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Abstract  
 

 

Submitted by Alaa Althubaiti for the degree of Doctor of Philosophy at  

The University of Manchester, March 22, 2011 

 

DEPENDENT BERKSON ERRORS IN LINEAR AND NONLINEAR MODELS  

 

Often predictor variables in regression models are measured with errors. This is known 

as an errors-in-variables (EIV) problem. The statistical analysis of the data ignoring the EIV is 

called naive analysis. As a result, the variance of the errors is underestimated. This affects any 

statistical inference that may subsequently be made about the model parameter estimates or 

the response prediction. In some cases (e.g. quadratic polynomial models) the parameter 

estimates and the model prediction is biased. The errors can occur in different ways. These 

errors are mainly classified into classical (i.e. occur in observational studies) or Berkson type 

(i.e. occur in designed experiments).  

This thesis addresses the problem of the Berkson EIV and their effect on the statistical 

analysis of data fitted using linear and nonlinear models. In particular, the case when the errors 

are dependent and have heterogeneous variance is studied. Both analytical and empirical tools 

have been used to develop new approaches for dealing with this type of errors.  

Two different scenarios are considered: mixture experiments where the model to be 

estimated is linear in the parameters and the EIV are correlated; and bioassay dose-response 

studies where the model to be estimated is nonlinear. EIV following Gaussian distribution, as 

well as the much less investigated non-Gaussian distribution are examined.  

When the errors occur in mixture experiments both analytical and empirical results 

showed that the naive analysis produces biased and inefficient estimators for the model 

parameters. The magnitude of the bias depends on the variances of the EIV for the mixture 

components, the model and its parameters. First and second Scheffé polynomials are used to 

fit the response. To adjust for the EIV, four different approaches of corrections are proposed. 

The statistical properties of the estimators are investigated, and compared with the naive 

analysis estimators. Analytical and empirical weighted regression calibration methods are 

found to give the most accurate and efficient results. The approaches require the error variance 

to be known prior to the analysis. The robustness of the adjusted approaches for misspecified 

variance was also examined.  

 Different error scenarios of EIV in the settings of concentrations in bioassay dose-

response studies are studied (i.e. dependent and independent errors). The scenarios are 

motivated by real-life examples. Comparisons between the effects of the errors are illustrated 

using the 4-prameter Hill model. The results show that when the errors are non-Gaussian, the 

nonlinear least squares approach produces biased and inefficient estimators. An extension of 

the well-known simulation-extrapolation (SIMEX) method is developed for the case when the 

EIV lead to biased model parameters estimators, and is called Berkson simulation-

extrapolation (BSIMEX). BSIMEX requires the error variance to be known. The robustness of 

the adjusted approach for misspecified variance is examined. Moreover, it is shown that 

BSIMEX performs better than the regression calibration methods when the EIV are 

dependent, while the regression calibration methods are preferable when the EIV are 

independent.  
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1 An Overview and Introduction  
 

 

 

 

 

 

A statistical regression model can be described as a tool for analyzing and measuring the 

relationship between two or more variables. There are two types of variables in a regression 

model, the type whose value is influenced, which are called dependent or response variables, 

and the type which do the influencing, which are called independent, regressor or predictor 

variables. The relation between the response and the predictor variables can be described as a 

system that depends on an input and an output (see for example Figure 1.1), or by ( )y f x= , 

where y  is the output that depends on the input x .  

 

Figure 1.1 The relation between a response and an input 

 

                                                      

                 Input                                                              Response 

 

The problem of measurement errors can occur in both variables. However, most of the 

regression methods assume that the response is measured with errors and the predictor 

variable is error free. Therefore, when errors occur in the predictor variable, these methods’ 

assumptions are no longer valid. Usually, studies that investigate such errors are referred to as 

studies of errors-in-variables (EIV).  

  

System               
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When investigating the problem of EIV, the following aspects need to be considered: the 

possible sources of errors in the study; the error structure; and the procedures to be taken to 

reduce or eliminate the effects of the errors. 

In this work, we are interested in the problem of EIV. We believe that, in practice, it is 

unlikely for a measurement to be taken without an error, which gives us a strong motivation to 

study the problem.  

The effects of EIV on the analysis of data should not be ignored. These effects could be 

serious as they generally cause increased variability and bias. The effects are also likely to 

vary according to the type of statistical response model (e.g. linear or nonlinear in the 

parameters) used to fit the data.  

Another factor which influences these effects is the type of study: observational or 

designed. In an observational study, the values of some or all of the predictor variables are 

measured, but are not chosen or set. In a designed study, these values are set by the 

experimenter in such a way that statistical analysis can be used to draw conclusions on the 

required point of interest.  

Each of these studies, for the most part encounters a specific type of EIV. In 

observational studies, a classical EIV tends to occur, while, in designed studies, a Berkson 

error is most likely to occur. However, some observational studies have also examined the 

assumption that both classical and Berkson errors are present in the data. An example of this is 

when the true value of a certain individual is estimated with errors, based on observed values 

from previous knowledge or from other individuals in the study. The estimated value might be 

the average of several observations (see Küchenhoff et al., 2007). More details about classical 

and Berkson errors will be given in Chapter 2. 

The literature regarding studies of EIV focuses on the case where the EIV are of the 

classical, independent and homogeneous type. Cases in which the errors have a complicated 
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structure, such as dependent errors, or when the errors are of the Berkson type, are not 

sufficiently addressed, maybe as a result of their inherently complicated effects on the results.  

Therefore, to distinguish our work from what has previously been presented in the 

literature, we mainly study the effect of dependent and heterogeneous Berkson errors on the 

analysis of data in experimental design settings. Moreover, to include a variety of response 

models in the study, we examine the effects on both linear and nonlinear response models. 

This will also help us to derive general results and conclusions. Correction approaches for 

these effects are proposed. The effects and the appropriate correction methods are tested using 

computer simulation programs written using the R CRAN software package (R, 2000), and 

run on a computer with an Intel Dual Core processor, 2.13 GHz, 2.00 GB RAM under the 

Microsoft Windows XP professional operating system.  

In general, the novelty of this work lies in the exploration of error structures that have 

not been examined before. These structures are supported by practical examples to show the 

possible domains in which they could occur. In addition, new correction approaches for the 

Berkson EIV are proposed, by modifying some of the well-known techniques used to correct 

for classical EIV. The layout of the remainder of this dissertation is as follows.  

In Chapter 2 we introduce the basic concepts related to both classical and Berkson EIV. 

These concepts include the possible sources of errors, error structures, and the effects of the 

errors on the analysis of observational and designed studies. A review of well-known 

procedures that can be taken to reduce or eliminate the effects of these errors is also presented.  

Chapter 3 provides a comprehensive description of the effects of errors on linear 

response models used to fit data in mixture experiments. It presents novel analytic and 

empirical results regarding the effects of EIV on mixture experiments. Using the delta method, 

we show that ignoring the errors in the analysis leads to approximately biased and inefficient 

estimates of the model parameters. The response models are also found to be approximately 
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biased and to include heterogeneous variance. These results are verified using simulation 

examples.  

Correction approaches are then proposed in the spirit of the well-known regression 

calibration method. The new approaches provide a direct and simple way to analyze the data 

from mixture experiments while taking into account EIV. Moreover, we propose a method to 

enhance the process of manufacturing mixtures when EIV cannot be avoided, which can be 

used to increase the quality of the manufactured mixtures.  

Chapter 4 studies the effect of EIV on nonlinear models. We choose a model often used 

in practice to fit the dose-response relation in bioassay studies. To examine the effects of 

different error structures, we conduct a large number of simulation studies. For example, we 

investigate the effects of non-Gaussian and Gaussian errors on the analysis of data. We also 

study the effects of independently distributed EIV. The results show that the severity of the 

effect of ignoring the errors in the analysis depends on the error assumptions.  

When the errors are non-Gaussian, the nonlinear least squares estimators are found to be 

biased and inefficient. Therefore, we propose a correction approach (BSIMEX) to obtain 

approximately unbiased and efficient estimates of model parameters. The new approach is a 

modification of the well-known simulation-extrapolation method. It is shown that BSIMEX 

performs better than regression calibration approaches when the EIV are dependent, while the 

latter are preferable when the EIV are independent. 

 The proposed approaches of analysis of EIV models for dependent Berkson errors in 

Chapters 3 and 4 require some knowledge about the distributional properties of the error 

components, which need to be specified prior to the experiment. We also investigate the 

robustness of the approaches when this knowledge is not accurate. 

Chapter 5 presents a summary of the work detailed in Chapters 3 and 4, and finishes with 

general steps for possible future work in the area. 
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1.1 Linear Models 

 

 Assume a regression model with q independent variables, each of which has n 

observations. The general form of the regression model is given by 

                                  ( , )t t ty f ε= +x β ,     1,2,...,i q= ,   1, 2,...,t n=   (1.1) 

 

In (1.1), the response ty  depends on two parts, the deterministic part and the stochastic part. 

The deterministic part is represented by the function ( , )tf x β , which is a function of the 

vector of predictor variables 1 2( , ,..., )t t t qtx x x=x  and the parameters vector β . The stochastic 

part is represented by the regression errors tε , 1, 2,...,t n= . The error term is defined as the 

amount of deviation in ty  from its expected value, where tε  is usually assumed to be a set of 

independent and identically normally distributed random variables with mean zero and 

constant variance 2

εσ . 

The function ( , )tf x β  in (1.1) could be linear or nonlinear in parameters. If it is linear, 

the model is termed a linear response model. As an example, assume that we have n  

observations, denoted by ty , 1, 2,...,t n=  and that the errors tε  are additive. Then, a simple 

linear model can be given by 

0 1t t ty xβ β ε= + + , (1.2) 

 

where the parameters 0β  and 1β  in the model are called regression coefficients. The 

parameter 1β  is the slope of the regression line. It indicates the amount of change in y  that 

happens as a result of a unit change in x . The parameter 0β  is the intercept of the line.  

When the response variable depends on several explanatory variables, the model is 

called a multiple linear regression. For example, consider a model with two predictors 1x  and 

2x . The model may have the form, 0 1 1 2 2t t t ty x xβ β β ε= + + + . 
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The objective of many studies is to develop appropriate models in order to estimate and 

make inferences about the unknown parameters. These parameters are estimated using a 

sample of n observations. There are different ways to estimate the parameters, such as, the 

ordinary least squares (OLS) method (Draper & Smith, 1981), which depends on minimizing 

the error sum of squares. This minimum is found by differentiating the error sum of squares 

with respect to the model parameters, and equating these derivatives to zero, which gives the 

estimating equations. The values of the parameters that satisfy these equations are known as 

the least squares estimates. The variance of the OLS estimator is considered to be the 

minimum variance among all the estimates, and if the model is correct, the least squares 

estimators are asymptotically unbiased and efficient estimators. The estimators can then be 

used to predict the values of the response given selected observations of the predictor 

variables.  

The OLS approaches is useful to be used when the assumption of constant response error 

variance holds. However, this assumption may not be valid in many practical situations. In this 

case, an alternative method, weighted least squares (WLS) (Draper & Smith, 1981) can be 

used. The method is similar in application to the OLS approach but only the response variance 

at each observation is assumed to be known (or accurately estimated), and used in the analysis. 

Both OLS and WLS will be used in Chapter 3 as methods of analysis, and both are available 

in the R software package. However, we only use the built-in function ‘lm’ in R to carry out 

the OLS method. For WLS, we develop suitable code for the case under study.  

Other approaches can also be used for the estimation, such as maximum likelihood 

estimation (MLE) (Kendall & Stuart, 1961). The basic idea of MLE is to write down the 

likelihood function, which is the probability of obtaining the sample data given the probability 

distribution model. This function contains the unknown model parameters. The values of the 

parameters that maximize the likelihood function are the maximum likelihood estimators.   
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1.2 Nonlinear Models 
 

Nonlinear models are often used when the parameters of the model have a known 

interpretation, that is, each parameter in the nonlinear model explains a certain mechanism in 

the experiment under study. The general form of the nonlinear model can be interpreted as 

(1.1) where the function ( , )tf x β  is nonlinear in both tx  and β . These models have several 

advantages over linear models. For example, the number of parameters in nonlinear models is 

usually less than that in linear models (Atkinson & Donev, 1992). Therefore, nonlinear models 

are considered to be more suitable than linear models for practical situations. However, 

estimating their parameters can be a complex procedure.  

Consider a response model with p parameters. The value of the error sum of squares is 

given by  

2

1

[ ( , )]
n

t t

t

y fη
=

= −∑ x β .  

 

Now to establish the least squares estimates of jβ , pj ,,2,1 …= , η  is differentiated with 

respect to jβ , for pj ,,2,1 …= . Then, the estimating equations are obtained by equating 

jη β∂ ∂  to zero, and jβ̂  are the least squares estimates that satisfy these equations 

                  
1 ˆ

( , )
[ ( , )] 0

n
t

t t

tj j

f
y f

β β

η
β β= =

∂∂
= − =

∂ ∂∑
x β

x β ,       pj ,,2,1 …= .   (1.4) 

 

Let ( , )∇ x β  denote the pn×  matrix whose (t, j) element is ( , )t jf β∂ ∂x β , thus the 

estimation equations (1.4) become 

     ( , ) ( , ) ( , )T T∇ = ∇x β y x β f x β ,   (1.5) 

 

where equation (1.5) is the same as the normal equations obtained in the OLS method. 

However, both ∇  and ( , )f x β  depend on the unknown model parameters β . Hence, unlike in 

the linear least squares method, there is no analytical solution for the estimators. To find 
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approximate solutions, iteration techniques are used to estimate the parameters and to obtain 

the nonlinear least squares (NLS) estimates. An iteration requires the selection of appropriate 

starting values, denoted by 0β . The main problem that can occur is 0β  converging to a false 

value or not converging at all (non-convergence). Such problems can happen for a variety of 

reasons. For example, 0β  may not have been chosen well in the beginning, and thus could be 

too far away from the true value, the data may contain outliers, or the model may not be 

appropriate for the data, to mention just a few possible reasons (Ratkowsky, 1990). The initial 

value 0β  can be chosen either by plotting the relationship between the response and the 

regressor or by reasonable guess.  

Different iteration techniques include the Gauss-Newton, Steepest descent, and the 

Simplex method. All depend on iteratively improving 0β  using specific optimization criteria. 

For example, the Gauss-Newton algorithm depends on iteratively minimizing the residual sum 

of squares at each iteration step, until it reaches a small enough value. The idea behind this is 

to assume that the function ( , )tf x β  is approximately linear near the least squares estimators. 

The value of 0β  is assumed to be a good approximation to β̂  so it can be used to start off 

the iterative procedure. The linearization can be done using first order Taylor series 

expansions or the delta method (Meyer, 1965, p.128). The number of iterations is not 

important but some of the methods require a large number of iterations in order for their 

estimators to achieve certain asymptotic properties. For a full explanation, see Bates and Watts 

(1988), Seber and Wild (1989), and Huet et al. (2004).  

In Chapter 4, we will use a direct application of the Gauss-Newton method to estimate 

the parameters of the chosen nonlinear model. This is available as a built in function ‘nls’ in 

the R software package. Furthermore, the weighted nonlinear least squares (WNLS) method 

(Bates & Watts, 1988) is used for the analysis of data.  
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2 The Problem of EIV and the Literature 

Review  

 
 

2.1 EIV Definition 

 

 

Errors-in-variables (EIV) are deviations of observed measurements from their true (or 

target) values. In regression models, if the fitted data contains a predictor variable measured 

with error, it is customary to describe the models as measurement error or EIV models. These 

models contain two predictor variables. The observable predictor is observed in the study and 

is associated with an error, while the true or actual variable is known as the unobservable or 

error-prone predictor. Usually the value of the unobservable variable is unknown, otherwise it 

would be used to produce an actual (or true) analysis of data. Hence the observable predictor 

is used to fit the regression model.  

In practice, EIV are likely to occur for many reasons. In studies requiring data collection 

over a long period of time, accurate measurements can require complex and expensive 

procedures. Errors can occur due to a fault in the device used to read observations, a biological 

condition, and/or an error made by the experimenter while collecting the data; see, for 

example Rabinovich (2006, p. 20).  
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2.2 Types of EIV 
 

 

There are many types or scenarios of EIV. Important distinctions between scenarios 

involve how the errors occur and what distributions they follow. For example, if an 

explanatory variable x cannot be measured directly or precisely, the values used in the 

statistical analysis denoted by w are 

                              t t tw x u= + ,        nt ,,2,1 …= ,      (2.1) 

 

where n is the number of observations. Different assumptions can be made about the so-called 

classical additive error u , for example they are often assumed to be independently and 

identically normally distributed random variables with mean zero and constant variance 2

uσ , 

i.e. ),0(~ 2

uNu σ , independent of the unobservable regressor x  and correlated with the 

observed regressor w ,  

2 2cov( , ) [ ] [ ] [ ] ([ ] ) [ ] [ ] uw u E wu E w E u E x u u E xu E u σ= − = + = + = .        

 

Typically, classical measurement errors are encountered in observational studies. For 

example, in a study of cardiovascular disease, measurements of the cholesterol level in the 

blood (as a risk factor) often include errors. 

However, when the data are collected in a designed experiment and specified by the 

experimenter, the fixed design values w are set with errors, i.e. 

                                             t t tx w u= + ,         nt ,,2,1 …= .       (2.2) 

The inaccurate values wt are usually used in the estimation of the statistical model of the data, 

because the values xt are unknown. The errors in this case are known as Berkson errors, named 

after Berkson (1950) who was the first to study this error structure. Unlike the assumptions of 

model (2.1), here the error u is independent of the predictor w and correlated with x, i.e. 

2cov( , ) ux u σ= . Thus the values tx  used to generate the responses in the experiment are no 
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longer fixed design points. If ),0(~ 2

uNu σ , it is often assumed that, on average, the values of 

the true predictor converge to the design values, i.e. 

                                         ttt wwxE =)|( ,      nt ,,2,1 …= ,       (2.3) 

Such an assumption has to be verified, usually with a validation experiment. In the majority of 

cases, it is expected that the measurement errors have zero mean. However, they could have a 

non-zero mean (Donev, 2000, p. 2068). The variance of the EIV can be known or unknown. In 

the case where it is unknown, it can be estimated in different ways, depending on the case 

under study. For example, the estimation of the error variance in classical models is usually 

achieved by taking independent replications of the variable measured with errors. Note that in 

(2.1) and (2.2), tu , nt ,,2,1 …= , are called homoscedastic errors if 2
uσ  is constant for 

nt ,,2,1 …= , and heteroscedastic errors otherwise. For example, in model (2.2), the error 

variance 2
uσ  could be proportional to a function of the design points, i.e. 2( )t uwϕ σ , 

nt ,,2,1 …= , where ( )twϕ  defines the way the variance changes with w. Hence, the variance 

in the actual values tx  is 2( )t uwϕ σ , nt ,,2,1 …= .  

In the presence of EIV, the results obtained from regression analysis may not be valid if 

the errors are ignored. Statistical analysis of the data that ignores these errors is called naive 

analysis. To obtain a corrected analysis, the effects of EIV should be taken into account. These 

effects depend on many factors, as will be seen later. For instance, the more complicated the 

model, the more difficult it is to explain and understand the effects. 

The problem of EIV has received considerable attention in the literature. Monographs 

summarizing the methods available for handling such data include Fuller (1987), Cheng and 

Van Ness (1999) and Carroll et al. (2006). The main target of these studies is to analyze and 

reduce (or eliminate in some cases) the effects of ignoring the EIV on the parameter estimates 

and the response prediction. The effects include biased (or inconsistent) and/or inefficient 
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estimators of regression parameters, which results in poor inferences about confidence 

intervals and the hypothesis testing of parameters. Here, we provide a short review of some of 

the most common results, using the simple linear regression model in equation (1.2). We use 

model (1.2) for its simplicity, which allows us to interpret the results and provide a clear 

understanding of the consequences and effects of EIV. The review is based on Fuller (1987) 

and Carroll et al. (2006).  

Assume classical EIV represented by equation (2.1). We aim to estimate the slope 1β  in 

model (1.2). The OLS approach is customarily used to obtain the minimum variance unbiased 

estimator. If the predictor variable were measured without error, the actual OLS estimator 

1,
ˆ

actualβ  would be an asymptotically unbiased estimator for 1β  (Draper & Smith, 1981). 

However, when w is observed instead of x, with ),0(~ 2

uNu σ , and the regression error ε  is 

independent of u, the naive OLS estimator naive,1β̂  is the asymptotically unbiased estimator for 

2 2 2 1
1,( )x x u trueσ σ σ β−+ , where the ratio 2 2 2 1( )x x uσ σ σ −+  is called the reliability ratio, and 2

xσ  is 

the variance of the actual variable x (Fuller, 1987). The reliability ratio is also called the 

attenuation factor since it causes the value of the naive estimator to approach zero, and hence 

1β  is underestimated. Consequently, the relationship between the response variable and the 

regressor will be also underestimated.  

Addressing the form of the bias in naive estimators is always important to give a clear 

representation of the effect of the EIV. For example, the attenuation in naive,1β̂  is small, with a 

variation in the true predictor that is larger than the value of the error variance.  

