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Abstract

Description Logics (DLs) form a family of languages which correspond to decidable

fragments of First-Order Logic (FOL). They have been overwhelmingly successful for

constructing ontologies—conceptual structures describing domain knowledge. Ontolo-

gies proved to be valuable in a range of areas, most notably, bioinformatics, chemistry,

Health Care and Life Sciences, and the Semantic Web.

One limitation of DLs, as fragments of FOL, is their restricted ability to cope with

various forms of uncertainty. For example, medical knowledge often includes statistical

relationships, e.g., findings or results of clinical trials. Currently it is maintained sep-

arately, e.g., in Bayesian networks or statistical models. This often hinders knowledge

integration and reuse, leads to duplication and, consequently, inconsistencies.

One answer to this issue is probabilistic logics which allow for smooth integration of

classical, i.e., expressible in standard FOL or its sub-languages, and uncertain know-

ledge. However, probabilistic logics have long been considered impractical because of

discouraging computational properties. Those are mostly due to the lack of simplifying

assumptions, e.g., independence assumptions which are central to Bayesian networks.

In this thesis we demonstrate that deductive reasoning in a particular probabilistic

DL, called P-SROIQ, can be computationally practical. We present a range of novel

algorithms, in particular, the probabilistic satisfiability procedure (PSAT) which is, to

our knowledge, the first scalable PSAT algorithm for a non-propositional probabilistic

logic. We perform an extensive performance and scalability evaluation on different

synthetic and natural data sets to justify practicality.

In addition, we study theoretical properties of P-SROIQ by formally translating it

into a fragment of first-order logic of probability. That allows us to gain a better insight

into certain important limitations of P-SROIQ. Finally, we investigate its applicability

from the practical perspective, for instance, use it to extract all inconsistencies from a

real rule-based medical expert system.

We believe the thesis will be of interest to developers of probabilistic reasoners.

Some of the algorithms, e.g., PSAT, could also be valuable to the Operations Research

community since they are heavily based on mathematical programming. Finally, the

theoretical analysis could be helpful for designers of future probabilistic logics.
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and Ralf Möller, for their extremely thorough reading of this thesis and the great discus-

sion during the defense (which I enjoyed a lot more than I could have ever anticipated).

17



18



Chapter 1

Introduction

This thesis is primarily concerned with investigating practical optimization techniques

and application scenarios for deductive reasoning in probabilistic Description Logics.

Both probability theory and formal logic are of paramount importance to AI and have

received tremendous research attention. It is no surprise that plenty of ways to combine

the two have been proposed. Unfortunately, combined formalisms, especially those

which present the representational power of logic, tend to be computationally much

harder than each of the components often leading to the claim that probabilistic logics

are inherently impractical. A major part of our goal is to show that this claim is not

universally true.

This chapter aims to lay out relevant aspects of both Description Logics (DLs) and

uncertainty management in knowledge representation (KR) systems. We first give a

brief informal overview of DLs, in particular, the long way they went from early KR

systems to modern ontology languages and highly optimized reasoners. Then it explains

the ubiquity of uncertainty, describes its numerous kinds and flavors paying a particular

attention to the important distinction between probability and fuzzy membership. Our

position is that uncertainty is an intrinsic feature of background knowledge and thus

it is natural to capture it in ontologies rather than in separate models, e.g., Bayesian

networks. The success of such an approach is, of course, contingent upon acceptable

performance of available reasoning tools.

1.1 Description Logic and Ontologies

Description Logics [9] is a family of languages which correspond to (decidable) frag-

ments of first-order logic (FOL).1 DLs offer a variable-free syntax designed for express-

ing knowledge about structured concepts and relations between them. They found their

1This is typically the case however it is easy to imagine DLs that are undecidable or not fragments
of FOL. An example of the latter is languages with transitive closure of roles [64].

19



20 CHAPTER 1. INTRODUCTION

primary application in designing ontologies, conceptual structures for modeling domain

knowledge, and reasoning about them.

1.1.1 Description Logic: From Semantic Nets to OWL 2

Modeling background knowledge has occupied one of the central places in AI since 60s.

The approaches can be roughly classified into two major categories: those using FOL

as a formal tool enabling automated reasoning, and other systems which often offer

intuitively understandable object-oriented representation but lack formal semantics.

Prime examples of the latter are semantic nets [35] and, later, frames [148]. The

categories are in some sense complementary: strengths of one approach correspond to

weaknesses of the other and vice versa.

DLs emerged in the 80s as a bridge for taking the best from both worlds. It was

realized that giving formal semantics to semantic nets and frames was possible without

necessity to use complete proof systems for FOL. The first system which proposed a

DL-like language with a FOL-like semantics was the famous KL-ONE [23]. It suggested

that the language is to the used for controlling domain terminology—which is still one

of the central use cases for DL—thus sticking the name “terminological languages” to

early DLs.

One especially attractive feature of semantic nets is visualization. The knowledge

is represented as a graphical conceptual model with nodes and arcs. For example, one

may say that ductal and lobular breast cancers are kinds of cancer by drawing the

diagram shown on Figure 1.1. This seems to be more illustrative than a set of formulas

in FOL. The syntax of DLs, however, allowed for expressing structured concepts and

axioms in a form that was easier to analyze in order to reconstruct the diagram than

FOL theories. An example of such DL theory is shown on Figure 1.2. Informally, the

axioms state that: breast cancer is cancer that occurs in a part of breast, ductal and

lobular cancers are cancers that occur in ducts or lobules respectively, and that ducts

and lobules are parts of breast. This knowledge entails that ductal and lobular cancers

are kinds of breast cancer.

Figure 1.1: Ductal and lobular cancers
are kinds of breast cancer.

DuctalCancer ≡ Cancer u ∃occursIn.Duct,
LobularCancer ≡ Cancer u ∃occursIn.Lobule,
Duct v ∃partOf.Breast,
Lobule v ∃partOf.Breast,
BreastCancer ≡ Cancer u ∃occursIn.∃partOf.Breast

Figure 1.2: DL axioms which entail that ductal
and lobular cancers are kinds of breast cancer.
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Early DL systems used so called structural subsumption algorithms to derive new

knowledge from explicitly represented. Such systems included loom [142], krypton

[21], classic [19], and some others. They were computationally tractable but often

incomplete for many DLs, i.e., not all true statements could be derived. The next

generation of systems started to appear in the early 90s with emergence of tableaux

algorithms [174], which were complete proof systems for DLs. Unfortunately, it turned

out that complete reasoning in propositionally closed DLs is PSPACE-complete [152].

However, as is often the case, theoretical complexity was not the last word. The first

DL reasoners, which demonstrated acceptable performance on real knowledge bases

(KBs) were KRIS [10], FaCT [87], and HAM-ALC [73]. They were followed by modern,

highly optimized tableau reasoners, namely, FaCT++ [182], Pellet [177], RACER [72],

and HermiT [176].

The success of ontologies in a range of disciplines (see the next section) instigated

standardization work on an ontology language. The growing popularity of DL made it

the primary candidate for the logical basis of such a language. Two separate develop-

ments focused on OIL (Ontology Inference Layer) and DAML (DARPA Agent Markup

Language) eventually led to the standardization of OWL (Web Ontology Language)

under W3C. OWL originally appeared as three languages (OWL Lite, OWL DL, and

OWL Full), where the first two correspond to DLs SHIF(D) and SHOIN (D) re-

spectively. The design and the chosen trade-off between expressivity and reasoning

complexity were not flawless and it took several more years to standardize OWL 2.

It comes as several profiles, each of which corresponds to a carefully selected DL (see

Section 2.1.3).

1.1.2 Ontologies at Work

Ontologies have been remarkably successful in a variety of areas among which the most

noticeable are Bioinformatics, Health Care and Life Science (HCLS), and the Semantic

Web. We do not intend to give a comprehensive overview of these areas and encourage

interested readers to consult the Description Logic Handbook [9].

Ontologies in Bioinformatics, Health Care and Life Science Ontologies are

currently most actively used to manage large terminologies in biology, chemistry, and

medicine. Bright examples include such large medical ontologies as GALEN, SNOMED

CT, and NCI Thesaurus. Their applications range from electronic medical records to

data integration and image annotation systems (see, e.g., [43]). The next version of the

International Classification of Diseases2 (ICD-11), the main source of medical codes for

classifying symptoms, findings, causes of death, etc., is currently being developed using

2http://www.who.int/classifications/icd/en/

http://www.who.int/classifications/icd/en/


22 CHAPTER 1. INTRODUCTION

OWL.

Biologists and chemists use ontologies to describe their data, in particular, the

results of experiments. Notable ontologies include the Gene Ontology (GO), Protein

Ontology (PO), Sequence Ontology (SO) and others available through large reposit-

ories such as NCBO BioPortal.3 Several collaborative experiments to create shared

science-based ontologies are under way, for example, the Open Biological and Biomed-

ical Ontologies (OBO) Foundry.4

Ontologies on the Semantic Web The Semantic Web [17] is a concept of Web

in which data is semantically enriched in order to be accessible to machines. OWL

ontologies are vital for the success of Semantic Web since they are the principal sources

of machine processable semantics. One way of semantic enrichment is through annota-

tions linking content inside HTML documents to relevant terms in ontologies. RDFa

is a W3C Recommendation enabling such annotations.

Ontologies are also instrumental for building semantic Web services which enable

client-server and server-server interactions in an automated fashion. Ontologies, such as

OWL-S,5 have been used to describe semantic services, which allows for their automatic

discovery and matchmaking. Another example is the WSMO (Web Service Modeling

Ontology),6 which provides support for deployment and interoperability of services on

the Semantic Web.

1.2 Uncertainty

This thesis is especially concerned with one particular limitation of FOL (and, therefore,

DLs): its restricted capability of representing various forms of uncertainty. In KR

applications, fragments of FOL are typically used to model some abstractions of real

world by capturing statements that can be assumed to be crisp in certain. However, as

we discuss next, this can be too restrictive.

1.2.1 Uncertainty: Ubiquitous and Versatile

Uncertainty is ubiquitous. It comes in a variety of forms and flavors but before discuss-

ing them it is worth noting that FOL does provide some limited support for capturing,

but not measuring uncertainty. Examples include disjunction, the Open World As-

sumption (OWA), and the lack of the Unique Name Assumption (UNA). The OWA

allows for dealing with incompleteness of knowledge by rejecting negation as failure

3http://bioportal.bioontology.org/
4http://www.obofoundry.org/
5http://www.w3.org/Submission/OWL-S/
6http://www.wsmo.org/

http://bioportal.bioontology.org/
http://www.obofoundry.org/
http://www.w3.org/Submission/OWL-S/
http://www.wsmo.org/
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according to each everything which is not provably true is false. The UNA means that

every constant in the signature of a FOL knowledge base denotes a distinct domain

object. Its rejection help to capture uncertainty about identity of objects, i.e., two

constants can denote the same object.

However, there is a whole range of other forms of uncertainty, some of which we

briefly present below:

• Statistics. A lot of knowledge is obtained through experiments and statistical hy-

pothesis testing. It is often the case that the results come with a mean probability,

confidence interval and, perhaps, some information about the distribution. An

example could be the statement that “10.4% of cancer incidence among women

worldwide are attributed to breast cancer”.

• Beliefs. While statistical statements usually have frequentist’s nature (informally

speaking, the results are based on sampling and counting) one may have uncertain

judgments about a particular object. An example is the statement “the chances

that Mary has breast cancer are 25%”. While this statement could have been

derived by applying some relevant statistics to Mary, it ultimately reflects one’s

subjective degree of belief in some propety of Mary’s, namely, that she has cancer.

• Vagueness. A lot of concepts in human knowledge do not have universally ac-

cepted, crisp definitions. Examples are such concepts are “Young” or “Tall”. Its

characteristic feature is that an object can simultaneously be regarded as a mem-

ber of the concept and its complement (i.e., young and old, but to a different

degree).

• Subjectivity and Ambiguity. A related phenomenon is subjectivity, i.e., when the

context is determined by some personal perspective. For example, young people

tend to have a lower threshold on who is to be considered “young”. Ambiguity

also refers to the possibility of more than one interpretation of a term, for example,

the term “Washington” may refer to a person, a university, the city, or the state.

• Measurement Errors. Finally, uncertainty may arise as a result of imperfect

measurements. In fact, errors always accrue during measurements or sampling

but it is up to the application of whether to account for them.

Statistics, beliefs, and vague knowledge have received most research attention in the

context of ontologies. It is important to understand the difference between the nature

of the first two forms (which we from now on will call just “uncertainty”) versus the

third in order to select the right mathematical apparatus.



24 CHAPTER 1. INTRODUCTION

1.2.2 Uncertainty vs. Vagueness

Uncertainty and vagueness are important in ontologies because they are directly ap-

plicable to the terms (concepts and relations) in an ontology. As mentioned above,

concepts can be inherently vague and may also be engaged in statistical relationships.

Statistics is especially important in areas concerned with drawing conclusions from

data (i.e., statistical inference), such as biology, chemistry, and medicine, while vague-

ness is intrinsic in, for example, natural language processing. Incidentally, ontologies

are heavily used in all these areas, so it is no surprise that methods for accommod-

ating these kinds of knowledge have been actively investigated. Two main families of

extended DLs have been proposed; one is based on combining DLs with probability

theory [92, 82, 119, 52, 38, 139, 70] and the other with the theory of fuzzy sets (see esp.

[180, 179] among many others).

The key difference between uncertainty and vagueness is that the former is caused

by lack of information while the latter is caused by some inherent imprecision in some

term’s description. For example, every woman will either develop breast cancer or not

and it is only due to lack of information that we cannot determine the outcome for

a particular person. On the other hand, we may have arbitrary precise data about

one’s age and still be unable to say with 100% confidence if the person is young or not.

In other words, statements under uncertainty still have Boolean truth values whereas

vague statements admit degrees of truth. From a set-theoretic perspective uncertain

concepts (resp. uncertain relationsships among concepts) are most reasonably modeled

as classical sets (resp. classical relations) but with probability distributions over some

outcome space, whereas vague concepts should rather be modeled as fuzzy sets.

This thesis is only concerned with uncertainty and is, therefore, complementary to

any work on fuzzy ontologies or fuzzy DLs. The two families of approaches can be

partly merged using combinations of probability and fuzzy sets (see [137]) to handle

both uncertainty and vagueness.

1.3 P-SROIQ and Pronto Reasoner

In this thesis we concentrate on a particular formalism, called P-SROIQ [136], which

augments DL SROIQ (the logical basis of OWL 2) with probabilistic statements. P-

SROIQ has a few features which distinguish it from numerous alternative probabilistic

DLs.

• Support of any OWL ontology. P-SROIQ allows for adding probabilistic state-

ments to any OWL DL ontology. Most importantly, this means that an already

deployed ontology does not have to be translated or modified in any way to serve
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as a basis for future probabilistic KBs. In addition, one may represent conditional

probabilistic relationships between arbitrarily complex OWL concepts.

• Purely logical. P-SROIQ has model-theoretic semantics in the spirit of FOL and

DL. Its axioms work as constraints on models and no graphical inference layer is

required.

• Tight integration. The classical and the probabilistic parts of a P-SROIQ KB are

inherently semantically connected, which helps to maintain consistency between

classical and probabilistic knowledge.

• Default reasoning. P-SROIQ provides a mechanism for non-monotonic (default)

inference. It allows for consistent treatment of exceptions as well as applying

general probabilistic knowledge to specific objects.

Probabilistic KBs in P-SROIQ have the structure shown in Figure 1.3. They are

composed of a “normal” OWL ontology (classical part of the KB), a set of general

probabilistic statements linking concepts from the classical part (probabilistic TBox

or PTBox), and a set of probabilistic ABoxes (PABox) which store probabilistic facts

about specific objects. In this example the classical part could be a cancer ontology

which states, for instance, that breast cancer is a kind of cancer. The PTBox contains

two conditional statements informally saying that “given that a random object is a

woman, she will develop breast cancer in her lifetime with 0.13 probability” and “given

that a random object has the BRCA1 gene mutation she will develop breast cancer

with probability between 0.6 and 0.8”. Finally, the PABox for Mary contains the

unconditional statement that “she has the BRCA1 gene mutation with probability of

0.7–0.8”. The logic allows for combining these different pieces of information to infer

both general and individual probabilistic knowledge.

P-SROIQ can be regarded as a representative of the Nilsson-style family of prob-

abilistic logics which date back to Nilsson [156], Hailperin [75], and even George Boole.

Their distinctive feature is that probabilistic formulas do not determine a unique prob-

ability distribution (model), like in Bayesian networks, but rather constrain the set of

satisfying distributions. They allow users to specify as much or as little probabilistic

knowledge as is available which is again in sharp contrast to Bayesian networks, where

conditional probability tables must be complete at every node.

Pronto is the first P-SROIQ reasoner that scales to hundreds of probabilistic state-

ments [112]. Throughout this thesis it will be our main tool to investigate implementa-

tions of various reasoning tasks, including non-monotonic ones. It is currently based on

Pellet but, in principle, can work on top of any sound and complete SROIQ reasoner.
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Figure 1.3: The structure of a P-SROIQ knowledge base (probabilistic ontology).

1.4 Objectives

Nilsson-style probabilistic logics have been criticized on several grounds, most prom-

inently, on the ground of highly impractical reasoning procedures. Due to the lack

of independence and other simplifying assumptions, reasoning algorithms, to be com-

plete, have to be global, i.e., process the entire probabilistic knowledge base. Our first

(and the foremost) goal is to show that reasoning in P-SROIQ and similar logics,

in particular, checking probabilistic satisfiability (PSAT), can still be practical. By

“practical” we mean that our implementation can robustly solve PSAT for KBs of

hundreds of probabilistic statements defined over various OWL ontologies, including

large, well-known ontologies which are actively used in real applications.

Our second goal is to investigate whether P-SROIQ could be a suitable language

for probabilistic ontologies. It is important to understand whether computational issues

are the only obstacles and, if not, how substantial are limitations of P-SROIQ from

a theoretical point of view. Finally, we study several application areas in which P-

SROIQ can be used in its current form and evaluate its utility in those areas.

1.5 Thesis Structure

We now give a brief guide to this thesis. Some of its chapters present already known

information while others describe our contributions ranging from application studies

and theoretical research to optimization development and evaluation.
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Following this introduction, Chapter 2 presents background information covering

foundations of DLs, overview of two different families of probabilistic formalisms,

namely, Knowledge Base Model Construction (KBMC) and probabilistic logics, pre-

liminaries on P-SROIQ, and related work. Key to understanding the contributions

of the thesis are those sections describing DLs (Section 2.1), first-order logics of prob-

ability (Section 2.2.2), P-SROIQ (Section 2.3), and previous work on propositional

probabilistic satisfiability (Section 2.4). On the other hand, Section 2.2.1 (and, to some

extent, Section 2.2.2) mostly serves the purpose of putting this thesis into a broader

context.

The reader interested in practical applications of P-SROIQ can find examples in

Chapter 3. Those include modeling uncertain knowledge about breast cancer, finding

inconsistencies in a medical expert system, and probabilistic validation of ontology

alignments. Note that not all our conclusions are positive, for example, a number of

challenges are described in Section 3.1.

Chapters 4 and 5 present the core contributions of this thesis: a theoretical analysis

of P-SROIQ and optimized reasoning algorithms respectively. The analysis is based

on a translation of P-SROIQ into a first-order logic of probability similarly to how

standard DLs are understood as fragments of FOL. The translation helps to explain

certain limitations of P-SROIQ and motivates the effort to address them. In the al-

gorithms chapter, the central role is played by the PSAT procedure (Section 5.1) which

is the first scalable algorithm for deciding non-propositional PSAT. Novel algorithms

for other reasoning problems are also presented.

The next two chapters are dedicated to an extensive evaluation of the algorithms.

Unfortunately, almost no naturally occurring probabilistic ontologies existed prior to

our work so their generation for evaluation purposes was a substantial challenge by

itself. The generation methodology and the results of the synthetic evaluation of the

PSAT algorithm are presented in Chapter 6 while Chapter 7 describes the evaluation

of the algorithms for Diagnosis, consistency, and non-monotonic entailment problems.

Chapter 8 is a brief system description of Pronto while Chapter 9 concludes the

thesis with a review of contributions, summary of outstanding issues, and suggestions

for future research in the area.
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Chapter 2

Background and Related Work

This chapter presents background information most of which is necessary for under-

standing later chapters. Preliminaries are presented in the first three sections which

describe classical Description Logics, a set of formalisms that have been designed to

represent and reason about uncertainty, and, eventually, P-SROIQ, which is of the

main interest in this thesis. Finally, the chapter also includes information on related

work focused on implementation of reasoning algorithms for probabilistic logics, in par-

ticular, propositional PSAT algorithms. Since the body of related work, especially on

practical and implementable reasoning procedures, is not too extensive, we decided not

to take it into a dedicated chapter.

2.1 Description Logic

Description Logics (DLs) form a family of logics which are typically decidable frag-

ments of first-order logic developed specifically for representing structural background

knowledge [9]. SROIQ is one of the most expressive representatives of that family. It

is the formal basis of the Web Ontology Language (OWL 2) which is a W3C standard

for representing ontologies.

2.1.1 Syntax and Semantics

This section briefly presents SROIQ. We omit some technical details which are not

essential for later chapters. The full presentation of SROIQ can be found in [88].

Syntax of SROIQ

We assume fixed finite sets NC , NR, and NI of concept names (atomic concepts), role

names, and individuals, respectively. NC is assumed to contain the special names >
and ⊥ while NR contains the universal role name U . The set of roles is defined as

29
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NR∪{R− | R ∈ NR}. Additionally, we define the function Inv such that Inv(R) = R−

and Inv(R−) = R. We start with defining the syntax of role and concept expressions:

Definition 2.1 (Role Chains and Concept Expressions). A role chain is a finite

sequence of names R1 . . . Rk where Ri ∈ NR. Complex concepts (concept expressions

or just concepts) are expressions generated by the following grammar:

C ::= A | {o} | ¬C | C uD | ∃R.C | ∃S.Self |≥ nS.C |≤ nS.C

where A ∈ NC , S ∈ NR, R is a role, C and D are concepts, n is a natural number, o ∈
NI . Expressions of the form CtD, ∀R.C, {o1, . . . , ok}, and = nR.C abbreviate ¬(¬Cu
¬D), ¬∃R.¬C, {o1}t · · · t {ok}, and ≥ nR.Cu ≤ nR.C, respectively. Abbreviations of

the form {o1, . . . , ok} are called nominal expressions.

A knowledge base (or ontology) in SROIQ is a tuple K = (T ,A,R) where T is a

terminological box (TBox), A is an assertional box (ABox1) andR is a role box (RBox).

A TBox T is a finite set of general concept inclusion axioms (GCIs), an ABox A is a

finite set of individual assertions, and an RBox R is the union of a role hierarchy and

a finite set of role assertion axioms.2 GCIs are also commonly referred to as concept

subsumptions or simply subsumptions.

Definition 2.2 (GCI, Individual Assertions, Role Hierarchy, and Role Assertions). A

general concept inclusion axiom is an expression of the form C v D where C and D

are (possibly complex) concepts. C ≡ D abbreviates {C v D,D v C}. An individual

assertion is an expression of one of the following forms: a : C, (a, b) : R, (a, b) : ¬R,

or a 6= b, where a, b ∈ NI , C is a (possibly complex) concept, and R is a (possibly

inverse) role. A role hierarchy Rh is a finite set of role inclusion axioms which are

expressions of the form ω v S where S ∈ NR and ω is a role chain. The syntax of role

assertions has the following form [88]:

RA ::= Sym(R) | Tra(R) | Ref(R) | Irr(R) | Dis(R,S)

1In what follows we will generally neglect ABoxes when dealing with SROIQ ontologies because
nominals permit us to reduce SROIQ ABoxes to SROIQ TBoxes [183]. For example, a : C can be
expressed as {a} v C and (a, b) : R as {a} v ∃R.{b}.

2Note that, in general, arbitrary RBoxes are not properly part of SROIQ since they lead to unde-
cidability rather easily. Typically, a rather complex set of syntactic conditions (over both the TBox and
RBox) are imposed to ensure decidability (and the standard complexity bounds). For example, transit-
ive roles are not allowed to occur in number restrictions. See [88, 106] as well as http://www.w3.org/TR/
2009/REC-owl2-syntax-20091027/#Global_Restrictions_on_Axioms_in_OWL_2_DL. Note that for
our purposes, the exact restrictions are immaterial as long as they ensure decidability and a given
complexity.

http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Global_Restrictions_on_Axioms_in_OWL_2_DL
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Global_Restrictions_on_Axioms_in_OWL_2_DL
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where R and S are roles not equal to U .

Informally, concept and role inclusion axioms specify that one, possibly complex,

concept (or a role) is a sub-concept (or a sub-role) of another. The expressions on

the right hand-side of role assertion axioms stand for symmetric, transitive, reflexive,

irreflexive, and disjoint roles respectively. We now turn to a formal presentation of the

semantics.

Semantics of SROIQ

Semantics of DLs is standardly based on interpretations I = (∆I , ·I), where ∆I is a

non-empty set (the domain) and ·I is an interpretation function that maps each A ∈ NC

to a subset AI ⊆ ∆I , each R ∈ NR to a relation RI ⊆ ∆I × ∆I and each o ∈ NI

to an element oI ∈ ∆I . Inverse roles are interpreted as inverse relations, i.e., for each

R ∈ NR we have

(R−)I = {(y, x) | (x, y) ∈ RI}.

The interpretation of U is fixed to ∆I ×∆I . Clearly (U−)I = UI .

Next we extend the interpretation function to concept expressions in the following

way (in the next two definitions S is a role name, R is a role, C and D are concepts, n

is a natural number, o is an individual name, and ]M stands for the cardinality of M):

Definition 2.3 (Concept Semantics).

>I = ∆I

⊥I = ∅

(¬C)I = ∆I \ CI

({o})I = oI

(C uD)I = CI ∩DI

(∃R.C)I = {x ∈ ∆I | ∃y ∈ CI s.t. (x, y) ∈ RI}

(∃S.Self)I = {x | (x, x) ∈ SI}

(≥ nS.C)I = {x ∈ ∆I | ]{y ∈ CI s.t. (x, y) ∈ RI} ≥ n}

(≤ nS.C)I = {x ∈ ∆I | ]{y ∈ CI s.t. (x, y) ∈ RI} ≤ n}

Next we define the “satisfies” relation, denoted as |=, between interpretations and

different kinds of axioms in SROIQ:
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Definition 2.4 (Axiom Semantics).

Concept inclusion: I |= C v D if CI ⊆ DI

Role inclusion: I |= R1 . . . Rk v S if RI1 ◦ · · · ◦RIk ⊆ SI

Role assertions: I |= Sym(R) if (x, y) ∈ RI ⇒ (y, x) ∈ RI

I |= Tra(R) if (x, y) ∈ RI and (y, z) ∈ RI ⇒ (x, z) ∈ RI

I |= Ref(R) if {(x, x) | x ∈ ∆I} ⊆ RI

I |= Irr(R) if {(x, x) | x ∈ ∆I} ∩RI = ∅

I |= Dis(R1, R2) if RI1 ∩RI2 = ∅

An interpretation satisfies (or is a model of) a TBox T (resp. an RBox R), denoted

as I |= T (resp. I |= R), if I satisfies all axioms in T (resp. R). It satisfies (or is a

model of) a knowledge base K = (T ,R), denoted as I |= K, if it is a model of both T
and R.

2.1.2 Reasoning Problems and Complexity

There are several standard reasoning problems for DLs, including SROIQ [9]:

Knowledge Base Satisfiability (SAT) Given a knowledge baseK determine whether

there exists an interpretation I such that I |= K.

Concept Satisfiability (CSAT) Given a knowledge base K and a (possibly complex)

concept C determine whether there exists an interpretation I such that I |= K
and CI 6= ∅.

Entailment (ENT) Given a knowledge base K and an axiom η determine whether

I |= η for all I |= K.

These problems are pairwise reducible. In particular, an instance of CSAT can be

solved by adding the new axiom {a} v C in T , where a is an individual name not

occurring in K, and then solving SAT. An instance of ENT where η is a TBox axiom,

i.e., η = C v D, can be reduced to SAT by adding the axiom {a} v C u¬D, where a is

also a fresh name. Since the reductions are polynomial the CSAT and ENT problems

belong to the same complexity class, which has been determined to be co-N2ExpTime-

complete (since SAT is N2ExpTime-complete) [106].
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2.1.3 The Web Ontology Language

The Web Ontology Language (OWL) is a standardized language for defining ontologies

on the Semantic Web.3 It has direct connections to DLs: in essence, OWL can be

thought of as a combination of a DL, datatypes for managing data assertions (such as

measurements), a set of syntactic forms most of which are based on XML, and several

non-logical features, e.g., annotations.4 The current version of OWL is OWL 2.

Syntactically, an OWL ontology is a document conforming to one of the specified

syntaxes, i.e., RDF/XML, OWL/XML, Manchester syntax, etc. Semantically, it is a

DL knowledge base, so reasoning tasks in OWL can be reduced to SAT in DL [89].

OWL 2 comes as a set of so called profiles each of which embodies a trade-off between

expressivity and the computational complexity of reasoning. OWL EL corresponds to

the logic EL++ [8]. OWL QL is based on the logic DL-Lite [26]. The standard reasoning

tasks for OWL EL and QL are polynomial. OWL RL is inspired by “rule based” DLs

such as Description Logic Programs (DLP) [71]. OWL (2) DL corresponds to SROIQ
and is the most expressive decidable language in the OWL family. OWL 2 Full, in

turn, is an undecidable language which allows interpretation of any well-formed RDF

document as an OWL ontology.

Due to the direct connection between OWL 2 DL and SROIQ our work can be

regarded as an attempt to develop practical algorithms for reasoning with probabilistic

ontologies (i.e., OWL ontologies with probabilities). Indeed, as will be shown in Chapter

8, we use meta-logical features of OWL 2, namely annotations, to attach probabilities to

OWL axioms. Such axioms are then mapped to probabilistic statements in P-SROIQ
to form knowledge bases in probabilistic DL. We generally only discuss SROIQ and

its close relatives, but our results also apply to its sub languages, e.g., EL++ or DL-

Lite. However, we do not attempt to take advantage of any of the special properties of

various fragments, such as completeness of polynomial-time reasoning in EL++, which

might provide for distinct sorts of optimization.

2.2 Representation and Reasoning About Uncertainty

The challenge of developing expressive knowledge representation and reasoning formal-

isms that are capable of dealing with various sorts of uncertainty is long standing. This

issue is one of the central in AI and is also of considerable interest in health care and

life science community. It has been recognized that classical graphical models, such

3It is widely claimed to be a Semantic Web language, especially in W3C normative documents,
although use cases for OWL go far beyond what was traditionally believed to be the Semantic Web,
i.e., the Web of semantically rich data.

4A complete OWL reference can be found in normative documents listed at http://www.w3.org/

TR/owl2-overview/.

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
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as Bayesian or Markov networks, despite offering a clear semantics and reasonably

tractable inference algorithms, are often inadequate for modeling in complex domains

because of being essentially propositional. Consequently, a lot of research went into de-

veloping formalisms combining the expressive power of first-order logic with the ability

to represent and reason about probabilistic statements.5

We do not aim to present an extensive survey of first-order probabilistic languages

that have emerged over the last two decades (the interested reader is encouraged to see

[147, 44]). Instead, we describe two substantially different approaches which capture

two fundamental approaches to combining probabilities with logic, namely, Knowledge

Based Model Construction (KBMC) formalisms and first-order logics of probability

(FOPLs). They differ in several key aspects, in particular, the former tend to provide

users with tools to specify the unique probability distribution over relational structures

while the latter only constrain the set of probability distribution in the same spirit

as formulas in first-order logic place restriction on the set of models [147]. Further-

more, KBMC formalisms typically result from attempts to increase expressive power of

graphical models while FOPL are extensions of first-order logic to accommodate prob-

abilistic knowledge. This distinction is important because both kinds of formalisms

tend to inherit advantages and shortcomings of their roots. KBMC formalisms often

provide reasonably efficient inference algorithms, modular knowledge representation,

and the ability to draw entailments from the unique distribution, but on the other

hand they require users to fully describe the model. FOPL, in turn, enable users to

specify no more information than they have, are more understandable to people having

worked with standard FOL or its fragments (e.g., DLs), but suffer from two major

drawbacks: inferential weakness (due to the lack of a unique distribution) and very

high computational complexity or even undecidability.

FOPL are closer related to the work presented in this thesis so they will be covered in

more detail in Section 2.2.2. We will show in Chapter 4 that P-SROIQ can be thought

of as a particular instance of FOPL and can further evolve by building on work that

has been done in the context of FOPL. However, before we move to FOPL we briefly

present the KBMC branch of probabilistic languages which have been influential in

many fields and recently started to expand in the area of the Semantic Web [39, 49].

2.2.1 Knowledge Based Model Construction

The KBMC family of languages provide rich syntaxes to describe complex conceptual

models with uncertainty. They provide a first-order declarative language thus allowing

users to compactly specify a template for probability distributions over complex data

5We largely ignore other theories of uncertainty besides probability—Dempster-Shafer theory of
evidence, fuzzy logic, and the possibility theory among others—in this thesis.
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spaces, e.g., a relational or object database, or possible Herbrand interpretations. Most

KBMC formalisms define distributions over relational structures, or possible worlds,

which are constrained by available background knowledge. Inference, such as query

answering, is typically done by generating a propositional graphical model (Bayesian

or Markov network) from a first-order specification. This idea dates back to early

works of Horsch and Poole [90] and Breese [24, 188] and eventually led to a wealth of

languages some of which are briefly characterized below.

Probabilistic Relational Models

We start with Probabilistic Relational Models (PRM)—a classical KBMC formalism

which extends traditional Bayesian networks by providing means to describe objects,

their attributes, and links between them [57, 121, 63]. It is “to Bayesian networks

what relational logic is to propositional logic” [63]. A PRM model is a template for

specifying a unique probability distribution over the set of possible instantiations of

a relational schema (possible worlds). It can handle different kinds of uncertainty:

attribute uncertainty (uncertainty about values of object’s attributes) and structural

uncertainty (uncertainty about existence of relations between objects).

PRM is composed of two sub-languages: the first is used to specify logical schemas

(relational models) while the second defines a graphical template for various prob-

abilistic links between domain objects (probabilistic relational models). The schema

language is less expressive than first-order logic and corresponds to the language of re-

lational databases. Schema description consists of a set of classes (or types of objects)

and a set of relations. Each class is characterized by a set of attributes whose values are

drawn from a fixed domain. Objects can refer other objects via typed reference slots

which correspond to foreign keys in databases. An instance of a schema is a relational

logic interpretation of the schema’s entities (classes and relations). It contains objects

for each class and a boolean function which specifies which relations hold. Importantly,

an instance can be specified partly via a relational skeleton which describes all objects

and relations but leaves out some attributes. Intuitively, missing attributes are those

whose values are uncertain.

The probabilistic model language provides a syntax for describing qualitative de-

pendency structures and their numerical parameters. The structure specifies how values

of uncertain attributes in a relational skeleton depend on other attributes in the same

skeleton. Each attribute has a set of parents, attributes of the same object or attributes

of objects referenced via slots, that collectively determine its value. Such structure is

naturally modeled using Bayesian networks where each attribute corresponds to a node.

Note, however, that the networks define the structure on the class level thus avoiding

the need to duplicate the dependencies for each object of the same class. Structure
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parameters are conditional probability distributions (CPD) that induce a global prob-

ability distribution over possible completions of the skeleton (i.e., over schema instances

consistent with the skeleton). Coherence of global distributions has been proved sub-

ject to acyclicity conditions on dependency structures. RPM supports the notion of

aggregation functions which enable modeling of complex dependencies, for example, the

dependency of a student’s average grade on the average number of course (s)he enrolls

in.

Exact and approximate inference algorithms have been developed for PRM. All of

them presume that the ground Bayesian network has been generated from the relational

skeleton and the probabilistic model.6 Exact algorithms are used for skeletons which

lead to either small or well-structured Bayesian networks. Approximate algorithms, e.g.

approximate belief propagation [163], are used for large networks. Empirical evidence

suggests that such algorithms often converge to correct marginal probabilities for the

value of each attribute even in general networks, i.e., those with more than one path

between nodes [144].

Relational Bayesian Networks

Relational Bayesian Networks (RBN) [93] are similar to PRM since they are also allow

for Bayesian modeling on the predicate level. The essential difference is that the form-

alism does not consist of separate components for specifying schemas and probabilistic

dependencies. Every RBN model is a Bayesian network where each node stands for a

predicate name in the vocabulary. Given the predicate r, its node Nr acts as a random

variable whose set of values is the set of all groundings of r with respect to a finite

domain. Extensions of RBN for reasoning about infinite domains were developed later

but at the cost of restricting recursion [94].

Such a representation may appear very inefficient since the extensions of predic-

ates (i.e., the domains of nodes) are not restricted by a relational skeleton as in PRM.

Therefore, defining conditional probability distributions is not feasible due to prohib-

itively large sets of values. However, RBNs are centered around so called combination

functions, such as the well-known noisy-or [163], which act as first-order representa-

tions of CPDs. For given n-ary predicate r a combination function maps instantiations

of predicates associated with parent nodes of r to probabilities of instantiations of r.

Every node in an RBN is labeled with a combination function along with its predicate

name.7

6Note, that such a network does not always need to be complete. Clearly the size of the complete
ground network is exponential in the domain size of missing attributes in the skeleton so full construction
is intractable. However, it is often possible to prune segments of the network which are provably
irrelevant to the query thus reducing its size.

7Technically, nodes are labeled with probability formulas of which combination functions are a
special case but such details are unimportant.
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Jaeger developed a flexible framework for defining combination functions which

allows for their nesting. Furthermore, he allows RBNs to be recursive which means that

some instantiations of a predicate can depend probabilistically on other instantiations

of the same predicate. This is essential for modeling temporal dependencies (where

r(t, x) depends on r(t− 1, x)), symmetric relations (r(x, y) and r(y, x)), and stochastic

functions which map each combination of arguments to a probability distribution over

the set of output values. This feature is very powerful, for example, it makes RBNs

more expressive than PRMs, Markov Logic Networks (MLNs) [95, 97] and, due to the

ability to model random functions, Object Oriented Bayesian Networks [120]. On the

other hand, it complicates the otherwise very transparent semantics of RBNs because

recursive dependencies can easily introduce cycles. As a solution Jaeger proposes to

impose well-founded orderings on tuples of domain elements. These orderings then act

as extra nodes and help to ensure that the network remains acyclic. Unfortunately,

this solution works only for finite domains whereas in infinite domains checking well-

foundness is undecidable [94]. Similarly to PRM inference in RBNs is done via reasoning

on grounded Bayesian networks which are constructed on the fly for each specific query.

Multi-Entity Bayesian Networks

Multi-Entity Bayesian Networks (MEBNs) [126, 125] further increase expressivity of

graphical models comparing to RPMs, OOBNs, and RBNs. MEBN is a full first-order

generalization of Bayesian networks which is capable of representing a broad class of

probability distributions over interpretations of any finitely axiomatizable first-order

theory. In contrast to many other KBMC languages MEBN is, first, an inherently open

world formalism and, second, does not require finiteness of the domain. MEBN has

been designed with the goal of achieving maximal expressivity so it can be used as a

common formalism for exchanging with probabilistic knowledge [125].8

A probabilistic model in MEBN (or a MEBN theory, MTheory) is a collection of so

called MEBN fragments (MFrags) each of which is a parametrized Bayesian network

involving a small number of variables. MFrags are basic building blocks for creating

modular probabilistic models in MEBN. An MFrag is similar to a relational Bayesian

network but, in addition, can contain context terms which place logical restrictions

on instantiations of internal random variables. MFrags may share random variables

which serve as catenation points for joining a collection of fragments satisfying global

consistency constraints into a single coherent theory. Similarly to RBNs, MFrags can

express recursive relationships to allow particular instantiations of random variable

to depend on other instantiations of itself. MEBN provides standard MFrags with

8Similar goals have been pursued by designers of some well known non-probabilistic first-order KR
formalisms, for example, Common Logic (ISO/IEC 2007) or Knowledge Interchange Format (KIF).
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prescribed semantics for representing logical connectives including quantification which

are essential for achieving the expressive power of FOL.

MEBN uses the notion of an influencing configuration to specify local probabil-

ity distributions for random variables in MFrags. An influencing configuration is an

instantiation of parent variables which is relevant to the child’s distribution. As typ-

ical for first-order graphical languages a variable can have different number of parents

depending on a particular instantiations. RPMs deal with this issue using aggrega-

tion functions while RBNs employ combination functions. MEBN, in turn, allows for

complex specifications of local distributions which consist of rules that i) determine

influencing configurations and ii) assign probabilities to possible values for each config-

uration. MEBN’s mechanism can express both aggregation and combination functions

[125].

Another interesting feature of MEBN not present in RPM or RBN is the separa-

tion between generic, or terminological knowledge (TBox) and factual, or assertional

knowledge (ABox). The former is represented in generative MFrags while the latter is

represented in finding MFrags. Generative fragments capture knowledge about generic

statistical relationships while finding fragment specify information about a concrete

situation. Such separation is not new: it dates back to classical KR&R systems for

conceptual modeling, such as KRYPTON or KL-ONE [22, 23], and is now a basic

feature of DLs and OWL (as described in Section 2.1).9

Conceptually, inference in MEBN is done in the spirit of other KBMC formal-

isms: by reasoning over grounded Bayesian networks. However, it is more involved

than inference in PRM or RBN. Since MEBN allows for arbitrary first-order theories

the entailment problem is undecidable, so one cannot hope for instantiating a finite,

even if prohibitively large, Bayesian network. Therefore, the authors use an iterative,

anytime algorithm for constructing situation specific Bayesian networks (SSBN [143])

which generates a series of approximate networks whose size is increased at every step.

Eventually, either the algorithm terminates or a stopping condition, e.g., time-out, is

reached. In the first case the algorithm has either computed exact probabilities for tar-

get random variables or detected an inconsistency between findings and the generative

part of the theory. In the second case the algorithm has computed an approximate

answer. Importantly, the algorithm always terminates on inconsistent theories [125] so

it is a refutation-complete procedure, similarly to the classical resolution for FOL.

Markov Logic Networks

Finally, we describe Markov Logic Networks (MLNs)—is a recently developed KBMC

formalism which extends a distinct kind of graphical model, Markov networks [109],

9As described in the same section, the distinction is blurred in expressive DLs with nominals.
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with first-order representational power [170]. Markov networks are undirected models of

uncertainty which, similarly to Bayesian networks, represent a unique joint distribution

for a set of random variables but, in contrast to them, use weights instead of condi-

tional probabilities. They have pros and cons when compared to Bayesian networks,

in particular, they are more generic by allowing cycles but the parameters (weights)

are not simply conditional probabilities as in Bayesian case. However, the weights

are still uniquely determined by probabilities and can be computed via an optimiza-

tion algorithm (see, e.g., [170]). This and other differences are present in first-order

generalizations of both models.

MLN are similar to MEBN in their aim to generalize first-order logic. Syntactically

an MLN is a set of pairs (Fi, wi), where Fi is a (possibly quantified) formula in FOL and

wi is its weight. The weight is not a probability but can be understood as a strength of

the formula: the higher the weight, the lower the probability of interpretations which do

not satisfy the formula.10 Analogously to other KBMC formalisms MLNs are templates

for ground Markov networks. An instantiation of an MLN contains a clique for every

formula wherein the nodes of the clique are ground atoms which appear together in

at least one grounding of the formula. Every clique inherits the weight of the original

formula.

MLN generalizes deductive inference in first-order logic but, differently from MEBN,

under three assumptions: i) the unique name assumption (UNA), ii) the domain closure

assumption (the domain is the union of constants’ interpretations closed under function

applications), and iii) the known functions assumption (KFA) according to which any

application of any function maps the arguments to one of the constants. The first

two assumptions can be lifted by introducing equality (UNA) and a finite number of

unknown domain objects (domain closure). KFA is more restrictive as it precludes

infinite Herbrand universes. It can be slightly relaxed by restricting the level of nesting

for function applications, otherwise the formalism needs to be extended to deal with

infinite models (see [50] on modeling infinite domains using Markov networks).

MLNs face the typical problem of KBMC formalisms: the size of ground networks is

exponential in the size of the domain. Furthermore, exact inference in Markov networks

is #P-complete, so approximate methods are needed. Differently from MEBN, which

compute a series of approximate networks, MLN uses sampling techniques, in particular,

Markov Chain Monte-Carlo method. The basic idea is to construct a Markov chain

whose equilibrium distribution is the desired joint distribution of the complete ground

network. The construction yields an anytime inference algorithm as the quality of the

approximation improves at every step, when a new ground atom is sampled from the

neighborhood (the Markov blanket) of the formula which probability is being computed.

10Technically it is slightly more complicated. The weight corresponds the difference in log probability
between satisfying and non-satisfying interpretations (worlds).
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Summary

The above list of KBMC formalisms is by no means exhaustive but is sufficient to draw

several general conclusions. Languages of this family share the following properties:

they are extensions of their corresponding graphical models, they provide means for

describing first-order templates for instantiating ground probabilistic models, they de-

scribe a unique probability distribution over relational structures, and their principal

reasoning mechanism is inference on instantiated ground network. As usual, these

properties have advantages and shortcomings.

The biggest advantages are modular knowledge representation, inferential power,

and learning support. Underlying graphical models are inherently modular due to the

causal Markov property which allows for separating independent fragments of probab-

ilistic theory. This is best seen in MEBN which theories are loosely coupled collections

of MFrags, each of which is a first-order theory. Inferential power reflects the ability

to make inference from the unique probability distribution over possible worlds. Such

a distribution assigns a probability to every first-order formula thus giving meaningful

answers to each query. Finally, first-order models in these formalisms can be learned

by using adapted learning algorithms for learning and generalizing Bayesian or Markov

networks from data (see esp. [57, 96, 170] on learning RPM, RBN, and MLN models).

However, there are also difficulties with using KBMC formalisms to manage un-

certainty in logic-based ontologies, e.g., in the Semantic Web. They are succinctly

summarized in a recent survey of probabilistic formalisms for the Semantic Web [166]:

[KBMC] approaches are rather unsatisfying because they do not consider

the semantics of Semantic Web languages but rather focus at a special kind

of probabilistic model, i.e. [BNs] or [MEBNs], and provide a Semantic Web

based syntactical interchange format for these probabilistic models and their

semantics.

The key point is KBMC-based extensions to logical languages are strongly decoupled

from the underlying classical logic. For example, a major issue in PR-OWL (a Semantic

Web language based on MEBN [39]) is the weak connection between the probabilistic

theory (MTheory) and the underlying OWL ontology. Specifically, it is not the terms

from the ontology that engage in probabilistic relations but rather random variables

which do not (automatically) maintain the terms’ semantics. This problem can be

rectified by formalizing a mapping between OWL and PR-OWL (see [28]) but it still

requires translation of the ontology into MEBN.

Also, these formalisms do not properly support the scenario when probabilistic, e.g.,

statistical statements are to be added to a large existing OWL ontology such as the NCI

Thesaurus. In this case it is highly undesirable to translate the ontology into a new
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formalism because it may evolve separately from the probabilistic model (it can be used

by applications which do not require uncertainty). Also, the commitment to a unique

distribution, while increasing inferential power, often requires unknown probabilistic

knowledge to be specified or assume independence where it is not fully appropriate.

This goes out of accord with basic principles of designing ontologies using DLs and

OWL which never force users to specify more information than is actually known.

2.2.2 Probabilistic Logics

We next proceed to purely logical approaches to probabilistic languages. By “purely

logical” we mean that probabilistic statements (formulas or axioms) simply place con-

straints on probabilistic models without (necessarily) enforcing a single, unique prob-

ability distribution, as KBMC formalisms do. In other words, the statements act just

as classical logical axioms that constrain the set of satisfying interpretations (truth

assignments or first-order structures). We begin with the propositional case and then

move on to highly powerful first-order logics of probability.

Probabilistic Propositional Logic

Propositional probabilistic logic (PPL) dates back to the ideas of George Boole and

was re-invented and formalized by Hailperin [75] and, famously, Nilsson [156, 157]. It

was the first probabilistic logic to use probability distributions over possible worlds

(i.e. model structures) rather than over sentences of the formal language (as, e.g., in

[59]). The basic Nilsson model presented below is a foundation of many subsequently de-

veloped formalisms including probabilistic logic programming [153, 132] and P-SROIQ
[136].

The syntax of Nilsson’s basic model is quite simple: we assume a finite set of n

Boolean variables X = {x1, . . . , xn} and a set S = {s1, . . . , sm} of m propositional

formulas constructed from X by means of standard logical connectives ∧,∨,¬. A

knowledge base K in PPL is a set of pairs (si, pi), where si ∈ S and pi ∈ [0, 1] is a real

number. Each pair is a probabilistic formula, where pi specifies the probability of si.

The semantics of PPL is based on possible worlds, each of which is a truth assign-

ment to all variables in X . Clearly there are 2n possible worlds for n variables. A

probabilistic interpretation Pr is a probability distribution over W , the set of all pos-

sible worlds over X . An interpretation Pr assigns each si ∈ S a real number, Pr(si),

which is equal to the total probability of all truth assignments w ∈W which satisfy si

(written as w |= si). Pr satisfies (or is a model of) a probabilistic formula (si, pi) if

Pr(si) = pi.

The basic reasoning task in PPL is the problem of determining consistency of sets

of probabilistic formulas. A set K, a probabilistic knowledge base, is called consistent
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(or satisfiable) if there exists a probabilistic interpretation that satisfies all probabilistic

formulas in K. The problem can be reduced to the problem of solubility of the following

instance of linear inequalities over real-valued variables zj , j ∈ {1, . . . , 2n} [156]:

∑
w|=si

zw = pi, where (si, pi) ∈ K, (2.1)

∑
w∈W

zw = 1, and zw ≥ 0 for every w ∈W

Each variable zw corresponds to probability of the world w ∈ W in some probabilistic

interpretation Pr. The inequalities of (2.1) specify that i) the probability of each

sentence si is pi, ii) the total probability of all worlds in W is 1, and iii) the probability

of any world must be non-negative. A solution to this system is a satisfying probabilistic

interpretation of K.

The problem of entailing the tight probability bounds for a formula s given K is

defined as the problem of computing a pair of numbers l, u such that l is the minimum

(resp. maximum) of Pr(s) over all probabilistic models of K. The numbers can be

computed by minimizing (resp. maximizing) the linear expression
∑

w|=s zw subject to

the (soluble) system (2.1).

Observe that the number of variables in (2.1) is exponential in the number of vari-

ables in X . This is the major computational obstacle to using PPL. Many authors have

proposed different approaches to tackle it, which range from using approximate heur-

istic methods [156] to advanced Linear Programming (LP) techniques [105, 98]. The

latter have been particularly successful for PPL. The principal aim of this thesis is to

show that the same idea, although requiring a major re-thinking, can lead to practical

reasoning in non-propositional cases.

First Order Logics of Probability

Next we describe a family of first-order logics of probability (FOPL) as defined and

analyzed by Bacchus, Halpern, and Abadi [12, 76, 1]. To our knowledge, these lo-

gics represent the most general formalisms allowing fusion of classical first-order and

probabilistic knowledge. They treat probabilities in a natural way on both syntactic

and semantic levels, do not make commitments to point-valued, or even quantitative

probabilities, and are well suited for representing probabilistic statements of different

natures. Finally, the logics can serve as bases for designing systems of default reasoning.

These features make them a perfect framework for studying probabilistic extensions of

Description Logics, as will be demonstrated in Chapter 4.
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Before proceeding to syntax and semantics of the logics in this family we must com-

ment that the logics defined by Bacchus [12] and Halpern [76, 1] differ in their notions

of probability functions. Probability functions are normally assumed to be real-valued

and obeying the Kolmogorov axioms: monotonicity, unit measure, and countable addit-

ivity. Thus it may appear that first-order reasoning about probabilities should require a

proper first-order characterization of the reals which cannot be complete due to limita-

tions of FOL. However, this is not necessary since all that is really required is arithmetic

operations and reasoning about order. Also, as Abadi and Halpern have shown [1], deal-

ing with the reals, which are a subclass of ordered number fields, makes certain logics in

this family fully undecidable which would be semi-decidable, i.e. completely axiomat-

izable, if probability functions are allowed to take values from any algebraic number

fields, not only reals. To the best of our knowledge allowing non-standard probability

functions does not cause major problems apart from some facts about reals, such as√
2×
√

2 = 2, not being true in all models. As such we take the Bacchus approach and

allow such functions but use Halpern’s terminology (Types I, II, and III) to refer to

different logics in the family.

We next proceed to describing the three logics which mainly differ in the kind of

probabilities they aim at representing and reasoning about. The Type I logic deals

with statistical statements while Type II deals with belief statements. The Type III

logic combines the features of both but does not (by default) offer any mechanism for

connecting the two kinds of probabilities. We return to that issue at the end of the

section.

Type I Probabilistic Logic We start with the Type I logic (or FOPLI) which is

capable of representing and reasoning about statistical knowledge with respect to FOL

theories, i.e., statements like “90% of birds fly” or “age-adjusted breast cancer mortality

rate for US women of all races is 24.0 per 100,000.”11 We assume a two-sorted first-

order vocabulary. The first sort consists of predicates and function names of different

arity Φ and a countable set X o of object variables xo, yo, . . . . Intuitively, these variables

range over the abstract domain as in standard FOL. The second sort is composed of

constants 0 and 1, the binary function names + and ×, the binary predicate names >

and =, and a countable set X f of field variables xf , yf , . . . . Intuitively, these variables

range over field elements, i.e. numbers.

