will most likely lead to form II being crystallised. Figure 5.9 

clearly shows that most of the pure form II producing experiments fit into this range 

(shaded area on graph).  

 

Figure 5.9 The pure form II experiments plot against the normalised MNDO_dipole values. The 

shaded area highlights the most favourable descriptor values for form II production. 

 
The MNDO_dipole descriptor is a quantum chemical value[9, 22] that represents the 

calculated dipole moment of the CBZ molecule within the different solvent force 

fields. This descriptor gives information about the charge distribution and polarity of 

the molecule.[27, 28] As with the E_vdw descriptor, the differences between the values 

are very small. This is because the changes in CBZ geometry are brought about by 

the different interactions with the solvent force fields. With previously finding a 

correlation between E_vdw and dielectric constant, the MNDO_dipole values were 

also plotted against the bulk descriptors to determine if there were any trends in the 

data (appendix section 12.9). No clear trends were observed between MNDO_dipole 

and the bulk descriptors. MNDO_dipole is also linearly uncorrelated to any other 

descriptor within the whole set, which makes its appearance in the optimised set 
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more interesting as it must play an important part in the predictions. Similarly to the 

E_vdw descriptor it describes the solvent-solute interactions but based upon polarity. 

When the evaporation rate values are plotted for pure form II producing experiments 

(Figure 5.10), the rule does not hold strongly. The majority of the rate values are 

high, but Figure 5.10 shows that there must be other influences upon the 

crystallisation that leads to form II production.  

 
Figure 5.10 The pure form II experiments plot against the normalised rate values. The shaded area 

highlights the most favourable descriptor values for form II production. 

 
The rule of a high evaporation rate producing a metastable polymorph is a sensible 

one, and has been commented upon in previous research[16-19, 29, 30]. By conducting a 

crystallisation at a high evaporation rate, high levels of supersaturation are reached 

more quickly. When the solution is supersaturated, nucleation can occur and if it 

follows Ostwald’s Rule of Stages, the least stable polymorph would crystallise 

first[31, 32]. The least stable form of CBZ is form II. Research by Getsoian et al.[30] 

stated that at high supersaturations crystallisation is under kinetic control and 

therefore produces the metastable form.  

Rules that incorporate temperature and rate are very useful in practical 

crystallisations, but fail to uncover molecular level properties that also impact on the 

formation of different polymorphic forms. 

 
5.4.3. The Prediction of Form III 

Form III is the thermodynamically stable form of CBZ and as such was produced as 

the pure product in thirty six experiments. A further twenty four experiments 

crystallised as a mixture of forms, including form III. To be able to predict the 
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experimental space in which the most stable form of a molecule would be produced, 

would be highly beneficial to the pharmaceutical industry. Experiments could be 

focused on a specific experimental region, saving time and money. Rules were 

generated for the prediction of form III (Table 5.39), highlighting MNDO_dipole, 

Gutmann donor number, E_vdw and rate as important descriptors and experimental 

conditions. 

 
Table 5.39 Rules generated in FormRules for form III prediction 

Rules generated for Form III prediction   

SubModel:1   

IF MNDO_dipole is LOW AND Gutmann donor no. is 
LOW 

THEN Form III is HIGH (1.00) 

IF MNDO_dipole is LOW AND Gutmann donor no. is 
HIGH 

THEN Form III is LOW (1.00) 

IF MNDO_dipole is HIGH AND Gutmann donor no. is 
LOW 

THEN Form III is LOW (1.00) 

SubModel:2                                           IF E_vdw is LOW THEN Form III is HIGH (1.00) 

IF E_vdw is HIGH THEN Form III is LOW (1.00) 

SubModel:3                                               IF rate is LOW THEN Form III is HIGH (0.80) 

IF rate is HIGH THEN Form III is LOW (1.00) 

 
The most significant rule as highlighted by FormRules[2] contains MNDO_dipole and 

the Gutmann donor number. MNDO_dipole featured in the rules for form II, with a 

medium value leading to a successful prediction. In the prediction of form III it 

works in tandem with the Gutmann donor number of the solvent. As mentioned 

previously, the MNDO_dipole descriptor is the calculated dipole moment of the CBZ 

molecule in the different solvent force fields, and gives information about the charge 

distribution and polarity.[27, 28] The Gutmann donor number (DN) is a bulk solvent 

descriptor and quantifies the basicity or electron donating ability of a solvent.[33-35] It 

is based upon solute-solvent interactions interacting like acid-base reactions[33] and 

was defined by Gutmann “as the negative ∆H value in kcal/mol for the interaction of 

the electron pair donor solvent with SbCl5 in a highly diluted solution of 

dichloroethane”.[33]  
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Figure 5.11 plots the normalised MNDO_dipole and DN for each solvent that 

crystallised pure form III. When both descriptor values are low (the shaded area on 

the graph) the prediction of form III is at its highest. 

 
Figure 5.11 The pure form III experiments plot against the normalised MNDO_dipole (purple) and 

Gutmann donor number values (pink). The shaded area highlights the most favourable descriptor 

values for form III production 

 
Figure 5.11 demonstrates that this rule is generally true based on the experimental 

data generated in this research. This rule uses a CBZ descriptor that describes 

solvent-solute interactions in terms of polarity, and a bulk solvent property that 

quantifies the hydrogen bond donation ability. Previous research by Kelly et al.[15] 

discussed the importance of hydrogen bonding ability of the solvent in the 

preferential crystallisation of different polymorphic forms. Their research concluded 

that solvents with hydrogen bond acceptor capabilities preferentially crystallised 

CBZ form II. They also stated that a hydrogen bond donor/acceptor ratio of more 

than 0.5 led to concomitant crystallisation of forms II and III. No comment was made 

about the hydrogen bond donor ability of the solvent leading to pure form III 

crystallisation.  

Using the Gutmann donor (DN) and acceptor numbers (AN) from this research, 

which are different to the values used in Kelly et al.[15], analysis of the most 

favourable interactions has been carried out. DN and AN were not available for the 

CBZ molecule, therefore a structurally similar molecule was found. There were no 

DN and AN values for acetamide, so values for formamide were used.[36, 37] Figure 
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5.12 shows the hydrogen bonding between the formamide and dichloromethane and 

nitromethane. 

 

Figure 5.12 Hydrogen bonding between formamide and dichloromethane (left) and nitromethane 

(right) 

 
Both dichloromethane and nitromethane produce form III and have a low DN, 

conforming to the rules generated. In a similar manner to the research by Kelly et 

al.[15] the donor acceptor ratio was calculated (Table 5.40). 

 
Table 5.40 Solvent Gutmann donor and acceptor numbers 

Solvent Gutmann donor 
number (DN) 

Gutmann 
acceptor number 

(AN) 
DN/AN ratio 

Dichloromethane 0.0 20.4 0.0 

Nitromethane 2.7 20.5 0.1 

 
Table 5.40 shows that the donor acceptor ratio is very low within these solvents, 

perhaps highlighting a potential reason for the formation of the stable form III. Table 

5.41Table 5.41 shows the DN and AN values for the formamide, giving a much 

higher ratio. The higher ratio may suggest that the formamide is more likely to 

participate in solute-solute interactions, rather than a solvent-solute interaction 

(Figure 5.13). 

 

Figure 5.13 Hydrogen bonding in formamide 

++
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Table 5.41 Dimethylacetamide Gutmann donor and acceptor numbers 

Example Solute Gutmann donor 
number (DN) 

Gutmann 
acceptor number 

(AN) 
DN/AN ratio 

Formamide 24 39.8 0.6 

 
When the donor acceptor ratio is calculated based upon solvent-solute interactions 

and solvent-solvent interactions, perhaps it offers further information as to what is 

occurring in solution (Table 5.42).  

 
Table 5.42 Solvent-solute and solvent-solvent interactions based on DN and AN ratios 

Donor   
molecule 

Acceptor 
molecule 

Gutmann 
donor 

number (DN) 

Gutmann 
acceptor 

number (AN) 
DN/AN ratio 

Formamide Formamide 24 39.8 0.6 

Formamide Dichloromethane 24 20.4 1.2 

Dichloromethane Formamide 0.0 39.8 0.0 

Formamide Nitromethane 24 20.5 1.2 

Nitromethane Formamide 2.7 39.8 0.1 

Formamide Ethanol 24 37.1 0.6 

Ethanol Formamide 32 39.8 0.8 

Ethanol Ethanol 32 37.1 0.9 

Formamide Aniline 24 28.8 0.8 

Aniline Formamide 33.3 39.8 0.8 

Aniline Aniline 33.3 28.8 1.2 

 
When only the donating abilities of the low DN value solvents are taken into 

account, the solute-solute interactions are more favourable. However, the low DN 

value solvents have a high AN and therefore still might interact with the solute. At 

high DN values solvent-solvent interactions are more likely to dominate in solution. 

Overall, no firm conclusions can be made about the role of hydrogen bonding in 

solution, but as a general rule, low DN solvents lead to form III crystallisation. 

The DN has been used in earlier research regarding the coordination of transition 

metal ions.[38] Transition metal interactions have been observed with solvents that 
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display a range of DN values. However, the shape of the solvent molecule has a part 

to play in the interaction due to steric reasons, which restrict the coordination.[38] 

Although the solutes used in these crystallisations are not as large as the transition 

metal complexes discussed in Gutmann’s work[38], it may be a reason as to why there 

are empirical correlations between the forms produced and the crystallisation solvent 

used based on only the DN values. 

E_vdw is also featured in the form III rules, stating that a low value leads to a form 

III prediction. Figure 5.14 shows that all but one of the solvents that crystallise pure 

form III has a low E_vdw value. 

 
Figure 5.14 The pure form III experiments plot against the normalised E_vdw values. The shaded area 

highlights the most favourable descriptor values for form III production. 

 
Toluene is the only solvent that produced pure form III that has a high E_vdw value. 

What is interesting about this result is that from seven experiments, five generated 

pure form II, one pure form III and a mixture. From the experimental results it would 

seem likely that toluene crystallisations would lead to form II, and that the model 

created by the artificial neural network would also generally suggest this. 

Figure 5.8 presented the relationship between E_vdw and dielectric constant, 

displayed again in Figure 5.15, with the form III producing region highlighted in 

green. The relationship between high dielectric constants and the production of the 

thermodynamically stable form has been commented upon in the literature.[16, 26] 
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Figure 5.15 E_vdw plot agains the dielectric constants of the solvents used in the crystallisations. The 

shaded area on the graph represents the potentially form III producing values 

 
Perhaps the lower E_vdw value indicates that there are fewer interactions with the 

solvent, and that the hydrogen bonding between the solute molecules is the most 

prominent interaction. Form III is the most stable polymorph due to the number of 

stabilising interactions within the crystal structure.  

The third rule generated for form III prediction stated that a low evaporation rate 

would generate high form III results. Similarly to the discussion that a high rate 

favours metastable form crystallisation, a low rate favours the thermodynamically 

stable form[16, 19]. Figure 5.16 shows the pure form III experiments normalised rate 

values. A general trend can be found in the data that in most pure form III forming 

experiments the rate is at a lower value.  

 

Figure 5.16 The pure form III experiments plot against the normalised rate values. The shaded area 

highlights the most favourable descriptor values for form III production. 
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5.4.4. The Prediction of the Dihydrate 

CBZ readily forms a dihydrate on contact with water[39-41], but due to the scale of the 

crystallisations carried out within this research pure dihydrate was not formed at a 

large enough yield for analysis. Low levels of the dihydrate form were observed 

within this research, possibly suggesting the presence of water within some solvents. 

Similarly to form I, there were very little data available to generate a reliable 

prediction for the dihydrate. However, since it did feature in the results, a prediction 

was attempted, with rules presented in Table 5.43. 

 

Table 5.43 Rules generated in FormRules for Dihydrate prediction 

Rules generated for dihydrate prediction   

SubModel:1   

IF dsolv65 is LOW AND Temp is LOW AND rate is 
LOW AND dsolv71 is LOW 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is 
LOW AND dsolv71 is HIGH 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is 
MID AND dsolv71 is LOW 

THEN Dihydrate is LOW (0.69) 

IF dsolv65 is LOW AND Temp is LOW AND rate is 
MID AND dsolv71 is HIGH 

THEN Dihydrate is LOW (0.98) 

IF dsolv65 is LOW AND Temp is LOW AND rate is 
HIGH AND dsolv71 is LOW 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is 
HIGH AND dsolv71 is HIGH 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is 
LOW AND dsolv71 is LOW 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is 
LOW AND dsolv71 is HIGH 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is 
MID AND dsolv71 is LOW 

THEN Dihydrate is LOW (0.73) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is 
MID AND dsolv71 is HIGH 

THEN Dihydrate is HIGH (1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is 
HIGH AND dsolv71 is LOW 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is 
HIGH AND dsolv71 is HIGH 

THEN Dihydrate is LOW (0.98) 



 

 188 

   

Rules generated for dihydrate prediction 
continued   

IF dsolv65 is HIGH AND Temp is LOW AND rate is 
LOW AND dsolv71 is LOW 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is 
LOW AND dsolv71 is HIGH 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is 
MID AND dsolv71 is LOW 

THEN Dihydrate is HIGH (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is 
MID AND dsolv71 is HIGH 

THEN Dihydrate is HIGH (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is 
HIGH AND dsolv71 is LOW 

THEN Dihydrate is HIGH (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is 
HIGH AND dsolv71 is HIGH 

THEN Dihydrate is LOW (0.66) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is 
LOW AND dsolv71 is LOW 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is 
LOW AND dsolv71 is HIGH 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is 
MID AND dsolv71 is LOW 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is 
MID AND dsolv71 is HIGH 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is 
HIGH AND dsolv71 is LOW 

THEN Dihydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is 
HIGH AND dsolv71 is HIGH 

THEN Dihydrate is LOW (1.00) 

SubModel:2                                                                                     
IF dsolv78 is LOW AND rate is LOW    

THEN Dihydrate is LOW (1.00) 

IF dsolv78 is LOW AND rate is MID THEN Dihydrate is LOW (1.00) 

IF dsolv78 is LOW AND rate is HIGH THEN Dihydrate is LOW (0.98) 

IF dsolv78 is HIGH AND rate is LOW THEN Dihydrate is LOW (1.00) 

IF dsolv78 is HIGH AND rate is MID THEN Dihydrate is LOW (1.00) 

IF dsolv78 is HIGH AND rate is HIGH THEN Dihydrate is LOW (0.99) 

 

Three different descriptors (dsolv65, dsolv71 and dsolv78) and the two experimental 

conditions feature in these rules. It should be noted that sub model 2 produces a rule 



 

 189 

that always leads to a low prediction of the dihydrate form, therefore very little can 

be learnt from this rule. Dsolv78 represents the difference between the positively and 

negatively charged surface areas on each solvent molecule. This type of charged 

partial surface area descriptor has been used in the literature in various areas of 

research.[42-46] Bodor et al.[43] commented upon the role of charge density upon the 

solute molecule when entering a solution, effecting the solvent-solute interactions.  

The charged partial surface area descriptors have also been referred to as a measure 

of “weak intermolecular interactions”.[27] Unfortunately due to the limited amount of 

training data for the dihydrate and also the lack of a high dihydrate prediction, no 

further analysis into the physical meaning of dsolv78 has been carried out. 

The main rule generated for the prediction of the dihydrate form involved dsolv65, 

dsolv71, rate and temperature. Dsolv65 also featured in the form I rules and is the 3D 

bonding information content (BIC) topological descriptor for the solvent molecules. 

The descriptor describes the branching and connectivity of the solvent molecule[6]. 

Dsolv71 is the total molecular surface area of the solvent molecule (TMSA). The 

TMSA descriptor belongs to the charged partial surface area (CPSA) group of 

descriptors, but represented the total geometry of the molecule. The van der Waals 

radii of each atom within the molecule is represented by spheres that overlap with 

one another (Figure 5.17), creating a molecular surface[44]. In the case of TMSA, a 

solvent molecule, most commonly water with a van der Waals radius of 1.5 Å[44], is 

used to trace a path around the molecule, generating a solvent accessible surface area 

(Figure 5.17). This solvent accessible surface area is used in the charged partial 

surface area (CPSA) calculations and is why TMSA belongs to the CPSA set of 

descriptors[44]. 

Figure 5.17 Calculation of the total molecular surface area using van der Waals radii, adapted from[44] 
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The solvent accessible surface area is a property that has been used in protein 

research to identify cavities in the structure.[47] This could also be applicable to 

complex or flexible small molecules. In a flexible molecule, like a protein, the 

solvent accessible surface area could highlight the extent of interaction certain atoms 

within the molecule have with the bulk solvent[47], and therefore may be linked with 

the interactions in solution. If the molecule is highly flexible then larger areas may 

interact with the solvent or other solute molecules leading to preferential nucleation 

of certain polymorphs.[13, 15] 

The roles of rate and temperature have been discussed previously (sections 5.4.1 and 

5.4.2), with higher evaporation rates at high temperatures often leading to the 

metastable crystalline product.[16-19] 

Based on the rules in Table 5.43 in order to generate a high dihydrate prediction, 

dsolv65 must be high, rate must be a mid range value and temperature and dsolv71 

must be low. Figure 5.18 shows the normalised descriptor values for each experiment 

that generated dihydrate in the final product. 
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Figure 5.18 The dihydrate producing experiments plot against the normalised values of rate (blue), 

temperature (purple), dsolv71 (green) and dsolv65 (cream) 

 
Due to the small amount of training data available, it is clear that the rule simply 

states facts based on the three occurrences of the dihydrate. In order to generate a 

more reliable model from which meaning can be taken from the rules, more 

dihydrate forming experiments need to be added to the training set. 

 
5.4.5. The Prediction of Solvates 

CBZ is known to produce many different solvates[25, 39, 48-52], but only the DMSO 

solvate was crystallised in this research. Nine different experimental conditions were 
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used, generating the solvate on each occasion. Rules for solvate formation were 

created (Table 5.44) featuring MNDO_dipole and dsolv57. 

 
Table 5.44 Rules generated in FormRules for solvate prediction 

Rules generated for Solvate prediction 

SubModel:1   

IF MNDO_dipole is LOW AND dsolv57 is LOW THEN Solvate is LOW (1.00) 

IF MNDO_dipole is LOW AND dsolv57 is HIGH THEN Solvate is HIGH (0.94) 

IF MNDO_dipole is MID AND dsolv57 is LOW THEN Solvate is LOW (0.98) 

IF MNDO_dipole is MID AND dsolv57 is HIGH THEN Solvate is LOW (1.00) 

IF MNDO_dipole is HIGH AND dsolv57 is LOW THEN Solvate is LOW (1.00) 

IF MNDO_dipole is HIGH AND dsolv57 is HIGH THEN Solvate is HIGH (0.61) 

 
The MNDO_dipole descriptor has featured in the rules for form II and III and is the 

calculated dipole moment of the CBZ molecule in the different solvent force fields. 

Dsolv57 has not been seen previously, but like dsolv65, is a 3D bonding information 

content (BIC) descriptor for the solvent, but in this example it is order 0. Order 0 

means that atoms within the molecule are grouped together into “equivalent 

classes”.[7]  

When the normalised values of MNDO_dipole and dsolv57 are plotted for the 

DMSO experiments Figure 5.19), it shows that the most confident rule is based upon 

these values. 
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Figure 5.19 The solvate producing experiments (9 examples of DMSO solvent) plot against the 

normalised values of MNDO_dipole (purple) and dsolv57 (green) 
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When all of the crystallisation solvents values of MNDO_dipole and dsolv57 are plot 

(Figure 5.20) there are two examples of descriptor values that match the solvate 

forming rule. These are DMSO and acetone. Interestingly the acetone experiments 

never crystallised as a solvate in this research, but there are examples in the literature 

of its existence.[18, 26, 39, 51] 

Figure 5.20 Plot of all crystallisation solvents normalised MNDO_dipole (purple) and dsolv57 (green) 

values 

 
Previous research by Johnston et al.[49] used random forest classification to predict 

under what conditions CBZ solvates would form. They concluded, using six 

parameters, the conditions required were low logP, molecular flexibility, solvent 

accessible surface area and molecular volume and a high dielectric constant and 

surface tension. All of these properties have been represented within this research, 

but failed to show in the final rules for solvate formation. Johnston et al.[49] did 

predict the formation of a nitromethane solvate, but in this research that form was not 

crystallised. There are many examples of CBZ solvate formation in the literature; 

with four solvate forming solvents were used in this research (DMSO, acetone, 

nitromethane and THF). To perhaps generate a more reliable rule, different solvents 

could be used that form solvates thus increasing the data about solvates in the 

training set. 

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

E
tO

H
TH

F

A
ce

to
ne

A
cC

N

Tol
ue

ne

N
itr

om
eth

ane

M
eO

H

D
M

S
O

C
hlo

ro
fo

rm

D
ic
hl
or

oM
et
han

e

C
hlo

ro
B
en

ze
ne

C
yc

lo
H
ex

an
e

A
ni
lin

e

Crystallisation solvents

N
o

rm
al

is
ed

 d
es

cr
ip

to
r 

va
lu

es

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

E
tO

H
TH

F

A
ce

to
ne

A
cC

N

Tol
ue

ne

N
itr

om
eth

ane

M
eO

H

D
M

S
O

C
hlo

ro
fo

rm

D
ic
hl
or

oM
et
han

e

C
hlo

ro
B
en

ze
ne

C
yc

lo
H
ex

an
e

A
ni
lin

e

Crystallisation solvents

N
o

rm
al

is
ed

 d
es

cr
ip

to
r 

va
lu

es



 

 193 

5.4.6. Summary of the Optimised Descriptors 

The seven descriptors present in the optimised model represent a range of properties 

relating to both the CBZ and solvent molecule. A summary of the descriptors 

involved in each rule can be found in Table 5.45. In the case of form I and the 

dihydrate, the lack of data generated by the crystallisations carried out reduces the 

reliability of these rules. With an increased number of experiments that lead to form I 

or dihydrate formation, the model could be rebuilt and perhaps improved. It would be 

unwise to draw significant conclusions from the descriptors that feature within the 

rules as they would be based on a very small amount of data.  

The rules for form II and III involve similar descriptors that potentially describe the 

interactions between the solute and solvent molecules in solution. Although the 

differences in E_vdw and MNDO_dipole values are subtle between the modelled 

CBZ molecules, this research has demonstrated that the effect the solvent has on the 

molecular geometry has an impact upon which polymorphic form is crystallised. 

Similarly to the form I and dihydrate rules, the solvate rules were generated based 

upon one solvent crystallising as a solvate. The rule generalised that there was a 

possibility that acetone may also generate a solvate, something that has been 

observed in the literature, but not in this research. Further crystallisation work using 

known solvate forming solvents would lead to improved predictions of the solvate 

form and also generate more information, based on the descriptors used, about what 

is occurring at the molecular level. 
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Table 5.45 Summary of the descriptors involved in the CBZ predictive rules 

Form predicted Descriptor(s) Definition(s) 

I 

Dsolv65 

Rate   

Temperature 

3D bonding information content (order 2) of the 
solvent molecule. 

Rate of nitrogen blown onto sample (L/min) 

Temperature at which the crystallisations occurred 

II E_vdw 
Van der Waals contribution to the potential energy 
of the CBZ molecule in a solvent force field 

II MNDO_dipole 
Calculated (MNDO theory) dipole moment of the 
CBZ molecule in a solvent force field 

II Rate Rate of nitrogen blown onto sample (L/min) 

III 

MNDO_dipole 

Gutmann donor 
number 

Calculated (MNDO theory) dipole moment of the 
CBZ molecule in a solvent force field 

Electron donating ability of the solvent 

III E_vdw 
Van der Waals contribution to the potential energy 
of the CBZ molecule in a solvent force field 

III Rate Rate of nitrogen blown onto sample (L/min) 

Dihydrate 

Dsolv65 

Rate 

Temperature 

Dsolv71 

3D bonding information content (order 2) of the 
solvent molecule. 

Rate of nitrogen blown onto sample (L/min) 

Temperature at which the crystallisations occurred 

Total molecular surface area of the solvent 
molecule 

Dihydrate 
Dsolv78 

Rate 

Difference in partial surface areas of the solvent 
molecule 

Rate of nitrogen blown onto sample (L/min) 

 

Solvate 
MNDO_dipole 

Dsolv57 

Calculated (MNDO theory) dipole moment of the 
CBZ molecule in a solvent force field 

3D bonding information content (order 0) of the 
solvent molecule. 
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5.5. Validation of Optimised Set 

In order to assess whether the descriptors in the optimised set lead to reasonable 

predictions, the model needs to be validated. Two methods will be used here; firstly a 

cross validation method that uses 10 % of the experimental rows of data. This means 

that the validation set is within the experimental space of the data used in the trained 

network. The second method is to use data that has never been used in any training 

and has been generated from experiments that involve different solvents to those 

used in the model. 

 

5.5.1. Cross Validation Results 

Nine rows of experimental results (10 %) were predicted using the model created 

with the remaining data. The overall average performance of the network was 

reduced (to 82.69 %), but this was expected as a large proportion of its training data 

was removed. The results are summarised in Table 5.46 and are very promising for 

the prediction of the major polymorphic form crystallised within the experimental 

space used in the training. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5.46 Cross validation results 

ANN predicted value   
Solvent Rate    

(L/min) 
Temperature 

(°C) 

Experimental 
result: Major 

form 
crystallised 

Predicted 
result: Major 

form 
predicted Form I Form II Form III Dihydrate Solvate 

Ethanol 15 25 Form III Form III 0.0 0.0 1.0 0.0 0.0 

THF 25 25 Form II Form II 0.0 1.2 0.6 0.1 0.0 

Acetonitrile 15 50 Form III Form III 0.0 0.3 1.1 0.0 0.0 

DMSO 25 25 Solvate Solvate 0.0 0.0 0.0 0.0 1.0 

Aniline 5 50 Form III Form III 0.0 0.0 1.0 0.0 0.0 

Chlorobenzene 5 50 Form III Form II 0.0 0.7 0.4 0.0 0.0 

Toluene 15 75 Form II Form II 0.0 0.7 0.2 0.0 0.0 

Nitromethane 5 25 Form III Form III 0.0 0.3 0.8 0.0 0.0 

Chloroform 25 50 Form II / Form III  Form II 0.0 0.8 0.2 0.0 0.0 

 

 

 



 

 

The major polymorphic form crystallised was predicted for seven out of nine of the 

validation set, also generating an INForm[1] average R2 value of 79.00 %. On only 

two occasions the major polymorphic form was incorrectly predicted. Analysis of 

why this occurred was conducted, and possible reasons discussed.  

Firstly, the model failed to correctly predict form III as the major product for the 

chlorobenzene experiment in the validation set. Although the values generated in 

INForm[1] cannot be used to precisely determine the quantities of a mixture of forms 

in a product, the values can be used to asses how confident the model is that a certain 

form will be produced. In the case of this sample, although the major form predicted 

was form II, there was also a relatively high level of form III predicted (Table 5.46). 

The values for both these forms were lower than for other experiments, suggesting 

that the model could not reliably separate form II and III, and perhaps highlighting 

the possibility of a mixture. When the experimental data used in the training is 

examined, there are seven occurrences of chlorobenzene that generate a range of 

polymorphic outcomes. Form II is the major product in five of the experiments, but 

three of these are part of a polymorphic mixture. Form III is the major product in two 

experiments, but only pure in one instance. The model incorrectly predicted form III, 

but the experimental results show a range of different possible outputs. This result, 

although on first sight an incorrect prediction, is a valuable one. A result like this 

could alert the user that the solvent might produce a range of polymorphic crystals 

and may not be the most optimal solvent for reproducible crystallisations over a 

larger range of experimental conditions. 

The second result incorrectly predicted was that of the crystallisation from 

chloroform, which produced a mixture of polymorphic forms experimentally. In this 

example the model predicted form II confidently for the set of experimental 

conditions and descriptors tested. When the training data for chloroform are analysed 

there are six experimental results. These chloroform crystallisations led to a 

combination of pure form II (1 occurrence), pure form III (2 occurrences) and 

mixtures of both form II and III. When this data is observed it provides a reason for 

the incorrect prediction of the model. However, no suggestion of form III 

crystallisation can be taken from the INForm[1] results. There are a number of ways 

in which this result can be viewed. Firstly, it would be highly beneficial for more 

experimental data to be obtained. This further experimentation could determine if 

one crystalline product is more frequently formed or if in fact a range of polymorphs 
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are seen in this experimental space. A second way to view these results is to note that 

a range of polymorphs were crystallised and the model could not generalise for this 

solvent well. However, from previous work[16] form II is the expected crystalline 

product in low dielectric solvents such as chloroform. Therefore the high occurrence 

of form III in this experimental work is surprising. With this in mind, it would seem 

that the model has generalised more successfully than initially thought. 

Overall, the model created by the seven descriptors (dsolv57, dsolv65, dsolv71, 

dsolv78, MNDO_dipole, E_vdw and gutmann donor number) successfully predicted 

the major polymorphic form crystallised within the experimental space used in 

training. 

 
5.5.2.  External Validation Results 

In order to assess how robust the model created is, external validation has been 

carried out. Further crystallisations were conducted using different solvents to those 

used in the training of the model. This validation assesses whether the descriptors 

highlighted in the analysis are capable of generating a successful prediction for 

unknown solvents. Ethyl acetate (EtOAc) and n-butanol (n-BuOH) were used as 

validation solvents, with crystallisation experiments being carried out over a range of 

rates and temperatures. The results are presented in Table 5.47, alongside the 

experimental conditions used in the analysis. 

 

 

 

 

 

 

 

 

 



 

 

Table 5.47 External validation results summary 

 

ANN predicted value 
Experiment 

number Solvent Rate    
(L/min) 

Temperature 
(°C) 

Experimental 
result: Major 

form 
crystallised 

Predicted 
result: 

Major form 
predicted Form I Form II Form III Dihydrate Solvate 

1 EtOAc 5 25 Form II Form III 0.0 0.0 0.4 0.0 0.0 

2 EtOAc 5 50 Form II Form III 0.0 0.5 0.8 0.0 0.0 

3 EtOAc 25 25 Form II Form II 0.0 0.5 0.2 0.0 0.0 

4 EtOAc 25 50 Form II Form II 0.0 1.0 0.2 0.0 0.1 

5 EtOAc 15 25 Form II Form III 0.0 0.0 0.2 0.0 0.0 

6 EtOAc 15 50 Form II From II 0.0 0.5 0.3 0.0 0.1 

7 nBuOH 5 25 Form II Form III 0.0 0.9 1.0 0.0 0.1 

8 nBuOH 5 50 Form III Form III 0.0 0.6 1.1 0.0 0.0 

9 nBuOH 25 25 Form III Form III 0.0 0.6 0.9 0.0 0.0 

10 nBuOH 25 50 Form II Form II 0.0 1.1 0.4 0.0 0.0 

11 nBuOH 15 25 Form II 
Form III and 

form II 
0.0 0.9 0.9 0.0 0.0 

12 nBuOH 15 50 Form III Form III 0.0 0.6 1.0 0.0 0.0 



 

 

The model predicts the major polymorphic form crystallised in seven out of twelve 

of the validation experiments. With prediction of the experimental outcomes for 

n-butanol being more successful that the EtOAc crystallisations. However, overall 

the model has performed less successfully than expected. 

The EtOAc crystallisations produced form II in every experiment, but half of the 

predictions made were for form III. When the values of prediction in INForm[1] are 

observed, it suggests that the model is not confident. Three of the predictions are 

correct, but only one confidently predicts this form II product (experiment 4). The 

other two form II predictions, although correct, are very low values. The situation is 

similar in the form III predictions made. One of these (experiment 2) is a slightly 

more confident prediction, but also shows the high presence of form II, the others 

both generated a very low value of form III only. 

The n-BuOH crystallisations produce a range of pure form II and form III products, 

with the model successfully predicting four out of six of the experiments. The three 

n-butanol experiments carried out at 50°C produced confident, correct predictions. 

Experiment 9, although correctly predicted the major form crystallised, also 

presented a high value for form II.  

Experiment 11 predicted form II and III at an equal value. Although form II was 

crystallised in that experiment, overall a mixture of the two forms have been 

generated. 

In experiment 7, even though the major form was incorrectly predicted, high values 

for both form II and III were presented, possibly suggesting a mixture. 

When the distribution of descriptor values for the two validation solvents are 

assessed, (Figure 5.21) it highlights that the descriptor space has not been adequately 

sampled. Only the E_vdw descriptor values are significantly different in the EtOAc 

and n-butanol solvents. Perhaps to generate a more reliable validation, solvents 

would need to be selected to ensure the whole space was interrogated. 
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Figure 5.21 Plot of the normalised descriptor values of EtOAc (E) and n-butanol (B) 

 

5.6. Conclusion of Manual Data Analysis 

By analysing the linear correlations within the whole descriptor set, an optimised set 

of seven descriptors has been found. These seven descriptors are dsolv57, dsolv65, 

dsolv71, dsolv78, MNDO_dipole, E_vdw and gutmann donor number. In 

combination with the rates and temperatures used in the experimental work, this set 

of descriptors can successfully predict the major polymorphic form in 79 % of the 

cross validation experiments. When two unknown solvents were used as further test 

of the model, seven out of twelve of the experimental products could be predicted. 

To improve the model more data would be required, particularly with form I, 

dihydrate and solvate crystalline products. However, the model created from these 

seven descriptors would successfully allow polymorphic form prediction within the 

experimental space used in the training. 
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6. RESULTS AND DISCUSSION-PLS ANALYSIS 

 

 

Partial Least Squares (PLS) analysis was carried out upon all molecular and bulk 

descriptors in order to reduce the dataset. PLS determines linear correlations within 

the data and can highlight important descriptors based on these correlations. By using 

the highlighted descriptors, the dataset was reduced, which led to the development of 

an artificial neural network (ANNs) for polymorph prediction. 