The slope estimator is not the only estimate that will be affected by a measurement error 

in the predictor, the OLS estimator of the intercept will also be biased (Fuller, 1987). Often, 

the bias is a function of the error variance and the model parameters. Therefore, as the 

measurement error variance increases, the bias in both estimates will increase as well. Since 
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the regression model is used to predict the response y , this value will be biased if it is based 

on biased estimates (Hodges & Moore, 1972).  

In addition, EIV increase the response variance. For example, by rewriting model (1.2) 

and considering the classical error model (2.1), the response can be given by 

    0 1( )y w uβ β ε= + − +   

            0 1 1( )w uβ β ε β= + + − , 
 

 

       

and thus the error term now has variance  

2 2 2 2 2
1 1 1var( ) var( ) var( ) uu u ε εε β ε β σ β σ σ− = + = + > ,       

which results in the data being more widely scattered around the regression line. Figure 2.1 

summarizes all the reviewed results regarding the effect of classical EIV on regression 

analysis using model (1.2), showing the differences between the naive and actual fits of the 

data. 

Figure 2.1 The effects of classical errors on regression analysis using simple linear response 

model, ~ (0,0.063)x N , ~ (0,0.01)u N , and 
4~ (0,1 10 )Nε −× . 
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Not all of the effects we have discussed above hold for all types of response models. For 

example, when Berkson errors in eq. (2.2) occur in the variable of model (1.2), model (2.3) 

holds and as a result 0 1[ | ]E y w wβ β= + . Therefore, the EIV in such a case do not lead to 
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biased estimates of the parameters of model (1.2) but they do inflate the response variance 

(Fuller, 1987). With Berkson EIV, unbiased estimates of the coefficients are a typical result 

found in linear and nonlinear models. For example, in linear response models, Box (1963) 

studied the effect of Berkson errors on the naive analysis of polynomial models. He used 

factorial designs to illustrate those effects. Box concludes that Berkson errors lead to biased 

models and unbiased estimates of the coefficients, with an increase in the response variance. 

The unbiasedness in the naive estimates is due to the fact that the bias in [ | ]E y w  is constant 

between the experimental runs. In nonlinear response models, studies by Rudemo et al. (1989) 

and Racine-Poon et al. (1991) conclude that there is no bias or negligible bias in the estimates 

of the coefficients, but that their variances were inefficiently estimated. However, when linear 

or generalized linear models have to be estimated, studies by Burr (1988), Whittemore and 

Keller (1988), Buonaccorsi and Lin (2002) and Kim et al. (2006) showed that Berkson errors 

may lead to bias in the estimates of the model parameters. In these cases, the bias was mostly 

seen to be important with large EIV.  

Complex Berkson error structures can also lead to biased estimates of the parameters. 

For example, Küchenhoff et al. (2007) compared the effects of additive (as shown in model 

(2.2)) and multiplicative ( x w u= × ) Berkson errors on the estimation of the slope of a Cox 

proportional hazard model. They found that an additive Berkson error can cause a slight 

attenuation in the estimate of the slope parameter. This is not true in the case of multiplicative 

Berkson errors as the estimators adapt to the larger bias. However both errors are found to 

influence the efficiency of the estimators by underestimating their true variances. The bias is 

found to be a function of the model parameters–a monotonic increasing relation is observed by 

Küchenhoff et al. between the magnitude of the slope and the attenuation in its estimator.  

Another possible effect of EIV, whether classical or Berkson, is heterogeneity (or 

heteroscedasticity) in the response variance. This means that the response variance depends on 
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the values of the predictor, and its value is no longer a fixed constant 2
εσ . Heterogeneity can 

be affected by different factors, such as the type of model (linear or nonlinear), and/or the 

error structure (homogeneous or heterogeneous). It is a major violation of the general rules of 

any regression analysis and ignoring it in the analysis can affect the efficiency of the 

estimators of the model parameters (Draper & Smith, 1981). For example, the standard errors 

of the estimators could underestimate or overestimate the estimators’ true variability.  

The number of variables in the response model also plays a major role in the effect of 

EIV. When the regression model has more than one predictor, and multiple predictors are 

measured with errors, interpreting the effects is complicated and even unpredictable in some 

cases. For example, it is possible that if at least one variable is measured with error, then all 

the estimates of the coefficients will be biased, and in this case the direction of the bias could 

be unpredictable (Buzas et al., 2004). The biases may increase if the correlations between the 

predictors and the measurement error variances are high (Carroll et al., 1985; Sturmer et al., 

2002; Carroll et al., 2006; Yuan, 2007). 

Moreover, EIV leads to a loss of power in hypothesis testing using the regression model 

parameters and this applies to both classical and Berkson errors. In addition, the tests loses 

more power when the EIV are larger. The sample size has to be enlarged in order to gain the 

same level of power that would be gained from an EIV-free model. This is illustrated in 

Carroll et al. (2006, pp. 18-19), using a simulation study carried out by plotting the amount of 

EIV variance against the power of the hypothesis testing using the regression slope. 

The effects of EIV can be corrected or adjusted using various approaches. In the 

following section, we review some of the established methods used to correct the bias in naive 

estimates, under the assumption of classical EIV. In the literature on EIV, the most well-

known correction methods have been developed to deal with classical errors. These methods 
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are sometimes described as bias-based correction approaches as they eliminate or reduce the 

bias in the naive estimates.  

2.3 Best-Known Correction Methods for Classical EIV 

The correction methods for EIV can be classified into structural and functional 

approaches. Structural approaches assume that the true predictor is a random variable that 

follows a specific distribution. If x  is assumed to be a fixed design point then a functional 

method is used. Functional models are also used when x is a random variable, but no 

assumptions are made about its distribution. This classification was first introduced by 

Kendall (1951, 1952) and is an important part of choosing the appropriate method for 

estimating the model parameters.  

Structural estimation methods require the specification of the distribution function of x . 

Information on x can be gathered either from preliminary samples or data from previous 

studies.  

In practice when correcting for the effect EIV, information about the distribution of x is 

not always available, hence the assumption in functional methods that x  is fixed simplifies the 

problem as no distributional assumptions need to be made. However, the functional methods 

are considered less robust in dealing with the effect of EIV than structural methods since they 

depend mostly on approximate solutions.  For example, the maximum likelihood approach is a 

well-known robust way of estimating the parameters but it requires the distribution of x to be 

known. The method has been used only occasionally in the literature on EIV because of its 

computational complexity and the large number of assumptions that need to be satisfied 

(Guolo, 2008; Guolo & Brazzale, 2008).  

Structural models have received attention as well. Thompson and Carter (2007) provided 

a comprehensive review of EIV models, focusing on structural models with a normality 
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assumption about the distribution of the true regressor. Fuller (1987) studied structural models 

and pointed out that different estimating approaches can be used depending on the distribution 

of the unobservable variable x.  

In addition, the distribution of the EIV plays a significant rule in specifying the method 

of correction. Practitioners and statisticians have focused on the cases where the EIV are 

independently and normally distributed. The assumption of the normality of the errors is 

useful if it can be made, because it is important for the robustness of most of the correction 

methods.  

Researchers have been trying to eliminate the need for any distributional assumptions for 

the EIV or the true variables. For instances, Liu and Liang (1992) proposed a method for 

obtaining consistent estimates which depends on replicate measurements. They also provide 

an approach to be used for choosing an adequate number of replicates. They point out that 

their suggestion could be difficult to apply in practice, however, as making replicate 

measurements could be difficult and incur high costs. Spiegelman (1994) has reviewed some 

of the better study designs that can be used with nonlinear EIV models and also considers the 

costs of such designs.  

Some other methods require the use of validation data. For example, Lee and Sepanski 

(1995) proposed a method for improving the estimates of linear and nonlinear EIV models, 

based on the availability of validation data prior to the study. Carroll et al. (2010) proposed an 

approach that requires neither validation data nor any information about the actual 

independent variable in the model.  

A method called the instrumental variable (IV) is also useful when no information on the 

EIV is available. In this approach, an additional variable (the IV) is introduced into the model. 

For example, the IV could be the value of a second observation of the true variable x, derived 

in a different way from the first one. The IV has to satisfy various assumptions, for example, it 
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must be correlated with x and independent of the measurement error. Details of estimations 

using IVs in linear and nonlinear models can be found in Fuller (1987) and Carroll et al. 

(2006, chap. 6).   

Another correction method that has been discussed in the literature is the method of 

moments. This method is considered to be the simplest correction technique and it can be used 

if the measurement error variance 2

uσ  is known or can be accurately predicted, and the form of 

the bias in the naive estimates can be identified (Fuller, 1987). It aims to eliminate the effect 

of EIV on the results and parameter estimation by producing an estimate using the moment 

estimator, which performs better than the naive estimator. This can be seen by recalling a 

simple linear regression with an estimated reliability ratio. Assume the variance of the 

observed values of the predictor measured with errors is known. The corrected slope estimate 

ˆ
cβ  can be calculated using the formula 

2 2

2 2 2
ˆ ˆ ˆw w

c naive naive

x w u

σ σ
β β β

σ σ σ
= =

−
.           

 

In the following, we comprehensively review two of the best-known approaches for 

correcting the bias in the estimates of regression coefficients when classical errors occur and, 

in some special cases, when both classical and Berkson errors occur. These approaches are 

regression calibration and simulation-extrapolation.  

2.3.1 Regression Calibration 

 

Regression calibration (RC) is a simple way of adjusting for the effect of EIV. It has 

been extensively used in the literature on EIV models, for example, in epidemiology studies 

with Cox proportional hazards models (Prentice, 1982), in generalized linear models 

(Armstrong, 1985; Rosner et al., 1989; Schafer, 1990; Kuha, 1994), and in nonlinear response 

models (Gleser, 1990). The basic idea of RC is to replace the observed predictor in the 

regression model with an unbiased estimate of the true value. The estimate can be found in 
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several ways, but the most common is to approximate the conditional expectation of the true 

predictor given the observed value [ | , ]E x w z , where z is any other covariate in the model 

(Carroll et al., 2006). For example, if the response model is a simple linear regression (1.2), 

the RC estimator is found by estimating the coefficient in the regression 

0 1 [ | ]y E x wβ β ε= + + . 

Estimating the expectation [ | , ]E x w z  is described as an “art” in Carroll et al. (2006) as it 

requires a full understanding of the EIV model. The RC approach is considered to be either a 

functional or a structural method of correction, depending on the assumptions needed to 

estimate [ | , ]E x w z . For example, the method is structural if the estimation of [ | , ]E x w z  

requires additional information about the distribution of the unobserved variable x. No specific 

assumptions regarding the EIV have to be satisfied. Appropriate assumptions depend on the 

case under study. For example, Rosner et al. (1989) assumed a small EIV in order to obtain a 

good approximation for [ | , ]E x w z , while Kuha (1994) in an extension of the work of Rosner 

et al. (1989), has relaxed this assumption, and also assumes that only some of the moments of 

the distribution of the errors are known.  

The form of [ | , ]E x w z  is not unique; it depends on the type of information available in 

the study. The OLS estimates from fitting the response y on [ | , ]E x w z  are approximately 

unbiased since this expectation is only an estimate of the actual unobserved variable. To find 

the expectation of the actual variable given the observed value, x can be written as a function 

of w and then Taylor series expansions used to obtain [ | , ]E x w z  (Carroll & Stefanski, 1990). 

Validation data or replications could also be necessary. The estimate of [ | , ]E x w z  should be 

as accurate as possible, otherwise using it to fit the response model may lead to biased 

estimators (Carroll et al., 2006).  

Although RC is widely applicable, the consistency of the approach is questionable when 

dealing with complex nonlinear models, and in most cases a small variance of EIV is required 
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for the approximation to be satisfactory (Carroll et al., 2006). In such cases, the estimators 

obtained are only approximations of the true parameters. In addition, heteroscedastic EIV 

could affect the robustness of the approach. For example, if the variance of the true value, 

given the observed one, )|var( wx , is heteroscedastic, RC may only be useful for correcting the 

bias in naive estimates; however, it does not provide efficient standard errors of the parameter 

estimates (Carroll et al., 2006). This may occur when dealing with Berkson errors since they 

are usually heteroscedastic by nature, that is, the error in the input of a design is mostly 

correlated to the design value.    

As with most correction methods, using the RC approach to correct the bias in naive 

estimates may introduce more uncertainty into estimates of model parameters. The uncertainty 

comes from using an approximate estimate of [ | , ]E x w z  instead of the actual value, and this 

can be compensated for by using the bootstrap technique to obtain the standard errors of the 

RC estimators (Carroll & Stefanski, 1990). The bootstrap method is a nonparametric approach 

for making inferences about the parameters of the sample under study, when the parameters 

have unknown probability distributions (Efron, 1982). It can be used to estimate the biases and 

standard errors in the parameter estimates. The methodology is based on randomly generating 

new samples from an original available sample. Each sample is of the same size as the original 

one and is called a bootstrap sample. The target statistical characteristics are computed for 

each sample. The number of samples should be sufficient to approximately attain the target 

parameters of the study, and to reduce the variability in the observations (Efron & Tibshirani, 

1993). 

2.3.2 Simulation-Extrapolation  

 

The simulation-extrapolation (SIMEX) approach was proposed by Cook and Stefanski 

(1994) as a functional correction tool for EIV effects on linear and nonlinear models in 
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epidemiological studies. It produces the so-called SIMEX estimator which is then used to 

correct the bias in the naive parameter estimates. The algorithm simulates two types of model, 

an additional measurement errors model and an error-free model. The SIMEX estimator is the 

estimate found as a result of fitting the error-free model, which is an approximation of the 

actual model.   

The algorithm is based on estimating the regression coefficients through a process of 

adding errors with increasing variances to the observable variables that have been measured 

with errors. The relationships between the error variances and the estimated coefficients are 

fitted for each coefficient in the model and then extrapolated to the ideal case where there is 

no EIV.  

In order to illustrate how SIMEX works, we consider the following example. Assume we 

have a response model with parameter vector given by β . Assume the classical error model 

(2.1), where tu  are independent identically normally distributed errors with mean zero and 

known constant variance 2

uσ , i.e. 2~ (0, )t uu N σ , and tx  is the actual tth measurement on a 

continues variable x, follows known or unknown distribution. For 0≥λ , n new observations 

of the observed predictor are generated B times,  

                  1/2
, ,b t t u b tw w uλ σ= + ,   1, 2, ,t n= … ,   Bb ,,2,1 …= ,        

where λ  is called the multiplication factor, and reflects the amount of additional error added 

to the observed variable, ,b tu  are independent identically distributed normal random variables 

with mean zero and variance one, i.e. , ~ (0,1)b tu N , uσ  is the standard deviation of the 

measurement error, and B  is the number of samples being generated in the simulation 

process. In practice, most of the time the values of λ  are in the range [0, 2]. Any number B 

can be chosen, but it should be large enough to guarantee the consistency of the SIMEX 

estimator (Stefanski & Cook, 1995). The method is usually applied with the assumption of 
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standard normally distributed measurement errors but this assumption is not essential (Carroll 

et al., 1996). The values 
1 2

,u b tuλ σ  are generated and added to the observed predictor B times 

for each value of λ . Note that the total measurement error variance for the tth set of 

observations is             

2 2 2
,var( ( ) | ) (1 )b t t u u uw xλ σ λσ λ σ= + = + .  (2.4) 

So when λ =0, the model is free from additional errors but still contains the original EIV 

(naive model) and the estimate found at that point is the naive estimator ˆ
naiveβ . 

The new values of the predictor, that is, the values with additional errors, are analyzed 

by finding the regression parameter estimates ˆ ( )b λβ  of regressing y  on ,b tw  for each value of 

λ , where ˆ ( )b λβ  is a vector of the estimates of the model parameters, for Bb ,,2,1 …= . Any 

estimation approach can be used, for example, the OLS method. After obtaining the estimates 

ˆ ( )b λβ , the average of these estimates is computed for each λ  using 

                                             
1

1ˆ ˆ( ) ( )
B

b

bB
λ λ

=

= ∑β β ,       0≥λ .          

 

The main purpose of averaging over the obtained estimates is to reduce the amount of 

variation associated with the simulation process. As a result, different estimates are obtained 

for different values of λ . 

Since ˆ ( )λβ  is a function of λ , a functional relationship can be specified, and used to 

perform an extrapolation at a certain value of λ . Cook and Stefanski (1994) used three types 

of fitting functions: the simple linear model given by  

      0 1
ˆ ( ) a aλ λ≈ +β ,       (2.5)   

the quadratic model 

                   
2

0 1 2
ˆ ( ) a a aλ λ λ≈ + +β ,         (2.6)   

and the nonlinear model 
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            1
0

2

ˆ ( )
a

a
a

λ
λ

≈ +
+

β .      (2.7)  

 

The unknown parameters 0a , 1a , and 2a  in models (2.5) and (2.6) can be estimated by 

the least squares approach. For the nonlinear extrapolate (2.7), the nonlinear least squares 

approach can be used, which requires specifying initial values for 0a , 1a , and 2a . One way of 

finding the initial values is to first fit model (2.6). Then the initial values can be obtained from 

a three-point fit to 0, 2/maxλ  and maxλ  and the predicted values from the fitted model (2.6) at 

these three points (Carroll et al., 2006, p.110). 

The extrapolation in SIMEX is established by setting λ = -1 in the fitted model for each 

component of the vector ˆ ( )λβ  so that, from equation (2.4), the total measurement error 

variance in ,b tw  is zero. This means that an estimate is obtained for the case when the data is 

free from any type of error (additional or original measurement error). It may seem as though 

errors with a negative variance are being added. However, the negative sign in SIMEX can be 

explained as a “hypothetical case”, only used to perform the extrapolation (Carroll et al., 2006, 

p. 102). 

Note that, the extrapolation process depends on the function that has been assumed to fit 

the data and, as mentioned earlier, the exact function is usually unknown. Therefore, the 

SIMEX estimator is an approximately consistent estimator of the estimator obtained from the 

actual analysis, that is 

                     ˆ ˆ( )simex actualE ≈β β .        (2.8)  

 

We have described the SIMEX approach for the case of homogeneous measurement 

errors. However, the same methodology can be applied when the errors are heteroscedastic, by 

plugging the individual variances of the errors 2
,u tσ  into the tth observation instead of 2

uσ  

(Carroll et al., 2006, pp. 102-103).  
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Researchers have proposed various modifications to the SIMEX approach to be used in 

situations where the original SIMEX does not work or is not the most appropriate solution. 

Devanarayan and Stefanski (2002) proposed a technique called empirical SIMEX, modifying 

the original SIMEX. The original SIMEX approach can be applied if the measurement error 

variance is known or can be predicted using available observations. On the other hand, the 

empirical SIMEX can be applied if the measurement errors are heteroscedastic with unknown 

variances, but replications are available.  

As described above, SIMEX can be used to correct for EIV in continuous variables. 

However, if EIV affects a categorical variable, such as gender, then the variable is said to be 

misclassified. To correct measurement errors in misclassified variables, the usual SIMEX 

approach cannot be used, and a modified SIMEX approach called misclassification 

simulation-extrapolation (MC-SIMEX) must be applied instead (Küchenhoff et al., 2006).  

SIMEX is known for its practicality. It does not require a strong mathematical 

framework, and needs fewer distributional assumptions than most of the other correction 

methods. However, it does involve a large amount of computational effort, which can be time 

consuming in a lot of cases. 

SIMEX is a built-in function in the R software package and in other packages, such as 

STATA. In the following example, we illustrate how SIMEX works to correct the bias in the 

naive estimates when homogeneous errors occur in the predictor variable of the simple linear 

model given in equation (1.2). Note that we do not use the built-in function in R but instead 

develop SIMEX code which can be used for different purposes, as will be seen later.  

2.3.3 Simulation Example 

 

Assume B=10, n=1000 and observations are generated using )5.0,0(~ Nu , )1,0(~ Nx  

and )2.0,0(~ Nε . In the simulation step, the multiplicative factor λ  is given values of 0, 0.5, 
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1, 1.5 and 2. The parameters 0β  and 1β  in the simple linear model (1.2) are set to zero, and 

11.263, respectively, so we only interested in the effect of the EIV on the slope estimates. 

Assume model (2.6) is used for the extrapolation step of SIMEX. Then the results show that 

the actual and naive slope estimates are 11.250 and 9.130, respectively. The SIMEX estimate 

is 11.592. Hence, using SIMEX reduces the bias in the naive estimate of 1β . The SIMEX 

algorithm can be represented graphically by modelling the relation between ˆ ( )λβ  and λ .  

Figure 2.2 provides evidence of the improvement by the SIMEX estimator over the naive 

one. The actual OLS estimates are also shown, for the purpose of comparison. The horizontal 

axis shows λ , which controls the increasing amount of error variance, and the vertical axis 

represents the values of the estimates using the actual, SIMEX and naive approaches. It can be 

seen that as the error variance increases, larger differences appear between the naive and 

SIMEX methods, while the latter produces an estimator that approximate the actual estimator.  

 
Figure 2.2 A comparison between the actual OLS, naive OLS, and SIMEX estimates. 
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Note that in the above illustration we used a model with a single predictor variable. 