Object terms are simply the closure of X o under function applications. Formulas

of FOPLI and field terms are defined simultaneously in the following way:

• 0, 1 and all field variables are field terms.

11http://seer.cancer.gov/statfacts/html/breast.html

http://seer.cancer.gov/statfacts/html/breast.html
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• If P is an n-ary predicate name in Φ and t1, . . . , tn are object terms, then

P (t1, . . . , tn) is an atomic formula.

• If t and s are field terms then so are t+ s and t× s.

• If t and s are field terms then t = s and t > s are atomic formulas.12

• If φ is a formula then w~x(φ) is a field term, where ~x is a vector of n object

variables.

• Formulas of the form w~x(φ|ψ) = t and w~x(φ|ψ) > t are abbreviations for w~x(φ ∧
ψ) = t× w~x(ψ) and w~x(φ ∧ ψ) > t× w~x(ψ) respectively.

• The set of formulas is closed under conjunction, negation, and universal quanti-

fication. Both object and field variables can be bound by the universal quantifier.

• Logical symbols ∨,→, and ∃ are standard abbreviations defined in terms of ∧,¬,

and ∀. Field predicates ≤ and ≥ are defined in a similar way.

Following Halpern [76, 1], we define a Type I structure over Φ to be a tuple M =

(D,π, µ) where D is a domain, π is the standard first-order interpretation function

which maps predicates and functions from Φ to predicates and functions over D, and

µ is a discrete probability distribution over D. µ is extended to µn : 2D
n → [0, 1]

by defining µn(d1, . . . , dn) = µ(d1) × · · · × µ(dn) and closing under countable union.

Valuation is defined as a function v which maps each object variable into an element

of D and each field variable into an element of R. Next we inductively associate each

formula with a truth value by using a structure M and a valuation function v ([t](M,v)

stands for the element of D (resp. R) to which the object (resp. field) term t is

mapped). Using the standard convention we write (M, v) |= φ as an abbreviation of

“φ is true in (M, v) (or (M, v) satisfies φ)”. The definition follows the corresponding

definition in FOL, so the following few clauses suffice:

• (M,v) |= t = s iff [t](M,v) = [s](M,v);

• (M,v) |= ∀xoφ iff (M, v[xo/d]) |= φ for all d ∈ D, where v[xo/d] stands for the

valuation that maps xo to d and is otherwise equivalent to v;

• [w~x(φ)](M,v) = µn({(d1, . . . , dn) : (M,v[x1/d1, . . . , xn/dn]) |= φ}).

As usual those formulas which are true in some Type I structures are called satisfiable

and those which are true in all structures are called valid. We write M |= φ if M

satisfies φ for all valuations.

12If object equality is considered part of the language then t = s is also an atomic formula whenever
t and s are object terms.
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Typically first-order formulas φ occurring in w~x(φ) are open first-order formulas

with n free object variables. In that case their interpretation can be informally read as

the probability that a randomly chosen vector (d1, . . . , dn) of domain objects satisfies

φ. In what follows we will ignore field terms w~x(φ) where ~x does not correspond to the

vector of free object variables in φ. In particular, we will ignore field terms over closed

formulas because they can only be mapped to either 0 or 1 in any Type I structure (see

[76] for the proof of this fact).

FOPLI is capable of representing a broad range of statistical statements, including

conditional probabilities, and various notions of independence (see the examples below).

Example 2.1 (Statistical Formulas in FOPLI).

• Conditional probabilities: 0.12 ≤ wx(woman with breast cancer(x)|woman(x))

≤ 0.13. Prevalence of breast cancer among women is 12%–13%.

• Qualitative probabilities: wx(person with breast cancer(x)|woman(x)) ≥ 10 ×
wx(person with breast cancer(x)|man(x)). Breast cancer is more than ten times

more prevalent among women than men.

• Independence: wx(person with breast cancer(x)|man(x)∧∃y dog(y)∧loves(x, y))

= wx(person with breast cancer(x)|person(x)). Loving dogs does not affect the

risk of developing breast cancer risk.

Type II Probabilistic Logic The Type II probabilistic logic (FOPLII) has a very

similar syntax to the one of FOPLI. The only difference is that instead of field terms

of the form w~x(φ), FOPLII allows for terms w(φ) which are informally interpreted

just as “the probability of φ”. Since the Type II logic does not deal with probability

distributions over the domain, there is no notion of a random choice of ~x that will

satisfy φ with some probability. Instead, the logic allows talking about the probability

of (typically closed) formulas which is defined with respect to possible worlds.

The notion of a “possible world” is made precise in the following way. A Type II

probability structure is a tuple M = (D,S, π, µ), where D is the domain, S is a set of

possible worlds (or states), π is a world-specific first-order interpretation function (i.e.

it may interpret function and predicate names differently in different worlds), and µ is

a discrete probability distribution over S. The key difference between the Type I and

Type II semantics is that now the probability distributions are taken over the set of

worlds S and not over the domain D.

A Type II structure M , a world s ∈ S, and a valuation v collectively associate every

object and field term with an element of D and R respectively, and every formula φ

with a truth value. As before we write (M, s, v) |= φ if the tuple (M, s, v) maps φ to
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true. Next we present few important clauses to define the relation |= for FOPLII (see

[12] for the complete list):

• (M, s, v) |= P (x) iff v(x) ∈ π(s)(P ). Note that each world can be regarded as a

first-order structure with its own interpretation function. All worlds are assumed

to share the same domain but this condition can be lifted [76].

• (M, s, v) |= t1 = t2 iff [t1](M,s,v) = [t2](M,s,v);

• (M, s, v) |= ∀xoφ iff (M, s, v[xo/d]) |= φ for all d ∈ D;

• [w(φ)](M,v) = µ({s ∈ S|(M, s, v) |= φ}). Here the interpretation of field terms of

the form w(φ) does not depend on a world since it is defined as a probability of

all worlds in which φ is true.

The semantics of FOPLII is generic in the sense that it allows for any (non-empty)

set to be used as a set of possible worlds. However, it is common to take S as the

set of all interpretations of symbols in Φ over D (see, for example, [118]). In what

follows, especially Chapter 4, we refer to such choice of worlds as “natural” and omit π

in the structure (since every state s is by itself an interpretation). Also, it is reasonable

to require that all formulas appearing in terms w(φ) are closed (similarly to how we

required them to be open in the previous section). In that case all components of M

become fixed, so we will, for example, write M |= w(φ) ≤ t instead of (M, v) |= w(φ) ≤
t.

Example 2.2 (Belief Formulas in FOPLII).

• Ground beliefs: w(loves(Mary, F ido)) ≥ 0.9. It is believed with probability more

than 90% that Mary loves Fido.

• Conditional and qualitative probabilities: w(loves(Mary, F ido)|dog(Fido)) ≥
w(loves(Mary)|cat(Fido)). It is more likely that Mary loves Fido if it is a dog

than if it is a cat.

Type III Probabilistic Logic and Direct Inference Finally, we present the Type

III logic (or FOPLIII) which has been designed to combine features of FOPLI and

FOPLII [76] in order to represent and reason about different kinds of probability. The

syntax of FOPLIII allows for both types of field terms, namely w~x(φ) and w(φ), and,

furthermore, it allows for their nesting. Consider the following example of a well-formed

formula in FOPLIII (it says that the degree of belief that Mary has breast cancer given

the available statistics about women with BRCA mutations is five times as high as the

risk of an average woman):
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(w(woman with breast cancer(Mary) |

0.6 ≤ wx(woman with breast cancer(x) | woman with brca mutation(x)) ≤ 0.8)

≥ 5× wx(woman with breast cancer(x) | woman(x))

A Type III probability structure is essentially a combination of structures of Type

I and II. It is a tuple M = (D,S, π, µD, µS), where D,S, π are defined exactly as for

FOPLIII, and µD and µS are discrete probability distributions over D and S respect-

ively. Such structure associates a truth value with formulas of both kinds w~x(φ) and

w(φ) as follows:

• [w~x(φ)](M,v) = µn({(d1, . . . , dn) : (M, v[x1/d1, . . . , xn/dn]) |= φ});

• [w(φ)](M,v) = µ({s ∈ S|(M, s, v) |= φ}).

While FOPLIII provides means of expressing different kinds of probabilities it does

not provide any mechanism for connecting them. From a very cautious, purely prob-

abilistic point of view such connections may not exist. However, in many applications,

most prominently in actuarial reasoning (reasoning about risk), it is desirable that

general statistical knowledge affects beliefs about specific individuals. Consider the

situation in which the knowledge base contains the following statements:

I. An average US woman has a 12%–13% chance of developing breast cancer in her

lifetime: 0.12 ≤ wx(woman with breast cancer(x)|woman(x)) ≤ 0.13.

II. Given that a US woman has mutations in the BRCA genes, her chance of

developing breast cancer is between 60% and 80%:

0.6 ≤ wx(woman with breast cancer(x)|woman with brca mutation(x)) ≤ 0.8

III. Mary is from the US and she does have BRCA(1) mutation: woman(Mary),

w(woman with brca mutation(Mary)).

IV. Mary loves dogs: ∃y dog(y) ∧ loves(Mary, y).

It is intuitively unfortunate that the formulas I and II place no constraints on the

field term w(woman with breast cancer(Mary)) even in the presence of III. This is

so because the probability distributions µD and µS are effectively separated, so the

statistical formulas constrain the former but not the latter. This separation can be

justified because Mary, or any particular individual, can be an exceptional individual

whose gene mutations have nothing to do with breast cancer (after all, she may have a

high chance of dying from other reasons within a very short time). However, in general

it is often desirable to be able to entail degrees of belief from statistical information.
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This issue has a rich history and a number of mechanisms going under the gen-

eric name of direct inference have been proposed. Many of them are strongly related

the so called reference class reasoning, which is first formulated by Reichenbach [167]

and then substantially developed by Kyburg [123]. According to this approach com-

puting the degree of belief in a statement about a particular object, such as Mary,

involves selecting the most specific class of objects such that i) there are reliable stat-

istics about it and ii) the object in question is a member of that class. In the ex-

ample above that method would yield the probability of ≥ 0.9 for the belief statement

woman with breast cancer(Mary) because Mary is a member of the class of people

with BRCA gene mutations which is statistically associated with ≥ 0.9 chance of de-

veloping breast cancer.13

Reichenbach formulated the generic principle of direct inference but did not de-

velop a concrete method of computation. A great deal of research has been carried out

to formalize a set of desirable properties of such a method and eventually mechanize

it (see esp. [122]). In particular, most approaches try to satisfy such important re-

quirements as the capability of preferring more specific information and ignoring some

irrelevant information. In the above example it seems clear that the statement II should

be preferred to I when entailing the probability of woman with breast cancer(Mary)

because women with BRCA mutations is a more specific class of objects. At the same

time, knowledge that Mary loves dogs should be ignored as irrelevant since nothing is

known about the incidence of breast cancer among dog lovers. These considerations

are intuitively appealing but there are reasonably practical situations when selecting

the most specific class is problematic. We briefly outline some common issues (a more

complete description can be found in [12, 15, 14]).

Preferred Super Classes The preference for specificity may fail in situations when

the statistics for a subclass can be considered less reliable than for the superclass.

Assume we have taken out the statement II and added two extra statements to

the example above: V. Mary has a postgraduate degree and VI. Women with

advanced degrees have a 2%–95% chance of developing breast cancer.14 Now

the specificity rule tells us that the statement VI should be preferred to I so

the inferred risk for Mary should be 2%–95%. However, the statement VI places

very weak constraints on probability distributions, possibly because only very few

highly educated women have been studied. In that case one may still prefer the

tighter statement I, thus trading specificity for the “quality” of the statistics. This

13Reasoning about a particular object can be generalized to reasoning about a collection of particular
objects. In that case, the reference class becomes an extension of an n-ary predicate containing the
individuals. A particularly interesting special case is that of reference properties. See [123] and Section
5.8 in [12] for more details.

14According to some research women with higher social status are at a somewhat higher risk than
others but the findings are controversial [55].
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intuition is captured by the strength rule, which is one of Kyburg’s preference

rules for reference class reasoning [123].

Disjunctive Reference Classes Disjunctions can bring about problems during ref-

erence class reasoning especially when applied to small classes (singletons, in the

extreme case). For example, consider the class:

A(x) = ¬woman with breast cancer(x) ∧ woman with brca mutations(x)

∨ spouse of(x, John)

and the extra statements spouse of(Mary, John) and ∀x, y, z.spouse of(x, y) ∧
spouse of(z, y)→ x = y (Mary is a spouse of John and two people cannot both be

spouses of a single person). A(x) is a subclass of woman with brca mutations(x)

so technically it should be a preferred reference class for Mary thus blocking the

desirable entailment of risk. Some authors [123, 165] simply disallow disjunctive

reference classes in an attempt to avoid this difficulty but such a syntactic solution

can cause other problems, for example, miss implicit disjunctions or block useful

classes [12, 14].

Redundant Statistics Consider the case when the user decided to add the state-

ment wx(woman with breast cancer(x)|woman(x) ∧ ∃y.dog(y) ∧ loves(x, y)) =

wx(woman with breast cancer(x)|woman(x)) to our example, perhaps trying to

explicitly capture the fact that loving some dog is irrelevant to the risk of develop-

ing breast cancer. Now, since Mary is both a dog lover and a woman with BRCA

mutations there two equally specific classes: (woman(x)∧∃y.dog(y)∧ loves(x, y))

and (woman(x)∧woman with brca mutations(x)). Intuitively, the second class

should be preferred but there is nothing in the KB that would help to select it.

Sampling Finally, suppose that all we know is the statement I and that Mary is some

woman, not necessarily an American. In certain cases it might be reasonable

to assume that US women represent a fair sample of all women with respect to

breast cancer. In essence this is the same kind of assumption as that dog lovers

are no different from other women with respect to breast cancer but it is not

supported by the basic preference based approach [15].

As you can see from the few cases outlined above direct inference is inherently

related to the ability to make certain assumptions and then retract them as new know-

ledge becomes available or, in other words, it requires some capability of non-monotonic

reasoning for which number of formalisms have been developed. One particularly re-

lated is the default logic developed by Reiter [168]. It explicitly separates classical

formulas and defeasible formulas (or defaults), i.e., those that admit exceptions and
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can be retracted. In this thesis we are most interested in the so called statistical inter-

pretation of defaults which is pioneered by Bacchus [12]. We first outline the original,

expectation based approach and then proceed to several other direct inference tech-

niques. All of them can be applied to probabilistic extensions of DL and, as we argue

in Chapter 4, may well be more appropriate than the method employed in P-SROIQ.

Bacchus augments the language of FOPLIII with the expectation operator E. If t

is a field term, e.g., a formula of the form w~x(φ), then E(t) is a new field term which

intuitively denotes the expectation of the probability of φ across all possible worlds.

More formally, a Type III probability structure M and a valuation v map such terms

it into elements of R in the following way: [E(t)]M,v =
∑

s∈S µS(s)× [t](M,v). Simply

put, E is a unary function that maps probability terms into numbers which are rigid(

i.e., do not depend on a state). The operator has a few interesting properties proved in

[12]. It allows connecting statistical probabilities and degrees of belief via the notion

of randomization.

Definition 2.5 (Randomization, Bacchus [12]). Let φ be a formula in FOPLI and P
be a set of formulas in FOPLI. If (c1, . . . , cn) are n distinct object constants appearing

in both P and φ and (v1, . . . , vn) are n distinct object variables not appearing in both

P and φ, then Pv(resp. φv) denotes the new formula that results from replacing ci by

vi in P (resp. φ) for every i ∈ (1, . . . , n).

Bacchus’ direct inference principle states that if P is a set of formulas in FOPLI

which represent all statistical knowledge for an agent then their degree of belief in a

closed formula φ should be computed via the following equality:

w(φ) = E(w~v(φ
v|Pv)) (2.2)

Informally, by replacing constants by random designators this principle says that

the degree of belief in φ should be equal to the expected probability than a random

tuple of domain objects satisfies φ given that it satisfies Pv. Conditioning on the

entire knowledge base is equivalent to using the most specific reference class for object

constants appearing in φ (see examples in [12]).

Unfortunately, this principle is insufficient for dealing with the Reichenbach’s ori-

ginal problem of “reliable statistics”. For example, the probability that Mary will

develop breast cancer will be equal to the term E(wv(woman with breast cancer(v)

| woman with brca mutations(v) ∧ ∃y.dog(y) ∧ loves(v, y)))). The problem is that

the probability theory does not sanction inheritance of statistical properties, i.e., the

constraints on risk of developing breast cancer given BRCA gene mutations do not say

anything about the risk of developing breast cancer given the mutations and something
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else. Therefore Bacchus’ solution is to assume non-monotonically that:

E(wv(woman with breast cancer(v) |woman with brca mutations(v)

∧ ∃y dog(y) ∧ loves(v, y)))) =

E(wv(woman with breast cancer(v) |woman with brca mutations(v))

This formula asserts that loving dogs is irrelevant to the risk of developing breast cancer.

Such formulas need to be added for every piece of irrelevant information in order to

support probabilistic inheritance.

This example illustrates the essence of Bacchus’ mechanism. It deals with most of

the issues outlined above by explicitly stating all assumptions. This has both strong

and weak points. On the bright side it allows the agent to keep track of everything

that has been assumed while being very cautious and probabilistically sound of what

has not been assumed. Furthermore, it can be proved that all degrees of belief that can

inferred through Bacchus’ direct inference from a consistent statistical knowledge base

are, in fact, probabilities and represent a probabilistically consistent theory [12]. On the

other hand, this approach, if not complemented by some sort of relevance theory which

guides the process of generating assumptions, can easily lead to an unmanageable (or

even infinite) number of formulas. Also, to the best of our knowledge, its computational

properties have not been sufficiently investigated and no implementation attempts have

ever been made.

We now move to alternative approaches to direct inference which do not require

explicit syntactic assertions but are based on semantic rules determining probability

distributions over possible worlds based on statistical information. They are based on

a variant of FOPLIII logic with the following simplifications [15]:

• The domain D in model structures is finite (but not necessarily bounded). This

restriction enables the next two simplifications.

• Probability distributions over D (i.e. µD) are uniform. In this case terms of the

form w~x(φ) are interpreted as proportions of domain elements that satisfy φ.

• The set of states S is simply the set of all first order structures over D.

The basic idea behind the approaches dates back to the early principles of indif-

ference or insufficient reason which state that if the agent does not have knowledge

to regard one situation more preferable to another then they should be assigned equal

probability [186, 108]. It is assumed that first-order statistical knowledge is all that

the agent knows and it can be used to describe the set of possible situations which
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should be treated as equally likely. The methods differ, however, in what they take as

a “possible situation”.

The first method, called random worlds, associates situations with worlds in FOPLIII

model structures. First-order statistical knowledge determines the set of worlds which

are assigned equal probability. The uniform probability distribution exists because the

set of first-order structures over a finite signature and a finite domain is finite. The

other two methods, called random structures and random propensities, behave simil-

arly but they group worlds based on different criteria. The first method groups worlds

which are isomorphic with respect to predicates in the vocabulary. Intuitively, if sets of

individuals are indistinguishable by predicates they “belong to,” then they can treated

as equivalent. According to the last method, each world can be specified as a tuple

(e1, . . . , ek) where ei is the number of domain objects satisfying the unary predicate

Pk.
15 Intuitively, each situation characterizes the propensity that an individual (or a

set of individuals) satisfies each predicate. The last two methods uniformly divide the

probability among worlds in each equivalence class.

All three methods select a unique Type II probability model (i.e., a canonical model)

which is used to infer point-valued degrees of belief. They can be understood in terms

of the properties of that model. The random worlds approach selects the maximum

entropy model and, therefore, is similar to probabilistic logics of maximum entropy [16,

162, 160] and objective Bayesianism [189]. The random structures method selects the

model which represents the center of mass while the the random propensities method

uses the model which maximizes the statistical independence among predicates in the

vocabulary. All methods have some desirable properties of direct inference. Namely,

they all generalize deductive reasoning and support inference using the most specific

information in non-controversial cases [15, 14]. For example, all of them entail 0.6 ≤
woman with breast cancer(Mary) ≤ 0.8 if the example above contains statements

I–III. However, they differ in other properties such as support of sampling and the

ability to ignore seemingly irrelevant information (for example, the random structures

method does not ignore the fact that Mary loves dogs). Note that the methods do not

require explicit rules for selecting the reference class and, therefore, avoid the problem

of disjunctive reference classes.

A number of authors have pointed out that it is unlikely that a domain-independent

direct inference method that would generate optimal degrees of beliefs in all cases is

realizable. Arguments in support of this view range from philosophical points to specific

examples, such as the well known Nixon diamond scenario. Therefore, it is important

to understand the properties of different methods so as to be able to apply those which

work best in a given situation. We believe that all the presented methods are relevant

15We assume for simplicity that the signature only contains unary predicates although the method
makes perfect sense in the general case, see [15, 14].
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for probabilistic Description Logic and can supersede the direct inference mechanism

used in P-SROIQ (see Chapter 4 for more details).

Probabilistic Description Logics

Due to the importance of Description Logics as subsets of FOL it is no surprise that a

number of authors proposed numerous ways to extend them with probabilities. Here

present few formalisms which illustrate different approaches to probabilistic DLs (a

more complete list can be found in, e.g., [136, 38]). Analogously to first-order languages

probabilistic DLs can be classified based on whether they use graphical models as an

underlying representation or a reasoning mechanism, or not (we call the latter purely

logical probabilistic DLs).

Purely Logical Probabilistic DLs Languages in this family can generally be un-

derstood as fragments of one of first-order logics of probability presented in previous

sections.16 Early works include those of Heinsohn [82] and Jaeger [92]. The latter is

especially related to P-SROIQ since it also has a Type II semantics for interpreting

probabilities attached to TBox and ABox axioms. The major difference is the direct

inference mechanism which, in case of [92] is cross-entropy minimization. Heinsohn’s

formalism does not support probabilistic assertions on concept and role instances.

Important recent works in this area include P-SROIQ’s predecessor, named P-

SHOQ(D) [65], probabilistic ABoxes by Dürig and Studer [52], and subjective prob-

abilistic DL of Lutz and Schröder [139]. P-SHOQ(D) is syntactically very similar to

P-SROIQ but has a domain-based probabilistic semantics (i.e., should be understood

as a fragment of FOPLI rather than FOPLII). The PALC language presented in

[52] is different from most other approaches to probabilistic DL because it is centered

around probabilistic ABoxes. The authors developed a domain-based semantics that

treats every individual and every pair of domain individuals as independent random

variables in an attempt to “reduce search space” but did not present any algorithms or

computability results.

The language of Lutz and Schröder [139], Prob-ALC, deserves special attention as

the first probabilistic DL that was designed as by choosing a fragment of FOPL (in

that case, FOPLII) and thus carefully defines the sort of probabilities it deals with, i.e.,

degrees of belief. Differently from other probabilistic DLs Prob-ALC provides modal-

like operators for constructing probabilistic concepts like “all people whose probability

16We do not mean that any knowledge base can be translated to FOPL while preserving all entail-
ments since the logics can include extra semantic features, such as direct inference via cross-entropy
minimization as in [92]. However, an appropriate FOPL can be used as a basic framework for under-
standing the kind of probabilities they deal with.
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of having breast cancer is over 0.9” (contrast it with, e.g., P-SROIQ where all con-

cepts are normal SROIQ concepts which can appear in probabilistic axioms). It also

supports probabilistic ABoxes but, in this case, by attaching probabilistic to axioms

or, more generally, to sets of axioms. The authors present a family of Prob-ALC-like

languages which fall into to a range of complexity classes, from PTime (i.e., same as

EL++) to undecidable. These formalisms are still in their infancy so practical reasoning

algorithms have not been developed.

Bayesian or Markov Probabilistic DLs Less closely related are combinations of

DL with Bayesian or Markov networks. The first language in this family is P-CLASSIC

[119], which is a probabilistic extension of the early DL CLASSIC [20]. A knowledge

base in P-CLASSIC includes probabilistic classes which are Bayesian networks over a

class’ properties, e.g., the number of role fillers. The idea is similar to Object Oriented

Bayesian Networks [120] except that query answering in P-CLASSIC is done not by

instantiating ground Bayesian networks (like most KBMC formalisms do) but by lifted

inference, i.e., by reasoning at the level of predicates rather than ground terms.

Newer approaches to combining DL with graphical models include works on Bayesian

DL-Lite [40], credal ALC [38], and Markov DL [70]. Bayesian DL-Lite [40] is geared

towards tractable query answering in a Bayesian extension of DL-Lite [27]. It uses

Bayesian networks to annotate classical DL-Lite axioms to specify uncertain events

when the axiom holds. Importantly, the language allows for query answering in Log-

Space in data complexity, i.e., retains the good computational properties of DL-Lite.

Credal ALC developed by Cozman and Polastro [38] is a KBMC formalism which treats

probabilistic TBoxes as relational graphical models. It has similarity with MEBN but

i) is less expressive by restricting the classical component to ALC and ii) uses credal

networks, which are generalizations of Bayesian networks. The basic sort of axioms in

the language is probabilistic concept inclusion of the form P (D|C) = α, which is very

similar to P-SROIQ except that only concept names are allowed for conclusions. The

main inference task is computing the probability of a concept assertion given the rest

of KB. It is performed by using first-order variable elimination techniques to reduce

the size of instantiated networks. Finally, the formalism developed in [70] is based

on the DL fragment of Markov logic [49]. Similarly to P-SROIQ, the language sep-

arates between deterministic (i.e., classical) and probabilistic axioms, where classical

knowledge is used to prune out impossible worlds. Reasoning is performed by Gibbs

sampling to approximate the full joint probability distribution over the instantiated

Markov network. To our knowledge, no practical implementation has yet been repor-

ted and evaluated.
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2.3 P-SROIQ: A Probabilistic Description Logic

This section describes the probabilistic description logic P-SROIQ, namely, its syntax,

semantics, standard reasoning procedures, and complexity results. It also presents

the reasoning algorithms as originally developed by Lukasiewicz and Giugno [65, 136].

Discussion of various syntactic and semantic properties of P-SROIQ is deferred to

Chapter 4 while optimized reasoning procedures are presented in Chapter 5.

2.3.1 Syntax and Semantics

P-SROIQ [136] is a probabilistic generalization of the DL SROIQ [88]. It provides

means for expressing probabilistic relationships between arbitrary SROIQ concepts

and a certain class of probabilistic relationships between classes and individuals. Any

SROIQ, and thus OWL 2 DL, ontology can be used as a basis for a P-SROIQ
ontology, which facilitates transition from classical to probabilistic ontologies.

Syntax

The main additional syntactic construct in P-SROIQ is the conditional constraint.

Definition 2.6 (Conditional Constraint). A conditional constraint is an expression of

the form (D|C)[l, u], where C and D are concept expressions in SRIQ (i.e., SROIQ
without nominals) called evidence and conclusion, respectively, and [l, u] ⊆ [0, 1]

is a closed real-valued interval. In the case where C is > the constraint is called

unconditional.

Ontologies in P-SROIQ are separated into a classical and a probabilistic part. It

is assumed that the set of individual names NI is partitioned onto two sets: classical

individuals NCI and probabilistic individuals NPI .

Definition 2.7 (PTBox, PABox, and Probabilistic Knowledge Base). A probabil-

istic TBox (PTBox) is a pair PT = (T ,P) where T is a classical SROIQ TBox

and P is a finite set of conditional constraints. A probabilistic ABox (PABox) is

a finite set of conditional constraints associated with a probabilistic individual op ∈
NPI . A probabilistic knowledge base (or a probabilistic ontology) is a triple PO =

(T ,P, {Pop}op∈NPI ), where the first two components define a PTBox and the last is a

a set of PABoxes.

Informally, a PTBox constraint (D|C)[l, u] expresses a conditional statement of the

form “if a randomly chosen individual is an instance of C, the probability of it being

an instance of D is in [l, u]”. A PABox constraint, which we write as (D|C)o[l, u] where

o is a probabilistic individual, states that “if a specific individual (that is, o) is an
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instance of C, the probability of it being an instance of D is in [l, u]”. That distinction

is important for default reasoning in P-SROIQ.

Definition 2.8 (Probabilistic Signature). Given a probabilistic knowledge base PO let

CE(PO) be the set of all concept expressions that appear either as evidence or conclu-

sion in some conditional concept (in the PTBox or in a PABox). Then probabilistic

signature of PO, denoted as Φ(PO), is the smallest set of concept expressions such

that i) no expression is a union, intersection, or complement of other expressions and

ii) its closure under union, intersection, and complementation is a superset of CE(PO).

Φ(PO) (or simply Φ when the ontology is clear from context) is a finite set because

CE(PO) is finite. It can be computed by starting from Φ = CE(PO) and exhaustively

applying the following rules, where C and D are concept expressions:

• If C tD ∈ Φ, then Φ← (Φ ∪ {C,D}) \ {C tD};

• If C uD ∈ Φ, then Φ← (Φ ∪ {C,D}) \ {C uD};

• If ¬C ∈ Φ, then Φ← (Φ ∪ {C}) \ {¬C};

The process of applying the rules will terminate since every rule reduces the syntactic

length of expressions in Φ.

We conclude with an example which shows a small ontology which, first, defines

breast cancer (BRC), duct cancer, and lobular cancer using DL, second, expresses

generic knowledge that 10%–11% of cancer incidence among women is breast cancer,

and third, states that Mary has ≥ 90% chance of having duct cancer.17

Example 2.3 (Fragment of a probabilistic ontology about breast cancer).

T = {BRC ≡ Cancer u ∃occursIn.∃partOf.Breast

Duct v ∃partOf.Breast, Lobule v ∃partOf.Breast}

P = {(Woman u ∃disease.BRC |Woman u ∃disease.Cancer)[0.1, 0.11]}

PMary = {(Woman u ∃hasDisease.(Cancer u occursIn.Duct))[0.9, 1]}

According to Definition 2.8, CE(PO) and Φ(PO), where PO = (T ,P,PMary), are the

following sets:

CE(PO) = {Woman u ∃disease.BRC,Woman u ∃disease.Cancer,

Woman u ∃hasDisease.(Cancer u occursIn.Duct)}

Φ(PO) = {Woman,∃disease.BRC, ∃disease.Cancer,

∃hasDisease.(Cancer u occursIn.Duct)}
17It is often convenient to introduce new concept names, such as WomanWithBreastCancer, to

avoid repetition of complex expressions in conditional constraints.
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Semantics

The semantics of P-SROIQ is based on the notion of a world.

Definition 2.9 (World). Given the probabilistic signature Φ a world W is a subset

of Φ. A concept C ∈ Φ occurs positively, or is satisfied, in a world W if C ∈
W , otherwise it is said to occur negatively. The satisfaction relation is extended

recursively to Boolean expressions over Φ in a standard way (e.g., W satisfies AtB if

W satisfies A or W satisfies B).

Finally, we extend the definition of satisfaction in a world to SROIQ TBoxes.

Definition 2.10 (Possible World, Index Set). A world W is a possible world with

respect to a SROIQ TBox T , written as W |= T , if T ∪ {{o} v C|C ∈ W} ∪ {{o} v
¬C|C /∈ W,C ∈ Φ} is satisfiable, where o is an individual name not occurring in T .

The set of all possible worlds over Φ with respect to T , also called the index set, is

denoted as WΦ(T ). 18

Possible worlds correspond to what is commonly known as realizable concept types

in the DL literature [138]. Each world W can be thought of as a conjunctive concept

expression X ≡ (
d
C∈W C) u (

d
C/∈W,C∈Φ ¬C) so that the world is possible iff X is

satisfiable (i.e., there is a realization of the concept type given a TBox).

In what follows we assume a linear order of basic concepts in Φ (the ordering will

become important in Section 5.1.3). Since Φ is a finite set we can denote the i-th basic

concept in Φ by Ci. For a given possible world W we also use the notation Wi to denote

either Ci if Ci occurs positively in W or ¬Ci if it occurs negatively. For a given PTBox

the order of basic concepts is fixed across all possible worlds.

Definition 2.11 (Probabilistic Interpretation, Probability of a Concept). A probab-

ilistic interpretation Pr of a PTBox (T ,P) is a function Pr :WΦ(T )→ [0, 1] such

that
∑

W∈WΦ(T ) Pr(W ) = 1. The probability of a concept C, denoted as Pr(C),

is defined as
∑

W |=C Pr(W ). Pr(D|C) is an abbreviation for Pr(C u D)/Pr(C) if

Pr(C) > 0 and undefined otherwise.

In other words, a probabilistic interpretation is a probability distribution over pos-

sible worlds. It can be thought of as a function which maps each concept type Ct over

Φ to the probability that a randomly chosen named individual is a realization of Ct.

Definition 2.12 (Satisfaction by Probabilistic Interpretation). A probabilistic inter-

pretation Pr satisfies (is a model of) a conditional constraint (D|C)[l, u], written as

Pr |= (D|C)[l, u], if Pr(C) = 0 or Pr(D|C) ∈ [l, u]. Pr satisfies (is a model of) a set

18In later chapters we will often omit “w.r.t. T ” and simply write “possible world” (or WΦ instead
of WΦ(T )) when T is clear from context.
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of conditional constraints F if it satisfies all constraints in F . A PTBox PT = (T ,P)

is called satisfiable if there exists a probabilistic interpretation that satisfies P.

Observe that a conditional constraint is satisfied by all probabilistic interpretations

that assign zero probability to the evidence (we discuss the implications of this in

Section 2.3.4). Given the definition of satisfaction we formulate logical consequence in

a standard way.

Definition 2.13 (Logical Consequence). A conditional constraint (D|C)[l, u] is a lo-

gical consequence of a PTBox (T ,P), written as (T ,P) |= (D|C)[l, u], if all models

of (T ,P) also satisfy (D|C)[l, u]. (D|C)[l, u] is a tight logical consequence of (T ,P),

written as (T ,P) |=tight (D|C)[l, u] if l (resp. u) is the minimum (resp. the maximum)

of Pr(D|C) over all models Pr of (T ,P) such that Pr(C) > 0.

2.3.2 Reasoning Problems

The reasoning problems in P-SROIQ fall into two basic categories. The first are the

standard logical problems of satisfiability and (tight) entailment. The second are the

problems of default reasoning in P-SROIQ, namely, the problem of non-monotonic

lexicographic entailment and two consistency problems.

Classical Reasoning Problems

As it has been defined up to now, P-SROIQ can be considered as a monotonic prob-

abilistic DL with the standard satisfiability and logical entailment problems:

Probabilistic Satisfiability (PSAT): Given a PTBox PT decide if it is satisfiable.

Tight Logical Entailment (TLogEnt : Given a PTBox PT and two SROIQ con-

cepts C and D, compute rational numbers l, u ∈ [0, 1] such that PT |=tight (D|C)[l, u].

Both problems are reducible to classical reasoning in SROIQ and Linear Programming

(LP) as will be discussed in Section 2.3.3.

Default Reasoning Problems

Default reasoning in P-SROIQ (which is based on the lexicographic entailment by

Lehmann [127]) relies on notions of default consistency. These have been adapted from

the notions of consistency in propositional probabilistic default reasoning which, in

turn, were originally developed in the context of default reasoning with conditional

knowledge [68]. Some preliminary definitions are required to formulate the notions of

consistency in P-SROIQ [136]:
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Definition 2.14 (Verification, Falsification, Toleration). A probabilistic interpretation

Pr verifies a conditional constraint (D|C)[l, u] if Pr(C) = 1 and Pr(D) ∈ [l, u]. Pr

falsifies (D|C)[l, u] if Pr(C) = 1 and Pr(D) /∈ [l, u]. A set of conditional constraints

F tolerates a conditional constraint (D|C)[l, u] under a SROIQ TBox T , if PTBox

(T ,F) has a model that verifies (D|C)[l, u].

Informally, toleration means that the conditional constraint (D|C)[l, u] is not in

conflict with constraints in F given the classical knowledge base T . Such notion of

conflict is central to the notion of consistency which can be regarded as a possibility to

resolve all conflicts in the process of default (lexicographic) reasoning.

Observe, that toleration is not symmetric in any sense of the term, in particular,

that (D|C)[l, u] is not tolerated by F under T does not imply that any constraint in F
is not tolerated by {(D|C)[l, u]} (or even {(D|C)[l, u]}∪F) under T . Asymmetry is the

key property which enables partial ordering of conditional constraints by specificity.

Definition 2.15 (z-partition, Specificity order). For a PTBox (T ,P) the z-partition

is an ordered partition (P0, . . . ,Pk) of P such that each Pi (i ∈ {0, . . . , k}) is a set of

all conditional constraints from P \
⋃i−1
j=0 Pj which are tolerated by P \

⋃i−1
j=0 Pj under

T . The order of a conditional constraint φ is the order of its subset in the z-partition.

The z-partition formalizes the specificity ordering of conditional constraints based

on the notion of toleration. Conditional constraints Pi which are in conflict with (i.e.

are not tolerated by) other constraints Pj , but not vice versa, have a higher order

and are considered more specific. In other words, for a given PTBox the z-partition

defines a partial ordering on P such that conflicts can only occur between conditional

constraints with different order.

Definition 2.16 (Consistency). A PTBox PT = (T ,P) is consistent if i) T is

satisfiable, and ii) there exists the z-partition of PT . A probabilistic knowledge base

PKB = (T ,P, (Po)o∈NPI ) is consistent if i) PTBox (T ,P) is consistent, and ii) (T ,Po)
is satisfiable for all o ∈ NPI .

In other words, consistency of a probabilistic knowledge bases means that probab-

ilistic knowledge about any of the individuals does not contradict the classical part T .

However, as will be shown shortly, it may (and often does) be in conflict with general

probabilistic knowledge P.

The following definition shows that the z-partition induces a specificity ordering

over the set of probabilistic interpretations of (T ,P):

Definition 2.17 (Lexicographic preference and minimality). Given two probabilistic

interpretations Pr1, P r2 of a PTBox (T ,P) with z-partition (P0, . . . ,Pk), Pr1 is lex-

icographically preferable (lex-preferable) to Pr2 if there exists some i ∈ {0, . . . , k}
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such that |{φ ∈ Pi|Pr1 |= φ}| > |{φ ∈ Pi|Pr2 |= φ}| and |{φ ∈ Pj |Pr1 |= φ}| = |{φ ∈
Pj |Pr2 |= φ}| for all i < j ≤ k. An interpretation Pr of (T ,P) is lexicographically

minimal (lex-minimal) if no other interpretation of (T ,P) is lex-preferable to it.

Intuitively, the lexicographic ordering relation on probabilistic interpretations is

based on the idea of preferring more specific conditional constraints to less specific

ones. It is called lexicographic because any two interpretations are compared based

on how many constraints they satisfy in corresponding subsets of the z-partition in a

lexicographic way (from more specific subsets to less specific). Finally, the lexicographic

entailment is defined simply as a logical entailment when the set of all models of a

PTBox is restricted to the lex-minimal, i.e. the most preferred, interpretations.

Definition 2.18 (Lexicographic consequence). A conditional constraint (D|C)[l, u] is a

lexicographic consequence (lex-consequence) of a set of conditional constraints F un-

der a PTBox PT = (T ,P), denoted as F |=lex (D|C)[l, u] under PT , if Pr(D) ∈ [l, u]

for every lex-minimal model Pr of (T ,P) that satisfies F ∪ {(C|>)[1, 1]}. (D|C)[l, u]

is a tight lexicographic consequence (tight lex-consequence) of F under PT , denoted

as F |=lex
tight (D|C)[l, u] under PT , if l (resp. u) is the minimum (resp. the maximum)

of Pr(D) subject to all lex-minimal models Pr of (T ,P) that satisfy F ∪{(C|>)[1, 1]}.

The reasoning problems of deciding probabilistic consistency of a PTBox, probabil-

istic KB, and computing probability intervals under tight lexicographic entailment can

now be defined in a straightforward way.

PTBox Consistency (PTCon): Given a PTBox PT decide if it is consistent.

Probabilistic Knowledge Base Consistency (PKBCon): Given a probabilistic

knowledge base PKB decide if it is consistent.

Tight Lexicographic Entailment (TLexEnt): Given a PTBox (T ,P) and two

SROIQ concepts C andD, compute rational numbers l, u ∈ [0, 1] such that (T ,P) |=lex
tight

(D|C)[l, u].

Next we show how the reasoning problems of PTCon, PKBCon, and TLexEnt can

be naively reduced to PSAT and TLogEnt.

2.3.3 Original Algorithms

The reasoning algorithms originally developed for P-SROIQ were rather supposed to

serve as a (constructive) proof of decidability and complexity results than be imple-

mented in real reasoners. Their correctness is relatively obvious, just as well as their

naivety. This section first explains the core PSAT and TLogEnt algorithms, and

then proceeds to the consistency and TLexEnt procedures. It also explains why the

algorithms are impractical in realistic scenarios.
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Probabilistic Satisfiability and Logical Entailment

Following the Nilsson approach, deciding PSAT and computing TLogEnt in P-SROIQ
can be reduced to linear programming [156]. More precisely, a PTBox (T ,P) is satis-

fiable iff the system of linear inequalities (2.3) admits a solution.

∑
W |=¬DuC

−lxW +
∑

W |=DuC

(1− l)xW ≥ 0, for each (D|C)[l, u] ∈ P

∑
W |=¬DuC

uxW +
∑

W |=DuC

(u− 1)xW ≥ 0, for each (D|C)[l, u] ∈ P (2.3)

∑
W∈WΦ

xW = 1 and xW ≥ 0, for each W ∈ WΦ

where each summation is over WΦ(T ) with WΦ(T ) being the set of all possible worlds

over probabilistic signature Φ w.r.t. T .

Analogously, the TLogEnt problem can be solved for PTBox (T ,P) and concepts

C,D by optimizing the objective function
∑

W∈WΦ,W |=D xW /
∑

W∈WΦ,W |=DuC xW sub-

ject to the linear inequalities (2.3). Following a standard technique by Charnes and

Cooper this optimization problem can be easily reduced to linear programming [30].

Proofs of correctness are straightforward [136]. Every solution to (2.3) represents

a probability distribution over the set of possible worlds WΦ (i.e., a probabilistic in-

terpretation of (T ,P)). Each conditional constraint in P is represented as two linear

inequalities which are satisfied by an assignment of values to variables xI iff the con-

straint is satisfied by the probabilistic interpretation. Thus, the system admits a solu-

tion iff all constraints in the PTBox are satisfied. Correctness of TLogEnt is equally

straightforward.

The reduction to linear programming directly implies the decidability of PSAT and

TLogEnt while complexity results also follow quite straightforwardly. In particular,

both PSAT and TLogEnt in P-SROIQ are N2ExpTime-hard since the satisfiability

problem in SROIQ, which is N2ExpTime-complete [106], can be easily reduced to

them. They are also N2ExpTime-complete because of the small-model property of linear

programming problems (see, for example, [132]). Rigorous proofs can be found in [136].

Any straightforward implementation of PSAT and TLogEnt algorithms as presen-

ted above is going to be impractical due to the size of the linear system (2.3) (one ex-

ample of such implementation is described in [151]). The number of variables in (2.3)

is equal to the number of all possible worlds of T over WΦ, which is exponential in

the size of probabilistic signature Φ. Even with clever rewriting techniques, which seek

to shrink the size of (2.3) [132], explicit representation of such linear systems does not

appear feasible for probabilistic KBs with more than 15-20 conditional constraints.
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Probabilistic Consistency

The original PTBox consistency algorithm (Algorithm 1) attempts to build the z-

partition of a given PTBox. It returns either the z-partition (in which case the PTBox

is consistent) or null (in which case it is inconsistent).

Input: PTBox PT = (T ,P)
Output: The z-partition (P0, . . . ,Pk) of P if it is consistent or null otherwise
if T is unsatisfiable then return null1

if P = ∅ then return ∅2

H ← P, i← −13

repeat4

i← i+ 15

Pi ← {φ ∈ H|φ is tolerated by H under T }6

H ← H \ Pi7

until H = ∅ or Pi = ∅ ;8

if H = ∅ then return {P0, . . . ,Pi} else return null9

Algorithm 1: The original PTBox consistency algorithm as presented in [136]

Algorithm 1 uses the PSAT algorithm as a subprocedure (line 6). In general, it

requires O(|P|2) PSAT tests (see the formal proof in [136]). Therefore, its complexity

is also N2ExpTime, same as for PSAT (N2ExpTime-completeness of the PTCon follows

trivially from this fact). Its optimized version is presented in Section 5.3.

The PKBCon algorithm is straightforward. It is composed of two steps: deciding

PTBox consistency (by calling Algorithm 1) and a series of |NPI | additional PSAT

tests to check that (T ,Po) is satisfiable for every probabilistic individual o ∈ NPI .

Tight Lexicographic Entailment

The idea of the original TLexEnt algorithm is based on the following notion of lex-

icographically minimal subsets of P.

Definition 2.19 (Lexicographically minimal sets). Given a consistent PTBox (T ,P)

with a z-partition P0, . . . ,Pk and a set of conditional constraints F , a subset Q ⊆ P
is lexicographically preferable (lex-preferable) to a subset Q′ w.r.t. F if for some

i ∈ {0, . . . , k}, |Q ∩ F ∩ Pi| > |Q′ ∩ F ∩ Pi| and |Q ∩ F ∩ Pj | = |Q′ ∩ F ∩ Pj | for all

i < j ≤ k. A subset Q is lexicographically minimal (lex-minimal) if no other subset

of P is lex-preferable to it.

Theorem 2.1 formalizes the obvious correspondence between the definitions of lex-

minimal models and lex-minimal subsets of P (the proof can be found in [136]).

Theorem 2.1. Given a consistent PTBox PT = (T ,P), a set of conditional constraints

F , and concepts C,D, F |=lex
tight [D|C][l, u] under PT iff [l, u] is the union of all intervals
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{[l′, u′]|(T ,Q ∪ F ∪ {(C|>)[1, 1]}) |=tight [l′, u′]} where Q is the set of all lex-minimal

subsets of P w.r.t. F ∪ {(C|>)[1, 1]}.

Algorithm 2 uses Theorem 2.1 by first computing the set of lex-minimal subsets of P
and then computing the tight logical entailments from those subsets. It solves O(2|P|)

instances of PSAT to compute the lex-minimal subsets, therefore its complexity is also

N2ExpTime. The TLexEnt problem consequently belongs to the N2ExpTime-complete

complexity class.

Input: PTBox PT = (T ,P), finite set of conditional constraints F , concepts
C,D

Output: (l, u) ∈ [0, 1]2 such that F |=lex
tight (D|C)[l, u] under PT

if PT is inconsistent then return (1, 0)1

else (P0, . . . , Pk)← z-partition of PT2

R← F ∪ {(C|>)[1, 1]}3

if (T , R) is unsatisfiable then return (1, 0)4

if (T ,P ∪R) is satisfiable then (p, q)← (0, 0)5

else (p, q)← (1, k + 1)6

while p < q do7

l← b(p+ q)/2c8

if (T , R ∪ Pl ∪ · · · ∪ Pk) is satisfiable then q ← l else p← l + 19

end10

K ← {Pp ∪ · · · ∪ Pk}11

for j ← p− 1 to 0 do12

(m,n)← (0, |Pj |)13

while m < n do14

l← d(m+ n)/2e15

K ′ ← {G ∪H|G ⊆ Pj , |G| = l,H ∈ K, (T , R ∪G ∪H) is satisfiable}16

if K ′ 6= ∅ then m← l else n← l − 117

end18

K ← {G ∪H|G ⊆ Pj , |G| = m,H ∈ K, (T , R ∪G ∪H) is satisfiable}19

end20

(l, u)← (1, 0)21

for H ∈ K do22

Compute c, d ∈ [0, 1] s.t. (T , R ∪H) |=tight (D|>)[c, d]23

(l, u)← (min(c, d),max(c, d))24

end25

return [l, u]26

Algorithm 2: Original TLexEnt algorithm as presented in [136]

The main problem with Algorithm 2 is that performs basically an exhaustive search

over the powerset of P in order to compute lex-minimal models. This may well lead to

an unacceptably large number of PSAT instances to be solved. Section 5.4 will present

a more goal directed approach which pinpoints conflicts between subsets of conditional
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constraints in order to quickly compute lex-minimal models.

2.3.4 Note on Probabilistic Coherence

One interesting feature of the P-SROIQ semantics is a weakness of probabilistic sat-

isfiability in the following sense: according to the definition in Section 2.3.1 any prob-

abilistic interpretation which assigns zero to a concept C automatically satisfies all

conditional constraints with C as the evidence concept. We call such satisfiability

vacuous. This way of resolving the well known difficulty of dealing with conditioning

on zero probability does, however, lead to problems in practical applications. The fol-

lowing example shows one of minimal conflicts in CADIAG-2 (see Section 3.2), however

the PTBox is vacuously satisfiable.

Example 2.4 (Vacuous Satisfiability).

PT = ({D1 v ¬D2}, {(D1 | C)[0.9, 0.9], (D2 | C)[0.9, 0.9]})

D1 and D2 are disjoint but PT entails that the probability of (D1 uD2) is at least 0.8.

Therefore, PT can only be satisfied by interpretations assigning zero probability to C,

thus “hiding” the conflict.

The kind of semantics in which a probabilistic interpretation Pr satisfies a con-

ditional constraint (D|C)[l, u] if Pr(C) > 0 and Pr(D|C) ∈ [l, u] has better the-

oretical properties. Unfortunately solving the PSAT problem under such semantics

would be far more complicated mostly because it would require encoding the condi-

tions Pr(C) > 0 for every evidence concept as strict inequalities in the linear system

2.3. Such systems cannot be solved using modern numerical methods, e.g. the simplex

or interior point algorithms. A number of ways of dealing with this issue have been

proposed in the literature, for example, by solving a sequence of standard linear systems

which approximate the system with strict inequalities [187]. However, to the best of

our knowledge there have never been a successful implementation of such approaches

for probabilistic logics.

We do not aim at addressing this weakness in this thesis but believe it is important

to distinguish between PTBoxes in which some conditional constraints can only be sat-

isfied vacuously and all other satisfiable PTBoxes. The following definition is provided

for such a distinction:

Definition 2.20 (Probabilistic Incoherence). Given a satisfiable PTBox (T ,P), let

R be the set of all its probabilistic models. The PTBox is called probabilistically

incoherent if for some conditional constraint (D|C)[l, u] it is true that Pr(C) = 0 for

every Pr ∈ R.
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It immediately follows from Definition 2.20 that a satisfiable PTBox PT is incoher-

ent if and only if PT |=tight (C|>)[0, 0] for some evidence concept C. Such concepts

are called probabilistically unsatisfiable in the sequel.19

Although an implementation of a sound and complete probabilistic coherence al-

gorithm is problematic, some approximations are straightforward. We use an approx-

imate procedure based on the following definition:

Definition 2.21 (Approximate Probabilistic Coherence). A satisfiable PTBox (T ,P)

is l-coherent if for every evidence concept C there exists a probabilistic model Pr such

that Pr(C) ≥ l.

The following lemma, which provides a connection between l-coherence and PSAT,

is an immediate consequence of this definition:

Lemma 2.1. A PTBox PT = (T ,P) is l-coherent iff the augmented PTBox PT l =

(T ,P ∪ {(C|>)[l, 1]|(D|C) ∈ P}) is satisfiable.

This lemma yields a sound but incomplete algorithm for testing probabilistic coher-

ence via a straightforward reduction to PSAT. Section 3.2 demonstrate the utility of

such algorithm which was the principal tool for finding all inconsistencies in the medical

expert system CADIAG-2. Its main weakness is obviously the choice of l which can be

difficult to make in certain scenarios. We expect it to be domain specific, for example,

the requirement that no symptom should have a probability below 0.01 was a part of

CADIAG-2 design. In the absence of such domain specific information one may solve a

sequence of PSAT instances by successively reducing l to zero until either incoherence

is proved or the PTBox is considered to be sufficiently coherent.

2.4 Related Work

This section describes previous work focused on developing practical reasoning pro-

cedures for the most closely related probabilistic logics and their evaluation. We first

describe a number of approaches to solving large-scale propositional PSAT and TLo-

gEnt all of which are similar in spirit to our PSAT algorithm. After that we proceed

to proof-of-concept implementations of non-monotonic reasoning algorithms, in partic-

ular TLexEnt, for propositional probabilistic logic (the NMPROBLOG system [134])

with default constraints and P-SHIQ(D) (the ContraBovemRufum system [151]). We

do not aim at covering implementations of all probabilistic formalisms mentioned in

Section 2.2, especially from the KBMC family.

19There is an obvious correspondence between satisfiable but probabilistically incoherent PTBoxes
and satisfiable TBoxes with unsatisfiable concepts in classical description logics. Such TBoxes are
sometimes called incoherent which motivated the name in the probabilistic case.
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2.4.1 Propositional PSAT Solvers

After Nilsson presented his basic propositional probabilistic logic (see Section 2.2.2 and

[156]) it became immediately clear that a straightforward approach to solving PSAT

based on solving the system of linear inequalities (2.1) is intractable not just in the worst

case but also in most practically relevant cases, i.e., where the number of probabilistic

statements exceeds a few dozen. Consequently, a number of authors proposed a range

of approaches to developing a reasoning procedure that would allow solving PSAT

instances with hundreds of statements. The approaches can be split onto two major

categories: global methods and local methods.

Global Probabilistic Reasoning

The global approach to PSAT and TLogEnt, which we also follow, is based on de-

termining consistency of the system (2.1) or optimizing a linear function subject to the

same system. It has several advantages, in particular, completeness, i.e., it is complete

for PSAT and produces the tightest possible probability intervals for TLogEnt. It

also allows using the theory of sensitivity analysis in linear programming to determine

how the probability intervals will change in response to certain changes in probabilistic

formulas. The main problems are difficulties with producing justifications for the res-

ults of PSAT and TLogEnt20 and, most importantly, the size of the linear system

(2.1).