 

6.1. Data Reduction using PLS 

PLS analysis was conducted as another method of descriptor selection (results in 

electronic appendix, chapter 6, 6.1). This data analysis technique is able to handle all 

of the data simultaneously, therefore making it more time effective for this type of 

research, rather than the manual analysis methods presented in chapter 5.  

 

From the results generated in the PLS analysis a number of different sets of 

descriptors were highlighted and used in an ANN. As with principal component 

analysis (PCA), PLS generates score values that combine all of the descriptor data. 

The difference between PCA and PLS analysis is that the scores are generated based 

on the determination of one polymorphic outcome at a time. With form II and III 

being the most common outcome of the crystallisation experiments, only scores for 

these two polymorphic forms were generated. As well as score values, PLS 

determines which of the descriptors are the most important. Using these values, that 

once again are for form II and III separately, an ANN can be built. 

Each of these outputs will be discussed separately, with the most optimal set of 

descriptors presented in section 6.2.  

 

6.1.1. Analysis of Score Values (Form II Model) 

Seven components were created, with each experimental row being assigned a score 

value. These scores are determined by different loading values being placed upon 
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each descriptor and summed into one value. FormRules[1] and INForm[2] analyses 

were carried out and the overall results are presented in Table 6.1. 

 
Table 6.1 Results of ANN analysis of PLS form II score values from seven components 

R2 values for each form 
(%) FormRules  INForm 

Training 
INForm 
Testing 

Form I 4.40  83.10 100.00 

Form II 56.91  95.70 18.71 

Form III 56.65  95.31 3.16 

Dihydrate 7.09  84.85 100 

Solvate 97.43  98.40 96.51 

Average R2 44.50 %  91.47 % 63.68 % 

  INForm average R2
 77.57 % 

FormRules and INForm average R2
 61.04 %  

 
The average result over both FormRules[1] and INForm[2] was 61.04 %, which is not 

a successful network. This result is not surprising as the components were focussed 

upon form II crystallisation only. However, it is more surprising that the form II 

prediction value in INForm[2] is very low. This indicates that this component analysis 

technique does not provide enough information in order to create a successful ANN 

model.  

The PLS analysis also determines the number of significant components in each 

model, and in this case it highlighted only the first two. Based on the previous 

unsuccessful results using all seven components, it was unlikely that using only two 

would generate improved results, but the analysis was carried out (Table 6.2). 

When only the two most significant components are used in the ANN, there is an 

overall reduction in the performance of FormRules[1] and INForm[2], with an average 

overall result of 54.31 %. 
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Table 6.2 Results of ANN analysis of PLS form II score values from two components 

R2 values for each form 
(%) FormRules  INForm 

Training 
INForm 
Testing 

Form I 1.33  75.96 100.00 

Form II 56.91  80.18 -22.43 

Form III 56.42  68.71 -39.37 

Dihydrate 2.72  95.63 100 

Solvate 96.36  99.95 100 

Average R2 42.75 %  84.09 % 48.00 % 

  INForm average R2
 65.86 % 

FormRules and INForm average R2
 54.31 %  

 
It should be noted that the R2 value for both the test set Form II and III results are 

negative. When Equation 4.3 is analysed, it becomes apparent that when the total 

sum of errors is larger than the total variance of the data a negative value is 

calculated. This highlights that the model is incapable of generating an accurate 

prediction based upon the training data.  

The most interesting factor to observe in these analyses is that the R2 value in the 

form II prediction in FormRules[1] does not change. This therefore suggests that the 

most important information for form II prediction is contained within the first two 

components. However, there is not enough information in these components to 

successfully predict all of the different polymorphic forms. 

 
6.1.2. Analysis of Score Values (Form III Model) 

Similarly to above, six components that predict form III were generated. The average 

result when these component score values were used in FormRules[1] and INForm[2] 

was 65.98 % (Table 6.3). The prediction of polymorphic form made using the form 

III scores is more successful than the form II scores, but does highlight that there is 

not enough information to predict all outcomes when using only the score values of 

one form. 

Table 6.3 shows that the form III prediction and overall average in INForm[2] is 

better than in many other networks. However, when the results are combined with 

FormRules[1] values, which performed poorly, the average R2 result is reduced.  
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Table 6.3 Results of ANN analysis of PLS form III score values from six components 

R2 values for each form 
(%) FormRules  INForm 

Training 
INForm 
Testing 

Form I 2.50  58.38 100.00 

Form II 53.65  92.13 26.71 

Form III 56.80  84.44 58.50 

Dihydrate 43.43  99.64 100.00 

Solvate 96.88  99.41 93.85 

Average R2 50.65 %  86.80 % 76.00% 

  INForm average R2
 81.31 % 

FormRules and INForm average R2
 65.98 %  

 

As with the form II analysis, the first two components were highlighted as the most 

significant in form III prediction. The score values for these components where 

therefore analysed separately to see if there was any improvement (Table 6.4). 

 
Table 6.4 Results of ANN analysis of PLS form III score values from two components 

R2 values for each form 
(%) 

FormRules  INForm 
Training 

INForm 
Testing 

Form I 1.94  79.70 100.00 

Form II 50.75  73.43 39.86 

Form III 52.24  79.38 35.56 

Dihydrate 3.88  73.38 100.00 

Solvate 97.46  99.56 96.52 

Average R2 41.25 %  81.09 % 74.00 

  INForm average R2
 77.74 % 

FormRules and INForm average R2
 59.50 %  

 

By training the ANN with the two most significant components the overall prediction 

average went down from 65.98 % to 59.50 %. Unlike in the form II analysis, the 

FormRules[1] R2 value for form III prediction has changed, suggesting that the first 
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two components do not adequately provide all of the information required for a 

successful form III prediction. 

Overall, by using the score values for both the form II and III PLS models separately, 

the ANN did not predict polymorphic form very successfully. This analysis also does 

not generate specific information about which descriptors are contributing most 

significantly to the prediction. This therefore means that nothing can be learned 

about the crystallisation of different polymorphs at the molecular level. As each 

score is calculated using a loading value that is placed upon each descriptor, analysis 

of these loading values was undertaken to determine the most influential descriptors 

within each component. 

 
6.1.3. Analysis of the Loading Values (Form II Model) 

A method of reducing the number of descriptors analysed from the PLS analysis has 

been devised using the knowledge of the loading values. Each descriptor is given a 

loading value that contributes towards the score generated in each component. 

Knowing that the first two components are the most significant in form II prediction, 

the most highly loaded descriptors in these components must be the most influential. 

As a method of data reduction, the selection of the two most positively and 

negatively loaded descriptors from the two significant components, representing the 

extreme values, were run in ANN. The eight descriptors in this analysis were pmiY, 

E_nb, d78 and d72 from the first component and d42, dsolv13, viscosity and d66 

from the second component. A brief description of each is shown in Table 6.5 and 

appendix section 12.2. 
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Table 6.5 Brief description of the eight descriptors used in this analysis 

Descriptor Descriptor definition 

PmiY Principal moment of inertia Y, of the CBZ molecule 

E_nb 
Value of potential energy of the CBZ molecule when the non-bonded 
terms are disabled 

D78 
DPSA-1, the difference in partial surfaces areas upon the CBZ 
molecule 

D72 PPSA-1, the partial positive surface area of the CBZ molecule 

D42 3D-Wiener index of the CBZ molecule 

Dsolv13 Relative number of single bonds of the solvent molecule 

Viscosity Of the solvent molecule 

D66 Moment of inertia A of the CBZ molecule 

 
When the eight descriptors are analysed the results are very poor (Table 6.6), with an 

average R2 value of 47.94 %. This highlights that there is little variation in the 

descriptors used and therefore no successful predictions can be made. 

 
Table 6.6 Results of ANN analysis of PLS form II using the loading values from two most positive 

and negative descriptors from two components (eight descriptors) 

R2 values for each form 
(%) 

FormRules  INForm 
Training 

INForm 
Testing 

Form I 2.71  99.60 100.00 

Form II 50.30  88.23 -116.96 

Form III 52.84  87.69 -90.43 

Dihydrate 5.17  75.00 100.00 

Solvate 96.92  99.94 99.76 

Average R2 41.59 %  90.09 % 18.00 % 

  INForm average R2
 54.28 % 

FormRules and INForm average R2
 47.94 %  

 

In order to reduce the number of descriptors further, only the top and bottom 

descriptor in each component were selected (pmiY, d78, d42 and viscosity). The 
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analysis of these four descriptors actually produces a more successful prediction 

overall of 56.14 % (Table 6.7).  

 
Table 6.7 Results of ANN analysis of PLS form II using the loading values from the most positive and 

negative descriptors from two components (four descriptors) 

R2 values for each form 
(%) FormRules  INForm 

Training 
INForm 
Testing 

Form I 0.99  96.54 100.00 

Form II 50.30  72.48 10.08 

Form III 48.42  66.79 2.24 

Dihydrate 1.78  79.09 100.00 

Solvate 96.29  99.95 100.00 

Average R2 39.56 %  82.97 % 62.00 % 

  INForm average R2
 72.72 % 

FormRules and INForm average R2
 56.14 %  

 
From the FormRules[1] results it becomes apparent that when only the four 

descriptors are used, the form II prediction is still at the same level as with eight 

descriptors. When the rules generated in FormRules[1] are analysed (appendix section 

12.8), there are two descriptors that are present in the form II prediction. These are 

d78, which is the difference in the partial positive and negative surface areas[3] and 

pmiY, which is the moment of inertia y[4], both on the CBZ molecule. From the 

overall result generated it is clear that these descriptors alone cannot predict all the 

polymorphic form outcomes from the crystallisation experiments. However, these 

two descriptors can lead to enhanced form II prediction. Therefore these two 

descriptors will be taken forward for further analysis.  

 
6.1.4. Analysis of the Loading Values (Form III Model) 

The same analysis was carried out with the loading values from the form III model. It 

should be noted that MNDO_dipole came up twice in this analysis and therefore the 

sets are comprised of seven and three descriptors. The seven unique descriptors are 

MNDO_dipole, d86, dsolv24 and d84 from component one and MNDO_dipole, d77, 

d75 and d42 from component two, with a brief description in Table 6.8 and appendix 

section 12.2.  
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Table 6.8 Brief description of the seven descriptors used in this analysis 

Descriptor Descriptor definition 

MNDO_dipole Calculated dipole moment of the CBZ molecule 

D86 
FNSA-3, Fractional partial negative surface area  of the CBZ 
molecule (PNSA-3/TMSA) 

Dsolv24 Kier and Hall index (order 1) of the solvent molecule 

D84 
FNSA-1, Fractional partial negative surface area  of the CBZ 
molecule (PNSA-1/TMSA) 

D77 
PNSA-3, Atomic charge weighted partial negative surface area of 
the CBZ molecule 

D75 PNSA-1, Partial negative surface area of the CBZ molecule 

D42 3D-Wiener index of the CBZ molecule 

 
These descriptors were used in an ANN with the FormRules[1] and INForm[2] results 

presented in Table 6.9.  

 
Table 6.9 Results of ANN analysis of PLS form III using the loading values from the two most 

positive and negative descriptors from two components (seven descriptors) 

R2 values for each form 
(%) FormRules  INForm 

Training 
INForm 
Testing 

Form I 2.27  98.83 100.00 

Form II 48.69  81.42 23.18 

Form III 56.90  83.77 46.97 

Dihydrate 19.41  91.65 100.00 

Solvate 96.95  99.93 99.65 

Average R2 44.84 %  91.12 % 74.00 % 

  INForm average R2
 82.54 % 

FormRules and INForm average R2
 63.69 %  

 
Similarly to the form II analysis, the descriptor set was reduced further, using only 

the most positively and negatively loaded descriptor in the first two components. 

Only three descriptors were used in this analysis as MNDO_dipole occurred twice. 

The other descriptors were dsolv24 and d75, and were analysed in FormRules[1] and 

INForm[2] (Table 6.10). 
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Table 6.10 Results of ANN analysis of PLS form III using the loading values from the most positive 

and negative descriptors from two components (three descriptors) 

R2 values for each form 
(%) 

FormRules  INForm 
Training 

INForm 
Testing 

Form I 2.02  97.51 100.00 

Form II 49.69  66.00 45.94 

Form III 51.31  70.54 72.99 

Dihydrate 19.41  97.42 100.00 

Solvate 96.76  99.49 99.95 

Average R2 43.84 %  86.19 % 84.00 % 

  INForm average R2
 85.10 % 

FormRules and INForm average R2
 64.47 %  

 
The average results for the seven and three descriptor analyses were 63.69 % and 

64.47 % respectively. There is a slight improvement in the overall average prediction 

value when compared to the other ANN results in the PLS analysis. It is also worth 

noting that the INForm[2] prediction of form III is very good when only 

MNDO_dipole, dsolv24 and d75 are used. This implies that they are potentially very 

important descriptors. When the rules created by FormRules[1] are observed, dsolv24, 

which is the Kier and Hall index[5] of the solvent and d75, the partial negative surface 

area[3] of the CBZ molecule are used in form III prediction. These highlighted 

descriptors will be taken forward for further analysis. 

 
6.1.5. Analysis of the Variable Importance Values (Form II Model) 

The ten most important descriptors, as determined by the PLS analysis, for form II 

prediction have been run in an ANN. The descriptors involved were d78, d82, d84, 

d81, d85, d68, pmiY, d72, d73 and E_nb (Table 6.11), which are in order of 

importance. 
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Table 6.11 Brief description of the ten most important descriptors for form II prediction 

Descriptor Descriptor definition 

D78 
DPSA-1, the difference in partial surfaces areas upon the CBZ 
molecule 

D82 
FPSA-2, Fractional partial negative surface area  of the CBZ molecule 
(PPSA-2/TMSA) 

D84 
FNSA-1, Fractional partial negative surface area  of the CBZ molecule 
(PNSA-1/TMSA) 

D81 
FPSA-1, Fractional partial negative surface area  of the CBZ molecule 
(PPSA-1/TMSA) 

D85 
FNSA-2, Fractional partial negative surface area  of the CBZ molecule 
(PNSA-2/TMSA) 

D68 Moment of inertia C, of the CBZ molecule 

PmiY Principal moment of inertia Y, of the CBZ molecule 

D72 PPSA-1, the partial positive surface area of the CBZ molecule 

D73 
PPSA-2, the total charge weighted partial positive surface area of the 
CBZ molecule 

E_nb 
Value of potential energy of the CBZ molecule when the non-bonded 
terms are disabled 

 
FormRules[1] and INForm[2] analysis was carried out upon the ten descriptors, with 

the results presented in Table 6.12.  

 
Table 6.12 Results of ANN analysis of PLS form II using variable importance values 

R2 values for each form 
(%) 

FormRules  INForm 
Training 

INForm 
Testing 

Form I 2.71  98.65 100.00 

Form II 50.30  75.48 13.10 

Form III 52.92  71.39 -50.57 

Dihydrate 5.17  60.41 100.00 

Solvate 96.87  99.84 91.51 

Average R2 41.59 %  81.15 % 51.00 % 

  INForm average R2
 66.08 % 

FormRules and INForm average R2
 53.84 %  
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The overall average R2 result of this analysis is 53.84 %, which is a poor 

performance. This is unsurprising as these are the ten most important descriptors in 

form II prediction only. It is more surprising that the INForm[2] results for form II 

prediction is also weak, suggesting that different properties need to be present in 

order to distinguish one form from another. 

 
6.1.6. Analysis of the Variable Importance Values (Form III Model) 

The same analysis was carried out to determine the ten most important descriptors in 

form III prediction. The descriptors used were MNDO_dipole, dsolv24, d86, 

dsolv25, d84, d81, d85, d82, d78 and d77 respectively. A brief description of these 

descriptors is presented in Table 6.13. 

 
Table 6.13 Brief description of the ten most important descriptors for form III prediction 

Descriptor Descriptor definition 

MNDO_dipole Calculated dipole moment of the CBZ molecule 

Dsolv24 Kier and Hall index (order 1) of the solvent molecule 

D86 
FNSA-3, Fractional partial negative surface area  of the CBZ molecule 
(PNSA-3/TMSA) 

Dsolv25 Kier and Hall index (order 2) of the solvent molecule 

D84 
FNSA-1, Fractional partial negative surface area  of the CBZ molecule 
(PNSA-1/TMSA) 

D81 
FPSA-1, Fractional partial negative surface area  of the CBZ molecule 
(PPSA-1/TMSA) 

D85 
FNSA-2, Fractional partial negative surface area  of the CBZ molecule 
(PNSA-2/TMSA) 

D82 
FPSA-2, Fractional partial negative surface area  of the CBZ molecule 
(PPSA-2/TMSA) 

D78 
DPSA-1, the difference in partial surfaces areas upon the CBZ 
molecule 

D77 
PNSA-3, the atomic charge weighted partial negative surfaces areas 
of the CBZ molecule 

 
FormRules[1] and INForm[2] analysis was carried out using these ten descriptors, with 

results presented in Table 6.14. 
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Table 6.14 Results of ANN analysis of PLS form III using variable importance values 

R2 values for each form 
(%) FormRules  INForm 

Training 
INForm 
Testing 

Form I 2.27  85.82 100.00 

Form II 45.84  72.41 49.01 

Form III 56.12  76.69 66.48 

Dihydrate 4.05  99.70 100.00 

Solvate 96.78  99.92 97.75 

Average R2 41.01 %  86.91 % 83.00 % 

  INForm average R2
 84.96 % 

FormRules and INForm average R2
 62.99 %  

 
Overall the average result of this analysis was higher than seen in the form II analysis 

at 62.99 %. Notably INForm[2] has performed well, which suggests that the 

information contained within these ten descriptors is useful for the prediction of 

different polymorphic forms. However, FormRules[1] has not successfully created 

rules from these descriptors, suggesting that other combinations of descriptors may 

improve the predictions. 

 
6.1.7. Analysis of the Variable Importance Descriptor Overlap 

When the two sets of descriptors highlighted in the variable importance lists for both 

form II and form III are compared (Table 6.11 and Table 6.13), there are five 

descriptors that feature in both sets. The overlapping descriptors are d78, d82, d84, 

d81 and d85. Overall this means there are fifteen unique descriptors in the two lists. 

An ANN of these fifteen descriptors was run to determine if the prediction improves 

with the addition of further information. Also an ANN of the five overlapping 

descriptors was run to see whether it is more or less successful that using all fifteen 

descriptors. 

The results (Table 6.15) of using only the 5 overlapping descriptors are very poor 

(39.79 %), which clearly highlights that more information is required for successful 

polymorphic form prediction. 
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Table 6.15 Results of ANN analysis of the overlapping descriptors from the top ten form II and III 

variable importance values 

R2 values for each form 
(%) 

FormRules  INForm 
Training 

INForm 
Testing 

Form I 0.99  98.70 100.00 

Form II 45.84  81.00 -57.26 

Form III 30.43  83.79 -83.79 

Dihydrate 1.78  99.60 100.00 

Solvate 12.99  98.62 90.76 

Average R2 18.41 %  92.34 % 30.00 % 

  INForm average R2
 61.17 % 

FormRules and INForm average R2
 39.79 %  

 
When the fifteen unique descriptors were run in FormRules[1] and INForm[2] (Table 

6.16) the overall average R2 value increased to 64.07 %. This demonstrates that more 

information is required to predict all of the different polymorphic forms. 

 
Table 6.16 Results of ANN analysis of the unique descriptors from the top ten form II and III variable 

importance values 

R2 values for each form 
(%) FormRules  INForm 

Training 
INForm 
Testing 

Form I 2.71  98.73 100.00 

Form II 50.30  82.46 18.66 

Form III 56.12  79.91 13.64 

Dihydrate 45.23  93.14 100.00 

Solvate 96.87  99.62 90.67 

Average R2 50.25 %  90.77 % 65.00 % 

  INForm average R2
 77.89 % 

FormRules and INForm average R2
 64.07 %  
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6.2. Optimisation of PLS Results 

Overall, the PLS analysis method of data reduction does not identify the descriptors 

that can successfully predict the CBZ polymorphic form crystallised in a set of 

experiments. The analysis conducted did highlight a number of descriptors that are 

potentially useful in form II and III prediction. D78 and pmiY were brought forward 

from the form II analysis, and dsolv24, d85 and d75 from the form III analysis. By 

using these potentially useful descriptors, an ANN was created to assess whether 

both form II and form III could be successfully predicted (Table 6.17).  

When the descriptors from the most successful analysis in this PLS research were 

observed (most positively and negatively loaded descriptors in component one and 

two in form III prediction), MNDO_dipole was featured, but not brought forward as 

important. MNDO_dipole, which is the calculated dipole moment[6] of the CBZ 

molecule, was not highlighted by the rule analysis as being an important descriptor. 

Therefore its effect upon addition to the five descriptors analysed in Table 6.17, has 

been examined by FormRules[1] and INForm[2]. 

 
Table 6.17 Optimisation of the model using previously highlighted informative descriptors and the 

most successful set 

Descriptors 
Most 

Successful PLS 
set 

Highlighted 
descriptors 

Highlighted 
descriptors + 
MNDO_dipole 

Dsolv24 X X X 

D75 X X X 

MNDO_dipole X  X 

D78  X X 

PmiY  X X 

D85  X X 

FormRules Average R2 (%) 43.84 43.97 43.96 

INForm Average R2 (%) 85.10 71.29 72.55 

Overall Average R2 (%) 64.47 57.63 58.26 
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The addition of MNDO_dipole showed a slight improvement in the overall 

prediction of the polymorphic forms (58.26 %), but the results are still much less 

successful that those seen in previous work.  

 

6.3. Conclusion of PLS Work 

Overall, the use of PLS as a method of data reduction was effective in this research. 

However, the descriptors highlighted as important based upon their loading and 

variable importance values, failed to build a successful ANN for the prediction of 

polymorphic form. Perhaps a reason for this may be the relatively small number of 

experimental values involved in the predictions. It has been noted previously that 

PLS can be more successful with larger models, in which more importance is placed 

upon the information across the whole dataset and not upon individual variables[7].  

 

Although a successful ANN was not built, the PLS analysis did highlight a number 

of descriptors that shall be remembered in future analysis. The inclusion of d78 and 

pmiY may improve the form II predictions, similarly dsolv24, d85, d75 and 

MNDO_dipole for form III predictions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 219 

 

[1] FormRules, v3.3 ed., Intelligensys Ltd., 2007. 
[2] INForm, v3.7 ed., Intelligensys Ltd., 2009. 
[3] D. T. Stanton, P. C. Jurs, Analytical Chemistry 1990, 62, 2323. 
[4] P. Atkins, J. de Paula, Atkins' Physical Chemistry, 7th ed., Oxford University 

Press, Oxford, 2002. 
[5] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug 

Research, Vol. 14, 1st ed., Academic Oress, Inc., New York, 1976. 
[6] M. Karelson, V. S. Lobanov, A. R. Katritzky, Chemical Reviews 1996, 96, 

1027. 
[7] V. E. Vinzi, W. W. Chin, J. Henseler, H. Wang, Handbook of Partial Least 

Squares. Concepts, Methods and Applications, Springer-verlag Berlin 
Heidelberg, 2010. 

 



 

 

7. RESULTS AND DISCUSSION - PCA ANALYSIS 

 

 

All of the descriptors (molecular and bulk) were subjected to principal component 

analysis (PCA). Details of the PCA methods were given in section 2.9. PCA does not 

link the polymorphic outputs with the descriptors; it simply assesses mathematically 

the correlations within the information in order to reduce the dimensionality of the 

dataset[1]. This allows reducing the number of descriptors that need to be considered 

in the artificial neural network (ANN) analysis. This chapter covers the descriptor 

reduction analysis and a discussion of the descriptor meanings found in the most 

successful set. 

 

7.1. Data Reduction using PCA 

Thirteen principal components (PC) were created, each encompassing features of all 

the descriptors. In every component each descriptor is given a loading value that 

places a different level of significance upon it. These values are correlations between 

the descriptor data and the component itself; therefore a large positive or negative 

loading indicates a well correlated descriptor within that variable space. The loading 

values are then transformed using regression-like equations to generate a score for 

each component[2]. Based upon this analysis, each experimental row has thirteen new 

descriptors, which should include all of the variation within the dataset. The PCA 

data can be found in Electronic Appendix, Chapter 7, file 7.1. 

 

7.1.1. Analysis of Score Values 

Using the thirteen component score values as inputs in the ANN, analysis can be 

carried out to determine if a successful prediction can be made. The results are 

highlighted in Table 7.1 and show a remarkably mediocre overall average R2 value 

of 60.63 %. It was expected that due to the involvement of all of the information in 

the descriptors, the prediction would be successful. However, this result 

demonstrates that the PCA has placed significance on some descriptors based on 

their numerical value that do not lead to a successful prediction. The rules generated 
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using the score values can be found in Electronic Appendix, Chapter 7, file 7.2, and 

refer only to the component. Therefore no specific information about which 

descriptors are important can be determined from these rules.  

 
Table 7.1 FormRules and INForm results of PCA score analysis 

R2 values for each form 

(%) 
FormRules  

INForm 

Training 

INForm 

Testing 

Form I 5.77  99.39 100.00 

Form II 54.66  84.90 0.12 

Form III 51.66  86.04 7.88 

Dihydrate 57.16  49.61 52.59 

Solvate 97.43  99.92 98.77 

Average R2 53.34 %  83.97 % 51.87 % 

  INForm average R2
 67.92 % 

FormRules and INForm average R2
 60.63 %  

 
A scree plot shows that as the number of PCs increases, the amount of variance in the 

data (represented by the R2 value from the PCA) becomes less. There is always an 

elbow in these plots that highlights after that point there is no longer significant 

amounts of new data being presented[3]. The elbow in this plot was taken to be at 

PC5 as the change in R2 value between PC5-13 is relatively small.   

 

Figure 7.1 Scree plot generated from the PCA results of carbamzepine (CBZ) descriptor analysis 

 
It was therefore examined whether omitting PCs 6-13 would affect the overall result 

significantly (Table 7.2). 
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 Table 7.2 Results of PC1-5 score analysis 

R2 values for each form 

(%) 
FormRules  

INForm 

Training 

INForm 

Testing 

Form I 5.77  99.63 100.00 

Form II 54.66  95.66 3.76 

Form III 51.66  89.53 30.18 

Dihydrate 57.16  98.29 100.00 

Solvate 97.01  99.55 100.00 

Average R2 53.25 %  96.53 % 67.00 % 

  INForm average R2
 81.66 % 

FormRules and INForm average R2
 67.46 %  

 
The results do show an improvement in prediction over using all 13 PCs. However, 

there is still no specific information about which descriptors are most important in 

this predictive model. 

 
7.1.2. Analysis of Loading Values 

As mentioned in section 7.1, the problem associated with using the score values is 

that all the descriptors have been condensed into one value for each PC. Therefore, 

no knowledge can be acquired about which of the molecular or bulk descriptors are 

important in the prediction of polymorphic form. The score values are created from 

the loading values given to each descriptor for each experiment, and therefore by 

analysing the loading values, significant descriptors can be highlighted. A full list of 

loading values can be found in Electronic Appendix, Chapter 7, file 7.1. 

PC1 is the component that represents the largest variance in the data set, with each 

subsequent PC containing less variation. It is the most positively and negatively 

loaded descriptors in each component that affect the score values most significantly. 

Therefore, analysis of the descriptors that have been grouped together is interesting 

to determine if there are any trends.  

The ten most positively and negatively loaded descriptors within each PC have been 

analysed based on their physical meaning. For a full description of each descriptor 

see appendix section 12.2. This analysis has been carried out for PC1-5 only, as they 

are known to contain most of the variation in the data. 
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Table 7.3 The most significant descriptors in PC1 

Most positively loaded descriptors Most negative loaded descriptors 

Dsolv43 – 3D-Randić index (order 0) of the 

solvent 
D69 – Molecular surface area of CBZ 

Dsolv20 – Randić index (order 1)of the  

solvent 
Dielectric constant of the solvent 

Dsolv22 – Randić index (order 3) of the 

solvent 
pmiZ – Moment of inertia C of CBZ 

Dsolv26 – Kier & Hall index (order 3) of the 

solvent 

dP – Hansen solubility parameter of the 

solvent 

Dsolv6 – Number of rings in the solvent 
Doslv67 – Moment of inertia B of the 

solvent 

Dsolv2 – Number of carbon atoms in the 

solvent 

D71 – Total molecular surface area of the 

CBZ 

Dsolv31 – Complementary information 

content (order 0) of the solvent 

D79 – DPSA-2 – Difference in Charged 

partial surface areas of CBZ 

Dolv55 – 3D-Complementary information 

content (order 0) of the solvent 

Dsolv68 – Moment of inertia C of the 

solvent 

Dsolv42 – 3D-Wiener index of the solvent Glob – Globularity of CBZ 

Dsolv44 – 3D-Randić index (order 1) of the 

solvent 
Polarity Parameter (ET30) - of the solvent 

 
The ten most positive descriptors in PC1 (Table 7.3) are all related to the shape of the 

solvent molecule. Of these ten, there are four occurrences of the Randić index, one 

occurrence of the Wiener index and one of the Kier and Hall index. These are all 

classified as “second generation topological”[4] descriptors. The number of rings and 

carbon atoms can also be related to the shape and size of the solvent molecule. The 

complementary information content, although a measure of the diversity of elements 

within the molecule,[5] the higher order values are connected to the molecules size.  

Half of the negative descriptors are related to the CBZ molecule and the remainder 

are related to the solvent. Surface areas are featured for both the solvent and CBZ, 

and out of the five solvent properties, three are bulk parameters. There are also three 

occurrences of the moment of inertia (twice for the solvent), which like the positive 

descriptors is concerned with the size and shape of the molecule. 
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Table 7.4 Most significant descriptors in PC2 

Most positively loaded descriptors Most negative loaded descriptors 

Dsolv74 – PPSA-2 – Partial positive surface 

area of the solvent 

Dsolv69 – Molecular surface area of the 

solvent 

Dsolv65 – 3D-Bonding information content 

(order 2) of the solvent 

Dsolv46 – 3D-Randić index (order 3) of the 

solvent 

Dsolv51 – 3D-Kier shape index (order 1) of 

the solvent 

Dsolv41 – Bonding information content 

(order 2) of the solvent 

Dsolv28 – Kier shape index (order 2) of the 

solvent 

Dsolv60 – 3D-Structural information content 

(order 1) of the solvent 

PM3_HOMO – Highest occupied molecular 

orbital energy of CBZ 

Dsolv37 – Bonding Information Content 

(order 1) of the solvent 

dH – Hansen solubility parameter of the 

solvent 

Dsolv56 – 3D-Structural information content 

(order 0) of the solvent 

Dsolv66 – Moment of inertia A of the 

solvent 

Dsolv77 – PNSA-3 – Partial negative 

surface area of the solvent 

Dsolv36 – Structural information content 

(order 1) of the solvent 

Dsolv33 – Bonding information content 

(order 0) of the solvent 

MNDO_IP – Ionisation potential of CBZ 
Dsolv52 – 3D-Kier shape index (order 2) of 

the solvent 

Dsolv49 – 3D-Kier & Hall index (order 2) of 

the solvent 
PM3_IP – Ionisation potential of CBZ 

 
In the set for PC 2 (Table 7.4), the majority of the positive descriptors are describing 

the solvent molecule once again. However, there is also an ionisation potential and 

highest occupied molecular orbital term for the CBZ molecule. These two terms are 

clearly related and when calculated with the same level of theory the values are the 

same but with one negative and one positive. The positively loaded solvent 

descriptors in Table 7.4 are again mostly describing the shape of the solvent 

molecule, but with the inclusion of a partial positive charge, the moment of inertia 

and bulk value, the Hansen solubility parameter. 

The negative descriptor values are all associated with solvent descriptors, with the 

exception of PM3_IP, which is a measure of the ionisation potential in the CBZ 

molecule. This descriptor was not expected to be featured here as there is an 

ionisation potential term in the positive results. The difference between these is the 

level of theory used to calculate the value, but it is still a surprising result to see a 

descriptor with a similar physical meaning being represented at the two ends of data 
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variation. The solvent descriptors are once again representing the shape and size of 

the molecule.  

 
Table 7.5 Most significant descriptors in PC3 

Most positively loaded descriptors Most negative loaded descriptors 

D68 – Moment of inertia C of CBZ 
D84 – FNSA-1 – fractional negative surface 

area of CBZ 

Viscosity of the solvent D42 – 3D-Wiener index of CBZ 

Dsolv7 – Number of Benzene rings in the 

solvent 

Dsolv13 – Relative number of single bonds 

in the solvent 

Dsolv12 – Number of aromatic bonds in the 

solvent 
Std_dim2 – Standard dimension 2 of CBZ 

Dsolv16 – Relative number of aromatic 

bonds in the solvent 
PmiY – Moment of inertia B of CBZ 

D85 – FNSA-2 – Fractional negative surface 

area of CBZ 
D70 – Molecular volume of CBZ 

D82 – FPSA-2 – Fractional positive surface 

area of CBZ 

D75 – PNSA-1 – Partial negative surface 

area of CBZ 

D81 – FPSA-1 – Fractional positive surface 

area of CBZ 
E_nb – Non-bonded energy of CBZ 

D78 – DPSA-1 – Difference in positive 

surface area of CBZ 
Vapour Pressure of the solvent 

D66 – Moment of inertia A of CBZ Activity of CBZ in the solvent 

 
For PC3 (Table 7.5), the majority of the positively loaded descriptors are 

representations of the CBZ molecule. There are two occurrences of moment of 

inertia, which highlights the subtle changes in CBZ conformation within the solvent 

force field, and four charged partial surface area descriptors. It is quite interesting to 

note that the solvent descriptors featured in this component represent very basic 

information with regards to the solvent molecule. 