However, SIMEX can be applied simultaneously for any number of predictors. The SIMEX 
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fitting function has to be selected carefully since it influences the statistical properties of the 

SIMEX estimator. Plotting the relationship between ˆ ( )λβ  and λ  can be useful for choosing 

an appropriate function. Carroll et al. (2006) described the quadratic extrapolation model as 

more ‘stable’ than nonlinear extrapolation, especially in the case of large errors. On the other 

hand, there are cases in which the differences between models (2.5), (2.6), and (2.7) are 

negligible (Buzas et al., 2004). The extrapolation is only one step in the entire analysis. The 

size of the extrapolation depends on the size of the error variance, with a larger error variance 

resulting in a larger extrapolation step, and thus a potentially larger approximation error. For 

this reason, SIMEX is more effective when the EIV are not large.  

The distributional properties of the SIMEX estimator have been investigated by Carroll 

et al. (1996) and Küchenhoff et al. (2007). Under the assumption of normally distributed EIV, 

they find that the SIMEX estimator is asymptotically normally distributed. The mean of the 

SIMEX estimator is assumed to converge to the actual estimator, which is assumed to be 

unbiased for the true parameter as B → ∞ . The variance of the SIMEX estimator can be 

obtained through various approaches, but they are complex, despite the fact that SIMEX is 

easy to use. To estimate the variance, the bootstrap approach, estimating equations, and the 

simulation-extrapolation information variance estimation approach can all be used.  

The bootstrap approach requires a large amount of computational effort, which can be 

time consuming in many cases. If the bootstrap method is used to find the variance of the 

SIMEX estimator, the computational burden can increase still further, since SIMEX itself 

generally requires the simulation of a large number of samples. The estimating equation 

approach was proposed by Carroll et al. (1996), and is explained in detail in Carroll et al. 

(2006, pp.395-398). Since the approach is quite complicated and requires a great deal of 

computational effort, we do not describe it here.    
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The information variance estimation approach was proposed by Stefanski and Cook 

(1995). The approach can be used with the assumption of known error variance, as well as 

heteroscedastic and homoscedastic EIV. It has been noted that the method performs well with 

small error variance (Greene & Cai, 2004) and with a large sample size (Battauz et al., 2008). 

The method is discussed in detail in Carroll et al. (2006, pp. 393-395). Here, a brief summary 

is given.  From (2.8), it follows that  

                ˆ ˆ ˆ ˆ
simex actual simex actual

Q Q Q
−

≈ +
β β β β

,      (2.9)   

where ˆ
simex

Q
β

is a pp×  variance-covariance matrix of SIMEX estimators (assuming the 

number of parameters to be corrected is p), ˆ
actual

Q
β

is a pp×  variance-covariance matrix of the 

actual estimators, and ˆ ˆ( )simex actual

Q
−β β

is the variance-covariance matrix of the differences between 

the SIMEX estimators and the actual estimators.  

The estimators in ˆ
actual

Q
β

can be obtained by applying the same principles as are used in 

the SIMEX approach. First, using the inverse information matrix approach, the asymptotic 

variance-covariance )(ˆ λbQ  of the estimators, are obtained for each λ  and Bb ,,2,1 …= , in the 

simulation step of SIMEX. Then, for each λ , )(ˆ λbQ  is averaged over all samples to obtain 

)(ˆ λQ . By plotting )(ˆ λQ  against λ , the relationship can be extrapolated to the point where 

λ = -1, by fitting the appropriate extrapolation function. This gives ˆ
ˆ

actual

Q
β

 as: 

              ˆ
1

ˆ ˆlim ( )
actual

Q Q
λ

λ
→−

=
β

.  (2.10)  

 

Similarly, an estimate of ˆ ˆ( )simex actual

Q
−β β

can be derived from the information from the 

simulation step: 

           ˆ ˆ ˆ ˆ( ) [ ( ) ( )]1

ˆ ˆlim
simex actual b

Q Q λ λλ− −→−
=

β β β β
.   (2.11)   
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However, since ˆ ˆ[ ( ) ( )]b

Q
λ λ−β β

 is zero if λ = 0, and takes on positive values for λ > 0, it is 

expected that, for λ = -1, ˆ ˆ[ ( ) ( )]b

Q
λ λ−β β

 will be negative (Stefanski & Cook, 1995, p. 1251). 

Hence, equation (2.11) can be rewritten as  

     ˆ ˆ ˆ ˆ( ) [ ( ) ( )]1

ˆ ˆlim
simex actual b

Q Q λ λλ− −→−
= −

β β β β
.   

 

An unbiased estimator of ˆ ˆ[ ( ) ( )]b

Q
λ λ−β β

 is the sample variance-covariance matrix )(ˆ λsQ  of 

the estimates ˆ ( )b λβ , for each λ , computed by 

                   1

ˆ ˆ ˆ ˆ[ ( ) ( )][ ( ) ( )]

ˆ ( )
1

B
t

b b

b
sQ

B

λ λ λ λ
λ =

− −
=

−

∑ β β β β

, 
         

If ∞→B  then, for each λ , ˆ ˆ[ ( )] ( )bE λ λ=β β , so that, 

                   ˆ ˆ[ ( ) ( )]
ˆ[ ( )]

b
sE Q Q

λ λ
λ

−
=

β β
.              

Thus 

                   ˆ ˆ( ) 1

ˆ ˆlim [ ( )]
simex actual

sQ E Q
λ

λ
− →−

= −
β β

.    (2.12)  

To find an approximate estimate of ˆ ˆ( )simex actual

Q
−β β

, one can use the components of )(ˆ λsQ to 

model an extrapolation function, and extrapolate to the case where λ = -1. Therefore, from 

(2.9), (2.10) and (2.12),  

                        ˆ
ˆ ˆ ˆ( 1) ( 1)

simex
sQ Q Q≈ − − −

β
,    (2.13)  

where )1(ˆ −Q  and )1(ˆ −sQ  are the estimated variance-covariance matrices from fitting the 

relation between the components of )(ˆ λQ  and )(ˆ λsQ , for each λ , and extrapolating the fit to 

λ = -1. Often, instead of using (2.13) to find ˆ
ˆ

simex

Q
β

, the total difference between )(ˆ λQ  and 

)(ˆ λsQ , for each λ , is computed and extrapolated back to the case where λ = -1. Either way, 

the same results are obtained.  
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This simulation-extrapolation variance estimation approach is mostly used for its simple 

and direct application. However, there is no guarantee that the variance estimates are positive 

(Carroll et al., 2006, p.395). One way to deal with this problem is to change the model used 

for the extrapolation function (see for example Choi et al., 2006).  

The variability of the SIMEX estimator is larger than that of the naive estimator because 

SIMEX is an approximate approach. This holds for any correction approach that depends on 

approximate procedures, including RC (Wang et al., 1998; Carroll et al., 2006). This could be 

a problem during the analysis of data if the major concern is to have estimators with small 

standard errors, such as when obtaining confidence intervals for parameters with a small 

sample size (Sturmer et al., 2002). 

2.3.4 Comparison between SIMEX and RC 

 

There are different situations wherein the robustness of the RC and SIMEX methods will 

need to be compared in order to evaluate the best approach to use to adjust for the effects of 

EIV. Comparison studies on the EIV problem have been carried out by a number of 

researchers. See, for example, Fung and Krewski (1999), Holcomb (1999), Monleon (2005) 

and Guolo and Brazzale (2008). Generally these studies have concluded that each approach 

can be useful, depending on the study in question and the type of information available about 

the EIV model.  

For example, Fung and Krewski (1999) investigated the performance of SIMEX and the 

RC method when a Poisson regression with multiple predictors is fitted to the data. Most of 

their results look at the effect of the correlation structure between the predictor variables in the 

model on the adjusted analysis. The slope estimates are calculated over a number of 

simulation trials and the average of these estimates are used in the comparisons. Generally, 

their results show that, under the model assumptions, the RC performs better than SIMEX, as 

long as the correlation between the predictors is small or moderate. Guolo and Brazzale (2008) 



 45 

pointed out that it is preferable to use SIMEX over the RC approach when the errors are 

heteroscedastic, however.   

Less mathematical background is needed to apply SIMEX and hence the approach is 

very easy for general practitioners to implement. However, this comes at a cost since there is 

no plausible closed-form solution for the SIMEX estimator, except in very simple cases. The 

RC method, on the other hand, can generally be used to produce a mathematical form for the 

bias in the naive estimators, which can be a useful means of presentation in some cases, as will 

be seen later on.  

2.4 Further Review and Discussion  

 

Both the classical and Berkson EIV can create serious complications in the analysis of 

regression models. The classical error model has received the majority of the attention from 

researchers in the past. Most of the well-known correction techniques have been developed for 

classical error models. Küchenhoff et al. (2007) pointed out that this is due to the wide range 

of observational studies in which classical errors occur. In addition, Berkson errors may have 

less effect on the statistical analysis of most response models than classical errors do. 

Nevertheless, ignoring Berkson errors could still have serious effects, particularly when the 

errors have a complicated structure, or when they occur in nonlinear response models.  

When Berkson errors occur, the OLS approach to estimating model parameters is very 

often inadequate. For example, Berkson EIV are mostly proportional to the target values 

(Huwang & Huang, 2000). Therefore, the response variance could become heteroscedastic due 

to the structure of the errors. The correction approaches for Berkson errors are mostly based 

on applying the maximum likelihood approach and Bayesian estimation. There are some 

disadvantages in using such approaches. They require some knowledge about the exact form 

of the distribution functions of u and ε , or the moments of their distributions, and they are 
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usually computationally-intensive (Carroll et al., 2006, p. 205). Other approaches have also 

been used; see for example Fedorov (1974), Huwang and Huang (2000) and Koul and Song 

(2009). Most of these are based on identifying the first two moments of the response, given the 

intended design variable, and then incorporating this information into a least squares or 

weighted least squares analysis. Such approaches are similar to applying the RC approach 

when there are classical errors, and they were probably inspired by that approach. However, 

using these approaches is not always a straightforward task, especially when using a 

complicated class of nonlinear models and/or when complex EIV assumptions are imposed 

(e.g. correlated errors).  

Not a lot of work has been carried out previously on complex error structures. For 

instance, errors with a heteroscedastic and dependent nature have been much less investigated 

in the literature of EIV, as will be seen later on. Such errors can occur in both observational 

and designed studies. The lack of investigation may be because their effects on the analysis of 

regression models can be difficult to interpret and understand. Moreover, in most real life 

situations, practitioners are unaware of the existence of these errors when collecting the data. 

Recently, more studies have been focusing on these EIV assumptions. Studies such as 

Thamerus (1997), Cheng and Riu (2006), Zavala et al. (2007), Guolo and Brazzale (2008), 

Wang et al. (2010), and Carroll et al. (2010) all examined the assumption of heteroscedastic 

classical errors. Xiao et al. (2010) studied correlated classical errors.  

Heteroscedastic Berkson errors have received a noticeable portion of attention, 

especially in bioassay and dose-response studies, such as Rudemo et al. (1989), Racine-Poon 

et al. (1991), Higgins et al. (1998), and Dellaportas and Stephens (1995). Reeves et al. (1998) 

considered both Berkson and classical heteroscedastic errors. Some of these studies and 

others, such as Steiner and Hamada (1997), and Hamada et al. (2005) also considered the 

situation where the EIV are correlated.  
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Based on our literature review of the studies on heteroscedastic dependent Berkson 

errors, we believe that more investigation is needed to examine all the aspects of the effects of 

these errors. The following chapters introduce a review that we have undertaken to address the 

important gaps in the related studies mentioned above. We focus on cases wherein 

heteroscedastic dependent Berkson errors may occur in the data from a designed experiment. 

To expand the investigation, the impacts of ignoring the errors in the analysis will be 

examined for both linear and nonlinear response models. We introduce the problems of 

mixture experiments with errors, and errors in concentrations from bioassay studies, as 

examples of heteroscedastic correlated Berkson errors in linear and nonlinear models, 

respectively.  

We also propose new correction approaches. These approaches are obtained by 

modifying the RC and SIMEX methods to handle Berkson EIV, which is the core novelty in 

this thesis. We could have looked into some of the methods used to correct Berkson errors, but 

the novelty of this work relies on the fact that we take methods that have mainly been applied 

to the classical error model and apply them to Berkson EIV instead.  

The challenges we faced in modifying these approaches were quite high. The RC 

approach not usually used when there are Berkson errors in the data. Carroll et al. (2006) 

pointed out that using the RC approach with Berkson errors could produce biased estimates of 

the coefficients, as the Berkson errors may lead to high heteroscedasticity in the observations. 

In the case of heterogeneity, it is always recommended to use an approach based on the 

weighted least squares method. However, estimating the weights is rarely straightforward. 

The SIMEX approach on the other hand, is not applicable when there are Berkson errors 

in the data. SIMEX works by adding more errors to the observed variables until a relationship 

is developed between the error variances and the naive estimates. The observed variables 

contain measurement errors, and the naive estimates of their coefficients are biased. Thus, 
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adding errors with increasing variances leads to increasingly biased estimates. This 

relationship is then used to extrapolate back to the no EIV case, or the actual analysis. This is 

not the situation in Berkson error models since the actual analysis is the one containing the 

errors, and the observed variable (mostly the design points) is error free. Hence, adding errors 

with increasing variances will not guarantee that increasingly biased estimators will be 

obtained.  

The SIMEX approach can however be applied under assumptions of heteroscedastic and 

correlated classical errors (see for example Wang et al., 1998). Thus, we modify the approach 

to accept the Berkson error case. Simulation examples are established to examine the effects 

of these errors on the statistical analysis of EIV models, and to correct for any bias or 

inefficiency found in the analysis of data.  
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3 Berkson Errors in Mixture Experiments  
 

 

 

 

3.1 Introduction 
 

 
In mixture experiments the properties of mixtures are usually studied by mixing the 

amounts of the mixture components that are required to obtain the necessary proportions. In 

practice many products produced by mixing several components depend on their proportions 

in the mixture, but not on the amount of the mixture. Typical examples are the taste of a blend 

of juices obtained from different fruits and the strength of an alloy made by mixing different 

metals.  

There are many scenarios of mixture experiments involving not only the proportions but 

also the total amounts of the components in the mixture. These types of experiments are called 

mixture/amounts experiments. Another type is called process variables mixture experiment, 

wherein in addition to the proportions, it involves a set of variables called the process 

variables. These variables have indirect effects on the properties of the mixture, such as, the 

temperature in which the experiment where established. So, they should be considered in the 

experiment in order to raise the quality of the mixture.  

Although EIV have been widely examined, only few who addressed their effects on 

mixtures. Fuller (1987, p.79) identified the mixing errors as an interesting problem of errors-
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in-variables, but their study appears incomplete. Steiner and Hamada (1997) studied the 

making of mixtures that are robust to noise and mixing errors. They give an interesting 

example of how appropriate choice of the setting process variables can ensure good quality of 

the mixture product. The quality of a product is often defined by the desired value of the 

response variable (also called signal) and the variability of the manufacturing process which is 

required to be small. Hence a large signal to noise ratio is indicating a good product. However, 

they do not discuss how mixing errors in the manufacturing of the mixture can be handled. 

Hamada et al. (2005) pointed out that ignoring the mixing errors leads to results that 

overestimate the variance of the response of interest, and hence leads to increased confidence 

intervals for the estimates of the model parameters and reduced power of the statistical tests 

for their significance. They proposed a Bayesian approach to estimate the parameters of the 

required statistical models for the data, based on MCMC simulations using prior information 

about the joint distributions of all model parameters. This empirical approach provides a 

useful practical tool for a better statistical analysis than that ignoring the mixing errors, but 

does not allow for establishing all important features of the impact of these errors. They also 

suggested that the distribution of the actual concentrations could be following a Dirichlet 

distribution (Connor & Mosimann, 1969), since the proportions of the mixture are no longer 

fixed design points.  

 What makes the mixing errors problem difficult is that in designed mixture experiments, 

errors made in setting the correct amounts of any ingredient propagates to the proportions 

required by the experimental design for all ingredients. Therefore, the mixing errors lead to a 

complex error structure for the proportions of the mixtures.  

In this chapter we investigate the impact of inaccuracies in discharging the required 

amounts of the mixture components on the statistical analysis of the data. It is shown that 
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model (2.3) does not hold when Berkson errors occur in mixture experiments. We then suggest 

improvements to the naive analysis that ignores the mixing errors.  

Sections 3.2 and 3.3 review the main features of data collected in mixture experiments 

and they show how mixing errors affect the results if they are ignored. Steiner and Hamada 

(1997) defined a loss function due to the mixing errors but failed to find a closed form for the 

model bias that occurs. We derive it for the most common standard models under the 

assumption that reliable estimates for the variances of the mixing errors are available. As 

simplex lattice designs are frequently used in experiments with mixtures, we also derive the 

bias in the estimates of the model parameters resulting from statistical analysis of the data that 

ignores the mixing errors when such designs are used. Then we show how the results of 

Section 3.3 can be used to eliminate this bias. A method based on the regression calibration 

approach is used. Examples when the model bias is evaluated analytically, as well as when it 

is evaluated numerically, are presented and the two approaches are compared. We show that if 

mixing errors are unavoidable in the manufacturing of a mixture, the quality characteristics 

will differ on average from the required one. We also use the results of Section 3.3 to choose 

manufacturing settings so that the bias, the variability of the response, are minimized, thus 

increasing the signal to noise ratio and the quality of the product. The chapter concludes with a 

summary and discussion about the usefulness of the presented results. 

 

3.2 Mixture Experiment  

In a typical study of a mixture with q components, the experimenter is interested in the 

way a response of interest, say y, depends on the proportions of the components of the mixture 

wi, qi ,,2,1 …= . Hence,  

                                         0 1i i il w h≤ ≤ ≤ ≤ ,  1
1

=∑
=

q

i

iw ,                               (3.1) 
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where il  and ih  are lower and upper bounds for the proportion of the ith component in the 

mixture. A mixture with the desired proportions is obtained by mixing appropriate amounts 

Wi, qi ,,2,1 …= , of the ingredients. In the absence of errors in setting the amounts of the 

mixture components, TWw ii /= , where ∑
=

=
q

i

iWT
1

 is the total amount of the mixture. When 

0=il  and 1ih = , qi ,,2,1 …= , the design region is a regular simplex, which has q vertices. 

Often 0>il  and 1ih <  for some or all of the mixture components as a result of scientific or 

practical considerations. If the resulting design region again has q vertices, new variables 

which are linear combinations of the mixture components, called pseudocomponents, can be 

defined in such a way that the relationships (3.1) are satisfied for these variables. A 

comprehensive review of results related to experiments with mixtures is given by Cornell 

(2002). 

We will be concerned with the cases wherein the model that describes how a response 

variable y depends on the proportions of the components is linear in the parameters, that is it 

can be written as 

                             εFβy += , (3.2) 

where y and ε are n × 1 vectors of the responses and the measurement errors, respectively, β is 

a  p × 1 vector of the model parameters, while F is an n × p extended design matrix, whose tth 

row consists of the values of the regressors of the model evaluated for the tth mixture 

),...,,( 21 qtttt www=w . We also assume that the errors ε are independent, normally distributed 

with zero mean and variance 2

εσ . An unbiased least squares estimates for (3.2) can be derived 

by ( ) yFFFβ T1T −
=ˆ . The variances of the estimates can be obtained by 

( ) ( ) 2ˆvar εσ
−

=
1

T
β F F .  
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 Standard polynomials cannot be used as models because of the constraints (3.1). 

Instead, often the canonical polynomials proposed by Scheffé (1958) are used. For example, 

the first and the second-order Scheffé polynomials are 

 
                  tit

q

i

it wy ε+β= ∑
=1

, 
 

(3.3) 

 
         t

q

i

q

ij

jtitijit

q

i

it wwwy ε+β+β= ∑ ∑∑
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= +==

1

1 11

,                (3.4) 

respectively. Other useful models include those proposed by Becker (1968), for example, the 

models 
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12... 1 2
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q q q
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−
= = = +

= + + +
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…

…

, 

 

(3.6) 

can be useful when one of the mixture components has an additive blending effect.  

Simplex lattice designs (SLD) are often used in mixture experiments when there are no 

constraints on the mixture components. In a SLD, the proportions of each component take d+1 

equally spaced values from 0 to 1, wi = 0, 1/d, 2/d, ... , 1, for i = 1, 2, ... , q. The analysis of the 

data obtained with such a design and its interpretation is simple. For example, if d is chosen to 

be equal to the order of the Scheffé polynomial that will be fitted, the least squares estimators 

for the model parameters of the first and the second-order Scheffé polynomials are 

                                             ii y=β̂ ,          qi ,,1…= ,     (3.7) 

and 

                                            ][24ˆ
jiijij yyy +−=β ,   , 1, ,i j q= … ,    i<j,      (3.8) 

where iy  denotes the average of the observations when the mixture consists of the ith 

component only, while ijy  denotes the average of the observations where the proportions of 

the mixture of the ith and the jth component are both equal to 0.5. When the design region is 

irregular, the design construction can be carried out using any of the design algorithms 

described in Atkinson et al. (2007, chap. 12).  
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For example, let us consider the case of a SLD with 3-component. If model (3.4) is used 

to fit the data, the design points of such an experiment can be shown in Table (3.1). The 

notations yi and yij, qji ,,1, …= , i ≠ j, represent the responses results from pure and binary 

components mixtures, respectively.  