After Nilsson’s original suggestion [156] virtually all subsequent research, includ-

ing ours, has revolved around column generation (see Section 5.1.1 and Chapter 26

in [32]). The early attempts to use that technique include works of Georgakopoulos,

Kavvadias and Papadimitriou [62, 105], Hooker [83], and Jaumard, Hansen and de

Aragão [98, 99, 80]. They all use the standard simplex procedure to solve partially con-

structed instances of (2.1) (master problems) but differ in their methods of solving the

auxiliary optimization problem (5.4) to generate new columns (variables). Kavvadias

and Papadimitriou [105] and Jaumard et al. [98, 99] generate columns by optimizing a

non-linear unconstrained function over binary variables. Both methods use heuristics,

namely variable depth local search and a combination of steepest ascent mildest des-

cent and tabu search. However, the former method is purely heuristic and approximate

since it can fail to find a variable, which can improve the system (2.1), even if one

exists. The latter method invokes an exact algorithm for pseudo-boolean programming

when the heuristics fail, so it is complete for PSAT and TLogEnt. Both methods

have been evaluated and showed their ability to handle PSAT instances of 100—300

20Our work on analysis of probabilistic knowledge bases, in particular, pinpointing minimal unsatis-
fiable conflicts (see Section 5.2.1), can be regarded as a way to explain results of reasoning, e.g., PTBox
unsatisfiability.
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probabilistic formulas. Finally, Hooker’s algorithm [83] is also exact and closest to ours

since it generates column by solving a constrained integer program.

More recent works on PSAT via global column generation not just use advanced

heuristics to generate columns but also consider a range of extensions to the basic PSAT

formulation. Hansen et al. [79] consider imprecise probabilities which include intervals

and qualitative probabilistic constraints introduced by Coletti, i.e., formulas of the form

P (A) ≤ (or ≥)P (B) [34]. Ognjanovic et al. [158, 159, 101] deal with so called weight

formulas which are probabilistic formulas of the form a1w(α1)+ · · ·+anw(αn) ≤ (or ≥
)b, where {ai} and b are rational numbers, {αi} are propositional formulas, and w(αi)

stands for “probability of αi”. They employ a highly efficient variable neighborhood

search (VNS) technique [101], genetic algorithms [158], and their combination [159]

for generating columns. These methods where the first to scale to 1000 probabilistic

formulas [101]. Finally, we mention the recent work of de Souza Andrade et al. [45]

who proposed yet another approach to producing columns by linearizing, but differently

from [83], the column generation model (5.4). To our knowledge, they were the first

to evaluate a PSAT algorithm on approximate translations of Bayesian networks but

with very limited size (up to 50 formulas). We present the same kind of evaluation but

on much larger networks in Section 6.4.

Local Probabilistic Reasoning

Local methods, as opposed to the global ones, do not attempt to solve the linear

system (2.1). Instead, they use a collection of propagation rules which continuously

tighten the probability bounds on formulas in question. The main advantages are that,

first, the rule-based algorithms generally have the “anytime” property, i.e., they can

be terminated any time to get an approximate answer to TLogEnt, second, they are

computationally tractable because each rule only applies to a local set of formulas, and

third, any obtained result can be easily justified by keeping track of rule applications.

Unfortunately, their principal disadvantage is their inherent incompleteness: not only

has it been proved that any finite set of rules may fail to prove unsatisfiability but it has

also been shown that the approximations of real TLogEnt intervals can be arbitrarily

poor [131].

The first local anytime probabilistic deduction method was presented by Frisch and

Haddawy who use a handcrafted collection of rules [58]. It was later observed that such

rules can be automatically synthesized by solving small PSAT instances. That idea

was implemented in later deduction algorithms, namely TURBOSAT [100] and AD-

PSAT [100]. These algorithms usually use only very small portions of large PSAT or

TLogEnt instances to find either exact or a good approximate solution, which explains

their good performance. According to [81], it takes AD-PSAT less than 2 seconds to
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solve TLogEnt of more than 3000 formulas over 1000 propositional variables.

Finally, recent work by Hansen and Perron showed that the local and global ap-

proaches can be combined [81]. Their PSAT/TLogEnt algorithm uses local rules for

two reasons: first, to check if the rules can detect unsatisfiability (in which case the

algorithm terminates), and second, to reduce the search space for generating optimal

columns. According to their results, the local method (AD-PSAT) improved the average

performance by approximately 30% on satisfiable knowledge bases, which, in addition

to other optimization techniques such as stabilization, enabled solving instances of up

to 800 formulas.

2.4.2 NMPROBLOG and ContraBovemRufum

Lastly, we briefly present two proof-of-concept implementations of propositional prob-

abilistic logic with default formulas and P-SHIQ(D). The former system, named

NMPROBLOG [134], was the first implementation of non-monotonic reasoning al-

gorithms for PSAT, TLogEnt, PTCon, and TLexEnt. Although, it was built

for propositional logics, the implemented algorithms are largely equivalent to the ori-

ginal algorithms for P-SROIQ described in Section 2.3.3. Interestingly, the system

implements the so called variable-strength inheritance mechanism, which allows for

controlling inheritance of probabilistic properties down the hierarchy of propositional

atoms (or concept hierarchy in case of P-SROIQ).

The second system, named ContraBovemRufum [151], is also directly relevant to our

work since it is an implementation of essentially the same logic, P-SHIQ(D).21 The

system implements the original algorithms for solving PSAT, TLogEnt, PTCon,

and TLexEnt, and includes some of the initial optimizations already proposed in

[136]. ContraBovemRufum was later used for a small-scale probabilistic validation of

probabilistic ontology alignments [29].

Both these systems eagerly construct the linear system (2.1) in order to solve PSAT

or TLogEnt. As such, their scalability is limited to one or two dozen probabilistic

formulas. Nonetheless, they were interesting tools to experiment with the algorithms

and features of the logics (see, for example, the discussion of the entailment behavior

in [151] and in Section 4.1.2).

21An implementation of P-SHIQ(D) can be upgraded to P-SROIQ simply by upgrading to a DL
reasoner that supports SROIQ.



Chapter 3

Applications and Case Studies

This chapter presents our studies of applicability of P-SROIQ and the probabilistic

reasoner Pronto. First, Section 3.1 introduces the Breast Cancer Risk Assessment

problem and shows what kind of modeling and reasoning can be accomplished using

P-SROIQ (it also comments on challenges of doing so). Section 3.2 describes the

application of P-SROIQ to an automated analysis of the knowledge base which lies

in the heart of the CADIAG-2 medical expert system. The section also presents the

results of analysis which has revealed numerous inconsistencies in the CADIAG-2 KB.

Finally, Section 3.3 explains how P-SROIQ can be applied to reason about uncertain

ontology alignments computed by wide diversity of presently available tools.

3.1 Breast Cancer Risk Assessment Problem

The Breast Cancer Risk Assessment (BCRA) Problem is a problem of calculating the

risk of developing breast cancer (generally any of cancers originating from breast tissue)

given personal data about a given individual. While breast cancer can also be developed

by men, women are at a significantly higher risk,1 so prediction, diagnosis and treatment

of the disease in females have been subjects of more extensive research.

Similarly to other forms of cancer, breast cancer is associated with a number of

environmental and hereditary risk factors (or exposures). Dozens of epidemiological

risk factors have been identified by numerous studies, however, not for all of them

the studies have produced consistent results. Those factors, such as age, which are

associated with certain changes in breast cancer risk by a preponderance of studies are

called established while other are controversial or unconfirmed, for example, having an

abortion. Furthermore, the causes of an individual breast cancer often remain unknown

even after it has been diagnosed. Therefore, an accurate assessment of breast cancer

risk remains an open, important and challenging problem.

1Approximately 1 vs. 128 new cases per year in the United States as of 2008.

69
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BCRA does look like a relevant use case for probabilistic modeling using P-SROIQ.

First, there is a great deal of background knowledge about cancer that is captured

in logic-based ontologies, most prominently in the National Cancer Institute (NCI)

Thesaurus [67]. Therefore it is natural to attempt to reuse it for the BCRA problem

instead of duplicating it. Second, the BCRA problem is inherently uncertain because i)

a large share of the available background knowledge is statistical and ii) that statistical

knowledge has to be taken into account by applications, e.g. risk predictors or dia-

gnosis tools. Finally, there is a clear lack of integration between classical background

knowledge represented in ontologies and statistical knowledge presented in research

papers and captured in statistical models. P-SROIQ can address that issue by al-

lowing ontology engineers to “connect” medical terms in an ontology by statistical

relationships while leaving the rest of background knowledge intact. Intuitively this is

a more appealing option that reconstructing some background knowledge about can-

cer in, for example, the structure of a Bayesian network which was primarily built to

capture statistics. Typical examples of such reconstruction can be found, for example,

in the MUNIN system based on a causal probabilistic network [6]. The system defines

terms from anatomy instead of taking advantage from rich anatomical models already

formalized in OWL.2

In what follows we examine both advantages and the challenges of using P-SROIQ
for this sort of modeling problems.

3.1.1 Risk Types and Assessment

The term “risk of breast cancer” is somewhat ambiguous and its meaning is context

dependent. We first briefly describe various types of risk and the general methodology

of calculating the so called “absolute risk”, which can easily be understood by a patient.

Absolute Risk Absolute risk is the risk that a given individual will develop some

form of breast cancer within a period of time. This is the kind of risk that is normally

expected to be calculated by a risk assessment tool. It is typically expressed as a single

number, e.g. 10%.

Relative Risk Many risk models operate with so called relative risk which is the risk

of developing the disease that is relative to a particular combination of risk factors for

an individual. For example, the statement that “a woman who never had children is

at 3x increased risk of breast cancer” is a relative risk statement. More precisely, RR

is the ratio of a probability that a random woman with specific exposure will develop

2See, e.g., the Foundational Model of Anatomy at http://sig.biostr.washington.edu/projects/
fm/AboutFM.html.

http://sig.biostr.washington.edu/projects/fm/AboutFM.html
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
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breast cancer over the probability that a random woman without that exposure will

develop breast cancer.

Relative risk for various risk factors is typically estimated by performing statistical

analysis of clinical test data for exposed and unexposed groups of people. Statistical

models combining different risk factors to calculate the total relative risk are called

relative risk models. However, such models are insufficient to calculate absolute risk for

an individual which also depends on factors that are external to the model.

Attributable and Baseline Risk One piece of information required to calculate

absolute risk from relative risk is called attributable risk. It is the difference in incidence

rates of breast cancer in groups of people with and without risk factors captured in

the relative risk model. Intuitively it represents coverage of the model by showing

how much of breast cancer is attributed to the risk factors that the model combines.

Attributable risk enables estimation of baseline risk (or baseline hazard) which is the

absolute risk of developing breast cancer for those individuals who do not have any of

the risk factors captured in the relative risk model.

Risk Methodology While the ultimate task for BCRA tools is to calculate the

absolute risk for a specific individual, to do this they have to deal with all the risk

types mentioned above. The classical methodology for absolute risk assessment, which

is used, for example, in the Gail model [60], includes the following steps:

1. Selecting established risk factors to be included in the assessment procedure,

2. Accumulating statistics for exposed and unexposed groups of people,

3. Developing a relative risk model which combines the chosen risk factors,

4. Estimating the attributable risk of the model and the baseline hazard of the

disease,

5. Projecting individual probabilities of developing breast cancer.

In the first step model developers select risk factors i) which are strongly suspected

to be associated with breast cancer and ii) for which they can gather reliable statistics

by observing exposed and unexposed groups of people.

Statistical data are often accumulated by performing cohort studies, controlled ex-

periments, or case-control studies. For instance, in case-control studies individuals are

split into cases (those who developed breast cancer over the period of study) and con-

trols (those who did not develop the cancer) in order to analyze differences in their risk

factors. Information about risk factors can be collected by interviewing or examining

the subjects.
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Once the statistics has been gathered the next step is to analyze it and develop

a model of the relationships between risk factors and their combinations and the risk

of breast cancer. This is often done by a multivariate regression analysis in order to

determine a formula that will describe how breast cancer risk will change in response

to changes in individual exposures as compared to unexposed people.

The next step is to estimate coverage of the model by calculating its attributable

risk. This can be done on the basis of the same case data that was used to derive the

relative risk model. Assuming m risk groups, the attributable risk of AR is equal to∑m
i=1

ρi
ri

where ρi is the proportion of cases that are in the group i and ri is the relative

risk of the group i. The baseline hazard is simply the total observed incidence rate of

breast cancer times 1−AR.

Finally, absolute risks for specific individuals having personal risk factors can be

projected within a period of time (or even over their lifetimes) by using the standard

theory of competing risks. This requires knowledge of their combined relative risk

(computed by the relative risk model), the baseline hazard, and the risk that they will

die from other reasons. The latter is called mortality rate and it is often assumed that

it is constant across subjects of the study.

3.1.2 Existing Tools and Models

Before proceeding to discussion of what P-SROIQ can offer in the BCRA domain we

give a brief overview of an increasingly popular online breast cancer risk calculator and

an underlying statistical model. The calculator3 was developed in the National Cancer

Institute. It is essentially a simple Web interface to an implementation of the Gail

model [60]. The interface consists of an online questionnaire which collects information

about personal risk factors and passes it to the model.

The Gail model [60] is a method of assessing the risk that a woman will develop

breast cancer within the next 10, 20 or 30 years.4 It follows the risk assessment meth-

odology described in the previous paragraph.

The relative risk model of the Gail model combines five risk factors: age at menarche

(AGEMEN), age at first live birth (AGEFLB), number of previous biopsies (NBIOPS),

and number of first degree relatives with breast cancer (NUMREL). In addition the

model splits all women onto age categories (AGECAT) in order to allow for different

proportional risk models for women under 50 and over 50. It has been derived from

case-control data by using a logistic regression and has the following compact form:

3http://www.cancer.gov/bcrisktool
4We consider the original Gail model in this thesis. It has later been refined and extended in some

directions, for example, to provide more accurate results for African American women. A more detailed
online assessment tool has also been built, see http://halls.md/breast/risk.htm.
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− 0.74948 + 0.09401(AGEMEN) + 0.52926(NBIOPS) (3.1)

+ 0.21863(AGEFLB) + 0.95830(NUMREL)

+ 0.0108(AGECAT )− 0.28804(NBIOPS ×AGECAT )

− 0.19081(AGEFLB ×NUMREL)

The coefficients from this equation are converted into relative risk coefficients so the

combined relative risk for a woman can be calculated simply by multiplying her risk

factors. The model estimates the baseline hazard and projects individualized absolute

risk as explained in the previous paragraph except that both risks are age specific. It

also assumes the risk of dying from other causes is the same for all subjects in the same

age group.

Apart from risk prognosis models there have been developed models for diagnosing

breast cancer. Some of them use reasoning under uncertainty methods, for instance,

the Bayesian network based approach has been proposed for mammographic diagnosis

of breast cancer [102]. In this study we focus on risk assessment, so diagnosis systems

are considered less relevant.

3.1.3 The BCRA Problem and P-SROIQ

This section discusses potential benefits of using P-SROIQ and probabilistic ontologies

in general for the breast cancer risk assessment problem. First of all, it appears clear

that it is unreasonable to try to build a BCRA ontology in P-SROIQ which would fully

subsume the existing statistical models, such as the Gail model. Such models perform

calculations which are easily understood in terms of standard statistical methodologies,

for instance, absolute risk projections based on the theory of competing risks. Trying to

perform such calculations by doing logical reasoning, even if possible, is likely to cause

confusion, without bringing about any substantial benefits. Therefore we consider some

alternative roles that a BCRA ontology can play in the breast cancer domain.

Relative Risk Model vs. Theory of Breast Cancer

More precisely, the following two options can be considered:

• Developing a relative risk model of breast cancer as a P-SROIQ ontology.

• Using a P-SROIQ ontology as a formal background theory of breast cancer

(or a fragment thereof) which can support various high-level intelligent services,

including risk assessment.
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We will argue that the second option is more appropriate and feasible but let us start

by considering both.

P-SROIQ Ontology as a Relative Risk Model We have done a preliminary

investigation of constructing a BCRA ontology which represents relative risk of breast

cancer associated with various exposures [110]. The classical part of the ontology

provides the necessary OWL vocabulary by defining concepts describing different risk

factors, kinds of breast risk, and various categories of women. The probabilistic part

represents the domain statistics regarding the risk associated with risk factors and their

combinations as well as some statistical connections between risk factors. The ontology

contains approximately 25 risk factors and 50 conditional constraints. Lexicographic

entailment was discussed as the principal mechanism for assessing the risk, so that the

ontology can be seen as an attempt of building a relative risk model (option one above).

A few important lessons have been learned from that investigation. Unsurprisingly,

description logic is a very useful tool for describing important breast cancer concepts

in a formal and unambiguous manner. It was fairly straightforward to describe all ma-

jor risk factors [178]. Second, conditional probabilistic statements accurately capture

the meaning of relative risk statements. For example, the semantics of the constraint

(WomanAtHighRisk|WomanBRCAMutation[0.9,1]) agrees with the statistical nature of

this statement: “in more than 90% of cases involving the BRCA (1 or 2) gene mutation

the woman has developed breast cancer”.5 Third, the ontology offers a more transpar-

ent and declarative model than statistical models, for instance, the entailment results

can be connected back to the statements which, in turn, can be annotated with pointers

to the corresponding medical studies.

However, the issues are also substantial. The main challenge lies in using a prob-

abilistically cautious notion of entailment for calculating total risk for combinations

of risk factors. A set of women having risk factors R1 through Rn is modeled as the

intersection of sets of women having at least one of the factors. However, the prob-

ability function is not compositional, i.e., the probability of intersection (or union) is

not a function of probabilities of individual sets. Therefore, the modeler is forced to

either specify the risk for all necessary combinations or assume independence between

certain risk factors or assume that the combined risk is proportional to the risk asso-

ciated with individual factors. The first approach is infeasible due to the exponential

number of combinations, the second requires support of independence assertions (which

5Here we claim that a proper statistical semantics for a probabilistic DL agrees with the statement,
not that P-SROIQ semantics does so. There are some technical peculiarities in how P-SROIQ handles
statistics (see discussion Section 4.3) but they appear to be problematic only from the philosophical,
and not practical, point of view.
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P-SROIQ lacks), and the third, which is adopted in the Gail model, is also not ex-

pressible in P-SROIQ since it requires non-linear constraints on probabilistic models.

Moreover, even if a probabilistic logic which supports independence and other types

of non-linear assertions was available, it is unlikely that its encoding of the risk model

would be superior to the compact equation used in the Gail model (see 3.1).

There are also other, albeit less critical, difficulties. As discussed in Section 4.3, P-

SROIQ does not provide a strong support of probabilistic relational structures which

means that it is not possible, for example, to capture uncertainty that a woman is

related to another woman for whom the knowledge base stores some probabilistic facts.

Such kind of statements are useful in particular for representing family relationships

between women at risk. Finally, in order to support meaningful risk assessment via en-

tailment one should carefully preserve generic consistency of the probabilistic ontology

which can be problematic when combining findings from different studies.

P-SROIQ Ontology as a Theory of Breast Cancer The current amount of

knowledge about breast cancer is overwhelming. For example, a meta-study conducted

in 2006 by Key et al. [107] covered 98 unique studies focused only on the impact

of a single risk factor, alcohol consumption. At the same time there are no common

knowledge bases which would combine and formally represent findings produced by the

multitude of studies.6 This makes it difficult to have a global view of breast cancer risk

factors and, consequently, develop tools like risk assessment calculators.

P-SROIQ can be used to represent a general knowledge about breast cancer in

the form of a probabilistic ontology. In contrast to the risk assessment ontology, such

ontology need not support risk entailments for various combinations of risk factors.

Instead, its main goal is to formally and unambiguously describe the background the-

ory of breast cancer embracing as many reliable findings as possible and serving as

a common knowledge base for more specific tools, such risk assessment calculators or

decision support systems.

The common breast cancer (BRC) ontology must also provide OWL vocabulary

and describe non-probabilistic background knowledge of breast cancer. However, it is

different from the risk assessment ontology in two key aspects. First, both its clas-

sical and probabilistic components are wider in scope. The OWL terminology is more

comprehensive and provides medical vocabulary which is typically not needed in risk

calculators, for example, histology-based classification of breast cancers. The probabil-

istic part should contain knowledge that is only implicitly represented on risk calculators

such as relationships between risk factors or alternative mechanisms of how certain risk

6There are some lower level databases, such as ROCK—a cancer specific functional genomic database
[172]. However, they do not explicitly represent case study findings and do not support such services
as risk assessment.
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factors increase the risk. Second, it is not entailment-oriented. Its aim is to cover the

maximum number of studies so it may well be inconsistent. It does not have to be

restricted to established risk factors and may represent controversial outcomes.

The set of use cases for the BRC ontology is also wider than for the BCRA onto-

logy. In addition to maintaining a birds-eye view of breast cancer, it may be used for

finding and analyzing inconsistencies in outcomes of different studies. This can be done

by the conflict finding algorithm described in Section 5.2.1. It can support studying

mechanisms of interactions between risk factors, for example, how alcohol consumption

affects estrogen level. Finally, it may play a useful role in planning and coordination

of future medical studies by helping to identify the most controversial or insufficiently

studied risk factors or suspected exposures.

BCRA Ontology Design

Construction of such an ontology goes far beyond this thesis. Our contribution is

to construct a small fragment of it to illustrate some useful principles of capturing

domain statistics in probabilistic ontologies. We first sketch the classical part of the

ontology and then proceed to interesting examples of statistical knowledge which can

be represented.

Classical Part As mentioned above the classical (OWL) part provides a medical

vocabulary which can be used on its own in a variety of applications or used in the

representation of probabilistic knowledge. Our goal is not to create a re-usable breast

cancer ontology, so we focus on providing an OWL terminology for probabilistic state-

ments. The ontology contains the following main taxonomies:

Taxonomy of breast cancers Breast cancer is a heterogeneous disease. Some risk

factors can be associated with increase in risk of developing one particular type

of breast cancer and not the other. Thus it is important to classify types of

breast cancer. In particular, our ontology distinguishes breast cancers by hormone

receptor status. Estrogen and progesterone positive breast cancers are modeled

using concepts ERPositiveBRC and PRPositiveBRC while their complements are

modeled using ERNegativeBRC and PRNegativeBRC (we use shorthands ER+/-

and PR+/- with obvious meaning.). Another important classification is based on

histology. The ontology distinguishes between invasive and non-invasive (e.g. in

situ) cancers.

Taxonomy of risk factors Dozens of risk factors are known so far. Some are es-

tablished and strongly associate with increased risks, such as BRCA1(2) gene

mutations, while others are controversial. The ontology should provide vocab-

ulary for both to support current and future findings. It includes a taxonomy
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of concepts rooted at RiskFactor. We distinguish between known risk factors

(those which can be reported via a questionnaire, such as alcohol intake) and

inferred risk factors which require medical examination.

Taxonomy of risks The ontology differentiates absolute and relative risks of develop-

ing breast cancer. Absolute risks are further divided into the lifetime risk and the

short-term risk. Relative risks are divided into increased and reduced risks. Level

of increases is a continuous variable which requires discretization (see below).

These two taxonomies induce the corresponding classification of women, i.e., classes

of women w.r.t. risk factors and w.r.t. risk. For example, any risk factors RF gives rise

to a class of women Womanu∃hasRiskFactor.RF. Women having various combinations

of risk factors are modeled as conjunctive concept expressions. Analogously, given a

certain kind of risk R the expression Womanu∃hasRisk.R models those women who are

in the risk group R, for example, have moderately increased risk of developing ER+

breast cancer. These taxonomies of women may or may not be explicitly present in the

ontology. In other words, it is possible, but not essential, to generate a concept name

for each interesting class of women since P-SROIQ (and our reasoner Pronto) allows

for complex concept expressions in conditional constraints.

Probabilistic Part The probabilistic part represent statistical background know-

ledge about breast cancer. We currently distinguish between knowledge which expli-

citly associates categories of women with specific risk factors with risk and more general

statistical relationships which are not necessarily risk related. We begin with the latter.

General statistical knowledge mostly includes relationships between various risk

factors. For example, Ashkenazi Jew women are more likely to develop BRCA gene

mutations, while early menarche, late first child (or no live births), lack of breastfeeding

and alcohol consumption all increase levels of estrogen in blood. Such relationships are

important because they can help to infer the presence of some risk factors given the set

of known factors. They are typically easy to represent by using conditional constraints

of the form (Womanu∃hasRiskFactor.RFY|Womanu∃hasRiskFactor.RFX)[l,u] which

says that the chances of having risk factor RFY given RFX are between l and u. One

possible source of complications is continuous variables, e.g. the level of estrogen, which

are discussed below.

Most of statistical findings available in medical literature quantitatively describe

risk increase for categories of women with specific risk factors. Typically such find-

ings are presented by giving estimated parameters of a probability distribution where

the random variable is the relative risk of a random woman in the population. Such

parameters include the estimated mean value and the estimated confidence interval.

Table 3.1 presents an example of the reported association between alcohol intake and
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the risk increase among postmenopausal women taken from [175]. There are two main

difficulties with representing this kind of data in P-SROIQ. First, the risk increase

is a continuous random variable so it needs to be discretized. Second, the available

language supports only conditional constraints so direct representation of probability

distributions is not possible.

Table 3.1: Example of a reported association between alcohol intake and the risk of
hormone receptor-specific breast cancer (excerpt from [175])

Alcohol (g) ER+ ER- PR+ PR-
RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI)

0 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

≤4 1.06 (0.91 - 1.22) 1.40 (1.00 - 1.96) 1.04 (0.89 - 1.23) 1.24 (0.95 - 1.62)

≥4 1.07 (0.90 - 1.26) 1.64 (1.14 - 2.35) 1.12 (0.93 - 1.34) 1.28 (0.96 - 1.71)

Discretization of a continuous variable is relatively straightforward. We introduce a

set of disjoint concept names each of which models women in the corresponding group

of risk. Specifically, we define concepts WomenAtWeakRisk, WomenAtModerateRisk and

WomenAtHighRisk which correspond to women whose relative risk of breast cancer is

weakly, moderately or strongly increased respectively. Note, that OWL 2 provides

datatype support to describe the exact boundaries. We have chosen ranges (1, 1.5],

(1.5, 3.0] and (3.0, + inf) for weak, moderate and strong increase in risk.

The inability to represent distributions is a more severe limitation. It leaves the

modeler with the only option of approximating the (continuous) distribution using a

finite set of points. In other words, each distribution, for example, risk increase for

women consuming a certain amount of alcohol, can be approximated by specifying the

probability that a randomly taken woman with the given exposure belongs to a spe-

cific group of risk, i.e. WomenAtWeakRisk, WomenAtModerateRisk or WomenAtHighRisk.

This is precisely the semantics of conditional constraints in P-SROIQ.

Assuming that the random variable is real-valued, a standard way of approximating

a continuous distribution is to take each interval and compute the probability that the

variable takes on a value in that interval. Then the approximation of a distribution

Pr(x) w.r.t. a finite set of intervals U is simply a function P̂ r such that P̂ r(Ui) =∫
Ui

Pr(x)dx.

Unfortunately, such approximation of results of statistical experiments is unsat-

isfactory because it maps every interval to a single point. The problem is that any

difference, even arbitrarily small, between two or more sampling distributions will res-

ults in conflicting probabilistic statements for every interval (because the point-valued

probabilities will be different) even though the results can confirm each other from a
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purely statistical point of view. Consequently this approach does not support repres-

entation and reasoning about results (or distributions) reported by multiple studies,

which is essential if the BCRA ontology is to be viewed as a theory of breast cancer.

The issue of representing results of statistical experiments in P-SROIQ seems to

be of the general nature and deserves standalone discussion. We assume a population

G of size NG and a random variable X which is normally distributed across G. We

also make the realistic assumption that G is large enough so that evaluating X for

all members of G is not feasible. A common approach is to take one or more random

samples from G, evaluate X for them and estimate the actual distribution over G based

on the sampling distributions. We use µ, σ to denote the mean and the variance of the

real distribution and X(i), S(i) for the mean and the variance of the sample X(i).

Our goal is to approximate sampling distributions in P-SROIQ in a statistically

coherent way. Informally it means that satisfiability of probabilistic formulas (condi-

tional constraints) representing two or more sampling distributions must agree with

their mutual statistical consistency, i.e., whether they support a common statistical

hypothesis. The hypothesis, in this case, is that there exists a distribution (not ne-

cessarily a unique one) over G with parameters µ, σ such that it is supported by all

sampling distributions with the required level of confidence.

A common approach for comparing two or more sampling distributions is based

on statistical hypothesis tests. For example, given two normal distributions X(1), S(1),

X(2), S(1) a frequentist statistician would take X(1)−X(2), which is a normally distrib-

uted random variable, and do a z-test (or a Student’s t-test depending on the sample

sizes) to see if the difference can be taken as 0 with the required level of confidence.

It amounts to calculating standard errors of the mean (SE) for both distributions and

then computing the difference in units of SE. Finally, if the probability of observing

such difference given the null hypothesis,7 which can be found in standard tables, is

low enough, for example, ≤ 0.05, the statistician would accept the hypothesis that both

distributions are consistent.

Our approach is slightly different from the outlined above. It is not based on tests

but on confidence regions for sampling distributions. The approach, which generalizes

confidence intervals and dates back to Mood [150], is to estimate a region Rγ in the

parameter space for (µ, σ2) such that on average it will contain the µ, σ2 pair of the

real distribution 100(1−γ)% times as the number of estimations goes to infinity. More

formally, a 100(1 − γ)% confidence region Rγ is a random set for parameters (µ, σ2)

based on a group of independent normally distributed variables X (i.e., a sample) such

that [7]:8

7The null hypothesis is a default position which, in this case, could be that the population mean is
different from at least one of X(1), X(2).

8We deliberately leave out a precise definition of random set. For the purposes of this thesis it is
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P ((µ, σ2) ∈ Rγ) = 1− γ, for all (µ, σ2) (3.2)

Informally, the confidence region specifies how far sampling distributions can devi-

ate from the population distribution while supporting it with 100(1− γ)% confidence.

Following Mood [150] we will show that for the normal distribution the region is a

convex set and, therefore can be represented by boundary values of (µ, σ2) such that

any sampling distribution inside the boundary will be consistent with the current dis-

tribution.

Consider the sampleX1, . . . , Xn where allXi are independent random variables with

the normal distribution (N(µ, σ2)). ThenX = 1
n

∑n
i=1Xi and S2 = 1

n−1

∑n
i=1 (Xi −X)2,

i.e., the sample mean and the sample variance, are random variables. It is well known

that X has the normal distribution N(µ, σ
2

n ) (or, equivalently, X−µ
σ/
√
n
∼ N(0, 1)) while

(n− 1)S2/σ2 has the chi-square distribution with n− 1 degrees of freedom [150].

The standard tables for N(0, 1) and χ2
n−1 provide numbers a, b, c such that for fixed

p1, p2 the following equalities hold [7]:

P (−a < X − µ
σ/
√
n
< a) = p1,

P (b < (n− 1)S2/σ2 < c) = p2

The crucial fact is that the two random variables are independent (see [150] for a

proof) which implies that:

p1p2 =

P (−a < X − µ
σ/
√
n
< a, b <

(n− 1)S2

σ2
< c) =

P (X − a σ√
n
< µ < X + a

σ√
n
,
(n− 1)S2

c
< σ2 <

(n− 1)S2

b
)

Therefore, the 100(p1)(p2)% confidence region for (µ, σ2) takes the following form:

Rp1,p2(X,S) =

{
(µ, σ2) : X − α σ√

n
< µ < X + α

σ√
n
, (3.3)

(n− 1)S2

γ
< σ2 <

(n− 1)S2

β

}
sufficient to think of a random set as of a random variable which takes on subsets of some space.
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Figure 3.1 shows the joint confidence region R in the parameter space (µ, σ2). Note

that it is possible, although technically messy, to generalize the definition (3.3) to

the case of several independent sampling distributions. The simultaneous confidence

region for k samples X(1), . . . , X(k) will be a region in the 2k-dimensional parameter

space which projections on each plane (µ(i), (σ(i))2) will look as (3.3). Then the notion

of consistency of sampling distributions can be defined as follows (we limit the attention

to two samples for clarity):

Figure 3.1: Joint confidence region for (µ, σ2)

Definition 3.1. Let Pr(X(1)), P r(X(2)) be distributions on two samples X(1), X(2)

drawn independently from a population G. They are said to be consistent with con-

fidence 100p% if there exists a point (µ, σ2) which belongs to both Rp(X(1), S(1)) and

Rp(X(2), S(2)).

Now we can return to the issue of approximating a continuous sampling distri-

bution by a discrete set of points. Assume that the domain E of a continuous real-

valued random variable X is a disjoint union of a finite number of intervals U =

{(−∞, r1], (r1, r2], . . . , (rl−1, rl], (rl,+∞)}. Then the approximation of the sampling

distribution Pr(X) with mean and variance (X,S2) is the function P̂ r which maps

each interval Ui to the following real-valued set:

P̂ r(Ui;X,S) = {g(µ, σ2)|(µ, σ2) ∈ Rp1,p2(X,S)} (3.4)

g(µ, σ2) =
1√

2πσ2

∫
Ui

e−
(x−µ)2

2σ2 dx
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Now we are ready to define the notion of approximate consistency of sampling

distribution with respect to a set of intervals U :

Definition 3.2. Two sampling distributions Pr(X(1)), P r(X(2)) are approximately con-

sistent given a finite set of intervals U if P̂ r(Ui;X(1), S(1)) ∩ P̂ r(Ui;X(2), S(2)) is non-

empty for all Ui ∈ U .

As with any approximation, the utility of approximations of sampling distributions

depends on what conclusions they help to draw about the distributions themselves.

Given that we are interested in the matter of consistency, it is important to understand

the relationships between the notions of consistency and approximate consistency of

sampling distributions. The following theorem states that consistency implies approx-

imate consistency regardless of partitioning of the real line.

Theorem 3.1. If two sampling distributions Pr(X(1)), P r(X(2)) are consistent, then

they are approximately consistent for any choice of real-valued intervals.

Proof. For the distribution Pr(X(1)) a confidence region Rp1,p2(X(1), S(1)) is connected

(see Definition 3.3). The function g(µ, σ2) (Definition 3.4) is continuous on it which

implies that for any Ui, the set P̂ r(Ui;X(1), S(1)) is a real-valued interval (l1, u1). Now

consider a point µ0, σ
2
0 ∈ Rp1,p2(X(1), S(1)) ∩ Rp1,p2(X(2), S(2)) which exists since the

distributions are consistent. It follows that l1 < g(µ0, σ
2
0) < u1 (and analogously

l2 < g(µ0, σ
2
0) < u2 for P̂ r(Ui;X(2), S(2))), so g(µ0, σ

2
0) is a common point for both

approximations on Ui. As such the distributions are approximately consistent.

An obvious corollary of the theorem is that inconsistency of approximations implies

inconsistency of sampling distributions (the converse is false). As we demonstrate be-

low, the inconsistency of approximations, which is based on disjointness of intervals,

can be proved by logical reasoning, which means that the above result enables approx-

imate reasoning about sampling distributions in a purely logical way. Even though the

power of such reasoning is fairly limited (with consistency being the only reasoning task

for the moment), its integration with OWL reasoning and the ability to use common,

formally defined terminology for representation of statistical experiments is promising.

Now we present an example of approximate representation of sampling distributions

in P-SROIQ. We take two results of statistical experiments aimed at investigating

associations between alcohol consumption and the increased risk of breast cancer among

postmenopausal women. The findings are published in reports by Suzuki et al. [181]

and Sellers et al. [175]. Unfortunately it is common for medical research papers to not

explicitly present all parameters that characterize results of their statistical analyses.

Typically, only the estimated mean and the confidence interval are presented while, for

example, the kind of distribution is left to the reader to infer from other information
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(such as the kind of regression model used). Due to that fact and because the approach

above has only been developed for normal distributions, we illustrate it on an artificial

example. The information given in the example is analogous to that given in medical

literature, e.g. [175, 181], but is complete in the sense that all parameters and the type

of sampling distributions are known.

Example 3.1. Consider two hypothetical papers which report results of independent

studies of associations between alcohol consumption among postmenopausal women and

their relative risk of developing breast cancer. According to study A the mean relative

risk (RR) of ER+ breast cancer for women drinking ≥ 4g of ethanol a day is 1.8 and

has variance of 0.5. Study B has reported that the mean RR of ER+ breast cancer for

the same level of drinking is 2.2 (variance 0.7). The number of cases in the studies was

230 and 150 respectively.

We propose the following four step procedure for an approximate representation of

statistical results, similar to those in the example above, in P-SROIQ:

Preparing concepts The first step is to define the terminology used to describe

the distribution, i.e., evidence and conclusion concepts. In our case evidence concepts

should describe categories of women with respect to specific risk factors, e.g. alcohol

intake, while conclusion concepts describe groups of women stratified by risk increase.

For instance, the concept expression C ≡ Woman u ∃hasRiskFactor.(Postmenopause u
ModerateConsumption) is used to model postmenopausal women with moderate level

of alcohol intake.9 On the other hand the expression:

D ≡ Woman u ∃hasRisk.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)

models women who are at moderately increased risk of developing ER-positive breast

cancer. Using these expressions the modeler can specify the probability than a random

women the class C also belong the risk group D as (D|C)[l,u].

Determining parameters of sampling distributions (if required) Sometimes

parameters of sampling distributions can be determined from other information. For

example, knowing the kind of distribution, sample mean, sample size, confidence inter-

val and the methodology of its estimation, one can calculate the sample variance.10 In

9The level of intake is a continuous variable which we also split onto categories LimitedConsumption,
ModerateConsumption and HeavyConsumption which correspond to ≤ 4, 4− 9.9 and ≥ 10g of ethanol
per day.

10The variable T = (X−µ)/(S/
√
n) has the t-dustribution with n−1 degrees of freedom. Confidence

interval is standardly computed as [X−a,X+a] where a = t 1−α
2
,n−1

S√
n

(t 1−α
2
,n−1

is the α−percentile

of the Student distribution). If the confidence interval and α are known, then S can be calculated.
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our case it is not needed as the distributions are normal and the parameters are known.

Choosing intervals Choice of intervals for an approximation of a continuous ran-

dom variable is driven by balancing the quality of the approximation (i.e., how closely

it models the continuous distribution) and the number of statements required. The

latter has a direct impact on performance. For Example 3.1 we use three concepts

WomenAtWeakRisk, WomenAtModerateRisk and WomenAtHighRisk which correspond to

relative risk intervals of (1,1.5], (1.5, 3.0] and (3.0,+∞) respectively.

Computing the approximation The final (and the central) step is to compute

probability intervals for the statements that approximate the continuous distribution.

Each statement specifies the lower and upper probabilities that the continuous random

variable X will fall into an interval Ui given that parameters of the distribution can vary

within the confidence region (3.3). More formally, given the interval Ui, e.g. (1,1.5]

for WomenAtWeakRisk, and the sampling distribution (X,S2) the interval [li, ui] can be

computed by solving the following non-linear optimization problem:

li (resp. ui) = min (resp. max) g(µ, σ2) (3.5)

s.t.

(µ, σ2) ∈ Rp1,p2(X,S)

g(µ, σ2) =
1√

2πσ2

∫
Ui

e−
(x−µ)2

2σ2 dx

In other words, [li, ui]=[inf P̂ r(Ui;X,S), sup P̂ r(Ui;X,S)].

The last preparatory step is to calculate confidence regions according to (3.3). The

95% confidence regions for distributions (X(1), S(1)), (X(2), S(2)) in Example 3.1 (abbre-

viated as R
(1)
0.95 and R

(2)
0.95) are defined by the following inequalities (calculation results

rounded to three significant decimals):

R
(1)
0.95 =

{
(µ, σ2) : 1.8− 2.241σ√

230
< µ < 1.8 +

2.241σ√
230

, 0.409 < σ2 < 0.623

}
R

(2)
0.95 =

{
(µ, σ2) : 2.2− 2.241σ√

150
< µ < 2.2 +

2.241σ√
150

, 0.548 < σ2 < 0.923

}
Now the optimization problem (3.5) can be solved numerically, e.g. by using pack-

ages such as Wolfram Mathematica, to obtain the following approximations for both

sampling distributions:



3.1. BREAST CANCER RISK ASSESSMENT PROBLEM 85

inf P̂ r((1, 1.5];X(1), S(1)) = 0.219 sup P̂ r((1, 1.5];X(1), S(1)) = 0.298

inf P̂ r((1.5, 3.0];X(1), S(1)) = 0.655 sup P̂ r((1.5, 3.0];X(1), S(1)) = 0.878

inf P̂ r((3.0,+∞);X(1), S(1)) = 0.239 sup P̂ r((3.0,+∞);X(1), S(1)) = 0.586

inf P̂ r((1, 1.5];X(2), S(2)) = 0.116 sup P̂ r((1, 1.5];X(2), S(2)) = 0.224

inf P̂ r((1.5, 3.0];X(2), S(2)) = 0.562 sup P̂ r((1.5, 3.0];X(2), S(2)) = 0.769

inf P̂ r((3.0,+∞);X(2), S(2)) = 0.189 sup P̂ r((3.0,+∞);X(2), S(2)) = 0.568

So, for this example, the sampling distributions are approximately represented in P-

SROIQ using two sets of conditional constraints:

{(Woman u ∃hasRisk.(WeaklyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.219, 0.298],

(Woman u ∃hasRisk.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.655, 0.878],

(Woman u ∃hasRisk.(StronglyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.239, 0.586]}

and

{(Woman u ∃hasRisk.(WeaklyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.116, 0.224],

(Woman u ∃hasRisk.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.562, 0.769],

(Woman u ∃hasRisk.(StronglyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.189, 0.568]}

where :

C ≡ Woman u ∃hasRiskFactor.(Postmenopause u ModerateConsumption)

It is straightforward to verify that the approximations are consistent.

Checking consistency of sampling distributions in P-SROIQ may well appear cum-

bersome and pointless given that the same task can be done in a much simpler way

and without any logical reasoning, e.g. via testing or by analyzing confidence regions.

However, our aim is not to reduce statistical testing to logical reasoning (that aim

is indeed pointless). Our aim is to represent results of statistical experiments using

common, unambiguously defined logical vocabulary and be able to reason about them.

Even though probabilistic reasoning about statistical results is quite weak at the mo-

ment, i.e., it is limited to approximate consistency checking, the potential benefits are

in combining it with reasoning about the classical knowledge. For example, the BCRA

ontology contains a little taxonomy of breast cancers by hormone receptor status. This

enables us to combine results of the studies which are of different levels of granularity.

For instance, Sellers et al. [175] report associations between alcohol intake and ER(+/-)

breast cancer risk, while Suzuki et al. [181] divide it further to ER(+/-)PR(+/-) risks.

In that simple case non-logical reasoning about the reported results becomes much

less straightforward, while studies can also distinguish histologic types of breast cancer
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(see [129]). In such complex situations reasoning about findings does involve reasoning

about background knowledge, e.g. the taxonomy of breast cancers, so a combination

of OWL and probabilistic reasoning is potentially beneficial.

3.2 Consistency of CADIAG-2

This section presents the methodology and the results of diagnosing the knowledge

base of CADIAG-2, a large-scale medical expert system. It consists of a large collec-

tion of rules representing knowledge about various medical entities (symptoms, signs,

diseases...) and relationships between them. The major portion of the rules are uncer-

tain, i.e., they specify to what degree a medical entity is confirmed by another medical

entity or a combination of them. Given the size of the system and the uncertainty, it

has been challenging to validate its consistency. Recent attempts to partially formal-

ize CADIAG-2’s knowledge base into decidable Gödel logics have shown that, on that

formalization, CADIAG-2 is inconsistent [33]. We verified this result with an altern-

ative, more expressive formalization of CADIAG-2 as a set of probabilistic conditional

statements and applied Pronto to determine satisfiability of the knowledge base and to

extract conflicting sets of rules [114].11

To our knowledge, the probabilistic version of CADIAG-2 is the largest PSAT

problem to be solved by an automated reasoner and is almost certainly the largest

non-artificial one reported in the literature. This could be a bit misleading as it is com-

paratively easy to detect unsatisfiability by first heuristically detecting small but likely

unsatisfiable fragments, and then performing a satisfiability check on each fragment.

While this might suffice to validate that the knowledge base is unsatisfiable it is not

sufficient, without further qualification, to detect all conflicting sets of rules, nor can it

prove satisfiability after correcting all found conflicts (more information on computing

all conflicts, or diagnosis of a knowledge base, can be found in Section 5.2).

As CADIAG-2 is too large (the number of rules in the binary fragment we are

concerned with is over 18000) we describe an approach to split the knowledge base

into comparatively large fragments that can be tested independently and prove that

such methodology is complete (i.e., is guaranteed to find all conflict sets). With this

methodology we are able to determine that CADIAG-2 contains many sets of conflicting

rules and compute all of them for a slightly relaxed interpretation of the knowledge base.

3.2.1 Background

CADIAG-2 (Computer Assisted DIAGnosis) is a well-known rule-based expert sys-

tem aimed at providing support in diagnostic decision making in the field of internal

11This section is largely based on our publications: [114] and [115].
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medicine. Its design and construction was initiated in the early 80’s at the Medical Uni-

versity of Vienna by K.P. Adlassnig (a detailed information on the origins and design

of CADIAG-2 can be found in [4, 3, 2, 128]). It consists of two fundamental pieces:

the inference engine and the knowledge base. The inference engine is based on meth-

ods of approximate reasoning in fuzzy set theory, which led some authors to present

CADIAG-2 as an example of a fuzzy expert system [117, 191].

The knowledge base consists of a set of IF-THEN rules, known in the literature

as production rules, which intend to represent relationships between distinct medical

entities: symptoms, findings, signs and test results on the one hand and diseases and

therapies on the other. In this work we consider only binary rules (i.e., they relate

single medical entities), which are the vast majority and the only rules used by the

inference engine of CADIAG-2. Consider the following example of a binary rule (taken

from [2]):

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

The degree of confirmation refers, intuitively, to the degree to which the antecedent

(i.e., ‘suspicion of liver metastases by liver palpation’ in the example above) confirms

the consequent (i.e., ‘pancreatic cancer ’ above). A part of our contribution is the

development of a formal, probabilistic formalization of such degrees (see also [164]).

3.2.2 Probabilistic Formalization

In the following we will be working with a finite set L = S ∪D = {P1, ..., Pn} of unary

predicates in a first-order language, for some n ∈ N. They represent the set of medical

entities occurring in the CADIAG-2 rules, with S the set of symptoms, findings, signs

and test results (to which we will commonly refer as symptoms) and D the set of

therapies and diseases (to which we will commonly refer as diseases).

Definition 3.3 (CADIAG-2 Interpretation). An interpretation I of L is a pair

(∆I , V I), where ∆I is a finite, non-empty set (the domain) and V I is a map from

L ×∆I to [0, 1]. It is said to be classical (resp. rational) if V I(P, a) ∈ {0, 1} (resp.

V I(P, a) ∈ [0, 1] ∩Q) for all (P, a) ∈ L ×∆I .

The set of binary rules in CADIAG-2, denoted as ΦCB, can be classified into three

different types: rules in which both antecedent and consequent are medical entities in S

(symptom-symptom, ΦS|S), rules in which both antecedent and consequent are medical

entities in D (disease-disease, ΦD|D) and those in which the antecedent is a medical
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entity in S and the consequent an entity in D (symptom-disease, ΦD|S).12 The degree

of confirmation in a rule of the first two types either 0 or 1 and for that reason we call

them classical while others are called probabilistic.

Let 〈P,Q, η〉 ∈ ΦCB be a binary rule in CADIAG-2, with P,Q ∈ L and η ∈
[0, 1] ∩Q. The value η is intended to quantify the degree to which P (the antecedent)

confirms Q (the consequent) and claimed in most of the literature on CADIAG-2 (see,

for example, [3] or [2]) to have been calculated from a certain database or interpretation

I as follows:13

∑
a∈∆I min{V I(P, a), V I(Q, a)}∑

a∈∆I V
I(P, a)

= η (3.6)

This expression generalizes the frequentist’s notion of conditional probability that one

gets when restricting the model to classical interpretations. Under such a restriction η

becomes a probability (in the sense of frequency) and its meaning is intuitive and form-

ally well understood. However, whether the interpretation is assumed in terms of any

valuations or in terms of only classical valuations (i.e., a probabilistic interpretation)

will be indifferent to the purpose of finding conflicts in CADIAG-2.

The expression Q/IP = η will be used to abbreviate (3.6). Sometimes, in order

to generalize results, we will be considering an interval, say Ω ⊆ [0, 1], instead of a

single value. In that case the expression Q/IP ∈ Ω will abbreviate the corresponding

modification of (3.6). Such modification is motivated by the possibility of alternative,

suitable interpretations of the rules in ΦCB that one could consider interesting from

theoretical or practical perspectives. In particular, η in equation (3.6) can be replaced

by the interval [η, 1] (i.e., consider η a lower bound for the degrees of confirmation

instead of a precise one) or by an interval of the form [η − ε, η + ε], for a small ε (i.e.,

a slightly relaxed interpretation of ΦCB).

We will denote the collection of real intervals in [0, 1] by I. We will normally refer

to intervals of the form [η, η] ∈ I by η itself. For the next definition and the lemma let

I be an interpretation of L and Φ ⊆ RL, for RL = {〈P,Q,Ω〉 | P,Q ∈ L,Ω ∈ I}.

Definition 3.4 (CADIAG-2 Model). I is a model of Φ, denoted as I |= Φ, if Q/IP ∈ Ω

for all 〈P,Q,Ω〉 ∈ Φ.

Lemma 3.1 (Classical and Rational Satisfiability, see [114]). The following statements

12CADIAG-2 also contains rules with a medical entity in D as the antecedent and a medical entity
in S as the consequent. However, such rules are not used by the CADIAG-2 inference mechanism and
ignored in our formalization.

13There are some references in which the interpretation suggested for η in 〈P,Q, η〉 is different. For
example in [4] it is claimed that η can be interpreted as a frequency and thus 〈P,Q, η〉 as a probabilistic
conditional statement.
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are pairwise equivalent: i) Φ has a model (or Φ is consistent), ii) Φ has a rational

model, and iii) Φ has a classical model.14

Lastly, we define what is meant by a minimal conflict in the CADIAG-2 rule base.

Obviously, there is a direct connection between conflicts in CADIAG-2’s KB and the

general notion of minimal conflicts in P-SROIQ’s PTBoxes, which are defined in

Section 5.2.1.

Definition 3.5. A set of rules Φ ⊆ RL is a minimal unsatisfiable set (or minimal

inconsistent set) if it is not satisfiable and, for all Φ∗ ⊂ Φ, Φ∗ is satisfiable.

Now we are ready proceed to the translation of CADIAG-2 KB into P-SROIQ.

Definition 3.6 (Translation into P-SROIQ). The CADIAG-2 KB, ΦCB, is translated

into a PTBox PTCB = (T ,P) as follows:

T ={P v Q|〈P,Q,Ω〉 ∈ ΦD|D ∪ ΦS|S ,Ω = {1}}∪

{P uQ v ⊥|〈P,Q,Ω〉 ∈ ΦD|D ∪ ΦS|S ,Ω = {0}}

P ={(Q|P )[l, u]|〈P,Q,Ω〉 ∈ ΦD|S ,Ω = [l, u]}

Informally, we use a one-to-one mapping between concept names in SROIQ and

unary predicates in the CADIAG-2 vocabulary L. Each classical rule in ΦCB is trans-

lated into a TBox axiom (concept inclusion or disjointness, depending on whether the

degree of confirmation is 1 or 0 respectively) and each probabilistic rule is translated

into a conditional constraint. The following theorem, which is a direct consequence of

Proposition 3 in [114], establishes faithfulness of this translation:

Theorem 3.2 (The Translation Is Faithful). ΦCB has a model if and only if PTCB is

a coherent PTBox.

3.2.3 Diagnosis and Results

The theorem 3.2 enables us to reduce the problem of finding conflicting sets of rules

in CADIAG-2, to the problem of finding minimal sets of conflicts in a PTBox. This

reasoning problem is known as the Diagnosis problem and is formally defined in Sec-

tion 5.2.1. The only subtle point is that consistency of CADIAG-2 KB is equivalent to

coherency, not satisfiability, of the corresponding PTBox. This is due to the semantics

of P-SROIQ which allows for vacuous satisfiability of conditional constraints by in-

terpretations that assign zero probability to the evidence (see Section 2.3.4 for some

discussion of this issue). Therefore, for practical purposes, we will check approximate

14Proof of this lemma as well as Proposition 3 in [114] and Lemma 3.2 are attributed to David
Picado-Muiño.
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coherence of PTCB by solving PSAT and Diagnosis for the augmented PTBox PT 0.001
CB

(see Definition 2.21 and Theorem 2.1), in which the probability of every symptom is

asserted to be equal to or greater than 0.001.

The number 0.001 is in this case domain-specific. No degree of confirmation in

CADIAG-2 can be equal to or less than 0.001 as it is used to indicate that the actual

degree in a rule is unknown. Consequently, the case when PTCB is satisfiable but not

0.001-coherent, i.e., satisfiable only when probability of some symptom is less than

0.001, can be regarded as a modeling error that is essentially equivalent to inconsist-

ency.15 Therefore, our approach to the inconsistency analysis of CADIAG-2 is to solve

the Diagnosis problem for PT 0.001
CB .