Similarly to the highly positive results the majority of the negatively loaded 

descriptors assess the CBZ molecular properties. The remaining descriptors are bulk 

solvent properties (relative number of single bonds and vapour pressure). It is 

noteworthy that activity features here as this is one of only two experimentally 

determined descriptors, therefore encompassing both solvent and CBZ information. 
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Table 7.6 Most significant descriptors in PC4 

Most positively loaded descriptors Most negative loaded descriptors 

Dsolv76 – PNSA-2 – Partial negative surface 

area of the solvent 

E_ang – Angle bend potential energy of 

CBZ 

Dsolv5 – Relative number of hydrogen atoms 

in the solvent 

E_str – Bond stretch potential energy of 

CBZ 

E_ele – Electrostatic component of the 

potential energy of CBZ 

E_oop – Out of plan potential energy of 

CBZ 

Dsolv61 – 3D-Bonding information content 

(order 1) of the solvent 
E_strain – Local strain energy of CBZ 

Dsolv10 – Number of double bonds in the 

solvent 
E – Potential energy of CBZ 

Dsolv14 – Relative number of double bonds 

in the solvent 
MNDO_IP – Ionisation potential of CBZ 

MNDO_HOMO – Highest occupied 

molecular orbital energy of CBZ 
E_tor – Torsion potential energy of CBZ 

Dsolv3 – Number of hydrogen atoms in the 

solvent 
Density – of the solvent 

Dsolv57 – 3D-Bonding information content 

(order 0) of the solvent 
MNDO_dipole – Molecular dipole of CBZ 

Dsolv30 – Information content (order 0) of 

the solvent 
LogP – of the solvent 

 
For PC4 (Table 7.6) the positively loaded descriptors relate mostly to the bonding 

and atoms within the solvent, but there is also a charged partial surface area term. 

The MNDO_HOMO and electrostatic component of potential energy for the CBZ 

molecule are also highlighted.  

The majority of the negatively loaded descriptors are potential energies terms for the 

CBZ molecule. However, the logP and density of the solvent are also featured.   
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Table 7.7 Most significant descriptors in PC5 

Most positively loaded descriptors Most negative loaded descriptors 

D77 – PNSA-3 – Partial negative surface 

area of CBZ 
Vol – Van der Waals volume of CBZ 

Dens – Relative molecular mass divided by 

the van der Waals volume of CBZ 
Boiling point  - of the solvent 

PmiX – Moment of inertia A of CBZ 
PM3_LUMO – Lowest unoccupied 

molecular orbital energy of CBZ 

Vapour pressure – of the solvent 
E_str – Bond stretch potential energy of 

CBZ 

D86 – FNSA-3 – Fractional negative surface 

area of CBZ 
E_tor – Torsion potential energy of CBZ 

MNDO_dipole – Molecular dipole of CBZ Glob – Globularity of CBZ molecule  

AM1_LUMO – Lowest unoccupied molecular 

orbital energy of CBZ 
E – Potential energy of CBZ 

Dsolv11 – Number of triple bonds in the 

solvent 
E_strain – Local strain energy of CBZ 

Dsolv15 – Relative number of triple bonds in 

the solvent 
pmiZ – Moment of inertia C of CBZ 

Dipole – of the solvent 
Std_dim3 – Standard dimension 3 of 

CBZ 

 
PC5 (Table 7.7) presents a large range of descriptors. The most positively loaded 

descriptors are made up of six CBZ descriptors, two basic solvent molecular 

descriptors and two bulk solvent properties. The CBZ descriptors consist of two 

partial charge surface area descriptors and a calculated dipole moment, which are all 

related. Also featured are density, moment of inertia and LUMO energy terms. The 

most negatively loaded descriptors are all CBZ descriptors except boiling point. 

These terms are describing the energy of the molecule or its size and shape. 

 
7.1.3. Selection of the Most Valuable Descriptors 

Since the most positively and negatively loaded descriptors within each component 

are the most significant, using the descriptors from each of PC1-13, should cover all 

the variation in the dataset and thus generate a good predictive model. The twenty six 

descriptors used in this analysis are shown in Table 7.8. This set of descriptors will 

be known as PCA-26 from this point forward. 
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Table 7.8 Most positively and negatively loaded descriptors from PC1-13 (PCA-26) 

 Most positively loaded descriptors Most negative loaded descriptors 

PC1 
Dsolv43 – 3D-Randić index (order 0) of 

the solvent 
D69 – Molecular surface area of CBZ 

PC2 
Dsolv74 - PPSA-3 – Partial positive 

surface area of the solvent 

Dsolv69 - Molecular surface area of 

the solvent 

PC3 D68 - Moment of inertia C of CBZ 
D84 - FNSA-1 – Fractional negative 

surface area of CBZ 

PC4 
Dsolv76 - PNSA-2 – Partial negative 

surface area of the solvent 
E_ang -Angle bend potential of CBZ 

PC5 
D77 - PNSA-3 – Partial negative 

surface area of CBZ 
Vol – Van der Waals volume of CBZ 

PC6 
AM1_HOMO - Highest occupied 

molecular orbital energy of CBZ 
AM1_HF – Heat of formation of CBZ 

PC7 Activity of CBZ in the solvent Density of the solvent 

PC8 PM3_HF – Heat of formation of CBZ 
Dsolv32 - Structural information 

Content (order 0) of the solvent 

PC9 Henry’s law constant of the solvent 
Dsolv11 – Number of triple bonds in 

the solvent 

PC10 
Dsolv15 – Relative number of triple 

bonds in the solvent 

MNDO_Eele – Electronic energy of 

CBZ 

PC11 PM3_Eele – Electronic energy of CBZ 
AM1_Eele – Electronic energy of 

CBZ 

PC12 Vapor pressure of the solvent 
Std_dim1 – Standard dimension 1 of 

CBZ 

PC13 Solubility of CBZ in the solvent Viscosity of the solvent 

 
FormRules[6] and INForm[7] analysis of these 26 descriptors (PCA-26) was carried 

out, with the results summarised in Table 7.9 and rules in Electronic Appendix, 

Chapter 7, file 7.3. An overall average R2 value of 71.55 % was obtained, which is an 

improvement on the previous analyses carried out using the component score values 

(Table 7.1 and Table 7.2). This suggests that there is redundant information in the 

scores, which may mask the relevant descriptors contributions.  
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Table 7.9 FormRules and INForm results of PCA-26 

R2 values for each form 

(%) 
FormRules  

INForm 

Training 

INForm 

Testing 

Form I 90.32  94.45 100.00 

Form II 51.46  81.25 -42.13 

Form III 56.58  91.40 -55.61 

Dihydrate 97.01  76.94 100.00 

Solvate 97.02  99.95 100.00 

Average R2 78.48 %  88.80 % 40.45 % 

  INForm average R2
 64.63 % 

FormRules and INForm average R2
 71.55 %  

 
This method of selection is a good way to reduce the number of descriptors quickly. 

However, it would be optimal to reduce this number further. Based on the knowledge 

of the scree plot and that the majority of the variance of the data is contained in 

PC1-5, a similar selection method was employed to reduce the descriptor set. 

Using only the most positively and negatively loaded descriptor from PC1-5 (d68, 

d69, d77, d84, dsolv43, dsolv69, dsolv74 doslv76, E_ang, and vol) and including rate 

and temperature, an ANN was run. The results are shown in Table 7.10 and rules 

presented in Electronic Appendix, Chapter 7, file 7.3. This set of descriptors will be 

referred to as PCA-10 from this point forward.  

 
Table 7.10 FormRules and INForm results of PCA-10 analysis 

R2 values for each form 

(%) 
FormRules 

 INForm 

Training 

INForm 

Testing 

Form I 96.60  99.61 100.00 

Form II 51.46  80.61 15.68 

Form III 53.83  79.30 34.52 

Dihydrate 97.34  99.70 100.00 

Solvate 97.02  99.94 77.61 

Average R2 79.25 %  91.83 % 65.56 % 

  INForm average R2
 78.70 % 

FormRules and INForm average R2
 78.97 %  
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Compared to the overall average R2 value of 67.46 % generated by using the score 

values of PC1-5 and the 71.55 % average from PCA-26 analysis, this method shows 

further improvement.  

Based on the improvement made to the model by using the two most significant 

descriptors in each of PC1-5, the question was asked as to whether the model would 

improve further if the two most positively and two most negatively loaded 

descriptors were used. This set of descriptors will be referred to as PCA-20 from this 

point forward and are shown in Table 7.11. 

 
Table 7.11 Top and bottom two descriptors from PC1-5 (PCA-20) 

 Most positively loaded descriptors Most negative loaded descriptors 

PC1 
Dsolv43 – 3D-Randić index (order 0) 

of the solvent 
D69 - Molecular surface area of CBZ 

 
Dsolv20 - Randić index (order 1) of 

the solvent 
Dielectric constant - of the solvent 

PC2 
Dsolv74 - PPSA-3 – Partial positive 

surface area of the solvent 

Dsolv69 - Molecular surface area of 

the solvent 

 
Dsolv65 -3D-Bonding information 

content (order 2) of the solvent 

Dsolv46 - 3D-Randić index (order 3) 

of the solvent 

PC3 D68 - Moment of inertia C of CBZ 
D84 - FNSA-1 – Fractional negative 

surface area of CBZ 

 Viscosity – of the solvent D42 - 3D-Wiener index of CBZ 

PC4 
Dsolv76 - PNSA-2 – Partial negative 

surface area of the solvent 
E_ang -Angle bend potential of CBZ 

 
Dsolv5 – Relative number of hydrogen 

atoms in the solvent 
E_str - Bond stretch potential of CBZ 

PC5 
D77 - PNSA-3 – Partial negative 

surface area of CBZ 
Vol – Van der Waals volume of CBZ 

 

Dens – Relative molecular mass 

divided by van der Waals volume of 

CBZ 

Boiling point – of the solvent 

 
FormRules[6] and INForm[7] analysis was carried out with the results shown in Table 

7.12 and the rules presented in Electronic Appendix, Chapter 7, file 7.4. Overall, 

further improvement in prediction was seen, with INForm[7] improving its 

performance from 78.70 % to 85.68 %. However, there was only a slight 

improvement in FormRules[6] results, from 79.25 % to 79.31 %. 
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Table 7.12 FormRules and INForm results of PCA-20 

R2 values for each form 

(%) 
FormRules 

 INForm 

Training 

INForm 

Testing 

Form I 96.66  99.64 100.00 

Form II 52.90  76.02 65.98 

Form III 52.02  72.32 43.20 

Dihydrate 98.30  99.70 100.00 

Solvate 96.67  99.94 99.99 

Average R2 79.31 %  89.52 % 81.83 % 

  INForm average R2
 85.68 % 

FormRules and INForm average R2
 82.49 %  

 
Based on the success of the analysis with reduced descriptor sets, the number of PCs 

used was further reduced to assess whether a successful predictive model could be 

built using fewer descriptors. The results are summarised in Table 7.13 and can be 

found in Electronic Appendix, Chapter 7, file 7.5. 

 
Table 7.13 Summary of descriptor reduction results. The number in brackets is the number of 

descriptors used in the ANN 

 PC1-5 (20) PC1-5 (10) PC1-4 (16) PC1-4 (8) 

FormRules average R2 (%) 79.31 79.25 79.38 79.25 

INForm average R2 (%) 85.68 78.70 82.84 88.48 

Overall average R2 (%) 82.49 78.97 81.11 83.87 

     

 
PC1-3  

(12) 

PC1-3  

(6) 

PC1-2  

(8) 

PC1-2   

(4) 

PC1      

(4) 

PC1      

(2) 

FormRules average R2 (%) 79.38 79.25 75.14 64.12 44.78 44.80 

INForm average R2 (%) 73.58 74.06 71.05 30.80 70.10 80.99 

Overall average R2 (%) 76.48 76.66 73.09 47.46 57.44 62.89 

 

Table 7.13 shows that PC1-4 (8 descriptors, to be referred to as PCA-8) produces an 

average result of 83.87 %, which is the highest seen throughout this PCA analysis. A 

full breakdown of PCA-8 results can be found in Table 7.14, and rules presented in 

Electronic Appendix, Chapter 7, file 7.6. 
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Table 7.14 FormRules and INForm results of PCA-8 analysis 

R2 values for each form 

(%) 
FormRules 

 INForm 

Training 

INForm 

Testing 

Form I 96.60  99.63 100.00 

Form II 51.46  85.46 76.41 

Form III 53.83  75.88 49.72 

Dihydrate 97.34  99.70 100.00 

Solvate 97.02  99.17 98.86 

Average R2 79.25 %  91.97 % 85.00 % 

  INForm average R2
 88.48 % 

FormRules and INForm average R2
 83.87 %  

 

7.2. Optimisation of PCA Results 

From the initial analysis, the PCA-8 and PCA-20 sets performed most successfully, 

generating average R2 values of 83.87 % and 82.49 % respectively. Further analysis 

of the descriptors was carried out in order to create a fully optimised set as follows. 

All eight descriptors in PCA-8 feature in PCA-20. However, there are twelve 

additional descriptors that may affect the success of the prediction. Eight of these 

additional descriptors have already been analysed (PCA1-4, 16 descriptors) 

generating a result of 81.11 %, which is less successful at predicting than PCA-20. 

The remaining four additional descriptors (d77, vol, dens and boiling point, detailed 

in appendix section 12.2) must have a positive influence on prediction to increase the 

average result. By using this information, further analysis was carried out (Table 

7.15). As PCA-8 is the most successful set of descriptors, this will be used as the 

starting point. The four additional descriptors from PCA-20 (d77, vol, dens and 

boiling point) will then be added to PCA-8 to assess their individual and combined 

impact on prediction.  



 

 

Table 7.15 Optimisation results 

Descriptors PCA-
8 Opt 1 Opt 2 Opt 3 Opt 4 Oct 5 Opt 6 Opt 7 Opt 8 Opt 9 Opt 

10 
Opt 
11 

Opt 
12 

Opt 
13 

Opt 
14 

Opt 
15 

PCA-8 X X X X X X X X X X X X X X X X 

D77  X X X  X X X X    X    

Vol  X X X X  X   X X   X   

Dens  X X  X X  X  X  X   X  

Boiling point  X  X X X   X  X X    X 

FormRules     
Average R2 (%) 

79.25 79.99 79.29 79.99 80.02 79.99 79.25 79.25 79.99 79.25 80.02 80.02 79.25 79.25 79.25 80.02 

INForm 
Average R2 (%) 

88.48 79.78 79.22 80.29 77.05 64.70 87.38 80.90 88.62 81.67 78.68 73.75 78.87 73.67 74.49 71.45 

Overall 
Average R2 (%) 

83.87 79.89 79.24 80.14 78.54 72.35 83.32 80.07 84.31 80.46 79.35 76.89 79.06 76.46 76.89 75.74 



 

 

From Table 7.15, Opt 8, which is PCA-8 plus d77 and boiling point, has shown an 

improved overall average R2 value of 84.31 % from the previous 83.87 %.  This set 

of ten descriptors is therefore determined to be the most successful set of descriptors 

for predicting the polymorphic form of CBZ crystallisation experiments. The ten 

descriptors featured in the most successful set are presented in Table 7.16 with a 

brief explanation of each. A more in depth discussion of these descriptors can be 

found in section 7.3 

 
Table 7.16 The ten most successful descriptors for polymorphic form prediction as determined by 

PCA analysis 

Descriptor code and Definition 

D68 Moment of inertia C of the CBZ molecule 

D69 Molecular surface area of the CBZ molecule 

D77 
PNSA-3, atomic charge weighted partial negative surface 

area of the CBZ molecule 

D84 
FNSA-1, fractional partial negative surface area the CBZ 

molecule (PNSA-1/total molecular surface area) 

E_ang Angle bend potential energy of the CBZ molecule 

Dsolv43 3D-Randić index (order 0) of the solvent molecule  

Dsolv69 Molecular surface area of the solvent molecule 

Dsolv74 
PPSA-3, atomic charge weighted partial positive surface 

area of the solvent molecule 

Dsolv76 
PNSA-2, total charge weighted partial negative surface area 

of the solvent molecule 

Boiling point Literature value boiling point of the solvent molecule 

 

7.2.1. Analysis of the Optimised Set 

From work in section 5.2 it is known that the descriptor set as a whole is highly 

correlated. Based on this knowledge, the linear correlations between the optimised 

set of descriptors and the whole dataset have been calculated and represented 

diagrammatically (Figure 7.2). The diagram shows, using connecting lines, the 

descriptors that are highly correlated to the optimised set of descriptors (Table 7.16). 



 

 

 

Figure 7.2 Linear correlations of the optimised set with other descriptors  
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Figure 7.2 displays those descriptors that are highly correlated to the descriptors 

presented in the optimised set. D68, d69, d84, dsolv69, dsolv74, E_ang and boiling 

point are all correlated to a variety of different descriptors (detailed in appendix 

section 12.2).  

Two of the descriptors in the optimised set have no correlations with any other 

descriptor, these are dsolv76 and d77. Both of these descriptors describe charged 

partial surface areas, one of the solvent and one the CBZ molecule. See appendix 

section 12.2 for details  

Dsolv43, which is the 3D-Randić index for the solvent, is a highly correlated 

descriptor. It is mainly correlated with other solvent descriptors, but is also correlated 

with d69, which is the molecular surface area of the CBZ molecule. The Randić 

index is a measure of the branching of a molecule and therefore also represents the 

molecules size. Initially the correlation of the Randić index of the solvent and the 

surface area of the CBZ appears unusual. However, the surface area of the CBZ 

molecule is only varied due to the solvent force field it is modelled in. If the amount 

of branching of the solvent molecule has an impact upon one of the parameters 

within a solvent forcefield, then perhaps a correlation between these two descriptors 

is less surprising.  

A summary of these correlations is presented in Table 7.17. The total number of 

correlations within the whole descriptor dataset and also the most strongly correlated 

descriptors to the optimised set are presented. 

 
Table 7.17 Summary of linear correlations of the optimised set 

Descriptor in 
Optimised set 

Total number of 
correlations   
(±0.8 to ±1) 

Most positively 
correlated 
descriptor 

Most negatively 
correlated 
descriptor 

Dsolv43 32 Dsolv20 Dsolv76 

Dsolv69 2 Dsolv46 - 

Dsolv74 5 Dsolv65 - 

Dsolv76 0 - - 

D68 2 Viscosity Dsolv13 

D69 8 - Dsolv6 

D77 0 - - 

D84 4 - D81/D82/D85 

E_ang 5 E_str E_ele 

Boiling point 2 Surface tension - 
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As a further test to the robustness of the PCA determination of the final descriptor 

set, it was examined whether one of the final descriptors could be substituted by a 

highly correlated descriptor. As dsolv43 is highly correlated it would not be very 

efficient to interrogate all possible combinations of descriptors. Therefore the most 

positively and negatively correlated descriptors were analysed. The results are 

summarised in Table 7.18.  

The optimisation sets were generated by analysing all of the positively correlated 

descriptors, then all of the negatively correlated descriptors and then a combination 

of both. During the combination analysis, the descriptor was chosen based upon 

which was closest to either a correlation coefficient of 1 or -1. When no strongly 

correlated descriptor was identified, the original descriptor was used. The descriptors 

used within each set are highlighted with a cross in Table 7.18, with the results also 

presented. 
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Table 7.18 Summary of correlation optimisations 

Descriptors Optimised 
set 

Corr. 
1 

Corr. 
2 

Corr. 
3 

Corr. 
4 

Corr. 
5 

Corr. 
6 

Dsolv43 X       

Dsolv69 X  X X X X  

Dsolv74 X  X X X X  

Dsolv76 X X X X X X X 

D68 X       

D69 X X      

D77 X X X X X X X 

D84 X X      

E_ang X       

Boiling point X  X X X X  

Dsolv20  X     X 

Dsolv46  X     X 

Dsolv65  X     X 

Viscosity  X     X 

E_str  X      

Surface tension  X     X 

Dsolv67   X X X X  

Dsolv13   X X X X  

Dsolv6   X X X X X 

D81   X X    

D82   X  X  X 

D85   X   X  

E_ele   X    X 

FormRules Average R2 (%) 79.99 78.84 80.24 80.24 80.24 80.24 80.00 

INForm Average R2 (%) 88.62 77.03 77.47 71.60 86.84 77.40 82.59 

Overall Average R2 (%) 84.31 77.94 78.86 75.92 83.54 78.82 81.30 

 

No improvement in overall average R2 value was identified by using the highly 

correlated descriptors in an ANN. This therefore shows that the descriptors identified 

by PCA are the most effective for predicting the polymorphic form of CBZ; it also 

indicates that the PCA optimisation technique has eliminated correlated descriptors 

reliably. 
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7.3. Discussion of the Descriptors in the Optimised Set 

The ten descriptors featured in the optimised set from PCA data reduction techniques 

are a mixture of CBZ and solvent properties. Table 7.19 summarises the descriptors 

meanings and the type of descriptor they are. 

 
Table 7.19 Summary of the descriptors in the most successful set 

Descriptor Meaning Type of 
descriptor 

Calculated 
from Solvent 

or CBZ 
molecule 

D68 Moment of inertia C of the CBZ molecule Geometrical CBZ 

D69 
Molecular surface area of the CBZ 

molecule 
Geometrical CBZ 

D77 
PNSA-3, atomic charge weighted partial 

negative surface area of the CBZ 
molecule 

Charge 
distribution 

CBZ 

D84 
FNSA-1, fractional partial negative 
surface area of the CBZ molecule 

(PNSA-1/total molecular surface area) 

Charge 
distribution 

CBZ 

E_ang 
Angle bend potential energy of the CBZ 

molecule 
Quantum 
chemical 

CBZ 

Dsolv43 
3D-Randić index (order 0) of the solvent 

molecule 
Topological Solvent 

Dsolv69 
Molecular surface area of the solvent 

molecule 
Geometrical Solvent 

Dsolv74 
PPSA-3, atomic charge weighted partial 

positive surface area of the solvent 
molecule 

Charge 
distribution 

Solvent 

Dsolv76 
PNSA-2, total charge weighted partial 
negative surface area of the solvent 

molecule 

Charge 
distribution 

Solvent 

Boiling point Boiling point of the solvent molecule Bulk Solvent 

 
Eight out of the ten descriptors feature within the rules generated in FormRules[6] for 

this set. E_ang, which is the angle bend potential energy for the CBZ molecule in the 

solvent force field, and dsolv76, which is total charge weighted partial negative 

surface area of the solvent molecule, do not feature. When the ANN is run without 

these two descriptors the overall R2 value is reduced from 84.31 % to 80.72 %. This 

suggests that these descriptors may have an important role in the successful 

prediction of polymorphic form. 

As outlined in section 4.6.2, a more detailed analysis method was devised to assess 

an individual descriptors effect upon the prediction. When this analysis was carried 
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out, E_ang and dsolv76 showed some effect upon prediction of form II and III. These 

results will be discussed in the following corresponding sections.   

 

7.3.1. The Prediction of Form I 

As was previously discussed (in section 5.4.1) form I was not crystallised as a pure 

form in this research, and was seen on only two occasions. Because of this, there is 

very little training data available and therefore rules have been generated based upon 

only a small dataset (Table 5.37), affecting their reliability. This problem could be 

addressed in the future by increasing the number of form I crystallising experiments 

in the training set. This would allow rules to be created based upon a larger dataset, 

thus improving the reliability.  

The rules generated (Table 5.37) contain both the rate and temperature at which the 

crystallisation were conducted and also dsolv74, which is the atomic charge 

weighted partial positive surface area of the solvent molecule. 

 
Table 7.20 Rules generated in FormRules for form I prediction 

Rules generated for Form I prediction 

IF dsolv74 is LOW AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is LOW AND rate is LOW AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv74 is LOW AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is LOW AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv74 is LOW AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is LOW AND rate is HIGH AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv74 is MID AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is MID AND rate is LOW AND Temp is HIGH THEN Form I is LOW (0.95) 

IF dsolv74 is MID AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is MID AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv74 is MID AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is MID AND rate is HIGH AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv74 is HIGH AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is HIGH AND rate is LOW AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv74 is HIGH AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is HIGH AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv74 is HIGH AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv74 is HIGH AND rate is HIGH AND Temp is HIGH THEN Form I is HIGH (1.00) 
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The majority of the rules generated lead to a low prediction of form I. This is 

expected from the data within the training set. When the rule for high form I 

prediction are examined, rate, temperature and dsolv74 all need to be at their highest 

value to produce a high prediction. Figure 7.3 shows the normalised descriptor 

values of the two form I producing experiments. From the plot it is clear that on no 

occasion were the three descriptors all at a high value. This is consistent with the 

rule, as form I was only produced as part of a mixed product. 

 

Figure 7.3 Crystallisation solvents in which form I is produced plot against the three rule descriptors, 

rate (blue), temperature (purple) and dsolv74 (yellow). The green section highlights the optimal value 

area for form I production. 

 
As discussed in chapter 5 high rates and temperatures are often associated with the 

crystallisation of a metastable polymorphic form,[8-10] which is consistent with this 

rule. However, this research shows that these factors alone cannot predict 

polymorphic form; other properties of the solute and solvent have an impact.  

Dsolv74 is the summation of the atomic charge weighted partial positive surface area 

(PPSA-3) of the solvent molecule used in the crystallisation. This type of descriptor 

is known as a charged partial surface area (CPSA) descriptor. It is calculated using 

Equation 7.1, where qA is the atomic partial charge and SA is the solvent accessible 

surface area of the molecule. 

 
 ∑=−

A

AASqPPSA 3  Equation 7.1 

 
As previously stated in chapter 5, the CPSA descriptors feature in many different 

areas of research,[11-15] for example in predicting micelle-water partition 
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coefficients[15] and in the prediction of logP values.[14] It has been suggested that the 

CPSA descriptors contain information about how the molecules interact,[12, 16] which 

is relevant to the nucleation and crystallization of a polymorphic molecule from 

solution. However, since this rule was generated based upon on a very small dataset, 

it would be unwise to draw firm conclusions based upon these results. Further work 

is required in order to build up a more reliable predictive model of form I 

crystallization. 

7.3.2. The Prediction of Form II 

Form II was the most commonly crystallised metastable polymorph of CBZ in this 

research (see Electronic Appendix, Chapter 4, file 4.4). Three rules were generated 

(Table 7.21) that featured, rate, d68 and d69. As was mentioned in the form I 

discussion, high rates are often associated with the crystallisation of the metastable 

polymorph,[8-10] which is consistent with the rule generated. D68 and d69 are both 

CBZ descriptors, describing the moment of inertia C and the molecular surface area 

of the molecule respectively. 

 
Table 7.21 Rules generated in FormRules for form II prediction 

Rules generated for Form II prediction 

SubModel:1                                      IF d69 is LOW THEN Form II is HIGH (1.00) 

IF d69 is HIGH THEN Form II is LOW (1.00) 

SubModel:2                                     IF rate is LOW THEN Form II is LOW (1.00) 

IF rate is HIGH THEN Form II is HIGH (0.64) 

SubModel:3                                      IF d68 is LOW THEN Form II is HIGH (1.00) 

IF d68 is HIGH THEN Form II is LOW (1.00) 

 
D69 is the molecular surface area of the CBZ molecule in the solvent force field. It is 

a geometrical descriptor that uses the van der Waals radii of the atoms within the 

molecule to give the best surface area approximation[5, 12] (Figure 7.4). 

Figure 7.4 Calculation of the total molecular surface area using van der Waals radii, adapted from 

Stanton[13] 

Van der Waals radii of 
the atoms in the 
molecule

Van der Waals radii of 
the atoms in the 
molecule
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When the normalised descriptor values of the pure form II producing experiments are 

plotted (Figure 7.5), the majority of the values fit within the guidelines stated in the 

rules. 

 
Figure 7.5 Crystallisation solvents in which form II is the pure product plot against  normalised d69 

descriptors values. The green section highlights the optimal value area for form II production. 

 
The differences in molecular surface area of the CBZ molecule are very small, due to 

their slightly altered geometry within the solvent force field. This is similar to the 

discussion of E_vdw and MNDO_dipole descriptors in chapter 5. These differences 

in geometry may affect the interactions with other solute and solvent molecules in 

solution. Geometric descriptors, such as molecular surface area and molecular 

volume, have been noted to affect solvation in research by Bodor et al.[12], which 

used ANNs to predict aqueous solubility. The dipole moment also represents the 

solute-solvent interactions overall, but it was suggested that other descriptors, such as 

molecular surface area, volume and charge density are said to “refine the description 

of solvation”.[12] 

A correlation between the molecular surface area and dielectric constant has also 

been made in research by Liu et al.[17]. This is significant because it represents the 

polarisability of the molecule, which may contribute to the intermolecular reactions 

in solution. These relationships were examined using the data in this research, but as 

the surface area was calculated for the solute and the dipole moment for the solvent, 

there were no significant correlations detected (appendix section 12.9). 

Although not featured in the rules, E_ang had a slight impact upon form II prediction 

when the detailed analysis method (section 4.6.2) was carried out. Figure 7.6 
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demonstrates the reduction in form II prediction when E_ang is at its highest value. 

The different E_ang values do not affect the rule overall, but have an impact on the 

predicted values. This would explain why E_ang is not featured in the rules, but has 

been identified in the INForm[7] analysis as important for prediction. 

 

 

Figure 7.6 Original plot for form II prediction (left), effect on plot when a high E_ang value is used 

(right) 

 
E_ang is the angle bend potential energy for the CBZ molecule in the solvent force 

fields.[18] It is a measure of deviation from the standard bond angles in the molecule. 

Therefore, as with many of the CBZ descriptors, the difference between each value is 

very small and may potentially be overlooked as a useful descriptor. This descriptor 

describes the geometry and flexibility of the molecule, perhaps affecting interactions 

with solute and solvent molecules in solution. E_ang has been used in the literature 

as a descriptor in mostly biological applications,[19-21] but it is not as frequently used 

as other descriptors. 

As stated in 7.3.1, high evaporation rates are often associated with the crystallisation 

of metastable forms.[8-10] Rapid crystallisation allows high supersaturation levels to 

be achieved more quickly, leading to nucleation in solution. If Ostwald’s Rule of 

Stages is followed, the least stable polymorph would crystallise first,[22, 23] which in 

this research is form II. 

When the rates of the pure form II crystallising experiments were normalised and 

plotted (Figure 7.7), the majority are found to follow the rule stated. This confirms 

the relationship between metastable form crystallisation and high evaporation rates, 

but does not offer any new insights into the molecular level interactions that lead to 

polymorphic crystallisation. 
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 Figure 7.7 Crystallisation solvents in which form II is the pure product plot against normalised rate 

values. The green section highlights the optimal value area for form II production. 

 
D68 is the moment of inertia C for the CBZ molecule in the solvent force field. 

These descriptors are classed as geometrical descriptors[24] and are obtained from the 

mass and three-dimensional coordinates of atoms in the molecule. Using the rigid 

rotor approximation, the moments of inertia of a single molecule IA, IB and IC are 

calculated using Equation 7.2, Equation 7.3 and Equation 7.4, where Ic>Ib>Ia.[25] 

 
 

∑=
n

i

ixiA rmI
2  Equation 7.2 

 
∑=

n

i

iyiB rmI
2  Equation 7.3 

 
∑=

n

i

iziC rmI
2  Equation 7.4 

 
The mass of each atom is represented by mi, with rix/y/z denoting the distance between 

the ith atomic nucleus and the main rotational axes, x, y and z. The number of atoms 

is represented by n.[25]  

 

Figure 7.8 the axis of an single molecule, adapted from Atkins[25] 
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The moment of inertia is a measure of mass distribution in the molecule and also can 

determine how rotationally flexible parts of the molecule are.[4, 26] The rule states that 

a low d68 value leads to a high form II prediction. When the normalised d68 values 

for pure form II producing experiments are plotted (Figure 7.9), it is apparent that 

this rule holds strongly. 

 

Figure 7.9 Crystallisation solvents in which form II is the pure product plot against normalised d68 

values. The green section highlights the optimal value area for form II production. 

 
Moment of inertia is a molecular descriptor that has been used in a range of research 

areas, from biological  to chemical applications.[26-30] Moment of inertia x, or A by 

this notation, was used in previous research alongside other descriptors, to predict 

chromatographic retention times.[28, 29] The descriptor was used as a measure of 

molecular size, which was related to the electronic polarisability of the molecule[29]. 

Rohrbaugh et al.[29] concluded that by using the moment of inertia x, information was 

generated about the interactions between the stationary phase and the solute, which 

allowed retention time prediction. Collantes et al.[28] commented that retention times 

increased with decreasing moment of inertia x, but it was only a useful parameter for 

solutes of the same molecular weight. Since d68 is the moment of inertia c for the 

CBZ molecule in the different solvent force fields, the geometrical differences are 

very subtle. Perhaps because retention time increases with lower moment of inertia 

values, this suggests that the solute molecule interacts with the stationary phase. 

When these ideas are applied to solution crystallisation, perhaps a lower moment of 

inertia indicates more favourable interactions with solvent molecules, rather than 
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with other solute molecules. From the literature[31, 32] it is known that solvent 

molecules play an important stabilising role in form II crystallisation, and perhaps 

the moment of inertia is offering an indirect measure of molecular interactions. 

Both E_ang and dsolv76 had an impact upon form II prediction when the detailed 

analysis method (section 4.6.2) was carried out based upon rules involving d68. 