Table 3.1 Design points of a 3-component lattice design  
 

 Proportions 

Trials 1w  2w  3w  Responses 

1 1 0 0 1y  

2 0 1 0 
2y  

3 0 0 1 3y  

4 0.5 0.5 0 
12y  

5 0.5 0 0.5 13y  

6 0 0.5 0.5 23y  

 

The design region for a mixture experiment of 3-component mixture is usually 

represented graphically by using an equilateral triangular as in Figure (3.2).  In general, for q 

components, the design region is a q-1 dimensional simplex. This representation is useful to 

show the design points since each coordinate represents a certain trial, that is one of the 

formulations of the q-component in the mixture. The maximum values that each component 

could take are located in the vertices of the triangular, and the points located in the middle of 

the edges indicate the binary blends. 

Figure 3.1 Plot of {3, 2} simplex lattice design. 

 

  

 

 

 

 

 

If one chooses to fit the model using the pseudocomponents, the model will be given by 
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jtitijit
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it wwwy εββ +′′+′= ∑∑∑
−

= +==

1

1 11

.     

where iw′ , qi ,,1…=  are pseudocomponents. These components are mainly used to facilitate 

the analysis of the design under the use of new design points or proportions as a result of the 

constrained region. For example, if only lower bounds constraints have been imposed on the 

proportions, the pseudocomponents are computed using the equation 

                                           
L

Lw
w ii

i −

−
=′

1
,  

where ∑
=

=
q

i

iLL
1

, and the original proportions will be given by 

   iii wLLw ′−+= )1( .  

 

To illustrate the use of lower bounds constrains, we consider an example in Cornell 

(2002, pp. 141-143). Assume the following constraints were imposed on the three components 

135.00 1 ≤≤≤ w , 12.00 2 ≤≤≤ w , and 115.00 3 ≤≤≤ w . Then, the fitted model using the 

pseudocomponents is 

ttttttttttt wwwwwwwwwy εββββββ +′′+′′+′′+′+′+′= 322331132112332211 ,    

and by substituting iw′  in yt, we can write the model in terms of the original components by 

ttttttttttt wwwwwwwwwy εδδδδδδ ++++++= 322331132112332211 ,     

where  
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and 
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2)1( L

ij

ij −
=

β
δ ,      3,2,1, =ji  ,    ji < .   

The following table shows the design points of the above design (Cornell, 2002, p. 143). 

Table 3.2 The design points in case of constrained design region of {3,2} lattice design.  

 
 

Pseudocomponents Original proportions 
Amounts of 

components 

Trials 
1w  2w  3w  1w  2w  3w  1W  2W  3W  Responses 

1 1 0 0 0.65 0.20 0.15 6.5 2 1.5 
1y  

2 0 1 0 0.35 0.50 0.15 3.5 5 1.5 
2y  

3 0 0 1 0.35 0.20 0.45 3.5 2 4.5 3y  

4 0.5 0.5 0 0.50 0.35 0.15 5 3.5 1.5 12y  

5 0.5 0 0.5 0.50 0.20 0.30 5 2 3 13y  

6 0 0.5 0.5 0.35 0.35 0.30 3.5 3.5 3 23y  

 

 

3.3 EIV in Mixture Experiment  

 

When the amounts of the mixture components are set with errors, the actual amount of 

the ith mixture component for the tth observation of the response become ititit eWX += , 

where eit are the errors of setting the amount. We assume that eit, for qi ,,2,1 …=  and 

nt ,,2,1 …= , are independently and normally distributed random variables with mean zero and 

variance 2
iσ , qi ,,2,1 …= . The variance of eit is proportional to the discharged amounts, thus 

the variance of the actual amount itX  can be given by 2( )i it iWϕ σ , where ( )i itWϕ  defines the 

way the variance changes with the amount. It could be more interpretive to write the EIV 

model by 1/2[ ( )]it it i it itX W W eϕ= + , however, to simplify the analytical derivations we achieve 

later on, we write the model, omitting the part 1/2[ ( )]i itWϕ , and we only make an assumption 

about the variance of the actual amount. Either way the results are the same, since both writing 

approaches produces the same inferences for itX .  
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If only the amount of the ith component in the tth observation is set with error, the actual 

proportion of this component becomes 1))(( −++= itititit eTeWx , qi ,...,2,1= , while the actual 

proportions of the remaining components become 1( )jt jt itx W T e −= + , 1, 2,...,j q= , j i≠ . We 

denote the vector of actual proportions ),...,,( 21 qtttt xxx=x . If the amounts of all mixture 

components are set with errors  

     

∑
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+
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q
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kt

itit
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eW
x

1

,    qi ,...,2,1= . 

 

The error in the proportion of the ith component resulting from mixing errors in all 

components of the mixture is  
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111 ,  

where ∑
=

+=′
q

k

kteTT
1

is the actual total mixture amount.  

Clearly, if the mixture consists of a single component, as required for some of the 

observations of a simplex lattice design, and with no constraints on the proportions of the 

components, discharging the wrong amount will not change the required proportion of this 

component, i.e. 1. Therefore the following results are concerned only for cases where the 

mixtures consist of two or more components, all set with mixing errors. Note that, this 

argument does not apply if the required proportions are defined in pseudocomponents.   

 

3.4 Effect of Mixing Errors on Mixture Experiments 

 

The impact of the mixing errors on the analysis of the data is summarized below. The 

results of Lemmas 3.1 and 3.2 are obtained directly by using the delta method. A review on 

the delta approach is given in Appendix (A).  

Lemma 3.1 The expectation and the variance of the actual proportion of the ith 

component of a mixture in the tth observation, given the target proportion itw  are 
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                ( ) ( ) ( ) ( )2 2 2 2 2 2var | 1
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≠

≈ − + ∑ , 

, 1, 2, ,i j q= … , nt ,,2,1 …= , respectively.  

Lemma 3.2  The expectation and the variance of the product of the actual proportions xit 

and xjt of the ith and the jth components of a mixture in the tth observation, given the target 

proportions wit and wjt, are 

        2 2 2 2[ | , ] (3 2 ) ( ) (3 2 ) ( )it jt it jt it jt it jt jt i it i it jt it j jt jE x x w w w w w w w T W w w w T Wϕ σ ϕ σ− −≈ + − + −  

                              2 23 ( )
q

it jt l lt l

l i j

w w T Wϕ σ−

≠ ≠

+ ∑ , 

     2 2 2 2 2 2 2 2var( | , ) (1 2 ) ( ) (1 2 ) ( )it jt it jt jt it i it i it jt j jt jx x w w w w T W w w T Wϕ σ ϕ σ− −≈ − + −  

                              2 2 2 24 ( )
q

it jt l lt l

l i j

w w T Wϕ σ−

≠ ≠

+ ∑ , 

, 1, , ,   i j q i j= <… , nt ,,2,1 …= , respectively. 

As mentioned before, the actual proportions are correlated. Hence, covariance terms can 

be obtained easily from Lemma 3.1.  

Proof of Lemma 3.1 and Lemma 3.2: The actual ith proportion )(1
ititit eWTx +′= − , 

qi ,,2,1 …= , nt ,,2,1 …= , where ∑
=

+=′
q

k

kteTT
1

, is a function in more than one independent 

and normally distributed random variables with mean zero and standard deviation iσ , 

assumed to be proportional to functions in itW , that is we can write 2~ (0, ( ) )it it ie N Wϕ σ , ite  is 

the error in the ith component. Let tz  is the sum of the errors in all the components in the tth 

trial, except the ith one ∑
≠

=
q

ij
jtt ez , which follows a normal distribution with mean zero and 

variance ∑
≠

q

ij
jjtW 2)( σφ . By using approximation (A.1 in Appendix A), the second-order series 

expansion of uit around 0=ite  and 0=tz  is given by  
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and from xit=wit+uit, a second-order Taylor series expansion of itx  around 0=ite  and 0=tz  

is 222211 )1()1( tititittititititit zTweTwzTweTwwx −−−− +−−−−+≈ . Hence, 
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≈ + − + ∑ ,     , 1, 2, ,i j q= … . 

Now by taking the variance of the Taylor series expansion of itx , the following terms will 

appear, 2cov( , )i ie e , 2var( )ie , 2cov( , )t tz z , and 2var( )tz , 1, ,i q= … , nt ,,2,1 …= .  

The error components are assumed to be independent and normally distributed with zero 

means and different variances, hence 0),cov( 2 =ii ee , 2 4var( ) 2i ie σ=  and 2cov( , )t tz z = 0. Also  
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Direct calculations show that 2 4var( ) 2
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= ∑ , nt ,,2,1 …= . Since 2var( )ie  and 2var( )tz  are 

too small to matter 
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Similar to proof of lemma 3.1, applying delta method for  

2))()(( −+++++= tjtitjtjtititjtit zeeTeTweTwxx , , 1, , ,   i j q i j= <… , 

gives 
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Special Case: Lemmas 3.1 and 3.2 show that, the means of both the actual 

proportions and their products are different from those specified by the experimental design, 

and their variances increase with the values of the EIV variances. For example, in a SLD, if 

mixing errors occur in the amounts of the components of a binary blend where 

5.0== jtit ww ,  

2 2 2[ | ] 0.5 0.5 ( ) ( )it it i it i j jt jE x w T W Wϕ σ ϕ σ−  ≈ − −  , 

and 

2 2 2var( | ) 0.25 ( ) ( )
q

it it i it i j jt j

j i

x w T W Wϕ σ ϕ σ−

≠

 
≈ + 

  
∑ . 

An important special case is when 22

ji σσ =  and i jϕ ϕ=  , as then ≈]|[ itit wxE itw , 

which means that the target proportions are achieved on average, with an increased variability. 

However, even in this situation the use of second or higher order polynomial models is 

affected. For example, 

2 2| , 0.25 1 2 ( )it jt it jt i it iE x x w w T Wϕ σ−   ≈ −    , 

is less then the regressor jtit ww = 0.25, specified by the experimental design.  

Theorem 3.1 The mixing errors make the model biased, except in the case when the 

mixture consists of a single component, that is 
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                                ByE ttt +η= ),(]|[ wβw ,       nt ,,2,1 …= ,   

where ),( twβη  is the true response for the mixture tw , and the bias B depends on the form of 

the true model.  

 The exact impact of the mixing errors on the statistical analysis of the results depends 

on the experimental design that has been used and the statistical model that is estimated. As 

illustration of this theorem, the derivations of the biases of the first and second-order Scheffé 

polynomial models is given as follows. 

Proof of Theorem 3.1 for the First-Order Scheffé Polynomial Model: The result of 

this theorem follows directly from Lemmas 3.1 and 3.2. If the amounts of all mixture 

components are discharged with errors, for nt ,,2,1 …= , the true model is tit
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it xy εβ +=∑
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. 

From Lemma 3.1, it follows that a naive analysis of the data ignoring the mixing errors using 

model (3.3) leads to predictions 
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∑ ∑ . Hence, the expected response is 

biased.  

Proof of Theorem 1 for the Second-Order Scheffé Polynomial Model: If one or more 

of the mixture components are discharged with errors, the true model for nt ,,2,1 …= , is given 

by t
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where the bias is  

1
2 2 2 2 2

1 1 1

( 1) ( ) ( ) (3 2 ) ( )
q q q q

i it i it i it j jt j ij it jt jt i it i

i j i i j i

B T w W w W T w w w Wβ ϕ σ ϕ σ β ϕ σ
−

− −

= ≠ = = +

 
= − + + −    

∑ ∑ ∑ ∑  



 62 

2 2(3 2 ) ( ) 3 ( )
q

it jt it j jt j it jt l lt l

l i j

w w w W w w Wϕ σ ϕ σ
≠ ≠


+ − + 


∑ . 

 

Theorem 3.2 The mixing errors make the variance of the model heterogeneous and 

larger than 2

εσ , i.e. 2)|var( εσ>tty w . 

The expression for the variance of the response depends on the true model and can be 

very complex. Therefore we only show its derivation for the first-order Scheffé polynomial 

model. 

Proof of Theorem 2 for the First-Order Scheffé Polynomial Model: For nt ,,2,1 …= , 

the variance of the response given the design points is 
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Since ][][][),cov( jijiji xExExxExx −= , , 1, , ,   i j q i j= <… , applying the results of Lemmas 

3.1 and 3.2, gives 
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Clearly this variance is larger than 2

εσ  and depends on the proportions of the mixture 

components and the variances of the mixing errors. 

Theorem 3.3 If a simplex lattice design, with d = 2, is used, the expectations of the 

least squares estimators for the parameters of models (3.3) and (3.4) are  
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nt ,,2,1 …= . Hence, the estimates ˆ
iβ  are unbiased for iβ , and the estimates ˆ

ijβ  are 

approximately biased for ijβ .  

Proof of Theorem 3.3: In simplex lattice designs, since only one or two components 

mixtures are obtained, we can cancel the part concerned with three or higher components 

mixture in model (3.9), so that                  
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The naive least squares estimates of the parameters of model (3.4) are  
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In simplex lattice designs with six trails, the extended design matrix is given by 
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Now, for qji ,,1, …= ,  i<j, it follows from (3.11) that 
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(3.13) 

and ,][ iiyE β= qi ,,1…= . Putting 5.0== ji ww  in (3.13), and taking the expectation of (3.12) 

gives iiE ββ =]ˆ[ , ˆ[ ] ,ij ij ijE Bβ β≈ −   , 1, , ,   i j q i j= <… , where,  

2 2 2 2 2 2( ) ( )  2 ( ) ( )  ( )ij i it i j jt j ij i it i j jt j i jB W W T W W Tϕ σ ϕ σ β ϕ σ ϕ σ β β− −   = + + − −    .  Such 

results can also be derived for special cases when other models and other experimental designs 

are used.  

3.5 Adjusted Statistical Analysis 

 

The results presented in this section show that if the variances of the mixing errors are 

known, or can be estimated, the impact of these errors can be minimized. We start with 

developing a method for estimating the model parameters supported with a simulation 

example. It shows how the regression calibration approach can be used to minimize the 

resulting bias in the model and in the estimates of the model parameters, as well as to find 

correct estimates of the corresponding variances. Its application is made difficult by the 

complex structure of mixing errors. We also show how knowledge of the form of the model 

bias allows for choosing a manufacturing setting for a mixture product that is not biased and 

has a larger signal to noise ratio.  

 

3.5.1 Estimating Unknown Model Parameters 

If the form of the bias in the naive estimates is known, the mean bias can be estimated 

and used to adjust the naive parameter estimates. For example, Theorem 3.3 can be used to 

show that if a SLD is used, the bias-corrected estimator ( )
ˆ
c ijβ  for parameters ijβ  of the 

second-order Scheffé polynomial is 
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ˆ ˆ ˆ2 ( ) ( )  
ˆ ,

1 ( ) ( )  

ij i it i j jt j i j

c ij

i it i j jt j

W W T

W W T

β ϕ σ ϕ σ β β
β

ϕ σ ϕ σ

−

−

 + − − ≈
 − + 

 

 

(3.14) 

where 2 2 2 21 ( ) ( )  0i it i j jt jW T W Tϕ σ ϕ σ− −− − ≠ , , 1, , ,   i j q i j= <… , nt ,,2,1 …= .  

Clearly, finding the exact form of the bias and its variance can be a cumbersome task, as 

it depends on the experimental design and the model being used. The result given by equation 

(3.14) was obtained following the idea of the regression calibration approach. In general, the 

estimator for the model parameters of model (3.2), corrected for bias caused by mixing errors 

can be given by ( )ˆ
c c c c

−
=

1
T T

β F F F y , where cF  is the expectation of the actual extended design 

matrix Fx, given the specified by the experimental design extended design matrix Fw, i.e. 

[ ]c E= x wF F | F . The standard errors of the corrected estimates are the square roots of the 

diagonal elements of the matrix ( ) 2
c c cσ

−1
T

F F , where 2
cσ  is the residuals variance from the 

regression of y on the estimate of the expectation of the actual design given the target one.  If 

the variances of the mixing errors are small, the difference between cF  and Fw may be too 

small to matter in practice. However, as 2

iσ , qi ,,2,1 …= , increases, the mixing errors lead to 

parameter estimates with larger variance than in the case when no mixing errors have been 

made. All elements of cF  can be obtained by using the results of lemmas 3.1 and 3.2. 

However, when finding such expectations analytically is very difficult, e.g. Becker’s models; 

they can be obtained empirically using computer simulation. We refer to these correction 

methods as RCA and RCE, respectively.  

These correction approaches are more effective when the response has homoscedastic 

variance. If it does not, ˆ
cβ  is approximately asymptotically unbiased but inefficient. If an 

estimate of 2

εσ  is available, efficient estimate of β̂  can be obtained using the WLS method, as 

recommended by Carroll et al. (2006). Because of the complexity of the structure of the 
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mixing errors, the form of the response variance matrix Σ  is difficult to derive for second and 

higher order models and it will be estimated empirically. This can be done based on some 

information about the mean and variance of the response errors.  

Note that, cases wherein Σ  is unknown with no EIV, have been extensively studied in 

the literature by many authors, such as, Fuller and Rao (1978), Cragg (1983), Carroll and 

Cline (1988), and White (1980). In particular Fuller and Rao (1978) and Carroll and Cline 

(1988) are of interest here. They suggest obtaining estimates of the weights by taking the 

standard deviations of replications of the responses at each design value. In their work, 

restrictions on the appropriate number of replications have been made to insure unbiased 

estimator of Σ̂ . This approach is always useful to be used if possible, as it provides more 

information for the problem under study. However, the number of replications should be large 

enough to provides an appropriate estimate of Σ . We here use an empirical replication 

approach, so that no restriction on the number of replications is needed. The empirical 

approach is based on an estimate of the variance 2

εσ  of the regression errors. These estimates 

are used to generate a large number of replications at each design point, after which Σ  is 

obtained. So unlike their approach, here large number of responses can be obtained without 

any practical restriction. However, validation data or knowledge from previous experiments is 

needed.  

 The proposed correction approach, which we call weighted regression calibration 

(WRC), is based on three steps. First the RC is applied in order to find initial estimates ˆ
cβ . 

Then Σ  is estimated using these estimates. Finally, Σ̂  and cF  are used to find the weighted 

least squares estimates of the model parameters given by 1 1 1ˆ ˆ ˆ( )c c c c
− − −= Σ ΣT Tβ F F F y , where ˆ

cβ  

now is approximately asymptotically unbiased and efficient estimator of β , whose standard 

errors are given by the square roots of the diagonal elements of the matrix 1 1ˆ( )c c
− −ΣTF F . When 
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cF  is obtained analytically we denote the method WRCA, while when this is done empirically, 

we denote it WRCE.  

In order to generalize the results, we choose in the following simulation examples to 

study the effect of mixing errors using the second-order Scheffé model (3.4). In all the 

simulations, the models are assumed to be fit with small response variance, in order to make 

the interpretation for the effect of the mixing errors on the analysis clearer, and to avoid any 

computational problems.  

3.5.2 Response Prediction 

Often the objective of mixture experiments is to obtain a statistical model that allows us 

to predict the response for a variety of mixtures. Predicting the response for a mixture, aw  

say, can be obtained using the corrected parameter estimates ˆ
cβ , and the prediction 

ˆˆ( )a c ay = Tx β x  will be asymptotically unbiased. However, the prediction variance will increase 

with the variances of the mixing errors. 

3.5.3 Simulation Example 

Design Choice and Simulation Parameters: We assume that the true model is the 

second-order Scheffé polynomial (3.4) with 2501 =β , 1752 =β , 1903 =β , 55012 =β , 

38013 =β , and 45023 =β . The experimental errors are assumed to be independent and 

normally distributed with mean zero and common variance 4×10
-4

. The experimental design 

that is used is given in Table 3.3. This is the same design that Cornell (2002, p. 297) used to 

study the effect of powder pesticide in combination with two liquid pesticides to suppress mite 

population numbers.  
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Table 3.3 Experimental design (Cornell, 2002, p. 297) for the simulated experiment. 
 

 Proportions 

Run 1w  2w  3w  

1 1 0 0 

2 0 1 0 

3 0 0 1 

4 0.50 0.50 0 

5 0.50 0 0.50 

6 0 0.50 0.50 

7 0.20 0.20 0.60 

8 0 0.75 0.25 

9 0 0.25 0.75 

10 0.25 0 0.75 

11 0.75 0 0.25 

12 0.40 0.40 0.20 

13 0.30 0.30 0.40 

14 0.25 0.25 0.50 

15 0.10 0.10 0.80 
 

In this example, we assume that the experimental design is implemented by mixing 

certain amounts of the mixture components, as required by the experimental design, so that the 

total amount of the mixture is one. However, the required amounts of the three mixture 

components are discharged with errors, assumed to be normally distributed with zero means, 

and variances 2 2
1 1tW σ , 2 2

2 2tW σ , and 2 2
3 3tW σ , nt ,,2,1 …= , respectively, where 07.01 =σ , 

08.02 =σ , and 1.03 =σ 0. The matrix Fc is obtained empirically by averaging the results of 

10
4
 simulations at each design. An empirical estimate of Σ̂  is also obtained by using the 

variances of the responses generated over the same number of simulations at each design 

point. 