Decomposition

To our knowledge, none of the existing probabilistic solvers, including propositional

ones, can solve PSAT for the whole of ΦCB within reasonable amount of time (see Table

1 for a precise account of the size of ΦCB). However, it has a certain structure that

allows its decomposition into fragments that can be examined independently. A crucial

property of our probabilistic formalization of CADIAG-2 is that ΦCB is satisfiable if

and only if all of the fragments are individually satisfiable, as we show below.

Table 3.2: Characteristics of CADIAG-2’s knowledge base

Number of distinct symptoms 1761

Number of distinct diseases 341

Number of symptom-symptom rules 720
(size of ΦS|S)

Number of disease-disease rules 218
(size of ΦD|D)

Number of symptom-disease rules 17573
(size of ΦD|S)

ΦCB can be represented as a directed graph where the nodes are the medical entities

in L and the edges are specified by the rules in ΦCB (i.e., a rule of the form 〈P,Q, η〉
in ΦCB would correspond to an edge directed from P to Q). Given P ∈ L, we write

ΦP ⊆ ΦCB to denote the set of rules that yield a directed edge in a path from P to

any other medical entity in L or a directed edge in a path from any medical entity in L
to P . Then, due to the simple structure of CADIAG-2, the following statements hold

(see proofs of Proposition 4 and Corollary 2 in [114]):

15Leaping ahead, none of the discovered conflicts can be eliminated by refining the approximation so
0.001 proved to be a good choice in the case of CADIAG-2.
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Lemma 3.2 (Decomposition’s Properties). Let P1, P2 ∈ S be two medical entities such

that there is no path from P1 to P2 in ΦCB or vice versa and that there is no medical

entity P ∈ L from which there exists a path both to P1 and P2. Then:

i) If ΦP1 and ΦP2 are satisfiable then ΦP1 ∪ ΦP2 is satisfiable.

ii) If Φ is a minimal unsatisfiable set of rules in ΦP1 ∪ΦP2 then either Φ ⊆ ΦP1 or

Φ ⊆ ΦP2.

Based on Theorem 3.2 we split ΦCB into a set of fragments of the form ΦP , where

P ∈ S is a symptom such that there is no rule in ΦCB of the form 〈Q,P, η〉. For

simplicity we include the entire ΦD|D in each fragment since it is decomposable to

a much less extent than ΦS|S . The largest fragments have around 200 probabilistic

formulas that normally relate two or three connected symptoms to diseases.

Note that in general i) in Theorem 3.2 does not imply ii), in other words, a satis-

fiability preserving decomposition of an arbitrary KB does not ensure that the union of

conflict sets for both fragments is equivalent to the set of conflicts of the whole KB. For

example, when both fragments are unsatisfiable (and so is their union) there could be

the third conflict which contains rules from both fragments, so it can only be found by

analyzing the whole KB. The second claim in Theorem 3.2 means that this is not pos-

sible if CADIAG-2’s KB is decomposed according to the criteria above. Consequently,

the approach of computing conflicts on each fragment is complete. These properties

hold for the formalization of CADIAG-2, including the one where intervals are used in

place of point-valued probabilities, due to the following features of the rule base:

P1 All formulas contain only atomic medical entities (i.e., entities in L).

P2 All probabilistic formulas in ΦD|S condition only on symptoms (uncertain rules

are unidirectional).

P3 The graph of ΦS|S contains numerous disconnected components.

Next we present the results of finding conflicts in the decomposed CADIAG-2 KB.

Results

We present here results concerning the consistency check of ΦCB when considering a

slightly relaxed interpretation of ΦCB by replacing each rule of type symptom-disease

of the form 〈P,Q, η〉 ∈ ΦCB, for some P,Q ∈ L and η ∈ (0, 1) ∩Q, by 〈P,Q,Ωη〉, with

Ωη = [η − 0.01, η + 0.01] = [η−, η+].16

We have opted for checking consistency of this slightly relaxed interpretation of

16The degrees of confirmation of the rules in ΦCB are all of the form k
100

, for some k ∈ {0, 1, ..., 100} ⊂
Z. Thus Ωη is well defined.



92 CHAPTER 3. APPLICATIONS AND CASE STUDIES

the rules in ΦCB against a precise interpretation (i.e., the standard interpretation with

precise values) because of time constraints. The implementation of our algorithms for

the relaxed interpretation of ΦCB completes the task of finding all minimal unsatisfiable

subsets in a reasonable amount of time (around one hour). It is a well-known fact in

model-diagnosis theory that computing all minimal unsatisfiable subsets of a certain

knowledge base requires a number of satisfiability tests (in our case, PSAT tests) that

is (in the worst case) exponential in the number of unsatisfiable subsets. Our relaxed

interpretation of ΦCB already contains a high number of unsatisfiable sets (as we will

just see) and a precise interpretation (being stronger) induces still more. Furthermore,

some of the unsatisfiable sets that are present in the precise interpretation and not

in our relaxed one are relatively large (some contain 7 rules) and do not overlap with

other unsatisfiable sets. Such facts bring the algorithm’s running time closer to its

worst case.

An example of a type of minimal unsatisfiable set detected under a precise inter-

pretation of the rules but not under our relaxed version is the one that follows:

〈P1, Q1, η1〉, 〈P1, Q2, η2〉 〈P2, Q1, η3〉 〈P2, Q3, η4〉,

〈Q1, Q3, 1〉 〈Q2, Q3, 1〉 〈P1, P2, 1〉,

for P1, P2 ∈ S, Q1, Q2, Q3 ∈ D, η1, η2, η3, η4 ∈ [0, 1], with η3 = η4 and η1 < η2. Notice

that the rules 〈P2, Q1, η3〉 and 〈P2, Q3, η4〉 along with 〈Q1, Q3, 1〉 intuitively claim that

the set of patients with symptom P2 and disease Q2 coincides with the set of patients

with symptom P2 and disease Q3 when assuming η3 = η4. Under such an assumption

the rules 〈P1, Q1, η1〉 and 〈P1, Q2, η2〉 along with the remaining classical rules generate

an inconsistency whenever η1 < η2. Notice also that, for example, for η3 < η4 the set

would not be unsatisfiable and thus our relaxed interval interpretation would yield this

set consistent (assuming η3, η4 < 1).

For the sake of simplicity we adopt the same notation for the rules of type symptom-

disease of the form 〈P,Q, η〉, with η ∈ {0, 1}. We will write 〈P,Q,Ωη〉, with Ωη =

[η, η] = [η−, η+].

Next we present the different types of minimal unsatisfiable sets encountered in ΦCB

under this relaxed interpretation of the rules. The statistics regarding the number of

occurrences of each type and the corresponding number of rules is shown is Table 3.2.3.

Type 1. Our first type of minimal unsatisfiable set in ΦCB is given by a collection

of rules of the form

〈P,Q1,Ωη〉, 〈P,Q2,Ωζ〉, 〈Q1, Q2, 1〉,

for P ∈ S, Q1, Q2 ∈ D, η, ζ ∈ [0, 1] and ζ+ < η−.

By ζ+ < η− we are intuitively assuming that the number of patients that have both
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Table 3.3: The size and the number of minimal unsatisfiable sets of various types in
ΦCB under the relaxed interpretation.

Type of minimal conflict Number of conflicts Number of rules involved

Type 1 420 3

Type 2 5 3

Type 3 1 3

Type 4 269 6

symptom P and disease Q1 is greater than the number of patients with both symptom

P and disease Q2, which contradicts 〈Q1, Q2, 1〉 (i.e., the assumption that all patients

that have disease Q1 have also disease Q2).

Type 2. Our second type of minimal unsatisfiable set in ΦCB is given by a set of

rules of the form

〈P,Q1,Ωη〉, 〈P,Q2,Ωζ〉, 〈Q1, Q2, 0〉,

for P ∈ S, Q1, Q2 ∈ D, η, ζ ∈ [0, 1] and η− + ζ− > 1.

Notice that the rule 〈Q1, Q2, 0〉 assumes disjointness betweenQ1 andQ2 (intuitively,

there cannot be a patient with both disease Q1 and Q2), which rules out the possibility

of consistency whenever η− + ζ− > 1.

Type 3. The third type of minimal conflict set in ΦCB is given by a set of the form

〈P1, Q,Ωη〉, 〈P2, Q,Ω1〉, 〈P1, P2, 1〉,

for P1, P2 ∈ S, Q ∈ D, η ∈ [0, 1] and η+ < 1.

Intuitively, the rule 〈P1, P2, 1〉 says that all patients with symptom P1 also have

symptom P2. The rule 〈P2, Q,Ω1〉 intuitively says that all patients with symptom P2

have disease Q. These two facts together imply that patients with symptom P1 should

all have disease Q (i.e., η+ = 1).

Type 4 The fourth and last type of minimal unsatisfiable set is given by a collection

of rules of the form

〈P,Q1,Ωη〉, 〈P,Q2,Ωζ〉, 〈P,Q3,Ωλ〉 〈Q1, Q3, 1〉, 〈Q2, Q3, 1〉, 〈Q1, Q2, 0〉,

with P ∈ S, Q1, Q2, Q3 ∈ D, η, ζ, λ ∈ [0, 1], λ+ < η− + ζ− ≤ 1 and ζ−, η− ≤ λ+ (to

guarantee minimality).

Intuitively, assuming 〈P,Q1,Ωη〉, 〈P,Q2,Ωζ〉 and 〈Q1, Q2, 0〉, the proportion of pa-

tients that, having symptom P , have either disease Q1 or Q2 is at least η−+ζ−. On the

other hand, assuming 〈Q1, Q3, 1〉 and 〈Q2, Q3, 1〉, we have that all patients with disease

either Q1 or Q2 have also disease Q3. Thus, under such assumptions, satisfiability
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requires that λ+ ≥ η− + ζ−.

Summary

Our work on CADIAG-2 presents several contributions: First, we developed a probab-

ilistic formalization of CADIAG-2’s KB as a PTBox in P-SROIQ which, in contrast

to alternative fuzzy formalizations [33], is equisatisfiable with the original set of un-

certain rules. Given completeness of our Diagnosis algorithm (Section 5.2.1) it ensures

finding all minimal unsatisfiable set of rules, i.e., the complete and precise description

of CADIAG-2’s inconsistency.17

Second, we provided a decomposition scheme for CADIAG-2’s KB. It is specific

to CADIAG-2 but illustrates a possible approach to decomposing a large probabilistic

knowledge base into fragments of feasible size. We proved two important properties of

the decomposition: that it preserves satisfiability and completeness of the set of minimal

conflicts. A more general approach to decomposition, which could, for example, be

based on the notion of probabilistic independence [5, 154, 184], is left for future research.

Lastly, we managed to carry out a complete diagnosis of the relaxed version of

CADIAG-2’s KB, i.e., compute all minimal inconsistent sets of rules. A thorough ana-

lysis of these types of inconsistencies in connection with the whole knowledge base and

with possible repair strategies and in relation to other sets of inconsistencies obtained

under alternative interpretations of CADIAG-2 is an ongoing work [115].

We hope that CADIAG-2, or CADIAG-2 like problems, will be taken up by the

PSAT solving community. Due to its structure CADIAG-2 is interestingly different from

artificially generated problems while its size sets a new base line for scalable PSAT and

other reasoning procedures. We report the results of evaluating our Diagnosis, PTCon

and TLexEnt algorithms on fragments of CADIAG-2 in Section 7.2.

3.3 Reasoning about Ontology Alignments

This section describes another application of P-SROIQ and Pronto: reasoning about

ontology alignments produced either manually or by certain ontology alignment tools.

We briefly outline previously proposed approach to validate alignments using a prob-

abilistic formalism and discuss different probabilistic formalizations (including the one

based on Jaccard similarity). Finally, we argue that probabilistic validation can be

more appropriate than previously described validation via classical DL reasoning.

17Here again by “complete” we mean complete for the binary fragment of CADIAG-2. Equisatisfiab-
ility is not preserved if compound rules are considered and it is unclear if it can be preserved under a
probabilistic formalization.
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3.3.1 Ontology Alignments

Ontology alignment is an important task in domains where multiple ontologies have

been evolving independently. In such domains some form of ontology interoperability

is typically required since otherwise ontology engineers could be left with the only

unpleasant option of duplicating knowledge in several ontologies, which could easily

lead to inconsistencies and propagation of errors.

Ontology alignment is an alternative to, or a step towards, ontology integration,

i.e., transformation of several independent ontologies into a single, unified ontology.

Alignment is beneficial in situations when it is desirable to keep the ontologies separate

and able to evolve independently. Instead of merging the ontologies are aligned by

establishing correspondences between their structural components: concepts, roles, and

individuals. Such correspondences are often called mappings. We adopt the following

widely established definition of mappings as semantic relations between components

([54, 145]):

Definition 3.7 (Ontology Mapping). Given ontologies O1 and O2, let Q be a function

that defines sets of matchable elements Q(O1) and Q(O2). A correspondence between

O1 and O2 is a 4-tuple (e, e′, r, n) such that e ∈ Q(O1) and e′ ∈ Q(O2), r is a semantic

relation between e and e′, and n is a confidence value from a suitable structure (D,≤).

A mapping between O1 and O2 is a set of correspondences between O1 and O2.

In this thesis we focus on a special case of mappings among all those that can be

captured by Definition 3.7. We only consider alignments of concept hierarchies since

they typically occupy the central place in OWL ontologies, so the function Q returns

the set of all atomic concepts in an ontology. Alternatively, Q may return the (possibly

infinite) set of concept expressions over the ontology signature, which is useful if a

particular tool can map complex concepts. In addition, similarly to [145], we restrict

r to be one of {≡,v}. Finally, we take the confidence structure to be the unit interval

D = [0, 1] with the natural total order.

It has been argued that ontology alignments can be analyzed, in particular, validated

by logical reasoning, in the context of the integrated ontology containing both O1 and

O2, as well as additional axioms representing mappings [145]. More formally:

Definition 3.8 (Integrated Ontology). Given ontologies O1 and O2 of finite size, the

integrated ontology O1 ∪Mt O2 of O1 and O2 connected by a mapping M between O1

and O2 is defined as O1 ∪ O2 ∪ {t(x)|x ∈ M}, where t is a translation function that

maps correspondences to axioms.

Definition 3.8 admits different translation functions. Melicke and Stuckenschmidt

consider one translation function which turns mappings into concept subsumption and

equivalence axioms by simply dropping the confidence value [145].
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tn(C1, C2, r, n) =

C1 v C2, for r =v

C1 ≡ C2, for r =≡

In the next section we will consider another translation which preserves confid-

ence values by representing them as probabilities. The implications of using different

translations are briefly discussed in Section 3.3.3.

3.3.2 Probabilistic Formalization

It is standard for ontology aligning tools to output degrees of confidence in generated

mappings. However, to the best of our knowledge, there is no widely accepted standard

for the semantics of those confidence values. Informally, they reflect the confidence that

a particular tool has that the relation r holds between components e and e′ belonging

to the ontologies O1 and O2 respectively. Most of the tools interpret their confidence

as some sort of similarity measure between the components without precisely defining

its meaning.

However, specifying the semantics of confidence values is essential for analyzing

alignments by means of logical reasoning. One example of such analysis is alignment

validation and refinement whose goal is to make sure that the alignment does not

contradict the logical structure of both ontologies [145, 146]. Such contradictions, which

often appear in the form of unsatisfiable concepts, can cause problems for terminological

reasoning with the integrated ontology as well as difficulties during data transformation

and query processing (see [145, 146] for a more detailed discussion). This kind of

validation is now used for assessing alignment quality during the annual Ontology

Alignment Evaluation Initiative (OAEI) contest.18

Lack of a rigorous semantics of confidence values was not a problem for the inco-

herence analysis proposed by Melicke and Stuckenschmidt because they convert each

mapping into a classical subsumption or equivalence axiom (possibly ignoring mappings

for which confidence values are below a certain threshold). However, if confidence values

are to taken into account during validation, then their interpretation needs to be spe-

cified. There are several reasons why accounting for confidence values may be beneficial

for alignment analysis, namely:

• For testing and debugging mapping tools.

• For comparing mappings generated by different tools.

• For completing partial mappings via probabilistic entailment.

18http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/
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In this work we focus on a particular interpretation of confidence based on probabil-

ity distributions. As has been observed in [48] probability distributions over interpreta-

tions of ontology elements, such as concepts, can be used to define many practical sim-

ilarity metrics thus helping to avoid committal to a particular measure. Although not

all ontology alignment tools use probabilistically definable similarity measures, those

which do are not uncommon. In particular, probabilistic interpretations of similarity

are employed by tools which learn mappings from data or other statistical techniques,

for example, GLUE [47] or OMEN [149]. Probabilistic reasoning has been suggested

as a method for validating and discovering ontology alignments several times in the

literature, including in [25, 29, 155].

We are mostly concerned with validation as a special case of logical reasoning about

ontology alignments. Similarly to [29] we make an assumption that confidence n in a

correspondence (C1, C2, r, n) is the probability, or the lower bound on the probability,

that the relation r holds between concepts C1 and C2. More formally, we restrict our

attention to those translation functions t (see Definition 3.8) which translate corres-

pondences into sets of conditional constraints in P-SROIQ. More formally:

Definition 3.9 (Probabilistic Integrated Ontology). Let T1, T2 be SROIQ TBoxes

being aligned and M be a set of correspondences between concepts in T1 and T2. Let

tprob be a translation function that maps each correspondence (C1, C2, r, n) into a set of

(conditional) constraints. Then the probabilistic integrated ontology PO is the following

PTBox in P-SROIQ: (T1 ∪ T2,
⋃
m∈M tprob(m)).

However, in contrast to [29] and following the idea of Doan et al. [48] we do

not commit to a particular formalization of probabilistic mappings using the lan-

guage of P-SROIQ. Instead we formulate the following simple desiderata for pos-

sible formalizations which enables probabilistic validation of ontology alignments by

means of checking whether the integrated PTBox is probabilistically incoherent (i.e.,

PO |=tight (C|>)[0, 0] for some concept C, see Section 2.3.4).

• If T1 ∪T2 |= C1 uC2 v ⊥ then (T1 ∪T2, {tprob(C1, C2, r, n)}) should be incoherent

for n > 0 for any r ∈ {v,≡}.

• If T1 ∪ T2 |= C1 v C2 and r =v then (T1 ∪ T2, {tprob(C1, C2, r, n)}) should be

incoherent for n < 1.

• If T1 ∪ T2 |= C1 ≡ C2 then (T1 ∪ T2, {tprob(C1, C2, r, n)}) should be incoherent for

n < 1 for any r ∈ {v,≡}.

Intuitively, it is desirable that the probability of subsumption and equivalence would

be zero for disjoint concepts and strictly one for equivalent concepts. Now we will
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demonstrate that the syntax of P-SROIQ is powerful enough for expressing some in-

teresting candidates for a probabilistic definition of similarity. We consider two variants

for each translation function, one that interprets similarity as an exact probability and

the other that interprets it as the lower bound (we write tl to denote the latter whenever

t denotes the exact version). The first is the translation function adopted from Castano

et al. [29], whose exact version looks as follows:

tcastano(C1, C2, r, n) =

{(C2|C1)[n, n]}, for r =v

{(C1|C2)[n, n], (C2|C1)[n, n]}, for r =≡

The lower bound version, tlcastano, is the same except that the intervals are [n, 1].

The advantage of this translation is that it uses only atomic concepts and is simple

to use and understand. It is also easy to check that the exact version meets the

above desiderata while the lower bound version meets only the first requirement (i.e.,

it is weaker). However, the main shortcoming is that the translation requires two

conditional constraints for a single equivalence mapping. This means that equivalence

mappings are not translated into expressions to which probabilities can be naturally

attached in P-SROIQ (i.e., one will need to meta-logically combine probabilities of

(C1|C2)[n, n] and (C2|C1)[n, n] to get a probability of C1 ≡ C2). In particular, this will

complicate the entailment of the probability that the two concepts are equivalent, if

that ever becomes necessary.

Another possibility is to consider concept subsumptions C1 v C2 as axioms of the

form > v ¬C1 tC2 and equivalence as > v (¬C1 tC2) u (C1 t ¬C2). The translation

function, which we call tu, will then translate both types of correspondences into single

unconditional constraints:

tu(C1, C2, r, n) =

{(¬C1 t C2|>)[n, 1]}, for r =v

{((¬C1 t C2) u (C1 t ¬C2)|>)[n, 1]}, for r =≡

However, this translation suffers from the same issues as the formalization of statist-

ical relations, e.g. “90% birds fly”, as uncertain implications, e.g. (¬BirdtFly)[0.9, 1].

Even the exact version does not meet the desiderata, for example, because the concept

expression ¬C1 t C2 can coherently have a non-zero probability even when C1 and C2

are disjoint. All that is necessary is that either Pr(C1) < 1 or P (C2) > 0.

Finally, we demonstrate the P-SROIQ is expressive enough to employ the Jaccard

coefficient—one of the most commonly used measures of similarity [185]. It measures

similarity between two sets as the size of their intersection divided by the size of their
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union: J(A,B) = |A∩B|
|A∪B| . In P-SROIQ the Jaccard coefficient can be expressed by the

conditional probability P (AuB|AtB) which is simply an abbreviation of P (AuB)
P (AtB) (see

Section 2.3.1). This way we obtain the following translation function, which is used in

our validation experiments (see Section 7.1):

tjaccard(C1, C2, r, n) =

{(C2|C1)[n, 1]}, for r =v

{(C1 u C2|C1 t C2)[n, 1]}, for r =≡

Again, it is straightforward to verify that it satisfies the desiderata. It is also free of

the aforementioned shortcoming of tcastano. A small disadvantage is the use of concept

expressions which may have negative impact on reasoning performance (we provide

more details on this issue in Section 7.1).

3.3.3 Probabilistic vs. Classical Validation

Although the idea of reasoning about confidence values during an analysis of mappings

seems intuitively appealing, its exact benefits may not be immediately obvious. In

particular, it may not be clear why probabilistic validation of mappings proposed by

Castano et al. [29] could be superior to validation by means of classical DL reasoning

proposed by Meilicke and Stuckenschmidt [145, 146].

Our argument in support of probabilistic validation or, more generally, reasoning

about confidence values, is that it can produce more accurate results without missing

any errors discoverable by the classical incoherence analysis. To be more precise, we

claim that first, probabilistic incoherence of all concepts can be confirmed by the ap-

proach of Meilicke and Stuckenschmidt, and second, translation of uncertain mappings

into classical DL axioms may produce spurious results. The second point means that

ignoring confidence values, or rather treating them as fully certain axioms, could lead

to unsatisfiability of some concepts which are not probabilistically unsatisfiable.

The first claim is made precise by the following theorem which states that probab-

ilistic incoherence implies classical incoherence. Note, that in the theorem we use the

lower bound versions of the translation functions presented above.

Theorem 3.3. Let T1 and T2 be two SROIQ TBoxes, M be a set of mappings, and

PT = (T1 ∪ T2,
⋃
m∈M t(m)) be a satisfiable probabilistic integrated ontology, where

t ∈ {tlcastano, tlu, tljaccard}, and T = T1 ∪ T2 ∪ {tn(m)|m ∈ M} be a satisfiable integrated

ontology. Then PT |= (X|>)[0, 0] for some matchable satisfiable concept X implies

that T |= X v ⊥ where tn is a natural translation of mappings into axioms.

Proof. The proof can be found in Appendix A.
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The theorem states that if a concept becomes probabilistically unsatisfiable as a

result of the alignment then it is necessarily unsatisfiable w.r.t. classical DL semantics.

However, the converse is not the case as the following simple example demonstrates:

Example 3.2. Consider T1 = T2 = {A v >, B v >, C v ¬B}, M = {(A,B, 0.5),

(A,C, 0.5)}. Then classical integrated ontology {A v >, B v >, C v ¬B,A v B,A v
C} entails A v ⊥ while PTBox {T1 ∪ T2, {(B|A)[0.5, 1], (C|A)[0.5, 1]}} does not en-

tail (A|>)[0.0]. Put another way, A is classically unsatisfiable according to the nat-

ural translation of mappings but is not probabilistically unsatisfiable according to either

tlcastano, t
l
jaccard, or tlu.

Uncertain mappings in this example simply indicate that the tool has 50% confid-

ence that A is a subconcept of B and 50% confidence that it is a subconcept of ¬B.

This is perfectly consistent under any reasonable interpretation of confidence values

since a set can be equally similar or close to a pair of disjoint sets. However, the nat-

ural translation effectively strengthens the confidence which leads to an incoherence in

the integrated ontology. We call such incoherences spurious.

The negative impact of spurious incoherences is that some mappings (or translations

of mappings) need to be deleted in order to regain coherence. In the above example

one will have to choose which axiom (A v B or A v C) to delete. This leads to a loss

of information and a potential loss of entailments from the integrated ontology.

It might be argued that a wise choice of a threshold solves the issue with spurious

incoherences. In particular, the threshold can be set such that some of the mappings

that cause incoherence do not get translated into axioms. However, this approach is

not free of flaws either. First, it is not always clear how to pick the threshold, for

example, the Conference Track results at OAEI-2009 suggest that different thresholds

are sometimes used for different tools.19 Second, a single threshold can discard too

many mappings, for instance, in the above example any threshold will either leave the

incoherence or discard both mappings. Third, any repair of incoherence would cause

some loss of information because even the least confident mapping still represents a

piece of knowledge which can potentially be exploited.

Probabilistic validation will be the most useful if the integrated ontology is going to

be used as a probabilistic knowledge base. It does not necessarily mean that it should

be used as a P-SROIQ ontology, for example, probabilities can be used at a meta-

logical level for ranking query answers. Even in such cases, proving coherence will raise

user confidence in correctness of (probabilistic) alignment tools since mappings can be

explained via the well understood notion of probability distributions.

We plan to use our PSAT algorithm as a main validation tool. It can be used to

check the integrated ontology for approximate probabilistic coherence, similarly to how

19See evaluation via reasoning at http://oaei.ontologymatching.org/2009/results/conference/

http://oaei.ontologymatching.org/2009/results/conference/
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it has been done for CADIAG-2. There are two possible issues with this approach. The

first is the general difficulty with approximate coherence since it is unclear how fine

the approximation should be. The second concern is scalability because it may appear

questionable whether the approach can be used for validating large alignments. Our

aim is mostly to demonstrate that our algorithms and implementation make it feasible.

To this end we have carried out an evaluation of the PSAT algorithm on probabilistic

formalizations of large-scale alignments of the NCI Anatomy and the Mouse Anatomy

ontologies from OAEI-2009. The challenges, results, and discussion are presented in

Section 7.1.
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Chapter 4

Understanding P-SROIQ

This chapter presents two views on P-SROIQ: as a generalization of propositional

probabilistic logic of Nilsson [156, 157] (PPL) and as a fragment of Halpern and Bac-

chus’ first-order logic of probability [76, 12] (FOPLII). In the latter case we will mainly

focus on monotonic properties of P-SROIQ and ignore the default reasoning mech-

anism, which can been inherited, with no substantial differences, from propositional

logic with conditional constraints [133]. While the generalization presented in Section

4.1 is straightforward, the reduction of P-SROIQ to FOPLII developed in Section 4.2

reveals some unobvious properties, in particular, what concerns probabilistic ABoxes.

The implications of such properties on handling both statistical knowledge and degrees

of belief are discussed in Section 4.3.

4.1 P-SROIQ as a Generalization of Propositional Prob-

abilistic Logic

P-SROIQ was originally developed as a generalization of default propositional prob-

abilistic logic [133] which, in turn, can be regarded as the basic Nilsson’s PPL with one

of the default reasoning mechanisms, e.g., lexicographic entailment by Lehmann [127].

We will illustrate the generalization only by translating PPL’s knowledge bases into

P-SROIQ and then discuss P-SROIQ’s properties implied by the supported strength

of entailment.

4.1.1 Basic Translation

Recall from Section 2.2.2 that a knowledge base in Nilsson’s PPL, written as KPPL, is a

set of probabilistic formulas which are pairs (si, pi), where si is a propositional formula

and pi is a real number within [0, 1]. In this section we will call PPL a small extension of

this basic model according to which a knowledge base K is a pair (S,P), where S = {si}

103
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is a finite set of propositional formulas (the classical part) and P = {(ri|si)[li, ui]} is a

finite set of conditional probabilistic formulas with intervals (the probabilistic part). Its

semantics is that of the Nilsson’s logic except that probability distributions are defined

over the set of truth assignments that satisfy all formulas in S.1 The notions required

for lexicographic reasoning directly correspond to those of P-SROIQ [133].

We present the injective function κ which translates propositional knowledge bases

into PTBoxes in P-ALC. It uses two auxiliary functions, κPL→ALC and κPPL→P−ALC ,

which translate the classical and the probabilistic parts respectively. We restrict the

expressivity of classical part to ALC because it is a propositionally closed DL. The

function translates each probabilistic formula into a constraint in P-ALC:

κ(({si}, {(ri|si)[li, ui]})) = ({> v κPL→ALC(si)}, {κPPL→P−ALC((ri|si)[li, ui])}),

κPPL→P−ALC((r|s)[l, u]) = (κPL→ALC(r)|κPL→ALC(s))[l, u],

where κPL→ALC translates each propositional formula, which is assumed to be in CNF,

into a corresponding concept expression in ALC:

κPL→ALC(a) = Aa,

κPL→ALC(¬s) = ¬κPL→ALC(s),

κPL→ALC(s ∧ r) = κPL→ALC(s) u κPL→ALC(r),

κPL→ALC(s ∨ r) = κPL→ALC(s) t κPL→ALC(r),

where a, r, s, A denote a Boolean variable, propositional formulas, and a concept name

respectively. It is easy to see that the translation preserves satisfiability and entail-

ments:

Theorem 4.1. Let K be a knowledge base in PPL and PT = κ(K) be its translation.

Then K is satisfiable whenever PT is satisfiable and K |= (r|s)[l, u] if and only if

PT |= (κPL→ALC(r)|κPL→ALC(s))[l, u].

Proof. The result is an immediate consequence of the correspondence between mod-

els of K and PT . Let ΦPL = {a1, . . . , an} be the set of Boolean variables appearing

in K (the probabilistic signature). Then the corresponding signature of PT is simply

ΦALC = {A1, . . . , An}. Let WPL be a truth assignment to atoms in ΦPL. The crucial

fact is that it satisfies all formulas in S iff the concept expression
d
i∈{1,...,n}Bi, where

Bi is equal to Ai if ai is true in WPL and ¬Ai otherwise, is satisfiable w.r.t. T (because

1Conditional formulas are interpreted as in P-SROIQ, i.e., an interpretation that assigns zero
probability to a formula s vacuously satisfies all conditionals (r|s)[l, u] for any r and [l, u].
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ALC faithfully subsumes propositional logic). Given the one-to-one correspondence

between truth assignments in PPL and conjunctive concept expressions in P-ALC (i.e.,

possible worlds) we can define the obvious correspondence between probability distribu-

tions: PrP−ALC(WP−ALC) = PrPL(WPL). Then PrALC((κPL→ALC(r)|κPL→ALC(s)))
= PrPL(r|s) for any propositional formula s and r over ΦPL, so the result follows in

both directions.

The translation also preserves the results of lexicographic entailment because the

notions of verification, falsification, toleration, and lexicographic ordering in P-SROIQ
are exactly the same as in non-monotonic PPL presented in [133].

4.1.2 Strength of Entailments

In this section we discuss the strength of entailment supported by P-SROIQ. PPLs can

be classified with respect to strength of entailment for conditional formulas that they

support [135]. Here we must distinguish between logical (monotonic) and lexicographic

(non-monotonic) entailments. We begin with the former:

Definition 4.1 (λ-consequence). A formula (r|s)[l, u] is a λ-consequence of K, where

λ ∈ [0, 1], denoted as K |=λ (r|s)[l, u], if K ∪ {(r|>)[λ, 1]} |= (r|s)[l, u]. It is a tight

λ-consequence, denoted as K |=λ
tight (r|s)[l, u], if K ∪ {(r|>)[λ, 1]} |=tight (r|s)[l, u].

Adapting the terminology from [135] we call logics which adopt 0-consequence (resp.

1-consequence) monotonically weak (resp. monotonically strong). Definitions of prob-

abilistic consistency and lexicographic entailment from Section 2.3.2 can be similarly

parametrized:

Definition 4.2 (λ-consistency). A probabilistic interpretation Pr λ-verifies a formula

(r|s)[l, u] if Pr(s) = λ and Pr(r) ∈ [l, u]. Pr λ-falsifies (r|s)[l, u] if Pr(s) = λ and

Pr(r) /∈ [l, u]. A set of conditionals F λ-tolerates a conditional formula (r|s)[l, u]

under K, if K has a model that λ-verifies (r|s)[l, u]. A KB K is λ-consistent if there

exists an ordered partition (K0, . . . ,Kk) of K, called zλ-partition, such that each Ki
(i ∈ {0, . . . , k}) is the set of all conditional constraints from K \

⋃i−1
j=0Kj which are

λ−tolerated by P \
⋃i−1
j=0 Pj under T .

Finally, we need the parametrized notion of lexicographic entailment:

Definition 4.3 (λ-lex-preference and λ-lex-consequence). Given two probabilistic inter-

pretations Pr1, P r2 of K with zλ-partition (K0, . . . ,Kk), Pr1 is λ-lex-preferable to Pr2

if there exists some i ∈ {0, . . . , k} such that |{φ ∈ Ki|Pr1 |= φ}| > |{φ ∈ Ki|Pr2 |= φ}|
and |{φ ∈ Kj |Pr1 |= φ}| = |{φ ∈ Kj |Pr2 |= φ}| for all i < j ≤ k. An interpretation Pr

of K is λ-lex-minimal if no other interpretation of K is lex-preferable to it.
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A formula (r|s)[l, u] is a λ-lex-consequence of K, denoted as F |=lexλ (r|s)[l, u], if

Pr(r) ∈ [l, u] for every λ-lex-minimal model Pr of K that satisfies (s|>)[λ, 1]. (r|s)[l, u]

is a tight λ-lex-consequence of K, denoted as K |=lexλ
tight (r|s)[l, u] if l (resp. u) is the

minimum (resp. the maximum) of Pr(r) subject to all λ-lex-minimal models Pr of

K{(s|>)[1, 1]}.

Analogously to the monotonic case, logics which adopt 0-lex-consequence (resp.

1-lex-consequence) are called lexicographically weak (resp. lexicographically strong).

We ignore cases between the two extreme due to the lack of intuition behind them.

The main reason why such a parametrization has been considered is the issue with

probabilistic inheritance which is illustrated on the following example (adapted from

[135]):

Example 4.1. Consider the propositional knowledge base K = ({penguin → bird},
{(see|yellow)[0.8, 0.9], (fly|bird)[0.9, 1], (fly|penguin)[0, 0.1]}), which informally states

that “all penguins are birds”, “generally, yellow objects are seen with probability between

0.8 and 0.9”, “generally, birds fly with probability at least 0.9” , “generally, penguins

fly with probability at most 0.1”.

Table 4.1 presents the results of weak and strong logical and lexicographic entail-

ments from the KB in Example 4.1 for two conditional formulas (the probability that

yellow birds are seen and the probability that yellow penguins fly). Regarding the

first query, being easily seen is a probabilistic property of yellow objects. According

to the bare theory of probability it is not necessarily inherited by a subclass of yellow

objects, e.g., yellow birds. Indeed, yellow birds can be a very small class, e.g., one bird,

which can either be easily seen or not, so the probability can freely vary between 1

and 0 respectively. This cautious, purely probabilistic intuition is supported by weak

logical entailment. Strong logical entailment supports another intuition: since K con-

tains no information about how easily yellow birds can be seen, one may assume that

they behave just as other yellow objects, so the property should be inherited from the

superclass (this is, in essence, reference class reasoning, see Section 2.2.2). In terms of

default reasoning, strong entailment is braver by means of making implicit assumptions

which may not be probabilistically sound. However, since it is a monotonic entailment

and cannot resolve conflicts between probabilistic formulas, its strength can easily lead

to failure to produce any interval. For example, it happens with the second query (the

probability that yellow penguins fly) because K ∪ {(penguin|>)[1, 1]} is unsatisfiable

due to the pair of formulas {(fly|bird)[0.9, 1],(fly|penguin)[0, 0.1]}.
Lexicographic entailment has been proposed to resolve such conflicts by overriding,

i.e., preferring more specific knowledge (again, in the spirit of reference class reason-

ing). In the case of the second query it prefers the statement (fly|penguin)[0, 0.1] to



4.1. P-SROIQ AS A GENERALIZATION OF PPL 107

Table 4.1: Impact of the strength parameter on results of logical and lexicographic
entailment (adapted from [135]). Recall that the result [1, 0] means that the tightest
probability interval is undefined due to inconsistency.

Query Logical entailment Lexicographic entailment
λ = 0 λ = 1 λ = 0 λ = 1

(see|yellow ∧ bird) [0,1] [0.8,0.9] [0,1] [0.8,0.9]

(fly|yellow ∧ penguin) [0,1] [1,0] [0,1] [0,0.1]

(fly|bird)[0.9, 1]. Then, after conflicts have been resolved, it uses logical entailment

to compute the intervals. Here again, the strong notion sanctions inheritance from

(fly|penguin)[0, 0.1] while the weak one does not.

One unusual feature of P-SROIQ, as developed by Lukasiewicz [136], is that it is

monotonically weak but non-monotonically strong. In other words, TLogEnt is cau-

tious while TLexEnt is brave. However, implementing weak TLogEnt is problematic

because the result is entailed from all models which assign a non-zero probability to the

evidence. This requires strict inequalities in the linear system (2.1) which cannot be

handled by standard LP algorithms (this is related to the issue of coherence discussed

in Section 2.3.4). Because of these practical considerations we have opted to support

strong TLogEnt in P-SROIQ to make it consistent with TLexEnt.

As the previous example illustrated, strong TLogEnt can lead to inconsistencies

which can be resolved via overriding. The question therefore becomes: can lexicographic

ordering always “correct” the implications of such bravery to produce meaningful res-

ults? Unfortunately, the answer is “no” as we demonstrate for the following knowledge

base (the example was first presented in [151]):

K = (∅, {(automobile|car)[0.8, 0.9]})

According to weak logical entailment this KB entails (car|automobile)[0, 1] which,

again, makes sense from the cautious point of view. On the other hand, strong TLo-

gEnt produces the interval [0, 0] for the same query, which seems surprising at first.

The problem is that K ∪ {(automobile|>)[1, 1]} is incoherent, i.e., any model of it as-

signs zero probability to car, which of course implies that Pr(car|X) = 0, for any

formula X. What is worse, this KB entails the same undesirable interval lexicograph-

ically because there are no conflicts to be resolved here, so the only lexicographically

minimal models are the models of K∪{(automobile|>)[1, 1]}. Furthermore, adding the

formula (car|automobile)[l, u] for any 0 < l ≤ u < 1 makes K inconsistent because the

two formulas are now in conflict and none is preferable to the other, which completely
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paralyzes lexicographic entailment.

This example is not completely artificial since the pair of conditional constraints

{(C|D)[l, u],(D|C)[l, u]} may look like a reasonable way to model that D is equivalent

to C with probability between l and u. Such uncertain equivalences can come up when

representing probabilistic ontology alignments. Instead, the user has to resort to one of

the alternative ways of modeling equivalence, e.g., using the Jaccard coefficient (as we

show in Section 3.3) or change the semantics of conditionals to make every satisfiable

KB coherent and deal with the resulting computational difficulties.

4.2 P-SROIQ as a Fragment of First-Order Probabilistic

Logic

This section presents a translation between P-SROIQ and the FOPLII. For brevity

we will limit our attention to ALC concepts (calling the resulting logic P-ALC) as the

translation can be extended to more expressive DLs in a straightforward, but technically

involved way. We will show that the translation preserves entailments so that P-ALC
(and, consequently, P-SROIQ) can be viewed as a fragment of FOPLII.

4.2.1 Translation of PTBoxes into FOPL

We define the injective function κ to be the mapping of P-ALC formulas to FOPLII. It

is a superset of the standard translation of ALC axioms into the formulas of FOL [18]

(in the Table 4.2.1 A,B stand for concept names, R for role names, C,D for concept

expressions, r for a fresh constant, var ∈ {x, y}; var′ = x if var = y and y if var = x).

Table 4.2: Translation of P-ALC formulae into FOPLII

P-ALC FOPLII

κ(A, var) A(var)

κ(¬C, var) ¬(κ(C, var))

κ(R, var, var′) R(var, var′)

κ(C uD, var) κ(C, var) ∧ κ(D, var)

κ(C tD, var) κ(C, var) ∨ κ(D, var)

κ(∀R.C, var) ∀(var′)(R(var, var′)→ κ(C, var′))

κ(∃R.C, var) ∃(var′)(R(var, var′) ∧ κ(C, var′))

κ(a : C) κ(C, x)[a/x]

κ((a, b) : R) R(a, b)

κ(C v D,x) ∀(x)(κ(C, x)→ κ(D,x))

κ((D|C)[l, u], x) l ≤ w(κ(D)(r)|κ(C)(r)) ≤ u

For a possible worldW we use the notation κ(W ) to denote the following conjunctive
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formula with a single free variable:
∧
{κ(C)}C∈W } ∧

∧
{κ(¬C)}C/∈W } (since each C is

a concept, each κ(C) is a monadic predicate).

This function transforms a P-ALC PTBox into a FOPLII theory. The most im-

portant thing is that it translates generic PTBox constraints into ground probabilistic

formulas for a fresh constant r, the same for all constraints. This explicates the fact

that PTBox constraints are not (sort of) universally quantified statements which nat-

urally apply to all probabilistic individuals but rather statements about a single object

(the implications are discussed in the next section). Next we will show that this trans-

lation is faithful (i.e., it preserves satisfiability and entailments) and then generalize it

to multiple PABoxes.

Faithfulness can be shown by establishing a correspondence between models in P-

ALC and FOPLII. Observe that in contrast to [116] we consider the natural choice of

states in Type 2 probability structures in which they correspond to first-order models

of the knowledge base.

Theorem 4.2. Let PT = (T ,P) be a PTBox in P-ALC, where ΣT and Φ stand for the

signature of T and the probabilistic signature of PT respectively, and F = {κ(φ)|φ ∈
T ∪ P} be the translation according to Table 4.2.1. Then for every P-ALC model Pr

of PT there exists a corresponding Type 2 structure M = (D,S, µ) such that:

1. for any axiom φ over ΣT , (M, s) |= κ(φ) for each s ∈ S iff T |= φ,

2. for any Boolean concept expression X over Φ, [w(κ(X)(r))]M = Pr(X).

and vice versa.

The first claim says that the translation preserves classical entailments over the sig-

nature of T . The second claim implies that the translation preserves probabilities of

concepts (they correspond to probabilities of ground formulas with the new constant

r). The latter means that conditional probabilities are also preserved and, therefore,

so are probabilistic entailments over Φ.

Proof. We first prove (⇒). Let Pr : WΦ → [0, 1] be a model of PT (recall that WΦ

is the set of all possible worlds over Φ, i.e., concept types which are realizable w.r.t.

T ). Pr is a probability distribution so WΦ must be non-empty, which means that T is

satisfiable (a concept type cannot be realizable w.r.t. an unsatisfiable TBox). We first

define an extension of T , called T ′, as follows: T ′ = T ∪
⋃
W∈WΦ

{W (ow)|W ∈ WΦ},
where W (ow) = {{ow : C}C∈W ∪ {¬ow : C}C/∈W } and for each world ow is a new

individual name.2 T ′ has exactly the same set of entailments w.r.t. ΣT as T (we

2So in this case T ′ is a combination of a TBox and an ABox. In contrast to SROIQ, assertions of
the form C(w) are not expressible via TBox axioms in ALC.
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simply ruled out all models of T which do not realize some world3). Therefore, it is

sufficient to prove the claims w.r.t. T ′.
Now we use = for the set of all models of T ′ and define M = (D,S, µ) as follows

(the details are presented below):

• D =
⋃
{∆I |I ∈ =},

• s(I, ·, Z) = κ−1(Z)I , if Z is a translation of a concept or a role over ΣT ,

• s(I,W, r) = d ∈ ∆I , for such d that d ∈ CI , if C ∈W , and d ∈ (¬C)I otherwise,

• S = {s(I,W, ·)|I ∈ =,W ∈ WΦ},

• µ(σ(W )) = Pr(W ) for each W ∈ WΦ, where σ(W ) = {s(I,W, ·) ∈ S|s(I,W, r) ∈
s(I, ·, κ(W ))}.

We take the domain D to be the domain union for all models of T ′. Next we

define the interpretation function s(I,W, ·) which interprets each predicate Z (i.e., a

translation of either a concept or a role) in the same way as ·I interprets κ−1(Z). In

addition, it interprets the new constant r as some realization of the world W in I (here

we use the fact that all worlds are realized in models of T ′). Then we take the set of

states as all possible interpretations s over = and WΦ. On the last step we define the

probability distribution µ over S. For that we first define a function σ which maps

each world W = {C1, . . . , Ck} to a subset of states σ(W ) ⊆ S as follows: σ(W ) = {s ∈
S|s |= κ(W )(r)} (s |= κ(W )(r) is equivalent to s(I,W, r) ∈ s(I, ·, κ(W )). Intuitively,

σ(W ) is a set of first-order interpretations which satisfy κ(Ci)(r) iff Ci ∈ W , so there

is a one-to-one correspondence between worlds on the P-ALC side and interpretations

of r on the FOPLII side. Finally, we take µ(σ(W )) = Pr(W ) for each possible world.

The first claim follows from the second bullet above because κ encompasses a stand-

ard and faithful translation from ALC to FOL and r is a fresh constant (so can be ig-

nored for entailments over ΣT which does not include it). The second claim is more com-

plicated. First, observe that µ is a probability distribution (i.e. non-negative and count-

ably additive) because it mimics the probability distribution Pr. The probability of a

concept expression X over Φ, i.e., Pr(X), is defined as
∑

W |=X Pr(W ), which is equal

to
∑

W |=X µ(σ(W )) or, using the definition of σ, equals to
∑

W |=X µ({s|s |= κ(W )(r)}),
which is exactly µ({s|s |= κ(X)(r)}) or [w(κ(X)(r))]M .

We now sketch the proof of (⇐). Let M = (D,S, µ) be a Type II model of F . We

construct an ALC interpretation I = (∆I , ·I) as follows: ∆I = D and (κ−1(φ))I = s(φ)

for an arbitrary s ∈ S (since all classical formulas φ are satisfied in every state). I |= φ

due to the faithfulness of the ALC to FOL translation, so the first claim holds.

3This step will be more awkward for logics with nominals, e.g., SROIQ, since they can force an
upper bound on the cardinality of the domain.
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To construct Pr we first construct the set of possible worlds WΦ. We take Φ =⋃
(l≤w(ψ(r)|φ(r))≤u)∈F {κ−1(ψ), κ−1(φ)} as the probabilistic signature of PT . The key is

that for every world W ⊆ Φ, it satisfies T iff κ(W )(r) is satisfiable w.r.t. F (since

∆I = D, W could be a concept type of s(r) for some s which satisfies κ(W )(r)). Let

WΦ be the set of worlds which satisfy T . Now we take Pr(W ) = µ(σ(W )), where

σ(W ) = {s ∈ S | s |= κ(W )(r)}. The second claim now follows in the same way is in

(⇒).

The following result is a straightforward corollary of the above theorem.

Corollary 4.1. Let PT = (T ,P) be a PTBox in P-ALC, where ΣT and Φ stand for the

signature of T and the probabilistic signature of PT respectively, and F = {κ(φ)|φ ∈
T ∪ P} be the translation according to Table 4.2.1. Then the following is true:

1. PT is satisfiable iff F is satisfiable,

2. PT |= (D|C)[l, u] iff F |= l ≤ w(κ(D)(r)|κ(C)(r)) ≤ u.

In the next section we extend the translation from PTBoxes to probabilistic KBs.

4.2.2 Translation of PABoxes into FOPL

One particularly odd characteristic of P-SROIQ is that PABoxes cannot be combined

into a single set of formulas. The separation between PABoxes and the PTBox can

partly be justified because they are meant to contain different kinds of probabilistic

knowledge, i.e., generic relationships and information about particular individuals re-

spectively. However, the same argument does not hold in the case of separated PABoxes.

Their separation has purely technical foundations: PABox constraints are modeled as

generic constraints and the information about the individual is present only on a meta-

level (as a label of the PABox). Therefore, to extend our translation to PABoxes we

either have to translate them into a corresponding disjoint set of FOPLII theories (with

similar meta-labels) or make special arrangements to faithfully translate them into a

combined FOPLII theory. We opt for the latter because it will let us get rid of any

meta-logical aspects and view a P-SROIQ ontology as a single, standard theory in

FOPLII.

Since PABoxes in P-SROIQ are isolated from each other, the translation should

preserve that isolation. The most obvious way to prevent any interaction between

sets of formulas in a single logical theory is to make their signatures disjoint. That is,

PABoxes can be translated into FOPLII sub-theories with disjoint signatures. However,

the translation should not only respect disjointness of PABoxes but also preserve their

interaction with PTBox and the classical part of the ontology. We give an example to

illustrate the issue.
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Example 4.2. Consider the following PTBox: PT = {∅,{(FlyingObject|Bird)[0.9, 1],

(FlyingObject|¬Bird)[0, 0.5]} and two PABoxes: PTweety = {(Bird|>)[1, 1]},PSam =

{(¬Bird|>)[1, 1]}. If these sets of axioms are translated and combined into a single

FOPLII theory then it will contain a conflicting pair of formulas {w(Bird(r)) ≥
0.9, w(Bird(r)) ≤ 0.5} ⊆ F .

This inconsistency can be avoided by introducing fresh first-order predicates for every

PABox: {w(BirdTweety(r)) ≥ 0.9, w(BirdSam(r)) ≤ 0.5}. However, this would break

any connection between PTBox and PABox axioms, for example, prevent the entail-

ments {w(FlyingObjectTweety(r)) ≥ 0.9, w(FlyingObjectSam(r)) ≤ 0.5}.

Another way to faithfully extend the translation to PABoxes is to introduce fresh

concept names to relativize each TBox and PTBox axiom for every probabilistic in-

dividual and thus avoid inconsistencies. More formally, the transformation consists of

the following steps:

• Firstly, we transform a P-ALC ontology PO = (T ,P, {Po}o∈NPI ) into a set of PT-

Boxes {(T ,P)}∪{(T ,P∪Po)}o∈NPI . Informally, we create a copy PTBox for every

probabilistic individual (PTo) and make them isolated from each other. Now, in-

stead of one PTBox and a set of PABoxes we have just a set of PTBoxes. This

step preserves probabilistic entailments in the following sense: PO |= (B|A)[l, u]

iff (T ,P) |= (B|A)[l, u] and PO |= (B|A)[l, u] for o iff PTo |= (B|A)[l, u] (classical

entailments are trivially preserved).

• Secondly, we transform every PTBox PTo into PT ′o by renaming every concept

name C into Co in all TBox axioms and conditional constraints. It is easy to

see that PTo |= C v D iff PT ′o |= Co v Do and PTo |= (B|A)[l, u] iff PT ′o |=
(Bo|Ao)[l, u]. Intuitively, we have created a fresh copy of each PTBox to guard

against possible conflicts between PABox constraints for different probabilistic

individuals. Signatures of PT ′o are pairwise disjoint and denoted as Σo.

• Next, we union all PT ′o with disjoint signatures (including the original PT =

(T ,P)) into a single unified PTBox PTU =
⋃
o∈Ip PTo∪PT with signature ΣU =⋃

o∈Ip Σo ∪ Σ.

• Finally we can apply the previously presented faithful translation to PTU and

obtain a single FOPLII theory which corresponds to the original P-ALC ontology.

A necessary condition for faithfulness of this transformation is that the original

isolation of PABoxes is preserved by creating fresh copies of PTBoxes. In particular,

this means that the unified PTBox cannot entail any subsumption relation between

concept expressions Co1 and Co2 defined over disjoint signatures except of the case
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when one of them is either > or ⊥. If this is false, for example, if PTU |= Co1 v Co2

then the following PABox constraints represented as (Co1 |>)[1, 1] and (Co2 |>)[0, 0] will

be contradictory in PTU (but they were consistent in the original P-ALC because they

belonged to different PABoxes isolated from each other). This condition is formalized

in the following lemma:

Lemma 4.1. Let T1 and T2 be copies of a satisfiable ALC ontology T with disjoint

signatures Σ1 and Σ2, and TU be the union of T1 and T2. Then for any concept ex-

pressions C1, C2 over Σ1 and Σ2 respectively such that T1 2 C1 v ⊥ and T1 2 > v C2,

TU 2 C1 v C2.

Proof. Let I1 = (∆I1 , ·I1) and I2 = (∆I2 , ·I2) be models of T1 and T2 respectively,

x ∈ CI11 , y ∈ ∆I2 \CI22 . We can assume that ∆I1 and ∆I2 are countably infinite because

ALC models are closed under disjoint union. Next, we choose two linear orderings

pi : ∆Ii → N (i ∈ {1, 2}) such that p1(x) = p2(y) = 1 and pick a new countable

domain ∆IU = {dU1 , dU2 , . . . }. Finally, we construct an interpretation function ·IU

such that for any concept name Ci (resp. role name Ri), C
IU
i = {dUj |p

−1
i (j) ∈ CIii }

(resp. RIUi = {(dUj , dUk)|(p−1
i (j), p−1

i (k)) ∈ RIii }).
Informally, we order both domains such that x and y are in the first position each.

Then the domains are aligned such that elements at the same position, e.g., x and y,

coincide. This induces a model IU = (∆IU , ·IU ) of TU which interpretation function

agrees with Ii on all concepts and roles from Σi and which does not satisfy C1 v C2.