Figure 7.10 shows the impact that mid range and high values of E_ang have upon the 

prediction of form II, and Figure 7.11 shows the effect of high dsolv76 values on 

form II prediction. 

 

Figure 7.10 Original plot for form II prediction (left), effect on plot when a mid E_ang value (centre) 

and effect on plot when high E_ang value is used (right) 

 

 

Figure 7.11 Original plot for form II prediction (left), and effect on plot when high dsolv76 value is 

used (right) 

 
As E_ang has been discussed with respect to its impact upon form II prediction, only 

the influence of dsolv76 will be discussed here. Dsolv76 is total charge weighted 

partial negative surface area (PNSA-2) of the solvent molecule and is calculated 
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using Equation 7.5, where qA is the atomic partial charge and SA  is the solvent 

accessible surface area.[4] 

 
 ∑∑=−

A

A

A

A SqPNSA 2  Equation 7.5 

 
Dsolv76 describes the negatively charged regions of the solvent molecule, which 

may therefore lead to further information about how solute and solvent molecules 

interact in solution. This descriptor takes into account the presence of negatively 

charged atoms available on the solvent accessible surface area of the molecule and 

also the overall solvent accessible surface area. Low values of dsolv76 are attributed 

to those solvents in which more electronegative atoms are featured upon the solvent 

accessible surface area. No direct link can be made between the individual dsolv76 

values and the polymorphic form crystallised. However, this descriptor must 

contribute in tandem with other properties to lead to successful polymorphic 

predictions.   

 
7.3.3. The Prediction of Form III 

Form III is the thermodynamically stable form of CBZ and as such was crystallised 

most frequently in this research (results in Electronic Appendix, Chapter 4, file 4.4), 

our rules were generated for form III prediction, including the rate of evaporation, 

which was also seen in the manual descriptor analysis chapter. The descriptors 

identified as important were, d84, d77 and d68, which represent the partial negative 

and positive surface areas and moment of inertia of the CBZ molecule, and also the 

boiling point of the solvents (Table 7.22). 
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Table 7.22 Rules generated in FormRules for form III prediction 

Rules generated for Form III prediction 

SubModel:1                                        IF d84 is LOW THEN Form III is HIGH (1.00) 

IF d84 is HIGH THEN Form III is LOW (1.00) 

SubModel:2           IF b.p. is LOW AND d77 is LOW THEN Form III is HIGH (0.50) 

IF b.p. is LOW AND d77 is HIGH THEN Form III is LOW (1.00) 

IF b.p. is HIGH AND d77 is LOW THEN Form III is LOW (1.00) 

IF b.p. is HIGH AND d77 is HIGH THEN Form III is HIGH (1.00) 

SubModel:3                                       IF rate is LOW THEN Form III is HIGH (0.72) 

IF rate is HIGH THEN Form III is LOW (1.00) 

SubModel:4                                        IF d68 is LOW THEN Form III is HIGH (1.00) 

IF d68 is MID THEN Form III is HIGH (1.00) 

IF d68 is HIGH THEN Form III is LOW (1.00) 

 
D68 previously featured in the form II rules, and is the moment of inertia C of the 

CBZ molecule in the different solvent force fields. The d68 rules for form II and III 

are very similar, which means that very little information can be extracted from 

them. A plot of the normalised d68 values has been created to assess whether the 

pure form III producing experiments have values in line with the guidelines in the 

rules (Figure 7.12). There are 36 pure form III producing experiments in the data set, 

therefore each solvent has been represented only once in these plots.  

 

Figure 7.12 Crystallisation solvents in which form III is the pure product plot against normalised d68 

values. The green section highlights the optimal value area for form III production. 

 
Figure 7.12 demonstrates that in all but one solvent, the rule is correct. A low or 

medium moment of inertia value leads to a successful form III prediction. When the 

moment of inertia values for all of the crystallisation solvents are examined, all but 
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aniline are at a low value. This would perhaps suggest that very little information can 

be extracted from this descriptor.  

The other descriptors in the form III rules have not been featured in any earlier rules. 

Therefore, they may present more insights into the molecular level interactions that 

lead to the crystallisation of form III. 

D84 is a CPSA descriptor describing the fractional positive surface area (Equation 

7.6) of the CBZ molecule in the solvent force field (FPSA-1). This is the ratio of the 

total molecular surface area (TMSA) and the partial positive surface area (PPSA), 

which were both discussed in section 5.4.[4] In this analysis d84 is used in form III 

prediction, whereas in chapter 5 similar components were found in rules for the CBZ 

dihydrate. 

 

TMSA

PPSA
FPSA

1
1

−
=−  Equation 7.6 

 ∑=−
A

ASPPSA 1        

}0{ >∈ AA δ  

 
Equation 7.7 

 
When the normalised d84 values are plot for the pure form III producing experiments 

(Figure 7.13), the majority of the values fall within the lower region (in green). The 

rules states that low d84 leads to high form III prediction.  

 
Figure 7.13 Crystallisation solvents in which form III is the pure product plot against normalised d84 

values. The green section highlights the optimal value area for form III production. 

 
Toluene and chloroform both fall outside the region for high form III prediction. This 

is interesting as toluene most commonly leads to the crystallisation of form II, and 

chloroform has lead to many mixed products in this research. Similarly to many of 

the other CBZ based descriptors, the differences in values are very subtle. The 
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TMSA value will induce the largest effect in this descriptor and based upon this 

assumption, the descriptor is essentially describing how compact the CBZ molecule 

is. How compact the molecule is may be related to its interaction surface and how it 

interacts with other solute and solvent molecules. CPSA descriptors have been used 

in the literature in biological research[33] and the prediction of physicochemical 

properties.[27, 34, 35] If perhaps this descriptor was describing the solvent molecule, a 

clearer picture of the interactions may be deduced. However, the subtlety of this 

descriptor makes interpretation difficult, but it is interesting that both FormRules[6] 

and INForm[7] have selected it as an important descriptor. This highlights how useful 

these machine learning techniques can be at highlighting subtle differences between 

molecules that may have been previously overlooked. 

The rule selected as the most confident (coloured red and blue in Table 7.22) 

involves the boiling point of the solvent and d77, which is the partial negative 

surface area of the CBZ molecule (PNSA-3). Like the previous descriptor, d77 is a 

CPSA descriptor, which in this example examines the partial negative charges. It is 

calculated using Equation 7.8 where qA is the atomic partial charge and SA  is the 

solvent accessible surface area[4]. 

 
 ∑=−

A

AASqPNSA 3  Equation 7.8 

The rule states that if the two descriptors are high or if they are both low, a high form 

III prediction will be made. When the pure form III producing experiments are 

plotted (Figure 7.14), a number of the experiments conform to this rule (highlighted 

by the green shading). 

Figure 7.14 Crystallisation solvents in which form III is the pure product plot against normalised d77 

and boiling point values. The green section highlights the optimal value area for form III production. 
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The prediction of boiling points has been the focus of other research[34, 36], with 

connectivity indices, molecular energy and hydrogen bonding descriptors all being 

used[34]. Boiling points of solvents give an indication about how strongly solvent 

molecules interact, with higher boiling points indicating stronger interactions. With 

the rule stating that low boiling points and low d77 values can lead to the same 

prediction as high boiling point and high d77, it makes the rule very difficult to 

interpret. No correlations have been observed between either of these descriptors or 

with the bulk solvent properties. Also d77 is linearly uncorrelated to any other 

descriptor in this analysis. The identification of no obvious correlations highlights 

the extra information that can potentially be extracted by using these complex data 

analysis techniques.  

Not only is the rule difficult to interpret directly, but also E_ang and dsolv76 have 

been shown to have an effect on prediction of form III when detailed analysis was 

carried out. Both these descriptors were discussed previously because they effected 

form II predictions. 

When the two descriptors in the rule are plotted (Figure 7.15), it is clear that this rule 

is not as straight forward as FormRules[6] would suggest. The general rule of both 

descriptors being high or both being low leading to a high form III prediction is not 

apparent from the ANN results in INForm.[7] 

 

Figure 7.15 Plot of d77 and boiling point in the prediction of form III 

 
When E_ang is changed from its original low value to a mid range and high value, 

the level of form III prediction increases overall (Figure 7.16). 
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Figure 7.16 Plot of d77 and boiling point in the prediction of form III with mid range (left) and high 

(right) values of E_ang 

 
Similarly to this, the whole range of dsolv76 values has an impact upon the 

prediction of form III when plot against d77 and boiling point (Figure 7.17). 

 

Figure 7.17 Plot of d77 and boiling point in the prediction of form III with low (left), mid range 

(centre) and high (right) values of dsolv76 

 
Based on this information it is clear that an empirical rule for predicting form III 

crystallisation has not been found in this analysis. In fact, four different descriptors 

have an effect on the prediction of the form. 

A final rule in which rate is featured has also been generated. As has been previously 

mentioned in chapter 5, low evaporation rates most commonly lead to the 

thermodynamically stable form being crystallised.[8-10] The normalised value for rate 

has been plotted against all pure form III producing solvents (Figure 7.18), and as a 

general rule, low rates do produce form III. When compared to other rules it is not 

the most confident, but it is an experimental parameter and does have an impact upon 

the crystallisation in many cases. 
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Figure 7.18 Crystallisation solvents in which form III is the pure product plot against normalised rate 

values. The green section highlights the optimal value area for form III production. 

 
7.3.4. The Prediction of the Dihydrate 

As discussed in section 5.44 the dihydrate form was never crystallised as the pure 

product in this research, and only featured in three crystallisation experiments 

(detailed in Electronic Appendix, Chapter 4, file 4.4). Similarly to form I, the data 

was still included in the analysis, but does call into question the reliability of the 

rules generated. To improve the rules, more dihydrate forming crystallisation 

experiments would need to be added to the training set. Rules were generated for 

dihydrate formation (Table 7.23) using dsolv74, dsolv69 rate and temperature in the 

predictions.  

 
Table 7.23 Rules generated in FormRules for dihydrate prediction 

Rules generated for dihydrate prediction 

IF dsolv74 is LOW AND Temp is LOW AND rate is 

LOW AND dsolv69 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is LOW AND Temp is LOW AND rate is 

LOW AND dsolv69 is HIGH 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is LOW AND Temp is LOW AND rate is MID 

AND dsolv69 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is LOW AND Temp is LOW AND rate is MID 

AND dsolv69 is HIGH 
THEN DiHydrate is LOW (0.97) 

IF dsolv74 is LOW AND Temp is LOW AND rate is 

HIGH AND dsolv69 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is LOW AND Temp is LOW AND rate is 

HIGH AND dsolv69 is HIGH 
THEN DiHydrate is LOW (0.99) 
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Rules generated for dihydrate prediction -continued 

IF dsolv74 is LOW AND Temp is HIGH AND rate is 

LOW AND dsolv69 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is LOW AND Temp is HIGH AND rate is 

LOW AND dsolv69 is HIGH 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is LOW AND Temp is HIGH AND rate is 

MID AND dsolv69 is LOW 
THEN DiHydrate is LOW (0.50) 

IF dsolv74 is LOW AND Temp is HIGH AND rate is 

MID AND dsolv69 is HIGH 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is LOW AND Temp is HIGH AND rate is 

HIGH AND dsolv69 is LOW 
THEN DiHydrate is LOW (0.74) 

IF dsolv74 is LOW AND Temp is HIGH AND rate is 

HIGH AND dsolv69 is HIGH 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is HIGH AND Temp is LOW AND rate is 

LOW AND dsolv69 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is HIGH AND Temp is LOW AND rate is 

LOW AND dsolv69 is HIGH 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is HIGH AND Temp is LOW AND rate is 

MID AND dsolv69 is LOW 
THEN DiHydrate is 

HIGH 

(1.00) 

IF dsolv74 is HIGH AND Temp is LOW AND rate is 

MID AND dsolv69 is HIGH 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is HIGH AND Temp is LOW AND rate is 

HIGH AND dsolv69 is LOW 
THEN DiHydrate is LOW (0.50) 

IF dsolv74 is HIGH AND Temp is LOW AND rate is 

HIGH AND dsolv69 is HIGH 
THEN DiHydrate is LOW (0.98) 

IF dsolv74 is HIGH AND Temp is HIGH AND rate is 

LOW AND dsolv69 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is HIGH AND Temp is HIGH AND rate is 

LOW AND dsolv69 is HIGH 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is HIGH AND Temp is HIGH AND rate is 

MID AND dsolv69 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is HIGH AND Temp is HIGH AND rate is 

MID AND dsolv69 is HIGH 
THEN DiHydrate is LOW (0.66) 

IF dsolv74 is HIGH AND Temp is HIGH AND rate is 

HIGH AND dsolv69 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv74 is HIGH AND Temp is HIGH AND rate is 

HIGH AND dsolv69 is HIGH 
THEN DiHydrate is LOW (1.00) 

 
From Table 7.23 the majority of the rules lead to a low dihydrate prediction. Based 

upon the experimental results used in the training this is not surprising, as there were 
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no pure dihydrate products. The rule leading to a high dihydrate prediction states that 

dsolv74 must be high, rate at a mid range value and both temperature and dsolv69 to 

be low. When the experiments that crystallised as mixtures containing the dihydrate 

were plotted against the normalised descriptor values in the rule (Figure 7.19) these 

solvents display descriptor values that would lead to low dihydrate predictions. 

 

Figure 7.19 Crystallisation solvents in which dihydrate is part of the product plot against normalised 

rate (blue), temperature (purple), doslv74 (orange) and dsolv69 (red) values. 

 
Dsolv69 is the molecular surface area of the solvent molecule, with the CBZ 

molecular surface area (d69) featuring in the form II rules. As was previously 

mentioned, research by Bodor et al.[12] and Lui et al.[37] commented upon the 

correlations between molecular surface area and dipole moment and dielectric 

constants respectively. Using the data in this current research, no such empirical 

correlations were observed. Interestingly, the total molecular surface area descriptor 

(dsolv71) featured in the dihydrate rules in the manual analysis (section 5.4.4). 

Although a slightly different descriptor, they both describe the surface area of the 

solvent molecules. 

Dsolv74, also observed in the form I rules, is the summation of the atomic charge 

weighted partial positive surface area (PPSA-3) upon the solvent molecule used in 

the crystallisation. Rate of evaporation and the temperature at which the 

crystallisations were conducted also featured in the dihydrate rules.  

It is difficult to draw firm conclusions about the nucleation and crystallisation of the 

dihydrate based upon these descriptors due to the small amount of data available for 

training. Further crystallisations need to be carried out in order to generate more 

dihydrate forming training data. With a larger training set, perhaps more information 

can be extracted from the descriptors within the rules. 
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7.3.5. The Prediction of Solvates 

CBZ can crystallise as many different solvates[32, 38-43], but in this current research 

only the DMSO solvate was produced. Rules were generated based upon these 

results (Table 7.24) and featured the boiling point of the solvent and dsolv43, which 

is the 3D Randić index of the solvent molecule. 

 
Table 7.24 Rules generated in FormRules for solvate prediction 

Rules generated for solvate prediction 

IF b.p. is LOW AND dsolv43 is LOW THEN Solvate is LOW (1.00) 

IF b.p. is LOW AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 

IF b.p. is MID AND dsolv43 is LOW THEN Solvate is LOW (1.00) 

IF b.p. is MID AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 

IF b.p. is HIGH AND dsolv43 is LOW THEN Solvate is HIGH (1.00) 

IF b.p. is HIGH AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 

 
The rule for high solvate prediction matches the properties of the DMSO solvent, 

highlighted in green on Figure 7.20 However, no other solvents have the properties 

mentioned in the rule for high solvate formation.  As discussed in section 5.4.5, there 

are examples in the literature of solvates being crystallised from acetone, THF and 

nitromethane,[38, 40, 44] but these solvents do not show the properties highlighted in the 

rules. 

 

Figure 7.20 Crystallisation solvents plot against normalised dsolv43 (blue) and boiling point (orange) 

values. 
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Dsolv43, the 3D Randić index of the solvent molecule, is a topological descriptor 

that was created in order to uniquely identify molecules using a single parameter.[45] 

It places importance on molecular branching and structure.[26, 45, 46] In the molecule 

each non-hydrogen atom is given a number, and these atoms are then also given a 

value of ν/1 , with ν  being “the number of non-hydrogen bonds in which the atom 

is involved.”[47] The numbered atoms are then used as a path.  

In a more complex molecule, different weights are also placed on each bonds value 

depending on whether it is a single, double, triple or aromatic bond.[45, 48] The 

3D structure can also be taken into account by consideration of the distances between 

atoms, and weighting the values appropriately[49].  

The Randić index has been used in previous research that estimates physicochemical 

properties of a molecule[50, 51], to predict retention times[52] and in prediction of 

biological inhibitor molecules[26]. It has also been noted in research by Schweitzer 

and Morris[24] that in combination with CPSA descriptors, connectivity indices are 

essential to improve the quality of the predictive models.  

It is interesting to observe that in section 5.4.5, a bonding information content 

descriptor was featured in the solvate rules. Perhaps descriptors that describe the 

branching and overall size of the solvent molecule are very important in solvate 

prediction. It is clear that the solvent must interact with the solute in order for a 

solvate to be crystallised, but perhaps simple topological properties can be used to 

assess whether a solvate will form. 

 
7.3.6. Summary of the Optimised Descriptors 

There were ten descriptors featured in the optimised set, with eight of these featuring 

in the rules. E_ang and dsolv76 did not feature in the rules, but were found to have 

an impact upon both form II and III prediction. The ten descriptors cover a range of 

CBZ and solvent properties and are summarised in  Table 7.25. 
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Table 7.25 Summary of the descriptors involved in the CBZ predictive rules 

Form predicted Descriptor(s) Definition(s) 

I 

Dsolv74 

Rate 

Temperature 

PPSA-3, atomic charge weighted partial positive 

surface area of the solvent molecule 

Rate of nitrogen blown onto sample (L/min) 

Temperature at which the crystallisations occurred 

II D69 Molecular surface area of the CBZ molecule 

II Rate Rate of nitrogen blown onto sample (L/min) 

II D68 Moment of inertia C of the CBZ molecule 

III D84 

FNSA-1, fractional partial negative surface area of 

the CBZ molecule (PNSA-1/total molecular surface 

area) 

III 
Boiling point 

D77 

Literature value boiling point of the solvent molecule 

PNSA-3, atomic charge weighted partial negative 

surface area of the CBZ molecule 

III Rate Rate of nitrogen blown onto sample (L/min) 

III D68 Moment of inertia C of the CBZ molecule 

Dihydrate 

Dsolv74 

Rate 

Temperature 

Dsolv69 

PPSA-3, atomic charge weighted partial positive 

surface area of the solvent molecule 

 

Rate of nitrogen blown onto sample (L/min) 

Temperature at which the crystallisations occurred 

Molecular surface area of the solvent molecule 

Solvate 
Boiling point 

Dsolv43 

Literature value boiling point of the solvent molecule 

3D-Randić index (order 0) of the solvent molecule 

Not in a Rule E_ang Angle bend potential energy of the CBZ molecule 

Not in a Rule Dsolv76 
PNSA-2, total charge weighted partial negative 

surface area of the solvent molecule 

 
It is important to remember that only a very limited amount of data was available for 

the form I, dihydrate and solvate predictions and because of this, firm conclusions 

cannot be made. This could be improved by training the ANN with more data that 

successfully crystallised as one of these forms. 
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7.4. Validation of the Optimised Set 

As discussed in chapter 5 it is important to validate the model produced, in order to 

determine whether the descriptors identified can lead to reasonable predictions of 

polymorphic form. The validation of this model was carried out in the same way as 

seen in section 5.5, by using a cross validation set, made up of 10 % of the 

experimental data, and the external validation method that uses the data of previously 

untested experimental work. This is comprised of two solvents that have not been 

used in the development of the model. It is worth referring back to the conclusions 

made in chapter 5 about this validation set. The two solvents used do not cover a 

wide range of descriptors values and are perhaps not the most effective choice as 

validation solvents. 

 

7.4.1. Cross Validation Results 

10 % of the experimental results were predicted using the model created with the 

remaining experimental data. The average R2 value for INForm[7] was reduced from 

88.62 % to 80.39 %. This reduction was expected as it lost a large proportion of its 

training data and therefore is unable to generalise as successfully. The results of the 

cross validation are summarised in Table 7.26 and show the model to be highly 

successful at predicting the major polymorphic form crystallised. 

  



 

 

Table 7.26 Cross validation results summary 

ANN predicted value 
Solvent Rate    

(L/min) 
Temperature 

(°C) 

Experimental 
result: Major 

form 
crystallised 

Predicted 
result: Major 

form 
predicted Form I Form II Form III Dihydrate Solvate 

Ethanol 15 25 Form III Form III 0.0 0.3 1.4 0.0 0.0 

THF 25 25 Form II Form II 0.0 0.9 0.2 0.2 0.0 

Acetonitrile 15 50 Form III Form III 0.0 0.2 1.1 0.0 0.0 

DMSO 25 25 Solvate Solvate 0.0 0.2 0.5 0.2 1.0 

Aniline 5 50 Form III Form III 0.0 0.0 1.1 0.0 0.0 

Chlorobenzene 5 50 Form III Form II 0.0 0.9 0.0 0.0 0.0 

Toluene 15 75 Form II Form II 0.0 0.9 0.2 0.0 0.0 

Nitromethane 5 25 Form III Form III 0.0 0.2 1.1 0.0 0.0 

Chloroform 25 50 Form II / Form III Form II 0.0 0.6 0.2 0.0 0.0 

 



 

 

Overall the model makes predictions generally well, correctly identifying the major 

form 77.78 % of the time. In the two cases where the model has not predicted the 

major form correctly it is important examine the training data to identify possible 

causes. The predictions for the chlorobenzene and chloroform experiments are 

incorrect, for the same reasons already discussed in section 5.5.1. Both chloroform 

and chlorobenzene lead to crystallisation of form II and III as well as mixtures. These 

experimental results are reflected by the model’s inability to accurately determine 

which polymorph is most likely to form under the experimental conditions analysed. 

It is encouraging to find that the model positively and correctly identifies 

crystallisation conditions leading to unpredictable outcomes. In an industrial setting 

this technique could be used to rule out such solvents, and identify solvents that 

consistently produce a desired form. 

 
7.4.2. External Validation Results 

The same validation set as used in section 5.5.2, was applied to the model generated 

using PCA. The results of this analysis are presented in Table 7.27. The results 

clearly show the models inability to correctly predict the major form crystallised 

under these experimental conditions. Only three of the twelve experiments were 

predicted correctly. When the distribution of the descriptor values for the validation 

solvents were assessed (Figure 7.21), many of the descriptors for ethyl acetate (E) 

and n-butanol (B) values were very similar. It also showed that a number of the 

descriptors were outside of the range used in the training of the model.  

 

Figure 7.21 The distribution of the validation solvents descriptor values. E represents the ethyl acetate 

values and B the n-butanol values 
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This provides two possible explanations for the unsuccessful predictions. Firstly, 

because the descriptor values for both solvents are similar, they do not reflect the 

whole model and it is possible that they are in an area in which the model struggles 

to predict. This therefore makes the validation seem more unsuccessful than it would 

be if other solvents that represented a larger range of values were analysed. A second 

reason the predictions are unsuccessful may be due to the presence of descriptors 

outside of the range used in training the model. Ideally the model should be able to 

generalise sufficiently to make predictions outside of the range. However, the 

presence of these values in training may have altered the descriptor criteria used in 

making a prediction. 



 

 

Table 7.27 External validation results summary 

ANN predicted value 
Experiment 

number Solvent Rate    
(L/min) 

Temperature 
(°C) 

Experimental 
result: Major 

form 
crystallised 

Predicted 
result: 

Major form 
predicted Form I Form II Form III Dihydrate Solvate 

1 EtOAc 5 25 Form II Form III 0.0 0.0 1.6 0.0 0.1 

2 EtOAc 5 50 Form II Form III 0.0 0.0 1.0 0.1 0.1 

3 EtOAc 25 25 Form II Form III 0.2 0.2 1.1 0.0 0.1 

4 EtOAc 25 50 Form II Form III 0.0 0.1 1.6 0.1 0.1 

5 EtOAc 15 25 Form II Form III 0.0 0.1 1.6 0.0 0.1 

6 EtOAc 15 50 Form II Form III 0.1 0.0 1.5 0.1 0.1 

7 nBuOH 5 25 Form II Form III 0.0 0.1 1.6 0.0 0.1 

8 nBuOH 5 50 Form III Form III 0.1 0.0 1.5 0.0 0.2 

9 nBuOH 25 25 Form III Form III 0.1 0.1 1.0 0.0 0.2 

10 nBuOH 25 50 Form II Form III 0.0 0.1 1.0 0.0 0.2 

11 nBuOH 15 25 Form II Form III 0.1 0.1 1.6 0.0 0.2 

12 nBuOH 15 50 Form III Form III 0.0 0.1 1.6 0.0 0.2 



 

 

7.5. Conclusions 

Using PCA to reduce the size of the dataset, an optimised set of descriptors for 

polymorphic form prediction has been created. The ten descriptors in the optimised 

set feature both CBZ and solvent molecule descriptors, which are dsolv43, dsolv69, 

dsolv74, dsolv76, d68, d69, d77, d84, E_ang and boiling point. 

In combination with the rates and temperatures used in the experimental work, this 

set of descriptors can successfully predict the major polymorphic form in 78 % of the 

cross validation experiments. When two previously untested solvents were used as a 

further test of the model, only three of the crystallised products were correctly 

predicted. This result was surprising and suggested that the model needed further 

optimisation. Perhaps combining the descriptors found in the manual analysis chapter 

with those in the optimised PCA set could lead to an improved predictive model. 
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8. FINAL OPTIMISATION AND DISCUSSION OF RESULTS 

 

 

The previous chapters have discussed different strategies to reduce the number of 

descriptors used in artificial neural networks (ANN) for the prediction of 

polymorphic forms from solution properties. The most successful sets of descriptors 

from the previous chapters will now be further analysed in order to determine the 

overall most successful set. This chapter will then conclude by presenting the final 

optimisation of the descriptor set alongside a discussion of the possible physical 

meanings of the descriptors present. 

 

8.1. Introduction 

Three methods of descriptor reduction have so far been discussed; they included (i) 

linear correlations coefficients and manually reducing the descriptor set (chapter 5), 

(ii) partial least squares (PLS) analysis (chapter 6) and (iii) principal component 

analysis (PCA) (chapter 7). All three methods generated an optimised set of 

descriptors for the prediction of polymorphic form. The PLS method generated an 

optimised set that built a much less successful model than the other two methods. For 

this reason, the PLS optimised set will not be further considered in this chapter. 

The linear correlation (Corr. best Set) and PCA (PCA best Set) analyses both 

generated a set of descriptors that allowed an ANN to predict the polymorphic form 

of a crystallisation experiment correctly with high probability. The descriptor sets 

and the resulting FormRules[6] and INForm[7] R2 values are presented in Table 8.1. 
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Table 8.1 The top sets of descriptors found in the manual and PCA analysis 

 Corr. best Set PCA best Set 

 Dsolv57 Dsolv43 

 Dsolv65 Dsolv69 

 Dsolv71 Dsolv74 

 Dsolv78 Dsolv76 

 MNDO_dipole D68 

 E_vdw D69 

 Gutmann donor number D77 

  D84 

  E_ang 

  Boiling point 

FormRules 
average R2 (%) 

80.12 79.99 

INForm 
average R2 (%) 

87.96 88.62 

Overall 
average R2 (%) 

84.04 84.31 

 

In can be seen in Table 8.1 that although there are no overlapping descriptors 

between these two optimised sets, the overall average R2 values produced are very 

similar.  

As in previous chapters (5 and 7) the linear correlations between the descriptors were 

calculated. They are presented in Table 8.2. The PCA best set has two correlated 

descriptors, dsolv43 and d69, which suggested that further optimisation could 

perhaps be performed. There are also two descriptors that are correlated across the 

optimised sets: these are dsolv43 and dsolv74 from the PCA best set, which correlate 

strongly with dsolv71 and dsolv65 from the Corr. best set respectively. All of these 

descriptors are solvent molecule descriptors and describe connectivity and surface 

areas (see appendix section 12.2 for details).  
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Table 8.2 Linear correlations between the two most successful sets. Number in brackets is the 

correlation coefficient 

PCA best set 
Correlations within 

the PCA best set      
(± 0.8 - 1) 

Correlations with 
Corr. best set          

(± 0.8 - 1) 
Dsolv43 D69 Dsolv71 (0.93) 

Dsolv69 - - 

Dsolv74 - Dsolv65 (0.96) 

Dsolv76 - - 

D68 - - 

D69 Dsolv43 - 

D77 - - 

D84 - - 

E_ang - - 

Boiling point - - 

 
2 of the PCA best set 

descriptors are 
correlated 

2 of the Corr. best set 
are correlated with 
the PCA best set 

 

8.2. Final Optimisation of the Descriptor Sets 

8.2.1. Optimisation Based upon Correlation Results 

The correlation analysis summarised in Table 8.2 indicated that two descriptors in 

the PCA best set were highly correlated. The effect of removing either of these 

descriptors was examined, with results presented in Table 8. 3 (Opt. A and B). The 

correlations between the PCA and Corr. best sets were also examined, with the 

correlated descriptors being substituted for the corresponding descriptor in the other 

set (Table 8.3, Opt. C - H). 
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Table 8.3 Optimisation of the PCA and Corr. best sets based upon the linear correlation results. X 

denotes the presence of the descriptor in the set 

Descriptors 
PCA 
best 
set 

Corr. 
best 
set 

Opt. 
A 

Opt. 
B 

Opt. 
C 

Opt. 
D 

Opt. 
E 

Opt. 
F 

Opt. 
G 

Opt. 
H 

Dsolv43 X   X  X X   X 

Dsolv69 X  X X X  X  X  

Dsolv74 X  X X X   X  X 

Dsolv76 X  X X X  X  X  

D68 X  X X X  X  X  

D69 X  X  X  X  X  

D77 X  X X X  X  X  

D84 X  X X X  X  X  

E_ang X  X X X  X  X  

Boiling point X  X X X  X  X  

Dsolv57  X    X  X X  

Dsolv65  X    X X   X 

Dsolv71  X   X   X X  

Dsolv78  X    X  X  X 

MNDO_dipole  X    X  X  X 

E_vdw  X    X  X  X 

Gutmann 

donor number 
 X    X  X  X 

FormRules 
average R2 (%) 79.99 80.12 79.98 80.32 79.99 79.82 80.20 79.88 80.46 79.88 

INForm 
average R2 (%) 88.62 87.96 58.27 83.20 88.51 74.87 89.30 70.52 83.14 72.27 

Overall 
average R2 (%) 84.31 84.04 69.13 81.76 84.25 77.35 84.75 75.20 81.80 76.08 

 
The results in Table 8.3 show that a slightly improved model was built (Opt. E) when 

dsolv74 from the PCA best set was exchanged for dsolv65. The results also show 

that the presence of either dsolv43 or the correlated dsolv71 is important for the 

overall result generated: Opt. A clearly shows a reduced overall average R2 value of 

69.13 % when neither of these two descriptor was present. 

When the rules generated in FormRules[6] for Opt. E are examined, only seven out of 

the ten descriptors were featured on the list of significant descriptors (appendix 

section 12.10). The effect of omitting the three remaining descriptors (dsolv69, 

dsolv76 and E_ang) has been determined and the result presented in Table 8.4 under 

the heading ‘Opt. E Rule only’. 
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Table 8.4 Further optimisation of the Best sets. X denotes the presence of the descriptor in the set 

Descriptors Opt. E Opt. E Rule only 

Dsolv43 X X 

Dsolv69 X  

Dsolv76 X  

D68 X X 

D69 X X 

D77 X X 

D84 X X 

E_ang X  

Boiling point X X 

Dsolv65 X X 

FormRules average R2 (%) 80.20 80.20 

INForm average R2 (%) 89.30 63.87 

Overall average R2 (%) 84.75 72.04 

 

It can be seen that removing the descriptors that do not feature in the rules reduces 

the performance of the model from an overall average R2 value of 84.75 % to one of 

72.04 %. This suggests that these descriptors are subtly but significantly important in 

the model built by INForm.[7] 

 
8.2.2. Optimisation Based upon Best Set Analysis 

Due to the success of both the PCA and Corr. best sets, a further attempt to create an 

optimised set was made including all 17 descriptors that featured in the two best sets. 

They were all run in one ANN (‘All Desc.’), and then the rule-only descriptors were 

examined (Table 8.5). 
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Table 8.5 Optimisation of the descriptor set. X denotes the presence of the descriptor in the set 

Descriptors 
PCA 
best 
set 

Corr. 
best 
set 

Opt. E 
All 

Desc. 

All 
Desc. 
Rule 
only 

Dsolv43 X  X X  

Dsolv69 X  X X  

Dsolv74 X   X  

Dsolv76 X  X X X 

D68 X  X X X 

D69 X  X X  

D77 X  X X  

D84 X  X X X 

E_ang X  X X  

Boiling point X  X X  

Dsolv57  X  X X 

Dsolv65  X X X X 

Dsolv71  X  X X 

Dsolv78  X  X X 

MNDO_dipole  X  X X 

E_vdw  X  X X 

Gutmann donor number  X  X X 

FormRules average R2 (%) 79.99 80.12 80.20 81.85 81.85 

INForm average R2 (%) 88.62 87.96 89.30 72.76 81.22 

Overall average R2 (%) 84.31 84.04 84.75 77.31 81.54 

 
The results presented in Table 8.5 demonstrate that using a large number of 

descriptors does not necessarily lead to a better model. When only the rule 

descriptors identified by FormRules[6] are used, the model generated an improved 

performance compared to using all of the descriptors. It might be that information 

introduced by some of the less useful descriptors masks the important information 

required for successful prediction. Overall, none of the generated models improved 

on the previously determined most successful sets of descriptors.  