In order to compare results based on the analytical and empirical evaluations of Fc, the 

calibrated design is also obtained analytically. Note that the validity of the simulation codes 

was tested by using different simulation conditions. For example, if the EIV variances are set 

to zero, all the approaches of analyses are supposed to have equivalent results. Moreover, by 

increasing the size of the EIV, a trend of enlarged effects for the EIV was expected in the 

results.  
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Simulation Results: Table 3.4 lists the biases of the estimates of the model parameters 

when the following five methods of estimation are used:  

- Actual analysis, where the actual concentrations are known. 

- Naive analysis, ignoring the mixing errors. 

- Analysis when the correction to the model parameters is based on the analytical and 

empirical estimates of cF , ignoring the possibility for heterogeneity in the variances 

of the responses, RCA and RCE, respectively. 

- The corresponding analysis when the corrections are obtained using the WRCA and 

WRCE methods, respectively.  

Table 3.4 Bias of the estimators of the model parameters obtained using the actual, naive, RCE, RCA, 

WRCE and WRCA approaches, evaluated over 10
4
 MC simulations. 

 

 Actual Naive RCE RCA WRCE WRCA 

β1 -2.613×10
-5

 -4.040×10
-2

 -7.255×10
-3

 1.166×10
-2

 -1.169×10
-5

 -1.153×10
-5

 

β2 -4.178×10
-5

 -5.209×10
-2

 -4.706×10
-3

 -1.078×10
-2

 -4.633×10
-5

 -4.633×10
-5

 

β3 -8.214×10
-5

 0.133 -8.048×10
-3

 -6.208×10
-2

 -1.392×10
-4

 -1.395×10
-4

 

β12 9.214×10
-5

 -1.619 1.880×10
-2

 3.730×10
-2

 -3.768×10
-3

 6.012×10
-3

 

β13 5.782×10
-4

 -0.998 -2.818×10
-2

 -5.371×10
-2

 3.580×10
-2

 2.829×10
-3

 

β23 1.470×10
-4

 -1.113 1.204×10
-2

 1.611×10
-2

 -2.293×10
-2

 -4.663×10
-2

 

 

The actual analysis shows what the correct estimates would be if the actual mixtures 

were known. Table 3.4 indicates that the actual estimates are unbiased. The results in Table 

3.4 confirm that the naive estimators of the model parameters are asymptotically biased if the 

mixing errors are ignored. The bias is substantially reduced when the analytical estimate of cF  

is used, but it is virtually eliminated when the empirical estimate of cF  is used. This result is 

not surprising because the analytical approach is based on repeated use of the delta method, 

which provides only approximate values of the elements of cF . In addition, Table 3.4 

indicates that using the modified weighted least squares approach eliminates the bias in the 

estimates of the main effects. 
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Table 3.5 gives the averages of the estimated standard errors (denoted by SEs), 

computed using the square root of the ith diagonal element of the matrix ( ) 21
σ̂

−

.
T

. FF , where 

.F  is either xF , wF , or cF , for the least squares estimates, or 1 1ˆ( )c c
− −ΣTF F , when the WRC 

method is used. In addition, the estimates of the SEs are obtained from the simulations or they 

are Monte Carlo standard errors, computed by ∑
=

−
000,10

1

2 9999/)ˆ(
j

ijij ββ , where i is the 

subscript of  β: 1, 2, 3, 12, 13 or 23.   

 

Table 3.5 The MC SE (the averaged model-based SE) of the estimators of the model parameters 

obtained using the actual, naive, RCE, RCA, WRCE, and WRCA, evaluated over 10
4
 MC simulations. 

 
 Actual Naive RCE RCA WRCE WRCA 

β1 

9.118×10
-3 

(9.234×10
-3

) 

1.360 

(4.060) 

1.358 

(4.059) 

1.359 

(4.059) 

9.960×10
-3

 

(9.959×10
-3

) 

9.960×10
-3

 

(1.000×10
-2

) 

β2 
9.117×10

-3
 

(9.231×10
-3

) 

1.931 

(4.060) 

1.929 

(4.057) 

1.929 

(4.058) 

9.990×10
-3

 

(9.989×10
-3

) 

9.990×10
-3

 

(1.003×10
-2

) 

β3 
8.229×10

-3
 

(8.217×10
-3

) 

2.515 

(3.615) 

2.507 

(3.618) 

2.506 

(3.619) 

1.001×10
-2 

(1.001×10
-2

) 

1.001×10
-2

 

(9.915×10
-3

) 

β12 
3.959×10

-2
 

(3.989×10
-2

) 

10.070 

(17.470) 

9.978 

(17.512) 

9.981 

(17.515) 

7.102 

(7.056) 

7.104 

(7.061) 

β13 
3.737×10

-2
 

(3.787×10
-2

) 

10.453 

(16.616) 

10.441 

(16.662) 

10.443 

(16.664) 

6.797 

(6.814) 

6.796 

(6.819) 

β23 
3.752×10

-2
 

(3.786×10
-2

) 

10.773 

(16.616) 

10.756 

(16.658) 

10.752 

(16.656) 

3.343 

(3.356) 

3.343 

(3.353) 
 

The results in Table 3.5 show that the mixing errors increase the standard errors of the 

model parameters. In the naive analysis, the RCA and RCE approaches overestimate them and 

the differences between the three are negligible. The standard errors of the estimates obtained 

using the WRCA and WRCE approaches are considerably reduced, especially those for β1, β2 

and β3. Furthermore, they are similar to the standard errors of the model parameters obtained 

using the actual design.  

The correction for the parameters corresponding to the component interactions is less 

effective, although it is still better than when RCA and RCE are used. Their standard errors are 
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larger than those for the main effects, by design, and this difference is magnified substantially 

by the mixing errors. Note that, in practice, it would not be possible to compute the true 

standard errors iS1  as the true values of the model parameters would not be known. However, 

iS2  can be computed easily and they also appear to be correct. 

To provide an additional interpretation of the effect on the parameter and variance 

estimates, we compute the percentage of absolute mean relative bias given by 

ˆ| [ ] / | 100E − ×β β β . We also compute the relative standard error as a percentage given by 

[Averaged model-based SE / Monte Carlo SE]. These two measures help us to understand the 

benefits of applying the correction methods to analyze the results.  

Table 3.6 shows the percentage of absolute mean relative bias among the estimates from 

the actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated using 10
4
 Monte Carlo 

simulations. The results in Table 3.6 show how applying the correction approaches RCE and 

RCA improve the estimates of the parameters. When the WRCE and WRCA approaches are 

used, the biases in the naive estimates are completely eliminated.  

Table 3.6 Percentage of absolute mean relative bias of the estimators of the model parameters obtained 

using the actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 MC simulations. 

 

 Actual Naive RCE RCA WRCE WRCA 

β1 1.045×10
-5

 1.616×10
-2

 2.902×10
-3

 4.664×10
-3

 4.676×10
-6

 4.612×10
-6

 

β2 2.387×10
-5

 2.977×10
-2

 2.689×10
-3

 6.160×10
-3

 2.647×10
-5

 2.647×10
-5

 

β3 4.323×10
-5

 7.000×10
-2

 4.236×10
-3

 3.267×10
-2

 7.326×10
-5

 7.342×10
-5

 

β12 1.675×10
-5

 0.294 3.418×10
-3

 6.782×10
-3

 6.851×10
-4

 1.093×10
-3

 

β13 1.522×10
-4

 0.263 7.416×10
-3

 1.413×10
-2

 9.421×10
-3

 7.445×10
-4

 

β23 3.267×10
-5

 0.247 2.676×10
-3

 3.580×10
-3

 5.096×10
-3

 1.036×10
-2

 
 

 

Table 3.7 illustrates the efficiency of the actual, naive, RCE, RCA, WRCE, and WRCA 

estimators. The relative standard errors from the naive, RCE and RCA approaches are seen to 

be approximately similar, although a slight reduction in the standard errors of the estimators 

when using RCE and RCA can be noticed in Table 3.4 but this difference is probably 

insignificant. Therefore, using these approaches leads to approximately unbiased but 
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inefficient estimates. The gain in efficiency when using both the WRCE and WRCA 

approaches is considerably high. In fact, WRCE gives an efficiency of approximately 1 for the 

estimates of the pure components. Estimates of the binary components are also efficiently 

high, with ratios of 0.994, 1.003, and 1.004 for β23, β13, and β12, respectively. In Table 3.7, the 

correction approach WRCE is shown to provide more efficiency by chance than the actual 

approach.  

Table 3.7 Relative SEs of the estimators of the model parameters obtained using the actual, naive, 

RCE, RCA, WRCE and WRCA approaches, evaluated over 10
4
 MC simulations. 

 

 Actual Naive RCE RCA WRCE WRCA 

β1 1.013 2.985 2.989 2.987 1 1.004 

β2 1.012 2.102 2.103 2.104 1 1.004 

β3 0.999 1.437 1.443 1.444 1 0.990 

β12 1.007 1.735 1.755 1.755 0.994 0.994 

β13 1.013 1.590 1.596 1.596 1.003 1.003 

β23 1.009 1.542 1.549 1.549 1.004 1.003 
 

Note that, even though the efficiency gain when using the WRCE approach is high, the 

standard errors of the estimates of the model parameters are still higher than in the actual 

analysis, as shown in Table 3.5. In addition, from Table 3.6, the mean relative bias in the naive 

estimates may be so relatively small as to not matter in practice; however, the bias depends 

mainly on the size of the errors. This can be carefully considered before aiming to correct the 

bias in the naive estimates, as the mixing error variance could be quite small in some 

experimental situations.  

To examine the prediction variance in each type of regression, seven selected design 

points are used. These are shown in Table 3.8.  

Table 3.8 Number of selected design points used to examine the prediction variances. 
 

 Proportions 

Run 1w  2w  3w  

1 0.40 0.40 0.20 

2 0.45 0.30 0.15 

3 0.35 0.35 0.30 

4 0.40 0.30 0.30 

5 0.30 0.40 0.30 

6 0.30 0.30 0.30 

7 0.50 0.20 0.30 
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The averaged prediction variances from fitting the naive, RCE, RCA, WRCE, and WRCA, 

over 10
4 

simulations are 2.605, 2.412, 2.413, 1.301 and 1.301, respectively. Therefore, using 

the WRCE and WRCA reduce the prediction variance by approximately half compared to using 

the naive, RCE, and RCA approaches. Both of the approaches RCE and RCA also show a slight 

improvement in the prediction variance, but this can be considered insignificant, compared to 

that obtained from the WRCE and WRCA approaches. 

3.5.4 Robustness of the Adjustment Approaches to the Misspecification 

of Mixture Error Variance 

 

Most of the adjustment approaches used to compensate for the effect of EIV depend on 

the estimated value of the error variance. This estimate can be obtained prior to the adjustment 

analysis. In some situations, the error variance could be misspecified or inaccurately 

estimated. Hence, it is important to question the robustness of the adjusted approaches to 

misspecified errors.  

The error variance could be underestimated or overestimated. Underestimating it means 

that the errors at the adjustment stage of the analysis are considered smaller than their actual 

values. Overestimating means that those errors are considered larger than their actual values.   

The robustness of the RC approach to error misspecification has been investigated before 

in the literature. Mallick et al. (2002) studied the robustness of RC under the assumption of 

classical EIV. Their study showed that the robustness of the approach is highly jeopardized by 

error variance misspecification. For example, when the error variance is overestimated, the 

variances of the estimators obtained using the RC approach are also overestimated. Likewise, 

when the error variance is underestimated, the variances of the estimators in the RC are 

underestimated.  
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In the following we investigate the effectiveness of the adjusted approaches when there is 

error misspecification. For the misspecified values of the errors variances, a sensible range has 

been chosen, determined by practical considerations, and wider ranges would not be of interest 

but ones up to those limits are of interest. 

For the approaches WRCE and WRCA, we assume that the response variance 2
εσ  is 

known, and not misspecified.  

3.5.4.1 Underestimating the Mixture Error Variance  

Assume the components of a mixture are mixed with errors. Suppose the error variances 

are underestimated. A Monte Carlo simulation is conducted to examine the robustness of the 

corrected approaches RCE, RCA, WRCE, and WRCA for this error misspecification.  

 

3.5.4.2 Simulation Example 

 

    Design Choice and Simulation Parameters: We use the simulation settings in the 

previous example with a slight change in the simulation parameters. Similar to the previous 

example, the required amounts of the three mixture components are discharged with errors, 

assumed to be normally distributed with zero means and variances 2
1σ , 2

2σ , and 2
3σ , 

nt ,,2,1 …= , respectively, where 07.01 =σ , 08.02 =σ , and 1.03 =σ 0. The variances are 

proportional to the squares of the discharged amounts, that is the variances of the actual 

amounts are 2 2
1 1tW σ , 2 2

2 2tW σ , and 2 2
3 3tW σ , respectively. However, to simulate the case of 

underestimating the errors, we assume that the standard deviations of the errors are 

underestimated as half of their actual size, that is 1 1
ˆ / 2σ σ= , 2 2

ˆ / 2σ σ= , and 3 3
ˆ / 2σ σ= . 

Thus, the values of the error standard deviations, to be used in the adjustment approaches, are 

1
ˆ 0.035σ = , 2

ˆ 0.04σ = , and 3
ˆ 0.05σ = .  
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Simulation Results: Tables 3.9, 3.10, 3.11, and 3.12, report the results of 10
4
 Monte Carlo 

simulations of the underestimated error variance. The target is to compare the robustness of 

the adjustment approaches. The results illustrate the bias, the averaged model-based SE, the 

Monte Carlo SE, the percentage of absolute mean relative bias, and the relative standard error, 

respectively, of the estimators of β1, β2, β3, β12, β13, and β23 obtained using the actual, naive, 

RCE, RCA, WRCE, and WRCA approaches.  

Table 3.9 Investigating the robustness of the adjustment approaches to underestimated errors 

( 1
ˆ 0.035σ = , 2

ˆ 0.04σ = , and 3
ˆ 0.05σ = ). Bias in the estimators of the model parameters obtained 

using actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 MC simulations. 

  

 Actual Naive RCE RCA WRCE WRCA 

β1 -2.613×10
-5

 -4.040×10
-2

 -3.736×10
-2

 -2.751×10
-2

 -1.291×10
-5

 -1.258×10
-5

 

β2 -4.178×10
-5

 -5.209×10
-2

 -3.898×10
-2

 -4.191×10
-2

 -4.833×10
-5

 -4.834×10
-5

 

β3 -8.214×10
-5

 0.133 0.111 -8.423×10
-2

 -1.374×10
-4

 -1.380×10
-4

 

β12 9.214×10
-5

 -1.619 -1.221 -1.205 -1.148 -1.136 

β13 5.782×10
-4

 -0.998 -0.749 -0.761 -0.795 -0.810 

β23 1.470×10
-4

 -1.113 -0.842 -0.830 -1.415 -1.415 
 

The results show that the impact of misspecified error variance on the robustness of the 

adjustment approaches is generally high. The estimates of the binary components β23, β13, and 

β12 obtained using RCE, RCA, WRCE, and WRCA are the most affected. In particular, when the 

error variance is assumed known, the adjustment approaches WRCE and WRCA produce 

approximately unbiased and efficient estimates for the pure and binary component parameters. 

When the error variance is underestimated, the same approaches produce unbiased and 

efficient estimates only for the pure components. Estimates of the binary components, on the 

other hand, show some bias and reduction in efficiency. For example, the bias in β23 from 

WRCE and WRCA is -1.415, in the mean, while the bias in the naive estimate is -1.113. This 

can clearly be seen in Table 3.11 by comparing the percentages of the absolute mean relative 

biases in the estimates obtained from the adjustment approaches and the naive analysis. The 

approaches WRCE and WRCA underestimate the SEs of the estimators of the model 

parameters. However, their estimates still have a relatively higher efficiency than those from 
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the naive analysis. For example, in Table 3.12, the relative standard errors for β12 from the 

naive, WRCE, and WRCA approaches are 1.735, 0.467, and 0.468, respectively. 

 

Table 3.10 Investigating the robustness of the adjustment approaches to underestimated errors 

( 1
ˆ 0.035σ = , 2

ˆ 0.04σ = , and 3
ˆ 0.05σ = ). The MC SE (the averaged model-based SE) of the 

estimators of the model parameters obtained using actual, naive, RCE, RCA, WRCE, and WRCA 

approaches, evaluated over 10
4
 MC simulations. 

 

 Actual Naive RCE RCA WRCE WRCA 

β1 

9.118×10
-3 

(9.234×10
-3

) 

1.360 

(4.060) 

1.359 

(4.059) 

1.369 

(4.057) 

9.960×10
-3

 

(9.959×10
-3

) 

9.960×10
-3

 

 (1.000×10
-2

) 

β2 
9.117×10

-3
 

(9.231×10
-3

) 

1.931 

(4.060) 

1.931 

(4.057) 

1.927 

(4.058) 

9.990×10
-3

 

(9.989×10
-3

) 

9.990×10
-3

 

 (1.003×10
-2

) 

β3 
8.229×10

-3
 

(8.217×10
-3

) 

2.515 

(3.615) 

2.513 

(3.615) 

2.511 

(3.616) 

1.001×10
-2

 

(1.001×10
-2

) 

1.001×10
-2

 

 (9.915×10
-3

) 

β12 
3.959×10

-2
 

(3.989×10
-2

) 

    10.070 

(17.470) 

10.022 

(17.479) 

11.295 

(17.479) 

7.177 

(3.354) 

7.176 

(3.356) 

β13 
3.737×10

-2
 

(3.787×10
-2

) 

10.453 

(16.616) 

10.441 

(16.626) 

10.910 

(16.626) 

6.822 

(3.308) 

6.823 

(3.310) 

β23 
3.752×10

-2
 

(3.786×10
-2

) 

10.773 

(16.616) 

10.760 

(16.626) 

11.373 

(16.624) 

3.636 

(1.194) 

3.636 

(1.193) 
 

Table 3.11 Investigating the robustness of the adjustment approaches to underestimated errors 

( 1
ˆ 0.035σ = , 2

ˆ 0.04σ = , and 3
ˆ 0.05σ = ). Percentage of absolute mean relative bias of the 

estimators of the model parameters obtained using actual, naive, RCE, RCA, WRCE, and WRCA 

approaches, evaluated over 10
4
 MC simulations. 

 
 Actual Naive RCE RCA WRCE WRCA 

β1 1.045×10
-5

 1.616×10
-2

 -1.494×10
-2

 -1.100×10
-2

 -5.163×10
-6

 -5.033×10
-6

 

β2 2.387×10
-5

 2.977×10
-2

 -2.227×10
-2

 -2.395×10
-2

 -2.762×10
-5

 -2.763×10
-5

 

β3 4.323×10
-5

 7.000×10
-2

 5.846×10
-2

 4.433×10
-2

 -7.232×10
-5

 -7.263×10
-5

 

β12 1.675×10
-5

 0.294 -0.222 -0.219 -0.209 -0.206 

β13 1.522×10
-4

 0.263 -0.197 -0.200 -0.209 -0.213 

β23 3.267×10
-5

 0.247 -0.187 -0.185 -0.314 -0.314 
 

Table 3.12 Investigating the robustness of the adjustment approaches to underestimated errors 

( 1
ˆ 0.035σ = , 2

ˆ 0.04σ = , and 3
ˆ 0.05σ = ). Relative standard error of the estimators of the model 

parameters obtained using actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 

MC simulations. 
 

 Actual Naive RCE RCA WRCE WRCA 

β1 1.013 2.985 2.986 2.965 1 1.004 

β2 1.012 2.102 2.102 2.106 1 1.004 

β3 0.999 1.437 1.438 1.440 1 0.990 

β12 1.007 1.735 1.744 1.547 0.467 0.468 

β13 1.013 1.590 1.592 1.524 0.485 0.485 

β23 1.009 1.542 1.545 1.462 0.328 0.328 
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3.5.4.3 Overestimating the Mixture Error Variance  

 

Assume the components of a mixture are mixed with errors. Suppose the error variances 

are overestimated. A Monte Carlo simulation is conducted to examine the robustness of the 

corrected approaches RCE, RCA, WRCE, and WRCA to this error misspecification.  

3.5.4.4 Simulation Example 
 

Design Choice and Simulation Parameters: Similar to the previous simulation study, 

we only change the error standard deviation in the simulated experiment. The required 

amounts of the three mixture components are discharged with errors, assumed to be normally 

distributed with zero means and variances 2
1σ , 2

2σ , and 2
3σ , nt ,,2,1 …= , respectively, where 

07.01 =σ , 08.02 =σ , and 1.03 =σ 0. The variances are proportional to the squares of the 

discharged amounts, that is the variances of the actual amounts are 2 2
1 1tW σ , 2 2

2 2tW σ , and 2 2
3 3tW σ , 

respectively. However, to simulate the case of overestimating the error size, we assume the 

error standard deviations to be overestimated as twice their actual size, that is 1 1
ˆ 2σ σ= , 

2 2
ˆ 2σ σ= , and 3 3

ˆ 2σ σ= . Thus the values of the error standard deviations to be used in the 

adjustment approaches are 1
ˆ 0.14σ = , 2

ˆ 0.16σ = , and 3
ˆ 0.20σ = . 