Now we can obtain the main result:

Theorem 4.3. Let PO = (T ,P, {Po}o∈NPI ) be a P-ALC ontology, where ΣT and Φo

stand for the signature of T and the probabilistic signature of (T ,P ∪ Po) for o ∈ NPI

respectively. Let F be the FOPLII theory obtained by combining the PABoxes and

translating the resulting PTBox into FOPLII. If all PTBoxes of the form PTo =

(T ,P ∪ Po) are satisfiable, then for every P-ALC model Pro of every PTo there exists

a corresponding Type 2 structure M = (D,S, µ) such that:

1. for any axiom φ over ΣT , (M, s) |= κ(φ) for each s ∈ S iff T |= φ,

2. for any Boolean concept expression X over Φo, [w(κ(X)(r))]M = Pr(X).

and vice versa. Furthermore, F is unsatisfiable iff (T ,P ∪Po) is unsatisfiable for some

o ∈ NPI .

Proof. Due to Theorem 4.2 it suffices to show that the steps 1-3 of the transforma-

tion preserve probabilistic models. This can be done by establishing a correspondence

between possible worlds of each PTo and PTU . Since there are no subsumptions between
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concept expressions over signatures of different PTBoxes (see Lemma 4.1), each pos-

sible world Wo in PTo corresponds to a finite set of possible worlds of PTU defined as:

σ(Wo) = {WU | Cio ∈ WU iff Ci ∈ Wo} (each Cio is a new concept name for Ci intro-

duced on step 2). Then, a probability distribution over all possible worlds in PTU can

be defined as PrU (WU ) = Pro(Wo)/|σ(Wo)|. It follows that for any concept C over Σo,

Pro(C) is equal to PrU (Co) where Co is the correspondingly renamed concept. There-

fore, PrU |= (Bo|Ao)[l, u] if Pro |= (B|A)[l, u]. The reverse direction can be proved

along the same lines (i.e., Pro(Wo) can be defined as
∑

WU∈σ(Wo)
PrU (WU )).

It is worth stressing that if PABox for some probabilistic individual o contradicts

the PTBox (T ,P) then the entire FOPLII theory is unsatisfiable. Therefore, for prac-

tical considerations it might be important to work with P-SROIQ ontologies as with

stratified theories. Such separation between general knowledge and knowledge about

particular individuals had been known before P-SROIQ, for example, it was used in

the default reasoning system developed by Geffner and Pearl [61].

4.3 Properties and Limitations of P-SROIQ

The translation highlights two major properties of P-SROIQ:

PI P-SROIQ has a subjective, interpretation-based semantics.

PII Only a single constant is required to translate all probabilistic knowledge in a

P-SROIQ ontology into a FOPLII theory.4

PI implies that any claims that P-SROIQ handles different kinds of probabil-

ities, especially statistics, require a careful examination. PII, which is the basis of

P-SROIQ’s direct inference mechanism, explains issues with handling degrees of be-

lief since, intuitively, a single constant cannot be sufficient for modeling probability

distributions over relational structures. We will discuss these issues in 4.3.2 and 4.3.3

but before we briefly discuss why some other, perhaps more naturally looking ways of

translating P-SROIQ into FOPLII are incorrect.

4.3.1 Interpretation of Probabilistic Statements

According to the translation, all probabilistic statements in P-SROIQ express degrees

of belief about a single, yet unnamed, individual (denoted as r). This is not an easily

expected outcome because the variable-free syntax may give a misleading impression

4Here we mean a “probabilistic” constant since all nominals occurring in the classical part of the
ontology will be translated into corresponding constants in FOPLII.
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that PTBox constraints correspond to universally quantified formulas in FOPLII, sim-

ilarly to how TBox axioms in SROIQ correspond to universally quantified implications

formulas in FOL. One may wonder whether a more natural translation is possible. We

consider two such candidate translations: probabilistic implications and universally

quantified conditional formulas.

An interpretation of conditional constraints (D|C)[l, u] as formulas of the form

l ≤ w(∀x[c(x)→ d(x)]) ≤ u lets us view them as probabilistic generalizations of TBox

axioms C v D (which are translated into ∀x[c(x) → d(x)]). It is easy to see how

their semantics is different from P-SROIQ’s. Such formulas are unconditional so, for

example, the pair of formulas w(∀x[c1(x) → d(x)]) ≥ 0.9 and w(∀x[c1(x) ∧ c2(x) →
d(x)]) ≤ 0.8 are contradictory. On the other hand, the pair of conditional constraints

in P-SROIQ (D|C1)[0.9, 1] and (D|C1 u C2)[0, 0.8] is perfectly satisfiable.5

The translation into universally quantified conditional formulas, i.e., formulas of

the form ∀x[l ≤ w(d(x)|c(x)) ≤ u] has more subtle issues. The idea of using them

for capturing statistical assertions is originally due to Cheeseman [31]. It has been

criticized by multiple authors (see esp. [76, 11, 12]) as it leads to intuitively unreas-

onable conflicts between statistics and beliefs. We will return to this point in the

next section while here we can show that such translation is unfaithful in presence of

named constants (i.e., nominals in SROIQ) or classical ABoxes. For example, the PT-

Box ({a : ¬A}, {(A|>)[1, 1]}) is satisfiable in P-SROIQ although the corresponding

FOPLII theory {¬A(a), ∀x(w(A(x)) = 1)} is not. The problem is that this translation

disregards the separation between classical and probabilistic individuals in P-SROIQ.

In fact, the translation into quantified statements does work but requires a some-

what non-standard quantifier. It has to make bound variables act as random designat-

ors. This is precisely what we achieve by using the fresh constant r.

4.3.2 Representation of Statistics

The first question that has to be raised is whether P-SROIQ can be used to repres-

ent statistical knowledge given its subjective, interpretation based semantics. Here we

prefer to distinguish between practical and philosophical difficulties. The former are the

situations when some important statistical knowledge cannot be adequately represen-

ted, for example, all possible representations lead to statistically unsound conclusions.

The latter are the situations which cause conceptual difficulties but do not lead to any

erroneous entailments.

The main philosophical difficulty in P-SROIQ is that it enforces the separation

between general statements, which are meant to capture statistics, and statements

5In other words, conditional formulas do not constrain future beliefs after conditioning on new
evidence. This is related to the lack of probabilistic inheritance from the cautious point of view, see
the previous discussion in Section 4.1.2.
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meant to represent beliefs about specific individuals. This is a well-known argument

against representing both statistics and beliefs in FOPLII (see [12, 76]). Consider the

following classical example:

PO = ({Penguin v Bird},

{(FlyingObject|Bird)[0.9, 1], (FlyingObject|Penguin)[0, 0.1]},

({(Penguin|>)[1, 1]}Tweety))

If all axioms above were combined in a single theory it would clearly be unsatisfiable.

The TBox and PTBox axioms place restrictions on probability of Penguin (informally,

penguins must be a “small” subclass of birds) which is violated by the PABox axiom.

This means that an agent cannot simultaneously believe in the existence of a single

flying penguin and the statistical knowledge that most penguins do not fly, which is

unreasonable. Since there is no semantic separation (i.e., through different probability

distributions as in FOPLIII) between different kinds of axioms, they have to be sep-

arated syntactically. In addition, P-SROIQ has to include a special mechanism for

combining these axioms for reasoning about individuals which has to be non-monotonic.

Interestingly, P-SROIQ, as it stands, seems to avoid practical issues with hand-

ling statistics, but mostly because its language is quite limited rather than because

its semantics is appropriate. The only probabilistic axioms provided by P-SROIQ,

conditional constraints of the form (D|C)[l, u], express that “the probability that a

random instance of C is an instance of D is in [l, u]”. It does not allow specifying how

that random instance was drawn as well as placing any other restrictions on probability

distributions. It is easy to show that possible extensions in these directions could easily

reveal the inadequacy of P-SROIQ’s semantics for handling statistics.

Consider what happens if one wants to extend P-SROIQ to allow restricting prob-

ability functions to uniform distributions. This is useful if conditional constraints are

to be interpreted as proportions (i.e., according to the frequentist interpretation of

probability). Now consider the following PTBox where marriedTo is a functional role:

({Person vMan tWoman,Man uWoman v ⊥,Man v ∃marriedTo.Woman},

{(Person|>)[0.9, 0.9], (Man|Person)[0.5, 0.5]})

This PTBox attempts to model a domain 90% of which consists of people. Every person

is either a man or a woman. Furthermore, 50% of people are men and every man is

functionally related to at least one woman, so the other half of people must be women.

Due to the standard P-SROIQ semantics the PTBox will entail [0, 1] as the tightest
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probability bounds for the query (Woman|Person)[?, ?]. This happens because the

relationship between extensions of Man and Woman is ignored by the semantics of

P-SROIQ, i.e., it does not restrict the set of possible worlds in any way. Restricting

probability functions to uniform distributions over possible worlds without changing the

notion of possible world also does not achieve the goal (in this example there are fewer

than 10 possible worlds, so constraints like (Person|>)[0.9, 0.9] would be unsatisfiable

by themselves). Such considerations lead us to the conclusion that P-SROIQ is not

well suited for representing first-order statistical statements.

4.3.3 Representation of Beliefs

Perhaps surprisingly the properties of P-SROIQ, in particular, PII, lead to more prac-

tical difficulties with handling degrees of belief rather than representation of statistics.

The prime issues are the separation between classical and probabilistic individuals and

the lack of relational structures support.

The separation between different kinds of individuals precludes any combination

between classical and probabilistic knowledge for the same individual. It is not possible,

for example, to express that Mary is an instance of concept Woman and has 90% chance

of having BRCA1 gene mutation. Of course, it is possible to express that probability

that Mary is a woman is 1 but this is not always a satisfactory replacement for ABox

statements. First, one may want to specify probabilistic facts about individuals already

present in the ABox. Second, perhaps more importantly, specifying ABox axioms as

PABox axioms does not lead to entailments which could be important. For example, if

Mary is a woman and developed breast cancer, then her daughter, say, Jane, would be

entailed as an instance of concept WomanWithFamilyHistoryOfBRCA. If Mary has

to be a probabilistic individual then so does Jane, and the modeler will face the problem

of representing their relationship, which, in fact, is the second issue with P-SROIQ.

P-SROIQ does not support probabilistic relational structures in the sense that

one cannot specify that one probabilistic individual has a certain probability of being

related to another probabilistic individual. For example, if both Mary and Jane are

probabilistic individuals one cannot specify that Mary is a mother of Jane with a prob-

ability of 1 (obviously, such a statement is most reasonably represented as a classical

ABox axioms but this is also not possible due to the separation discussed above).6 The

reason, which is highlighted by PII, is that PABox statements do not correspond to

ground probabilistic formulas in FOPLII. The information about individuals is present

only on a meta-level, as labels of the corresponding PABoxes. As a consequence, know-

ledge about distinct probabilistic individuals has to be separated from each other, for

6Note that the logic can represent probabilistic roles between a classical and a probabilistic individu-
als, e.g., as a PABox axiom (∃motherOf.{Jane}|>)[1, 1] for Mary, but in this case no probabilistic
facts can be specified for Jane.
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example, by means of isolated PABoxes in P-SROIQ or disjoint signatures in FOPLII.

The second issue appears to be more difficult to overcome than the first. The

separation between classical and probabilistic individuals can be eliminated by incor-

porating classical individuals in the description of possible worlds, for example, by

including nominal concept expressions in the set of basic concepts (the probabilistic

signature). Relational structures, on the other hand, cannot be supported until PABox

constraints are interpreted as PTBox constraints rather than ground statements bear-

ing information about particular individuals on the logical level. However, that would

require major semantic changes, at least a new direct inference mechanism to preserve

interaction between PTBox and PABox knowledge (a discussion of such possibility can

be found in [113]).

4.3.4 Summary

We presented a faithful translation of knowledge bases in P-SROIQ into theories

in first-order probabilistic logic with Type II semantics. The translation places no

restriction on expressiveness (e.g., use of nominals), uses only standard quantifiers and,

most importantly, illuminates the probabilistic propositionality of P-SROIQ by using

only a single probabilistic constant. That “propositionality” is the main culprit of

the important limitations of P-SROIQ, namely, the lack of probabilistic relational

structures.

P-SROIQ can be seen as an approximation of FOPLIII which trades separate

probability distributions for statistical and belief statements for a practically imple-

mentable direct inference mechanism. There is nothing particularly wrong with such a

design decision per se but it has to be understood by modelers. Our translation into

FOPLII is an attempt to enhance that understanding analogously to how classical DLs

are understood as fragments of classical FOL.

In conclusion, we present two examples that illustrate how viewing probabilistic DLs

as fragments of FOPL helps their understanding and, on the contrary, how lack of such

understanding can lead to errors. An example of the latter is the design of P-SHOQ(D),

a predecessor of P-SROIQ [65], which has domain-based (Type I) semantics. In that

logic PABox axioms are represented using nominals, for example, (C|{a})[0.5, 1] is

supposed to model that a is an instance of C with probability at least 0.5. However,

as proved by Halpern, closed first-order formulas can only have probability 0 or 1

in any Type 1 probabilistic model (see Lemma 2.3 in [76]) so the representation is

unsatisfactory. It is easy to see that the probability of (C|{a}), which is equivalent to
Pr(Cu{a})
Pr({a}) , is 0 if aI /∈ CI or 1 if aI ∈ CI , if Pr is a probability distribution over ∆I .

A positive example is the recent work of Lutz and Schröder [139]. They designed and

presented a probabilistic DL, called Prob-ALC, which supports probabilistic concepts
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of the form P≥α(C), which are interpreted as “the set of all domain objects which are

instances of C with ≥ 90% probability”. The logic is designed and presented as a

fragment of FOPLII so a modeler can immediately realize that their ability to model

statistical statements might be limited. And it is indeed the case, for example, if one

tries to use axioms like Bird v P≥0.9(FlyingObject) to capture the statistical statement

that ≥ 90% of birds fly, they will face the same difficulties as with using universally

quantified probabilistic formulas in FOPLII. In particular, such an axiom will be in

conflict with statements asserting existence of a specific non-flying bird, i.e., {tweety :

Bird, tweety : ¬FlyingObject}. On the other hand, in contrast to P-SROIQ, the

logic fully supports relational structures in probabilistic ABoxes, something that could

be expected from a FOPLII frament.
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Chapter 5

Algorithms for Practical

Reasoning in P-SROIQ

This chapter describes the algorithms for the main reasoning tasks in P-SROIQ that

have been developed in this thesis. Unlike the original algorithms described in Chapter

2 these procedures aim at being practical in realistic scenarios involving reasonable

amounts of probabilistic knowledge, i.e. hundreds of conditional constraints. The core

component—the PSAT algorithm based on column generation—is described in Sec-

tion 5.1 which also presents its optimizations, analysis, and compares to the previous

approaches. Sections 5.2, 5.3, and 5.4 then describe other reasoning procedures for ana-

lysis of probabilistic knowledge bases, deciding probabilistic consistencies, and, finally,

computing tight lexicographic entailment.

5.1 The Probabilistic Satisfiability Algorithm

The principal contribution of this thesis is the novel PSAT algorithm implemented

in Pronto (see Section 5.1.6 for comparison with the previously developed methods).

For the sake of clarity we will consider a special case of PSAT where the PTBox is

of the form PT = (T , {(Ci|>)[pi, pi]}) (i.e. all probabilistic statements are uncondi-

tional constraints with point-valued probabilities and all Ci are concept names). It is

straightforward, but technically awkward, to generalize the procedure to handle con-

ditional interval statements over arbitrary concept expressions. Also, essentially the

same algorithm can be applied to solve TLogEnt problem with the only difference

that the linear program is optimized twice to get the lower and the upper probabilities.

A PTBox PT = (T , {(Ci|>)[pi, pi]}) is satisfiable iff the following system of lin-

ear inequalities is feasible, i.e. admits at least one solution (by generalization from

propositional PSAT [81]):

121
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∑
W |=Ci

xW = pi, for each (Ci|>)[pi, pi] ∈ P (5.1)

∑
W∈WΦ

xW = 1 and all xW ≥ 0

where WΦ is the set of all possible worlds for the set of concepts Φ in T . Observe, that

WΦ is finite and exponential in the size of Φ so it is not practical to try to explicitly

generate this system in order to check whether it has a solution.

One successful approach to dealing with linear systems having an exponential num-

ber variables is column generation [42]. It is based on the fundamental property of

linear programming: any feasible program (i.e., a program that admits at least one

solution) always has an optimal solution in which only a linear number of variables

have non-zero values. Column generation exploits this property by trying to avoid an

explicit representation of variables (columns) which will not have positive values in the

finally discovered solution. The method is outlined in the next subsection.

5.1.1 Column Generation Basics

Consider the standard form of a linear program (5.2). Any linear program, in particular,

a version of (5.1) with intervals can be reduced to it by adding slack variables.

max z = cx (5.2)

s.t. Ax = b

x ≥ 0

A denotes a m×n matrix of linear coefficients of (5.2). At every step of the simplex

algorithm,1 A is represented as a combination (B,N) where B and N are submatrices

of the basic and non-basic variables, respectively. Values of non-basic variables are

fixed to zero, and the solver proceeds by replacing one basic variable by a non-basic

one until the optimal solution is found. Variables are represented as indexed columns

of A. The index of a non-basic column which enters the basis is determined according

to the following expression [81]:

j ∈ {1, . . . , |N |} s.t. cj − uTAj is maximal (5.3)

1Simplex method is the most commonly used linear programming algorithm, see [32] for a detailed
presentation.
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where cj is the objective coefficient for the new variable and uT is the current dual

solution of (5.2). The expression cj − uTAj is called reduced cost. At every iteration

the column having the highest positive reduced cost is selected. If no such column

exists the linear program is at an optimum and the simplex algorithm stops.

If the size of N is far too large, as is the case for the program (5.1), one should

compute the index of the entering column according to (5.3) without examining all

columns in N . This is done using the column generation technique in which (5.3) is

treated as an optimization problem with the following objective function:

max (cj −
m+1∑
i=1

uia
j
i ), A

j = (aji ) ∈ {0, 1}
m+1 (5.4)

where aji are binary variables that represent linear coefficients of the entering column.

It is important to note that except for the way the entering column is obtained (i.e.,

generated vs selected) the simplex algorithm works along the same lines. Whether the

column generation technique is successful or not is contingent upon the following cri-

teria: i) there exists an efficient algorithm for the optimization problem (5.4), ii) an

optimal solution of the program (5.2) can be found without the generation of an excess-

ive number of columns (the number of generated columns characterizes convergence of

the algorithm). In the next two subsections we present the PSAT algorithm and the

optimized procedure which it uses to generate improving columns.

5.1.2 Column Generation-Based PSAT Algorithm

In order to explain the PSAT algorithm we first rewrite the linear system (5.1) as the

following linear program:

max
∑

W∈WΦ

xW (5.5)

s.t.
∑
W |=Ci

xW = pi ×
∑

W∈WΦ

xW , for each (Ci|>)[pi, pi] ∈ P

∑
W∈WΦ

xW ≤ 1 and all xW ≥ 0

This program has the optimal objective value of 1 if and only if the system (5.1) is

feasible. The advantage of using this program is that it is feasible even if the PTBox

is not satisfiable which facilitates use of the column generation technique.2 Algorithm

2In principle, it is possible to generate columns for an infeasible linear program but maintaining it
feasible usually helps convergence.
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3 presents the PSAT algorithm based on column generation.

Algorithm 3: PSAT algorithm based on column generation

Input: PTBox PT = (T ,P)
Output: Y es if PT is satisfiable, No otherwise
if T is not satisfiable then return No1

LP ← InitializeRMP (T ,P)2

while true do3

d← optimize(LP )4

uT ← dual solution(LP )5

Aj ← GenerateImprovingColumn((T ,P), uT )6

if Aj = null then break7

else8

Add Aj to LP as a new column9

end10

end11

if d = 1 then return Y es else return No12

The algorithm follows the basic column generation procedure outlined in the pre-

vious subsection. It first constructs so called restricted master problem (RMP) which

is a subprogram of (5.5) with a restricted set of variables (line 2). These initial vari-

ables are created by generating a subset of the index set WΦ (see Section 2.3.1). Next

the algorithm enters the main column generation loop (lines 3–10) during which it

tries to generate an improving column (line 6). The column generation procedure

GenerateImprovingColumn, which takes the PTBox and the current dual solution

uT , plays the central role and is explained in detail in the next subsection. If an im-

proving column has been successfully generated, it is added to the linear program (line

9). The algorithm breaks out of the loop when no improving column can be generated.

Finally, it checks the optimal value of the final RMP and returns Y es if it is equal to

1.

A number of implementation details have been omitted for the sake of presentation

clarity. In particular, the algorithm forgets some previously generated columns which

have not been in the basis for a large number of iterations in order to keep RMP

tractable. This may potentially compromise the termination property (see the next

subsection), so the algorithm implements special checks to detect the situation when

previously forgotten columns are repeatedly regenerated. Also, we use stabilization

techniques to improve convergence of the column generation process. Some details can

be found in Section 5.1.5.
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5.1.3 Possible World Generation

This section explains the procedure for generating improving columns (possible worlds)

for Algorithm 3. It describes in detail what each component of a PSAT column repres-

ents and how to set up and use the optimization problem 5.4 for generation of possible

worlds.

Consider aji , the i-th coefficient of some column Aj for the PSAT program 5.5. The

column corresponds to some possible world W j = {Ci}, therefore aji = 1 implies that Ci

occurs positively in W j while aji = 0 implies that it occurs negatively (or equivalently,

W j |= ¬Ci). Thus it is possible to represent W j as a conjunctive concept expression

in SROIQ assuming a fixed linear ordering of concepts {Ci} in Φ (see Section 2.3.1).

More formally, we define the following function η which maps columns, i.e. binary

vectors, to conjunctions of basic concepts from Φ:

η(Aj) =
l
Xi, where Xi =

Ci, if aji = 1

¬Ci, if aji = 0
(5.6)

Xi are literals that denote either a basic concept or its negation.

Soundness of Algorithm 3 strongly depends on whether every solution of the op-

timization problem (5.4), which is added as a column to the main linear program (5.5),

corresponds to a concept expression that is satisfiable w.r.t. T , i.e., is a possible world.

If this condition is true then soundness trivially follows because one may simply enu-

merate the set of all solutions (since the set of possible worlds is finite), so (5.5) will be

equivalent to the original linear system (5.1). Completeness requires that every pos-

sible world for the given PTBox corresponds to some solution of (5.4). Therefore, for

ensuring both soundness and completeness it is crucial to construct a set of constraints

H for the problem (5.4) such that its set of solutions is in one-to-one correspondence

with the set of all possible worlds WΦ.

In what follows we will call columns which correspond to satisfiable expressions

valid and the others invalid. More formally, given a SROIQ TBox T , a column Aj is

valid if T 2 η(Aj) v ⊥ and is invalid otherwise.

Validity can easily be ensured in the propositional case where each Ci is a clause.

One possibility is to employ the well known formulation of SAT as a mixed-integer

linear program (MILP) [84]. For example, if Ci = c1 ∨ ¬c2 ∨ c3 then (5.4) will have

the constraint ai = xc1 + (1 − xc2) + xc3 where all variables xck are binary. In that

case soundness and completeness follow from the reduction of SAT to MILP. Previously

developed propositional PSAT algorithms take full advantage of that (see Section 2.2.2).

In the case of an expressive language, such as SROIQ, there appears to be no
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easy way of determining the set of constraints H. Furthermore, it is unclear whether

such a set is polynomial in the size of T . Informally, H must capture every entailment,

such as T |= Ci u · · · u Cj v ⊥ in order to prevent generation of any column Aj such

that Ci u · · · uCj is a conjunctive subexpression of η(Aj). All such entailments can be

computed in a naive way by checking satisfiability of all conjunctions Ci u · · · uCj over

Φ but this is no better than trying to construct the full linear system (5.1).

Instead, Pronto implements a novel hybrid, iterative procedure to compute H which

can be summarized as follows:

Algorithm 4: Possible world generation algorithm

Input: PTBox PT = (T ,P), current dual solution uT of (5.5)
Output: New column Aj or null
IPColGen ← initialize the integer program (5.4) using uT and P1

H ← ∅2

while Aj 6= null do3

Solve IPColGen subject to H to optimality4

Aj ← some optimal solution of IPColGen5

if Aj 6= null then6

if satisfiable(η(Aj), T ) then7

return Aj8

end9

H ← H ∪ inequalities that exclude Aj10

end11

end12

return null13

The key steps are 7 and 10. On step 7 the algorithm invokes a SROIQ reasoner (in

our case, Pellet [177]) to determine if the computed column corresponds to a possible

world. This is critical for soundness. If yes, the column is valid and returned. If no,

the current set of constraints H needs to be extended to exclude Aj from the set of

solutions to (5.4). This step deserves a more detailed explanation which we present by

first defining the notion of the minimal unsatisfiable core for an unsatisfiable conjunctive

concept expression.

Definition 5.1 (Unsatisfiable Core). Given a TBox T and unsatisfiable (w.r.t. T )

concept expression
d
Xi represented as a set of conjuncts X = {Xi}, a minimal unsat-

isfiable subexpression (MUS) is a subset X ′ = {X ′i} ⊆ {Xi} such that
d
Xi is unsatis-

fiable w.r.t. T and any X ′′ = {X ′′i } ⊂ {X ′i} is satisfiable w.r.t. T . The unsatisfiable

core (UC) of
d
Xi is the set of all its MUSes.

Intuitively, our notion of UC for conjunctive SROIQ concepts corresponds to the

standard notion of unsatisfiable core for propositional formulas in conjunctive normal

form [140].
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Each MUS can be regarded as a one “laconic justification” of the unsatisfiability

of the original concept expression [85] (here “laconic” means that it contains no super-

fluous conjuncts). The UC is the set of all laconic justifications of the unsatisfiability.

Clearly, to exclude the current, invalid column from the set of solutions to (5.4), it is

sufficient to add to (5.4) a constraint that rules out any of the MUSes.

Next, we show how to translate MUSes into linear inequalities. A MUS is a set

of conjuncts {X ′i} each of which corresponds to a binary variable (observe that η,

as defined in (5.6), is a bijective function). By a slight abuse of notation we write

ai = η−1(X ′i) to denote the variable that corresponds to Ci. Then given a MUS

X ′ = {X ′i}ki=1 we add the following linear constraint:

k∑
i=1

ai ≤ k − 1, where ai =

η−1(X ′i), X ′i = Ci

1− η−1(X ′i), Xi = ¬Ci
(5.7)

If a conjunctive concept contains
d
Xi as a subexpression then all binary expressions

bi, i.e. either ai or 1 − ai depending on whether Xi is a positive or a negative literal,

are equal to 1. Therefore,
∑k

i=1 ai = k where k is the size of {Xi}. Constraining∑k
i=1 bi to be less or equal to k− 1 is equivalent to requiring at least one bi to be equal

to 0. According to the definition of η this is equivalent to removing of at least one

conjunct from X ′ which makes it satisfiable (due to minimality of X ′, see Definition

5.1). Therefore, each of the constraints (5.7) is sufficient to exclude all columns, which

correspond to concept expressions containing X ′, from the set of solutions to (5.4).

Observe that the constraints do not exclude any columns which do not include X ′

since it is necessary to ensure completeness.

On step 8 the algorithm computes the unsatisfiable core for a concept expression

that corresponds to the current solution of (5.4). Then it transforms each of the MUSes

into a linear inequality according to (5.7) and adds them to the binary program (5.4).

We call our PSAT algorithm, which is composed of algorithms 3 and 4, “hybrid”

because it combines invocations of an LP solver (to optimize (5.5)), MILP and SROIQ
solvers (to optimize (5.4) and check satisfiability of concept expressions respectively).

It is iterative because during the possible world generation phase it iteratively tightens

the set of solutions to (5.4) until either a valid column is found or provably no such

column exists.

Finally, we give a short example demonstrating our iterative technique for comput-

ing valid columns.

Example 5.1. Consider a PTBox where T = {A v ∃R.C,B v ∃R.¬C,≥ 2R.> v D}
and P contains some probabilistic constraints over the ordered set Φ = {A,B,D}.
Algorithm 4 starts out with an empty set of linear constraints for (5.4). The list of
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binary variables for (5.4) is (xA, xB, xD). Assume that at some iteration the algorithm

generates the following column: Aj = (1, 1, 0, 1) (the last component of any column is

always equal to 1 because of the normalization row in (5.5)). Then η(Aj) = AuBu¬D.

It is not hard to see that T |= η(Aj) v ⊥. The reason is that any instance o of

AuB must have two R-successors (domain elements which are connected to oI by RI).

Moreover, they are necessarily distinct because one is an instance of C and another

is an instance of ¬C. Therefore, o is an instance of ≥ 2R.> and consequently is an

instance of D. This is a contradiction with ¬D in η(Aj).

The unsatisfiable core of η(Aj) is {A,B,¬D}. This MUS is converted into the

following linear inequality xD ≥ xA + xB − 1 which is then added to the binary pro-

gram (5.4). As a result, no invalid column containing this MUS will be computed on

subsequent iterations.

5.1.4 Algorithm Analysis

In this section we prove some basic properties of Algorithm 3 and investigate charac-

teristics of PTBoxes which have a direct impact on performance of the PSAT algorithm

presented in this section. For the subsequent analysis it will be convenient to distin-

guish two basic steps performed at each iteration of the algorithm: solving the master

linear program (5.5) and generating the next column by invoking Algorithm 4. We

refer to them as Phase I and Phase II respectively.

Theoretical Analysis We first prove that our algorithm is in fact a decision proced-

ure for PSAT in P-SROIQ and then show that its worst case complexity is the same

as for SROIQ.

Theorem 5.1 (Soundness, Correctness, and Termination). Algorithm 3 which uses

Algorithm 4 to generate columns is a sound, complete, and terminating procedure for

PSAT in P-SROIQ.

Proof. Soundness. Every column added to the linear program (5.5) corresponds to

a possible world, as ensured on step 5 (assuming that a sound SROIQ reasoner is

used). Therefore, when the algorithm terminates, if the objective value of (5.5) is 1

then the final solution is a probability distribution over possible worlds which satisfies

all conditional constraints, i.e. is a model.

Completeness. Assume that given a satisfiable PTBox PT = (T ,P) the al-

gorithm failed to prove its satisfiability. Consider the linear program of the form (5.5)

whose optimal objective value is 1 and which was not constructed by the algorithm.

There must be at least one basic column Aj , which corresponds to a variable having a

positive value, but which was not generated by the algorithm 4. Therefore Aj is not a
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solution of the column generation program (5.4) given its set of inequalities H.3 Con-

sider any constraint h ∈ H such that Aj violates h. It is of the form
∑k

i=1 bi ≤ k (see

above) and, consequently, all k expressions bi in Aj must be equal to 1. However, this

implies that η(Aj) contains an unsatisfiable conjunctive subexpression X ′ = {Xi}ki=1

(see (5.7)) which makes Aj invalid, thus we have a contradiction.

Termination. The PSAT algorithm terminates if i) the possible world algorithm

terminates, and ii) each possible world is generated only once. The second condition

is trivially satisfied because once a column has entered the basis, its reduced cost is

zero and Algorithm 4 will not generate it again. To prove termination of Algorithm 4

observe that its maximal number of iterations corresponds to the number of MUSes of

an unsatisfiable conjunctive expression. Each expression is finite, and so must be its

set of unsatisfiable subexpressions.

It is not hard to see that Algorithm 4 for P-SROIQ is an N2ExpTime procedure.

Its running time is dominated by Phase II since solving the primal linear program

can be done in polynomial time (in the size of the PTBox). Generation of each valid

column takes no more than exponential (in the length of the probabilistic signature)

number of SAT tests and the MILP optimization steps. Concept SAT in SROIQ is

N2ExpTime-complete [106] while MILP is NP-complete in the size of the program (5.4).

The latter is no greater than exponential in the size of the classical part of the PTBox.

Thus the overall worst case complexity is N2ExpTime, i.e., the same as for optimal SAT

algorithms for SROIQ.

Practical Analysis Next we turn our attention to factors that are likely to influence

the running behavior of the PSAT algorithm. Complexity of Phase I is determined

solely by the size of the linear program (5.5). The number of inequalities is m+1 where

m is the number of constraints in the PTBox.4 In the worst case the number of variables

is exponential in the size of probabilistic signature since it corresponds to the number of

possible worlds. However, it is not necessary to always keep all the variables (columns)

produced on the past iterations. It is common for column generation algorithms to

“forget” variables which have not been a part of the basis over the last few iterations

thus keeping the system small. Our algorithm follows this idea to dropping columns

with the largest negative reduced cost every 50 iterations.

As such it can be concluded that the only important factors for the running time

of Phase I are the PTBox’s size and the size of the probabilistic signature. Possible

world generation, or Phase II, is more complicated. Its running time depends on the

following factors:

3If Aj was a solution of (5.4) then it would have a positive reduced cost and would eventually be
chosen by simplex to enter the basis.

4It is 2 ∗m+ 1 when interval constraints are considered.
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• The running time of optimizing the MILP program (5.4).

• The running time of deciding validity of each column candidate and computing

the unsatisfiability core for conjunctive concept expressions in the target DL.

• The average number of re-optimizations of the MILP program required to produce

a valid column.

We analyze how size and other characteristics of the input PTBox may influence the

performance in practice. First, we consider the width of the MILP program (5.4). It is

determined solely by the size of the probabilistic signature since each concept name in

the signature corresponds to a distinct variable in the program.

The key factor determining height (the number of inequalities) of the MILP program

and the complexity of computing the unsatisfiability core for conjunctive expressions

is what we loosely call TBox richness. It is similar to various notions of axiomatic

richness of DL TBoxes which appear in literature in different contexts, for example, in

the context of modularity of ontologies [46]. What is common across these notions is

that they reflect the number of non-trivial axioms entailed by the TBox. Unfortunately,

to the best of our knowledge, neither of these notions has ever been made precise or

widely applicable.

For our purposes it is handy to define richness in terms of the size and the structure

of the space of possible worlds that satisfy the TBox. Since each axiom in the TBox

makes some of the worlds impossible, one may think that axiomatic richness can be

characterized simply by the number of possible worlds. The more worlds are ruled

out by the structure of the TBox, the richer it is. For example, given the signature

{A,B,C,D} the TBox T1 = {A v B,C v D} is richer than the TBox T2 = {B v ¬C}
because T2 is satisfied by 12 worlds while T1 by 8 (out of 16). However, this method

is too coarse. Consider the TBox T3 = {A u B u C u D v ⊥, A u B u ¬C u ¬D v
⊥,¬AuBuCu¬D v ⊥}. It rules out fewer worlds than either T1 or T2 but its structure

is more complicated in the sense that more inequalities are required to faithfully capture

it in the program (5.4).

To define TBox’s richness we propose the following canonical way of describing the

set of possible worlds for a TBox.

Definition 5.2 (Possible World Description). Given a TBox T its possible world

description with respect to signature Φ is a set of concept subsumption axioms CΦ =

{Ci v Di}i∈1,...,k, which satisfies the following conditions:

i) Each Ci and Di are conjunctions of concepts from Φ and their negations.

ii) Each world W over Φ satisfies CΦ iff it satisfies T .

iii) No axiom is a logical consequence of another, i.e., if α, β ∈ CΦ then α 2 β and

vice versa.
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A possible world description exists for each TBox. One way of constructing it is

to compute the set of all impossible worlds and create the axiom
d
iCi v ⊥ for each

of them (while filtering out logical consequences to satisfy iii)). The size of the largest

possible description is finite because the length of each expression is bounded by the

size of the signature. With such definition at hand we can formulate the axiomatic

richness of a TBox as follows:

Definition 5.3 (TBox Richness). Axiomatic richness of a TBox T with respect to

a non-empty signature Φ, denoted as KΦ(T ), is the number of axioms in its maximal

possible world description divided by |Φ|.

Formulated in this way TBox richness directly determines the maximal number of

linear inequalities for the MILP program (5.4). It places an upper bound on the height

of the program (5.4) but the column generation process may terminate before reaching

it. According to our empirical experience, richer TBoxes always produce larger and,

consequently, computationally harder column generation models. However we leave it

to future work to assess whether significant portions of possible world descriptions are

not yet captured in the MILP model when the process terminates.

In summary, we have identified signature size, PTBox size and TBox richness as

the main factors which may influence the runtime performance of the PSAT algorithm.

Chapter 6 presents the empirical evaluation results that characterize scalability and

robustness of the algorithm on PTBoxes with variable parameters.

5.1.5 Main Optimizations

We next describe several optimization techniques which play key roles for our imple-

mentation of the possible world generation algorithm.

Classical Modularity

It is possible that concepts appearing in conditional constraints, i.e., the probabilistic

signature, are only a small fraction of those appearing in the classical part of the KB.

This can happen especially when a large OWL ontology, such as the NCI Thesaurus,

is only slightly augmented with probabilistic knowledge. Then it seems intuitively un-

reasonable to work with the full classical part when solving PSAT/TLogEnt because

many OWL axioms do not interact with probabilistic knowledge but only slow down

concept satisfiability checks during the column generation process.

Fortunately, we can employ ontology modularity techniques in order to extract a

fragment of the classical part which is guaranteed to contain all relevant knowledge,

i.e., a module [69, 173, 46]. More formally, given a signature Σ a Σ−module O′ in an

ontology O, written as M(O,Σ), is a subset of O such that any axiom α over Σ is
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entailed by O iif it is entailed by O′ [69]. In the context of PSAT this means that any

concept expression 5.6 that needs to be checked for satisfiability on step 10 of Algorithm

4 is unsatisfiable w.r.t. the whole classical part T iff it is unsatisfiable w.r.t. M(T ,Φ),

where Φ is the probabilistic signature.

Extracting modules enables us to substantially cut down the size of the classical part

even though modules are not guaranteed to be minimal.5 In fact, this optimization is

not specific for our hybrid algorithm and even column generation. In particular, it can

be used in propositional PSAT solvers as well. Note that modules are only guaranteed

to contain all relevant knowledge w.r.t. a fixed signature so if the signature changes,

for example, when a new conditional constraint is added or some new concept is used

in an entailment query, the module needs to be recomputed.

Exploiting Concept Hierarchy

The first optimization stems from a natural observation that many inequalities for the

binary program (5.4) can added simply by examining the structure of a TBox. Virtually

all modern DL reasoners can efficiently construct the so called classification hierarchy

by finding all subsumptions between concept names that are logically entailed by the

TBox. Such hierarchy can be used to construct an initial set of inequalities H0.

Consider the following TBox T = {A t B v C}. The classified version of T
should include subsumptions A v C and B v C. They can be directly translated to

inequalities xA ≤ xC and xB ≤ xC to preclude computing an invalid column containing

either A u ¬C or B u ¬C as subexpressions and converting these subexpressions into

inequalities.

This idea helps to reduce the number of concept satisfiability tests. The effective-

ness of this technique depends on the axiomatic richness of the TBox. For axiomatic-

ally weak TBoxes, where almost all subsumptions can be discovered by traversing the

concept hierarchy, most of the set H is computed up front. More complex TBoxes may

have non-trivial entailments involving concept expressions on both sides of subsump-

tions which can only be discovered when checking validity of some column candidate.

One such examples is the subsumption A uB v D from Example 5.1.

A drawback of this optimization is that it might be too eager and generate more

linear inequalities that can be fit in memory. One example of how this can happen is

exploiting TBoxes which succinctly encode a quadratic number of disjointness axioms

by using the DisjointClasses construct in OWL 2.6 At the same time, as explained

5Extracting strictly minimal models is undecidable for SROIQ so we rely on approximate solutions.
See [69] for details.

6The axiom DisjointClasses(C1,. . . ,CEn) asserts that the concepts are pairwise disjoint. It is
equivalent to a quadratic number of binary disjointness axioms. Such axioms can be added by ontology
editors transparently for the user. For more details refer to http://www.w3.org/TR/owl2-syntax/

#Disjoint_Classes

http://www.w3.org/TR/owl2-syntax/#Disjoint_Classes
http://www.w3.org/TR/owl2-syntax/#Disjoint_Classes
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in the next subsection, there is a chance that enough valid columns can be generated

before all the relationships entailed by the TBox are discovered and captured in linear

constraints. Therefore a simple solution to this problem is to impose a limit on the

total number of inequalities created up front. The value of the limit can be adapted

depending on the amount of available memory and capabilities of the MILP solver. A

more informative approach could be possible and is left for future investigation.

Propositional Absorption

A large portion of knowledge in many real ontologies is propositional. Thus it is nat-

ural to convert them into linear inequalities to avoid computing some invalid columns

which violate propositional TBox axioms. In the extreme case all propositional know-

ledge can be absorbed into the program (5.4). However, the algorithm tries to find a

trade-off between eager absorption (which can exhaust memory) and lazy generation of

inequalities (which requires extra concept satisfiability checks). The balance depends

on available memory and the number of propositional axioms.

This optimization can add extra variables to the column generation model (5.4).

Normally, its variables correspond to concepts in the probabilistic signature Φ. Consider

an example in which {C1, C2, C3} ⊆ Φ. If C1 is itself defined as a Boolean combination

over other concepts, e.g., C1 ≡ A t B, it makes sense to add xA and xB to (5.4)

(even if A and B do not appear in any conditional constraints). The reason is that

other concepts from Φ could appear in propositional expressions over {A,B, . . . }, for

instance, C2 ≡ ¬A t B,B v C3. In this case, adding extra variables and translating

these axioms into linear inequalities will automatically enforce C1 u C2 v C3 for all

future column candidates.

Optimistic Inequality Generation

One issue with a naive implementation of Algorithm 4 is that computing unsatisfiability

cores may appear impractical for certain concept expressions and TBoxes. This may

especially happen for long expressions which contain MUSes with little or no overlap.

It is known from the model diagnosis theory [169] that finding all minimal unsatisfiable

sets may require a number of SAT tests that is exponential in the total size of all sets.

To address this issue the algorithm imposes a time limit on the procedure that

computes the UC. If at least one MUS has been found but finding others exceeds the

timeout the procedure is interrupted. The found MUSes are then converted to linear

inequalities and the algorithm moves on as if the full UC was computed.

This optimization does not cause a loss of either soundness or completeness. Com-

pleteness is trivially preserved because not adding some inequalities to the program
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(5.4) can only expand its set of solutions, so no possible world could be missed. Sound-

ness is preserved because each computed column is still valid (SAT tests are never

interrupted). The only possible negative impact of missing some MUSes is that they

can appear in some future column candidates, so the algorithm might go through ad-

ditional iterations. However, they do not have to appear because the optimal basis

for the main program (5.5) can often be found before considering column candidates

containing those MUSes. Intuitively, the algorithm behaves optimistically by hoping

that additional iterations will not be required.

Unsurprisingly, timeouts typically occur when dealing with complex TBoxes with

many non-trivial entailments. At the same time our experience shows that those TBoxes

tend to improve convergence of column generation because their set of possible worlds

is smaller. Therefore there is a higher chance that the column generation process will

stop before all MUSes of some unsatisfiable concept expression are discovered.

Multiple Column Generation and Stabilization

We use several techniques aimed at improving convergence of the column generation

process. The most important are generating several optimal solutions of (5.4), i.e.

column candidates, and introducing additional variables for the main linear program

(5.5) to stabilize dual space and reduce degeneracy.

It is known that adding multiple columns into basis at every simplex iteration can

improve convergence of column generation. For instance, Hansen and Perron add up

to 50 columns per iteration [81]. This is made possible by their heuristic method of

generating columns (the variable neighborhood heuristics) which allows them to quickly

generate many sub-optimal columns having positive reduced cost. In our case, when

columns are generated by a MILP solver, there are the following two possibilities:

• Some MILP solvers, in particular, CPLEX, support solution pools which store

multiple optimal or sub-optimal solutions for an MILP problem instance. Such

solvers can either return the set of sub-optimal solutions which they recorded

during the optimization process or continue the branch-and-cut search after the

optimum has been found until the required number of solutions has been found.

• If the solver does not support solution pools one may still force it generate mul-

tiple solutions. This can be done by “cutting off” the optimal solution and

re-optimizing or by hooking inside the solver to continue the search after the

optimum.

Pronto is highly modular and can be used with different LP/MILP solvers. Using a

solution pool is the first choice strategy if it is available. If it is not available, as is the

case with GLPK, then the second option is used. However, since it has implications for
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performance, fewer columns are generated (usually up to 10). More details on methods

for enumerating solutions for a MILP instance can be found in [41].

We use two different stabilization schemes in Algorithm 3. First, similarly to [81]

we use the iterative technique proposed by du Merle et al. [51] to stabilize the values

of the dual variables and reduce degeneracy.7 This involves adding extra variables to

the main linear program so it looks as follows:

max
∑

W∈WΦ

xW + δ+y+
0 − δ

−y−0 + δ+y+ − δ−y− (5.8)

s.t.
∑
W |=Ci

xW = pi ×
∑

W∈WΦ

xW + y+ − y−

∑
W∈WΦ

xW + y+
0 − y

−
0 ≤ 1 (5.9)

y+
0 , y

+ ≤ ε+, y−0 , y
− ≤ ε−

xW , y
+, y−, y+

0 , y
−
0 ≥ 0

where y+ and y− are the column vectors (y+
1 , . . . , y

+
m)T , (y−1 , . . . , y

−
m)T respectively.

They are bounded by positive values of ε+,ε− and have objective coefficients δ+,δ−.

The parameters δ+,δ− correspond to bounds on dual variables while ε+,ε− correspond

to penalties on violation of those bounds. ε+,ε− are progressively reduced to 0 every

time (5.8) is solved to optimality. Once they are zero, the optimal value of the augmen-

ted program is the same as of the original PSAT program (5.5). More details about

stabilization of column generation can be found in [51, 81]. Our stabilization is a little

different from the one implemented by Hansen and Perron [81]. In particular, we use

scalar parameters ε+, ε−, δ+, δ− instead of vectors and also vary the number of extra

variables.

Second, we use the non-iterative technique in which the main linear program looks

slightly simpler:

7Degeneracy is the situation when some basic variables have zero values. It is known to be a problem
for simplex since it can lead to multiple column swaps without an improvement of the objective value.
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max
∑

W∈WΦ

xW − δ0y0 − δ+y+ − δ−y− (5.10)

s.t.
∑
W |=Ci

xW = pi ×
∑

W∈WΦ

xW + y+ − y−

∑
W∈WΦ

xW + y+
0 − y

−
0 ≤ 1 (5.11)

xW , y
+, y−, y0, δ

+, δ− ≥ 0

For this stabilization it is not required to iteratively reduce bounds on new variables

to zero because the program can only reach the objective value of 1 when all extra

variables are equal to 0. Conversely, if when the column generation process terminates

the objective value is less than 1, tightening bounds on extra variables cannot improve

it. Therefore this stabilization program can be used directly for solving PSAT. Of

course, the extra variables have to be removed when computing TLogEnt.

We leave it for future research to investigate under which conditions one stabilization

scheme is superior to another. In most of our experiments reported in Chapter 6

the non-iterative technique is used. However, there are cases when it is not effective

although they are difficult to predict. Fortunately, it is possible to detect stalling of

the column generation process (when a little progress is being made and the early clash

heuristics does not prove unsatisfiability) and switch to the iterative method.

Early Unsatisfiability Detection

Automated reasoners often implement heuristic approaches to quickly detect obvious

reasons for unsatisfiability of logical formulae. One good example of such techniques is

the early clash detection methods employed by virtually all mature DL reasoners. Prob-

abilistic reasoners are no exception, for instance, propositional PSAT solvers sometimes

use incomplete rule-based reasoning methods which prove to be tremendously effective

at proving unsatisfiability [81].

Since rule sets have only been formulated in the propositional case we take another

approach. It is based on the observation that if the PSAT program has an optimal

objective value of 1 (i.e. the KB is satisfiable) then the optimal dual solution is of the

form (0, . . . , 0, 1). The dual values show the rate at which the objective value of the

primal program will improve in response to a small relaxation of row bounds. If the

optimal value of the program (5.5) is 1 then the only row whose relaxation can improve

the objective is the last one, i.e.
∑

W∈WΦ
xW ≤ 1. Its coefficients are exactly the same

as the objective coefficients, thus its dual value is 1 while the other dual values are

zeros. On the other hand, if the optimal objective value is below 1 then the indexes of
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non-zero dual variables indicate conflicting inequalities and, consequently, conflicting

conditional constraints.

Our algorithm maintains a history of dual solutions over a fixed number of column

generation iterations. The history helps to spot the situation when the same dual

variables repeatedly take on non-zero values while the primal objective is improving

very slowly. More precisely, if over the last 10 iterations:

• The objective function improved by less than 1% and,

• Fewer than 10% of dual values had non-zero values at all iterations

then it is a good indication that the set of conditional constraints, which correspond

to those dual variables, is not satisfiable. In that case, satisfiability of such constraints

is tested separately. If they are indeed unsatisfiable, the whole process stops and

unsatisfiability is reported, otherwise the main column generation cycle continues.

The technique preserves soundness because of monotonicity: if some subset of a

KB is unsatisfiable, then the whole KB is unsatisfiable. It also preserves completeness

since for each satisfiable KB the column generation process will necessarily continue

until satisfiability is proved (all extra tests, if any, must be negative).

The heuristic is very effective for unsatisfiable KBs. In our experiments more than

90% of unsatisfiable KBs have been proved unsatisfiable by this method. It is effective

mostly because conflicting sets of constraints tend to be small so it can easily be spotted

if a small number of duals progress towards non-zero values. However, if the KB

is satisfiable then the heuristic can slow the column generation down by introducing

extra tests but this has so far happened in less than 15% of the cases.

5.1.6 Comparison with Propositional PSAT

This section succinctly summarizes the key differences between our PSAT algorithm and

the previously developed global algorithms for propositional PSAT (see Section 2.4.1

for an overview). Those algorithms are similar in spirit since they are also based on the

column generation technique but are different in scope, design, and implementation.

The major differences manifest themselves in the way the algorithm deals with classical

part of a probabilistic knowledge base. We consider two cases: when classical knowledge

is propositional and when it is not.

To the best of our knowledge, our work is the first to describe a column generation

based algorithm and its evaluation for non-propositional PSAT. The main difference

between propositional and non-propositional PSAT problems in the context of column

generation is that propositionality of the KB allows encoding of all its structure in a

polynomial number of linear inequalities over a polynomial number of binary variables.

This follows directly from the well known reduction of propositional SAT to integer
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programming [84, 83]. Therefore, the column generation problem (5.4) is much easier

to handle, either as a standard MILP instance [84, 45] or as a non-linear pseudo-boolean

program [99, 81, 159]. The full structure of a SROIQ TBox, on the other hand, cannot

be captured as a system of linear inequalities.8

The key property of our algorithm that enables it to deal with non-propositional

KBs is its “hybridness”. It interacts with a classical SAT solver for the target logic in

order to ensure that all generated columns (possible worlds) are indeed possible, i.e.,

do not violate logical structure of the KB, which can be quite rich. This has several

important advantages. First, it allows us to handle essentially any target logic for

which a SAT solver is available, for example, we can use specialized reasoners for any

profile of OWL 2. Second, this makes our algorithm more scalable with respect to the

amount of classical knowledge. For example, modern DL reasoners can efficiently solve

the concept satisfiability problem even for very large TBoxes containing thousands of

axioms (a characteristic example is the NCI Thesaurus). The reasoners implement a

range of optimizations and heavily exploit the logical structure of the KB, which is

often lost if translated to linear inequalities (even when the translation is possible).

The behavior of our algorithm becomes closer to that of the previous methods

when the classical knowledge is largely propositional. In that case, it can absorb the

propositional part of the KB by converting it into a set of linear inequalities for the

column generation problem (5.4), i.e., similarly to [84]. This helps to reduce the number

of future calls to the classical SAT solver.

In runtime the algorithm maintains the balance between the pure absorption strategy,

when all classical propositional formulas are converted into linear inequalities, and the

pure interaction strategy, when the the column generation problem (5.4) is initially un-

constrained and all inequalities are added only when some produced column candidate

appears to correspond to an unsatisfiable concept expression (see line 10 of Algorithm

4). The former minimizes the number of calls to the classical SAT solver at the cost

of large MILP programs. The latter minimizes the size of (5.4) by heavily interacting

with the SAT solver in order to capture only relevant parts of the logical structure in

linear inequalities. The balance is partly mandated by the kind of classical knowledge,

in particular, its richness and size, as well as the amount of available memory. Eval-

uation results presented in Section 6.5 illustrate the influence of richness and size on

performance of Algorithm 4.

Our PSAT algorithm is a substantial improvement of the earlier described algorithm

[111] which is based on a similar idea but generates columns by solving a generic

constraint optimization problem. The MILP formulation, presented in Section 5.1.3,

8By “capture” we mean that there is no polynomial reduction of SAT in SROIQ to the solvability
problem for a system of linear inequalities over integer variables or any other standard mathematical
programming model.
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appears to be much more tractable and amenable to optimizations which resulted in

the scalability improvements of the order of magnitude.

5.2 Analysis of Probabilistic Knowledge Bases

The PSAT algorithm plays a fundamental role in P-SROIQ reasoning but it is in-

sufficient for practical implementations of other reasoning procedures, in particular,

consistency and tight lexicographic entailment. This is somewhat analogous to clas-

sical DLs: a scalable concept satisfiability (CSAT) algorithm is tremendously import-

ant but none of the state-of-the-art reasoner would compute the concept hierarchy by

a straightforward reduction to CSAT (i.e., by solving a quadratic number of CSAT

tests for every pair of concepts). Instead they implement specific algorithms for solving

other reasoning tasks, such as concept classification, realization of individuals, etc.