 
8.2.3. Optimisation Based upon Descriptor Types 

A number of different sets were created based upon the PCA and Corr. best sets 

presented in section 8.1, by taking the physical meanings of the descriptors as a 

guide to selection. Initially, only the solvent descriptors were used. The rationale for 

this choice was to create a transferable descriptor set that may be able to predict the 
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polymorphic outcome for different target molecules. The results obtained with this 

set are presented in Table 8.6 (Solvent only). 

When the results in Table 8.6 are examined, there is clearly a reduction in the overall 

average R2 value when only the solvent descriptors are used. However, the value is 

still reasonably high and may produce a useful starting point in other target molecule 

predictions. It is interesting that all the rule-only descriptors are from the Corr. best 

set. To examine the impact upon prediction, the CBZ descriptors from the PCA best 

set have been added to these rule only descriptors. The results of this (Opt. I) show 

that the improvement in prediction is only small and therefore the solvent descriptors 

are important in the prediction.  

 
Table 8.6 Determination of the effect of removing the target molecules descriptors. X denotes the 

presence of the descriptor in the set 

Descriptors 
PCA 
best 
set 

Corr. 
best 
set 

Opt. E 
Solvent 

only 

Solvent 
only rule 

only 
Opt. I 

Dsolv43 X  X X   

Dsolv69 X  X X   

Dsolv74 X   X   

Dsolv76 X  X X   

D68 X  X   X 

D69 X  X   X 

D77 X  X   X 

D84 X  X   X 

E_ang X  X   X 

Boiling point X  X X X X 

Dsolv57  X  X X X 

Dsolv65  X X X X X 

Dsolv71  X  X X X 

Dsolv78  X  X X X 

MNDO_dipole  X     

E_vdw  X     

Gutmann donor number  X  X X X 

FormRules average R2 (%) 79.99 80.12 80.20 79.79 79.79 79.91 

INForm average R2 (%) 88.62 87.96 89.30 69.53 75.09 75.49 

Overall average R2 (%) 84.31 84.04 84.75 74.66 77.44 77.70 
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A second optimisation method was examined, which was based upon the class of 

physical property (surface area, partial charge, molecular interaction, geometry, 

connectivity/branching) represented by the descriptors identified by the the PCA and 

Corr. best sets. Figure 8.1, Figure 8.2 and Table 8.7 show the classification of the 17 

descriptors. 

 

 

Figure 8.1 Schematic of the different property regions found for the solvent descriptors 

 
Figure 8.1 highlights that there are four groups of solvent descriptor present in the 

PCA and Corr. best sets. A similar classification analysis was also carried out for the 

CBZ descriptors, presented in Figure 8.2. 

 

Figure 8.2 Schematic of the different property regions found for the CBZ descriptors 
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Figure 8.2 shows that a number of the CBZ descriptors are in the same class of 

physical property, but these groups are not as clearly distinguishable as those seen in 

the solvent descriptors. Table 8.7 summaries the classification of the descriptors. 

 
Table 8.7 Descriptors grouped based upon their physical meaning 

Physical Property Descriptor 

Solvent Descriptors: Molecular Surface 

Area 

Dsolv69, dsolv71, Dsolv74, dsolv76, 

dsolv78 

Solvent Descriptors: Partial Charges Dsolv74, dsolv76, dsolv78 

Solvent Descriptors: Molecular 

Interactions 

Dsolv43, dsolv57, dsolv65, Dsolv74, 

dsolv76, dsolv78, Boiling point, Gutmann 

donor number 

Solvent Descriptors: Geometry Dsolv69, dsolv71 

Solvent Descriptors: Connectivity and 

Branching 
Dsolv43, dsolv57, dsolv65, 

CBZ Descriptors: Molecular Surface Area D69, d77, d84, E_vdw 

CBZ Descriptors: Partial Charges D77, d84 

CBZ Descriptors: Molecular Interactions 
D68, d77, d84, E_vdw, E_ang, 

MNDO_dipole 

CBZ Descriptors: Geometry D68, d69, E_vdw, E_ang 

CBZ Descriptors: Polarity MNDO_dipole 

 
Based upon the physical properties represented by the descriptors, further 

optimisations were carried out to improve the set (Table 8.8). By selecting only one 

descriptor from each category, new sets were created and results generated in 

INForm[7] and FormRules.[6] If more than one descriptor was present in each 

category, each descriptor was tested individually, with the most successful being 

carried into the next set (Opt. J-R). 
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Table 8.8 Optimisation results based upon the physical meanings of the descriptors. X denotes the 

presence of the descriptor in the set 

Descriptors Opt. 
J 

Opt. 
K 

Opt. 
L 

Opt. 
M 

Opt. 
N 

Opt. 
O 

Opt. 
P 

Opt. 
Q 

Opt. 
R 

Boiling point X         

Gutmann donor 

number 
 X X X X X X X X 

Dsolv74 X X   X X X X X 

Dsolv76   X       

Dsolv78    X      

Dsolv43 X X X X      

Dsolv57     X  X X X 

Dsolv65      X    

Dsolv69 X X X X X X    

Dsolv71       X X X 

MNDO_dipole X X X X X X X X X 

D84 X X X X X X X  X 

D77        X  

D69 X X X X X X X X X 

E_vdw X X X X X X X X X 

D68 X X X X X X X X  

E_ang         X 

FormRules 
average R2 (%) 79.23 80.71 54.90 54.29 80.75 80.80 80.13 78.58 80.09 

INForm average 
R2 (%) 

73.82 74.35 69.36 88.45 80.94 78.40 82.99 73.60 79.14 

Overall average 
R2 (%) 

76.53 77.53 62.13 71.37 80.85 79.60 81.56 76.09 79.62 

 
The results in Table 8.8 do not identify any set of descriptors that generate ANNs 

more successful than the PCA or best Set ANNs. In general, the sets produce high 

overall average R2 values, with the exception of Opt. L. Opt. L contained dsolv76 

instead of dsolv74, which appears to significantly affect the prediction. From the 

PCA and Corr. best sets presented in this chapter, dsolv74 features in the rules for 

form I and dihydrate prediction, which is where this set of descriptors fails. It 

appears necessary to include dsolv74 to generate a reasonable prediction for form I 

and the dihydrate. 



 

 278 

In a way similar to the physical meaning optimisation just described, the descriptors 

were then grouped according to their association with predicted crystallisation 

outcomes, as indicated by FormRules[6] . Figure 8.3 shows a schematic of the 

descriptors from the two best sets and how they influence the predictions of different 

polymorphic forms. It can be seen that many of the descriptors contribute to the 

prediction of several forms. 

 

 

Figure 8.3 Schematic of the forms in which each descriptor influences prediction 

 
Again, this result could be interpreted as highlighting a potential opportunity for 

reducing the number of descriptors in the set further. Therefore an optimisation was 

carried out using the groups of descriptors displayed in Figure 8.3.  The results are 

presented in Table 8.9. 
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Table 8.9 Optimisation results based upon predictions made by each descriptor. X denotes the 

presence of the descriptor in the set 

Descriptors Opt. 
S 

Opt. 
T 

Opt. 
U 

Opt. 
V 

Opt. 
W 

Opt. 
X 

Opt. 
Y 

Boiling point     X   

Gutmann donor number  X X X    

Dsolv74 X X X X X X X 

Dsolv76    X X X X 

Dsolv78        

Dsolv43        

Dsolv57  X X X X X X 

Dsolv65        

Dsolv69        

Dsolv71  X X X X X X 

MNDO_dipole X  X X X X X 

D84       X 

D77      X  

D69  X X     

E_vdw        

D68        

E_ang        

FormRules average R2 (%) 68.49 68.84 77.81 77.54 76.92 74.39 76.25 

INForm average R2 (%) 68.72 77.69 78.22 78.98 71.37 39.49 80.20 

Overall average R2 (%) 68.61 73.27 78.02 78.26 74.15 56.94 78.23 

 
It can be seen that no improvement on the most successful set of descriptors (Opt. E 

with an overall average R2 value of 84.75 %) was made using this technique. These 

results suggest that in order to generate a successful predictive model, multiple 

descriptors need to be used in tandem. By using only MNDO_dipole and dsolv74, 

which between them have featured in the rules for all of the forms, there is not 

enough information to build a successful model. This once again indicates that using 

only descriptors presented in the rules determined by FormRules[6] represents an 

oversimplification. Clearly the descriptors are strongly intercorrelated and work 

together to create a successful ANN model. The FormRules[6] analysis may be used 

as a guideline to understanding what is occurring in the solutions, but the more 

complex intercorrelations in the ANNs are necessary for polymorph prediction.  
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8.2.4. Optimisation Based upon Validation Results 

The external validation of the PCA best set (section 7.4.2) indicated that three of the 

descriptors (d69, d77 and d84) were outside of the range of the descriptor values 

used within the training of the model. Further analysis was carried out to determine 

the impact of removing these descriptors from this set (Opt. E1 shown in Table 8.10). 

The result of this analysis was a lower overall average R2 value of 82.34%, which 

although lower, is still a respectably high value.  

Further analysis was conducted to replace these descriptors without compromising 

the high average R2 value generated from Opt. E. The Opt. E2-5 sets (Table 8.10) 

were created based upon descriptors that featured in the Corr. best set, and were seen 

to influence the prediction of forms II and III. MNDO_dipole, E_vdw and Gutmann 

donor number all matched with these criteria. However, no improvements were seen 

in the results.  

Therefore, a final strategy was devised. The linear correlations with other descriptors 

of d69, d77 and d84 were calculated and each was replaced in turn by a highly 

correlated descriptor (Opt. E6-8 in Table 8.10). D69 was replaced with dsolv6, which 

is the number of rings in the solvent molecule. The correlation coefficient was -0.90, 

which was the highest correlation determined. D84 was replaced by d81, which is the 

fractional partial positive surface area of the CBZ molecule. The correlation 

coefficient determined between these two descriptors was -1. D77 was not highly 

correlated with any other descriptor in this analysis and was therefore just removed 

from the set for testing. Descriptor details can be found in appendix section 12.2. 
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Table 8.10 Further optimisation of the descriptor set. X denotes the presence of the descriptor in the 

set 

Descriptors Opt. 
E 

Opt. 
E1 

Opt. 
E2 

Opt. 
E3 

Opt. 
E4 

Opt. 
E5 

Opt. 
E6 

Opt. 
E7 

Opt. 
E8 

Dsolv43 X X X X X X X X X 

Dsolv69 X X X X X X X X X 

Dsolv76 X X X X X X X X X 

D68 X X X X X X X X X 

D69 X       X X 

D77 X      X X  

D84 X      X  X 

E_ang X X X X X X X X X 

Boiling point X X X X X X X X X 

Dsolv65 X X X X X X X X X 

MNDO_dipole   X   X    

E_vdw    X X X    

Gutmann donor 

number 
    X X    

Dsolv6       X   

D81        X  

FormRules 
average R2 (%) 

80.20 79.19 79.16 79.60 79.60 79.96 80.66 80.19 80.22 

INForm 
average R2 (%) 

89.30 85.48 73.28 85.38 70.35 72.94 85.63 86.60 73.47 

Overall 
average R2 (%) 

84.75 82.34 76.22 82.49 74.98 76.45 83.15 83.40 76.85 

 
The results presented in Table 8.10 show that, as in all previous attempts to increase 

the predictive power of the ANNs, no improved models were generated by removal 

of the out-of-range descriptors. 

 
8.2.5. Conclusion of the Final Optimisation Work 

Across all of the final optimisation attempts, a slight and perhaps insignificant 

improvement could be achieved over the PCA best set results, when dsolv74 was 

replaced with dsolv65. (section 8.2.1). 

The best descriptor set identified by the work presented here thus contains dsolv43, 

dsolv65, dsolv69, dsolv76, d68, d69, d77, d84, E_ang and the boiling point of the 

solvents. It generated an overall average R2 value of 84.75 %. 
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8.3. Discussion of the Descriptors in the Final Set 

Classifying the final set of descriptors according to their appearance in the rules for 

each form as determined by FormRules[6], the ten descriptors in the final set are again 

presented in Table 8.11. 

As expected, the rules generated for this final set have essentially remained the same 

as previously for the PCA best set, with dsolv74 being replaced directly with 

dsolv65. However, there has been one unexpected rule change in the dihydrate 

prediction, shown in Table 8.11. In the PCA best set rules, dsolv69 was used to 

predict the dihydrate. However, with the inclusion of dsolv65, the rule has now 

changed to replace dsolv69 with dsolv43. This suggests that dsolv65 and dsolv43 

work better in tandem than dsolv65 and dsolv69 would. This was an unexpected 

change, which led to the removal of dsolv69 from the rules generated in 

FormRules[6]. 

 
Table 8.11 Summary of the descriptors involved in the final set 

Form 
predicted 

Descriptor(s) Definition(s) 

I 

Dsolv65 

Rate 

Temperature 

3D bonding information content (order 2) of the solvent 
molecule 

Rate of nitrogen blown onto sample (L/min) 

Temperature at which the crystallisations occurred 

II D69 Molecular surface area of the CBZ molecule 

II Rate Rate of nitrogen blown onto sample (L/min) 

II D68 Moment of inertia C of the CBZ molecule 

III D84 
FNSA-1, fractional partial negative surface area of the CBZ 
molecule (PNSA-1/total molecular surface area) 

III 
Boiling point 

D77 

Literature value boiling point of the solvent molecule 

PNSA-3, atomic charge weighted partial negative surface area 
of the CBZ molecule 

III Rate Rate of nitrogen blown onto sample (L/min) 

III D68 Moment of inertia C of the CBZ molecule 

Dihydrate 

Dsolv65 

Rate 

Temperature 

Dsolv43 

3D bonding information content (order 2) of the solvent 
molecule 

Rate of nitrogen blown onto sample (L/min) 

Temperature at which the crystallisations occurred 

3D-Randić index (order 0) of the solvent molecule 

Solvate 
Boiling point 

Dsolv43 

Literature value boiling point of the solvent molecule 

3D-Randić index (order 0) of the solvent molecule 

Not in a 
Rule 

E_ang Angle bend potential energy of the CBZ molecule 

Not in a 
Rule 

Dsolv76 
PNSA-2, total charge weighted partial negative surface area of 
the solvent molecule 

Not in a 
Rule 

Dsolv69 Molecular surface area of the solvent molecule 
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In section 8.2.1, the rule only descriptor analysis of Opt. E (Table 8.4) found that 

when dsolv69, E_ang and dsolv76 were not present, the predictive capabilities of the 

model were reduced. As was carried out in the analysis of PCA best set descriptors 

(section 7.3) detailed analysis has been conducted in order to assess the influence on 

the prediction of dsolv69, which will be presented in the relevant section. E_ang and 

dsolv76 were found to have an impact upon forms II and III prediction (section 7.3). 

As the descriptor set has not changed dramatically from the PCA best set, the rules 

will be presented with only a brief discussion of their physical meaning in relation to 

nucleation and crystallisation. Full details are presented in sections 7.3.2 and 7.3.3. 

 

8.3.1. The Prediction of Form I 

As stated in chapters 5 and 7, the amount of data available in order to train a form I 

model was very small. This may have an impact upon the reliability of any model 

created. However, due to the presence of form I data, a model was built. The rules in 

Table 8.12 show that rate, temperature and dsolv65, lead to a form I prediction.  

 
Table 8.12 Rules generated in FormRules for form I prediction 

Rules generated for Form I prediction   

IF dsolv65 is LOW AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is LOW AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is HIGH AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is LOW AND Temp is HIGH THEN Form I is LOW (0.90) 

IF dsolv65 is MID AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is HIGH AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is LOW AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is HIGH AND Temp is HIGH THEN Form I is HIGH (1.00) 
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The rules show that in most cases the prediction is for a low probability that form I 

will be observed. This reflects the training data presented to the ANN accurately, as 

there were no high form I yields observed under any of the experimental conditions. 

Nevertheless, the rules have combined to formulate one condition for high form I 

prediction. This rule states that when rate, temperature and dsolv65 are at their 

highest value, a high form I prediction will occur. 

Examination of the normalised descriptor values plotted against the form I producing 

experiments (Figure 8.4), shows that on no occasion were conditions chosen for 

which the values were high for all three descriptors. This is in accordance with the 

levels of form I generated in the crystallisations, with neither crystallisation in 

chlorobenzene or in methanol generated a high yield of form I. 

 

Figure 8.4 Crystallisation solvents in which form I is produced plotted against the three rule 

descriptors, rate (blue), temperature (purple) and dsolv65 (cream). The green shaded area highlights 

the most favourable descriptor values for form I production. 

 
The physical influence of dsolv65 was already presented in section 5.1.4, and is the 

3D bonding information content (BIC) for the solvent molecule. This topological 

descriptor may be used as a measure of structural diversity[53], incorporating the 

branching and connectivity of the molecule. This descriptor has been featured in 

other research[53-55] and has been reported to represent the solution interactions of the 

solvent. 

It appears therefore reasonable to assume that dsolv65 also plays a pivotal role in 

polymorphic crystallisation from solution. The literature provides many examples of 

solvents and additives inhibiting or promoting the specific nucleation of a 
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polymorphic form.[56-59] Perhaps the presence of this descriptor confirms the 

importance of how the solvent molecules interact in solution. More precisely, 

different levels of branching in the solvent appear to promote and inhibit interactions 

with the solute molecules.  

The rules in Table 8.12 also feature rate and temperature. These are the conditions at 

which the crystallisation took place. The rule states that high values for both these 

conditions would lead to the formation of form I. In line with this, previous research 

has shown that carrying out crystallisations at high evaporation rates and 

temperatures often achieves metastable polymorphic forms.[8-10] 

 
8.3.2. The Prediction of Form II 

No changes in the rules that were presented in the PCA best set in section 7.3 were 

observed for the prediction of form II by this optimised set. The results presented in 

Table 8.13, generated by FormRules[6] contain rate, d68 and d69. 

 
Table 8.13 Rules generated in FormRules for form II prediction 

Rules generated for Form II prediction 

SubModel:1                          IF d69 is LOW THEN Form II is HIGH (1.00) 

IF d69 is HIGH THEN Form II is LOW (1.00) 

SubModel:2                          IF rate is LOW THEN Form II is LOW (1.00) 

IF rate is HIGH THEN Form II is HIGH (0.64) 

SubModel:3                          IF d68 is LOW THEN Form II is HIGH (1.00) 

IF d68 is HIGH THEN Form II is LOW (1.00) 

 

The physical meaning of d69 was already discussed in section 7.3.2; it represents the 

molecular surface area of the CBZ molecule in the solvent force field. It is a 

geometrical descriptor that uses the van der Waals radii of the atoms within the 

molecule to give the best surface area approximation.[5, 12] The difference between 

each CBZ surface area is only slight and was brought about by the solute molecules 

interactions within the solvent force field. The differences due to variations in the 

solvent force field are subtle, perhaps indicating how slight geometrical differences 

affect interactions with other solute or solvent molecules in solution significantly 

enough to modify aggregation behaviour. Previous research has indeed found that 

geometrical descriptors are very useful for predicting physicochemical properties of 

molecules.[12, 17, 37] 
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As presented in sections 7.3.2 and 7.3.3, E_ang was found to have an impact upon 

prediction when detailed analysis was undertaken for the rule containing d69. E_ang, 

which is the angle bend potential energy for the CBZ molecule in the solvent 

forcefield[18], describes the flexibility and geometry of the molecule. In a similar way 

to the d69 descriptor, the differences between the values are subtle due to the slight 

changes in geometry of the CBZ in the different solvent force fields. These slight 

geometrical differences nevertheless appear to offer insight into significant 

interactions in solution. E_ang has not commonly been used in physicochemical 

studies in the literature, but it has been discussed in the context of a number of 

biological systems.[19-21]  

When the detailed analysis was carried out on this rule (section 4.6.2) dsolv69 was 

also found to have an impact upon the predictions of form II. Dsolv69 is the 

molecular surface area of the solvent model, which is calculated in the same way as 

mentioned in the d69 discussion in this section. When d69, which is featured in the 

rules, is plotted against rate, the model matches the submodel 1 rule in Table 8.13 

very well. Figure 8.5 shows the effect that changing the dsolv69 values has on the 

prediction of form II. Although the rule is not affected, the level of form II prediction 

is increased at higher dsolv69 values. 

 

Figure 8.5 Effect of dsolv69 upon the form II predictions based upon the rules generated. Low 

dsolv69 values (left), mid range values (centre) and high dsolv69 values (right) 

 
The rule in Table 8.13 that presents rate as an important property agrees with what 

was presented in the form I rules (Table 8.12). Form II is the least stable 

polymorphic form of CBZ, which coincides well with previous observations that 

high evaporation rates often lead to the formation of a metastable form.[8-10] High 

evaporation rates achieve high levels of supersaturation quickly, thereby enhancing 

the nucleation rate in solution. If Ostwald’s Rule of Stages is followed, then the least 

stable polymorph, in this case CBZ form II, would crystallise first.[22, 23]  
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The third rule presented in Table 8.13 uses d68, which is the moment of inertia C for 

the CBZ molecule, to predict form II. D68 is classed as a geometrical descriptor[24] 

and is calculated using the mass and three-dimensional coordinates of atoms in the 

molecule. Moment of inertias can be used as a measure of how rotationally active 

parts of the molecule are,[4, 26] and as a measure of molecular size and weight.[29] This 

descriptor is commonly used in the physicochemical literature,[26-30] for solution 

systems particularly in the context of chromatographic retention time prediction, 

where this descriptor has generated information about molecular interactions. 

When moment of inertia is considered with respect to nucleation and crystallisation, 

the different values likely represent an altered capacity to interact with either the 

solvent or other solute molecule. With the solution interactions being altered, perhaps 

certain forms can be inhibited or promoted. It is known that solvent is very important 

in form II crystallisation,[31, 32] so perhaps the moment of inertia values are offering 

an indirect measure of molecular interactions. 

Section 7.3.2 shows the detailed analysis of this third rule with regard to the effect of 

both E_ang and dsolv76 upon prediction. E_ang has already been presented in this 

section, but dsolv76, which is the total charge weighted partial negative surface area 

(PNSA-2) of the solvent molecule, has not. This charged partial surface area 

descriptor provides information about the negatively charged regions on the solvent 

molecule, thereby once again generating potentially useful information about the 

interactions between solvent and solute molecules. 

By using the detailed analysis method for submodel 3, it was found that high values 

of dsolv69 had an impact upon the prediction of form II.  Figure 8.6 shows the plot 

of d68 and temperature when dsolv69 values are low and high. 

 

 

 

 

 

 

 

 

Figure 8.6 Effect of dsolv69 upon the form II predictions based upon the rules generated. Low 

dsolv69 values (left) and high dsolv69 values (right) 
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This analysis highlights once again how the rules generated in FormRules[6] can be 

used as a guide to what descriptor values lead to successful polymorphic predictions. 

However, in order to generate a more accurate picture, other descriptors that are not 

featured in the rules may have an influence, and can be observed from the ANN 

results in INForm.[7] 

 
8.3.3. The Prediction of Form III 

Form III is the most stable form of CBZ and as such was crystallised most frequently 

in this research. Table 8.14 shows the four rules generated by FormRules[6] that 

predict form III. These rules feature d84, d77 and d68 which are all CBZ descriptors 

and also the boiling point of the solvent. 

 
Table 8.14 Rules generated in FormRules for form III prediction 

Rules generated for Form III prediction 

SubModel:1                                        IF d84 is LOW THEN Form III is HIGH (1.00) 

IF d84 is HIGH THEN Form III is LOW (1.00) 

SubModel:2           IF b.p. is LOW AND d77 is LOW THEN Form III is HIGH (0.50) 

IF b.p. is LOW AND d77 is HIGH THEN Form III is LOW (1.00) 

IF b.p. is HIGH AND d77 is LOW THEN Form III is LOW (1.00) 

IF b.p. is HIGH AND d77 is HIGH THEN Form III is HIGH (1.00) 

SubModel:3                                       IF rate is LOW THEN Form III is HIGH (0.72) 

IF rate is HIGH THEN Form III is LOW (1.00) 

SubModel:4                                        IF d68 is LOW THEN Form III is HIGH (1.00) 

IF d68 is MID THEN Form III is HIGH (1.00) 

IF d68 is HIGH THEN Form III is LOW (1.00) 

 
Submodel 4 features d68, which is the moment of inertia C for CBZ, that also 

featured in the form II rules (Table 8.13). The d68 descriptor will therefore not be 

discussed again in this section. 

D84, which is the fractional positive surface area descriptor for the CBZ molecule 

within a solvent force field, is the ratio of the total molecular surface area and the 

partial positive surface area.[4] These charged partial surface area descriptors have 

been used in the previous literature to predict a variety of biological and 

physicochemical properties.[27, 33-35] Due to the subtle differences between these 

descriptor values, it is difficult to interpret their effect on polymorphic crystallisation. 
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However, since the descriptor describes partial charges it provides information about 

solute and solvent interactions in solution.  

The second rule incorporates a solvent and solute descriptor for the prediction of 

form III. D77 is the partial negative surface area of the CBZ molecule in the solvent 

force field, and like d84 it is a charge partial surface area descriptor. The boiling 

point of the solvent is also featured in this rule, and this property gives an indication 

into how strongly the solvent molecules interact with themselves. The boiling point 

is commonly used for predictions in the literature, but less so as as a descriptor than a 

target for prediction.[34, 36] 

This submodel 2 rule is interesting, as it states that the combination of high values 

for both d77 and the boiling point as well as a low value for both are associated with 

predicted high likelihood of form III crystallisation. This makes the interpretation of 

this rule somewhat difficult. However, closer examination reveals also that E_ang 

and dsolv76 have an impact upon prediction (details can be found in 7.3.3). 

Therefore, perhaps this rule can be used as a simple guide for form III prediction, but 

there are a number of other descriptors also involved that contribute to making 

accurate predictions.  

The third rule in Table 8.14 features the evaporation rate used in the crystallisation 

experiments. As mentioned in sections 8.3.1 and 8.3.2 a high evaporation rate often 

leads to the crystallisation of a metastable polymorphic form.[8-10] It seems therefore 

reasonable that a low evaporation rate should lead to the crystallisation of the 

thermodynamically stable form.  

The evaporation rate can be used as a general rule for predicting the most likely 

polymorphic form to be crystallised. However, it has been found to be effected by 

differing values of dsolv69 in this research, shown in Figure 8.7. 

 

Figure 8.7 Effect of dsolv69 upon the form III predictions based upon the rules generated. Low 

dsolv69 values (left), mid range values (centre) and high dsolv69 values (right) 
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8.3.4. The Prediction of the Dihydrate 

The rules generated by FormRules[6] for the prediction of the dihydrate were 

different from those presented in the PCA analysis (section 7.3.4, Table 7.23). It was 

expected that dsolv65 would directly replace dsolv74, which was previously used. 

However, it was not expected that dsolv43 would feature in this rule, as previously, 

dsolv69 was present. The rules presented in Table 8.15 feature, rate, temperature, 

dsolv65 and dsolv43 and in most instances predict a low dihydrate prediction. This 

general prediction of a low likelihood of hydrate crystallisation is consistent with the 

data used in the training, but due to the small dataset available for training, the 

reliability of the rules is questionable. 

 
Table 8.15 Rules generated in FormRules for dihydrate prediction 

Rules generated for dihydrate prediction 

IF dsolv65 is LOW AND Temp is LOW AND rate is LOW AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is LOW AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is MID AND dsolv43 

is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is MID AND dsolv43 

is HIGH 

THEN 

DiHydrate is 

LOW 

(0.88) 

IF dsolv65 is LOW AND Temp is LOW AND rate is HIGH AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is HIGH AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(0.95) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is LOW AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is LOW AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is MID AND dsolv43 

is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is MID AND dsolv43 

is HIGH 

THEN 

DiHydrate is 

LOW 

(0.50) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is HIGH AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(0.99) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is HIGH AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(1.00) 
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Rules generated for dihydrate prediction - continued 

IF dsolv65 is HIGH AND Temp is LOW AND rate is LOW AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is LOW AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is MID AND dsolv43 

is LOW 

THEN 

DiHydrate is 

HIGH 

(0.99) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is MID AND dsolv43 

is HIGH 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is HIGH AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(0.50) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is HIGH AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is LOW AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is LOW AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is MID AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is MID AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is HIGH AND 

dsolv43 is LOW 

THEN 

DiHydrate is 

LOW 

(1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is HIGH AND 

dsolv43 is HIGH 

THEN 

DiHydrate is 

LOW 

(0.90) 

 
Dsolv65 was present in the form I rules (section 8.3.1) and is the 3D Bonding 

information content of the solvent molecules. This descriptor offers topological 

information about the solvent molecule based upon its branching and connectivity. 

Rate and temperature were also discussed in the form I rules. However, the high 

dihydrate prediction does not state that a high rate and temperature are required. It 

should be noted that the dihydrate form of CBZ is not a polymorph of CBZ, and 

therefore Ostwald’s Rule of stages[22, 23] does not hold in this instance.  

Dsolv43 is the 3D Randić index of the solvent molecule and is also classed as a 

topological descriptor. In a similar way to dsolv65, this descriptor represents the 

molecular branching and structure of the solvent molecule.[26, 45, 46] The Randić index 

has been reported in the biological and chemical literature[26, 50-52], and it was 

reported that connectivity indices were essential to improve predictive models.[24] As 
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was discussed previously (section 8.3.1 and 7.3.5), the branching and connectivity of 

a molecule may be associated with how it interacts in solution. With highly branched 

solvents perhaps promoting or inhibiting certain molecular interactions. 

When the two experimental conditions and the two descriptors that feature in the 

rules in Table 8.15 are plotted against the dihydrate forming experiments (Figure 

8.8), it becomes clear that on no occasion are the requirements for a high dihydrate 

prediction satisfied based upon the data generated in this research. However, based 

upon the experimental data, this is to be expected. On no occasion was a pure 

dihydrate crystallised. 
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Figure 8.8 Crystallisation solvents plot against normalised rate (blue) , temperature (purple), dsolv65 

(cream) and dsolv43 (green/blue) values. 

 
8.3.5. The Prediction of Solvates 

It has been noted in this research that only the DMSO solvate was formed. However, 

many other solvate forms have been reported in the literature.[32, 38-43] The rules 

presented in Table 8.16 are the same as those reported in section 7.3.5 (PCA best 

set), and contain two solvent descriptors, boiling point and dsolv43.  

 
Table 8.16 Rules generated in FormRules for solvate prediction 

Rules generated for solvate prediction 

IF b.p. is LOW AND dsolv43 is LOW THEN Solvate is LOW (1.00) 

IF b.p. is LOW AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 

IF b.p. is MID AND dsolv43 is LOW THEN Solvate is LOW (1.00) 

IF b.p. is MID AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 

IF b.p. is HIGH AND dsolv43 is LOW THEN Solvate is HIGH (1.00) 

IF b.p. is HIGH AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 
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Both boiling point and dsolv43, which is the 3D Randić index of the solvent 

molecule, have been presented in the previous sections (8.3.3 and 8.3.4) and will 

therefore not be discussed further. 

 

8.3.6. Summary of the Optimised Descriptors 

Ten descriptors featured in this final set of descriptors, with seven of these 

highlighted in the rules generated in FormRules.[6] E_ang, dsolv69 and dsolv76 were 

not mentioned in the rules, but were shown to have an impact upon form II and III 

prediction. This in itself demonstrates how the rules created can be used as a general 

guide for prediction, but that many of the descriptors are working non-linearly in 

tandem to create a successful prediction in INForm.[7] 

 

8.4. Validation of Optimised Set 

As has been carried out in chapters 5 and 7 the model created using the optimised 

descriptors will now be validated. A cross validation set that is made up of 10 % of 

the experimental data was used and also an external validation set. This external 

validation set consists of experimental results generated from crystallisations in two 

previously untested solvents. 

 
It is worth referring back to the conclusions made in chapter 7 about this validation 

set. The two solvents do not cover a wide range of descriptors values and are 

therefore perhaps not the most effective choice as validation solvents. 

 

8.4.1. Cross Validation Results 

The 10 % of experimental data used as the validation set was removed from the 

training set, and the remaining data retrained. The overall average R2 value from 

INForm[7] was reduced from 89.30 % to 75.88 %. This was an expected reduction, as 

a large portion of the data has been removed. 

The results of the cross validation are shown in Table 8.17 and show the model to be 

very successful at predicting the polymorphic outcome of these crystallisation 

experiments. 

The major polymorphic form was correctly predicted for the first eight experimental 

inputs. Only the chlorobenzene input produced an output that appears to be 
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unconfident. This is consistent with the cross validation work in chapters 5 and 7 

sections 5.5.1 and 7.4.1, where the major form was incorrectly predicted. In the 

experimental work carried out, crystallisation from chlorobenzene led to the 

formation of both forms II and III. This prediction suggests that the model is unsure 

as to which form would be produced. A result like this could be useful in an 

industrial setting that strives to consistently crystallise the thermodynamically stable 

form. Clearly mixed products are likely in this solvent, and therefore it should not be 

taken forward for further analysis.  

A mixed product from crystallisation in chloroform was also tested in this validation, 

and it was encouraging to find that the model predicted very similar values for both 

forms II and III.