 

Simulation Results: Tables 3.13, 3.14, 3.15, and 3.16 report the results of running 10
4
 

Monte Carlo simulations for the overestimated error variances. The results illustrate the bias, 

average model-based SE, Monte Carlo SE, percentage of absolute relative bias, and relative 

standard error, respectively, of the estimators of β1, β2, β3, β12, β13, and β23 obtained using the 

actual, naive, RCE, RCA, WRCE, and WRCA approaches.  
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Table 3.13 Investigating the robustness of the adjustment approaches to overestimated errors 

( 1
ˆ 0.14σ = , 2

ˆ 0.16σ = , and 3
ˆ 0.20σ = ). Bias of the estimators of the model parameters obtained 

using actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 MC simulations. 

 
 Actual Naive RCE RCA WRCE WRCA 

β1 -2.613×10
-5

 -4.040×10
-2

 0.154 0.176 -1.143×10
-5

 -1.140×10
-5

 

β2 -4.178×10
-5

 -5.209×10
-2

 0.139 0.122 -4.592×10
-5

 -4.594×10
-5

 

β3 -8.214×10
-5

 0.133 -0.542 -0.641 -1.397×10
-4

 -1.398×10
-4

 

β12 9.214×10
-5

 -1.619 5.199 5.038 4.913 4.754 

β13 5.782×10
-4

 -0.998 2.949 2.750 3.442 3.178 

β23 1.470×10
-4

 -1.113 3.663 3.372 5.099 4.667 
 

 

Table 3.14 Investigating the robustness of the adjustment approaches to overestimated errors 

( 1
ˆ 0.14σ = , 2

ˆ 0.16σ = , and 3
ˆ 0.20σ = ). The MC SE (the average model-based SE) of the estimators 

of the model parameters obtained using the actual, naive, RCE , RCA , WRCE, and WRCA approaches, 

evaluated over 10
4
 MC simulations.  

 

 Actual Naive RCE RCA WRCE WRCA 

β1 

9.118×10
-3 

(9.234×10
-3

) 

1.360 

(4.060) 

1.364 

(4.093) 

1.369 

(4.099) 

9.959×10
-3

 

(9.959×10
-3

) 

9.959×10
-3

 

 (1.000×10
-2

) 

β2 
9.117×10

-3
 

(9.231×10
-3

) 

1.931 

(4.060) 

1.929 

(4.089) 

1.927 

(4.096) 

9.989×10
-3

 

 (9.989×10
-3

) 

9.989×10
-3

 

 (1.003×10
-2

) 

β3 
8.229×10

-3
 

(8.217×10
-3

) 

2.515 

(3.615) 

2.548 

(3.663) 

2.568 

(3.671) 

1.001×10
-2

 

 (1.001×10
-2

) 

1.001×10
-2

 

 (9.915×10
-2

) 

β12 
3.959×10

-2
 

(3.989×10
-2

) 

10.070 

(17.47) 

11.369 

(17.813) 

11.295 

(17.836) 

8.717 

(17.103) 

8.628 

(17.113) 

β13 
3.737×10

-2
 

(3.787×10
-2

) 

10.453 

(16.62) 

10.965 

(16.972) 

10.910 

(16.986) 

7.748 

(15.378) 

7.631 

(15.377) 

β23 
3.752×10

-2
 

(3.786×10
-2

) 

10.773 

(16.62) 

11.478 

(16.947) 

11.373 

(16.954) 

6.348 

(12.200) 

6.004 

(12.173) 
 

The results show that the impact of the overestimated errors on the analysis is larger than 

that in the case of the underestimated errors. The estimates of the binary components from the 

same approaches are highly affected when the errors are overestimated. The biases in the 

estimators of β12, β13, and β23 obtained using RCE, RCA, WRCE, and WRCA are much larger 

than the biases in the naive estimates. For example, the biases in the estimates of β12 obtained 

using the naive and WRCE approaches are -1.619 and 4.913, respectively. The results in Table 

3.15 support these figures, with increased percentages of absolute relative biases in the 

estimates of the binary components. From Table 3.16 it can be seen that the relative standard 

errors for the main effects obtained using the naive, WRCE, and WRCA approaches are 2.985, 
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1, and 1.004, respectively, which shows an improvement in the efficiency of the estimators. 

Hence, similar to the case of the underestimated errors, the adjusted estimates for the pure 

components obtained using WRCE and WRCA are unbiased and efficient compared to the 

naive ones.  

In addition, from Tables 3.14 and 3.16, we can see that the standard errors of the 

adjusted estimators are overestimated. For the binary effects, for example, the relative SEs of 

the estimators of the binary effect β12 obtained using the naive, WRCE, and WRCA approaches 

are 1.735, 1.962, and 1.983, respectively. The same applies to the binary components β23 and 

β13.  

Table 3.15 Investigating the robustness of the adjustment approaches to overestimated errors 

( 1
ˆ 0.14σ = , 2

ˆ 0.16σ = , and 3
ˆ 0.20σ = ). Percentage of absolute mean relative bias of the estimators 

of the model parameters obtained using the actual, naive, RCE, RCA, WRCE, and WRCA approaches, 

evaluated over 10
4
 MC simulations. 

 

 Actual Naive RCE RCA WRCE WRCA 

β1 1.045×10
-5

 1.616×10
-2

 6.156×10
-2

 0.070 -4.572×10
-6

 -4.560×10
-6

 

β2 2.387×10
-5

 2.977×10
-2

 0.079 0.0699 -2.624×10
-5

 -2.625×10
-5

 

β3 4.323×10
-5

 7.000×10
-2

 -0.285 -0.337 -7.354×10
-5

 -7.361×10
-5

 

β12 1.675×10
-5

 0.294 0.945 0.916 0.893 0.864 

β13 1.522×10
-4

 0.263 0.776 0.724 0.906 0.836 

β23 3.267×10
-5

 0.247 0.814 0.749 1.133 1.037 

 

 

Table 3.16 Investigating the robustness of the adjustment approaches to overestimated errors 

( 1
ˆ 0.14σ = , 2

ˆ 0.16σ = , and 3
ˆ 0.20σ = ). Relative standard error of the estimators of the model 

parameters obtained using actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 

MC simulations. 

 
 Actual Naive RCE RCA WRCE WRCA 

β1 1.013 2.985 3.001 2.994 1 1.004 

β2 1.012 2.102 2.120 2.125 1 1.004 

β3 0.999 1.437 1.438 1.430 1 0.990 

β12 1.007 1.735 1.567 1.579 1.962 1.983 

β13 1.013 1.590 1.548 1.557 1.985 2.015 

β23 1.009 1.542 1.476 1.491 1.922 2.028 
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3.5.5 Robustness of WRCE and WRCA Approaches to a Misspecification of 

the Response Error Variance 

 

The approaches WRCE and WRCA rely on the assumption of a known response error 

variance 2
εσ . However, in practice, this assumption may not always be valid and an estimate 

of 2
εσ  will have to be obtained in order to use these approaches. In this section, an 

investigation into the effect of underestimating or overestimating 2
εσ  is presented. The effect 

of misspecifying the variance is studied by comparing the naive, RCE, and RCA approaches to 

the corrected approaches, WRCE and WRCA. In the previous simulations, the response errors 

were assumed to be small (that is εσ =0.01) so that more focus could be given to the effect of 

the mixing errors on the analysis. Since now the attention is given to the effect of any response 

error misspecification, assuming εσ =0.01 would be misleading as the errors would be too 

small to reveal any problems if the variance was unknown. Thus, a larger value of 2
εσ  is used 

in the following simulation examples. For the misspecified values of the error variances, a 

sensible range has been chosen, determined by practical considerations, and wider ranges 

would not be of interest but ones up to those limits are of interest. 

3.5.5.1 Underestimating the Response Error Variance 

 

Assume the components of a mixture are measured with errors. Suppose the error 

variances are well estimated but the response errors are underestimated. A Monte Carlo 

simulation is conducted to examine the robustness of the corrected approaches WRCE and 

WRCA to such an error misspecification.  
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3.5.5.2 Simulation Example 

 
Design Choice and Simulation Parameters: Assume the same simulation setting as in 

Section 3.5.3. Let εσ =5.48. To simulate the case where we underestimate the response errors, 

we assume that the standard deviation of the errors is underestimated as half of its actual size, 

that is ˆ / 2ε εσ σ= .  

Simulation Results: Tables 3.17, 3.18, 3.19, and 3.20 report the results of running 10
4
 

Monte Carlo simulations of underestimated response error variance. The results illustrate the 

bias, the average model-based and Monte Carlo standard errors, the percentage of absolute 

relative bias, and the relative standard errors, respectively, of the estimators of β1, β2, β3, β12, 

β13, and β23 obtained using the actual, naive, RCE, RCA, WRCE, and WRCA approaches.  

In general, Tables 3.17 and 3.19 show that, particularly when estimating the parameters 

β12, β13, and β23, the corrected approaches give unbiased estimators compared to the estimators 

obtained using the naive approach and their values are approximately as good as those 

produced from the actual analysis of the data. Thus, even though the approaches WRCE and 

WRCA have been used with misspecified εσ , their estimators are still approximately unbiased 

in comparison to the true parameters. However, from Tables 3.18 and 3.20, it can be seen that 

the performances of WRCE and WRCA are not as efficient as the naive approach. For example, 

in Table 3.20, for β12, the relative SEs obtained using the naive and WRCA approaches are 

0.571 and 1.175, respectively. In addition, unlike in the case where εσ  is known, no reduction 

in the true variance of the estimators is obtained.  
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Table 3.17 Investigating the robustness of the adjustment approaches to underestimated response error 

variance ( ˆεσ =2.74). Bias in the estimators of the model parameters obtained using actual, naive 

analysis and RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 MC simulations. 

 

 Actual Naive RCE RCA WRCE WRCA 

β1 -1.432×10
-2

 -5.315×10
-2

 -2.001×10
-2

 -1.098×10
-3

 -4.741×10
-3

 1.881×10
-3

 

β2 -2.289×10
-2

 -7.615×10
-2

 -2.878×10
-2

 -3.486×10
-2

 -2.367×10
-2

 -2.448×10
-2

 

β3 -4.501×10
-2

 9.107×10
-2

 -5.025×10
-2

 -0.104 -6.564×10
-2

 -8.051×10
-2

 

β12 5.049×10
-2

 -1.550 8.817×10
-2

 0.107 1.462×10
-2

 3.047×10
-2

 

β13 0.317 -0.711 0.260 0.234 0.291 0.263 

β23 8.055×10
-2

 -1.038 8.804×10
-2

 9.229×10
-2

 5.242×10
-2

 2.495×10
-2

 

 
  
Table 3.18 Investigating the robustness of the adjustment approaches to underestimated response error 

variance ( ˆεσ =2.74). The MC SE (the average model-based SE) of the estimators of the model 

parameters obtained using actual, naive, RCE, RCA , WRCE, and WRCA approaches, evaluated over 10
4
 

MC simulations. 
  

 Actual Naive RCE RCA WRCE WRCA 

β1 

4.997 

(5.060) 

5.194 

(6.490) 

5.195 

(6.491) 

5.195 

(6.491) 

5.204 

(2.641) 

5.204 

(2.652) 

β2 
4.996 

(5.058) 

5.380 

(6.490) 

5.379 

(6.489) 

5.379 

(6.490) 

5.307 

(2.685) 

5.305 

(2.695) 

β3 
4.510 

(4.503) 

5.148 

(5.780) 

5.151 

(5.786) 

5.152 

(5.789) 

5.067 

(2.605) 

5.075 

(2.584) 

β12 
21.697 

(21.858) 

23.781 

(27.931) 

23.806 

(28.008) 

23.809 

(28.012) 

23.816 

(13.534) 

23.812 

(13.599) 

β13 
20.481 

(20.752) 

22.916 

(26.566) 

22.984 

(26.650) 

22.985 

(26.650) 

22.848 

(12.975) 

22.826 

(13.065) 

β23 
20.559 

(20.746) 

23.137 

(26.566) 

23.189 

(26.642) 

23.185 

(26.638) 

22.935 

(12.271) 

22.853 

(12.418) 
  
 

Table 3.19 Investigating the robustness of the adjustment approaches to underestimated response error 

variance ( ˆεσ =2.74). Percentage of absolute mean relative bias of the estimators of the model 

parameters obtained using actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 

MC simulations. 
 

 Actual Naive RCE RCA WRCE WRCA 

β1 5.727×10
-3

 2.126×10
-2

 8.006×10
-3

 4.392×10
-4

 1.896×10
-3

 7.524×10
-4

 

β2 1.308×10
-2

 4.352×10
-2

 1.645×10
-2

 1.992×10
-2

 1.353×10
-2

 1.399×10
-2

 

β3 2.369×10
-2

 4.793×10
-2

 2.645×10
-2

 5.492×10
-2

 3.455×10
-2

 4.238×10
-2

 

β12 9.180×10
-3

 0.282 1.603×10
-2

 1.940×10
-2

 2.659×10
-3

 5.540×10
-3

 

β13 8.339×10
-2

 0.187 6.832×10
-2

 6.162×10
-2

 7.653×10
-2

 6.917×10
-2

 

β23 1.790×10
-2

 0.231 1.956×10
-2

 2.051×10
-2

 1.165×10
-2

 5.544×10
-3
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Table 3.20 Investigating the robustness of the adjustment approaches to underestimated response error 

variance ( ˆεσ =2.74). Relative standard errors of the estimators of the model parameters obtained using 

actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 MC simulations. 

  
 Actual Naive RCE RCA WRCE WRCA 

β1 1.013 1.250 1.249 1.249 0.507 0.510 

β2 1.012 1.206 1.206 1.206 0.506 0.508 

β3 0.999 1.123 1.123 1.123 0.514 0.509 

β12 1.007 1.175 1.177 1.176 0.568 0.571 

β13 1.013 1.159 1.159 1.159 0.568 0.572 

β23 1.009 1.148 1.149 1.149 0.535 0.543 
 

3.5.5.3 Overestimating the Response Error Variance  

 

Assume that the components of a mixture are measured with errors. Suppose the error 

variances are well estimated but the response errors are overestimated. A Monte Carlo 

simulation is conducted to examine the robustness of the corrected approaches WRCE and 

WRCA to such an error misspecification.  

3.5.5.4 Simulation Example  
 

 

Design Choice and Simulation Parameters: Assume the same simulation setting as in 

Section 3.5.3. Let εσ =5.48. To simulate the case of overestimating the response errors, we 

assume that the standard deviation of the errors is estimated to be twice its actual size, that is, 

ˆ 2ε εσ σ= . 

Simulation Results: Tables 3.21, 3.22, 3.23, and 3.24 report the results of running 10
4
 

Monte Carlo simulations of the overestimated response error variance. The results illustrate 

the bias, average model-based and Monte Carlo standard errors, the percentage of absolute 

relative bias, and the relative standard errors, respectively, of the estimators of β1, β2, β3, β12, 

β13, and β23 obtained using the actual, naive, RCE, RCA, WRCE, and WRCA approaches.  

 



 84 

Table 3.21 Investigating the robustness of the adjusted approaches to overestimated response error 

variance ( ˆεσ =10.96). Biases in the estimators of the model parameters obtained using actual, naive, 

RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 MC simulations. 

 

 Actual Naive RCE RCA WRCE WRCA 

β1 -1.432×10
-2

 -5.315×10
-2

 -2.001×10
-2

 -1.098×10
-3

 -1.542×10
-2

 1.419×10
-3

 

β2 -2.289×10
-2

 -7.615×10
-2

 -2.878×10
-2

 -3.486×10
-2

 -2.551×10
-2

 -3.038×10
-2

 

β3 -4.501×10
-2

 9.107×10
-2

 -5.025×10
-2

 -0.104 -5.075×10
-2

 -9.623×10
-2

 

β12 5.049×10
-2

 -1.550 8.817×10
-2

 0.107 6.589×10
-2

 8.418×10
-2

 

β13 0.317 -0.711 0.260 0.234 0.252 0.224 

β23 8.055×10
-2

 -1.038 8.804×10
-2

 9.229×10
-2

 7.855×10
-2

 7.368×10
-2

 
 

Again, the RCE, RCA, WRCE, and WRCA approaches all showed improvements over the 

naive approach in terms of a correction of the bias in the estimators of the model parameters. 

However, their estimators were found to be inefficient. In particular, the WRCE and WRCA 

approaches that depend on the value of the response error variance were highly affected by the 

misspecification of 2
εσ . Their estimators were even more inefficient than the naive estimates 

of the model parameters. Therefore, it is preferable to use the WRC approaches only if 2
εσ  is 

known or can be accurately estimated.  

Table 3.22 Investigating the robustness of the adjusted approaches to overestimated response error 

variance ( ˆεσ =10.96). The MC SE (the average model-based SE) of the estimators of the model 

parameters obtained using actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 

MC simulations. 
 

 Actual Naive RCE RCA WRCE WRCA 

β1 

4.997 

(5.060) 

5.194 

(6.490) 

5.195 

(6.491) 

5.195 

(6.491) 

5.162 

(10.143) 

5.163 

(10.181) 

β2 
4.996 

(5.058) 

5.380 

(6.490) 

5.379 

(6.489) 

5.379 

(6.490) 

5.281 

(10.241) 

5.288 

(10.270) 

β3 
4.510 

(4.503) 

5.148 

(5.780) 

5.151 

(5.786) 

5.152 

(5.789) 

5.004 

(9.301) 

4.990 

(9.256) 

β12 
21.697 

(21.858) 

23.781 

(27.931) 

23.806 

(28.008) 

23.809 

(28.012) 

23.596 

(44.581) 

23.615 

(44.600) 

β13 
20.481 

(20.752) 

22.916 

(26.566) 

22.984 

(26.650) 

22.985 

(26.650) 

22.612 

(42.539) 

22.623 

(42.664) 

β23 
20.559 

(20.746) 

23.137 

(26.566) 

23.189 

(26.642) 

23.185 

(26.638) 

22.624 

(42.494) 

22.678 

(42.737) 
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Table 3.23 Investigating the robustness of the adjusted approaches to overestimated response error 

variance ( ˆεσ =10.96). Percentage of absolute mean relative bias of the estimators of the model 

parameters obtained using actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 

MC simulations. 
 

 Actual Naive RCE RCA WRCE WRCA 

β1 5.727×10
-3

 2.126×10
-2

 8.006×10
-3

 4.392×10
-4

 6.169×10
-3

 5.675×10
-4

 

β2 1.308×10
-2

 4.352×10
-2

 1.645×10
-2

 1.992×10
-2

 1.458×10
-2

 1.736×10
-2

 

β3 2.369×10
-2

 4.793×10
-2

 2.645×10
-2

 5.492×10
-2

 2.671×10
-2

 5.065×10
-2

 

β12 9.180×10
-3

 0.282 1.603×10
-2

 1.940×10
-2

 1.198×10
-2

 1.531×10
-2

 

β13 8.339×10
-2

 0.187 6.832×10
-2

 6.162×10
-2

 6.629×10
-2

 5.905×10
-2

 

β23 1.790×10
-2

 0.231 1.956×10
-2

 2.051×10
-2

 1.746×10
-2

 1.637×10
-2

 

 

 

 

Table 3.24 Investigating the robustness of the adjusted approaches to overestimated response error 

variance ( ˆεσ =10.96). Relative standard error of the estimators of the model parameters obtained 

using actual, naive, RCE, RCA, WRCE, and WRCA approaches, evaluated over 10
4
 MC simulations. 

 

 Actual Naive RCE RCA WRCE WRCA 

β1 1.013 1.250 1.249 1.249 1.965 1.972 

β2 1.012 1.206 1.206 1.206 1.939 1.942 

β3 0.999 1.123 1.123 1.123 1.858 1.855 

β12 1.007 1.175 1.177 1.176 1.889 1.889 

β13 1.013 1.159 1.159 1.159 1.881 1.886 

β23 1.009 1.148 1.149 1.149 1.878 1.884 

 

3.5.6 Characterizing a Mixture Product  

 

Suppose that a consumer product (e.g. an alloy or fertilizer) that is to be manufactured is 

the mixture wa, and the manufacturing equipment is to be set up in this way. If mixing errors 

are unavoidable, Lemma 3.1 shows that [ ] awx ≠aE , and therefore the average value of the 

response y, characterizing the product, will differ from what is intended, i.e. 

[ ] [ ])()( aa yEyE wx ≠ . Hence, the average proportions of the components of the mixture will 

be different from the intended ones, the average characteristics of the product, represented by 

the response, will be biased, and the variability of y will be increased. Clearly this could have 

serious implications for the overall quality of the product. Similar effects could be observed if 
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the operating conditions under which the product is mixed cause errors in the proportions of 

the mixture components, due to dilution or degradation. For example, this phenomenon can 

occur in bioassay screening. 