Non-monotonicity of P-SROIQmakes it even harder to expect that straightforward

reductions of PTCon and TLexEnt to PSAT and TLogEnt could be practical. This

is especially true for the original TLexEnt algorithm which requires an exponential

number of PSAT tests. The problem is that PSAT, being a decision problem, does

not provide much insight into the knowledge base, for example, why a certain KB is

unsatisfiable. This makes PSAT too coarse an instrument for constructing z-partitions

and computing lex-minimal subsets of constraints, and leads to a unnecessarily large

number of PSAT tests to be performed during non-monotonic reasoning.

This section describes a solution to this problem based on a more fine-grained

analysis of the knowledge base, in particular, for pinpointing conflicts between condi-

tional constraints. As will be shown below such analysis has important applications for

constructing and maintaining z-partitions, computing lex-minimal subsets, explaining

unsatisfiability and so forth.

5.2.1 Finding Minimal Unsatisfiable Subsets

First, we present the approach for finding conflicts in the probabilistic part of a PTBox.

The notion of a conflict, which has been used rather loosely up to now, can be formalized

as follows:

Definition 5.4 (Minimal conflict). A minimal probabilistically unsatisfiable subset of

a PTBox (T ,P) (where T is a consistent SROIQ TBox), or a minimal conflict in

P, is a a subset P ′ ⊆ P such that i) (T ,P ′) is unsatisfiable and ii) (T ,P ′′) is satisfiable

for any P ′′ ⊂ P ′. The set of all minimal conflicts of PT is denoted as MC(PT ).

In what follows the term “conflict” will mean “minimal conflict” (unless explicitly

stated otherwise). The following problem, which we call the Diagnosis problem, plays
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a fundamental role in our implementations of PTCon and TLexEnt reasoning pro-

cedures.

Definition 5.5 (Diagnosis problem). Given an unsatisfiable PTBox (T ,P) (where T
is a consistent SROIQ TBox), compute the set of all minimal conflicts in P.

The Diagnosis problem is closely related to the model-based diagnosis theory as

originally developed by Reiter [169]. It is basically a probabilistic analogue of the

problem of finding all justifications of unsatisfiability in DL knowledge bases which

recently gained an extensive research attention [103, 124, 85, 86]. Historically there

have been two main ways of dealing with this problem:

Black-box reasoning assumes that only a satisfiability solver for a target logic, e.g.

P-SROIQ or SROIQ, is available. The conflicts are found by first finding some

conflict in the KB (this can be done by removing the statements until the KB

becomes satisfiable), and then systematically exploring the hitting set tree of the

current set of conflicts. The process terminates after all possible repairs for the

current set of conflicts have been tried and none of them led to discovery of a new

conflict. Details can be found in [169, 85].

Glass-box reasoning assumes that the SAT solver for a target logic provides some

additional information about what sets of statements may have caused unsatis-

fiability of the KB. Such information can be used to speed up the conflict discov-

ery process. For example, tableaux reasoners can report the information about

clashes occurred inside the tableau (this capability is sometimes called tableau

tracing and is supported by some SROIQ reasoners, e.g. Pellet [177]).

The black-box approach is easier to implement but generally tends to require a

higher number of satisfiability tests. Therefore we have developed a mixed approach

which follows the basic black-box strategy but with two important differences. First, it

makes use of additional information provided by simplex solvers to efficiently identify

conflicting statements in an infeasible system. Second, it maintains a single set of

generated columns across all PSAT instances solved to find all conflicts.

Identifying Some Minimal Conflict

A straightforward way to find some conflict in a PTBox PT = (P, T ) is to remove

statements from P until PT becomes satisfiable. In the worst case this requires |P|
PSAT checks. More efficient variations are possible, for example, one may implement

a binary search for conflicts in P (such approaches are called contraction strategies in

[86]) thus reducing the number of PSAT tests to O(log|P|) in practical cases. Such ap-

proaches, while different, are inherently black-box, i.e. they do not use any information

from inside the PSAT solvers to determine why the PTBox is unsatisfiable.
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However, if the PSAT solver uses the simplex algorithm to optimize the linear

program (5.5), then it can provide some useful information which points to inequalities

which prevent it from reaching the optimal objective value of 1. Virtually all modern

simplex solvers support sensitivity analysis to provide insight into how the objective

value of the program will change in response to small changes in linear inequalities.

This is done by returning the vector of dual variables which values correspond to the

inequalities of the primal program. The key fact is that if a dual variable yi is zero then

no small change in the right hand-side of the inequality Aix = pi of (5.5) will affect

the objective value. In other words, this inequality is not among those that prevent

the program to improve its objective value. Assuming a fixed ordering of constraints

in P (see Section 5.1), this means that the constraint (Ci|>)[pi, pi] is not necessarily in

some conflict for the current PTBox.

Sensitivity analysis allows us to restrict our attention to those constraints in P which

correspond to the inequalities having non-zero dual values. This greatly improves the

effectiveness of finding some conflict. The only difficulty here is that the program (2.3)

is not represented in its full form and neither is its dual. However, the following theorem

shows that we may still use the dual solution obtained after the last iteration of the

column generation algorithm.9

Theorem 5.2. Let max 1x s.t. Ax ≤ b be a linear program whose optimal value is

strictly less than 1. Assume that when the column generation process stops A = (B,N),

where B is the final RMP and N is the set of other columns (not produced by the column

generator). Let u∗ be the final dual solution of the program with I being the index set of

non-zero components of u∗. Then the optimal value of max 1x s.t. AIx ≤ bI , where AI

(resp. bI) is a sub-matrix of A (resp. sub-vector of b) having rows (resp. components)

with indexes from I, is also strictly less than 1.

The proof can be found in Appendix A.

Algorithm 5 for finding some minimal conflict in a PTBox is based on Theorem

5.2. It takes the PTBox and an already constructed linear program (5.5) because it

is invoked repeatedly (see the next subsection) so reusing the same program improves

performance. The algorithm goes through two main phases. The first phase (line 1) is

essentially solving PSAT for the PTBox but starting with the initial linear program.

If after the column generation process has been completed the optimal value of the

linear program is still less than 1, the algorithm proceeds to the second phase (called

“minimization”). The algorithm then extracts the sub-program LP ′ whose optimal

objective value is less than 1 (lines 3–5). However, Theorem 5.2 does not claim that

LP ′ is irreducible. In other words while (T ,P ′) is unsatisfiable, where P ′ is a subset of

9This idea came from a personal communication with Dr. Paul Rubin from the Graduate School of
Management, Michigan State University.
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Algorithm 5: Finding some conflict in PT

Input: Initial linear program LP , PTBox (T ,P)
Output: Minimal conflict of PT , or ∅ if the optimal objective value of LP is 1
/* PSAT phase */

LP ← GenerateColumns(LP, (T ,P))1

if Objective value of LP is less than 1 then2

duals← optimal dual solution of LP3

IS ← indexes of non-zero components of duals4

/* Minimization phase */

LP ′ ← LP |IS5

for L ∈ inequalities(LP ′) do6

LP ′ ← LP ′ \ L7

if Objective value of LP ′ is 1 then LP ′ ← LP ′ ∪ L8

end9

return Subset of P that corresponds to the inequalities in LP ′10

end11

else return ∅12

P that corresponds to the inequalities in LP ′, it may be a strict superset of a minimal

conflict. Thus the algorithm performs an extra trial-and-error relaxation step to remove

superfluous inequalities from LP ′ and then returns the subset of P that corresponds

to the remaining inequalities. With a slight abuse of notation, lines 7 and 8 remove

an inequality from the program and then put it back in if it is essential. According to

our empirical experience this minimization step is typically very quick as the number

of superfluous inequalities is low.

Finding All Minimal Conflicts

Pinpointing a single minimal conflict of an unsatisfiable PTBox is a necessary but not

sufficient tool to finding all such conflicts, i.e., solving the Diagnosis problem. The

principled way of doing so, as developed in the generic theory of model-based diagnosis

[169], is based on a systematic investigation of all ways to repair the current set of

conflicts in order to discover new conflicts. This idea is widely used, for example,

for computing explanations and repairing undesirable entailments in DL ontologies

[104, 103, 85, 86]. Definition 5.6 makes the notion of repair precise before we proceed

to explaining the algorithm.

Definition 5.6 (Repair). Given a set of conflicts C a repair R is a set which contains

one constraint from each element of C. A minimal repair R is a repair such that none

of its proper subsets if a repair.

In other words, a minimal repair is simply a minimal hitting set of C. It is called

repair because removing R from the PTBox restores its satisfiability provided that the
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set of conflicts C is complete (see the next subsection). Example 5.2 illustrates the

definition:

Example 5.2 (Repair and Minimal Repair). Let (T ,P) be the following PTBox:

T = ({A v B,G u H v ⊥}, P = {(F |B)[0.8, 0.9], (F |A)[0, 0.1], (E|B)[0.8, 0.9],

(E|A)[0, 0.1], (A|>)[1, 1], (G|H)[0.5, 0.7], (H|>)[1, 1]}).
It contains three conflicts: C1 = {F |B)[0.8, 0.9], (F |A)[0, 0.1], (A|>)[1, 1]}, C2 =

{E|B)[0.8, 0.9], (E|A)[0, 0.1], (A|>)[1, 1]}, and C3 = {(G|H)[0.5, 0.7], (H|>)[1, 1]}. The

conflicts C1 and C2 overlap at (A|>)[1, 1] but are disjoint with C3, so minimal repairs

(hitting sets) are those which contain (A|>)[1, 1] and one of the two constraints in C3.

Algorithm 6 applies this approach to the Diagnosis problem for P-SROIQ ontolo-

gies. It first constructs the initial linear program (5.5) for the given PTBox and then

starts the main find-and-repair loop. It uses Algorithm 5 as a sub-procedure to extract

a minimal conflict using the current linear program (line 6). Every time a new conflict

is found it is added to the set C (line 9). When this happens the algorithm updates

the set of repairs (or hitting sets) at line 10 so that each next repair also accounts for

the newly added conflict. The algorithm continuously loops through the list of repairs

applying each of them at line 5 and then restoring the unsatisfiability at line 7. The

algorithm terminates when all repairs have been tried and none led to discovery of a

new conflict (which would have triggered an update the list of repairs).

Algorithm 6 implements two important optimizations which are not shown for the

sake of clarity. First, it attempts to reuse information obtained from checking previous

repairs when applying each next repair. In particular, if repair R was applied and

no new conflict was found (i.e. (T ,P \ R) is satisfiable) then all subsequent repairs

that are supersets of R can be safely skipped. Second, it computes the set of repairs

incrementally. The minimal hitting set problem is known to be NP-complete (it is

equivalent to the vertex cover problem) so it is important to reuse previously computed

hitting sets. We implemented two sub-algorithms for that tasks: one is based on binary

hitting set trees [130] and the other is based on binary integer programming [56]. Both

algorithms have incremental behavior: the trees can be updated incrementally while

the modern IP solvers can “kick start” from a set of solutions and re-optimize the model

once it has been changed. Pronto’s current implementation uses the second approach.

In the worst case the algorithm makes O(|HS|) attempts to find a single conflict

in a PTBox. The number of all possible repairs of a set of conflicts C is exponential

in |C|. Each repair leads to a single invocation of Algorithm 5 whose complexity, as

mentioned earlier, is equivalent to the complexity of PSAT (modulo the minimization

step). Since PSAT in P-SROIQ is N2ExpTime-complete so is the Diagnosis problem

(the algorithm establishes the upper complexity bound while PSAT establishes the

lower bound).
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Algorithm 6: Diagnosis algorithm

Input: PTBox PT = (T ,P)
Output: The set of all minimal conflicts of PT
C ← ∅, HS ← ∅1

LP ← initial linear program (5.5) for (T ,P)2

repeat3

if HS 6= ∅ then R← remove some element from HS else R← ∅4

Free inequalities in LP that correspond to constraints in R5

P ′ ← FindSomeConflict(LP, (T ,P))6

Enforce inequalities in LP that correspond to constraints in R7

if P ′ 6= ∅ then8

C ← C ∪ P ′9

HS ← AllMinimalHittingSets(C)10

end11

until HS = ∅ ;12

return C13

Not surprisingly the number of repairs is the key factor for performance of Al-

gorithm 6. This is verified empirically in Section 7.2. This number is higher for those

PTBoxes whose conflicts do not overlap to a high extent, i.e., there are many relatively

independent reasons for unsatisfiability. Given the potentially high number of PSAT

tests it is important to re-use intermediate computation results across them. We do so

by re-using columns generated for one PSAT for all subsequent PSATs. This can be

done because all PTBoxes differ only in their probabilistic parts but share the same

TBox, so columns which are valid for one linear program (2.3) will be valid for all

others. This greatly speeds up the process of finding all conflicts.

Other implementations of the conflict finding procedure are possible and may be

more efficient. In particular, one may attempt to employ known algorithms for enumer-

ating all irreducible infeasible subsystems (IIS) of an infeasible linear system [66, 161].

They are generally based on the fact that for every infeasible system LSinf there exists

a linear system LSIIS such that the set of all optimal solutions of LSIIS is in one-to-one

correspondence with the set of IISes for Linf [66]. The main difficulty with this ap-

proach is that linear programs for PSAT are never fully represented. While the optimal

RMP has the same objective value as the full program, its set of IISes10 does not have

to be the same as that of the full program. This is not very surprising, for example,

a similar situation occurs when computing justifications of entailments from modules

extracted from an ontology [46]. While all reasonable kinds of modules preserve en-

tailments, not all of them guarantee to contain all justifications of entailments.11 This

10IIS of the linear program 5.5 denotes an irreducible subprogram whose optimal objective value is
strictly less than 1.

11Those which do have that property are called depleting modules [173].
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difficulty can be overcome by generating extra rows for LSIIS but, to the best of our

knowledge, this option has not yet been investigated.

We conclude with the following theorem which states that the algorithm always

terminates, computes all minimal conflicts and nothing but conflicts. The algorithm

follows the classical diagnosis idea so the results follow quickly from correctness and

termination of Algorithm 5

Theorem 5.3. Algorithm 6 is a correct, complete, and terminating algorithm for solv-

ing the Diagnosis problem.

Proof. Termination As mentioned above the algorithm invokes Algorithm 5

O(|HS|) times, which is a finite number. Algorithm 5 terminates (because the column

generation process has to terminate) therefore so does Algorithm 6.

Correctness Correctness follows from correctness of Algorithm 5 which, in turn,

is a consequence of Theorem 5.2.

Completeness Assume the algorithm is not complete, i.e. there is a conflict P ′ in

(T ,P) which is not an element of C (the set of conflicts computed by the algorithm). Let

HS be the set of minimal hitting sets over C i.e., the final set of repairs checked by the

algorithm before termination. There should be h ∈ HS s.t. h∩P ′ = ∅, otherwise either

h or P ′ would not be minimal. If P ′ is a conflict then (T ,P \ h) must be unsatisfiable.

But it is satisfiable because Algorithm 5, which is correct, did not find a conflict in it.

Contradiction.

5.2.2 Finding Maximal Satisfiable Subsets

The first immediate application of the diagnosis algorithm is computing all maximal sat-

isfiable subsets of an unsatisfiable PTBox. This is essential, in particular, for computing

lexicographically minimal models especially for PABox entailments when probabilistic

facts about the individual contradict some PTBox constraints (see Section 5.4).

The following definition and the theorem formalize a straightforward connection

between the set of minimal unsatisfiable subsets and the set of maximal satisfiable

subsets of a PTBox.

Definition 5.7 (Maximal Satisfiable Subset). Given a PTBox PT = (T ,P), a subset

P ′ ⊆ P is called a maximal satisfiable subset of P if i) (T ,P ′) is satisfiable and

ii) for any P ′′ ⊃ P ′ PTBox (T ,P ′) is unsatisfiable. The set of all maximal satisfiable

subsets of PT is denoted as MSS(PT ).

Theorem 5.4. Given a PTBox PT = (T ,P), MSS(PT ) = {P\h | h ∈ HS(MC(PT ))}
where HS(C) denotes the set of minimal hitting sets over the set C.
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Proof. We first show that for each P ′ ∈MSS(PT ), (T ,P ′) is satisfiable. Assume it is

not. Then (T ,P ′) contains a conflict which is not in MC(PT ). This is contradiction

since MC(PT ) is complete by Definition 5.4.

Next we show that each element P ′ ∈ MSS(PT ) is maximal. Assume it is not.

Consider h = P \ P ′. If P ′ is not maximal w.r.t. set inclusion then h must not be

minimal w.r.t. set inclusion which the way MSS(PT ) is defined.

Finally we show that MSS(PT ) is complete. Let P ′ be a subset of P s.t. (T ,P)

is satisfiable and P ′ * P ′′ for all P ′′ ∈ MSS(PT ). Consider h = P \ P ′. It is not

a minimal hitting set over MC(PT ) nor a superset of such (otherwise P ′ would be a

subset of some P ′′ ∈MSS(PT )). Therefore there exists H ∈MC(PT ) s.t. h ∩H = ∅
(i.e. a conflict that is not repaired by h). As such, H must be a subset of P ′ so (T ,P ′)
cannot be satisfiable.

Due to Theorem 5.4, an algorithm for computing MSS(PT ) is a straightforward

application of Algorithm 6 for computing all minimal conflicts. Its correctness, com-

pleteness, and termination all follow from the corresponding properties of Algorithm 6.

Note, however, that sometimes it is required to compute the set of satisfiable fragments

of a PTBox that are maximal w.r.t. cardinality rather than set inclusion. This is

required, for example, in Phase I of the TLexEnt algorithm (see Section 5.4) for com-

puting lex-minimal subsets. We use MSScar(PT ) to denote the set of such fragments

of PT . It is easy to see that MSScar(PT ) ⊆MSS(PT ) so one can get the former from

the latter simply by checking cardinality.

5.3 Probabilistic Consistency Algorithms

This section describes two algorithms for solving the PTCon reasoning problem: an

optimized version of Lukasiewicz’s original algorithm from Section 2.3.3 and a new

algorithm based on reduction the Diagnosis problem described in the previous section.

We have implemented both algorithms and some performance/scalability evaluation

results can be found in Section 7.2.3.

5.3.1 Optimized Original Algorithm

Recall from Section 2.3.3 that the original PTCon algorithm works by computing

subsets of the z-partition in a sequential manner. It proceeds from the most general

subset, i.e. composed of constraints that are tolerated by all other constraints in the

PTBox, to the most specific subset, i.e. composed of constraints that are not tolerated

by at least one constraints in all previous subsets. Each next subset is constructed by

testing tolerability of each remaining constraint by the set of all remaining constraints.
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Our optimization is based on the observation that at every step tolerability of

all constraints sharing the same evidence concept can be tested simultaneously. This

observation is formalized in the following lemma:

Lemma 5.1. Let (T ,P) be a PTBox and P contains conditional constraints φ =

(D1|C)[l1, u1] and ψ = (D2|C)[l2, u2]. Then φ is tolerated by P under T iff ψ is

tolerated by P under T .

Proof. By definition φ is tolerated by P under T if (T ,P ∪{(C|>)[1, 1]}) is satisfiable.

Since φ and ψ both have C as the evidence concept, ψ is also tolerated by P under

T .

Consequently, conditional constraints can be grouped by their evidence concepts

thus reducing a number of tolerability tests to a single PSAT check. The modified

version of the algorithm is shown below. For a set of conditional constraints H we use

HC to denote its subset in which all constraints have the same evidence concept C.

Note that the algorithm differs from Algorithm 1 only in line 6.

Algorithm 7: Optimized PTBox consistency algorithm

Input: PTBox PT = (T ,P)
Output: z-partition (P0, . . . ,Pk) of P or null
if T is unsatisfiable then return null1

if P = ∅ then return ∅2

H ← P, i← −13

repeat4

i← i+ 15

Pi ← {HC ⊆ H|(T , HC ∪ {(C|>)[1, 1]}) is satisfiable}6

H ← H \ Pi7

until H = ∅ or Pi = ∅ ;8

if H = ∅ then return {P0, . . . ,Pi} else return null9

In the worst case Algorithm 7 is N2ExpTime-complete for P-SROIQ but requires

O(NE
2) PSAT checks as opposed to O(N2) for the original algorithm where N is the

number of constraints and NE is the number of distinct evidence concepts (obviously

NE ≤ N). This could be a dramatic improvement for realistic KBs where relatively

few concepts serve as evidences for a large number of constraints. Such scenario is

reasonable to expect from medical diagnosis systems where some common symptoms

can be probabilistically associated with numerous diseases. Section 7.2.3 supports this

expectation using the CADIAG-2 KB as an example.
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5.3.2 Diagnosis-driven Algorithm

The second PTCon algorithm is based on solving the Diagnosis problem for a given

PTBox. The Diagnosis algorithm presented in previous Section can be used to compute

a data structure which stores all information that is essential for constructing the z-

partition, if it exists. That structure, which we call a conflict graph, defines a mapping

between conditional constraints of a PTBox (T ,P) and minimal subsets of P which do

not tolerate them. More formally:

Definition 5.8 (Conflicts and Conflict Graphs). Given a PTBox PT = (T ,P), the

conflict graph G(PT ) is a bipartite graph (U, {Vu}u∈U , E) where U is the set of all

conditional constraints (i.e. P), and for every u ∈ U , Vu is the set of all minimal

subsets of P that do not tolerate it under T , and (u, v) ∈ E iff v ∈ Vu. Sets Vu ∩ {u}
are called contextual conflicts under T or just conflicts.

The conflict graph is unique for a PTBox. It can be constructed by solving a

linear number of the Diagnosis problem instances. More precisely, for each conditional

constraint u = (D|C)[l, u] in a PTBox (T ,P), the set Vu can be computed by solving the

diagnosis problem for the PTBox (T ,P∪{(C|T )[1, 1]}). This can be done independently

for all constraints in P.

Having constructed a conflict graph it is straightforward to turn it into a z-partition

or demonstrate that it is not possible. Algorithm 8 is shown below. Similarly to

Algorithm 1 we use PC to denote the set of all conditional constraints in P with C as

the evidence concept.

As Algorithm 8 shows, consistency of a PTBox can be checked by first constructing

the conflict graph, and second, attempting to construct the z-partiton on its basis. If

that attempt is successful, then the PTBox is consistent, otherwise it is not. Note that

the conflict graph always exists even when the z-partition does not. We next prove its

soundness, correctness and termination.

Theorem 5.5. Algorithm 8 is a sound, complete, and terminating PTCon algorithm.

Proof. Termination The algorithm solves a finite number of the Diagnosis problem

instances using the terminating Algorithm 6. Constructing the z-partition from the

conflict graph requires the |U | iterations over the graph.

Soundness We prove that ordered partitions computed by the algorithm are z-

partitions. By Definition 2.15 a partition (P0, . . . ,Pk) is the z-partition for (T ,P)

iff for every i ∈ {0, . . . , k}, Pi is the set of all constraints from P \
⋃i−1
j=0 Pj which

are tolerated by Hi = (P \
⋃i−1
j=0 Pj) under T (note that Hi corresponds to H at ith

iteration, line 13). We fix some subset Pi.
First, we show that (u = (D|C)[l, u]) ∈ Pi implies φ is tolerated by Hi under T . Let

{Vu} be the set of all minimal subsets of P ∪ {(C|>)[1, 1]} that are unsatisfiable w.r.t
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Algorithm 8: Diagnosis-driven PTCon algorithm

Input: PTBox PT = (T ,P)
Output: z-partition (P0, . . . ,Pk) of P or null
if T is unsatisfiable then return null1

if P = ∅ then return ∅2

/* Computing conflict graph G = (U, {Vu}) */

(U, {Vu})← (∅, ∅)3

for C ∈ {C|(D|C)[l, u] ∈ P for some D} do4

U ← U ∪ PC5

for u ∈ PC do6

Vu ← Diagnosis((T ,P ∪ {(C|>)[1, 1]}))7

end8

end9

/* Transforming conflict graph into z-partition */

H ← P, i← −110

repeat11

i← i+ 112

Pi ← {(D|C)[l, u] ∈ H|V * H ∪ {(C|>)[1, 1]}, for all V ∈ {V(D|C)[l,u]}}13

H ← H \ Pi14

until H = ∅ or Pi = ∅ ;15

if H = ∅ then return {P0, . . . ,Pi} else return null16

T . If u is not tolerated by Fi then there exists V ∈ {Vu} s.t. V ∈ Hi ∪ {(C|>)[1, 1]}.
Therefore u could not have been added to Pi at line 13.

Second, we prove the other direction. If u is tolerated by Hi under T then (T , Hi ∪
{(C|>)[1, 1]}) is satisfiable, therefore no set in {Vu} is a subset of Hi ∪ {(C|>)[1, 1]}.
Consequently, u must be included in Pi at line 13.

Completeness For completeness we must show that the algorithm generates the z-

partition for every consistent PTBox. Assume the algorithm output null for a satisfiable

PTBox. This is only possible when the structure of the conflict graph is s.t. Pi = ∅ on

some iteration at line 13. As before we denote the current set H as Hi. Then for all

(u = (D|C)[l, u]) ∈ Hi there exists V ∈ {Vu} s.t. V ⊆ Hi ∪ {(C|>)[1, 1]} which implies

that (T , Hi) by itself is inconsistent. Probabilistic consistency is a monotonic notion,

so from Hi ⊆ P it follows that (T ,P) is inconsistent, which is a contradiction.

Algorithm 8 is N2ExpTime-complete for P-SROIQ, i.e., has the same worst-case

complexity as the original PTCon algorithm and Algorithm 7 which construct z-

partitions directly. The follows from the complexity of constructing conflict graphs

which is reducible to a linear number of the Diagnosis problem instances (see Section

5.2.1). Although the worst-case complexity is the same, Algorithm 8 involves some

overhead which can be quite noticeable in practice: finding all conflicts in a set of

conditional constraints might require an exponential number of PSAT checks while the
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direct algorithms require only a quadratic numbers of such tests. However, there are

certain considerations which can in certain cases outweigh this overhead:

• As explained in Section 5.2.1 the PSAT checks performed when solving the Dia-

gnosis problem can share intermediate results, e.g. generated columns. Therefore

they are done considerably faster than if they were performed independently.

• A conflict graph is a richer source of information than a z-partition and can be

used for wider purpose. In particular, it provides a better insight inside the PTBox

by specifying precisely why certain conditional constraints are treated as more

specific than others. This enables using conflict graphs as parts of probabilistic

explanations, i.e. to explain the user how a certain probabilistic entailment has

been computed (including inconsistency).

• A conflict graph greatly facilitates incremental updates to the z-partition. With

the original approach, the z-partition needs to be re-computed after every change

in the PTBox, regardless of how local that change was. In contrast, conflict graphs

are monotonic in the sense that they can only grow as new conditional constraints

are added in the PTBox. This means that after adding a new statement the graph

will retain all of its previous nodes. Furthermore, new minimal non-tolerating sets

of constraints can be computed in the context of the existing graph. In particular,

when solving the Diagnosis problem it is possible to kickstart from an existing set

of conflicts, which will speed up the process. Finally, if a conditional constraint

is deleted from the PTBox, then it is necessary and sufficient to remove from the

graph all those non-tolerating subsets which contain it. This is because each such

subset is minimal according to Definition 5.8.

Taking these considerations into account, we do not claim that one algorithm is

strictly superior to another. Our position is that both can be useful depending on usage

scenario. For example, Algorithm 7 turned out to be more effective during the PTCon

evaluation experiments described in Section 7.2.3 because those PTBox were rich in

conflicts (which complicates their diagnosis) but had relatively few evidence concepts.

In other situations, for example, involving numerous TLexEnt tasks, Algorithm 8

could well be beneficial.

Finally, consistency of a probabilistic knowledge (T ,P, (P)o) base is still decided

by first checking consistency of the PTBox and then checking PSAT of (T ,Po) for each

probabilistic individual o ∈ NP .
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5.4 Tight Lexicographic Entailment Algorithm

This section describes the final advantage of having the diagnosis algorithm, which

rectifies the problem of solving too many PSAT instances when computing tight lex-

icographic entailment with the original method (see Section 2.3.3).

Recall from Section 2.3.3 that the hardest part of non-monotonic lexicographic

reasoning is so called Phase I or computation of lex-minimal subsets of a given PT-

Box PT = (T ,P). According to Definition 2.19 they are unions of subsets of P that

are maximally satisfiable w.r.t. an external set of constraints F and (C|>)[1, 1] (if

(D|C)[l, u]) is being entailed). Therefore it is possible to apply algorithms for find-

ing maximal satisfiable subsets of P which are reducible to the Diagnosis problem as

explained in Section 5.2.2. Algorithm 9 presents the pseudo-code of the procedure.

Algorithm 9 starts with preliminary checks in lines 1–2 to correctly deal with the

situations when either the PTBox is inconsistent (in which case the meaning of lex-

minimal subsets is not well-defined) or the set F ∪ {(C|>)[1, 1]} contradicts the TBox.

The latter occurs in case of PKB inconsistency for a certain probabilistic individual.

The remainder of the algorithm is split onto two main phases: Phase I (computing lex-

minimal subsets of P) and Phase II (tight logical entailment from lex-minimal subsets).

Phase II is equivalent to the original version while Phase I is novel and is explained in

more detail.

Phase I is largely enclosed in the for loop between lines 6 and 26. The algorithm iter-

ates over the previously computed z-partition and incrementally computes lex-minimal

subsets. The first and the most important part of the loop is lines 8–16. The current

set of lex-minimal subsets in stored in LM which is initialized prior to the loop at line

4. The algorithm tries to extend each subset L ∈ LM by including some maximal

subsets of Pi which are not in conflict with it. In other words, the task is reduced to

finding maximal satisfiable fragments of a set of conditional constraints Pi given the

TBox T and some other set of conditional constraints L. This is a direct application of

our Diagnosis algorithm, as explained in Section 5.2.2, which is invoked in line 9. Note

that elements of R are maximal w.r.t. cardinality as opposed to set inclusion. Next,

the algorithm uses an auxiliary associative array H to associate each L ∈ LM with the

maximal subsets of Pi (i.e. the extensions of L to the next subset in the z-partition).

The second part of Phase I (lines 17–25) is about updating the current lex-minimal

subsets using the data computed in the previous loop and stored in H. Note that the

current lex-minimal subsets are discarded when a new, lex-preferable subset is found

(line 12). Finally, observe that the algorithm retains the possibility of approximate en-

tailment featured by the Lukasiewicz’s algorithm. If the MSScar sub-procedure returns

a subset of maximal satisfiable fragments if Pi (for example, by skipping some ways of

repairing unsatisfiability of (T ,Pi ∪L)) then the resulting interval will be a superset of
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Algorithm 9: Diagnosis-driven TLexEnt algorithm

Input: PTBox PT = (T ,P), finite set of conditional constraints F , basic
concepts C,D

Output: (l, u) ∈ [0, 1]2 such that F |=lex
tight (D|C)[l, u] under PT

/* Preliminary checks */

if PT is inconsistent then return (1,0)1

if (T ,F ∪ {(C|>)[1, 1]}) is unsatisfiable then return (1,0)2

/* Phase I: computing lex-minimal subsets */

(P0, . . . ,Pk)← z-partition of PT3

LM← {F ∪ {(C|>)[1, 1]}}4

c← 15

for i← k to 0 do6

H ← ∅7

for L ∈ LM do8

R ←MSScar((T ,Pi), L)9

r ← cardinality of sets in R10

if r ≥ c then11

if r 6= c then H ← ∅12

H ← H∪ (L,R)13

c← r14

end15

end16

LMnew ← ∅17

for L ∈ LM do18

if (L,R) ∈ H for some R then19

for R ∈ R do20

LMnew ← LM∪ {L ∪R}21

end22

end23

end24

LM← LMnew25

end26

/* Phase II: TLogEnt from lex-minimal subsets */

(l, u)← (1, 0)27

for L ∈ LM do28

compute c, d ∈ [0, 1] s.t. (T , L) |=tight (D|>)[c, d]29

(l, u)← (min(l, c),max(u, d))30

end31

return (l, u);32
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the exact interval.

Theorem 5.6. Algorithm 9 is a correct and terminating TLexEnt algorithm.

Proof. Termination Follows from termination of the MSScar and TLogEnt al-

gorithms. The former is invoked k times, where k is the number of subsets in the

z-partition, and the letter is invoked m times, where m is the number of lex-minimal

subsets.

Correctness It suffices to prove that at the end of Phase I LM indeed stores

lex-minimal subsets. Assume otherwise, that is, there exists a set R = R0 ∪ · · · ∪ Rk
where Ri ⊆ Pi s.t. i) (T , R∪F ∪ {(C|>)[1, 1]}) is satisfiable and ii) L is lex-preferable

to every L ∈ LM. The second condition means that there exists i ∈ {0, . . . , k} s.t.

|R ∩ Pi| > |L ∩ Pi| and |R ∩ Pj | = |L ∩ Pj | for every j = {i + 1, . . . , k} and every

L ∈ LM. Now consider the ith iteration of Phase I inner loop (lines 8–15). Assume

w.l.o.g. that LM consisted of a single subset L(i) = L0 ∪ · · · ∪ Li at that point. There

are only three cases which could eventually lead to missing R in LM:

• Ri was computed in line 9 before Li and then discarded in line 12. This is not

possible because |Ri| > |Li|, so c > r (line 11).

• Ri was computed in line 9 after Li but not added as an extension of some current

lex-minimal subset (i.e. lines 11–15 were not executed). This is not possible for

exactly the same reason.

• Ri was not computed in line 9 at all. However, (T , R(i)) is satisfiable (follows

from i)) and |Ri| > |Li| so this case is also not possible provided the algorithm

for computing MSScar is correct (i.e. it cannot compute |Li| but not |Ri|).

Therefore, such R does not exists, which completes the proof.

In contrast to the original TLexEnt algorithm, Algorithm 9 presents a diagnosis-

driven, goal directed approach to computing lex-minimal subsets. Pinpointing conflicts

enables quicker computation of maximal satisfiable subsets than an uninformed search,

especially if contextual conflicts overlap. This process will be referred to conflict resol-

ution in later sections.

Consider the following example which illustrates the advantages of Algorithm 9 in

comparison to the original algorithm.

Example 5.3. Let (T ,P) be the following PTBox:

T = {S3 v S2, S3 v S1} ∪
⋃
i∈{1,...,N}{Di v >}i

P = {(D1|S1)[0.9, 1.0], (D1|S2)[0.8, 0.9], (D1|S3)[0, 0.1]} ∪
⋃
j{(Dj |S1)[lj , uj ]}j

where j ∈ {2, . . . , N} and [lj , uj ] are arbitrary sub-intervals of [0, 1].
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Let N be some large number such as 100, and assume we are interested in solving

TLexEnt for (Dj |S3) for some j. The z-partition of the PTBox has the following

form: ({(D1|S1)[0.9, 1.0], (D1|S2)[0.8, 0.9]} ∪
⋃
j{(Dj |S1)[lj , uj ]}, {(D1|S3)[0, 0.1]}) be-

cause (D1|S3)[0, 0.1] is the only constraint which is not tolerated by the rest of P.

We first consider the behavior of the original algorithm. Since there are only two

subsets in the z-partition and {(S3|>)[1, 1]} (the initial lex-minimal subset) is trivially

satisfiable with P1, the algorithm quickly proceeds to lines 10–18 (see Algorithm 2),

i.e. finding the maximal subsets of P0 which are satisfiable with P1 ∪ {(S3|>)[1, 1]}. It

performs a binary search on P0 solving PSAT for each subset of progressively decreased

size (line 14). The size of P0 is 99, so in the worst case line 14 may require C45
99 PSAT

tests. This is the case even if the algorithm is optimized to move to checking subsets of

the next size as soon as K ′ is non-empty because one of the non-tolerating constraints

(D1|S1)[0.9, 1.0], (D1|S2)[0.8, 0.9] can be a part of some G ⊆ P0 being checked until the

very end (i.e. the search is blinded).

Algorithm 9 processes P0 very differently. It invokes the MSS algorithm which

requires only three PSAT checks to pinpoint two minimal unsatisfiable subsets: C1 =

{D1|S1)[0.9, 1.0], (D1|S3)[0, 0.1], (S3|>)[1, 1]} and C2 = {D1|S2)[0.8, 0.9], (D1|S3)[0, 0.1],

(S3|>)[1, 1]}.12 The first test is needed to discover C1, the second is needed to discover

C2 after excluding {D1|S1)[0.9, 1.0]} from P0, and the final is needed to exclude both

{D1|S1)[0.9, 1.0]} and {D1|S2)[0.8, 0.9]} to prove that no other conflicts exist. Once that

has been done the set of maximal satisfiable fragments of P0 can easily be constructed

(it is a dual of {C1, C2}).

The difference in the number of PSAT tests illustrated by the Example 5.3 is

due to the fact that the PTBox contains a large number of conditional constraints

{(Dj |S1)[lj , uj ]}j that had nothing to do with S3. The only constraints that do not

tolerate D1|S3)[0, 0.1] are (D1|S1)[0.9, 1.0], (D1|S2)[0.8, 0.9], but the original algorithm

cannot figure that out thus having to resort to the blinded search over the powerset of

P0. On the other hand our algorithm can efficiently filter out the irrelevant parts and

compute the conflicts.

This example is not purely artificial. For example, in the CADIAG-2 case, concepts

S1, S2, S3 can stand for symptoms and Di for diseases (see Section 3.2). One of S1, S2

can be one of common symptoms probabilistically associated with numerous diseases

thus producing the constraints {(Dj |S1)[lj , uj ]}j which have nothing to do with S3.

Algorithm 9 is extremely efficient in handling such cases when the number of conflicts

(or, more precisely, the number of ways to repair them) is relatively low. The number

of required PSAT tests will grow exponentially with the number of repairs, so it is

12Pinpointing each unsatisfiable subset is more than just a PSAT test (see Section 5.2.1) as it also
involves the minimization step, but the difference is negligible.
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not hard to imagine a situation when it becomes infeasible to compute lex-minimal

subsets (see evaluation experiments in Section 7.2.4). Fortunately, as our experience

with CADIAG-2 shows, such situations seem to be far less common than those similar

to Example 5.3.

Also there are additional advantages of Algorithm 9, similar to those listed in Section

5.3.2. Below we describe one important possibility, namely maintaining a conflict graph

for each probabilistic individual which is important for efficiency of PABox entailments.

PABox entailments are quite an important use case, for example they can be used to

compute medical diagnoses for patients whose medical data is represented as a collection

of PABox constraints. Consequently it is desirable to maintain a data structure which

would speed up computation of lex-minimal subsets w.r.t. constraints in the PABox.

If all constraints in the PABox are unconditional then one may pre-compute the set of

all lex-minimal subsets to be used for all subsequent entailments.

Using conflict graphs helps to take this idea even further. Given a PTBox (T ,P)

and a PABox Po one may maintain a conflict graph for (T ,P∪Po). While this requires

computing lex-minimal subsets from the conflict graph for each entailment, the benefits

are substantial. First, the conflict graph provides a great insight into how probabilistic

knowledge about the individual interacts with the generic PTBox axioms. Second, any

changes in Po can be propagated into the conflict graph without recomputing the whole

structure.
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Chapter 6

Synthetic Performance

Evaluation

Performance evaluation of the main reasoning algorithms has been split into two parts:

synthetic evaluation (presented in this chapter) and application-based evaluation (presen-

ted in the next chapter). Synthetic evaluation procedures, which use artificially gen-

erated data, have been carried out for the probabilistic satisfiability algorithm. Eval-

uation of the Diagnosis and the TLexEnt algorithms is different from PSAT in the

sense that their performance critically depends on the number and overlap of contex-

tual conflicts in a probabilistic knowledge base (as explained in sections 5.2 and 5.4).

Since very few probabilistic KBs already exist it is difficult to synthesize random test

instances whose conflict space would usefully model realistic scenarios. Consequently,

we have opted to use existing KBs, namely fragments of CADIAG-2 to carry out eval-

uation of the Diagnosis and TLexEnt algorithms and deferred it to Chapter 7.

This chapter describes the main factors on PSAT performance that we investigate,

as well problem instance generation methodologies and evaluation environment. It also

discusses the results of Pronto’s effectiveness on various classes of input. The evaluation

procedures pursue three general goals:

• Scalability, performance and robustness evaluation. The procedures aim to test

Pronto’s performance on progressively large or hard KBs and measure any sub-

stantial variability in the main performance metrics.

• Scalability and performance understanding. The procedures should provide in-

sight into the sources of the computational complexity of the reasoning procedures

in P-SROIQ and the implementation of the PSAT algorithm.

• Correctness testing. The procedures aim to check correctness of Pronto’s PSAT

algorithm by testing it on KBs which have been generated in such a way that

157
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their satisfiability is known upfront.

The procedures are not divided into categories according to the goals. The reason

is that those problem instances, which are most reasonably used to prove correctness,

such as satisfiable knowledge bases, also appear to be the hardest and the most inform-

ative from the computational perspective. Therefore, the same procedures are used to

evaluate scalability and performance while the results are simultaneously verified for

correctness.

The chapter is structured as follows. First, Section 6.1 describes the evaluation

methodology, in particular, the algorithms for generating various classes of test know-

ledge bases. Following a brief description of the evaluation environment sections 6.3,

6.4, and 6.5 present the tests that evaluate the performance, scalability and robustness

of the PSAT algorithm on propositional knowledge bases, approximate translations of

Bayesian networks, and probabilistic extensions of real OWL ontologies, respectively.

Finally, Section 6.6 concludes the chapter with the summary of the obtained results.

6.1 Generic Evaluation Methodology

The evaluation methodology consists of algorithms for generating test instances of the

PSAT problem, metrics used to assess the performance, and means of gathering the

required measures while running experiments.

6.1.1 Test Data Parameters

The first step in designing the evaluation experiments is to define the set of charac-

teristics of P-SROIQ knowledge bases whose impact on performance of the reasoning

algorithms needs to be measured. Such characteristics are called complexity factors

below.

The theoretical insight into some of the major complexity factors for the PSAT

algorithm was presented in Section 5.1.4. They include the size of probabilistic sig-

nature, the size of the PTBox, and the richness of the TBox. The first two factors

are straightforward parameters which can easily be varied when generating a random

PTBox. In addition we experiment with the proportion of unconditional constraints in

the PTBox. Although this parameter is not expected to influence performance of the

possible world generation algorithm, it may have an impact on convergence as well as

on hardness of the master linear program (5.5).

TBox richness is not straightforward since i) it may not be possible to compute it

for a given TBox in reasonable time since the number of entailments can be exponen-

tial, and ii) it is not clear how to generate a TBox with a specified richness. In this

thesis we use another metric which approximates richness and which can be computed
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using a polynomial (in the size of signature) number of SAT tests in the target DL.

The metric, which we call subsumption density, represents the number of subsumption

axioms entailed by a TBox T which connect concepts, or their negations, from the

probabilistic signature. Any such subsumption effectively reduces the total number of

possible worlds by 25%.1 We give the formal definition below:

Definition 6.1 (Subsumption Density). Subsumption density D of a PTBox (T ,P)

with probabilistic signature Φ is the ratio ST (Φ)
|Φ| , where ST (Φ) is the total number of

subsumptions C v D entailed by T , where both C and D are concept expressions from

Φ or their negations.

There are two important features of the density function. First, it counts the number

of literal, not atomic, subsumptions. As such it also involves disjointness. Second, it

counts inferred subsumptions (asserted axioms are trivially inferred), in particular,

takes into account transitivity of the subsumption relationship.

Obviously the density metric is only an approximation of TBox richness (see Defini-

tion 5.3). It does not take into account any entailments other than binary subsumptions.

As such it may not be accurate for knowledge bases, for example, those containing nu-

merous Horn expressions of the form C1 u · · · uCk v D where k > 2. We leave it for a

future work to investigate whether a finer approximation is computationally feasible.

However, the metric has few advantages. First, it is relatively easy to compute

for a given TBox. This helps selecting real ontologies such that they substantially

differ in density. Second, it is relatively straightforward to generate random concept

hierarchies with given subsumption density. This helps to measure performance of the

PSAT algorithm as a function of density. Finally, in spite of being possibly inaccurate

on some TBoxes, the metric does allow us to control size of the MILP program (5.4)

used to generate columns. This is so because each literal subsumption counted by the

metric needs to be represented as a linear inequality in the program.

Summing up, the following parameters will be varied when generating test PTBoxes

to evaluate the PSAT algorithm:

• PTBox size (the total number of conditional and unconditional constraints),

• probabilistic signature size (the total number of basic probabilistic concepts ap-

pearing in some conditional constraints in PTBox),

• proportion of unconditional constraints in PTBox,

• subsumption density of TBox (with respect to the probabilistic signature).

1Let A,B be concepts in Φ. The set of all possible (w.r.t. T ) worlds over Φ can be partitioned
onto four sets of equal size: IA,B , IA,¬B , I¬A,B , and I¬A,¬B which contain worlds with literals {A,B},
{A,¬B}, {¬A,B}, {¬A,¬B} respectively. If the T entails A v B then the set IA,¬B is empty.
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Although we do not aim at a full exploration of the entire parameter space, below

we systematically try various realistic combinations of parameter values to provide a

reasonably complete picture of PSAT performance, scalability, and robustness.

6.1.2 Test Data Generation

The central component of the evaluation methodology is the generation of test problem

instances. Unless explicitly stated otherwise, the problem type is assumed to be PSAT,

so it is sufficient to generate a PTBox only. This is highly non-trivial for two reas-

ons: First, there are neither large and naturally occurring P-SROIQ ontologies nor

established methodologies for modeling in P-SROIQ which could be used for test data

generation. Thus a part of this thesis’ contribution is a methodology for generating

test knowledge bases. Second, even in the propositional case the structure of the space

of all probabilistic knowledge bases is complicated and uniform sampling may easily

lead to selecting either unsatisfiable or massively incoherent PTBoxes.

The first problem is fairly typical for many novel formalisms. Large and realistic

knowledge bases cannot be expected to exist until the formalism provides a solid mod-

eling and tool support which, in turn, require modeling experience and benchmark

suites. We tackle this problem here partly by utilizing our experience from building

the BCRA ontology and discovering inconsistencies in the probabilistic formalization

of the CADIAG-2 knowledge base. In particular, this experience suggests that realistic

P-SROIQ PTBoxes will mostly contain conditional constraints since they are more

adequate means of capturing generic probabilistic relationships than unconditional un-

certain implications (see Section 3.1 for more details).

The second problem deserves a more detailed discussion. For the sake of simplicity

assume that TBoxes are restricted to collections of propositional clauses and PTBoxes

are formed by picking concept names randomly among those that appear in the clauses.

Then uniform sampling from the space of all PTBoxes of a size k can be done by first,

generating a collection of clauses (the TBox), second, selecting 2∗k concept names and

third, splitting the concept names into pairs and assigning them a random real interval

within [0, 1]. This method has two undesirable properties:

• It is strongly biased towards satisfiable PTBoxes.

• It is strongly biased towards incoherent PTBoxes.

The first bias is due to the semantics of P-SROIQ according to which each condi-

tional constraint (D|C)[l, u] is satisfied by a probabilistic interpretation Pr such that

Pr(C) = 0 (such vacuous satisfiability was discussed in Section 2.3.4). Such vacuous

satisfiability can be prevented in several ways, for example, by adding an uncondi-

tional constraint (C|>)[l, u], where l > 0, or by adding two constraints {(C|A)[l1, u1],
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(C|¬A)[l2, u2]} and so on. None of these are likely to occur in uniformly sampled

conditional PTBoxes.

Unfortunately, uniformly sampled PTBoxes are often satisfiable but incoherent (re-

call, that incoherent PTBoxes entail zero probability for some of the concepts in their

probabilistic signature). In other words, they are not satisfiable in a “useful way”, i.e.

they do have conflicts between conditional constraints but those are masked by vacu-

ously satisfying probability distributions. The reason for that is the uniform sampling

of probability intervals which either contradict each other or are too wide and, con-

sequently, uninteresting.

These issues indicate that uniformly sampled PTBoxes are unlikely to be good

representatives of future handcrafted probabilistic knowledge bases, so the evaluation

results may not be informative. Consequently some controlled random process of con-

structing PTBoxes is required. It is important that the process avoids any of the

aforementioned pitfalls and ensures a certain diversity of PTBoxes in order to better

understand the performance of Pronto’s reasoning algorithms and sources of its com-

plexity. Test PTBoxes used in the evaluation differ in the following key characteristics:

• Expressivity of the classical part of the KB. The methodology distinguishes

between classical parts expressed in propositional and non-propositional DLs.

• Richness of the classical part measured in terms of its subsumption density (see

Section 6.1.1, esp. Definition 6.1).

• Method of assigning probability values to conditional constraints. Possible meth-

ods are those which ensure (un)satisfiability of the KB, those which assign prob-

abilities at random (see Section 6.1.2), or obtaining the probabilities from external

sources, such as ontology alignment tools.

• Method of obtaining the classical part such as generation of random concept

hierarchies or use of real-life OWL ontologies.

We next describe the general procedure used to generate test PTBoxes for the eval-

uation. The procedure is parameterized and involves a number of auxiliary algorithms,

for example, for ensuring satisfiability or generating a classical part of the PTBox with

specific characteristics.

On a high level the procedure is composed of the following two main steps:

• Obtaining the classical part of the PTBox. This provides a signature for the

probabilistic part, i.e. conditional constraints.

• Obtaining the probabilistic part of the PTBox. This involves generation of both

structure of probabilistic statements and probability intervals.
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Next we describe the steps in more detail and present the options for obtaining both

components of test PTBoxes.

Classical Part of Test PTBoxes

There are three principal ways for obtaining the classical part of test PTBoxes that are

used in the experiments below:

• Empty classical part

• Random generation of concept hierarchies (taxonomies)

• Use of existing OWL ontologies from real domains and applications

The first option implies that the TBox in each test PTBox is the empty set of ax-

ioms. However, generation of concept names is still required, so the classical part can

be regarded as a set of trivial axioms Ai v > for each concept name Ai. Such vacu-

ous TBoxes are used in experiments with collections of random unconditional clauses

(Section 6.3.1) and in for approximate translations of Bayesian networks (Section 6.4).

For the second method, the classical part of a test PTBox is generated in a random

way. It involves generation of the signature as well as TBox axioms to obtain the

hierarchy. We only generate propositional concept hierarchies in this evaluation, but it

is certainly possible to extend the procedure to random DL TBoxes and OWL ontologies

[141]. This method is parameterized to produce TBoxes with required subsumption

density, which is a metric that reflects the number of subsumption axioms (both asserted

and inferred) over a given set of concept names. The details are given in Section 6.3.2.

The third method is used in experiments that evaluate our reasoning algorithms on

probabilistic extensions of real ontologies. The details on selection of existing ontologies

from the TONES repository2 are presented in Section 6.5.

Probabilistic Part of Test PTBoxes

Probabilistic parts of test PTBoxes, which are used in this chapter, are produced by

a random generation process that takes a probabilistic signature (collection of concept

expressions) as an argument. Such processes are composed of the following two steps:

• Selection of concept pairs

• Generation of probability intervals

2http://owl.cs.manchester.ac.uk/repository/

http://owl.cs.manchester.ac.uk/repository/
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Observe that a similar approach to constructing probabilistic knowledge bases is used,

for example, for generating or learning graphical models such as Bayesian networks.

There it is also common to first obtain the structure and then the probabilities.

The first step is generation of the structure of PTBox constraints, i.e., random

selection of the evidence and conclusion concepts from the specified signature. Typically

the experiments require that proportion of constraints be unconditional. This is due to

two reasons. First, each unconditional constraint, e.g. (C|>)[l, u] where l > 0, precludes

the vacuous satisfiability of a set of conditional constraints (Di|Ci)[li, ui] where C is

a subconcept of each Ci, because the probability of each Ci has to be non-zero. In

the absence of unconditional constraints almost all randomly generated collections of

conditional constraints will be satisfiable because most of evidence concept can have

zero probability. The second reason is that a small ratio of unconditional constraints

reflects a likely common modeling pattern in P-SROIQ. According to our experience

with the BCRA ontology, unconditional constraints are often used in a PABox to

represent probabilistic facts, or beliefs, about a specific individual (see Section 3.1

and [110]). They play their role during PSAT solving when they are combined with

the PTBox during consistency checking or lexicographic reasoning.

Given the structure of the PTBox the rest is to generate probability intervals.

Ultimately it is the probability intervals attached to constraints that determine whether

the resulting PTBox will be satisfiable or not. Willful generation of satisfiable or

unsatisfiable probabilistic KBs is important for several reasons. First, this is the prime

method for checking correctness of the satisfiability algorithm. Second, satisfiability is

one of the crucial hardness metrics for performance evaluation. It has been reported in

several publications that satisfiable KBs are often harder for PSAT algorithms [45, 81],

in particular, for those which implement special techniques for early conflict detection,

for example, based on probability propagation rules [81]. Finally, satisfiable KBs are

required for the evaluation of (non-monotonic) entailment algorithms.

Unfortunately, random assignment of probabilities to generated constraints is likely

to result in an unsatisfiable PTBox provided that it contains unconditional statements

[98, 45, 81]. Therefore special techniques are required to ensure satisfiability. Two such

techniques have been used before. The first is based on the idea of avoiding conflicts

between different probabilistic statements analogously to Bayesian networks, i.e., by

making sure that local probability distributions always represent a global probability

distribution across a loop-free network (such method is first used in [45]). The second

is based on generation of probabilistic interpretations which can then be used to as-

sign probabilities to statements [98]. In that case satisfiability is guaranteed because

satisfying interpretations (models) have been constructed explicitly.
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A generalization of the second technique is used in all experiments below, except

for approximate translations of Bayesian networks. Its main advantage is that it works

with any probabilistic KB, propositional or not, and does not impose any restrictions

on its structure (such as cycle disallowance). For the current evaluation it has been

implemented in the following steps: First, two sets of possible worlds I1
Φ, I2

Φ of size

k ≥ 2 × |P| are generated for a PTBox (T ,P) with probabilistic signature Φ. The

size of the sets of possible worlds is at least twice the size of P in order to avoid con-

structing artificially small3 solutions to the linear program (2.3). Second, probabilistic

interpretations Pr1, P r2 are defined by generating two sequences of k random numbers

summing to 1 which represent probabilities of possible worlds in I1
Φ and I2

Φ. Third, the

lower probability l (resp. the upper probability u) for each constraint (D|C)[l, u] in P
is determined as the smallest (resp. the largest) of values Pri(D|C), where i ∈ {1, 2}.