 

 

Table 8.17 Cross validation results summary 

ANN predicted value 
Solvent Rate    

(L/min) 
Temperature 

(°C) 

Experimental 
result: Major 

form 
crystallised 

Predicted 
result: Major 

form 
predicted Form I Form II Form III Dihydrate Solvate 

Ethanol 15 25 Form III Form III 0.0 0.1 0.8 0.0 0.0 

THF 25 25 Form II Form II 0.0 1.0 0.0 0.3 0.1 

Acetonitrile 15 50 Form III Form III 0.0 0.3 1.0 0.0 0.2 

DMSO 25 25 Solvate Solvate 0.0 0.0 0.3 0.0 0.9 

Aniline 5 50 Form III Form III 0.0 0.1 1.0 0.0 0.0 

Chlorobenzene 5 50 Form III Form III 0.0 0.2 0.3 0.0 0.1 

Toluene 15 75 Form II Form II 0.0 1.0 0.0 0.0 0.0 

Nitromethane 5 25 Form III Form III 0.0 0.0 1.0 0.0 0.0 

Chloroform 25 50 Form II / Form III Form II 0.0 0.6 0.5 0.0 0.0 

 



 

 

8.4.2.  External Validation Results 

Using the same external validation set as in chapters 5 and 7, polymorphic form 

predictions were made for a set of experimental results that have not been used in 

training the model. The results of this analysis are presented in Table 8.18 and show 

that only three of the 12 experiments major polymorphic forms were correctly 

predicted. 

It has been commented upon previously (section 7.4.2) that the distribution of the 

descriptor values for the two external validation solvents is not broad, except for 

those descriptors that are outside of the range used in training. Figure 8.9 shows 

where the ethyl acetate (E) and n-butanol (B) descriptor values are within the range 

of the training descriptor values. 

Figure 8.9 The distribution of the validation solvents descriptor values. E represents the ethyl acetate 

values and B the n-butanol values 

 
As commented upon in section 7.4.2, there are two possible explanations for the poor 

results obtained in this external validation. As many of the descriptor values are 

similar in the validation set, it does not examine the whole scope of the model, and 

perhaps these descriptors are in an area of parameter space where the model struggles 

to make predictions. In the descriptors that do show differing values, at least one of 

the values is outside the range used in the training set. Ideally the validation solvents 

should have been chosen so that a large range of the descriptor space was assessed. 
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Table 8.18 External validation results summary 

ANN predicted value 
Experiment 

number Solvent Rate    
(L/min) 

Temperature 
(°C) 

Experimental 
result: Major 

form 
crystallised 

Predicted 
result: 

Major form 
predicted Form I Form II Form III Dihydrate Solvate 

1 EtOAc 5 25 Form II Form III 0.0 0.0 1.0 0.1 0.2 

2 EtOAc 5 50 Form II Form III 0.0 0.1 1.0 0.0 0.1 

3 EtOAc 25 25 Form II Form III 0.2 0.3 0.9 0.0 0.1 

4 EtOAc 25 50 Form II Form III 0.1 0.3 1.0 0.0 0.1 

5 EtOAc 15 25 Form II Form III 0.0 0.3 1.0 0.0 0.1 

6 EtOAc 15 50 Form II Form III 0.2 0.1 1.0 0.0 0.1 

7 nBuOH 5 25 Form II Form III 0.0 0.1 1.0 0.0 0.2 

8 nBuOH 5 50 Form III Form III 0.0 0.1 1.0 0.0 0.2 

9 nBuOH 25 25 Form III Form III 0.1 0.0 1.0 0.0 0.2 

10 nBuOH 25 50 Form II Form III 0.0 0.1 1.0 0.0 0.2 

11 nBuOH 15 25 Form II Form III 0.0 0.1 1.0 0.0 0.2 

12 nBuOH 15 50 Form III Form III 0.1 0.0 1.0 0.0 0.2 
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8.5. Conclusion of the Final Optimisation Analysis 

Further optimisation of the Corr. and PCA best sets from chapters 5 and 7 was 

carried out in order to generate an improved model for polymorphic form prediction. 

By examining the linear correlations between the two best sets, dsolv74 was removed 

from the PCA best set and replaced with dsolv65 from the Corr. best set. This 

generated the most successful set seen in this research (overall average R2 value of 

84.75 %).  

It was known from the earlier PCA analysis (section 7.4.2) that when the external 

validation was carried out, three of the descriptors in the validation set had values 

outside of the range used in the training. This affected the overall success of the 

validation. Ideally, validation solvents should have been chosen so that the whole 

range of descriptor values were examined, rather than a very limit spaces (as shown 

in Figure 8.9). 

The model produced using the optimised set of descriptors performed very well 

when cross validation was carried out. This therefore suggests that the model could 

accurately predict the major polymorphic form crystallised in a given experiment, 

provided that the descriptor values lie within the range used in the training. Further 

work could be carried out to try and extend the range of descriptor values, and 

determine if the same descriptors can be used. 

The final set of descriptors are dsolv43, dsolv65, dsolv69, dsolv76, d68, d69, d77, 

d84, E_ang and boiling point. 
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9. RESULTS AND DISCUSSION OF ANALYSIS WITH DIFFERENT 

TARGET MOLECULES 

 

 

The ANN methodology based on computational and experimental descriptors was 

developed in the context of carbamazepine crystallisation. As a first step towards 

examining whether the method can be generalised to other systems, and especially to 

determine whether similar physical parameters influence the outcome of their 

crystallisation, two additional polymorphic systems were investigated. Tolbutamide 

(TBA) and 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY) are well 

known polymorphic substances. Both these systems feature a conformationally flexible 

molecule, setting them significantly apart from carbamazepine (CBZ), and their 

polymorphs have sufficiently different X-ray powder diffraction (XRPD) patterns that 

permit straightforward identification of polymorphic form. 

This chapter will first address the performance of the artificial neural network (ANN) 

using only the descriptors highlighted as important in the CBZ work. Subsequently it 

will be assessed whether the principal component analysis (PCA) selection method can 

be used successfully for the different target molecules. 

 

9.1. Analysis of Descriptors Highlighted in CBZ Analysis 

From the research presented in chapter 8, the most successful set of descriptors that 

predicted the polymorphic forms of CBZ are, dsolv43, dsolv65, dsolv69, dsolv76, d68, 

d69, d77, d84, E_ang and boiling point. These descriptors have been calculated for both 

TBA and ROY and will be run in an ANN as a complete set and also using the 

descriptors for the solvents only. 

The aim of this analysis is to provide an insight into how transferable the descriptors are 

between different polymorphic target molecules. Validation data are not available for 

these systems; significant further experimental work would need to be carried out that 

was beyond the scope of this research. However, this analysis may potentially highlight 
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useful descriptors that can form part of a generic model for polymorphic form 

prediction. 

 

9.1.1. TBA Results 

The dataset available for TBA was much smaller than that used in the CBZ analysis, 

comprising of only 33 experimental results (Electronic Appendix, Chapter 9, file 9.1). 

Ideally more data are required, as 33 rows of input data are not really sufficient to 

reliably train an ANN. However, to obtain a rough guide as to whether the descriptors 

might be transferable between the different target molecules, a network was built 

nevertheless. The results are presented in Table 9.1.  

 
Table 9.1 Analysis of the TBA descriptors based upon previous CBZ research.  X denotes the presence of 

the descriptor in the set 

Descriptors 

Best set 
descriptors 
from CBZ 
analysis 

Solvent 
descriptors 

only 

Best set 
descriptors 
from CBZ 
analysis –         

2 forms only 

Solvent 
descriptors 

only  -          
2 forms only 

Dsolv43 X X X X 

Dsolv69 X X X X 

Dsolv76 X X X X 

D68 X  X  

D69 X  X  

D77 X  X  

D84 X  X  

E_ang X  X  

Boiling point X X X X 

Dsolv65 X X X X 

FormRules average R2 (%) 61.94 62.04 73.87 74.01 

INForm average R2 (%) 66.74 -50.21 71.51 11.69 

Overall average R2 (%) 64.34 5.92 72.69 42.85 

 
Although three different forms of TBA were present in the dataset, there was only one 

occurrence of the third form, prohibiting successful training of the ANN. When the data 

for the third form were removed from the set and the model rebuilt using the optimised 

CBZ descriptor set, the overall average R2 values increased. The results in Table 9.1 
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show that by building a model that contained descriptors relating to the TBA molecule, 

rather than just using the solvent descriptors, the results were improved. 

The rules generated for the most successful set are presented in Table 9.2 and Table 9.3 

and show that rate, d68, d77 and dsolv69 are highlighted as important descriptors in 

TBA prediction.  

 
Table 9.2 Rules generated by FormRules for the best set descriptors from CBZ analysis – predicting only 

TBA form I 

Rules for best set descriptors from CBZ analysis – predicting only TBA form I 

--- Rules for property Form I ---   

SubModel:1               IF d68 is LOW AND Rate is LOW THEN Form I is HIGH (0.55) 

IF d68 is LOW AND Rate is HIGH THEN Form I is HIGH (0.58) 

IF d68 is MID AND Rate is LOW THEN Form I is HIGH (0.73) 

IF d68 is MID AND Rate is HIGH THEN Form I is LOW (1.00) 

IF d68 is HIGH AND Rate is LOW THEN Form I is HIGH (1.00) 

IF d68 is HIGH AND Rate is HIGH THEN Form I is HIGH (0.96) 

SubModel:2                                             IF d77 is LOW THEN Form I is HIGH (0.74) 

IF d77 is HIGH THEN Form I is HIGH (1.00) 

 
There is much dispute in the literature over the most stable form of TBA[1-5]. A summary 

of this controversy was already included in section 3.3.3. The experimental analysis 

carried out for this thesis suggests that form I is the most stable, but that it converts 

readily to form II in methanol and ethanol solutions (Table 3.5). If form I were the most 

stable form of TBA, it would be interesting to note that the descriptors found in the form 

I rules overlap with those present in the CBZ form III (thermodynamically most stable 

form) rules (section 8.3.3). 

Table 9.3 presents the form II rules, and once again d68 is present. D68, which is the 

moment of inertia C for the target molecule, was also found in the two most frequently 

occurring forms of CBZ. 
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Table 9.3 Rules generated by FormRules for the best set descriptors from CBZ analysis – predicting only 

TBA form II 

 
Rules for best set descriptors from CBZ analysis – predicting only TBA form II 

--- Rules for property Form II ---   

SubModel:1                                               IF d68 is LOW THEN Form II is LOW (1.00) 

IF d68 is MID THEN Form II is HIGH (1.00) 

IF d68 is HIGH THEN Form II is LOW (0.99) 

SubModel:1           IF Rate is LOW AND dsolv69 is LOW THEN Form II is LOW (1.00) 

IF Rate is LOW AND dsolv69 is HIGH THEN Form II is LOW (0.81) 

IF Rate is HIGH AND dsolv69 is LOW THEN Form II is HIGH (1.00) 

IF Rate is HIGH AND dsolv69 is HIGH THEN Form II is LOW (0.91) 

 
Although the results are not as successful for TBA as they were in the CBZ analysis in 

chapter 8, it does show that potentially a reasonable model can be made using the same 

descriptors. For a truly reliable model to be built, more training data for TBA are 

required, but based upon the relatively small dataset the set of descriptors optimised in 

the CBZ analysis appear to be transferable to other target molecules, suggesting that 

most salient properties are covered by this set. However, the results also show that it is 

necessary to include some target molecule-specific descriptors, as the solvent descriptors 

alone can not successfully predict polymorphic form. 

 
9.1.2. ROY Results 

In a similar way to the TBA analysis, the molecular descriptors for ROY were calculated 

and an ANN built based upon the optimised descriptor set in the CBZ analysis (section 

8.3).  

34 rows of experimental data for ROY were used in the training, with only three of these 

not producing purely the thermodynamically stable form Y. ROY was initially chosen 

for this work due to the high number of polymorphic forms that can be readily 

crystallised. However, under the controlled conditions of this polymorph screen (results 

of which may be found in Electronic Appendix, Chapter 9, file 9.2) the most stable form 

was crystallised on most occasions. 

When the optimised descriptor set from the CBZ analysis were applied to the ROY 

dataset, Table 9.4 shows the results of the FormRules[6] and INForm[7] analysis. 
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Table 9.4 Analysis of the ROY descriptors based upon previous CBZ research. X denotes the presence of 

the descriptor in the set 

 

Descriptors Best set descriptors 
from CBZ analysis Solvent descriptors only 

Dsolv43 X X 

Dsolv69 X X 

Dsolv76 X X 

D68 X  

D69 X  

D77 X  

D84 X  

E_ang X  

Boiling point X X 

Dsolv65 X X 

FormRules average R2 (%) 99.77 9.44 

INForm average R2 (%) 66.61 98.13 

Overall average R2 (%) 83.19 53.79 

 
It can be seen in Table 9.4 that when both the ROY and solvent descriptors are used, a 

high overall average R2 value was achieved. It does appear as if the INForm[7] results for 

the solvent-only analysis have performed extremely well. However, all of the test set 

used had the same experimental value, which was also the major form produced. 

Perhaps the results of FormRules[6] give a better insight into the ability of the descriptors 

used to predict polymorphic form. When the rules for the model that used both ROY and 

solvent descriptors are examined (Table 9.5), it is clear that it is the ROY descriptors 

that are of importance. The rules highlight rate, temperature, E_ang and d69 as valuable 

descriptors in the predictions of the Y and R forms. 

 
 Table 9.5 Rules generated by FormRules for the best set descriptors from CBZ analysis – predicting 

ROY, Y and R forms 

Rules for best set descriptors from CBZ analysis – predicting ROY, Y and R forms 

--- Rules for property R ---   

SubModel:1   

IF E_ang is LOW AND Temp is LOW AND rate is LOW THEN R is LOW (1.00) 

IF E_ang is LOW AND Temp is LOW AND rate is HIGH THEN R is LOW (1.00) 
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Rules for best set descriptors from CBZ analysis – predicting ROY, Y and R forms – 

continued 

IF E_ang is LOW AND Temp is MID AND rate is LOW THEN R is LOW (1.00) 

IF E_ang is LOW AND Temp is MID AND rate is HIGH THEN R is LOW (1.00) 

IF E_ang is LOW AND Temp is HIGH AND rate is LOW THEN R is HIGH (0.57) 

IF E_ang is LOW AND Temp is HIGH AND rate is HIGH THEN R is LOW (1.00) 

IF E_ang is HIGH AND Temp is LOW AND rate is LOW THEN R is HIGH (1.00) 

IF E_ang is HIGH AND Temp is LOW AND rate is HIGH THEN R is HIGH (0.91) 

IF E_ang is HIGH AND Temp is MID AND rate is LOW THEN R is LOW (1.00) 

IF E_ang is HIGH AND Temp is MID AND rate is HIGH THEN R is LOW (1.00) 

IF E_ang is HIGH AND Temp is HIGH AND rate is LOW THEN R is LOW (0.92) 

IF E_ang is HIGH AND Temp is HIGH AND rate is HIGH THEN R is LOW (1.00) 

SubModel:2   

IF d69 is LOW AND Temp is LOW THEN R is HIGH (0.55) 

IF d69 is LOW AND Temp is HIGH THEN R is LOW (1.00) 

IF d69 is HIGH AND Temp is LOW THEN R is LOW (0.70) 

IF d69 is HIGH AND Temp is HIGH THEN R is LOW (0.80) 

--- Rules for property Y ---   

SubModel:1   

IF E_ang is LOW AND Temp is LOW AND rate is LOW THEN Y is HIGH (1.00) 

IF E_ang is LOW AND Temp is LOW AND rate is HIGH THEN Y is HIGH (0.98) 

IF E_ang is LOW AND Temp is MID AND rate is LOW THEN Y is HIGH (0.89) 

IF E_ang is LOW AND Temp is MID AND rate is HIGH THEN Y is HIGH (0.89) 

IF E_ang is LOW AND Temp is HIGH AND rate is LOW THEN Y is LOW (0.64) 

IF E_ang is LOW AND Temp is HIGH AND rate is HIGH THEN Y is LOW (1.00) 

IF E_ang is HIGH AND Temp is LOW AND rate is LOW THEN Y is LOW (1.00) 

IF E_ang is HIGH AND Temp is LOW AND rate is HIGH THEN Y is LOW (1.00) 

IF E_ang is HIGH AND Temp is MID AND rate is LOW THEN Y is HIGH (0.89) 

IF E_ang is HIGH AND Temp is MID AND rate is HIGH THEN Y is HIGH (0.89) 

IF E_ang is HIGH AND Temp is HIGH AND rate is LOW THEN Y is LOW (0.95) 

IF E_ang is HIGH AND Temp is HIGH AND rate is HIGH THEN Y is LOW (1.00) 

SubModel:2   

IF d69 is LOW AND Temp is LOW THEN Y is HIGH (1.00) 

IF d69 is LOW AND Temp is HIGH THEN Y is HIGH (1.00) 

IF d69 is HIGH AND Temp is LOW THEN Y is HIGH (1.00) 

IF d69 is HIGH AND Temp is HIGH THEN Y is HIGH (0.97) 
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When the normalised descriptor values of rate, temperature and E_ang are plotted 

against the R form producing experiments (Figure 9.1), it can be observed that the rules 

generated are based upon the descriptor values explicitly.  
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Figure 9.1 Normalised descriptor values plot for R form producing experiments. Rate (blue), temperature 

(purple) and E_ang (green)  

 
It is interesting that the highest levels of the R form are crystallised from toluene, which 

has the highest overall E_ang value of all the solvents used. Perhaps with more 

experimental data a more reliable and potentially informative model could be generated. 

 
9.1.3. Conclusion of Highlighted Descriptor Analysis 

Overall, for both TBA and ROY, the models produced when the optimised descriptors 

from the CBZ analysis are used, perform well. Both TBA and ROY datasets require 

more systematic experimental work to be carried out in order to conclusively assess 

whether these descriptors are truly transferable. However, based upon the rough test 

using a small dataset, it does appear as if using a selection of both target molecule and 

solvent descriptors a predictive model for polymorphic form can be produced. 

 

9.2. Descriptor Selection using PCA 

The most efficient method of data reduction was using PCA as demonstrated in chapter 

7. A scree plot for each molecule was generated, which highlights the number of 

components that contain most of the variation in the dataset. By selecting the descriptors 



 

 308 

with the most significant loading values from the highlighted principal components, a 

reduced descriptor set was established.  

This method generated an overall average R2 value of 84.31 % for CBZ after 

optimisation, but an initial value of 82.49 % when the scree plot analysis method was 

employed. It was hoped that this straightforward data reduction and descriptor selection 

method could be used for other polymorphic systems as a rapid method for producing a 

model that could predict polymorphic form. 

 

9.2.1. TBA Results 

Seven components were calculated for the TBA dataset, with the scree plot presented in 

Figure 9.2 and the results in Electronic Appendix, Chapter 9, file 9.3. 

It can be seen from the scree plot that components six and seven do not contain a large 

amount of information from the dataset, but because of the difference between 

component five and six, components 1-6 were analysed using the method outlined in 

chapter 7. 

 

Figure 9.2 Scree plot based upon the TBA PCA data 

 
The most positively and negatively loaded descriptors from each principal component 

will be used as a descriptor selection method for use in a set for ANN analysis (7.13). 

Table 9.6 details the descriptors to be used in this analysis. 
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Table 9.6 The most positively and negatively loaded descriptors taken from the TBA principal 

components 

Principal 
component 

Most positively 
loaded 

descriptor 

Second most 
positively 

loaded 
descriptor 

Most 
negatively 

loaded 
descriptor 

Second most 
negatively 

loaded 
descriptor 

1 Dsolv51 Dsolv28 Dsolv20 E_strain 

2 ASA ASA_H D77 PM3_Eele 

3 D86 Dsolv38 dP Dsolv67 

4 LogP 
Henry’s law 

constant 

Dielectric 

constant 
Dsolv3 

5 Dsolv4 Dsolv76 Dsolv13 Activity 

6 Solubility Dsolv13 activity Dsolv76 

 
It should be noted that dsolv13, dsolv76 and activity are featured on two occasions in 

Table 9.6 and therefore will only be included once in the subsequent analysis. The 

results of which are shown in Table 9.7. 

 
Table 9.7 Results of the PCA data reduction analysis. The number in brackets is the number of descriptors 

used in the ANN 

 
It can be seen in Table 9.7 that by using the two most positively and negatively loaded 

descriptors from components 1-5, PC1-5 (20), the highest overall average R2 value was 

achieved. The analysis in section 9.1.1 indicated that the results improved when the data 

for the third polymorph were removed. This generated the results presented in Table 9.8.  

 
PC1-6  

(21) 

PC1-6  

(12) 

PC1-5  

(20) 

PC1-5   

(10) 

PC1-4  

(16) 

Form Rules average R2 (%) 54.82 52.27 54.82 52.27 54.82 

INForm average R2 (%) 77.26 37.06 80.34 73.30 78.12 

Overall average R2 (%) 66.04 44.67 67.58 62.79 66.47 

      

 
PC1-4  

(8) 

PC1-3  

(12) 

PC1-3  

(6) 

PC1-2  

(8) 

PC1-2   

(4) 

Form Rules average R2 (%) 52.27 52.27 52.27 47.44 51.91 

INForm average R2 (%) 77.55 71.83 68.95 -462.46 64.58 

Overall average R2 (%) 64.91 62.05 60.61 -207.51 58.25 
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Analysis of the descriptors that featured in the rules (rate, dsolv3 and dsolv28) was also 

carried out and its outcomes are summarised in Table 9.8. 

Table 9.8 Results of the PCA data reduction analysis when the data for the third polymorph is removed. 

The number in brackets is the number of descriptors used in the ANN 

 

 

 

 

 

The results of the PCA data reduction technique have shown that by selecting the two 

most positively and negatively loaded descriptors from the first five components a good 

model can be produced that predicts the polymorphic outcomes of TBA crystallisations. 

In contrast, just as observed for CBZ in section 8.2 the results of using the rule only 

descriptors showed that other descriptors need to be present in order to generate a 

successful prediction.  

The 20 descriptors in the most successful set for TBA were classified according to 

overall physical property in Figure 9.3. Many of the descriptors are bulk or empirical 

solvent properties (green box), while others relate to molecular interactions of either the 

TBA or the solvent molecule. 

Figure 9.3 Descriptors in the most successful set grouped based upon their physical meaning 

 PC1-5  (20) –     
2 forms only 

PC1-5  (20) – 
Rule only 

descriptors 
Form Rules average R2 (%) 80.77 80.77 

INForm average R2 (%) 94.89 -44.90 

Overall average R2 (%) 87.83 17.94 
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It is interesting to compare the final descriptor set identified in the CBZ analysis with 

this set of descriptors and observe the overlapping and similar descriptors. Table 9.9 

groups the descriptors based upon their physical property class and shows both the 

descriptors from the PCA work and those in the final CBZ set. 

 
Table 9.9 Descriptors grouped based upon their physical meaning 

Physical Meaning of Descriptor TBA PCA 
descriptor set 

CBZ descriptor 
set 

Solvent Descriptors: Molecular Surface Area Dsolv76 Dsolv69, dsolv76 

Solvent Descriptors: Partial Charges Dsolv76 Dsolv76 

Solvent Descriptors: Molecular Interactions Dsolv67, dsolv76 

Dsolv43, dsolv65, 

dsolv76, Boiling 

point 

Solvent Descriptors: Geometry Dsolv67 Dsolv69 

Solvent Descriptors: Connectivity and 

Branching 

Dsolv20, dsolv28, 

dsolv38, dsolv51 
Dsolv43, dsolv65, 

Solvent Descriptors: Bulk and empirical 

properties 

Dsolv3, dsolv4, 

dsolv13, dP, logP, 

activity, Henry’s law 

constant, dielectric 

constant 

 

Solvent Descriptors: Polarity dielectric constant  

CBZ Descriptors: Molecular Surface Area 
ASA, ASA_H, d77, 

d84 
D69, d77, d84 

CBZ Descriptors: Partial Charges D77, d84 D77, d84 

CBZ Descriptors: Molecular Interactions 

ASA, ASA_H, d77, 

d84, E_strain, 

PM3_Eele 

D68, d77, d84,  

E_ang 

CBZ Descriptors: Geometry E_strain, PM3_Eele D68, d69, E_ang 

 
 
There are three overlapping descriptors between the two sets, dsolv76, d77 and d84. 

These descriptors represent the partial negative surface area of the solvent (dsolv76) and 

the partial and fractional negative surface area of the TBA molecule (d77 and d84) 

detailed in appendix section 12.2. 

Overall the PCA data reduction technique successfully reduces the descriptors and 

allows predictions to be made successfully. In order to improve the reliability of this 
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method, further experimental data would be needed, as the current model has very little 

training data. However, the work carried out so far already indicates that this descriptor 

selection technique may generally allow a predictive model to be built very rapidly.  

 
9.2.2. ROY Results 

Eleven components were calculated for the ROY dataset (Electronic Appendix, Chapter 

9, file 9.4), with the scree plot presented in Figure 9.4. 

From the plot it can be seen that the elbow is at component 6, therefore components 1-6 

were analysed using the method outlined in chapter 7. 

 

Figure 9.4 Scree plot based upon the ROY PCA data 

 
Table 9.10 contains the two most positively and negatively loaded descriptors in 

components 1-6. 
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Table 9.10 The most positively and negatively loaded descriptors taken from the ROY principal 

components 

Principal 
component 

Most positively 
loaded 

descriptor 

Second most 
positively 

loaded 
descriptor 

Most 
negatively 

loaded 
descriptor 

Second most 
negatively 

loaded 
descriptor 

1 Dsolv47 logP 
Dielectric 

constant 
dP 

2 D81 D82 D84 ASA_H 

3 Dsolv57 Dsolv61 AM1_IP Viscosity 

4 PM3_LUMO PM3_IP PM3_dipole PM3_Eele 

5 MNDO_Eele MNDO_HF Std_dim1 MNDO_IP 

6 
Gutmann donor 

number 
Dsolv80 Dsolv51 Freezing point 

 
In a similar way to the TBA analysis, these descriptors were used as the basis for ANN 

analysis. Table 9.11 summarises the results of the PCA descriptor reduction analysis. 

 
Table 9.11 Results of the PCA data reduction analysis. The number in brackets is the number of 

descriptors used in the ANN 

 
It can be seen in Table 9.11 that most of the sets of descriptors effectively predict the 

polymorphic outcome of the ROY crystallisation experiments, with the most successful 

set being PC1-4 (8). This set contained only the most positively and negatively loaded 

descriptors from components 1-4.  

When the rules from this set were examined, only temperature and d84 featured. A 

network was run using only these two descriptors and generated a reduced overall 

 
PC1-6  

(24) 

PC1-6  

(12) 

PC1-5  

(20) 

PC1-5   

(10) 

PC1-4  

(16) 

Form Rules average R2 (%) 93.11 93.11 92.54 96.12 95.55 

INForm average R2 (%) 90.19 89.87 98.67 89.29 89.67 

Overall average R2 (%) 91.65 91.49 95.61 92.71 92.61 

      

 
PC1-4  

(8) 

PC1-3  

(12) 

PC1-3  

(6) 

PC1-2  

(8) 

PC1-2   

(4) 

Form Rules average R2 (%) 96.11 95.55 96.11 95.55 96.11 

INForm average R2 (%) 99.42 85.03 97.99 98.67 67.11 

Overall average R2 (%) 97.77 90.29 97.05 97.11 81.61 
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average R2 value. However, even though this network didn’t perform as well the PC1-4 

(8) set, as it was still very successful. The results of this analysis are presented in Table 

9.12. 

 
Table 9.12 The descriptors that featured in the rules of PC1-4 (8) 

Set Descriptors 
FormRules 
average R2 

(%) 

INForm 
average R2 

(%) 

Overall 
average R2 

(%) 
PC1-4 (8) rule 

only descriptors 
D84, Temp 96.11 98.04 97.08 

 
The eight descriptors in the most successful set have been grouped in Figure 9.5 based 

on the classes of physical properties they represent. They are also shown in Table 9.13 

next to the best sets from the CBZ and TBA analysis. 

 

Figure 9.5 ROY PCA descriptors grouped based on their physical meaning 

 
The majority of the descriptors in this set are ROY molecular descriptors, with only one 

bulk property and two branching and connectivity values for the solvent. 

The most interesting feature of this set is the presence of d84, the fractional partial 

negative surface area of the ROY molecule (discussed in section 8.3.3). D84 features in 

the final sets for CBZ, TBA and ROY. This descriptor was calculated for the target 

molecules in the different solvent force fields, therefore the variation between each value 

is very subtle. This perhaps suggests that it is the slight changes in molecular geometry 
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in different solvents that is an important factor in the direction of which polymorphic 

form is crystallised. 

Table 9.13 shows the descriptors that feature in the best sets for CBZ, TBA and ROY. 

As well as the presence of d84 in all three sets, dielectric constant is present in both the 

ROY and TBA sets. 

 
Table 9.13 Descriptors grouped based upon their physical meaning 

Physical Meaning of 
Descriptor 

ROY PCA 
descriptor set 

TBA PCA descriptor 
set 

CBZ 
descriptor set 

Solvent Descriptors: 
Molecular Surface Area 

 Dsolv76 
Dsolv69, 
dsolv76 

Solvent Descriptors: Partial 
Charges 

 Dsolv76 Dsolv76 

Solvent Descriptors: 
Molecular Interactions 

Dsolv47, 
dsolv57 

Dsolv67, dsolv76 

Dsolv43, 
dsolv65, 
dsolv76, 

Boiling point 
Solvent Descriptors: 

Geometry 
 Dsolv67 Dsolv69 

Solvent Descriptors: 
Connectivity and Branching 

Dsolv47, 
dsolv57 

Dsolv20, dsolv28, 
dsolv38, dsolv51 

Dsolv43, 
dsolv65, 

Solvent Descriptors: Bulk 
and empirical properties 

Dielectric 
constant 

Dsolv3, dsolv4, 
dsolv13, dP, logP, 

activity, Henry’s law 
constant, dielectric 

constant 

 

Solvent Descriptors: 
Polarity 

 dielectric constant  

CBZ Descriptors: Molecular 
Surface Area 

D81, d84 ASA, ASA_H, d77, d84 D69, d77, d84 

CBZ Descriptors: Partial 
Charges 

D81, d84 D77, d84 D77, d84 

CBZ Descriptors: Molecular 
Interactions 

D81, d84, 
PM3_dipole, 

AM1_IP, 
PM3_LUMO 

ASA, ASA_H, d77, 
d84, E_strain, 

PM3_Eele 

D68, d77, d84,  
E_ang 

CBZ Descriptors: Geometry 
PM3_dipole, 

AM1_IP, 
PM3_LUMO 

E_strain, PM3_Eele 
D68, d69, 

E_ang 

CBZ Descriptors: Polarity PM3_dipole   

 

Using PCA to reduce the number of descriptors and then running an ANN generates a 

successful predictive model for the ROY polymorphic data. Many of the crystallisations 

in this analysis led to the formation of the same polymorphic form, therefore in order to 

interrogate the model further, additional crystallisation experiments would need to be 

carried out, for two reasons. The first reason is to introduce other polymorphic forms to 
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the model, and the second to increase the dataset so that a more reliable predictive model 

can be created. 

 
9.2.3. Summary 

The PCA data reduction technique has been applied to two different polymorphic target 

molecules and successfully generated a predictive model. Although there were very little 

training data available for these two systems, the results suggest that this descriptor 

selection technique is generically applicable and successful. 

By generating a scree plot using the PCA data, the most important components can be 

determined. The descriptors can then be selected from these components based upon 

their loading values. Ten networks were run for each molecule in this research, in order 

to fully optimise the model based upon the descriptors selected. 

Overall, by using PCA the most useful descriptors for predicting the polymorphic form 

outcome of a target molecule can be identified. When these descriptors are used in an 

ANN, a predictive model can be built. More experimental data would increase the 

reliability of the models and the conclusions drawn from them.  

 

9.3. Overall Conclusions and Summary of Chapter 

This chapter has presented one set of descriptors that may be transferable across 

different polymorphic target molecules and one method of descriptor selection.  

The descriptor set that was generated through the CBZ analysis was successfully applied 

to both TBA and ROY. Models were built for each molecule using these descriptors, 

generating overall average R2 values of 72.69 % for TBA and 83.19 % for ROY. 

Although not as successful as the CBZ results (84.75 %), as an immediate set of 

descriptors that could be used to build a predictive model for another polymorphic target 

molecule, the results are very good. 

The PCA descriptor reduction technique demonstrates an effective method for selecting 

descriptors that will generate a successful predictive ANN model. Although only one 

common descriptor was present in the sets of each molecule (d84), the descriptors 

displayed similar physical meanings across each model. The overall average R2 values 
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generated in this analysis were higher than those observed in the analysis with the CBZ 

descriptors, at 87.83 % for TBA and 97.77 % for ROY.  

This chapter has successfully applied a set of descriptors and a descriptor selection 

method to two different polymorphic target molecules. More experimental data would 

be required in order to improve the reliability of these models. However, the analysis has 

proved the concept of transferring a descriptor set and a descriptor selection method to 

other target molecules. 
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10. CONCLUSIONS 
 

 

The majority of the work described in this thesis focussed on strategies for adequately 

removing redundancy in the information covered by the descriptor sets. The overall aim 

was to generate artificial neural networks (ANNs) based on a descriptor set that is on 

one hand small enough to permit the derivation of plausible hypothetical relationships 

between physical properties and experimentally observed behaviour, yet on the other 

capable of predicting the polymorphic outcome of a given crystallisation experiment 

with high probability. 

Subjective individual examination (‘manual analysis’) of descriptor relevance was 

carried out alongside partial least squares (PLS) and principal component analysis 

(PCA) , which are more quantitative.. The manual approach and the PCA methods 

selected the most successful sets of descriptors for polymorphic form prediction. PLS 

was less effective at identifying descriptors that could build a successful predictive 

model in an ANN. 