 The results of Section 3.3.1 can help us to find a solution to this problem. For example, 

the simple model (3.3) will usually be sufficient to predict the response in the neighborhood of 

the mixture wa and can be obtained experimentally given the choice of wa. From Theorem 3.1 

it follows that [ | ] ( , )a aE y Bη= +w β w . It is therefore possible to set up the equipment to 

manufacture a mixture, say wm (rather than wa) such that [ | ] ( , )m aE y η≈w β w . From Theorem 

3.1 it follows that the mixture wm should satisfy the identity  

   ( ) 2 2 2

1 1

( 1) ( ) ( ) 0
q q q

i im ia i im i im i im j jm j
i i j i

w w T w W w W−

= = ≠

 
β − + β − ϕ σ + ϕ σ = 

 
∑ ∑ ∑ .  (3.15) 

  

In general, an infinite number of mixtures satisfy this identity, and hence the one chosen for 

the manufacturing process could satisfy other considerations. For example, the variability of 

the responses associated with different mixtures will differ, and therefore the mixture for 

which this variability is the smallest may be the most attractive choice. Equation (3.10) which 

follows from Theorem 3.2 can be used to make the choice. 

3.5.7 Simulation Example  
 

Design Choice and Simulation Parameters: Assume that the desirable values of a 

response, y, of a three-component mixture would be obtained if the manufactured mixture was 

a =w (0.5, 0.2, 0.3). However, we expect there to be mixing errors with mean zero and 

variances 2
1σ , 2

2σ , and 2
3σ , that is the variances of the actual amounts are 2 2

1 1mW σ , 2 2
2 2mW σ , and 

2 2
3 3mW σ , respectively, where 07.01 =σ , 08.02 =σ , and 1.03 =σ 0. Suppose also that model 

(3.3) can be used to describe the response in the neighborhood of wa, with =Tβ (250, 175, 

190). Large numbers of design points are generated in the area of the target design point wa 
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using a step of 5101 −× . This step will be narrowed by examining each of the points in order to 

find the one that satisfies equation (3.15). Only the points that give a root of less than 6105 −×  

for equation (3.15) are selected, since in our example, we cannot find a point in the 

neighborhood of wa that gives us an exact root of zero for equation (3.15). However, we did 

find that in other simulated experiments this condition was satisfied when small errors and 

model parameters were assumed.  

Simulation Results: Calculations using equation (3.15) show that there are many other 

mixtures that result in products with the average desired response. However, we pick only 

three of the mixtures that satisfy equation (3.15). These points are: (0.501, 0.201, 0.298), 

(0.501, 0.202, 0.297), and (0.501, 0.205, 0.294). The response variances resulting from using 

these three points are the smallest out of all the generated design points and are given 

approximately by 2.4451, 2.4454, and 2.4467 respectively. However, the mixtures (0.501, 

0.201, 0.298) and (0.501, 0.202, 0.297) ensure that the variability of the response is minimized 

(since their response variances seem to be close in value). This mixture should therefore be 

recommended to the manufacturer. 

3.6 Summary and Discussion  

 

In this chapter, analytical and empirical results were developed to address the effects of 

mixing errors on the analysis of mixture experiments. The results show that ignoring mixing 

errors leads to biased and inefficient ordinary least squares estimators of the model 

parameters. The direction and size of the bias depend on many factors, but mainly on the size 

of the mixing error variances.   

As a result of the mixing errors, the model thus becomes biased with increased and 

heterogeneous variance. A method based on the RC and WLS approaches was proposed. We 

also implemented a method based on the RC approach alone. The form of the bias is very 
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important in the application of the RC approach. If the variances of the mixing errors and 2

εσ  

can be obtained prior to the experiment, these values can be used to develop a calibrated 

extended design matrix cF , as well as estimates for the variances of the responses at the 

design points. Then, the estimator of the model parameters ˆ
WRCβ , provides better estimates of 

the model parameters than those obtained by ignoring the mixing errors. Generally, finding cF  

analytically is difficult. In our examples, we have shown that a calibrated extended design 

matrix cF , as well as standard errors for the corrected model parameters can be obtained by 

computer simulation. The correction approach WRC that we propose produces approximately 

unbiased and efficient estimators.  

The results we obtain are novel in regards to mixture experiments. However, they might 

be comparable with some of the previous studies in the area, particularly multiple linear 

regression models with EIV. In mixture experiments, if second or higher order Scheffé 

polynomials are used to fit the data from a mixture experiment, and mixing errors occurs in at 

least one component, all the estimates of the coefficients will be biased. The direction of the 

bias is unpredictable. A similar effect occurs in multiple linear regression models with errors 

in at least one of the variables, for example see Buzas et al. (2004).  

When the error variance is misspecified, the robustness of the approaches used to 

estimate the binary effects is reduced. Particularly for overestimated error variance, the 

estimates of the model parameters obtained using the adjustment approaches have enlarged 

biases and overestimated variances. Most of the estimates of model parameters obtained using 

underestimated error variance encountered biases and underestimated variance, but the biases 

were not larger than the biases in the naive estimates for most of the binary effects. Note that, 

the adjustment approaches WRCE and WRCA can be considered robust for estimating the pure 

components β1, β2, and β3 even with misspecified error variance. Their estimates are unbiased 

and efficient. Thus, if it is suspected that the error variance has been misspecified in the 
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experiment, we recommend using the WRCE and WRCA approaches only, to fit the pure 

components in any response model. For example, if the model to be fitted is a first-order 

polynomial, then the estimates of the model parameters will be unbiased and efficient even 

with misspecified error variance.  

A disadvantage of our correction approaches is that they are based on approximations of 

the expectations of the true values, given the observed values. To find the appropriate 

approximations, strong distributional assumptions need to be imposed. Hence any 

misspecification of such assumptions could lead to invalid approximations. However, we have 

to point out that RC, which is one of the most commonly used correction methods, also relies 

on such approximations and faces the same problem as our approaches when the errors are 

misspecified.  

When applying the proposed approaches, a possible reason for inconsistency in the 

approximations is that the number of samples generated to obtain the corrected extended 

design matrix might not have been sufficiently large. Thus, the use of a large number of 

replications is always recommended. However, the number should only be increased if the 

additional computational effort is reasonable. 

Some of the methods proposed only reduced the bias in the naive estimates and some 

others reduced the bias and produced efficient estimates. The choice of appropriate method 

should be based on what assumptions can be made regarding the error components in the EIV 

model.  

The bias in the naive estimates of the model parameters was found to be relatively small. 

Despite the fact that in the literature on EIV, some researchers tend to ignore small biases in 

the estimates of parameters, we believe that there are special cases in which it is essential to 

address this and produce accurate results, by correcting for biases of any magnitude. The 

biases in the estimates depend on the variance of the EIV so, with large variance, greater bias 
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will be found in the estimates. In practice, it is true that the variance is more likely to be small. 

However, large variances are possible if an experiment is not done very carefully. In addition, 

simulations show that, on average, we obtain the most consistent and efficient estimates of the 

model parameters by correcting the bias in the naive estimates. The bias is also a function of 

the model parameters so, with large parameter sizes, the effect of the error is found to be more 

significant.  

Nevertheless, even though the effects of the mixing errors have been addressed, the 

results that we present show that their impact cannot be removed completely from the 

statistical analysis of the data. The increase in the variability of the results propagates to the 

accuracy of the estimation of the model parameters and the prediction of the response. This is 

a particularly important limitation when the aim of the experiment is to determine the 

manufacturing settings of a mixture product, and when mixing errors cannot be avoided. 

Selecting a mixture wm for manufacturing, as described earlier, so that the manufacturing 

product has the asymptotic properties of the desired mixture wa, would eliminate the 

asymptotic bias. However, the variance of the response would remain increased. Therefore, a 

typical quality that was characteristic of the product, based on the signal to noise ratio, and 

therefore the quality of the product itself, would be reduced by the mixing errors. Hence, 

perhaps not surprisingly, trying to avoid or at least minimize mixing errors should be the first 

thing considered.  
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4 Berkson Errors in Bioassays  

 

 

4.1 Introduction 

 

 

A bioassay can be defined as the screening, testing, and ranking of compounds. It has 

applications in drug discovery, medical research, and biological trials. Particularly, bioassays 

in drug discovery are aimed at specifying the minimum dose or concentration of a compound 

that shows a significant efficacy, while having negligible side effects. The studied effect is 

represented in what is called a response, and by analysing the relation between the response 

and dose, the effectiveness of the drug can be determined. In practice, commonly doses on the 

logarithmic scale are used when fitting the responses. An example of the typical effect of the 

increase of dose on the response is given in Figure 4.1.  

In a drug discovery process (DDP), new drugs are compared with standard treatments. 

This process is usually carried out by large pharmaceutical companies. It starts by performing 

experimental pre-clinical (in vitro) and clinical (in vivo) trials. These trials are part of the 

DDP, which is a very expensive process running over a long period of time, e.g. 10–15 years.  

Initially, large numbers of compounds are tested. Those without sufficient potencies are 

discarded. Consequently, smaller number of compounds proceed to additional tests. Only 

compounds that successfully complete the different phases of DDP can become drugs and be 
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sold on the market. These are compounds that have been shown to have high potency and 

negligible undesirable side effects (e.g. toxicity). 

Figure 4.1 A typical effect of the increase of dose on the response. 
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As mentioned the DDP passes by two main phases: in vitro and in vivo. To illustrate the 

two phases, examples 1 and 2 are given.  

4.1.1 Examples 

 

Example 1. In Vitro Bioassay; A useful step in the DDP is the screening of 

compounds for cellular activities; see for example Molony (2002). The screening process is 

performed on the compound libraries by setting plates of chosen size (e.g. 96 wells plate), so 

that different concentrations of the studied compounds are tested in each well using the same 

experimental design for each compound. Often robots are used to pipette compounds into the 

wells and to record the responses, on the other hand this process could be done manually 

depending on the size of the assay study.  

In these cases, an initial solution is prepared, often using a standard solvent and pipetted 

as required by the experimental design. The data could be then used to estimate the potency of 

each compound by fitting the appropriate response model. At the end of the in vitro study, 
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compounds are ranked depending on their potency, and those with the highest potency will be 

selected for further studies.  

Example 2. In Vivo Bioassay; If the screening described in Example 1 has been 

successful, a small number of compounds that have shown desirable properties could be tested 

on animals. Compounds that have been showing promise can be also tested on a small number 

of healthy volunteers in order to examine safety aspects of the drug. Once these aspects are 

confirmed, larger number of individuals are selected to search for optimal dosing and 

scheduling of the new drugs. The new drug is also compared with other drugs on the market. 

Eventually the drug is applied to a large sample of patients with the target doses to monitor all 

aspects of the drug effects. For additional information about the DDP, see the summary in 

Triggle (2007). 

4.1.2 Experimental Designs for Bioassays: Optimal Designs, Serial 

Dilution Designs 

 

Bioassay studies are usually performed within a well-designed experiment. Experimental 

designs in bioassays are an approach to choose the number and values of target doses (or 

concentrations) of a compound for which the response is measured. Common designs for 

bioassays consist of observations of the response of interest for a number of equally distant on 

the logarithmic scale concentrations.  

In practice, there are different ways to design a bioassay experiment. For example, the 

suitable design for a bioassay study can be selected either according to certain scientific 

criteria or using one’s experience. Two main concepts in experiment design in bioassays are 

introduced briefly here. These concepts are optimal designs and serial dilution designs.  

Optimal Designs: If the doses used in a bioassay experiment are chosen in such a 

way that particular statistical properties of the results are ensured, such a design is called an 
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optimum design. There are many criteria of optimality, such as, D- and G- optimality. For 

example, D-optimum designs are based on maximising the determinant of the information 

matrix for the design, so that the generalised variance of the estimates of the model parameters 

is minimised (Atkinson et al., 2007, p. 135). As a result of using D-optimal designs, inferences 

of parameters are found to be more efficient than if standard designs are used.  

When the model used to fit the data from a bioassay is nonlinear, the determinant of the 

information matrix can only be calculated if the values of the model parameters are known (or 

approximately known). If these values are used to construct the D-optimum design, the design 

is then is said to be locally D-optimum. Such values might be available before the start of the 

experiment from experience or previous research.  

Commonly in bioassay studies the same design is used to investigate a large number of 

compounds. Choosing the same design to test different compounds, will lead to no bias in 

estimates of potency, but the variance of the estimates will be inefficient. These designs have 

been used in many practical situations, even though the accuracy of the estimate of α  is 

compromised. In such a case, the population D-optimality criteria defined by Donev and 

Tobias (2011) can be used to construct a suitable design.  

Serial Dilution Designs: In vitro bioassays, designs often use serial pipetting of 

different concentrations of compounds into the wells of plates. These designs are called serial 

dilution designs (SDDs). The dilution process starts with pipetting an initial stock solution in a 

well (or wells if there are replications), to produce what is called the first or top concentration 

w1. The next dose is obtained by reducing the previous by a dilution factor k. The dilution 

process will continue until the required number of doses is achieved. The choice of the 

suitable value for k usually depends on the case under study. Table 4.1 shows a SDD with 8 

design doses, wherein w1=32 and k=2. 
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Table 4.1 SDD with 8 design points, 1w =32 and k=2. 

 

Design point Dose 

1 32 

2 16 

3 8 

4 4 

5 2 

6 1 

7 0.5 

8 0.25 
 
 

In bioassays, the true concentrations are seldomly known, and only the target 

concentrations are used in the statistical analysis of the data. This is therefore a typical 

scenario of a Berkson error problem. The errors are often proportional and related to the actual 

amounts; hence the assumption of heteroscedastic (non-constant) Berkson errors that can be 

seen as more sensible than homoscedastic errors. 

When correcting the effects of the errors, most of the correction methods require some 

knowledge about the distribution of the EIV. The assumption of Gaussian, or normally 

distributed errors has been used many times. An exception is Wang et al. (2010), who studied 

the case of non-Gaussian EIV when a simple linear model has to be estimated, Wang (2006) in 

logistic regression and Suh and Schafer (2002) in nonlinear response model.   

Bias correction in the case of Berkson Gaussian EIV when linear or generalised linear 

models have to be estimated has been studied by Burr (1988), Rudemo et al. (1989), Ridout 

and Fenlon (1991), Buonaccorsi and Lin (2002), Kim et al. (2006), Küchenhoff et al. (2007) 

and Althubaiti and Donev (2010).  

 The effect of EIV in bioassay has also been studied; see for example Racine-Poon et al. 

(1991), Dellaportas and Stephens (1995), Higgins et al. (1998), and Gelman et al. (2004). 

Again, EIV with normal distribution is assumed. It was reported that the naive analysis 

seriously underestimates the variability of the estimates of the parameters of the model, and 

that the response variance is inflated. Racine-Poon et al. (1991) recognised that EIV are often 
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proportional to the concentrations and developed a model to describe how the data is 

generated when a serial dilution design (SDD) is used and dilution errors in concentrations are 

made. The model is given as follows. Let wt be the target concentrations by design, where 

1,2, ,t n= … . The dilution process starts by diluting a stock solution, say w0 in m steps to 

obtain w1 in a SDD. If the dilution factor k=2, the actual top concentration x1 can be given by; 

   0 0 01 0 1 22 (1 )(1 ) (1 )m
w w w mx w u u u−= + + +… ,  (4.4) 

where the dilution errors 
0 0 01 2, , ,w w w mu u u…  associated with diluting the initial solution w0 are 

assumed to be identically and independently normally distributed with mean zero and small 

variance 
2

uσ . If we fit the model in the logarithmic scale to base 10 of the concentration of the 

compound, equation (4.4) gives 
01 1

1

log log log(1 )
m

w j

j

x w u
=

= + +∑ . If the errors are small, 

0
log(1 )w ju+ can be approximated by 

0w ju . Thus another way to write 1log x  

111 loglog uwx +≈ , (4.5) 

where 1u =
0

1

m

w j

j

u
=
∑  follows normal distribution with mean zero and variance 2

umσ , i.e. 

2
1 ~ (0, )uu N mσ . Therefore on average the target top concentration is attained, since 

11 log)(log wxE ≈ . Also from (4.5), a general model for all the actual concentrations can be 

given by 
1

log log
t

t t l

l

x w u
=

≈ +∑ ,  1,2, ,t n= … , and the covariance between the tth and t th′  

concentrations, 2cov(log , log ) (min( , ) ( 1))t t ux x t t mσ′ ′≈ + − , , 1, 2, ,t t n′ = … . Hence, although 

the actual concentrations are different from those specified by the target design, on average the 

desired concentrations are applied, but with increased variation and correlated structure due to 

DE. In Racine-Poon et al. (1991), the bioassay data was fitted using a 4-parameter logistic 

response model.  
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In their work, a homogeneous response model was assumed. However, when EIV occur, 

results based on applying first-order Taylor series approximations, using the delta method for 

the response model showed that, [ | ; ] ( , )t t tE y w f w≈β β , var( | ; ) var( | ; )t t t ty w y x D≈ +β β ,   

1,2, ,t n= … , where var( | ; )t ty x β  is a function in the response variance 2
εσ  and the number of 

replications of the tth response; D is a function in β , the target concentrations tw , and the 

variance-covariance matrix of the true concentrations tx , including the error variance 2
uσ . 

Thus, the response is heterogeneous if the errors are ignored. Note that, first-order 

approximations are usually considered to be appropriate, when the EIV variance 2
uσ  is small. 

The approximated response model is estimated using Bayesian MCMC simulation approach. 

Pilot studies have been used to specify the priors of dilution errors variance and other model 

parameters. The validity of their approach relies on an appropriate specification of the required 

assumptions (e.g. variance and density function of the DE); otherwise accurate inferences 

regarding the potency are unachievable. 

Rudemo et al. (1989) investigated the problem in nonlinear random effects models. 

These models consider the effects of the parameters of the model to be random variables 

drawn from a specific distribution. Different from the previously mentioned studies, they 

address the bias in the response by taking 2
nd

 order Taylor approximation for the mean of the 

response model. However, the bias term was considered to be negligible, unless the errors are 

large.  

Buonaccorsi and Lin (2002) considered the effect of the same DE as Racine-Poon et al. 

(1991) on random effects linear and quadratic response models. More errors structures were 

also studied. They found that the effect of errors on the analysis differs according to the 

structure of error assumed to generate the actual doses. For example, if the errors in the doses 

are independent of each other and between individuals, naive estimators of the linear model 
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parameters are unbiased and efficient. However, estimates of parameters from the quadratic 

model were found to be biased. To address the bias, approximate formulas have been 

obtained. This was made rather easy because of the linearity assumption they use for the 

response models assumed to fit the data.  

Wang and Davidian (1996) showed that only when the EIV in concentrations are 

normally distributed with non-zero mean, the estimates of the model parameters are biased. 

However, no correction method was established to adjust for such a bias.  

EIV with distributional assumptions, such as, non-zero mean or non-Gaussian 

distribution, are common in bioassays. The following example provides evidence for that. 

 

Example. Dawson and Donev (2007) present the results of a study on the stability of 

solutions for testing in bioassays when the compounds to be tested are dissolved in dimethyl 

sulfoxide (DMSO). DMSO is a widely used solvent because of its excellent solubilising 

ability, chemical inertness, high boiling, and freezing points. However, it is also highly 

hydrophilic and will rapidly absorb water in many possible storing conditions. This may result 

in reduced stock concentration, compound precipitation, crystallization, and degradation. As a 

result, the concentrations of compounds used in bioassays would be lower compared to those 

specified by the experimental design and inaccurate data would be used in a naive statistical 

analysis ignoring the EIV. The experiment reported by Dawson and Donev (2007) aimed to 

quantify the dilution of compounds as a result of the absorption of water by DMSO. 

Compounds from different chemical series and molecular weight bands were used. The 

dilution by water uptake was measured by recording the volume gain during a typical 

laboratory storage period. When the compounds were stored in room conditions, 11%–16% 

dilution was noted, while when they were stored in a fridge it was 10%–24%. Figure 4.2 

shows a plot for the diluted compounds over a period of time measured in hours, in which the 
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compounds where stored. Different compounds are plotted in order to show how they are 

affected by dilution errors in different ways.  

Figure 4.2 The dilution of nine compounds measured by the volume uptake over a period of around 

700 hours. 
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Results showed that if the actual concentrations are less than the target ones, the true 

potency of compounds are underestimated by ignoring the errors. Therefore, since it is 

possible for compounds in a study to be exposed to different types of errors, the rank order of 

compounds is affected as a result of analysis that ignores these errors. The variance of the 

potency estimates is underestimated as well. This leads to wrong confidence intervals and 

power analysis for choosing appropriate sample size. The distribution of the resulting errors in 

setting the concentrations can be modelled in different ways, but a Gamma distribution 

seemed to suit the collected data well. See Cheng, et al. (2003) for a comprehensive study of 

the stability of compounds in DMSO.  

Similar errors can be seen when the compounds under study have high viscosity, which 

causes the compounds to stick in the disposing pipette devices. There are also situations when 

the concentrations are larger than the planned ones. For example, if the pipette gets into 
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contact with the compounds in a plate of wells, it may cause an increase in the amounts of 

compounds all over the plate as the pipette transfers an excess amount in each disposit of the 

solution. In addition, errors in setting the concentrations could be also introduced entirely at 

random.  