A possible world generation algorithm plays the central role in this method. In order

to avoid possible bias in evaluation results it has to ensure that all concept names in

Φ occur in possible worlds of IΦ with approximately equal frequency. Algorithm 10

ensures that by doing random runs through the powerset of Φ. In each run it uses a

SROIQ reasoner to make sure that every subset being added to the resulting set IΦ

is a possible world, i.e., is realizable for a fresh individual given T .

Algorithm 10: Possible world generation algorithm

Input: PTBox PT = (T ,P), N > 0
Output: Subset of possible worlds S of size N
Φ← probabilistic signature of PT ;1

for i=1 to N do2

Ii ← >;3

foreach C in Φ do4

X ← choose randomly between C and ¬C;5

if T |= X v ⊥ then6

Ii ← Ii u ¬X;7

else8

Ii ← Ii uX;9

end10

S ← S ∪ {Ii};11

end12

end13

return S;14

3Recall from Section 5.1 that a system of linear inequalities always has a solution in which the number
of non-zero variables is no greater than the number of inequalities. It may have fewer variables with
non-zero values (a degenerate basis). However, generating KBs whose PSAT linear systems necessarily
have such property is undesirable in the evaluation process because it can be exploited by the reasoning
algorithms.
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The algorithm makes the assumption that the total number of possible worlds is far

greater than N , so the chance of generating the same world twice is negligibly small.

This assumption works fine in our experiments since they deal with large signatures

of more than a hundred concept names. Also the real implementation is a bit more

involved, for example, it exploits the TBox classification results and uses extensive

caching to speed up the generation process.

Unsatisfiable knowledge bases are generated in a simpler way where each constraint

in P was assigned a random probability interval. Interval bounds are pseudo random

numbers generated from a normal distribution with a mean of 0.4 + alea(0, 0.3) where

alea(a, b) is a random number between a and b and a standard deviation equal to 0.2

(i.e. similarly to [98]). Such procedure usually, but not always, creates unsatisfiable

KBs. To account for an unexpected satisfiability Pronto was asked to provide a model

in those rare PSAT correctness tests where it reported that the KB was satisfiable.

We implemented the synthetic test data generation methodology PREVAL-DL—

the framework for a systematic evaluation of probabilistic DL reasoners.4 In addition to

KB generation algorithms it provides facilities for running various reasoning procedures

in different modes, in particular, using dedicated threads or processes per reasoning

task. The framework can be extended to generate KBs in other formalisms apart from

P-SROIQ.

6.1.3 Performance Measures and Data Gathering

All of the evaluation tests presented below use wall time as the main measure of per-

formance.5 The main advantages of wall time are that it is simple to measure and it

can be used for all algorithms, regardless of their implementation details, and is easy

to interpret. Another possibility is to use CPU time for more precise measurements.

However, given that most of the tests take minutes to complete and are executed a

number of times the extra precision is not worth the effort.

Wall time is simple, but not sufficiently informative measure, especially when it

comes to evaluating scalability. A single number does not provide much insight into

the behavior of the algorithm under evaluation, in particular, does not help to reveal

“bottlenecks”, i.e., pieces of code which take long time or are executed an excessive

number of times. For example, CPU time would not tell how often a P-SROIQ
reasoner invoked an underlying SROIQ reasoner while such calls can very well be one

of the bottlenecks. Therefore, most of the tests also use other measures, in particular,

the following two:

4http://www.cs.man.ac.uk/~klinovp/research/prevaldl/index.html
5Wall time (or wall clock time) measures real time from the start of an operation to its end, which

includes any artificial delays, such as IO operations.

http://www.cs.man.ac.uk/~klinovp/research/prevaldl/index.html
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Number of generated columns This metric represents the speed of convergence of

a column generation algorithm. It counts only valid columns which have been

added into the master linear program during PSAT/TLogEnt procedure. Note

that it does not necessarily represent the number of simplex pivots since multiple

columns can sometimes be added at a single pricing step.

Total column generation time (CG Total) This metric represents the total time

the PSAT algorithm spends on generating and validating columns (i.e., it is the

sum of run times of all invocations of Algorithm 4).

In addition, one can analyze the difference between the total running time and

the total column generation time, which is mostly the time spent on optimizing RMP.

This measure is not explicitly present in the tables below because RMP’s optimization,

however costly at the moment, can hardly be a key obstacle to scalability of the PSAT

algorithm since i) it is a polynomial time problem and ii) the results can be improved

simply by tuning the RMP’s formulation and the LP solver. Both such aspects are

beyond the scope of this thesis.

Pronto includes an internal telemetry subsystem which enables the gathering of

these performance measures. In particular, the linear program manager (see Section

8.2) tracks each generated column and measures the time it takes to generate them. In

addition, the column generator has the ability to count the number of validation tests

for each column candidate and expose that number to the linear program manager.

6.2 Evaluation Environment

Pronto is written in Java and compiled using Sun JDK 1.6. All evaluation tests have

been performed on a PC with a 2GHz CPU, 2GB of RAM, Sun JRE 1.6.0 07 running

under Windows XP SP3. The only JVM option that was used for performance tuning

was -Xmx to allow the reasoner to use the maximal available amount of memory.

6.3 Random Propositional Knowledge Bases

In our first series of experiments we evaluate the PSAT algorithm on randomly gen-

erated propositional knowledge bases (PTBoxes). The full expressivity of P-SROIQ
is not necessary in this case as such PSAT instances can be solved by a propositional

PSAT algorithm. However, the experiments are required for the following reasons:

• To compare performance and scalability of the hybrid algorithm to the previous

methods which capture the entire structure of propositional knowledge bases in

the column generation model.
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• To understand how well the hybrid algorithm deals with propositional problems

which are an important special case in P-SROIQ.

• To understand how strong the algorithm is influenced by the amount of the clas-

sical knowledge in a controlled environment (e.g., the subsumption density can

be varied).

The first experiment is conducted on collections of random probabilistic clauses

without any classical knowledge and was designed specifically for the comparison. The

second experiment answers the next to questions by evaluating the algorithm on random

concept hierarchies. There we have the full control over the size and complexity of the

classical part as opposed to the experiments with real ontologies. In particular, it is

possible to generate propositional TBoxes with the required subsumption density (see

Section 6.3.2) so that we can compare performance on PTBoxes which differ only in

their density.

6.3.1 Random Clauses

PTBoxes used in the first experiment are collections of probabilistic propositional

clauses, i.e. unconditional constraints of the form (C1 t · · · t Ck|>)[p, p] where each

Ci is a literal concept (a concept name or its complement). Such constraints are prob-

abilistic generalizations of implications of the form C1 u · · · u Ck−1 v Ck.
6 Since the

main aim of this experiment is to compare performance of our algorithm with the pre-

viously reported results of propositional solvers, we have followed the methodology for

generating random KBs which was described by Jaumard et al. [98] and later used in

[77, 81]

Jaumard’s methodology easily fits into our generic procedure described above. The

first step (obtaining the classical part) amounts to generation of a plain list of concept

names of specified size. The number of concept names was kept fixed to 200 since it

is the largest number of atoms in [81]. On the second step (obtaining the probabil-

istic part) we first generated the required number of disjunctive expressions and then

assigned probability intervals in the satisfiability preserving way by using Algorithm

10. The length of each expression is a random variable uniformly distributed between

1 and 4. Polarity of each literal is also uniformly random.

The results are presented in Table 6.1. As reported in [81] the previously developed

propositional PSAT algorithm on average generated about 3300 columns for collections

of 800 clauses over 200 atoms. Our algorithm generates about 10 times fewer columns

(we do not compare the total time to abstract away from the hardware differences).

Even more importantly, our algorithm does not seem to exhibit a super-polynomial

6An implication of the form C1 u · · · u Ck−1 v Ck can be rewritten as ¬C1 t · · · t ¬Ck−1 t Ck.
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Table 6.1: PSAT performance on random propositional clauses

# atoms # clauses Time(s) CG Total (s) # columns

200 250 27.32 18.46 164.6

200 500 102.43 61.73 228.2

200 750 263.06 140.79 264.6

200 1000 396.8 185.22 274.6

growth in the number of generated columns which is the case with Hansen’s technique.

One possible reason for that is that we use exact optimization methods for computing

each improving column while Hansen and Perron use the variable neighborhood heur-

istics to optimize non-linear 0-1 programs. In fact, the number of columns increases

only very gently, most probably due to the fixed signature size. This will be further

investigated in subsequent experiments (see especially Section 6.5.2).

At the same time the experiment reveals that the average time it takes to generate

a column may increase non-polynomially. Since the number of variables in the column

generation model, i.e. the MILP program (5.4), depends only on the signature size and

therefore stays constant, this suggests that the program becomes harder for some other

reason. We leave tuning of this program for future work.

6.3.2 Random Concept Hierarchies

The next two experiments evaluate the algorithm in the presence of TBoxes but they

are restricted to propositional concept hierarchies. The general aim is to understand

whether presence of classical knowledge slows the algorithm down. More specifically,

our objective is to understand how well the hybrid algorithm captures propositional

TBox structures and how the growing amount of classical knowledge influences the

performance. Here we also switch to mostly conditional PTBox constraints which are

more useful means of probabilistic modeling.

Concept Hierarchy Generation

For these experiments propositional TBoxes are generated using the following two step

procedure:

1. Signature generation,

2. Generation of random TBox axioms to ensure the required subsumption density.

The first step is simply a generation of the required number of concept names to

appear in conditional constraints. The second step is more interesting: it amounts
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to adding a number of subsumption axioms such that the resulting TBox has the

required subsumption density. The difficulty here is that the density metric counts both

asserted and inferred subsumptions. Due to transitivity of the subsumption relation the

number of inferred subsumptions may grow rapidly with the number of added axioms

(especially for TBoxes with high density). Our density generation algorithm deals with

this problem by updating the concept graph every time the new axiom is added. It

provides two important guarantees: First, it terminates immediately after the required

density has been reached. Second, it prevents generation of subsumption loops, i.e.

sets of equivalent concepts. Such sets are undesirable since any reasoning algorithm

can simply collapse them into a single concept.

It is the case that the algorithm may output a TBox which density is slightly higher

than the required. However, for TBoxes with density not exceeding 25 the overshoot

is not higher than 1-2 on average, so it cannot seriously skew the results. Also this

problem can be rectified by generating disjointness axioms instead of subsumption

(since the disjointness relation is not transitive).

Results

The first experiment evaluates the PSAT algorithm on increasingly large PTBoxes.

Both classical and probabilistic parts are growing while the subsumption density of

TBoxes was kept at 10 (i.e. each concept from the signature participates in roughly

10 literal subsumptions). In contrast to the experiment with random clauses 90% of

PTBox constraints are conditional. The results are presented in Table 6.2.

Table 6.2: PSAT performance on random concept hierarchies of variable size and fixed
subsumption density

Signature size PTBox size Density Time(s) CG Total (s) # columns

125 250 10 50.41 45.79 95

250 500 10 117.9 95.75 178.5

325 750 10 232.34 154.19 264

500 1000 10 467.12 240.4 380

625 1250 10 711.3 318.46 470.5

Comparing these results to those obtained with collections of unconditional clauses

it can be seen that neither the presence of classical knowledge nor conditional state-

ments have substantially influenced the results. The differences in term of both total

time and the column generation time are not substantial for PTBoxes with the same

number of constraints in spite of larger signatures in this experiment. Larger signa-

tures could be partly compensated by the lack of compound concept expressions in
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conditional constraints, which makes the column generation program simpler.

The second experiment aims to study the influence of subsumption density on PSAT

performance in isolation. Here the number of constraints and the signature size are

kept fixed (500 and 250 respectively) while subsumption density of the TBoxes is varied

between 2 and 25. Specifically, the objectives of this experiment is, first, to test whether

the increasing size of the TBox leads to a substantial increase of the CG time due to

extra inequalities in the MILP model and second, to check if convergence improves due

to the reduced space of all possible worlds.

Table 6.3: PSAT performance on random concept hierarchies of variable subsumption
density and fixed size. The column “MILP size” specifies the number of variables and
inequalities in the MILP program (5.4) used to generate columns.

Sig. size PTBox size Density MILP size Time (s) CG Total (s) # columns

250 500 2 1200 x 2552 116.93 93.98 187.5

250 500 5 1200 x 3304 111.97 90.78 180

250 500 10 1200 x 4452 113.96 92.67 177.4

250 500 15 1200 x 5570 121.49 99.82 180.6

250 500 20 1200 x 7768 124.1 101.77 176.25

250 500 25 1200 x 8122 103.36 84.27 145

The results are presented in Table 6.3. They show that increasing subsumption

density does not lead to a substantial increase in CG Total time (or even CG Total

divided by the number of columns) despite the fact that the MILP model grows

significantly—from 2552 to 8122 inequalities—because there is more TBox structure

to be captured. This further increases the confidence that our PSAT algorithm is ro-

bust and largely scalable with respect to the amount of classical knowledge. The results

are, however, inconclusive regarding convergence. While it does seem to be better for

instances with high density, i.e., 25, the difference is not substantial. This may indicate

that better stabilization strategies could be required.

6.4 Random Bayesian Knowledge Bases

In this section we present the evaluation of the PSAT algorithm on knowledge bases

that have been produced from randomly generated Bayesian networks of variable shape.

While we do not explicitly aim at competing with Bayesian inference methods P-

SROIQ, as a formalism, could be interesting in the context of reasoning with Bayesian

models. More specifically, P-SROIQ provides excellent means for integrating probab-

ilistic knowledge with OWL ontologies which can be explored in domains where both

ontologies and Bayesian models have been developed (one such example is the ontology-

based Bayesian network approach to clinical practice guidelines [190]). In particular,
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P-SROIQ can be used for:

• Finding contradictions between classical background knowledge captured in onto-

logies and probabilistic knowledge represented in Bayesian networks, or proving

consistency. For example, if the ontology entails that symptom S is always present

in patient with disease D than P (D|C) < 1 should not follow from the Bayesian

network (at least such contradictions should be automatically discoverable).

• Comparison of multiple Bayesian networks in presence of an ontology.

• Construction of Bayesian networks from initially developed probabilistic ontolo-

gies, for instance, for the sake of performance (see [13, 74]).

A formal theory of using P-SROIQ and its extensions for performing these tasks

is beyond the scope of this thesis. However, it seems clear that to be practical such

approach requires adequate tool support, in particular, a sufficiently scalable reasoner.

P-SROIQ, as it stands, does not provide enough representational capabilities for faith-

ful handling of Bayesian networks as logical knowledge bases. Specifically, conditional

independence assertions, which lie in the basis of Bayesian networks, are not represent-

able using conditional constraints. However, as shown in [5], Nilsson-style probabilistic

logics can serve as bases for the more expressive Bayesian logic. Furthermore, column

generation methods, which are central to our PSAT algorithm, can still be used for

solving PSAT in the Bayesian Logic although they need to be complemented by other

techniques, such as Benders decomposition. From this perspective, even though scalab-

ility of P-SROIQ reasoners is not a sufficient condition of practicality of Bayesian logic,

it could well be a solid first step towards that goal.

In addition to evaluating scalability, the experiments aim to test whether the PSAT

algorithm is sensitive to tree width which is known to be the key parameter for many

Bayesian inference algorithms, for example, belief propagation [163]. Tree width is

one less than the size of the largest clique over all possible triangulations of the graph

representing the undirected version of the Bayesian network. Informally, it characterizes

how well the graph can be decomposed onto a tree [171]. Most of the exact and

approximate algorithms are worst case exponential in tree width thus practical networks

are often constructed to limit connectivity between nodes.

Since the PSAT algorithm is not based on any sort of message passing, we hypo-

thesize that it should not be directly sensitive to tree width. This is an interesting

property which, if supported by the experiments, suggests that future modelers need

not be worried about the “shape” of their knowledge bases (if visualized as graphs).

Thus it could potentially enable modeling patterns which could seem dangerous from

a Bayesian network perspective.
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6.4.1 Knowledge Base Generation

For this experiment we produce P-SROIQ knowledge bases using a two phase process:

First, random Bayesian networks with varying tree width are generated. Second, the

generated networks are approximately translated into P-SROIQ.

Recall that Bayesian network is a directed acyclic graph (DAG) with N nodes

where each node X is a discrete random variable with a finite set of values. For each

node X the network must specify a full conditional probability p(X|PX) where PX

is the set of all parents of x. The generation of a probability distribution is relatively

straightforward (due to the locality property) therefore the main problem is to generate

uniformly distributed random DAGs.

We use the algorithms developed by Ide and Cozman [91] for performing this task.

First, the algorithms give reasonable guarantees that the structure of Bayesian networks

has been uniformly sampled from the large space of all DAGs with specified number of

nodes and values per node. Second, the algorithms allow us to control the tree width

parameter during generation. This is done by checking tree width as the DAG is being

generated and, consequently, a heuristic approach is used because determining the tree

width is an NP-complete problem. However, the authors observed that the induced

width heuristics approximates tree width very well. In addition, we try to minimize

any unwanted effects by generating multiple networks with the same tree width. Finally,

the algorithms are highly configurable and an implementation is available.7

In this experiment all random variables in Bayesian networks have values true and

false and are treated as concept names. Thus a conditional probability, e.g. P (X =

true|X ′ = false,X ′′ = true) = p, is interpreted as a statement “the probability that

a random object is an instance of X given that it is an instance of X ′′ and not an

instance of X ′ is p”. Recall from Section 2.3.1 that it corresponds to the semantics of

conditional constraints in P-SROIQ.

Once the network has been generated, it is transformed into a P-SROIQ knowledge

base in the following straightforward way: First, all variable names N are translated

into concept names. Second, each conditional probability P (X0 = x0|{Xi = xi}) = p,

where xi ∈ {true, false}, is represented as a conditional constraint (Y0|
d
Yi) where Yi

is equal to Xi if xi = true and ¬Xi if xi = false.

This translation is approximate because it ignores conditional independencies en-

coded in the structure of the networks. As mentioned above, representation of such

assertion requires non-linear statements, for example, (Y0|Y1 u Y2) = (Y0|Y1). Even

though P-SROIQ does not allow us to fully capture the semantics of the network, it

still supports useful patterns of approximate reasoning about the network. For instance,

if the approximate translation of the network happens to contradict an ontology then

7http://www.pmr.poli.usp.br/ltd/Software/BNGenerator/

http://www.pmr.poli.usp.br/ltd/Software/BNGenerator/
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the exact translation will also contradict the same ontology (the converse is obviously

false).

In contrast to the other experiments, we are less interested in measuring PSAT per-

formance as a function of knowledge base size. Instead, we generate Bayesian networks

in such a way that the resulting knowledge bases are close to the scalability limit of

the PSAT algorithm, i.e. around 1000 conditional constraints. One reason is that we

are more interested in varying tree width which has obvious impact on the number of

conditional constraints, and it is not always possible to reliably vary tree width while

keeping the number of constraints small.

We generated 10 random Bayesian networks for each value of tree width: 5, 10,

15, and 20. The number of nodes in the network, which corresponds to the size of

probabilistic signature of the resulting knowledge base, was kept at 100. The maximum

node degree was fixed at 5 while the limit on the total number of edges was varied

between 180 and 250 to ensure that the total number of constraints is around 1000.

As a result, more than 95% of randomly generated networks were translated into P-

SROIQ KBs with the number of constraints between 900 and 1100. The remaining

5% were discarded and regenerated.

6.4.2 Results

The evaluation results are presented in Table 6.4.

Table 6.4: PSAT performance on translations of Bayesian networks with variable tree
width into P-SROIQ.

Tree width Time (s) CG Total (s) # columns

5 1441.8 765.6 727.5

10 2062.1 1186.9 836.2

15 1930.7 1093.1 762.8

20 1660.8 985.2 782.5

The main outcome is that the current implementation is scalable enough to handle

approximate representations of Bayesian networks of about 100 nodes. The algorithm

exhibits pretty good convergence despite the fact that no TBox exists. This is likely to

be due to the relatively small probabilistic signature of 100 concepts. The average time

to generate a column (i.e., CG Total divided by the number of generated columns) is

higher than in the previous experiments, which might appear surprising given lack of

any TBox structure. It can be explained by the fact that evidence concepts in con-

ditional constraints are usually conjunctive expressions (conjunctions of parent nodes)

which are abbreviated by automatically generated concept names. Definitions of those
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autogenerated concepts give rise to large artificial TBoxes which, in turn, increases the

number of constraints in the column generation program.8

The results support our initial expectation that the algorithm should not be sens-

itive to tree width. Given that signature size and the total number of constraints

are fixed, tree width does not seem to have any impact on performance or scalabil-

ity. Consequently, when considering the feasibility of using P-SROIQ for approximate

reasoning about Bayesian networks, or other graphical probabilistic models, one can

only pay attention to the size and the number of local conditional probability distri-

bution and ignore such considerations as shape or density of the graph. More broadly,

we suggest that analyzing graph-like structure of P-SROIQ knowledge bases is not a

generally reasonable way of estimating their practical complexity for PSAT/TLogEnt

algorithms based on column generation.

6.5 Probabilistic Extensions of Real Ontologies

This section describes the evaluation of the PSAT algorithm on probabilistic knowledge

bases generated on top of real-life ontologies. Since P-SROIQ was designed as an

extension of the DLs behind OWL and compatibility with OWL is declared as one of its

major advantages, it is critical to ensure that any reasoning algorithms can successfully

deal with probabilistic extensions of real OWL ontologies, not just randomly generated

clauses or propositional taxonomies. In that sense these experiments are central for

proving the practicality of our algorithms, in particular, the PSAT decision procedure.

More precisely, the experiments described in this section have been designed to

pursue the following objectives:

• Evaluate the scalability the PSAT algorithm on probabilistic extensions of real

ontologies.

• Evaluate the robustness of the algorithm and understand its sensitivity to the

main characteristics of the input KBs. We are mostly interested in finding out

whether such characteristics of real ontologies as size, representation language,

subsumption density, etc. may cause substantial performance variability.

• Evaluate the effectiveness of the major optimization strategies on probabilistic

extensions of real ontologies. Some optimizations which work well on proposi-

tional KBs may be less effective or run into troubles on KBs with rich classical

part. For example, finding all minimal unsatisfiable subexpressions of a conjunct-

ive concept expression may get substantially more difficult in presence of a large

8TBoxes may lead to some column candidates being invalid but, in this case, Pronto can avoid it
due to the propositional absorption optimization, but again, at the expense of larger MILP instances.
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and rich (i.e., with numerous non-trivial entailments) TBox. The same holds for

exploiting concept hierarchy techniques.

• Compare the performance and scalability of the algorithm on real ontologies to

the same metrics computed for random propositional ontologies.

Differently from the previous experiments, in which all KBs were satisfiable, here

we also present experiments with unsatisfiable KBs. This is done primarily to evaluate

the effectiveness of our early conflict detection method described in Section 5.1.5.

6.5.1 Ontology Selection

The first important step of this evaluation is selection of appropriate real ontologies.

A wide range of ontologies are currently available, even if attention is restricted to

those represented in one of OWL syntaxes, thus establishing some selection criteria is

necessary. While we do not aim at a comprehensive study of OWL ontology landscape

with regard to complexity of probabilistic reasoning, we used the following guidelines

when picking the ontologies:

• Some of the ontologies should be represented in an expressive language. One of

our long-term goals is to provide tools for reasoning over probabilistic extensions

of OWL ontologies, so we wanted to evaluate the performance on ontologies which

make use of as many features of OWL 2 as possible. At the same time ontologies

represented in a lightweight fragment of OWL 2, such as OWL EL, also need to be

included, especially given the fact that they are getting increasingly widespread

in some important domains, such as medical informatics.

• Some of the ontologies should have reasonably large TBoxes with at least few

hundred concept subsumption, equivalence or disjointness axioms and some object

roles. By “non-trivial” we mean that the TBox should have entailments that

cannot be discovered simply by traversing the concept hierarchy. This is essential

for evaluating the effectiveness of our iterative approach to column generation

according to which TBox structure is captured in a lazy fashion by interaction

with a SROIQ reasoner.

• The ontologies should also have at least 500 concepts in the TBox to show that

the reasoner can handle large probabilistic signatures.

• Finally, the ontologies should allow for reasonably efficient reasoning using cur-

rently available OWL reasoners. It is clear that any evaluation of a PSAT al-

gorithm is futile if the classical part of the ontology is too hard for the OWL

reasoner (since the PSAT problem involves a series of SAT tests in the target DL).
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This requirement rules out some too big ontologies, such as Galen or SNOMED

CT, or some very hard ontologies, such as the Family ontology.

• Ideally, the ontologies should be “in service”, i.e. have been created for and be

in use by real applications as opposed to educational or experimental purposes.

In that case they are more likely to encompass common and useful modeling

patterns.

Using these guidelines we selected the following six ontologies from different domains:

The NCI Anatomy Ontology (NCI) is a part of the NCI Thesaurus which describes

human anatomy. It is relatively simple (represented in ALE+) but large as it

contains more than 3300 concepts and 5423 concept inclusion axioms. We use

the same version of the ontology which was been used in the Ontology Alignment

Evaluation competition in 2009.9

The Subcellular Anatomy Ontology (SAO) is the ontology from the neuroinform-

atics domain describing cellular and subcellular structures, supracellular domains,

and macromolecules.10 It contains 737 concepts, 915 subsumption, 4 equivalence,

and 1580 concept disjointness axioms, 36 object properties and 47 data properties.

It is represented in SHIN (D).

The Process Ontology is a part of the SWEET (Semantic Web for Earth and En-

vironmental Terminology) collection of ontologies developed by NASA to provide

semantic support for various Earth science projects.11 It contains 1537 concepts,

1922 subsumption, 84 equivalence, and 1 concept disjointness axioms, 102 object

properties and 19 data properties. It is represented in ALCHOF(D).

The Sequence Ontology with Composite Terms (SO-XP) defines terms and re-

lationships used to describe features and attributes of biological sequence as well

as cross-product definitions for composite terms.12 It is a deliverable of the Gene

Ontology Project and the Open Biomedical Ontologies (OBO) experiment. It

contains 1660 concepts, 1709 subsumption, 198 equivalence, and 21 concept dis-

jointness axioms and 22 object properties. Its representation language is SHI.

The Teleost Anatomy Ontology (TAO) is a multi-species anatomy ontology for

teleost fishes.13 It contains 2229 concepts, 3 object properties and 3406 concept

subsumption axioms. It is represented in EL+ (the OWL 2 EL profile).

9http://oaei.ontologymatching.org/2009/results/anatomy/
10http://ccdb.ucsd.edu/CCDBWebSite/sao.html
11http://sweet.jpl.nasa.gov/ontology/
12http://wiki.geneontology.org/index.php/SO:Composite_Terms
13https://www.nescent.org/phenoscape/Teleost_Anatomy_Ontology

http://oaei.ontologymatching.org/2009/results/anatomy/
http://ccdb.ucsd.edu/CCDBWebSite/sao.html
http://sweet.jpl.nasa.gov/ontology/
http://wiki.geneontology.org/index.php/SO:Composite_Terms
https://www.nescent.org/phenoscape/Teleost_Anatomy_Ontology
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The Cell Type ontology (CO) is a structured controlled vocabulary for cell types

constructed for model organism and other Bioinformatics databases.14 It contains

857 concepts, 1 object property and 1263 concept subsumption axioms. It also

falls into the OWL 2 EL profile.

None of these ontologies is propositional or small and simple enough to consider

their propositionalization and a subsequent use of a propositional probabilistic SAT

solver as a feasible alternative. None of the previously developed PSAT algorithms

is capable of dealing with thousands of classical axioms in addition to a comparable

number of probabilistic formulas.

6.5.2 Results

For each ontology selected to serve as the classical part of the PTBox we have gener-

ated the probabilistic part by selecting random probabilistic signature and generating

random probability intervals. We have performed two series of experiments aimed at

testing the scalability, robustness, and correctness of the PSAT algorithm.

Series I: Satisfiable PTBoxes

The first series of experiments was run on satisfiable PTBoxes to evaluate scalability,

robustness, and also investigate whether the results vary substantially across the ontolo-

gies. The series includes four experiments, three of which measure performance metrics

as functions of such parameters as the size of probabilistic signature and the number of

PTBox constraints, while the fourth—as functions of the proportion of unconditional

constraints in the PTBox.

For each PSAT instance the probabilistic part of the PTBox was generated fol-

lowing the generic procedure outlined in Section 6.1.2. First, a random signature of

the required size was selected. Second, the required number of random concept pairs

were selected from the signature. Finally, probability intervals were generated for the

concept pairs by invoking Algorithm 10.

Fixed Signature, Variable PTBox Size In the first experiment we measure per-

formance of the PSAT algorithm as a function of PTBox size. We keep probabilistic

signature size fixed at 250 concept names while varying the number of constraints in

the PTBox between 250 and 1000. The proportion of unconditional constraints was

fixed at 10%. The results are presented in Table 6.5.

14http://obolibrary.org/cgi-bin/detail.cgi?id=cell

http://obolibrary.org/cgi-bin/detail.cgi?id=cell
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Table 6.5: PSAT times for PTBoxes with probabilistic signatures of 250 concept names
and variable size

Ontology Language TBox size PTBox size Density Total time (s) CG Total (s) # columns

NCI ALE+ 5423 250 1.3 151.3 22.6 99.0
500 1.2 240.1 95.1 190.6
750 1.3 314.9 125.7 241.8

1000 1.2 440.4 163.4 306.0

SAO SHIN 2499 250 33.3 77.9 65.3 123.2
500 33.7 160.5 134.2 246.2
750 34.0 321.2 242.8 404.2

1000 33.1 525.5 344.5 526.0

Process SHOF 2007 250 3.5 46.7 28.6 97.2
500 3.3 124.7 91.2 180.4
750 3.0 211.8 132.4 248.6

1000 4.0 337.5 166.7 300.4

SO-XP SHI 1928 250 70.2 129.2 89.3 130.4
500 73.5 206.1 151.7 198.2
750 73.4 319.5 227.0 251.8

1000 72.2 525.0 350.7 318.4

TAO EL+ 3406 250 1.4 43.6 22.4 95.6
500 1.2 127.4 90.2 182.4
750 1.3 205.4 124.1 240.8

1000 1.3 326.2 164.4 310.2

Cell Type EL+ 1263 250 3.8 66.0 34.3 98.0
500 3.3 138.1 91.3 182.2
750 3.1 219.6 126.7 244.2

1000 3.6 336.5 162.5 300.2

Variable Signature, Fixed PTBox Size In the second experiment we evaluate

performance of the PSAT algorithm on PTBoxes of a fixed size but with a variable

number of concepts in the probabilistic signature. The aim here is to evaluate per-

formance as well as sensitivity of the algorithm to the signature size. PTBox size was

kept fixed at 500 constraints while the signature size was varied from 100 to 500. The

proportion of unconditional constraints was fixed at 10% as above. The results are

presented in Table 6.6.

Variable Signature, Variable PTBox Size In the third experiment we vary both

PTBox size and the size of probabilistic signature. The aim of this experiment is to

evaluate performance and robustness of the PSAT algorithm in more realistic settings

where larger PTBoxes typically involve larger signatures. The number of constraints

was varied between 250 and 1000 as in the first experiment but signature’s size was

kept at 50% of the PTBox size. The number of uncoditional statements was fixed at

10% as before. The results are presented in Table 6.7.
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Table 6.6: PSAT times for PTBoxes with 500 probabilistic statements and variable
signature size

Ontology Language TBox size Sig. size Density Total time (s) CG Total (s) # columns

NCI ALE+ 5423 100 1.2 139.6 71.8 145.4
200 1.2 201.7 82.7 169.6
300 1.5 258.9 89.2 202.6
400 1.4 305.0 84.9 224.0
500 1.6 365.2 93.4 249.2

SAO SHIN 2499 100 13.2 179.3 153.1 306.0
200 28.1 158.6 133.4 246.0
300 41.1 165.5 138.0 232.6
400 52.3 252.4 221.9 212.0
500 66.0 415.2 382.2 197.0

Process SHOF 2007 100 2.6 95.7 73.5 146.6
200 2.3 119.2 89.6 175.6
300 4.0 134.3 97.4 188.8
400 5.0 158.0 111.5 211.0
500 6.4 180.3 124.0 234.8

SO-XP SHI 1928 100 27.1 118.7 89.4 152.0
200 59.6 178.3 132.6 186.4
300 86.5 266.7 203.3 208.4
400 113.8 330.6 250.8 224.6
500 139.4 468.6 370.5 252.8

TAO EL+ 3406 100 1.2 91.9 68.9 139.8
200 1.2 107.8 76.6 156.2
300 1.2 124.9 84.0 193.6
400 1.7 139.7 88.6 224.4
500 1.7 160.2 95.9 258.0

Cell Type EL+ 1263 100 1.5 96.5 69.0 141.6
200 3.0 126.6 86.0 172.4
300 3.7 155.5 101.1 198.4
400 5.8 170.6 105.8 200.4
500 6.3 218.8 139.3 252.6

Variable Proportion of Unconditional Constraints The final experiment of this

section evaluates robustness of the PSAT algorithm with respect to the relative number

of unconditional constraints in the PTBox. Both signature size and PTBox size were

fixed at 250 and 500 respectively. The proportion of unconditional constraints was

varied between 10% and 50%. The results are presented in Table 6.8.

Summary The first, and the major, conclusion that can be made from the evaluation

results is that the algorithm is robust, i.e. it behaves quite predictively on satisfiable

PTBoxes with varying parameters. No combination of the main parameters causes it

to hit the worst case. It robustly scales to 1000 probabilistic statements defined over

500 concepts from expressive real ontologies.

The second observation is that PTBoxes built over the SAO and the SO-XP onto-

logies tend to be harder for the algorithm than the rest. The difference is especially
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Table 6.7: PSAT times for PTBoxes with varying number of statements and signature
size

Ontology Language TBox size PTBox size Density Total time (s) CG Total (s) # columns

NCI ALE+ 5423 250 1.1 100.2 32.8 83.4
500 1.3 239.5 93.9 186.4
750 1.5 429.1 157.4 301.4

1000 2.0 745.1 231.6 418.4

SAO SHIN 2499 250 15.8 77.1 68.4 129.4
500 32.4 178.2 149.3 276.4
750 47.7 375.3 300.0 341.2

1000 63.6 1360.2 1176.1 425.4

Process SHOF 2007 250 1.9 51.0 39.4 88.6
500 2.6 119.9 87.0 176.4
750 4.4 240.9 144.4 275.2

1000 5.2 479.7 236.4 404.8

SO-XP SHI 1928 250 33.1 61.3 40.3 76.0
500 71.7 197.1 144.2 189.0
750 107.7 449.5 323.3 307.6

1000 138.5 921.6 644.3 423.4

TAO EL+ 3406 250 1.2 50.2 37.1 89.4
500 1.2 125.8 89.4 179.8
750 1.5 252.5 149.5 287.8

1000 1.9 544.7 238.1 431.8

Cell Type EL+ 1263 250 2.5 57.2 39.2 89.2
500 3.7 137.9 91.7 182.6
750 4.4 283.5 158.9 296.4

1000 5.5 487.7 220.3 384.2

visible in Table 6.6 and Table 6.7, i.e. where signature is varied. While the total number

of generated columns is approximately the same, it is substantially harder to generate

a column when signature size is over approximately 200 concepts (for the SO-XP on-

tology) and 300 concepts (for the SAO ontology). This is illustrated by the CG Total

times, which rise sharply for those ontologies.

The explanation for this “thrashing” effect is the high richness of those two ontolo-

gies as revealed by the subsumption metric. High density values mean that concepts,

which are randomly selected from the TBox, are often engaged in subsumption or dis-

jointness relationships. These relationship need to be captured in the MILP model.

However, if the number of the relationships is high not all corresponding linear inequal-

ities will be created when exploiting the concept hierarchy, as explained in Section 5.1.5,

in order to prevent memory exhaustion.15 Consequently, invalid column candidates are

more likely to be generated inside Algorithm 4. Each appearance of an invalid column

15Given the available RAM (2GB) we set the limit of the height of the MILP model to 15,000
inequalities. This is sufficient to capture all subsumptions following from the classified TBox for the
Process, T-A and Cell Type ontologies, but not for the SAO or SO-XP ontologies. The problem
is especially visible for the SO-XP ontology for which Algorithm 4 computed more than 100 invalid
columns for an average PTBox of 500 constraints and 500 concepts in the signature.
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Table 6.8: PSAT evaluation results on PTBoxes with fixed size and variable number of
unconditional constraints. U% stands for the proportion of unconditional constraints
in the PTBox.

Ontology Language TBox size U% Density Total time (s) CG Total (s) # columns

NCI ALE+ 5423 10 1.3 239.5 93.9 186.4
20 1.2 240.3 93.1 194.5
30 1.2 248.6 97.1 212.0
40 1.2 259.2 101.5 258.5
50 1.3 249.4 87.0 255.0

SAO SHIN 2499 10 32.4 178.2 149.3 276.4
20 33.1 191.4 162.6 299.5
30 31.4 265.0 229.1 411.5
40 25.1 263.3 224.9 404.5
50 33.4 309.9 266.5 434.5

Process SHOF 2007 10 2.6 119.9 87.0 176.4
20 2.3 136.4 99.5 194.0
30 2.8 152.1 112.1 223.5
40 2.4 144.4 102.9 220.0
50 2.6 142.2 96.2 230.5

SO-XP SHI 1928 10 71.7 197.1 144.2 189.0
20 73.2 268.7 209.2 240.0
30 70.2 251.9 193.2 253.0
40 71.1 323.9 259.0 306.0
50 70.9 305.7 237.7 312.5

TAO EL+ 3406 10 1.2 125.8 89.4 179.8
20 1.2 129.6 90.6 187.0
30 1.3 131.2 90.9 185.5
40 1.1 144.3 99.3 222.0
50 1.5 154.9 98.7 264.5

Cell Type EL+ 1263 10 3.7 137.9 91.7 182.6
20 3.4 166.4 114.9 224.5
30 3.3 164.2 112.2 218.5
40 3.6 158.4 104.9 215.0
50 3.3 165.8 107.5 243.0

will trigger the computationally intensive process of computing the unsatisfiability core

to find all (or some) minimal unsatisfiable expressions. This is the main reason why

thrashing occurs. Such effect can be mitigated by either increasing the amount of

available memory or employing a more intelligent approach to compute the initial set

of inequalities for the MILP model.

The third outcome is that the number of columns generated by Algorithm 4 does

not seem to grow exponentially with either size of the PTBox or size of the probab-

ilistic signature. This suggests that the PSAT algorithm may well scale beyond 1000

conditional constraints. We have not yet extended the experiments beyond 1000 for

two reasons. First, it is time consuming to generate satisfiable probabilistic KBs of that

size over complex ontologies because it requires computing a high number of possible

worlds. Second, it is currently unclear what the real requirements for scalability of
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P-SROIQ reasoners are since the only handcrafted P-SROIQ ontology (the BCRA

ontology) is well below that limit.16

Another observation is that convergence of the algorithm does not seem to depend

on TBox richness. This is slightly surprising because richer TBoxes tend to reduce the

total space of valid columns, so some benefits for column generation were anticipated.

Our conjecture is that the outcome could be due to first, the approximative nature

of the subsumption density metric, and second, the stabilization technique used to

improve convergence. Although we have not conducted a thorough experimentation

with different stabilization techniques, our experience is that the iterative stabilization,

similar to the one used by Hansen and Perron [81], is significantly less efficient on

PTBoxes with low density. However the effect does not seem to hold for the straight

stabilization that has been used for all our experiments.

Finally, it is interesting that while the algorithm is also robust with respect to the

number of unconditional constraints, its convergence slightly worsens as the proportion

increases. A likely explanation of this phenomenon is that unconditional constraints

place “stronger” restrictions on probabilistic models than conditional ones because they

cannot be satisfied vacuously, i.e., by assigning zero probability to the evidence concept

(since it is >). This apparently causes the algorithm spend more iterations to find a

“non-trivial” probabilistic interpretation.

Series II: Unsatisfiable PTBoxes

Finally, we present the PSAT evaluation results on unsatisfiable PTBoxes to understand

the effectiveness of the algorithm, in particular, the early conflict detection (ECD)

method described in Section 5.1.5, in the presence of inconsistent knowledge. Good

performance on such PTBoxes is critically important in non-monotonic reasoning, in

particular, for constructing conflict graphs, z-partition and computing lexicographic

entailment. However, in this experiment we are only interested in measuring the ef-

fectiveness of detecting conflicts as opposed to discovering or extracting them from the

knowledge base. Evaluation of the diagnosis algorithm on unsatisfiable fragments of

CADIAG-2 knowledge base is presented in Section 7.2.2.

The structures of random PTBox used in this experiment are exactly the same

as for those described in the “Variable Signature, Variable PTBox Size” paragraph

above. We vary two parameters: the number of constraints in the PTBox and the size

of probabilistic signature. The ratio between the signature size and the PTBox size

was fixed at 0.5. The proportion of unconditional constraints was kept fixed at 10%.

Probability intervals were generate randomly as described at the end of Section 6.1.2.

16The probabilistic formalization of CADIAG-2 KB is larger but it has not been designed as a
probabilistic ontology in P-SROIQ or even as a probabilistic knowledge base in general.
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10% of unconditional statements is enough to ensure that most of PTBoxes generated

in this way are unsatisfiable (those which by accident turned out to be satisfiable have

been excluded from the experiment).

In addition to the standard performance measures such as time and the number

of generated columns, here we also measure the proportion of PTBoxes whose unsat-

isfiability has been detected by ECD and the average number of times ECD has been

triggered but failed to detect a conflict (so called false runs). As explained in Section

5.1.5, each ECD invocation incurs an overhead because it involves solving the PSAT

problem for a subset of the original PTBox. Even though we limit the size of such sub-

sets in order to reduce the negative impact of false runs, it is still necessary to account

for them when measuring the efficiency of the technique.

The results are presented in Table 6.9. As in previous experiments 10 PSAT in-

stances have been solved for each size. The following observations can easily be made:

Table 6.9: PSAT times on unsatisfiable PTBoxes. H is the proportion of problem
instances for which unsatisfiability has been detected by ECD. F is the average number
of false invocations of ECD per problem instance. R is the average time savings (in %)
that are due to ECD.

Ontology Sig. size PTBox Density H F R (%) Total CG # columns Time
size time (s) Total (s) (ECD Off)

NCI 125 250 1.1 0.0 2.3 -8.3 97.4 23.4 63.5 89.9
250 500 1.3 0.0 0.3 -1.3 212.1 63.2 124.5 209.4
375 750 1.5 0.0 0.5 -3.5 351.6 85.5 164.5 339.8
500 1000 2.0 0.2 1.8 -7.0 661.7 160.4 275.0 618.5

SAO 125 250 15.8 0.8 0.4 6.5 24.1 16.4 31.8 25.8
250 500 32.4 1.0 0.4 6.8 48.8 31.0 55.5 52.3
375 750 47.7 1.0 0.2 17.6 84.4 54.6 53.5 102.4
500 1000 63.6 1.0 1.4 31.5 175.2 128.6 44.9 255.8

Process 125 250 1.9 0.0 3.2 -16.7 25.4 11.9 35.0 21.7
250 500 2.6 0.8 0.6 26.5 32.5 14.3 33.1 44.3
375 750 4.4 0.8 0.6 25.6 69.1 30.3 61.0 92.8
500 1000 5.2 0.8 1.2 37.2 94.5 37.5 67.5 150.6

SO-XP 125 250 33.1 0.2 0.2 7.4 24.5 5.3 11.6 26.5
250 500 71.7 1.0 0.6 21.8 62.7 27.6 42.2 80.2
375 750 107.7 1.0 0.6 43.6 104.4 58.4 54.2 185.1
500 1000 138.5 1.0 0.4 56.5 200.7 141.9 49.1 461.8

TAO 125 250 1.2 0.0 5.0 -14.9 58.3 40.9 100.5 50.7
250 500 1.2 0.4 2.0 -1.4 114.1 68.3 136.8 112.6
375 750 1.5 0.6 2.6 12.6 131.3 61.1 123.7 150.2
500 1000 1.9 0.8 1.6 28.2 203.7 77.5 145.1 283.6

Cell Type 125 250 2.5 0.0 4.0 -8.6 53.7 32.8 76.5 49.5
250 500 3.7 0.6 0.2 9.5 64.4 28.5 60.6 71.2
375 750 4.4 0.8 0.4 24.7 113.5 50.8 97.9 150.7
500 1000 5.5 0.8 1.2 31.1 173.7 70.3 121.2 252.1

First, for most of the ontologies it takes substantially fewer (often by an order of

magnitude) columns to prove unsatisfiability than to prove satisfiability. One may

argue that this is a non-surprising outcome because it is sufficient to stumble upon
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a single conflict to terminate the process. However, the PSAT algorithm does not

work by inspecting subsets of the KB and trying to detect a conflict, especially if the

ECD optimization is off. The algorithm only terminates if i) the current optimal value

of the main LP program (5.5) is less than 1, and ii) an improving column cannot be

generated. So the algorithm can hit its worst case in at least two scenarios. First, it may

generate an exponential number of only marginally improving columns. It may bring

the optimal value of (5.5) arbitrarily close to 1 but still never reach it. Second, even if at

some step no improving column exists, it may take Algorithm 4 an exponential number

of steps to prove that. For instance, Algorithm 4 can generate an exponential number

of invalid column candidates before concluding that no valid and improving column

exist. The result that the algorithm avoids both these traps is not trivial although it

can be observed that column generation process is more computationally intensive for

unsatisfiable PTBoxes (see the “CG Total (s)” column in Table 6.9).

The second observation is that in contrast to satisfiable PTBoxes convergence does

not seem to depend on the number of constraints. For most ontologies the number

of generated columns is approximately the same regardless of PTBox size. A possible

explanation of this result is that the total number of conflicts is most probably higher

for larger PTBoxes, so it may well be easier for the algorithm to stop at some of them.

At the same time it does not mean that the number of constraints is not an important

parameter. It still strongly influences the time it takes to generate a column and,

consequently, the total time.

Third, it is interesting that the ECD technique appears more effective for larger

PTBoxes and PTBoxes over richer ontologies, namely, SAO and SO-XP. For the “weak”

ontologies (Process, TAO and Cell) and PTBoxes of 250 constraints it always fail to

detect a conflict while performing 3–5 false runs per PSAT instance. This leads to a

negative, albeit small, impact of the technique as can be seen from the R(%) column.

This never happens for PTBoxes of 750 or more constraints or rich ontologies. It is likely

that the effectiveness depends on the total number of conflicts which, as mentioned in

the previous paragraph, is higher for larger PTBoxes. This can also explain dependence

on richness because TBox structure can also induce conflicts in random knowledge bases

by ruling out more worlds.

Finally, it appears that the technique is not effective for the NCI ontology and the

difference in the number of generated columns between unsatisfiable and satisfiable

(see Table 6.7) PTBoxes is insignificant. Our general observation is that the column

generation process for NCI does not “stall” as often happens for other unsatisfiable

PTBoxes, so ECD simply is not triggered thus causing no improvement and very little

harm. One possible reason is that NCI TBox has the simplest structure among all

ontologies. Further investigation is left for future research.
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6.6 Summary of Results

In this chapter we have presented the results of an extensive performance evaluation

involving two key reasoning services (PSAT and TLexEnt) and a wide range of various

classes of probabilistic knowledge bases. The following major conclusions can be made:

Scalability with respect to probabilistic knowledge The PSAT algorithm demon-

strated the capability of handling hard, i.e. non-trivially satisfiable, PTBoxes of 1000

probabilistic statements in all experiments. Moreover, in most of the experiments the

algorithm does not exhibit a clearly exponential trend. The algorithm performs com-

parably to the previously developed propositional PSAT solvers on propositional PSAT

instances, however, it is a lot more generic with respect to the expressivity of classical

(non-probabilistic) knowledge.

Scalability with respect to classical knowledge It is worth stressing that the al-

gorithm does not exhibit considerable sensitivity with respect to the amount of classical

knowledge (provided the classical SROIQ reasoner can handle SAT). The only issue

is the number of inequalities for (5.4) which may be required to fully capture the TBox

structure. However, the experience suggests that the algorithm typically terminates

before computing an excessive (for the given amount of available memory) number of

inequalities.

Robustness and Predictability The PTBoxes used in different experiments vary

widely in their characteristics, from the number of constraints and the size of probab-

ilistic signature to expressivity and richness of the classical part. While some PTBoxes

appear to be harder than others (the prime example are the ontology alignments while

the easiest are the PTBoxes over random concept hierarchies) the difference is less than

a single order of magnitude. Furthermore, the algorithm’s performance is quite predict-

able for each class of PTBoxes as the standard deviation for both total time and the

number of generated columns does not exceed 10% (one exception is the experiment

with unsatisfiable PTBoxes for which the ECD heuristics sometimes detects a conflict

after having generated only about 10 columns).

Applicability The algorithm demonstrated its applicability in use cases such as val-

idating probabilistic ontology alignments and reasoning about Bayesian networks. An-

other application of the PSAT and diagnosis algorithms to naturally occurring know-

ledge bases, namely the CADIAG-2 KB, is described in Section 3.2. While these ex-

periments by themselves are not sufficient to claim practicality, they should encourage

modelers to attempt to model other problems using P-SROIQ.
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Optimizations Effectiveness All optimization techniques described in Section 5.1.5

play major roles in the experiments. Vast majority of inequalities for the column gener-

ation model are pre-computed by the Exploiting Concept Hierarchy and Propositional

Absorption techniques which prevent Algorithm 4 from computing numerous invalid

columns. The Optimistic Inequality Generation optimization is indispensable for deal-

ing with hard TBoxes for which computing all unsatisfiable subexpressions of a con-

junctive concept expression is highly intractable (mostly due to a high number of those).

In particular, the PSAT algorithm fails to terminate within 30 minutes on PTBoxes

with 1000 constraints over the SAO and the SO-XP ontologies if this technique is off.

The Stabilization technique is the key to an acceptable convergence. In the absence of

stabilization the algorithm generates more than 5,000 columns for PTBoxes with weak

classical part, for example, for sets of unconditional clauses. Finally, the Early Conflict

Detection method significantly improves the performance on unsatisfiable PTBoxes (up

to 50% on large instances) while not causing any substantial harm on satisfiable PT-

Boxes. Although it does not push forward the scalability limits it is very important

during non-monotonic, such as lexicographic, reasoning based on resolving contextual

conflicts in background probabilistic knowledge.

Memory Consumption The PSAT algorithm is memory intensive due to the follow-

ing two reasons. First, it makes heavy use of the SROIQ reasoning algorithms which

have exponential memory requirements. Second, it may require a non-polynomial num-

ber of linear inequalities to capture TBox structure in the MILP model (5.4). In the

experiments with some of the real ontologies (especially SO-XP) the algorithm was able

to exhaust 2GB of available RAM on our machine so we had to limit the initial size of

the MILP model to 15,000 inequalities. Currently this threshold is set manually but

can be determined by the reasoner based on the amount of available memory.

Modularity Need Finally, the experiments helped to reveal major obstacles to fur-

ther improvements in scalability. The key obstacle is the size and hardness of the MILP

model (5.4) used to generate columns for the PSAT algorithm. CG Total divided by the

number of generated columns is the only performance measure that appears to grow

non-polynomially with the size of probabilistic KBs. According to our experiments,

approximate approaches to solving (5.4) do not promise substantial improvements be-

cause the time it takes to obtain some, not even a near-optimal, solution also grows

non-polynomially. This suggests that required are ways to decompose this model onto

smaller sub-models which, in turn, leads to a wider research question of decomposing

(or modularizing) probabilistic KBs. Our results guarantee that even decomposing a

KB onto a small number of relatively large modules, i.e., around 1000 constraints each,

will lead to a dramatic increase of scalability.



Chapter 7

Application Performance

Evaluation

This chapter describes the performance evaluation of P-SROIQ reasoning algorithms

that has been carried out using real application data rather than artificially generated

probabilistic knowledge bases. Section 7.1 finishes the performance and scalability

experiments with the PSAT algorithm by evaluating it on probabilistic ontology map-

ping data provided by the Ontology Alignment Evaluation Initiative. Section 7.2 is

dedicated to evaluation of the Diagnosis and TLexEnt algorithms on a probabilistic

formalization of the CADIAG-2 knowledge base.

7.1 Ontology Alignments Validation

This section presents evaluation of the PSAT algorithm on knowledge bases which

resulted from probabilistic formalization of uncertain ontology alignments. The form-

alization itself is presented in Section 3.3. The purpose of these experiments is twofold:

• First, probabilistic validation of ontology alignments is a realistic use case for

probabilistic DLs [29]. As such, our experiments aim to demonstrate that our

system can be useful for that task since it can handle reasonably large and nat-

urally occurring collections of probabilistic mappings over real ontologies.

• Second, probabilistic KBs which capture uncertain ontology alignments have cer-

tain features that could potentially make them harder for reasoning algorithms

than random KBs (in particular, large probabilistic signatures, see below). There-

fore, it is important to evaluate how well the algorithm handles such extra com-

plexities.