This chapter will provide a short summary for each of the previous results chapters and 

then will present the overall conclusions of this work  

 

10.1. Manual Analysis  

An optimised model comprising of seven descriptors was determined using the manual 

data reduction techniques discussed in chapter 8. These seven descriptors were dsolv57, 

dsolv65, dsolv71, dsolv78, MNDO_dipole, E_vdw and gutmann donor number, which 

represent a mixture of solute and solvent properties (detailed in appendix section 12.2 

and also in section 8.3). 

These descriptors were determined by calculating the linear correlation coefficients of 

the whole dataset. All uncorrelated descriptors and commonly one descriptor from each 

correlated cluster were retained. However, as the highly correlated threshold was set at ± 

0.8 – 1, in one instance a very large cluster was generated. From this, 7 descriptors were 

retained. This reduced the descriptor set size to 40 parameters. 
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Analysis of these 40 descriptors was carried out using a variety of inspection techniques 

(discussed in chapter 5), eventually generating an optimised set of seven descriptors that 

could predict the polymorphic form of CBZ crystallisation experiments. 

Cross validation analysis was carried out using 10 % of the data used in training. The 

model was rebuilt without these experiments and interrogated to predict the major 

polymorphic form obtained by crystallisation. This set of descriptors successfully 

predicted the major polymorphic form in 79 % of the experiments tested. When two 

unknown solvents were used as further validation of the model, seven out of twelve of 

the experimental products could be predicted.  

The model created from these seven descriptors can successfully predict the major 

polymorphic form within the experimental space used in the training for a CBZ 

molecule. 

 

10.2. Partial Least Squares Analysis 

The use of PLS to reduce the dataset was effective, but the identified descriptors did not 

build a predictive ANN model. It was noted in previous studies that PLS can be more 

successful with larger models, in which more importance is placed upon the information 

across the whole dataset and not upon individual variables[1]. Perhaps if the dataset had 

been much larger, PLS could have been a more effective tool. 

 

10.3. Principal Component Analysis 

PCA scree plots efficiently identified tight sets of descriptors that covered most of the 

relevant parameter space. By using the loading values associated with each descriptor in 

a component, the most influential descriptors were identified. Analysis of the two most 

positively and negatively loaded descriptors in each component, highlighted as 

informative from the scree plot, were analysed in different combinations. Overall this 

descriptor selection method was highly effective and should plausibly be transferable to 

other polymorphic systems. 

This PCA method of descriptor selection generated an optimised set of descriptors for 

CBZ polymorphic form prediction when a model was built in an ANN. The most 

successful model was built using ten descriptors, dsolv43, dsolv69, dsolv74, dsolv76, 
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d68, d69, d77, d84, E_ang and boiling point. Similarly to the optimised set in the manual 

analysis work, there is a mixture of solvent and solute descriptors covering a range of 

different properties (discussed in chapter 7 section 7.3). 

Cross validation analysis showed that this set of descriptors successfully predicted the 

major polymorphic form with 78 % success. However, when the external validation was 

carried out, the model was only able to predict the major polymorphic form crystallised 

on three occasions. This poor result suggested that perhaps the model needed to be 

optimised further, or that the external validation solvents poorly represented the range of 

descriptor values used in the training. A discussion of this was presented in sections 

5.5.2 and 7.4.2, and clearly shows that ethyl acetate and n-butanol, the two validation 

solvents used, had very similar descriptor values and on a number of occasions their 

values were outside of the global range used in training. 

The model created using PCA as a descriptor selection tool can predict the major 

polymorphic form of CBZ crystallisation experiments within the global range of 

descriptor values used within the training set. 

 

10.4. Final Combined Optimisation 

As both the manual analysis technique and the PCA method both produced good 

predictive models, further analysis was carried out in order to optimise the descriptor set 

further.  

Linear correlation coefficients between the two sets were calculated and by exchanging 

descriptors between the sets, an improved model was built.  

An assessment of the predictive capabilities of all the descriptors in the two sets was 

made, with no improvement in prediction observed. 

Classifying descriptors according to their physical meaning did not provide an avenue 

towards more reliable prediction of polymorphic outcomes, but suggested that many of 

the descriptors work in tandem to produce a successful ANN model. 

Using knowledge gleaned from the poor external validation of the PCA set, those 

descriptors that were outside of the global range used in the training could be exchanged 

and removed in order to assess the effect on prediction. However, no improvements in 

prediction were observed. These improvements resulted in polymorphic form prediction 
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with 88.9 % success in cross validation experiments. External validation was less 

successful for similar reasons as explained in the context of the PCA strategy: the 

descriptor values of the solvent involved were very similar, except for those found 

outside the global range used in the training. This suggests that these were not the most 

suitable validation solvent candidates. 

The most successful set of descriptors for CBZ polymorphic form prediction is dsolv43, 

dsolv65, dsolv69, dsolv76, d68, d69, d77, d84, E_ang and boiling point. 

 

10.5. Overall Conclusions drawn from the investigation of the 

carbamazepine system 

Chapters 5, 6, 7 and 8 demonstrated the optimisation process that has established a set of 

CBZ and solvent descriptors that can predict the polymorphic form of CBZ in 

combination with an ANN. Ten descriptors have been informative, dsolv43, dsolv65, 

dsolv69, dsolv76, d68, d69, d77, d84, E_ang and boiling point, with their meanings 

discussed in section 8.3 and briefly in Table 10.1. 
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Table 10.1 Summary of the descriptors involved in the final set 

Form 
predicted Descriptor(s) Definition(s) 

I 

Dsolv65 

Rate 

Temperature 

3D bonding information content (order 2) of the solvent 
molecule 

Rate of nitrogen blown onto sample (L/min) 

Temperature at which the crystallisations occurred 

II D69 Molecular surface area of the CBZ molecule 

II Rate Rate of nitrogen blown onto sample (L/min) 

II D68 Moment of inertia C of the CBZ molecule 

III D84 
FNSA-1, fractional partial negative surface area of the CBZ 
molecule (PNSA-1/total molecular surface area) 

III 
Boiling point 

D77 

Literature value boiling point of the solvent molecule 

PNSA-3, atomic charge weighted partial negative surface 
area of the CBZ molecule 

III Rate Rate of nitrogen blown onto sample (L/min) 

III D68 Moment of inertia C of the CBZ molecule 

Dihydrate 

Dsolv65 

Rate 

Temperature 

Dsolv43 

3D bonding information content (order 2) of the solvent 
molecule 

Rate of nitrogen blown onto sample (L/min) 

Temperature at which the crystallisations occurred 

3D-Randić index (order 0) of the solvent molecule 

Solvate 
Boiling point 

Dsolv43 

Literature value boiling point of the solvent molecule 

3D-Randić index (order 0) of the solvent molecule 

Not in a 
Rule 

E_ang Angle bend potential energy of the CBZ molecule 

Not in a 
Rule 

Dsolv76 
PNSA-2, total charge weighted partial negative surface 
area of the solvent molecule 

Not in a 
Rule 

Dsolv69 Molecular surface area of the solvent molecule 

 

Many of these descriptors describe the size, shape and charges on both the solvent and 

solute molecules, offering insight into the differing interactions between the molecules 

in solution. The successful optimisation of these descriptors based largely on 

mathematical selection processes rather than by using previously considered properties 

adds value to the model built. Previous literature offers many examples of how 

solvent-solute interactions are vital in polymorphic crystallisation[2-8], which therefore 

strengthens the use of the descriptors in the final model. 

From the ten descriptors featured in this final set, three of them were not mentioned in 

the rules created by FormRules.[9] These descriptors were E_ang, dsolv69 and dsolv76. 

When detailed analysis was conducted, they were found to have an impact upon the 
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predictions of forms II and III. This work demonstrated how the rules generated in 

FormRules[9] can be used as a general guide for prediction, but that many of the 

descriptors work in tandem to create a successful prediction in INForm.[10]  

The use of the ANN has been vital in the success of this predictive model. The 

relationships between the descriptors and the polymorphic outputs are not linear, and it 

is the highly intercorrelated nature of the descriptors that has lead to the successful 

predictive models in the ANN. 

Overall, there are a number of different conclusions that can be made from this research. 

An optimised set of descriptors for CBZ polymorph prediction has been generated. By 

using the same validation methods as in previous chapters, the major polymorphic form 

was predicted for 88.9 % of the cross validation experiments. The external solvent 

validation was again not successful. However, as has been discussed, perhaps the 

solvents were too similar and did not represent a variety of descriptor properties within 

the global range used in the training of the model. 

This research has not only determined a set of descriptors for CBZ polymorph 

prediction, but also has discovered an effective method for rapid descriptor selection that 

can lead to a predictive model in an ANN. 

By using PCA results, descriptors that can effectively predict the polymorphic form of 

crystallisation experiments when placed into an ANN can be uncovered. This was a 

highly effective descriptor selection technique, which was transferred to other 

polymorphic molecules (results presented in chapter 9). 

 

10.6. Conclusions from analysis of TBA and ROY systems 

Both the set of descriptors determined in the CBZ analysis and also the PCA method of 

data reduction were tested on two different polymorphic systems, tolbutamide and 

5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (TBA and ROY 

respectively). This analysis was carried out in order to determine whether the descriptors 

that led to a successful CBZ predictive model were transferable to other polymorphic 

systems, or whether the descriptor selection method using PCA was transferable as a 

method. 
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The descriptor set optimised using CBZ was successfully applied to both TBA and 

ROY, generating overall average R2 values of 72.69 % for TBA and 83.19 % for ROY. 

Although these results are not as successful as the CBZ results (84.75 %), a predictive 

model can be created very quickly using this descriptor set. This descriptor set might 

create a model that is fit for purpose if a rough guide to the experimental space in which 

the most stable form would be crystallised was sought.  

The use of PCA results to select descriptors that can lead to a successful predictive ANN 

model was very effective in the CBZ analysis. When all of the descriptor data for both 

TBA and ROY was subject to PCA, a similar selection technique was employed. The 

overall average R2 values generated in this analysis were higher than those observed in 

the analysis with the CBZ descriptors, at 87.83 % for TBA and 97.77 % for ROY. These 

results suggest that this is a highly effective method of descriptor selection, and when 

placed into an ANN, can predict the polymorphic form of a target molecule. 

Only one common descriptor was observed in the sets for all three molecules, d84. 

However, when the descriptor meanings for these three sets were examined (Table 9.3), 

many similarities were displayed. 

Both the set of descriptors determined in the CBZ analysis and also the PCA selection 

technique were successfully applied to different polymorphic target molecules. Ideally, 

more training data is required to make more firm conclusions. However, this analysis 

proved the concept of a transferable descriptor set, and also an effective selective 

method. 

 

10.7. Summary of Conclusions 

A predictive model for CBZ crystallisation experiments has been established. By 

reducing the number of descriptors using a variety of different techniques, an ANN 

model has been built that can predict the crystallisation product of CBZ experiments. 

Ten descriptors have been determined as the most important to this prediction, which are 

dsolv43, dsolv65, dsolv69, dsolv76, d68, d69, d77, d84, E_ang and boiling point.  

These descriptors appear to be transferable to other polymorphic target molecules and 

would allow a rapid predictive model to be built. The use of PCA to select specific 

descriptors for the prediction of a different polymorphic target molecule was also a 
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successful method. Although only carried out with two small datasets, the results show 

this selection technique to be very promising. 

Ideally more experimental data for each polymorphic target molecule would improve the 

reliability of the model generated in the ANN. However, based upon the research 

presented in this thesis, the use of molecular and bulk descriptors related to both the 

solute and solvent molecules can predict the major polymorphic form of a crystallisation 

experiment.  
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11. FURTHER WORK 

 

 

 

The presented research clearly indicates that the concept of combining calculated 

molecular descriptors with experimental crystallisation data is a viable avenue to the 

predictions of polymorphic outcomes with artificial neural network (ANN). To 

optimise the approach further and improve the reliability of the predictions, a number 

of additional steps could be taken. 

Ideally, the user would want to build a model by doing as few experiments as 

possible and subsequently use the model to design their future experiments. In order 

to achieve this, a reliable set of descriptors needs to be established that is transferable 

between different polymorphic target molecules. 

The descriptors set out by the carbamazepine (CBZ) analysis were successfully 

transferred to both 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile 

(ROY) and tolbutamide (TBA). However, a number of steps may be taken to ensure 

the most informative descriptors are transferred. 

Obtaining more data for training this transferrable set is essential in order to gather as 

much information for use in the ANN as possible. The literature provides a number 

of examples of ANNs being trained with over 300 rows of data[1-4], thus highlighting 

the potential limitations of the model presented in this thesis. However, its value 

should not be dismissed as there are also examples of much less data being used.[5-7] 

With a larger dataset for training, the feature selection methods (PCA and PLS) 

would need to be reanalysed. Perhaps with a larger dataset the PLS analysis may be 

more successful at selecting descriptors that can lead to a predictive model. Ideally 

the availability of a second large dataset for a different polymorphic target molecule 

would allow the validation of the transferability of the model. 

Generally, more datasets are needed to assess whether the ANN-based predictive 

method is universally transferrable. 

An assessment of different theory levels used in the geometry optimisation in the 

initial stages of the analysis should be made. Perhaps the use of such high level 

calculations is not required, and would make the method more accessible to the user 

if the modelling process was simplified. 
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There are also many different components in an ANN. This research attempted to 

optimise the descriptors not the model architecture. Further work into the use of 

different transfer functions and different numbers of hidden layers would be highly 

valuable to determine if the model could be optimised further. The INForm[8] and 

FormRules[9] software does automatically determine an architecture, but refinements 

can be made by the user, and this process may lead to a more predictive model. 

To make the overall predictive method more accessible to the user, the automation of 

the whole process from the initial molecular calculations to the ANN model would 

be highly beneficial. Integrated software for geometry optimisations, descriptor 

calculations, feature selection and ANN model could be very useful in drug and 

formulation development. With knowledge of only the molecular structure and a few 

experimental inputs, predictions could be made as to which solvents would 

crystallise the most stable form, and also generate an idea into the number of 

polymorphic forms that exist. 

Currently the MOE[10] software would allow the geometry optimisation and 

descriptor calculations and the updated versions of INForm[8] has feature selection 

capabilities. A hybrid of these two pieces of software would allow the efficient 

determination of a predictive model. 

 

The descriptors used in this research have been investigated based upon their 

meaning and their possible influence on the nucleation and crystallisation of 

polymorphic molecules. It would be beneficial to examine these descriptors in more 

detail and also interesting to assess whether the calculated descriptors correlate with 

experimental data. This would perhaps lead to more insight into the phenomenon of 

nucleation.   
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12. APPENDIX 

12.1. CBZ Polymorph Screen Experimental Results 

Table 12.1 CBZ polymorph screen experimental results 

Crystallisation 
Solvent 

Evaporation 
Rate            

(L/min of N2) 

Crystallisation 
Temperature 

(°C) 
Polymorphic Form Crystallised 

Ethanol 5, 15 25, 50 Form III 

Ethanol 25 25, 50 
Mixture:                                                

Form II (50 %) and Form III (50 %) 

Ethanol 25 75 
Mixture:                                                    

Form II (50 %) and Form III (50 %) 

Ethanol 5 75 
Mixture:                                                      

Form II (0.02 %) and Form III (0.98 %) 

Ethanol 15 75 
Mixture:                                                   

Form II (60 %) and Form III (40 %) 

THF 5, 25 25, 50 Form III 

THF 15 25 Form III 

THF 15 50 
Mixture:                                                     

Form II (80 %) and Form III (20 %) 

Acetone 5 25, 50 Form III 

Acetone 25 25 Form III 

Acetone 25 50 Form II 

Acetone 15 25 
Mixture:                                  

Form II (50 %) and Form III (50 %) 

Acetone 15 50 Form III 

Acetonitrile 5 25, 50, 75 Form III 

Acetonitrile 25 25 Form III 

Acetonitrile 25 50 Form II 

Acetonitrile 15 25 
Mixture:                                                     

Form II (50 %) and Form III (50 %) 

Acetonitrile 15 50 Form III 

Acetonitrile 15 75 
Mixture:                                                      

Form II (10 %) and Form III (90 %) 

Acetonitrile 25 75 
Mixture:                                                 

Form II (10 %) and Form III (90 %) 
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Crystallisation 
Solvent 

Evaporation 
Rate            

(L/min of N2) 

Crystallisation 
Temperature 

(°C) 
Polymorphic Form Crystallised 

Toluene 25 25, 50, 75 Form II 

Toluene 5, 15 75 Form II 

Toluene 5 50 
Mixture:                                                   

Form II (25 %) and Form III (75 %) 

Toluene 15 50 Form III 

Nitromethane 5 15, 50, 75 Form III 

Nitromethane 25 25 Form III 

Nitromethane 15 50, 75 Form III 

Nitromethane 25 50 Form II 

Nitromethane 25 75 
Mixture:                                                    

Form II (50 %) and Form III (50 %) 

Methanol 5 25, 50 Form III 

Methanol 25 25 
Mixture:                                                     

Form III (75 %) and Dihydrate (25 %) 

Methanol 25 50 
Mixture:                                                          

Form I (50 %) and Form III (50 %) 

Methanol 15 25 
Mixture:                                                       

Form III (50 %) and Dihydrate (50 %) 

Methanol 15 50 Form III 

DMSO 15,25 25, 50 Solvate 

DMSO 5 50, 75 Solvate 

DMSO 5 25 
Mixture:                                                      

Form III (50 %) and Solvate (50 %) 

DMSO 15 75 
Mixture:                                                     

Form III (5 %) and Solvate (95 %) 

DMSO 25 75 Solvate 

Chloroform 5 25 Form II 

Chloroform 5 50 Form III 

Chloroform 25 25 
Mixture:                                                     

Form II (25 %) and Form III (75 %) 

Chloroform 25 50 
Mixture:                                                   

Form II (50 %) and Form III (50 %) 

Chloroform 15 25 Form III 
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Crystallisation 
Solvent 

Evaporation 
Rate            

(L/min of N2) 

Crystallisation 
Temperature 

(°C) 
Polymorphic Form Crystallised 

Chloroform 15 50 
Mixture:                                                     

Form II (90 %) and Form III (10 %) 

Dichloromethane 5 25 
Mixture:                                                  

Form II (50 %) and Form III (50 %) 

Dichloromethane 25 25 Form II 

Dichloromethane 15 25 Form III 

Chlorobenzene 25 25, 50 Form II 

Chlorobenzene 5 25 
Mixture:                                                   

Form II (25 %) and Form III (75 %) 

Chlorobenzene 5 50 
Mixture:                                                     

Form II (5 %) and Form III (95 %) 

Chlorobenzene 15 25 
Mixture:                                                          

Form II (95 %) and Form III (5 %) 

Chlorobenzene 5 75 
Mixture:                                                       

Form I (10 %) and Form II (90 %) 

Chlorobenzene 15 75 
Mixture:                                                       

Form II (90 %) and Dihydrate (10 %) 

Chlorobenzene 25 75 Form III 

Cyclohexane 5, 25 75 Form II 

Aniline 5, 25, 15 25, 50, 75 Form III 
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12.2. Molecular and Bulk Descriptor Meanings 

 

Rate - The rate at which nitrogen was blown down onto the sample in L/min. 

Temperature - The temperature at which the supersaturated solutions were created 

and the evaporations were carried out. 

D42 / dsolv42 -3D Wiener Index - The Wiener Index (W)[1-3] is a topological 

descriptor, which was introduced in 1947 is defined by Equation 12.1. dij is the 

number of bonds between atoms i and j using the shortest path and NSA represents 

the number of non-hydrogen atoms in the chosen molecule.[2-4] This descriptor 

essentially describes how compact the molecule is. 

 ∑=
SAN

ji

ijdW
),(

2
1  Equation 12.1 

D66, 67, 68 /dsolv 66, 67, 68 and pmiX, Y and Z – The moment of inertia for the 

CBZ and solvent molecule were calculated in two different pieces of software. These 

descriptors are classed as geometrical descriptors[5] and are obtained from the mass 

and three-dimensional coordinates of atoms in the molecule. Using the rigid rotator 

approximation, the moments of inertia of a single molecule IA, IB and IC are 

calculated using Equation 12.2, Equation 12.3 and Equation 12.4, where Ic>Ib>Ia.[6] 

 ∑=
n

i

ixiA rmI
2  Equation 12.2 

 ∑=
n

i

iyiB rmI
2  Equation 12.3 

 ∑=
n

i

iziC rmI
2  Equation 12.4 

The mass of each atom is represented by mi, with rix/y/z denoting the distance between 

the ith atomic nucleus and the main rotational axes, x, y and z. The number of atoms 

is represented by n.[6]  

Figure 12.1 the axis of an single molecule, adapted from Atkins[6] 

Ia

Ic

Ib

Ia

Ic

Ib
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The moment of inertia is a measure of mass distribution in the molecule and also can 

determine how rotationally flexible parts of the molecule are.[7, 8]   

D69/ dsolv69 - Molecular surface area is another geometrical descriptor that uses the 

van der Waals radii of the atoms within the molecule to give the best surface area 

approximation.[1, 4, 9-11] 

D70/ dsolv70 - Molecular Volume is one of the most widely used geometrical 

descriptors.[12-14] Similarly to the surface area calculation, it calculates at the volume 

of the overlapping spheres around the atoms of the molecule, based upon the van der 

Waals radii of the atoms. 

D71/ dsolv71 – TMSA – The total molecular surface area is a charged partial surface 

area (CPSA) descriptor, but represented the total geometry of the molecule. The van 

der Waals radii of each atom within the molecule is represented by spheres that 

overlap with one another (Figure 12.2), creating a molecular surface[15]. In the case 

of TMSA, a solvent molecule, most commonly water with a van der Waals radius of 

1.5 Å[15], is used to trace a path around the molecule, generating a solvent accessible 

surface area (Figure 12.2). This solvent accessible surface area is used in the charged 

partial surface area (CPSA) calculations and is why TMSA belongs to the CPSA set 

of descriptors[15]. 

 

Figure 12.2 Calculation of the total molecular surface area using van der Waals radii, adapted from[15] 

 
D72 – PPSA-1 - Partial positive Surface is also a CPSA descriptor; it calculates the 

total positively charged surface area accessible by a solvent molecule (SA).[7, 15, 16] 

 
∑=

A

ASPPSA1        

}0{ >∈ AA δ  

Equation 12.5 

Solvent accessible 
surface area

Van der Waals radii of 
the atoms in the 
molecule

Solvent molecule

Solvent accessible 
surface area

Van der Waals radii of 
the atoms in the 
molecule

Solvent molecule

Solvent accessible 
surface area

Van der Waals radii of 
the atoms in the 
molecule

Solvent molecule
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D73 – PPSA-2 – The total charge weighted partial positive surface area. This 

descriptor is similar to the PPSA-1 descriptor, but it includes the summation of 

positive atomic partial charges (qA) which has been calculated using a wave function, 

as shown in the equation below. [7, 15, 16]  

  ∑∑=
A

A

A

A SqPPSA .2        Equation 12.6 

D74 – PPSA-3 - The atomic charge weighted partial positive surface area. Like the 

previous descriptor the positive atomic partial charges (qA) are involved in the 

calculation, but in this instance each individual partial charge is multiplied by the 

surface area (SA). [7, 15, 16]  

 ∑=
A

AA SqPPSA .3         Equation 12.7 

D75 – PNSA-1 – The partial negative surface area, another CPSA descriptor, 

calculates the total negatively charged surface area accessible by a solvent molecule 

(SA). [7, 15, 16]  

 
∑=

A

ASPNSA1        

}0{ >∈ AA δ         

Equation 12.8 

D76 – PNSA-2 - The total charge weighted partial negative surface area. This 

descriptor is similar to the PNSA-1, but includes the summation of negative atomic 

partial charges (qA) which has been calculated using a wave function, as shown in the 

equation below. [7, 15, 16]  

 ∑∑=
A

A

A

A SqPNSA .2        Equation 12.9 

D77 - PNSA-3 – The atomic charge weighted partial negative surface area. This 

descriptor is similar to the previous PNSAs, but in this instance the individual 

negative atomic partial charges are involved in the calculation are multiplied by the 

PNSA. [7, 15, 16]  

    ∑=
A

AA SqPNSA .3            Equation 12.10 
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D78 – DPSA-1 - The difference in charged partial surface areas. This descriptor 

calculates the differences between the positive and negative surface area, which may 

be useful to gain an idea of the polarity of the molecule.[7, 15, 16] 

 
111 PNSAPPSADPSA −=

 Equation 12.11 

D79 - DPSA-2  - The difference in charged partial surface areas (PPSA2-PNSA2). 

PNSA-2 and PPSA-2 are total charge weighted partial surfaces areas, and it is the 

differences between the positive and negative surface areas.[7, 15, 16] 

 222 PNSAPPSADPSA −=  Equation 12.12 

D80 –DPSA-3 – The difference in charged partial surface areas (PPSA3-PNSA3). 

PPSA-3 and PNSA-3 are the atomic charge weighted partial charged surface areas. [7, 

15, 16] 

 333 PNSAPPSADPSA −=  Equation 12.13 

D81– FPSA-1 - The fractional partial positive surface area is the ratio of the TMSA 

and the PPSA-1. [7, 15, 16]  

 
TMSA

PPSA
FPSA

1
1 =  Equation 12.14 

D82 – FPSA-2 - The fractional partial positive surface area of PPSA-2. [7, 15, 16]  

 
TMSA

PPSA
FPSA

2
2 =  Equation 12.15 

D83 –FPSA-3 - The fractional partial positive surface area of PPSA-3. [7, 15, 16]  

 
TMSA

PPSA
FPSA

3
3 =  Equation 12.16 

D84 - FNSA-1 - The fractional partial negative surface area is the ratio of the TMSA 

and the PNSA-1. [7, 15, 16]  

 
TMSA

PNSA
FNSA

1
1 =  Equation 12.17 
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D85 – FNSA-2 - The fractional partial negative surface area of PNSA-2. [7, 15, 16]    

 
TMSA

PNSA
FNSA

2
2 =  Equation 12.18 

 

  D86 – FNSA-3 - The fractional partial negative surface area of PNSA-3. [7, 15, 16]  

 
TMSA

PNSA
FNSA

3
3 =  Equation 12.19 

Dsolv2 – The number if carbon atoms in the solvent molecule 

Dsolv3 – The number of hydrogen atoms in the solvent molecule. 

Dsolv5 – The relative number of hydrogen atoms in the solvent molecule, which is 

the ratio between the number of hydrogen atoms and the total number of atoms in the 

molecule. 

Dsolv6 – The number of rings in the solvent molecule. 

Dsolv7 – The number of benzene rings in the solvent molecule. 

Dsolv8 – The total number of bonds in the solvent molecule. 

Dsolv9 – The total number of single bonds in the solvent molecule. 

DSolv10 – The total number of double bonds in the solvent molecule. 

Dsolv13 – The relative number of single bonds in the solvent molecule, which is the 

ratio between the number of single bonds and the total number of bonds in the 

molecule. 

Dsolv14 – The relative number of double bonds in the solvent molecule, which is the 

ratio between the number of double bonds and the total number of bonds in the 

molecule. 

Dsolv16 – The relative number of aromatic bonds in the solvent molecule, which is 

the ratio of aromatic bonds to the total number of bonds in the solvent molecule. 

Dsolv17 – The relative molecular weight of the solvent molecule 

Dsolv20/21/22 – Randic index (order 1/2/3) - The Randic index is a “second-

generation topological”[7] descriptor, also known as the Randic molecular 

connectivity descriptor.[1, 17-21] It is the “sum over all pairs of edges, i and j, in the 

molecule”[7] “where Di and Dj are the edge degrees”[7]. 

 
2/1

)(
−

∑=
edgesij

ji DDχ  Equation 12.20 
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To calculate the Randic indices of different orders the below equation is used. 

 
2/1)...( −∑= k

path

ji

m
DDDχ  

Equation 12.21 

Dsolv24/25/26 - Kier & Hall index (order 1/2/3) - This descriptor describes the 

valence connectivity of the molecule[20, 22, 23] and “accounts for the presence of 

heteroatoms and the hybridization of atoms in the molecule”.[7] υ
iZ  is the number of 

valence electrons, iZ  is the total number of electrons in the ith atom and iH  is the 

number of hydrogen atoms attached to the ith atom (when I is nonhydrogen). 
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 Equation 12.22 

The different orders relate to the bond path, i.e. m=0, 1, 2 etc. and are represented in 

the equation below. 
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 Equation 12.23 

Dsolv27/28 – Kier shape index (order 1/2) - This descriptor is dependent on the 

number of atoms in the molecule and whether there are any branches. In the 

calculation of this descriptor, parameter α, which is the ratio of atomic radius (ri) and 

the radius of the carbon in the sp
3 hybridization state.[7] 
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Equation 

12.24 

Dsolv31/35 - Complementary Information Content (CIC) (order 0/1) - “The rth 

order CICr measures the deviation of Information content (ICr) from its maximum 

value”.[4] In Equation 12.25, A is the atom number.[4, 24, 25]
 

 rr ICACIC −= 2log  Equation 12.25 

DSolv32/36/40 – Structural Information Content (SIC) (order 0/1/2)- This is a 

topological descriptor that describes the neighbouring atoms in a molecule.[4, 7, 24, 25] 
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 nICSIC kk

2log/=  Equation 12.26 

DSolv33/37/41 - Bonding Information content (BIC) (order 0/1/2) - “The rth 

order BICr is defined in a normalized form as the SICr index, but taking into account 

the number of bonds and their multiplicity, where B is the number of bonds and *
bπ is 

the conventional bond order of the b bond.”[4, 24, 25] 
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Equation 12.27 

Dsolv34 –Information content (IC) (order 1) - “the information content of a 

system having n elements is a measure of the degree of diversity of the elements in 

the set” 

 gg

G

g

c nnI 2
1

log∑
=

=  Equation 12.28 

“G is the number of different equivalence classes and ng is the number of elements in 

the gth class”[4] 

 ∑
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 Equation 12.29 

Dsolv43/44/45/46 - 3D-Randic index (order 0/1/2/3) - The Randic index is a 

“second-generation topological”[7] descriptor, also known as the Randic molecular 

connectivity descriptor. It is the “sum over all pairs of edges, i and j, in the 

molecule”[7] “where Di and Dj are the edge degrees”[7]. 
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To calculate the Randic indices of different orders the below equation is used. 
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Equation 12.31 

These two equations hold if the “continuous path of certain length, m>1”[7], 

otherwise the below equation is used in the calculation of the Randic index. 
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Dsolv47/48/49/50 – 3D-Kier and Hall index (order 0/1/2/3) - This is a valence 

connectivity index (topological descriptor) that accounts “for the presence of 

heteroatoms and the hybridization of atoms in the molecule”[7].  

Dsolv52 – 3D Kier Shape index (order 2) - This descriptor (κ ) is dependent on the 

number of atoms in the molecule and whether there are any branches. In the 

calculation of this descriptor, parameter α is the ratio of atomic radius (ri) and the 

radius of the carbon in the sp
3 hybridization state.[7] 
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Equation 

12.33 

Dsolv55/59/63 - 3D-Complementary Information content (order 0/1/2) - “The rth 

order CICr measures the deviation of ICr from its maximum value”[4] A is the atom 

number.”[4, 24-28] 

 rr ICACIC −= 2log  Equation 12.34 

Dsolv56/60/64 -3D-Structural Information content (order 0/1/2) - The structural 

information content descriptor is a topological descriptor and is an index based upon 

neighbouring atoms[4, 7, 24, 26, 27] 

 nICSIC kk

2log/=  Equation 12.35 

This descriptor now considers the 3D structure of the solvent molecule. 

Dsolv57/61/65 - 3D-Bonding Information content (order 0/1/2) - “The rth order 

BICr is defined in a normalized form as the SICr index, but taking into account the 

number of bonds and their multiplicity, where B is the number of bonds and *
bπ is the 

conventional bond order of the b bond.”[3, 4, 24-26, 29] 
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Equation 12.36 

ASA - Water accessible surface area calculated using a radius of 1.4 A for the water 

molecule. A polyhedral representation is used for each atom in calculating the 

surface area.[10, 30]
 

ASA_H - Water accessible surface area of all hydrophobic (|qi|<0.2) atoms.[10, 30] 
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E - Value of the potential energy.[30] 

E_ang - Angle bend potential energy,[30] is a measure of deviation from the standard 

bond angles in the molecule. 