187
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The second point deserves some additional explanation. Recall from Section 2.3.1

that probabilistic signature is the set of all concepts that appear in probabilistic state-

ments in a PTBox. The size of the signature may have a strong impact on hardness of

reasoning, in particular, PSAT, because it determines the upper bound on the number

of possible worlds (such number is exponential in the signature size). Therefore large

signatures may lead to even larger than normal spaces of columns for the PSAT linear

program which, in turn, may have a negative impact on convergence of the column

generation process.

Normally, the size of probabilistic signature is expected to be smaller than the num-

ber of probabilistic statements. This is the case for the BCRA ontology, the CADIAG-

2 KB, as well as in most of the experiments conducted by us and prior to us (see

[98, 78, 81]). This is so because normally knowledge engineers make more than one

statement about each particular concept. For example, one symptom is typically re-

lated to several diseases, each disease is associated with multiple risk factors and so

on. This is, however, not the case with probabilistic ontology mappings. Most of the

mapping tools output one-to-one correspondences between concept names from both

ontologies. Since most of the time the correspondences mean equivalence, it is very

rare, if ever, that a tool would map one concept to multiple concepts from another

ontology. As a result, each probabilistic statement presents a fresh pair of concepts,

which makes the signature as large as the total number of statements.

Finally, we use the Jaccard-based probabilistic formalization of mappings (see Sec-

tion 3.3) so each conditional constraint involves complex concept expressions. This is

also likely to be unusual for hand crafted P-SROIQ KBs and makes these experiments

a distinctive source of evaluation of our PSAT algorithm.

7.1.1 Experimental Setup

One particularly established source of uncertain alignments produced by various tools

over real and synthetic ontologies is the Ontology Alignment Evaluation Initiative

(OAEI).1 There are multiple tracks used to evaluate different aspects of ontology match-

ing technologies. For our scalability evaluation experiments we use the Anatomy track

dataset from OAEI-2009.2 The contest consisted of finding alignments between the

Adult Mouse Anatomy ontology and a part of the NCI Thesaurus ontology which

describes the human anatomy. We pick that dataset because, first, it involves real on-

tologies, second, it is large so it can push the PSAT algorithm to its limits, and third,

due to its size a complete reference alignment is unavailable (as of 2009), so the need

of automated validation is especially acute.

1http://oaei.ontologymatching.org
2http://oaei.ontologymatching.org/2009/anatomy/

http://oaei.ontologymatching.org
http://oaei.ontologymatching.org/2009/anatomy/
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The track consists of four tasks but only the first is mandatory for all participating

tools. In that task each tool is applied with standard settings and attempts to produce

the best alignment without any extraneous help, such as a partial alignment. A number

of tools have participated but not all of them produced uncertain mappings. We picked

the alignments for those tools which generate confidence values: AgrMaker, Aroma,

ASMOV, DSSim, kosimap, and Lily (references can be found in the final report [53]).

The alignments are specified in the Alignment format3 expressed in RDF/XML,

which can be straightforwardly translated into P-SROIQ syntax. As mentioned earlier

we use the Jaccard translation function (see Section 3.3) so each uncertain mapping is

translated into a single conditional constraint. For example, the fragment shown below

specifies that the Mouse Anatomy entity MA 0002401 is equivalent to the NCI entity

NCI C52561 with confidence of 0.854.

<map>

<Ce l l>

<e n t i t y 1 r d f : r e s o u r c e = ‘ ‘ h t t p : //mouse . owl#MA 0002401 ’ ’ />

<e n t i t y 2 r d f : r e s o u r c e = ‘ ‘ h t t p : //human . owl#NCI C52561 ’ ’ />

<measure r d f : d a t a t y p e = ‘ ‘ x s d : f l o a t ’ ’>0 .854</measure>

<r e l a t i o n>=</ r e l a t i o n>

</ Ce l l>

</map>

The corresponding conditional constraint is

(MA 0002401uNCI C52561|MA 0002401tNCI C52561)[0.854,0.854].

The translated alignments appeared too large for the current algorithm, for in-

stance, AgrMaker generates over 1400 uncertain mappings for Task 1. Therefore, we

use random samples of the full alignments. The samples are of variable size and, as in

other experiments, we run the PSAT algorithm on 10 different samples of each size.

7.1.2 Results and Discussion

The results are presented in Table 7.1. All samples turned out to be probabilistically

coherent except of those based on Aroma’s alignment, in which the conflicts are rather

trivial and caused by the following meaningless mappings:

(SynonymType|SynonymType)[0.95,0.95],

(ObsoleteClass|ObsoleteClass)[0.95,0.95],

(Subset|Subset)[0.63,0.63].

There are few important things to notice in the results. First, the algorithm exhib-

ited a substantial performance variability across different tools but not across different

samples of the same tool. In particular, samples from the alignment generated by

3http://oaei.ontologymatching.org/2009/align.html

http://oaei.ontologymatching.org/2009/align.html


190 CHAPTER 7. APPLICATION PERFORMANCE EVALUATION

Table 7.1: PSAT performance when validating probabilistic ontology alignments

Matching tool PTBox size Total time (s) CG Total (s) # columns

AgrMaker 250 258 201.2 117
500 612 588.3 319
750 1095 911.6 566

Aroma 250 127 101.1 201
500 585 501.2 650
750 1294 118.9 1036

ASMOV 250 54 45.7 51
500 407 388.0 422
750 1123 1044.2 536

DSSim 250 239 209.4 212
500 699 613.5 488
750 1304 1199.2 752

kosimap 250 45 39.2 45
500 164 141.3 71
750 361 332.6 122

Lily 250 112 88.5 67
500 399 366.2 112
750 674 603.7 285

kosimap and Lily appear to be considerably easier than others. This phenomenon de-

serves a careful future investigation because given that the classical part of the KBs was

kept fixed, it may provide insight into why some collections of conditional constraints

are harder than others. At this point it is unclear if the variability is due to the nature

of our particular algorithm or there are more fundamental reasons.

Second, the results show that signature can indeed be problematic in two respects.

Convergence rate is slower on average than in synthetic PSAT experiments, especially

those reported in Section 6.5. In addition, large signatures also lead to a high number

of variables in the column generation model (the MILP program (5.4)) which makes it

harder for MILP reasoners as can be seen in the CG Total column. Note that both MA

and NCI ontologies are fairly axiomatically weak, so their probabilistic samples have

low subsumption density. A higher density is likely to improve convergence but can

further complicate the CG model and increase the number of iterations of Algorithm

4.

Finally and most importantly, the results demonstrate that Pronto can scale to

validate probabilistic alignments of realistic size. Although the full alignments are

currently beyond its capabilities, their large portions (over 50%) could be analyzed in

reasonable time on a modest hardware. The current implementation of the system

could be used for finding incoherences in uncertain alignments even though it does not
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implement any specific optimizations for handling large signatures.

7.2 Analysis of CADIAG-2

The probabilistic formalization of CADIAG-2, as described in Section 3.2, is interest-

ing for performance evaluation for several reasons. First (and foremost), it is large

and naturally occurring. While propositional and relatively simple, its size makes its

analysis a significant challenge. Second, it does contain unsatisfiable fragments which

makes it suitable not only for PSAT but also for diagnosis evaluation. Finally, it is

good starting point for evaluating feasibility of the TLexEnt algorithm because it also

contains contextual conflicts which can be resolved during non-monotonic reasoning.

7.2.1 Performance Metrics

The performance measures collected during PSAT experiments, namely wall time,

number of generated columns and the average column generation time, are not sufficient

for diagnosis and TLexEnt evaluation because they are not informative enough. For

example, it is unclear whether a high number of columns is due to some especially

hard PSAT instance solved inside the diagnosis algorithm or due to a high number of

conflicts and, consequently, high number of PSAT instances to repair them. Similarly,

the measures do not allow us to see a high level picture of what is happening during

the TLexEnt algorithm which goes through two main phases: computing lex-minimal

subsets of conditional constraints (Phase I) and solving a TLogEnt instance for each

of them (Phase II). Specifically, it is important to understand whether a particularly

difficult TLexEnt instance is hard because of non-monotonicity, because of difficult

linear optimization, or both.

Therefore we collect the following additional performance measures for this section’s

experiments:

Number of conflicts, NIIS This metric represents the number of conflicts, or, equi-

valently, the number of irreducibly infeasible systems (IIS, see Section 5.2.1), com-

puted by the Diagnosis algorithm or by the TLexEnt algorithm during Phase

I.

Number of repairs, NR It complements the previous metric by representing the

number PSAT tests that need to be made to complete the conflict discovery

process, i.e. to prove that no other conflicts exist. Depending on overlap between

conflicts the number of repairs can vary widely.

Number of lex-minimal subsets, Nlex It represents the total number of lexicograph-

ically minimal models.
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Time to compute lex-minimal subsets, Tlex It measures the total time of Phase

I of the TLexEnt algorithm.

TLogEnt time, Tlog It measures the total time of Phase II of the TLexEnt al-

gorithm.

All time measures are wall time, not CPU time. As in previous experiments all

measures are collected by Pronto’s internal telemetry mechanism.

7.2.2 Finding Inconsistent Fragments

Finding all minimal inconsistent sets of rules in CADIAG-2 KB was a long standing

challenge. In this section we present the values of the metrics gathered in the process

of finding conflicts in fragments of CADIAG-2 according to the methodology presented

in Section 3.2. As explained in that section we use a slightly relaxed version of the

KB which was decomposed onto independent fragments. In total we obtained 1007

fragments with the mean size of 21 probabilistic statements and the maximum size of

134 statements.4 Each size includes the full classical part of CADIAG-2 KB (i.e., the

full hierarchies of symptoms and diseases).

The full diagnosis of all fragments of CADIAG-2 KB was performed in less than 3.5

hours and, as mentioned in Section 3.2, resulted in 695 unique minimal unsatisfiable

sets of constraints. Figures 7.1, 7.2, and 7.3 show the average time of the diagnosis

algorithm plotted against the fragment size (measured in the number of constraints),

the total number of conflicts found in the fragment, and the number of repairs in the

fragment respectively. The figures expectedly demonstrate that the average diagnosis

time grows as a function of all three metrics albeit in different ways.

Figure 7.1 shows a steep growth at about 100 conditional constraints with many

outliers. This is due to the fact that larger fragments are more likely to contain un-

satisfiable fragments. Those fragments whose conflict density, which can be defined as

the number of conflicts per size, is either higher or lower than the average represent

the outliers.

Figure 7.2 demonstrates that the diagnosis time indeed grows as a function of the

number of conflicts, but the interesting fact is that it does not seem to be monotonic,

at least for CADIAG-2. After a certain number of conflicts, which in this case is

around 7, the average time starts to decrease. A likely explanation is that the total

number of PSAT tests needed to find all conflicts, i.e. the number of repairs, does not

necessarily increase with the number of conflicts. Newly found conflicts can overlap

4It might appear that the fragments are too small to be interesting. Indeed, they are trivial for
PSAT but the Diagnosis problem is substantially more difficult. Figure 7.2 shows that hundreds of
PSAT tests are required for some fragments.
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Figure 7.1: The average running time of the diagnosis algorithm against the size of
CADIAG-2 fragments.

Figure 7.2: The average running time of the diagnosis algorithm against the number of
incoherent subsets in CADIAG-2 fragments.
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Figure 7.3: The average running time of the diagnosis algorithm against the number of
repairs in CADIAG-2 fragments.

with the previous ones such that the number of repairs can decrease which improves

the diagnosis performance.

Finally, Figure 7.2 shows that the time monotonically increases with the number

of different ways to repair an incoherent fragment. The reason is clear: every repair

requires a PSAT test. The outliers are caused by variability of PSAT performance on

different subsets of conditional constraints (i.e. some PSAT subsets can be substan-

tially harder than others which causes some diagnoses to take longer even though there

are fewer repairs involved).

These experiments show a good robustness of the diagnosis algorithm which can

handle quite highly unsatisfiable KBs with up to 10 minimal unsatisfiable subsets.

However, more unsatisfiable (or incoherent) KBs could be required to draw more certain

charts and fit predictive curves.

7.2.3 Probabilistic Consistency Evaluation

Performance evaluation of the PTCon algorithms described in Section 5.3 was also

done on fragments of CADIAG-2 but with three important differences from the previous

subsection. First, small fragments have been clumped together so that all of CADIAG-2

was decomposed onto 113 probabilistic KBs, each of which contained between 150 and
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250 conditional constraints.5 Second, the fragments did not contain the unconditional

constraints needed to test probabilistic coherence. Third, the fragments were repaired

in order to produce probabilistically consistent P-SROIQ KBs.

Due to the numerous probabilistically incoherent fragments of CADIAG-2 (see Sec-

tion 3.2.3) almost every fragment turns out to be probabilistically inconsistent. Recall

from definitions 2.15 and 2.16 that a satisfiable KB is probabilistically inconsistent

when the z-partition cannot be constructed, for example, if there are two conditional

constraints which do not tolerate each other. The following theorem explains why this

is often the case with CADIAG-2:

Theorem 7.1. Any probabilistically incoherent PTBox (T ,P) such that all constraints

have the same evidence concept C is probabilistically inconsistent.

Proof. (T ,P ∪ {(C|>)[1, 1]}) is unsatisfiable (by the definition of incoherence), so no

constraint in P is tolerated by P under T . In other words, there are no “most generic

constraints” in P so the PTBox is inconsistent.

Most of conflicting subsets reported in Section 3.2.3 involve only a single evidence

concept, so it can be concluded that their corresponding fragments are inconsistent.

It is substantially more interesting to evaluate the PTCon algorithms on consistent

PTBoxes because then it will have to fully construct the z-partition or the conflict

graph. Therefore we repaired all inconsistent fragments in a random way. Specifically,

a random minimal repair (i.e. a set of constraints which intersects with all conflicts)

was removed from each of the fragments. Obviously this may not be the best way of

repairing from the domain perspective but it is suitable for the evaluation purposes.

Finally, we have evaluated two PTCon algorithms on all 113 repaired fragments

of 150–250 constraints under the time limit of 30 minutes for each fragment. The

results are presented in Table 7.2. As you can see the optimized version of the original

algorithm was able to solve PTCon for far more fragments and has a better average

running time. Unsurprisingly the second algorithm has not been able to compute the

conflict graph for any fragment on which the first algorithm ran out of time.

However, the direct comparison was not the purpose of this evaluation since the con-

flict graph based algorithm performs substantially more work (as discussed in Section

5.3). The conflict graph structures that it computes can be further used for TLexEnt,

incremental updates to the z-partition, and more. In particular, given a computed con-

flict graph TLexEnt entailments for PTBox queries (see the next section) reduce to

5It would have been ideal to have all fragments of equal size but this is very hard, if not impossible,
to guarantee given that some symptoms are associated with many diseases while others to only one
disease. Another option, which we considered less interested, was to give up on logical properties of
fragments (see Section 3.2.3) and split CADIAG-2 onto random subsets of equal size.
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Table 7.2: Performance of PTBox consistency algorithms on fragments of CADIAG-2

Algorithm 1 Algorithm 2

Total running time (hr) 23.24 40.01

Average time per fragment (s) 845 952

Timeout rate 12.4% (14 out of 113) 38% (43 out of 113)

a series of TLogEnt entailments without the need to compute lexicographically min-

imal subsets. Furthermore, it does not stop at a point where a partial conflict graph

would be sufficient to prove generic inconsistency (i.e., inexistence of the z-partition)

but proceeds until conflict sets for all evidence concepts have been computed since they

could be used, for example, for repairing the inconsistency. Therefore, even though the

second algorithm solves the problem which is harder than necessary for consistency its

use may well be beneficial.

7.2.4 Lexicographic Entailment Evaluation

This section presents the final set of experiments aimed to evaluate performance of

the TLexEnt algorithm on fragments of CADIAG-2 KB. We use the same repaired

fragments as for the PTCon evaluation.

The evaluation of entailment is different from all above presented experiments since

it requires generation of queries in addition to knowledge bases. CADIAG-2, as a

medical system, enables us to focus on entailments that connect symptoms (or sets of

symptoms) to diseases and have a clear medical semantics: “compute the likelihood of

a certain disease given a set of symptoms.” Therefore query generation amounts to

picking symptoms and a disease from the signature of a fragment of CADIAG-2 KB.

We distinguish between PTBox and PABox entailments in this evaluation. For a

PTBox PT = (T ,P)) a PTBox query consists of a pair of SROIQ concepts C,D.

According to Definition 2.18 its answering requires to compute the minimum and the

maximum of Pr(D) subject to all lex-minimal models of PT that satisfy {(C|>)[1, 1]}.
On the other hand, in case of a PABox query for the same PTBox there is a set of

unconditional concepts F = {(Ci|>)[li, ui]}, a concept D, and all lex-minimal models

of PT must satisfy F . In other words, a PTBox TLexEnt query are a special case

of a PABox query where F = {(C|>)[1, 1]}. It is anticipated that the size of F will

have a negative impact on performance because it is harder to compute lex-minimal

subsets of PT (more subsets of P will be in conflict with F), so PABox queries should

be computationally harder.

The reason we still decided to evaluate PTBox entailments separately was to ex-

periment with their hardest representatives. More specifically, evidence concepts for
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PTBox queries are selected from those symptoms which occur in the top subset of the

z-partition, i.e., occur in the most specific conditional constraints. This makes it highly

likely that the set of lex-minimal subsets will be non-trivial, in other words, the lexico-

graphic reasoning will go through the conflict resolution process, which is something

that may not happen if the evidence concept is picked at random.6 PTBox entailments

are only evaluated on fragments of CADIAG-2 which have more than one subset in

the z-partition (i.e., there is some overriding of less specific constraints by more spe-

cific ones). On the other hand, PABox queries are generated by picking subsets of

symptoms randomly and are evaluated on every fragment. Each PABox query models

a situation when a patient comes with a set of symptoms and his or her chances of

having a particular disease need to be computed. Conclusion concepts (diseases) for

both types of queries are picked randomly as they have no impact on computation of

lex-minimal subsets.

We have reused z-partitions generated during the consistency evaluation for entail-

ment experiments. Pronto provides a functionality for storing and loading z-partitions

and conflict graphs which is useful when multiple queries are executed against a con-

stant KB. This means that the timing results below do not account for time spent on

generic consistency checks.

We first carried out the PTBox entailment evaluation on 72 repaired fragments of

CADIAG-2 with a non-trivial z-partition. Under the time limit of 30 minutes Pronto

was able to answer all 130 queries. The aggregated performance measures are presented

below in the left column of Table 7.3.

Next we conducted the PABox entailment evaluation on all 113 repaired fragments

of CADIAG-2. We varied the size of F between 1 and 5. All probability intervals in F
were set to [1, 1] since, first, this is likely to be a more common use case and, second,

it is computationally harder because more conflicts will arise during the lexicographic

reasoning.7 The results are presented in the right column of Table 7.3.

The results show that such measures as the number of conflicts and repairs vary far

more widely for PABox entailments which makes reasoning performance much less pre-

dictable. Also note that even for relatively small fragments of CADIAG-2 the number

of lex-minimal subsets can go above hundred. Therefore the Phase II of the TLexEnt

algorithm becomes a significant challenge since in general each subset requires solving

a TLogEnt instance.

Finally, Table 7.4 shows detailed information for TLexEnt queries where measures

are grouped by PABox size. It could be seen that the number of conflicts, the number

6It is not guaranteed though. It may be the case that all constraints with C as the evidence concept
are tolerated by all subsets in the z-partition, but this seems to be rare for CADIAG-2.

7For any set of conditional constraints G and any concept C, unsatisfiability of G ∪ {C|>)[l, 1]} for
l < 1 implies unsatisfiability of G ∪ {C|>)[1, 1]} but not vice versa.
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Table 7.3: Performance of the TLexEnt algorithm on PTBox and PABox queries against
fragments of CADIAG-2

PTBox queries PABox queries

Total number of queries 130 360

Total running time (hr) 10.8 73.1

Average time per entailment (s) 301 454

Time-out rate 0% 20.2% (73/3600)

Average number of conflicts 4.4 5.4

Max number of conflicts 22 105

Average number of repairs 4.8 8.7

Max number of repairs 22 233

Average number of lex-minimal subsets 1 2.9

Max number of lex-minimal subsets 2 192

of repairs, the average time and the time-out rate all rise with the size of PABox.

This data supports our initial hypothesis that PABox entailments tend to get harder

as the number of probabilistic assertions grows and that trend cannot be attributed

solely to the growing size of the KB. The real reason is the growing complexity of non-

monotonic lexicographic reasoning which goes through a more complicated conflict

resolution process (Phase I of TLexEnt). In other words, more contextual conflicts

between background, or PTBox, probabilistic knowledge and individual, or PABox,

probabilistic knowledge have to be resolved on average as the amount of the latter

increases. The last row, which shows somewhat fewer conflicts and repairs than the

previous, may appear surprising but it is likely to be due to two reasons: first, the

numbers are calculated only for queries on which the algorithm was able to terminate8

and second, the number of TLexEnt instances with 5 PABox constraints is relatively

small (because not all fragments of CADIAG-2 contain 5 or more distinct symptoms).

Our hypothesis, which is backed by the monotonically increasing time-out rate, is that

the results have been slightly skewed by some fragments of CADIAG-2 with unrelated

symptoms so that the average number of conflicts appeared to be fewer than expected.

At the same time most of the “typical” fragments with PABoxes of 5 constraints were

simply to hard for the TLexEnt algorithm to terminate.

Few general conclusions can be drawn from the experimental results described in

this Section. First, TLexEnt as a reasoning procedure is indeed much computationally

harder than PSAT (at least for the current implementations). This was expectable, of

course, but the experiments showed how big is the gap in scalability between PSAT

8Unfortunately, the current evaluation framework does not allow us to obtain any performance
measures when the reasoning algorithm is forced to terminate. We plan to address this issue in future
versions of Pronto and PREVAL-DL.
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Table 7.4: TLexEnt performance measures against the size of PABox

PABox Average number Average number Average Time-out
size of conflicts of repairs time (s) rate

1 1.5 1.6 293 0% (0/72)

2 2.4 3.5 433 11% (7/65)

3 5.9 11.5 500 26% (15/57)

4 11.1 17.9 577 47% (23/49)

5 9.3 13.9 547 64% (28/44)

and TLexEnt. Currently it appears to be about an order of magnitude for PTBox

queries and PABox queries for small PABoxes. Second, the results clearly indicate that

having scalable PSAT and TLogEnt implementations is not sufficient for scalable

lexicographic reasoning because the number of PSAT and TLogEnt, which depends

on the number of contextual conflicts and their overlap (conflict landscape), grows

super-polynomially. Finally, CADIAG-2 fragments exhibited substantial variability in

the number of conflicts which means that more evaluation data is required. The conflict

landscape is the key parameter for assessing practicality of the current (and likely

future) implementations so it is very important to determine it for realistic knowledge

bases. Fortunately, the current scalability limits, i.e. 150–250 probabilistic statements,

make P-SROIQ a feasible formalism for a range of applications (at least from the

computational point of view). Therefore more test cases can be produced which, in

turn, will provide a better picture of the conflict landscape and will be a source for

further optimizations.
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Chapter 8

Pronto: A Practical P-SROIQ
Reasoner

This chapter describes the design and architecture of Pronto, a probabilistic reasoner for

P-SROIQ which implements all optimized reasoning algorithms presented in Chapter

5. It is divided into three parts. First, Section 8.1 presents the system overview, the

current syntactic representation of probabilistic KBs and provides information about

using Pronto, either from the command line or via its application programming inter-

face (API). Section 8.2 describes the major architectural components of the reasoner.

Finally, Section 8.3 explains the main configuration options.

8.1 Pronto Overview

Pronto is an open source tool implemented in Java. For the sake of simplicity it

does not currently provide any graphical user interface. The only functionality that it

provides in addition to the P-SROIQ reasoning algorithms is loading and serialization

of probabilistic KBs.

8.1.1 Knowledge Base Syntax

The syntax of P-SROIQ is quite simple as it consists only of conditional constraints

(PTBox and PABox, see Section 2.3.1). Since an arbitrary OWL 2 ontology can act

as a classical part of a probabilistic KB as well as arbitrary concept expressions can

appear in conditional constraints, it is natural to use standard OWL syntaxes as a

basis for encoding probabilistic KBs. The current implementation of Pronto uses axiom

annotations to represent probability intervals for both kinds of constraints.

In OWL 2 annotations are the standard mechanism to associate additional informa-

tion with ontologies, axioms, and entities. Each annotation has an annotation property

201



202 CHAPTER 8. PRONTO: A PRACTICAL P-SROIQ REASONER

and an annotation value, where the former is an IRI (internationalized resource identi-

fier) specifying the type of the annotation and the latter can be an IRI, an anonymous

individual, or a literal.1 Examples of commonly used annotations are rdfs:label and

rdfs:comment which represent labels and comments attached to the ontology itself or

its entities and axioms.

We use the fixed annotation property pronto#certainty2 for probabilistic annota-

tions. The value is always a string literal which represents an interval in the format

‘‘lower bound;upper bound’’, where the bounds are string representations of float-

ing point numbers according to the standard lexical rules.3 PTBox constraints of the

form (D|C)[l, u] are encoded as probabilistically annotated TBox axioms C v D while

PABox axioms of the form (C|>)[l, u] for a as ABox axioms C(a) with the same kind

of annotation. Here are the examples of PTBox and PABox constraints respectively in

the OWL/XML syntax (observe that the first example contains a complex concept as

the conclusion in the conditional constraint):

<SubClassOf>

<Annotation>

<AnnotationProperty IRI = ‘ ‘ pronto#c e r t a i n t y ’ ’ />

<L i t e r a l>0 . 7 ; 0 . 9 5</ L i t e r a l>

</ Annotation>

<Class IRI = ‘ ‘ Bird ’ ’ />

<Objec t In t e r s e c t i onOf>

<Class IRI = ‘ ‘ Fly ingObject ’ ’ />

<Class IRI = ‘ ‘ WingedObject ’ ’ />

</ Obj e c t In t e r s e c t i onOf>

</SubClassOf>

<Cla s sAs s e r t i on>

<Annotation>

<AnnotationProperty IRI = ‘ ‘ pronto#c e r t a i n t y ’ ’ />

<L i t e r a l>0 . 7 ; 0 . 9 5</ L i t e r a l>

</ Annotation>

<Class IRI = ‘ ‘ Bird ’ ’ />

<NamedIndividual IRI = ‘ ‘Tweety ’ ’ />

</ C la s sAs s e r t i on>

A probabilistic KB can be represented as either a single OWL document in which

classical and probabilistic statements are mixed together or as an OWL document with

only probabilistic statements which imports one or more classical OWL ontologies. In

1The specification is available at http://www.w3.org/TR/owl2-syntax/#Annotations.
2The full IRI is http://clarkparsia.com/pronto#certainty.
3See, e.g., 3.2.4.1 in http://www.w3.org/TR/xmlschema-2#float.

http://clarkparsia.com/pronto#certainty
http://www.w3.org/TR/xmlschema-2#float
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the first case, once the document is parsed by an OWL parser, Pronto must separate

the classical and the probabilistic parts based on annotations. In the second case, the

classical part is simply the import closure of the main (i.e., probabilistic) ontology. The

second option is preferred because it highlights the separation between classical and

probabilistic knowledge and also enables the classical part to evolve as an independent

ontology.

Annotation-based encoding has several advantages, for example, there is no need

to extend low-level parsers because probabilistic KBs are represented as syntactically

well-formed OWL ontologies. A P-SROIQ parser can therefore work on a higher

level by analyzing annotations of already parsed axioms. Another advantage is that

all standard OWL syntaxes become available “for free” by virtue of already existing

parsers. Furthermore, Pronto does not even need to analyze which of them is being

used for a particular KB (this is done by one of available APIs, e.g., the OWL API4).

The disadvantages are also important. First, annotations are quite limited which

can create problems if P-SROIQ’s syntax is to be extended, for example, to support

probabilistic independence or qualitative constraints. Second, annotations have been

designed for adding information that has no formal semantics. Therefore, any applic-

ation that does not understand a particular annotation is free to drop it and interpret

the annotated axiom as normal. There is currently no way to indicate that a tool

should ignore axioms with annotations that it does not understand. As a consequence,

Pronto must remove probabilistically annotated axioms when assembling the classical

part since otherwise they will be treated as normal DL axioms. Such issues suggest that

in the future it might be beneficial to extend one of OWL syntaxes to accommodate

probabilities (that, of course, will require extensions to the parser).

8.1.2 Command Line Usage and API

Pronto provides very simple interfaces for users (via command line) and applications

(via an API). The main class for command line usage is com.clarkparsia.

pronto.Pronto while the main interface in the API is com.clarkparsia.

pronto.ProntoReasoner. The set of reasoning services accessible via both interfaces

is largely the same and the correspondence is presented in Table 8.1.

The API provides access to few other features, in particular, computing TLogEnt

and all minimal incoherent fragments.

4http://owlapi.sourceforge.net/

http://owlapi.sourceforge.net/


204 CHAPTER 8. PRONTO: A PRACTICAL P-SROIQ REASONER

Table 8.1: The correspondence between Pronto’s command line arguments and methods
of the API.

Reasoning Command line Method in ProntoReasoner

task arguments

PSAT -psat isSatisfiable(. . . )

PTCon -consistency isConsistent(...)

TLexEnt -entail subsumptionEntailment(...)

(D|C)[?, ?] <evidence IRI>

<conclusion IRI>

TLexEnt -entail membershipEntailment(...)

(C|>)o[?, ?] <individual IRI>

<conclusion IRI>

Diagnosis -unsat subsets computeMinUnsatisfiableSubsets(...)

8.2 Architecture

Pronto has a layered architecture, presented in Figure 8.1. Each layer has one or more

components which invoke other components at the same level or at the next lower

level. Lower level components never invoke upper level components but simply pass

the requested information upwards.

8.2.1 Linear Program Layer

The main function of the components at the lowermost level is managing linear pro-

grams which are optimized in order to solve PSAT and TLogEnt problems. As

mentioned earlier, these linear programs usually have exponentially many variables so

it is futile to try to represent them explicitly. The linear program manager (LPM) and

the column generator (CG) collectively implement the column generation algorithm

described in Section 5.1 while other components, namely the various LP/MILP solv-

ers and the DL reasoner provide the necessary optimization and SROIQ reasoning

services.

The LPM is responsible for producing the initial version of the restricted master

program (5.5), incorporating each new column into it, and checking the optimality (i.e.

stopping) criteria. It interacts with a simplex solver, for example GLPK or CPLEX,

which solves the current program (2.3) and returns its primal and dual solutions. The

latter is supplied to the CG component in order to guide its search for a new, improv-

ing column. The LPM is also responsible for stabilization of the linear program and

triggering early unsatisfiability detection checks (see Section 5.1.5).

The CG component implements Algorithm 4. It initializes and maintains the binary

linear program (5.4), accepts the dual values uT from the LPM, and generates new
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Figure 8.1: The layered architecture of Pronto

column candidates using a MILP solver. It then interacts with Pellet to check validity

of each candidate and, if found valid, passes it back to the LPM. This component

implements a number of optimizations described in Section 5.1.5 such as exploiting the

concept hierarchy, multiple columns generation, optimistic generation and so on.

Currently, Pellet is the only SROIQ reasoner that Pronto can interact with. How-

ever, this is planned to be refactored to introduce an abstract interface, e.g., OWL

API, between CG and the reasoner. This would allow us to use other reasoners, such

as FaCT++, HermiT, or RACER, as well as specialized reasoners for particular profiles

of OWL 2 or other logics.

8.2.2 Monotonic Reasoning Layer

The components on the next layer use the underlying linear programs to solve PSAT

and TLogEnt, and also analyze probabilistic KBs. The first two tasks are straightfor-

ward. They amount to checking if the generated linear program (5.5) has the optimal

objective value less than 1 (PSAT) or optimizing it in both directions (TLogEnt).

The analyzer implements algorithms 5 and 6 for solving the Diagnosis problem (see

Definition 5.5). This reasoning service is important by itself as well as for lexicographic

entailment. The current implementation closely interacts with the LPM to perform a
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trial-and-error relaxation of the linear program (5.5) in order to discover all irreducible

subprograms (IIS) which optimal value is less than 1 (they correspond to minimal

conflicts). A future implementation may transform the main program (5.5) into another

linear program which solutions correspond to the set of IISes of the original program

(see [66] for details).

8.2.3 Non-monotonic Reasoning Layer

The uppermost layer consists of a single component: the lexicographic reasoner. It

implements the TLexEnt algorithm 9 which relies on the KB analyzer and the TLo-

gEnt solver. TLexEnt is equivalent to solving TLogEnt for all lexicographically

minimal subsets of the KB [136]. The latter require the auxiliary data structure called

z-partition (see Section 2.3.2). The component implements two algorithms to com-

pute z-partition: the optimized Lukasiewicz’s algorithm 7 and the Diagnosis-driven

algorithm 8. Pronto provides configuration options to choose one of them depending

on the input KB.

8.3 Configuring Pronto

A few aspects of Pronto’s behavior can be controlled via constant members of the

class com.clarkparsia.pronto.Constants. Most importantly Pronto can be con-

figured to use different external packages for solving LP and MILP instances (options

Constants.LP SOLVER and Constants.MIP SOLVER). Each package should be wrapped

into a class implementing the common com.clarkparsia.pronto.lp.LPSolver and

com.clarkparsia.pronto.lp.MIPSolver interfaces. Currently Pronto supports two

such packages: the GNU Linear Programming Kit (GLPK) and IBL CPLEX. Other

configuration options can be used to set the probability threshold to test coherence (op-

tion Constants.COHERENCE THRESHOLD), switch between the two PTCon algorithms

(Algorithm 7 and Algorithm 8, option Constants.USE CG ZPARTITIONER), and switch

on/off column generation for PSAT (option Constants.PSAT SOLVER CLASS).

In the future, we plan to improve on current configuration capabilities in several

directions. First, Pronto can be made to work with different SROIQ reasoners, not

just Pellet, analogously to LP/MILP solvers. Second, other aspects, e.g., main optim-

izations of the PSAT algorithm, should also be accessible via external configuration.

Finally, we intend to provide a more user friendly interface for configuration.



Chapter 9

Conclusion

This chapter concludes the thesis with a summary of the work and results presented in

the previous chapters. It discusses significance of this thesis’ contributions in the area

of managing uncertainty in DL ontologies, reviews the open issues, and finally lists a

few directions for future research in the area.

9.1 Summary of Contributions

Our main contributions can be classified into three major categories. First, we have

developed and evaluated novel P-SROIQ reasoning algorithms which can be used

for probabilistic ontologies of realistic size. The second line of work was dedicated

to the analysis of theoretical properties of P-SROIQ. Third, we have investigated

applicability of the logic to modeling knowledge in three different areas (and have been

able to solve the long standing problem of finding conflicts in large medical system).

Our major conclusion is that P-SROIQ is a computationally practical probabilistic

language. Furthermore, while we have identified a set of important limitations of P-

SROIQ from a modeling perspective, the logic proved suitable for probabilistic analysis

of various knowledge bases with uncertainty.

9.1.1 Practical Reasoning Algorithms and Evaluation

The importance of practical reasoning algorithms is hard to overestimate for KR form-

alisms. Before our work on P-SROIQ there existed only proof-of-concept implement-

ations which had not been successfully applied to probabilistic KBs with more than

10—20 probabilistic statements. We pushed the scalability limit two orders of mag-

nitude forward.

207
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Column Generation for PSAT/TLogEnt The central part of this thesis, presen-

ted in Section 5.1, is the development of a new hybrid iterative procedure for solv-

ing probabilistic satisfiability (PSAT) (see algorithm 3) and tight logical entailment

(TLogEnt) problems (see algorithm 4). Although column generation has been applied

before to propositional PSAT, our work, to the best of our knowledge, is the first to

employ it in non-propositional, more precisely DL, settings.

The key idea which enabled column generation for supra-propositional PSAT was

to separate SROIQ reasoning from mathematical optimization. The latter is used

to generate an improving column candidate, that is the one which moves the PSAT

linear program (5.5) closer to optimality, while the former is necessary for checking

its validity with respect to the classical knowledge. That separation, which makes

the procedure hybrid, is not mandatory for propositional PSAT because propositional

reasoning is reducible to MILP (mixed integer linear programming) [84] but is essential

for P-SROIQ. Another important difference from propositional PSAT solvers is that

our algorithm iteratively computes constraints that define the search space for valid

columns. Iterativity helps to ignore irrelevant classical formulae since the algorithm

may terminate before they first play any role in the column generation process.

We performed an extensive evaluation of our PSAT algorithm on both synthetic

and naturally occurring KBs (chapters 6 and 7 respectively). The primary goal of

the experiments was to demonstrate that the algorithm scales robustly up to 1000

conditional constraints and beyond. The main synthetic experiments are the following:

• Propositional PSAT. The first series of experiments showed that despite its hy-

bridness and generality (with respect to the expressivity of the classical part)

the algorithm efficiently deals with propositional KBs. In fact, its performance

compares favorably to that of propositional PSAT solvers, especially in relation

to the number of generated columns. Therefore, the hybrid approach is a useful

technique even in the purely propositional case, especially, if Pellet was substi-

tuted by a specialized propositional SAT solver. The results are to some extent

due to the effectiveness of the propositional absorption optimization which allows

translation of propositional axioms into linear inequalities.

• Bayesian PSAT. Next, we evaluated the algorithm on approximate translations

of Bayesian networks into P-SROIQ.1 Such translation can be important for

validation of Bayesian networks using terms in context of OWL ontologies. The

experiment showed two facts: i) the algorithm can handle networks of approxim-

ately 100 nodes and 180—250 links and ii) it is insensitive to tree width of the

networks, which is in sharp contrast with Bayesian inference algorithms.

1The translation is approximate because it neglects independence constraints.
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• Non-propositional PSAT. For the final experiment we selected seven real OWL on-

tologies and augmented them with randomly generated probabilistic statements.

The experiment shows that the algorithm scales robustly with respect to such

parameters as the number of constraints, size of the signature, and the proportion

of unconditional statements. Finally, we demonstrated that it takes substantially

less time to prove probabilistic unsatisfiability than satisfiability.

For naturally occurring KBs we used uncertain ontology alignments produced in

the Anatomy track of the Ontology Alignment Evaluation Initiative (OAEI) contest in

2009. The alignments were formalized as P-SROIQ KBs as explained in Section 3.3.

The resulting KBs proved to be especially hard due to large probabilistic signatures

and the use of complex concepts in conditional constraints. However, Pronto was still

able to validate alignments of up to 750 mappings produced by six different tools.

In addition to scalability with respect to the number of probabilistic statements,

the PSAT algorithm exhibits relative insensitivity to the amount of the classical know-

ledge. This is especially visible in experiments with large real ontologies and ontology

alignments. Thus, it is fair to say that P-SROIQ (and Pronto) allow modelers to

take any OWL DL ontology and enrich it with probabilistic knowledge. The only re-

quirement is that modern DL reasoners, e.g., Pellet, should be capable of performing

classical reasoning on the ontology.2

Diagnosis, Consistency, and Lexicographic Entailment In Section 5.2 we in-

vestigated a new reasoning task for P-SROIQ, namely, the Diagnosis problem, to

compute all minimal unsatisfiable subsets of probabilistic statements in a unsatisfiable

KB. It is useful on its own as well as for analyzing probabilistic incoherence, computing

z-partition, and lexicographic minimal sets.

The problem is reducible to a number of PSAT tests, and we developed an ef-

ficient algorithm firmly based on certain properties of linear programs (see Theorem

5.2). Our empirical evaluation is based on fragments of the CADIAG-2 KB, many of

which are unsatisfiable. We have not done a synthetic evaluation because the number

and the overlap between conflicts in realistic KBs—the major impact factors for the

performance—remain unclear at this point and so is the methodology for generating

test data. Not surprisingly Diagnosis is practically harder than PSAT but our al-

gorithm can still solve it for fragments of CADIAG-2 (including those with numerous

conflicts) of approximately 160 statements.

The other developed algorithms are the two z-partition algorithms and the TLex-

Ent algorithm. The latter has especially strong advantages comparing to the naive

2A classical example of an ontology that is (as of 2010) too hard for Pellet is the Family ontology:
www.cs.man.ac.uk/~stevensr/ontology/family.rdf.owl

www.cs.man.ac.uk/~stevensr/ontology/family.rdf.owl
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Lukasiewicz algorithm (see [136]) because of its direct, Diagnosis-driven search for lex-

icographically minimal sets. All three algorithms have been evaluated on fragments of

CADIAG-2 and demonstrated scalability to over a hundred of probabilistic statements.

We must note, however, that the performance is less predictable than that of PSAT

because relatively few non-overlapping conflicts can cause them to run an exponential

number of PSAT tests. This effect is especially visible in the TLexEnt evaluation on

PABoxes of growing size (see Table 7.4).

9.1.2 Analysis of P-SROIQ

While P-SROIQ offers smooth integration with OWL it has few restrictions which

seem strange at first, namely, the separation of classical and probabilistic individuals

and the limited support of probabilistic role assertions. No previous work offered a clear

explanation of such limitations. Our first contribution to this issue was the translation

of P-SROIQ into a better investigated first-order logic of probability (FOPL) [76,

12]. We showed that the monotonic fragment of P-SROIQ correspond to a fragment

of FOPL with particular, subjective semantics known as FOPLII. Furthermore, the

translation allowed us to view P-SROIQ KBs as standard sets of FOPL formulae

rather than a collection of theories. Applying what is known about FOPLII led us to

the following conclusions:

• PTBox constraints in P-SROIQ, which may seem as an ideal tool for representing

statistical relationships, do not have statistical nature. Instead, they are most

reasonably interpreted as beliefs about random individuals.

• P-SROIQ does not support probabilistic relational structures because its notion

of possible world is effectively propositional. This is highlighted by the fact that

our translation of an arbitrary P-SROIQ KB i) uses only ground probabilistic

formulas and ii) only a single individual appears in those formulas. In other

words, not only P-SROIQ statements are degrees of belief but also beliefs about

a single, yet unnamed, individual.

• Relational structures cannot be supported without substantial changes in P-

SROIQ’s semantics, direct inference mechanism, and inference methods.

• P-SROIQ inherits some inferential weakness of FOPLII due to the cautiousness

of purely probabilistic reasoning.

This is not meant to claim that P-SROIQ is useless. It can be seen as a pragmatic

approximation of FOPLII which trades certain semantic power for feasibility of reason-

ing, including non-monotonic reasoning. However, it is important that the limitations

are clear and understandable to modelers.
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9.1.3 Applicability of P-SROIQ

We studied the prospects of applying P-SROIQ to various problems to assess its utility

given the above limitations. First, in Section 3.1 we looked at the breast cancer risk

assessment problem because first, there already exist rich and useful OWL ontologies

in that domain (e.g., the NCI Thesaurus) and second, the domain involves a lot of

uncertain information. We argues that while P-SROIQ allows for adding uncertain

relationships to those ontologies its inferential weakness poses substantial challenges to

using it either as a risk prediction model. However, we pointed out that it might be

useful for augmenting the general theory of breast cancer, in particular, for reasoning

about research findings.

Second, we applied P-SROIQ to the problem of finding inconsistencies in CADIAG-

2—a large rule-based medical expert system (see Section 3.2). Given the number of

rules and the presence of confidence values the full analysis of its consistency has been

a long standing unsolved problem. We translated CADIAG-2 KB into P-SROIQ,

proved the faithfulness of the translation, and formulated the task as an instance of

the Diagnosis problem. Finally, after splitting the KB onto smaller fragments we have

been able to extract and classify all minimal inconsistent sets of rules.

Finally, we applied Pronto to the problem of validating uncertain ontology align-

ments. P-SROIQ is ideally suited for this task because i) schema (i.e., TBox) align-

ments typically do not involve mapping individuals, ii) uncertain relations (e.g., equi-

valence) between concepts are easily captured in conditional constraints, and iii) it is

vital that the formalism allows for working with large and complex OWL ontologies.

Our aim was mostly to show that our algorithms can scale to large mappings. We did

so in Section 7.1 by using the data from a recent ontology alignment evaluation contest.

Each of the presented studies required substantial domain-specific investigation of

modeling with conditional constraints. This includes dealing with confidence regions in

BCRA, equisatisfiability and decomposition of CADIAG-2, and comparison of probab-

ilistic validation of mappings to earlier classical approaches in case of ontology align-

ments. In these studies P-SROIQ has demonstrated its usefulness as an underlying

formalism but cannot yet be considered a user-friendly tool for end modelers.

9.2 Challenges and Future Directions

The work presented in this thesis can be extended in both theoretical and practical

directions. The former involves addressing the current limitations of P-SROIQ while

the latter may focus on further enhancements of scalability and modeling relevant

domain problems in P-SROIQ.
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Modeling In our view, future work on modeling is absolutely essential for providing

input on what extensions are the most desirable and what computational issues are

the most prohibitive. We believe that scalability of our algorithms make P-SROIQ
a computationally feasible formalism for modeling experiments. One particular option

is to look at some previously formulated challenge problems for probabilistic languages

and try to formalize them in P-SROIQ.3 Another possibility is to consider the use

cases for uncertainty in Health Care and Life Sciences.4

Language Extensions Based on our current modeling experience we believe the fol-

lowing enhancements are desirable if P-SROIQ is to become a full-fledged probabilistic

ontology language:

Relational Structures: Supporting probabilistic role assertions is a must for a prob-

abilistic ontology language but unfortunately it would require deep changes to P-

SROIQ’s notion of possible worlds and thus semantics. They should become richer

approximations of SROIQ interpretations rather than simple concept types. Un-

fortunately that would mean that either we give up on combining different kinds of

probabilities and concentrate solely on beliefs (i.e., analogously to [139]) or will require

a semantic separation between statistics and beliefs, i.e., a Type III-like model theory.

The latter, of course, will require a new direct inference mechanism (see Section 2.2.2).

We presented some preliminary work in this direction in [113].

Independence: “A serious weakness of probabilistic logic is that it omits what is

probably our richest source of probabilistic knowledge: the independence of events.”

[5]. Adding independence assertions in P-SROIQ may have a range of benefits ranging

from more accurate modeling and strengthened inference to a more modular knowledge

representation [37]. On the other hand, this would lead to non-linear systems of in-

equalities for PSAT, but there are methods, such as Benders decomposition, to adapt

column generation to handle those [5].

Extra Probabilistic Features: Purely probabilistic deduction is often too weak. For

example, knowing probabilities of events A and B one cannot uniquely determine the

probability of AtB. Extra machinery can be employed to overcome that issue, known

as inferential vacuity. One of them is the principle of maximum entropy that plays

a key role in Objective Bayesianism [189]. Other features might include support of

abductive or inductive probabilistic reasoning.

Further Scalability Improvements Finally, we briefly mention a couple of ways

to further improve the current reasoning algorithms:

3One such collection of challenge problems, maintained by Manfred Jaeger, can be found at
http://www.cs.aau.dk/~jaeger/plsystems/challenges.html

4http://www.w3.org/wiki/HCLS/UncertaintyUseCases

http://www.cs.aau.dk/~jaeger/plsystems/challenges.html
http://www.w3.org/wiki/HCLS/UncertaintyUseCases
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Coherence checking: Pronto requires a better probabilistic coherence testing al-

gorithm which does not depend on the chosen lower probability. We are especially

interested in algorithms, which do not require solving sequences of linear programs.

One such technique was described in [36] but its practical implementability is yet to be

investigated.

Probabilistic Modularity: As pointed out in Section 6.6 a key to more scalable PSAT

is a generic procedure for partitioning probabilistic KBs (an ad hoc method was very

very successful for CADIAG-2). This can be either a high-level procedure for separating

conditional constraints or a lower-level algorithm for partitioning linear programs, e.g.,

Dantzig-Wolfe decomposition [42].

Intelligent Diagnosis: The Diagnosis algorithm can be improved by using methods

for discovering all irreducible infeasible subsystems in one go [66, 161]. However, to the

best of our knowledge, they have never been made to work with column generation so

their practical benefits and potential pitfalls are unknown.

Each of these extensions may turn out to be a significant challenge from both

theoretical and practical points of view. However, we believe that a set of scalable

core algorithms, described experience with advanced mathematical programming tech-

niques, and a flexible evaluation framework collectively lay out solid foundations for

future developments and experimentation.
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Appendix A

Proofs of Theorems

Proof of Theorem 3.3 We first prove the following claim: Let ΦM be a signature

of the mapping and IM be a set of all realizable concept types of T over ΦM. Then

there exists a probabilistic model Pr of PT such that Pr(I) > 0 for every I ∈ IM .

We prove that in a constructive way for t = tlcastano (it can be done analogously

for other probabilistic translation functions proposed in Section 3.3.2). The set IM is

finite so let Pru be a uniform probability distribution over IM. Let us show that Pr

is a model of all conditional constraints of {t(m)|m ∈ M}. Assume it is not a model

of some constraint (D|C)[n, 1]. This means that Pru(D|C) < 1. Expanding the left

handside we get:

∑
I|=CuD

Pru(I) <
∑
I|=C

Pru(I), (A.1)

∑
I|=CuD

Pru(I) <
∑

I|=Cu¬D

Pru(I) +
∑

I|=CuD

Pru(I),

∑
I|=Cu¬D

Pru(I) > 0

However, this contradicts the way Pru was constructed because T must contain the

axiom C v D (otherwise we would not have the constraint (D|C)[n, 1]). Therefore all

concept types containing the pair C,¬D are not realizable. Thus Pru is a model of PT

and the claim is true.

Now suppose that PT |= (X|>)[0, 0] for some X ∈ ΦM but T 2 X v ⊥. In that

case there have to exist a realizable concept type I ∈ IM such that X ∈ I. According to

the above claim there have to exist a probabilistic model Pr of PT such that Pr(I) > 0.

But since X ∈ I it means that PT cannot entail (X|>)[0, 0] because Pru is a model of

PT and not a model of (X|>)[0, 0].
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Proof of Theorem 5.2 When the column generation process terminates the final

RMP has the form :

max z = 1xB

s.t. BxB ≤ b

x ≥ 0

and its dual is:

min bTu

s.t. BTu ≤ 1

u ≥ 0

The strong duality theorem of Linear Programming [32] states that 1Tx∗ = bTu∗ <

0, where x∗ and u∗ stand for final optimal solutions of RMP and its dual respectively.

Now, consider BI , i.e., the matrix of the reduced final RMP after dropping those rows

from B which correspond to zero components of u∗. The reduced RMP is:

max z = 1xB

s.t. BIxB ≤ bI
xB ≥ 0

and its dual is:

min bTI uI

s.t. BT
I uI ≤ 1

uI ≥ 0

Now consider u∗I . It is a solution to the reduced dual of the final RMP and its

objective value is bTI u∗I is equal to bT u∗ so is less than 1. Furthermore, it is the case

that NT
I u∗I < 1 (since NT u∗ < 1) so it is a feasible solution to the dual of the reduced

LP with all columns (the full LP). Therefore, from the strong duality theorem it follows

that the optimal value of the reduced full LP is strictly less than 1.
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enschmidt, O. Sváb-Zamazal, V. Svátek, C. T. dos Santos, G. A. Vouros, and
S. Wang. Results of the ontology alignment evaluation initiative 2009. In Onto-
logy Matching, 2009.

[54] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, 2007.

[55] M. Ewertz. Risk of breast cancer in relation to social factors in Denmark. Acta
Oncologica, 27(6):787–792, 1988.



BIBLIOGRAPHY 221

[56] A. Fijany and F. Vatan. New approaches for efficient solution of hitting set prob-
lem. In Winter International Symposium on Information and Communication
Technologies. Trinity College Dublin, 2004.

[57] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic rela-
tional models. In International Joint Conference on Artificial Intelligence, pages
1300–1309, 1999.

[58] A. M. Frisch and P. Haddawy. Anytime deduction for probabilistic logic. Artificial
Intelligence, 69:93–122, 1994.

[59] H. Gaifman. Concerning measures in first order calculi. Israel Journal of Math-
ematics, 2:1–18, 1964.

[60] M. H. Gail, L. A. Brinton, D. P. Byar, D. K. Corle, S. B. Green, C. Schairer,
and J. J. Mulvihill. Projecting individualized probabilities of developing breast
cancer for white females who are being examined annually. Journal of the National
Cancer Institute, 81(25):1879–1886, 1989.

[61] H. Geffner and J. Pearl. A framework for reasoning with defaults. In H. Ky-
burg, R. Loui, and G. Carlson, editors, Knowledge Representation and Defeasible
Reasoning, pages 69–87. Kluwer Academic Publishers, 1990.

[62] G. F. Georgakopoulos, D. J. Kavvadias, and C. H. Papadimitriou. Probabilistic
satisfiability. Journal of Complexity, 4(1):1–11, 1988.

[63] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar. Probabilistic
relational models. In L. Getoor and B. Taskar, editors, Introduction to Statistical
Relational Learning. MIT Press, 2007.

[64] G. D. Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive de-
scription logics. In International Conference on Principles of Knowledge Repres-
entation and Reasoning, pages 316–327, 1996.

[65] R. Giugno and T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the semantic web. In European Confer-
ence on Logics in Artificial Intelligence, pages 86–97, 2002.

[66] J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequal-
ities. INFORMS Journal on Computing, 2(1):61–63, 1990.

[67] J. Golbeck, G. Fragoso, F. W. Hartel, J. A. Hendler, J. Oberthaler, and B. Par-
sia. The national cancer institute’s thésaurus and ontology. Journal of Web
Semantics, 1(1):75–80, 2003.

[68] M. Goldszmidt and J. Pearl. On the consistency of defeasible databases. Artificial
Intelligence, 52(2):121–149, 1992.

[69] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies:
Theory and practice. Journal of Artificial Intelligence Research, 31:273–318, 2008.



222 BIBLIOGRAPHY
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