E_ele - Electrostatic component of the potential energy.[30] 

E_vdw - Van der Waals component of the potential energy. [30] The van der Waals 

term can be used to describe the interactions of solvent and solute molecules[31, 32] 

E-nb - Value of the potential energy with all bonded terms disabled. [30]   

E_sol - Solvation energy. [30, 33, 34] 

E_strain - Local strain energy. [30]  The current energy minus the value of the energy 

at a near local minimum. The current energy is calculated as for the E descriptor. The 

local minimum energy is the value of the E descriptor after first performing an 

energy minimization. Current chirality is preserved and charges are left undisturbed 

during minimization.[30] 

Rgyr - Radius of gyration - The radius of gyration is a “size descriptor for the 

distribution of atomic masses in a molecule”[4] given by Equation 12.36 [4] 
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Equation 12.37 

MW is the molecular weight, “ri is the distance of the ith atom from the centre of 

mass of the molecule, mi is the corresponding atomic mass”[4] and A is the atomic 

number.[4] This descriptor can also be calculated by using the moments of inertia for 

non-planar molecules as below.[4, 35] 
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 Equation 12.38 

Pmi - Principal moment of inertia.[36-38] 

AM1_E - The total energy (kcal/mol) calculated using the AM1 Hamiltonian. [30, 39, 

40] 

AM1_Eele - The electronic energy (kcal/mol) calculated using the AM1 

Hamiltonian. [30, 39, 40] 

AM1_dipole - The dipole moment calculated using the AM1 Hamiltonian. [30, 39, 40] 

AM1_IP - The ionization potential (kcal/mol) calculated using the AM1 

Hamiltonian. [30, 39, 40] 
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AM1_HOMO - The energy (eV) of the Highest Occupied Molecular Orbital 

calculated using the AM1 Hamiltonian.[30]   This is a quantum chemical descriptor,  

which is the calculated energy of the highest occupies molecular orbital. When the 

HOMO value is high this means the molecule can donate its electrons more easily 

than lower HOMO values, therefore being more reactive. This descriptor is also 

related to ionisation potential, and also the nucleophilicity of the molecule.[4, 30, 39, 40] 

AM1_LUMO - The energy (eV) of the Lowest Unoccupied Molecular Orbital 

calculated using the AM1 Hamiltonian. [30]   This quantum chemical descriptor gives 

the energy of the lowest energy level not occupied by an electron in a molecule. This 

is related to the electron affinity (how electrophilic it is) of the molecule, with a 

lower LUMO value meaning it will more readily accept electrons.[6, 32, 40, 41] 

PM3_IP - The ionization potential (kcal/mol) calculated using the PM3 

Hamiltonian.[30, 40, 42]   

PM3_E - The total energy (kcal/mol) calculated using the PM3 Hamiltonian. [30, 40, 

42]   

PM3_Eele - The electronic energy (kcal/mol) calculated using the PM3 Hamiltonian. 
[30, 40, 42]   

PM3_dipole - The dipole moment calculated using the PM3 Hamiltonian. [30, 40, 42]   

PM3_LUMO - The energy (eV) of the Lowest Unoccupied Molecular Orbital 

calculated using the PM3 Hamiltonian. [30]  This quantum chemical descriptor gives 

the energy of the lowest energy level not occupied by an electron in a molecule. This 

is related to the electron affinity (how electrophilic it is) of the molecule, with a 

lower LUMO value meaning it will more readily accept electrons.[6, 32, 40-42] 

PM3_HOMO - The energy (eV) of the Highest Occupied Molecular Orbital 

calculated using the PM3 Hamiltonian. [30]  This is a quantum chemical descriptor,  

which is the calculated energy of the highest occupies molecular orbital. When the 

HOMO value is high this means the molecule can donate its electrons more easily 

than lower HOMO values, therefore being more reactive. This descriptor is also 

related to ionisation potential, and also the nucleophilicity of the molecule. [6, 32, 40-42] 

MNDO_HOMO - The energy (eV) of the Highest Occupied Molecular Orbital 

calculated using the MNDO Hamiltonian. [30]  This is a quantum chemical descriptor,  

which is the calculated energy of the highest occupies molecular orbital. When the 

HOMO value is high this means the molecule can donate its electrons more easily 
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than lower HOMO values, therefore being more reactive. This descriptor is also 

related to ionisation potential, and also the nucleophilicity of the molecule.[4, 30, 39, 40] 

MNDO_LUMO - The energy (eV) of the Lowest Unoccupied Molecular Orbital 

calculated using the MNDO Hamiltonian. [30]  This quantum chemical descriptor 

gives the energy of the lowest energy level not occupied by an electron in a 

molecule. This is related to the electron affinity (how electrophilic it is) of the 

molecule, with a lower LUMO value meaning it will more readily accept electrons. 
[4, 30, 39, 40] 

MNDO-dipole - The dipole moment calculated using the MNDO Hamiltonian. [30, 40] 

MNDO_IP - The ionization potential (kcal/mol) calculated using the MNDO 

Hamiltonian. [30, 40] 

MNDO_E - The total energy (kcal/mol) calculated using the MNDO Hamiltonian. 
[30, 40] 

MNDO_Eele - The electronic energy (kcal/mol) calculated using the MNDO 

Hamiltonian. [30, 40]   

Std_dim1 – “Standard dimension 1: the square root of the largest eigenvalue of the 

covariance matrix of the atomic coordinates. A standard dimension is equivalent to 

the standard deviation along a principal component axis.”[30]   

Std_dim2 – “Standard dimension 2: the square root of the second largest eigenvalue 

of the covariance matrix of the atomic coordinates. A standard dimension is 

equivalent to the standard deviation along a principal component axis.”[30]   

Std_dim3 – “Standard dimension 3: the square root of the third largest eigenvalue of 

the covariance matrix of the atomic coordinates. A standard dimension is equivalent 

to the standard deviation along a principal component axis.”[30]   

Dens – “Mass density: molecular weight divided by van der Waals volume as 

calculated in the vol descriptor.” [30, 43]  

Glob – “Globularity, or inverse condition number of the covariance matrix of atomic 

coordinates.” A value of 1 indicates a perfect sphere while a value of 0 indicates a 

two- or one-dimensional object. [30]   

Vol - Van der Waals volume calculated using a grid approximation (spacing 

0.75 Å).[11, 12, 30]   

VSA – “The Subdivided Surface Areas are descriptors based on an approximate 

accessible van der Waals surface area calculation for each atom”[30]   
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Dielectric Constant - The dielectric constant is a measure of “the ability of a solvent 

to separate charge and to orient its dipoles.”[44] It represents the polarity of the 

molecule[45] and is calculated by placing the solvent between “two charged plates of 

a condenser” and measuring the electric field between the plates. This electric field 

measurement, divided by the permittivity of a vacuum gives the dielectric 

constant.[44] 

Dipole Moment - When an electronically neural molecule possesses “an 

unsymmetrical charge distribution”[44] it is said to have a permanent dipole 

moment.[8, 40]  

logP – 1-octanol/water partition coefficient. This experimentally determined value 

has been correlated with biological activity[33] as it measures a substances affinity to 

two immiscible phases.[46]
 

Boiling point (bp) – “The temperature at which the saturated vapour pressure of a 

liquid equals the external atmospheric pressure”[46] Bubbles are formed within the 

liquid at this temperature, with the temperature remaining constant until all of the 

liquid has evaporated.[46, 47]
 

Relative Molecular Mass (RMM) – The summation of the molecular masses of all 

the atoms in a given solvent molecule[46, 48]
 

Density  - Mass of a sample divided by its volume.[43, 46, 49]
 

Refractive index - The ratio of the speed of light in vacuum to that in a given 

medium. “The molar refractivity incorporates both the size and the polarizability of a 

molecule.”[50]  

Viscosity -“A measure of the resistance to flow that a fluid offers when it is 

subjected to shear stress.”[46] Viscosity has been used in predictive models as a 

descriptor[49], and also been predicted itself.[48] It is also very dependant on 

temperature.[51] 

Surface tension – The amount of work that has to be applied to increase the solvents 

surface area by one unit.[51] The surface tension is the property of the solvent that 

makes the liquid appear to have a skin.[46] Surface tension has been used in predictive 

research and also in more practical crystallisation work.[23, 52] 

Hildebrand Solubility Parameter - A parameter measuring the cohesion of a 

solvent (energy required to create a cavity in the solvent).[44, 53, 54] 

Freezing point – The temperature at which a solution becomes a solid.[6] 
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Vapour density - “The density of a gas or vapour relative to hydrogen, oxygen, or 

air. Taking hydrogen as the reference substance, the vapour density is the ratio of the 

mass of a particular volume of a gas to the mass of an equal volume of hydrogen 

under identical conditions of pressure and temperature.”[46] 

Solubility - “The quantity of solute that dissolves in a given quantity of solvent to 

form a saturated solution.”[46] Solubility features in both experimental[55-58] and 

predictive work.[1, 13, 27, 59] This descriptor was experimentally determined in this 

research for each of the target molecules in the different crystallisation solvents. 

Activity - “A thermodynamic function used in place of concentrations (or pressures) 

corrected for non-ideal behaviour.”[46] This descriptor was experimentally 

determined in this research using the solubility values. Activity features in much of 

the crystallisation literature.[60-62] 

Vapour pressure – The pressure exerted by a vapour that has been given off from 

the solvent in this instance.[46] Atoms or molecules have evaporated off the liquid and 

exert a pressure. Equilibrium is reached between the escaping and re-entering vapour 

molecules.[46] 

Polarity Parameter (ET(30) – Dimroth and Reichardt’s polarity parameter 

represents the polarity of the solvent molecule.[51] 

Hansen Solubility Parameters – dD, dP, dH - “Hansen solubility parameters (HSP) 

are widely used to correlate and predict the behaviour of solvents.”[63] The cohesion 

energy of a liquid can be divided into nonpolar atomic interactions (dispersion), dD, 

the permanent dipole-dipole interactions, dP, and hydrogen bonding interactions, 

dH.[63] 

Henrys law constant – “At a constant temperature the mass of gas dissolved in a 

liquid at equilibrium is proportional to the partial pressure of the gas”[46] outside of 

the solution. 

Gutmann donor number - The Gutmann donor number (DN) is a bulk solvent 

descriptor and quantifies the basicity or electron donating ability of a solvent.[64-66] It 

is based upon solute-solvent interactions interacting like acid-base reactions[64] and 

was defined by Gutmann “as the negative ∆H value in kcal/mol for the interaction of 

the electron pair donor solvent with SbCl5 in a highly diluted solution of 

dichloroethane”.[64]  
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Gutmann acceptor number - The acceptor number (AN) describes the electrophilic 

behaviour of the solvent.[64] Both Gutmann DN and AN have been used in the 

literature[65-69] 

 

12.3. Tolbutamide Stability XRPD Traces  
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Figure 12.3 The methanol slurry to measure the stability of TBA. Commercial form I (black), two 

samples of the MeOH slurry after 2 days (red and green) and the MeOH slurry after 7 days (blue) 
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Figure 12.4 The ethanol slurry to measure the stability of TBA. Commercial form I (black), the EtOH 

slurry after 2 days (green) and the MeOH slurry after 2 days (red) for comparison 
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Figure 12.5 The dichloromethane slurry to measure the stability of TBA. Commercial form I (black), 

the DCM slurry after 2 days (blue), the DCM slurry seeded with form II after 2 days (green), the 

DCM slurry seeded with form II after 3 days (brown), the DCM slurry seeded with form II after 5 

days (black trace above the red) and the MeOH slurry after 2 days (red) for comparison 
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Figure 12.6 The acetone slurry to measure the stability of TBA. Commercial form I (black), the 

acetone slurry after 2 days (blue), the acetone slurry after 7 days (green), the acetone slurry after 8 

days (brown), the acetone slurry after 10 days (light blue), and the MeOH slurry after 2 days (red) for 

comparison 

 
The raw XRPD data can be found in electronic appendix, chapter 3, file 3.1. 



 

 349 

12.4. CBZ OPLS Forcefield Results 

                                                                     

 

Figure 12.7 Assignments of CBZ bond lengths and angles 

 
Table 12.2 Comparison of OPLS geometry optimised CBZ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CBZ 

OPLS 
Literature 

values 

Bond length 1 (Å) 1.35 1.38 

Bond length 2 (Å) 1.411 1.437 

Bond length 3 (Å) 1.411 1.434 

Bond angle 1 (°) 115.8 116.8 

Bond angle 2 (°) 123.2 121.9 

Bond angle 3 (°) 120.5 120.9 

Bond angle 4 (°) 120.8 121.4 

Bond angle 5 (°) 120.8 116.0 

Torsion angle C-O (°) -4.1 -9.1 

Torsion angle C-N (°) 2.7 -2.2 
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12.5. ROY PM3 Conformational Search Results 

 

 

Figure 12.8 The torsion angle used in the ROY conformational analysis 

 

 

Table 12.3 The Conformations of the ROY molecule and their associated energy 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Torsion angle (°) Energy (kcal/mol) 

74.44586 -64934.9 

-72.5912 -64934.9 

-116.809 -64934.9 

116.5048 -64934.9 

98.11012 -64934.8 

100.0112 -64934.6 

-100.03 -64934.6 

25.5403 -64934.1 

-25.5635 -64934.1 

42.18503 -64933.9 

-40.3768 -64933.9 

1.66E-05 -64933.8 

125.668 -64929.5 



 

 

12.6. Sets of Descriptors used in the Manual Analysis Work 

Table 12.4 The descriptor sets used in the manual analysis 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

D74 dsolv26 d83 d42 d67 d75 

dsolv3 dsolv34 dsolv1 d78 d71 d79 

dsolv5 dsolv47 dsolv39 d81 d77 dsolv10 

dsolv40 dsolv63 dsolv60 dsolv13 dsolv24 dsolv20 

dsolv42 dsolv68 MNDO_E dsolv25 dsolv32 dsolv46 

dsolv58 dsolv69 E_ele dsolv30 dsolv62 dsolv50 

pmiY dsolv71 E dsolv49 AM1_HOMO dsolv75 

std_dim1 dsolv74 AM1_dipole dsolv59 PM3_LUMO MNDO_dipole 

AM1_HF dsolv79 b.p. dsolv76 pmiZ Vol 

ASA RMM dP 
Polarity 

Parameter 
(ET(30)) 

Dielectric 
Constant 

Refractive 
index 

      

Set 7 Set 8 Set 9 Set 10 Set 11 Set 12 
d70 d68 dsolv22 d66 d72 Dsolv4 

dsolv31 d69 dsolv28 d76 d84 Dsolv14 

dsolv66 d85 dsolv73 d80 dsolv8 Dsolv33 

dsolv80 dsolv6 E_nb d82 dsolv16 Dsolv52 

E_ang dsolv7 E_oop dsolv18 dsolv57 Dsolv54 

E_strain dsolv23 PM3_IP dsolv37 dsolv64 Dsolv65 

E_tor dsolv44 rgyr AM1_Eele dsolv70 Dsolv77 

glob Dsolv55 
Vapor 

Pressure 
(kPa) 

MNDO_ 
HOMO 

std_dim3 AM1_LUMO 

ASA_H VSA activity PM3_E 
Freezing 
Point (°C) 

E_str 

PM3_Eele 
Viscosity 

(cP) 
LogP Dipole (D) 

Gutmann 
donor no. 

Henry's Law 
Constant (atm 

m3/mol) 

   
Gutman 

acceptor no. 

Surface 
tension 
(mN/m) 

dH 

      

Set 13 Set 14 Set 15 Set 16 
d86 d73 dsolv9 dsolv15 

dsolv12 dsolv2 dsolv27 dsolv38 

dsolv17 dsolv11 dsolv36 dsolv48 

dsolv19 dsolv35 dsolv43 dsolv72 

dsolv21 dsolv41 dsolv56 MNDO_IP 

dsolv45 dsolv67 AM1_E 
MNDO_LU

MO 

dsolv51 E_vdw AM1_IP PM3_HF 

dsolv61 MNDO_Eele PM3_dipole Pmi 

dsolv78 MNDO_HF std_dim2 pmiX 

dens PM3_HOMO 
Hildebrand 
(cal1/2cm-

3/2) 

Vapor 
Density 

E_sol dD Solubility 
density 
(g/cm3) 

 



 

 

12.7. Linear Correlation Between the Descriptors - Schematic 

Dsolv10
No of double bonds

Dsolv61
3D bonding info (1)Dsolv57

3D bonding info (0)

Dsolv14
Rel No of double bonds

Dsolv28
Kier shape (2)

Dsolv66
Mom of inertia A

Dsolv65
3D bonding info (2)

Dsolv33
Bonding info (0)

Dsolv52
3D Kier shape (2)

Dsolv37
Bonding info (1)

Dsolv60
3D structural info (1)

Dsolv56
3D structal info 

content (0)

D81

FPSA-1

D78

DPSA-1

D85

FNSA-2

D82

FPSA-2

Am1_HF
AM1_dip

ole

AM1_IP

AM1_E

E_oop

Out of plane 
pot energy

E

pot energy

E_str

Bond stretch 
energy

E_strain

Local strain 
energy

MNDO_HF

Henrys law 

constant

Dsolv15
Rel no triple bonds

Dsolv11
No of triple bonds

pmi
Princpm3le moment 

of inertia

rgyr
Radius of gyration

ASA
Water accessible SA

ASA_H
Acc SA of 

hydrophobic atoms

dens

Vol
VdW volume

PM3_HOMO

PM3_IP

D76
PNSA-2

D75
PNSA-1

MNDO_HO

MO MNDO_I
P

Am1_HOMO

D84

FNSA-1

E_ang
Angle bend 

potential E_ele
Electrostatic 
component

E_tor
Torision potential 

energy Std_dim2

D77

PNSA-3

D86

FNSA-3

Am1_LUMO

Am1_Eel

e

E_nb
Non bonded 

potential

D69

Molecular SA

MNDO_d

ipole

MNDO_E

activity

MNDO_L

UMO

PM3_E

PM3_Eele
PM3_LUMO

PM3_HF

VSA

dipole

density

solubility

Dsolv5
Rel no of H atoms

Dsolv27
Kier & Hall 

index (0)

Dsolv48
3D Kier & Hall 

index (1)Refractive 

index

dD

D66
Moment of inertia A

D68
Moment of inertia c

Dsolv25
Kier & Hall 

index (2)

Vapour 

pressure

Gutmann

donor no

D70
Molecular volume

bp

Viscosity

Surface 

tension

Dsolv12
No of aromatic 
bonds

PM3_dipole

Dsolv13
Rel no single 

bonds
Dsolv30
Info content (0)

Dsolv7
No of benzene rings

Dsolv43
3D randic index (0)

Dsolv4
Rel no of C atoms

Dsolv18
Weiner index

Dsolv44
3D randic index (1)

Dsolv21
Randic index (1)

Dsolv75
PNSA-1

Dsolv19
Randic index (0)

Dsolv17
Molecular weight

RMM
Molecular weight

Vapour 
density

Dsolv47
3D Kier & Hall 

index (0)

Polarity 
parameter

Hildebrand

D80

DPSA-3

dH

D71

TMSA

D74

PPSA-3

D83

FPSA-3

D72
PPSA-1

D73
DPSA-2

Gutman
acceptor no

D79

DPSA-2

Std_dim3

Glob
globularity

E_sol
Solvation energy

E_vdw
Vdw component of 
pot energy

pmiY
Moment of inertia B

logP

Pmiz
Moment of inertia C

Dielectric 

constant

dP

Dsolv32
Strictural info content 

(0)

Dsolv51
3D kier shape index 

(1)

Dsolv36
Strictural info content 

(1)

Dsolv40
Structural info content 

(2)

Dsolv41
Bonding info content 

(1)

Dsolv46
3D randic index 

(3)

Dsolv69
Molecaulr
surface area

Dsolv80
DPSA-3

Dsolv38
Info content (2)

Dsolv34
Info content (1)

Dsolv63
3D comp info (2)

Dsolv1
No of atoms

Dsolv8
No of bonds

Pmix
Moment of inertia a

Dsolv3
No of H atoms

Dsolv2
No of C atoms

Dsolv20
Randic index (1)

Dsolv22
Randic indstrx (2)

Dsolv6
No of rings

Dsolv9
No of single 

bonds

Dsolv23
Kier & Hall 

index (0)

Dsolv26
Kier and Hall ind (3)

Dsolv24
Kier & Hall 
index (1)

Dsolv16
Rel no aromatic 

bonds

Dsolv42
3D weiner index

Dsolv39
Comp info (2)

Dsolv59
3D complementarg

info (0)

Dsolv55
3D comp info (0)

Dsolv35
Comp info (1)

Std_dim1

Dsolv70
Molecular volume

Dsolv74
PPSA-3

MNDO_E
ele

D42
3D weiner index

Freezing 

point

Dsolv62
3D info content (2)

Dsolv64
3Dstructural  info 

content (2)

Dsolv45
3D Randic index (2)

Dsolv54
3D info content (0)

Dsolv71
TMSA

Dsolv79
DPSA-2

Dsolv72
PPSA-1

Dsolv77
PNSA-3

Dsolv49
3D kier &Hall 

index (0)

Dsolv58
3D info content (1)

Dsolv50
3D K&H index (3)

Dsolv68
Mom of inertia C

Dsolv67
Mom of inertia B

Dsolv31
Comp info (0)

Dsolv73
PPSA-2

Dsolv76
PNSA-2

Dsolv78
DPSA-1

D67

Moment of 
inertia B

Dsolv10
No of double bonds

Dsolv61
3D bonding info (1)Dsolv57

3D bonding info (0)

Dsolv14
Rel No of double bonds

Dsolv28
Kier shape (2)

Dsolv66
Mom of inertia A

Dsolv65
3D bonding info (2)

Dsolv33
Bonding info (0)

Dsolv52
3D Kier shape (2)

Dsolv37
Bonding info (1)

Dsolv60
3D structural info (1)

Dsolv56
3D structal info 

content (0)

D81

FPSA-1

D78

DPSA-1

D85

FNSA-2

D82

FPSA-2

Am1_HF
AM1_dip

ole

AM1_IP

AM1_E

E_oop

Out of plane 
pot energy

E

pot energy

E_str

Bond stretch 
energy

E_strain

Local strain 
energy

MNDO_HF

Henrys law 

constant

Dsolv15
Rel no triple bonds

Dsolv11
No of triple bonds

pmi
Princpm3le moment 

of inertia

rgyr
Radius of gyration

ASA
Water accessible SA

ASA_H
Acc SA of 

hydrophobic atoms

dens

Vol
VdW volume

PM3_HOMO

PM3_IP

D76
PNSA-2

D75
PNSA-1

MNDO_HO

MO MNDO_I
P

Am1_HOMO

D84

FNSA-1

E_ang
Angle bend 

potential E_ele
Electrostatic 
component

E_tor
Torision potential 

energy Std_dim2

D77

PNSA-3

D86

FNSA-3

Am1_LUMO

Am1_Eel

e

E_nb
Non bonded 

potential

D69

Molecular SA

MNDO_d

ipole

MNDO_E

activity

MNDO_L

UMO

PM3_E

PM3_Eele
PM3_LUMO

PM3_HF

VSA

dipole

density

solubility

Dsolv5
Rel no of H atoms

Dsolv27
Kier & Hall 

index (0)

Dsolv48
3D Kier & Hall 

index (1)Refractive 

index

dD

D66
Moment of inertia A

D68
Moment of inertia c

Dsolv25
Kier & Hall 

index (2)

Vapour 

pressure

Gutmann

donor no

D70
Molecular volume

bp

Viscosity

Surface 

tension

Dsolv12
No of aromatic 
bonds

PM3_dipole

Dsolv13
Rel no single 

bonds
Dsolv30
Info content (0)

Dsolv7
No of benzene rings

Dsolv43
3D randic index (0)

Dsolv4
Rel no of C atoms

Dsolv18
Weiner index

Dsolv44
3D randic index (1)

Dsolv21
Randic index (1)

Dsolv75
PNSA-1

Dsolv19
Randic index (0)

Dsolv17
Molecular weight

RMM
Molecular weight

Vapour 
density

Dsolv47
3D Kier & Hall 

index (0)

Polarity 
parameter

Hildebrand

D80

DPSA-3

dH

D71

TMSA

D74

PPSA-3

D83

FPSA-3

D72
PPSA-1

D73
DPSA-2

Gutman
acceptor no

D79

DPSA-2

Std_dim3

Glob
globularity

E_sol
Solvation energy

E_vdw
Vdw component of 
pot energy

pmiY
Moment of inertia B

logP

Pmiz
Moment of inertia C

Dielectric 

constant

dP

Dsolv32
Strictural info content 

(0)

Dsolv51
3D kier shape index 

(1)

Dsolv36
Strictural info content 

(1)

Dsolv40
Structural info content 

(2)

Dsolv41
Bonding info content 

(1)

Dsolv46
3D randic index 

(3)

Dsolv69
Molecaulr
surface area

Dsolv80
DPSA-3

Dsolv38
Info content (2)

Dsolv34
Info content (1)

Dsolv63
3D comp info (2)

Dsolv1
No of atoms

Dsolv8
No of bonds

Pmix
Moment of inertia a

Dsolv3
No of H atoms

Dsolv2
No of C atoms

Dsolv20
Randic index (1)

Dsolv22
Randic indstrx (2)

Dsolv6
No of rings

Dsolv9
No of single 

bonds

Dsolv23
Kier & Hall 

index (0)

Dsolv26
Kier and Hall ind (3)

Dsolv24
Kier & Hall 
index (1)

Dsolv16
Rel no aromatic 

bonds

Dsolv42
3D weiner index

Dsolv39
Comp info (2)

Dsolv59
3D complementarg

info (0)

Dsolv55
3D comp info (0)

Dsolv35
Comp info (1)

Std_dim1

Dsolv70
Molecular volume

Dsolv74
PPSA-3

MNDO_E
ele

D42
3D weiner index

Freezing 

point

Dsolv62
3D info content (2)

Dsolv64
3Dstructural  info 

content (2)

Dsolv45
3D Randic index (2)

Dsolv54
3D info content (0)

Dsolv71
TMSA

Dsolv79
DPSA-2

Dsolv72
PPSA-1

Dsolv77
PNSA-3

Dsolv49
3D kier &Hall 

index (0)

Dsolv58
3D info content (1)

Dsolv50
3D K&H index (3)

Dsolv68
Mom of inertia C

Dsolv67
Mom of inertia B

Dsolv31
Comp info (0)

Dsolv73
PPSA-2

Dsolv76
PNSA-2

Dsolv78
DPSA-1

D67

Moment of 
inertia B



 

 

12.8. Rules of Form II Loading Value Analysis 

Rules for CBZ prediction using PLS results 

--- Rules for property Form I ---   

IF rate is LOW THEN Form I is LOW (1.00) 

IF rate is HIGH THEN Form I is LOW (0.97) 

--- Rules for property Form II ---   

SubModel:1   

IF d78 is LOW THEN Form II is HIGH (1.00) 

IF d78 is HIGH THEN Form II is LOW (1.00) 

SubModel:2   

IF rate is LOW THEN Form II is LOW (0.89) 

IF rate is HIGH THEN Form II is HIGH (0.79) 

SubModel:3   

IF pmiY is LOW THEN Form II is LOW (1.00) 

IF pmiY is HIGH THEN Form II is HIGH (1.00) 

--- Rules for property Form III ---   

SubModel:1   

IF d78 is LOW THEN Form III is LOW (1.00) 

IF d78 is HIGH THEN Form III is HIGH (1.00) 

SubModel:2   

IF Viscosity (cP) is LOW THEN Form III is HIGH (1.00) 

IF Viscosity (cP) is MID THEN Form III is LOW (1.00) 

IF Viscosity (cP) is HIGH THEN Form III is HIGH (0.85) 

SubModel:3   

IF rate is LOW THEN Form III is HIGH (0.83) 

IF rate is HIGH THEN Form III is LOW (0.97) 

--- Rules for property DiHydrate ---   

IF Temp is LOW 
THEN DiHydrate 

is 
LOW (0.96) 

IF Temp is HIGH 
THEN DiHydrate 

is 
LOW (1.00) 

--- Rules for property Solvate ---   

SubModel:1   

IF Viscosity (cP) is LOW AND pmiY is LOW AND d78 is LOW THEN Solvate is LOW (1.00) 

IF Viscosity (cP) is LOW AND pmiY is LOW AND d78 is HIGH THEN Solvate is LOW (1.00) 

IF Viscosity (cP) is LOW AND pmiY is MID AND d78 is LOW THEN Solvate is LOW (1.00) 

IF Viscosity (cP) is LOW AND pmiY is MID AND d78 is HIGH THEN Solvate is LOW (1.00) 

IF Viscosity (cP) is LOW AND pmiY is HIGH AND d78 is LOW THEN Solvate is LOW (1.00) 

IF Viscosity (cP) is LOW AND pmiY is HIGH AND d78 is HIGH THEN Solvate is HIGH (1.00) 

IF Viscosity (cP) is HIGH AND pmiY is LOW AND d78 is LOW THEN Solvate is HIGH (1.00) 

IF Viscosity (cP) is HIGH AND pmiY is LOW AND d78 is HIGH THEN Solvate is HIGH (1.00) 

IF Viscosity (cP) is HIGH AND pmiY is MID AND d78 is LOW THEN Solvate is HIGH (1.00) 

IF Viscosity (cP) is HIGH AND pmiY is MID AND d78 is HIGH THEN Solvate is LOW (1.00) 

IF Viscosity (cP) is HIGH AND pmiY is HIGH AND d78 is LOW THEN Solvate is LOW (1.00) 

IF Viscosity (cP) is HIGH AND pmiY is HIGH AND d78 is HIGH THEN Solvate is HIGH (1.00) 

SubModel:2   

IF d42 is LOW THEN Solvate is HIGH (1.00) 

IF d42 is HIGH THEN Solvate is HIGH (1.00) 
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12.9. PCA Analysis – Plots of Molecular Surface Area 

against Bulk Properties 
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Figure 12.9 Plot of molecular surface area descriptor (d69) against the dielectric constant of the 

solvents 
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Figure 12.10 Plot of molecular surface area descriptor (d69) against the dipole moment of the solvents 
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12.10. Final CBZ Analysis – Rules of Opt. E Descriptor Set 

Table 12.5 Rules from the optimised CBZ descriptor set 

Rules for CBZ prediction using the final optimized descriptor set 

--- Rules for property Form I ---   

IF dsolv65 is LOW AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is LOW AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is LOW AND rate is HIGH AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is LOW AND Temp is HIGH THEN Form I is LOW (0.90) 

IF dsolv65 is MID AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is MID AND rate is HIGH AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is LOW AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is LOW AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is MID AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is MID AND Temp is HIGH THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is HIGH AND Temp is LOW THEN Form I is LOW (1.00) 

IF dsolv65 is HIGH AND rate is HIGH AND Temp is HIGH THEN Form I is HIGH (1.00) 

--- Rules for property Form II ---   

SubModel:1   

IF d69 is LOW THEN Form II is HIGH (1.00) 

IF d69 is HIGH THEN Form II is LOW (1.00) 

SubModel:2   

IF rate is LOW THEN Form II is LOW (1.00) 

IF rate is HIGH THEN Form II is HIGH (0.64) 

SubModel:3   

IF d68 is LOW THEN Form II is HIGH (1.00) 

IF d68 is HIGH THEN Form II is LOW (1.00) 

--- Rules for property Form III ---   

SubModel:1   

IF d84 is LOW THEN Form III is HIGH (1.00) 

IF d84 is HIGH THEN Form III is LOW (1.00) 

SubModel:2   

IF b.p. is LOW AND d77 is LOW THEN Form III is HIGH (0.50) 

IF b.p. is LOW AND d77 is HIGH THEN Form III is LOW (1.00) 

IF b.p. is HIGH AND d77 is LOW THEN Form III is LOW (1.00) 

IF b.p. is HIGH AND d77 is HIGH THEN Form III is HIGH (1.00) 

SubModel:3   

IF rate is LOW THEN Form III is HIGH (0.72) 

IF rate is HIGH THEN Form III is LOW (1.00) 

SubModel:4   

IF d68 is LOW THEN Form III is HIGH (1.00) 

IF d68 is MID THEN Form III is HIGH (1.00) 

IF d68 is HIGH THEN Form III is LOW (1.00) 

--- Rules for property DiHydrate ---   

IF dsolv65 is LOW AND Temp is LOW AND rate is LOW AND 
dsolv43 is LOW 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is LOW AND 
dsolv43 is HIGH 

THEN DiHydrate is LOW (1.00) 
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Rules for CBZ prediction using the final optimized descriptor set –cont. 
IF dsolv65 is LOW AND Temp is LOW AND rate is MID AND 

dsolv43 is LOW 
THEN DiHydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is MID AND 
dsolv43 is HIGH 

THEN DiHydrate is LOW (0.88) 

IF dsolv65 is LOW AND Temp is LOW AND rate is HIGH 
AND dsolv43 is LOW 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is LOW AND rate is HIGH 
AND dsolv43 is HIGH 

THEN DiHydrate is LOW (0.95) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is LOW 
AND dsolv43 is LOW 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is LOW 
AND dsolv43 is HIGH 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is MID AND 
dsolv43 is LOW 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is MID AND 
dsolv43 is HIGH 

THEN DiHydrate is LOW (0.50) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is HIGH 
AND dsolv43 is LOW 

THEN DiHydrate is LOW (0.99) 

IF dsolv65 is LOW AND Temp is HIGH AND rate is HIGH 
AND dsolv43 is HIGH 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is LOW 
AND dsolv43 is LOW 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is LOW 
AND dsolv43 is HIGH 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is MID AND 
dsolv43 is LOW 

THEN DiHydrate is HIGH (0.99) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is MID AND 
dsolv43 is HIGH 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is HIGH 
AND dsolv43 is LOW 

THEN DiHydrate is LOW (0.50) 

IF dsolv65 is HIGH AND Temp is LOW AND rate is HIGH 
AND dsolv43 is HIGH 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is LOW 
AND dsolv43 is LOW 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is LOW 
AND dsolv43 is HIGH 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is MID AND 
dsolv43 is LOW 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is MID AND 
dsolv43 is HIGH 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is HIGH 
AND dsolv43 is LOW 

THEN DiHydrate is LOW (1.00) 

IF dsolv65 is HIGH AND Temp is HIGH AND rate is HIGH 
AND dsolv43 is HIGH 

THEN DiHydrate is LOW (0.90) 

--- Rules for property Solvate ---   

IF b.p. is LOW AND dsolv43 is LOW THEN Solvate is LOW (1.00) 

IF b.p. is LOW AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 

IF b.p. is MID AND dsolv43 is LOW THEN Solvate is LOW (1.00) 

IF b.p. is MID AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 

IF b.p. is HIGH AND dsolv43 is LOW THEN Solvate is HIGH (1.00) 

IF b.p. is HIGH AND dsolv43 is HIGH THEN Solvate is LOW (1.00) 
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