In this chapter, we study the effect of non-Gaussian errors in setting concentrations in 

bioassay and propose a correction method aimed at reduce the effect of the errors on the 

analysis. The method can also be used in other situations where non-Gaussian Berkson EIV 

occurs. Two error models are investigated. First, we assume the error only occurs in the top 

concentrations of a SDD, which would be the typical scenario wherein the DMSO is used, to 

obtain the initial concentration. Second, we assume that all the concentrations in the SDD are 

subject to independent errors. Such a scenario can occur, for example, in animal studies where 

each dose is prepared, prior to administration to each animal. The assumption of Gaussian 

errors is also investigated to show the differences between the effects. Both of the error 

scenarios have been examined before in Buonaccorsi and Lin (2002) and Gelman et al. (2004). 

However, our work expands their investigation by examining errors with Gaussian and non-

Gaussian distributions. Moreover, unlike Buonaccorsi and Lin (2002), we study the effect on 

nonlinear dose-response model (4.1), and using SDDs. 

Section 4.2 gives the statistical model and the structure of the EIV models. Section 4.3 

examines the effect of those errors on the analysis of bioassay results by conducting a large 

number of Monte Carlo simulations. This reveals interesting features of the effect of errors in 

setting the concentrations. Section 4.4 presents an adjustment approach for the effect of errors 

on the analysis of data from bioassay experiments. The approach extends the SIMEX method 

to make it possible to use when the errors are of Berkson’s type. A comparison between the 

performance of the proposed approach and the adjustment approaches in Chapter 3 (RC and 

WRC) is also presented to develop possible scenarios, in which one approach will perform 
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better than the others.  

4.1.3 Statistical Analysis of Data from Bioassays  

 

In a typical bioassay study, a response of interest, say y, is obtained at different doses; 

say w, of a studied compound. To interpret the dose-response relation, customarily the so 

called Hill equation or 4-parameter logistic model is given by; 
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β ,   nt ,,2,1 …=       

 
(4.1) 

 

In  equation (4.1), [ ]tE y  is the expected response corresponding to dose tw , β  is a vector of 

model parameters giving by β =( 1 2 3 4, , ,β β β β )
T
, 1β  is the logarithm to base 10 of the dose 

denoted by IC50, the dose required to achieve a response half way between the maximum 

response 4β , and minimum response 3β . Note that, 3β  and 4β  are obtained by setting two 

controlled doses (commonly known as the negative and positive doses, respectively).  

Depending on the study, the IC50 could also be named EC50. We use the same notation IC50 

through out the text to avoid confusion. The parameter 2β  is called the Hill slope. Additive 

independent errors of measuring the response are often assumed. However, there are also 

cases when these assumptions have to be relaxed.  

Some of the model parameters in (4.1) are estimated using common sense or scientific 

knowledge. In fact the majority of bioassays use model (4.1) motivated by knowledge about 

the underlying biology in dose-response studies. For example, the Hill slope is known to be 

usually equal or close to 1 (or -1 if the response increases with the dose). The values of 3β  and 

4β  are known approximately prior to the data analysis, as they are not dependent on the effect 

of the studied compounds. All this simplifies the nonlinear regression problem. Primarily, the 

interest is in estimating 1β , as it provides guidance about the potency of a studied compound. 
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Small values of 1β  indicate high potency. When the most potent compound amongst several 

compounds has to be chosen, the task reduces to comparing the corresponding estimates of 1β  

for each of them.  

When carrying out the statistical analysis of data fitted with model (4.1), it is necessary 

to define the appropriate model assumptions. Otherwise, the results could be misleading. A 

description of the commonly used assumptions and methods of analysis are given below.  

Model assumptions: Suppose n doses were used. The expectation and the variance of 

the tth response ty  corresponding to the tth dose tw are;  

 

( | ; ) ( , )t t tE y w f w=β β ,         2var( | ; )i iy w εσ=β ,     nt ,,2,1 …= , 

 

(4.2) 

where β  is a vector of p parameters and 
2

εσ  is the response variance. Model (4.2) is called the 

homogeneous response model because the variance of the response is assumed to be constant 

among the responses and independent of ( , )tf w β , nt ,,2,1 …= . If a heteroscedastic model 

assumption is appropriate, then the tth response ty  corresponding to the tth dose tw , may be 

given by; 

    ( | ; ) ( , )t t tE y w f w=β β ,    ( )22var( | ; ) { ( , ), }t t ty w h f wεσ ρ=β β ,    nt ,,2,1 …= , (4.3) 

where h is the function that describes the form of the heterogeneity in the response, and it can 

depend on the mean function, as well as an extra parameter ρ .    

Analysis of data: When assumption (4.2) is appropriate, NLS (explained in Chapter 1) 

is customarily used. For assumption (4.3), the use of appropriate weighting methods is 

important for the efficacy of the model’s parameters.  

The method IRWLS (also called the generalized least squares), can be used whenever 

the assumption of constant response variance is not appropriate. The direct weighted least 

squares analysis can be also used, however, this can be considered an ideal situation, since it 

requires the variance function to be exactly known and does not depend on any unknown 
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model or variance parameters. The following explanation of the method is taken from 

Davidian and Giltinan (1995).  

The IRWLS approach starts by obtaining initial estimate 0β̂  (often estimated using least 

squares technique). To obtain estimates of the appropriate weights, any parameters in the 

variance function need to be estimated or assumed to be known. In the literature, there are 

various ways to do the estimation. A commonly used approach is the pseudolikelihood (PL) 

method. Assuming normally distributed responses, this approach is based on finding the 

variance parameters that minimise the PL function given by;  

( )2 2 2 1 2 2
0 0 0 0

1

ˆ ˆ ˆ ˆ( , , ) { ( , )} { { ( , ), }} log[ { ( , ), }]
n

j j j j

j

PL y f x h f x h f xσ ρ σ ρ σ ρ−

=

= − +∑β β β β .  

After estimating the variance parameters, the weights are estimated and used to obtain 

weighted least squares estimators of the model parameters. This process is iterated a sufficient 

number of times, to guarantee the convergence of the estimates of weights.  

Other famous approaches aim to transform both sides of the response model in order to 

define a response with a constant variance (Box & Cox, 1964). Further information about the 

various ways of the analysis of heteroscedastic regression models can be found in Davidian 

and Giltinan (1995).  

4.2 EIV in Bioassay Dose-Response Studies 

 

The effect of ignoring the EIV in the analysis of bioassays presents one of the most 

difficult but vastly important statistical challenges. Comprehensive reviews of the existing 

theoretical results in this area are provided by Carroll et al. (2006). Certainly, the more 

complicated the response model used to fit the data from bioassay, the bigger the task of 

handling the EIV, and generalisation of results in such cases is particularly difficult. Algebraic 

derivations to show the effect of EIV for the very simple cases were used (see Buonaccorsi & 
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Lin, 2002), and more often Monte Carlo simulations are applied to obtain information about 

the statistical properties of the estimates of model parameters.  

Here no analytical formulas for the bias of the naive estimates of the model parameters 

are obtained, obviously because nonlinear in parameters models with EIV, adapt an inherent 

complexity. Thus addressing the effects of those errors analytically might not be feasible. We 

will examine the effect of errors in setting the doses on the inferences of both the variance and 

bias of estimates of potency. The standard method of analysis for the nonlinear bioassay 

model, which is the nonlinear least squares approach, is applied.   

Similar to Racine-Poon et al. (1991) and Dellaportas and Stephens (1995), we choose to 

investigate the effects of errors in concentrations on the response model (4.1), with the 

assumption of homogeneous response variance. Analytic descriptions for the structures of the 

investigated errors and their effect on the design levels of a SDD are given. Unlike Racine-

Poon et al. (1991), we illustrate the analytic structure of the errors using the concentrations on 

the original scale rather than the logarithmic one. This helps to provide a broader description. 

For example, the structure of the errors in concentrations can be defined for any distributional 

assumptions (e.g. Gaussian and non-Gaussian errors). An additional advantage of our 

approach over all the early work is that we explain the properties of the errors for any 

magnitude (small, medium to large), which extends the work of Racine-Poon et al. (1991) who 

assume only errors with small magnitudes to occur.  

i) Error Model 1 

If the top concentration w1 of a SDD is diluted with an error, even if there are no dilution 

errors when diluting the second and further concentrations, the actual concentrations differ 

from the target design points. This can be explained as follows. Let w1 be the target top (or 

initial) concentration in a SDD consists of n doses, excluding the controlled points (positive 

and negative). If an error u1 occurs in w1, the actual top concentration x1 can be given by;  
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               1 1 1 1x w w u= + ,            (4.6) 

where u1 is a random error with a mean uµ  that can be equal or unequal to zero, and standard 

deviation uσ , assumed to be independent of the response error ε . Model (4.6) is an EIV 

structure and corresponds to the case when the variance of the actual top concentration is 

proportional to w1, giving by 1var( )x = 2 2
1 uw σ , and follows the same distribution as the error u1. 

The difference between equation (4.4) and equation (4.6) is then clear since in equation (4.6) 

the top concentration is dispensed in only one step, with an error u1. In SDD, u1 is propagated 

through the design concentrations, so according to (4.6), the actual concentrations of SDD are 

given by 

                             t t tx w u= + ,      1,2, ,t n= … .  (4.7) 
 

where tu = ( 1)
1 1

tk w u− − . For example, the 2
nd

 and 3
rd

 actual concentrations in the SDD are 

1
2 2 1 1x w k w u−= +

 
and 2

3 3 1 1x w k w u−= + , respectively. Thus from (4.7),    

( 1)
1[ ] t

t t uE x w k w µ− −= + ,  1,2, ,t n= … , and 

                2( 1) 2 2 2 2
1var( | ) t

t t u t ux w k w wσ σ− −= = ,     1,2, ,t n= … . (4.8) 

Also, for , 1, 2, ,t t n′ = … , t t′≠ , 

                       [( 1) ( 1)] 2 2
1cov( , ) t t

t t ux x k w σ′− − + −
′ = = ( 2) 2 2

1
t t

uk w σ′− + − .    (4.9)  

Therefore, according to (4.8) and (4.9), if an error occurs only in the top concentration of a 

SDD, the actual concentrations of the design are heteroscedastic and dependent, so are the 

errors in concentrations. Note that errors in vitro could occur in different ways. Depending on 

the case under study, u1 may follow Gaussian or any other distribution. A way to estimate the 

distributional properties of u1 is the validation data approach. In a pilot study, the target top 

concentration can be replicated a number of times before the real study begins. By measuring 

the actual top concentrations, and comparing their values with the target concentrations, 2
uσ  

can be estimated.   
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ii) Error Model 2 

Let wt be the target concentration in a SDD of n concentrations. Assume a separate 

dilution is made for each animal. If an error ut occurs in wt, the actual concentration tx  can be 

given by;  

                                                 t t t tx w w u= + ,       1,2, ,t n= … ,      (4.10) 

where tu , 1,2, ,t n= … , are identically independently distributed random errors with a mean 

uµ  that could be equal or unequal to zero and a common standard deviation uσ , assumed to 

be independent of the response error tε . Thus, [ ]t t t uE x w w µ= + , 1,2, ,t n= … , and 

                                    2 2var( | )t t t ux w w σ= ,     1,2, ,t n= … . (4.11) 

Also, for , 1, 2, ,t t n′ = … , t t′≠ , 

                                    cov( , ) 0t tx x ′ = . (4.12) 

Thus, according to (4.11) and (4.12), if independent errors occur in concentrations of a SDD, 

the actual concentrations of the design are heteroscedastic and independent. From model (4.8) 

and model (4.11), it can be seen that the variances of the actual observations from the cases of 

dependent and independent errors are the same. The errors again could follow different 

distributions.  

Both error scenarios (dependent and independent errors) could have serious effects on 

the analysis of data from bioassay. The following simulation-based approach shows their 

effect on the analysis.  

4.2.1 Monte Carlo Simulations for the Effect of Dependent and 

Independent Errors in Concentrations 

In the absence of errors in concentrations, the fitted response model can be given by 

(4.1). However, when the target and the actual concentrations differ, the latter generates the 

response;  
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2

1

4 3
3( , )

1
10

t t t

t

y f x
x

β

β

β β
β ε

−
= = + +

 +  
 

β ,     1,2, ,t n= … ,                       (4.13) 

where 2~ (0, )t N εε σ . Often the actual concentrations are unknown, otherwise they could be 

used to fit model (4.13), and potential errors are likely to have negligible effect on the analysis 

of the data.  

Generally, estimating the parameters of model (4.13) is difficult. For example, a 

moderate to large variability in the bioassay or a bad choice of initial values for the estimates 

of the model parameters, often creates computational problems. Here we use Monte Carlo 

simulations to evaluate all features of interest, however, careful considerations to the 

simulation settings is made to avoid these problems. We simulate a bioassay study that targets 

the examination of the potency of a certain compound.  

The aim is to examine the estimation of 1β  in model (4.13). We do not examine the 

other model parameters ( 2β , 3β , and 4β ) since typical bioassay studies are mainly interested 

in identifying 1β . However, in one of the following simulation studies, we obtain their values 

just to understand the effect of the errors on the general inferences of model (4.13).  

For the purpose of simulations, the model parameters are set to ~ (0,0.01)Nε , 4β =700, 

3β = 0.63× 4β -78, and 2β  = -1.0. Scientific considerations and real data were used to select 

the values of model parameters. The choice of the relationship between 4β  and 3β  is based on 

a real data set that has not been reported here. The response error is chosen to be very small 

compared to the errors in concentrations, so that it has negligible effects on the results. This is 

also similar to assuming that the response variance is heterogeneous but the amount of 

heterogeneity can be neglected, if the response variance is small.  

Careful consideration must be taken when choosing 1β  and the design settings in the 

experiment. If those two are not selected in relation to each other, the effect of the design 
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settings will be obvious on the estimates 1β̂ . Such effects could be biased and inefficient 

estimators of 1β . Since the focus here is on interpreting the effect of the errors on the analysis, 

the effect of the experimental design should be minimised. Therefore, if the design is optimal 

(e.g. D-optimal), the results obtained from the analysis of data explain the effect of ignoring 

the errors in concentrations. However, constructing optimal designs is not the target of this 

study. Instead, a good design can be constructed by the fair spread of points over the design 

region. The designs we use to study compounds are similar to optimal designs by nature of 

their construction, without getting to the complexity of their development. The idea behind it, 

is to set the SDD in a way so that the top dose is a function in the number of doses in the 

design, the dilution factor, and the IC50 of the compound. The top concentration is assumed to 

be 1w =k
d
×IC50, where d is (number of doses)/2 or [(number of doses-1)/2]+1, for even or odd 

number of design points, respectively. Let IC50=2, the number of doses in the design is 8, k=2, 

hence the top dose is 1w =32. The influence of the design on the statistical analysis of the data 

is minimised by placing the IC50 roughly at the middle of the doses covered by the design. 

According to the current settings, the design in Table 4.1 is a good design to be used in the 

simulated experiments, with 1β =0.301 and IC50=2 in all the simulations.  

The results from the simulation studies evaluate how the estimates of potency of 

compounds are affected by errors in setting concentrations. These effects are illustrated using 

the following experimental scenarios:  

- Known dependent errors occur at the top concentration of a SDD.  

- Normal dependent and independent errors (denote N-D and N-I, respectively). 

- Gamma dependent and independent errors (denote by G-D and G-I, respectively). 

Note that in practice the errors are rarely known. However, we study them here to 

provide better insights into their effect.  

The size of the errors in concentrations has been chosen, so it covers common 
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experimental situations. Some aspects about the nature of the errors were also accounted for, 

such as, too large errors have unrecoverable effects on the analysis, and too small errors may 

mask their true effects in the majority of practical situations. Note that, in practice, both cases 

are possible to occur, for instance, compounds could be totally degraded before use. 

Here the magnitude of the errors in the data is a percentage of the diluted concentration, 

and it differs according to the four experimental scenarios under study. Two magnitudes of 

error are examined: relatively small and medium to large. For the case of known dependent 

error 1u  occur in 1w , 1u  is a fixed percentage or error, given by 5% for relatively small errors 

and 10% for medium to large errors.  

In case of N-D and G-D error scenarios, the values for uσ  are chosen, so as for relatively 

small errors, approximately 10% of the generated errors can cause a change in 1w  that exceeds 

95% of its absolute value. For medium to large errors, approximately 10% of the generated 

errors cause a change in 1w  exceeding 90% of its absolute value. In similar way, uσ ’s are 

chosen for the case of relatively small, and medium to large N-I and G-I error scenarios.  

Large numbers of simulations were conducted to choose uσ . All error scenarios are 

discussed in turn below to provide the reader with guidance about what could result from a 

range of possible errors in setting the concentrations. The analysis of the simulated data is 

carried out in two ways: 

- Naive analysis to obtain an estimate 1,
ˆ

naiveβ  of 1β , in which the target concentrations 

are used in fitting model (4.13). These concentrations are generated by an 

experimental design with 8 observations, dispensed by serial pipetting, with a 

dilution factor k=2.  

- Actual analysis to obtain an estimate 1,
ˆ

actualβ  of 1β , in which the actual 

concentrations are used in fitting model (4.13). These concentrations are generated 
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using different error scenarios.  

Since we use the NLS approach, initial parameter values need to be specified prior to the 

analysis. Here, again to reduce the bias in the results from any source of errors other than the 

errors in concentrations, we assume that the best guess for the initial parameters has been 

made by choosing these values to be very close to the true set of parameters. The results were 

based on 10
4
 simulations. For each analysis the bias 1 1

ˆ[ ]E β β− , percentage of absolute mean 

relative bias 1 1 1
ˆ| [ ] / | 100E β β β− × , averaged model-based standard error, and empirical 

Monte Carlo standard error (SE) are reported. The Monte Carlo SE represents the square root 

mean of the variances that would be obtained if the errors in setting the concentrations were 

known, a value similar to the mean of the standard errors produced in a routine statistical 

analysis. To provide additional interpretation for the effect on the variance estimates, the 

relative standard error of 1β̂  is reported. 

 In case the errors are non-Gaussian distributed, the mean bias is not the most 

appropriate measure to be used, and hence we compute the median bias (the median of the 

estimators minus the true parameter) and the percentage of absolute relative median bias.  

As mentioned before, the responses can be generated from the doses in Table 4.1, 

however, a choice about the positive and negative controlled doses has to be made in order to 

obtain the maximum and minimum responses. Their values need to be carefully selected to 

avoid any computational problems when fitting model (4.13). For example, if the positive and 

negative controlled doses are poorly chosen in the experiment, the actual analysis may 

produce biased estimates of parameters. To avoid such problems, we choose w1×c and w1/c for 

positive and negative controlled doses, respectively, where c is a constant which takes 

different values according to the case study. For the current simulation settings and 

parameters, the choice of 510=c  was found to be appropriate since it gave negligible bias in 



 111 

1,
ˆ

actualβ . For a specific study in practice, the choice of c is not of concern to the practitioners. 

It is only an issue here because the data was artificially created. Researchers usually have 

some knowledge about the doses required to give both maximum and minimum responses.  

The approach we use for analysis depends on applying the method of nonlinear least 

squares to fit the response model assumed for the data. It is important to point out that the 

method of least squares is not affected by the non-normality departure. However this is not the 

case if further inferences need to be developed, such as hypothesis testing and confidence 

intervals (Bates & Watts, 1988, pp. 24-27). Note that the validity of the simulation codes was 

tested by using different simulation conditions. For example, if the EIV variances are set to 

zero, all the approaches of analyses are supposed to have equivalent results. Moreover, by 

increasing the size of the EIV, a trend of enlarged effects for the EIV was expected in the 

results.  

4.2.1.1  Known Dependent Errors at the Top Concentration of a SDD 
 

If 1w  is affected by a known error 1u , two types of errors can occur, 1u  causes 1x  to be 

larger than 1w  (positive error) or 1u  causes 1x  to be less than 1w  (negative error). Thus, from 

model (4.6), 1x  can be given by; 

                         1x = 1w 1 1w u+ ,               (4.14) 

or 

                     1x = 1w 1 1w u− ,           (4.15) 

where 1w  is the top dose of the SDD in Table 4.1, and the error 1u  is then propagated to the 

remaining doses of the design.  

 Now models (4.14) and (4.15) are going to be studied separately to show how different 

types of errors have different effects on the analysis of data. The results in Table 4.2 and 4.3 

show a summary of 410  Monte Carlo simulations for 5% and 10% errors, respectively. 
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Certainly using the actual concentrations gives unbiased and efficient estimators, 1,
ˆ

actualβ . 

Table 4.2 Summary of 
410  simulations of relatively small ( 1u = 5%) errors in the top concentration for 

the actual and naive estimators. Simulation parameters are IC50=2, 1β =0.301, and 
2 ~ (0,0.01)Nεσ . 

 

Error size Measures Actual Naive 

Mean bias -9.068×10
-5

 -2.128×10
-2 

|Mean relative bias|×100 3.012×10
-2

 7.069 

Averaged model-based SE 4.554×10
-4

 4.554×10
-4

 

Monte Carlo SE 4.826×10
-4

 2.129×10
-2

 

+5% 

Relative SE 0.944 2.139×10
-2

 

Error size Measures Actual Naive 

Mean bias -6.689×10
-5

 2.221×10
-2

 

|Mean relative bias|×100 2.222×10
-2

 7.378 

Averaged model-based SE 4.561×10
-4

 4.561×10
-4

 

Monte Carlo SE 4.797×10
-4

 2.222×10
-2

 

-5% 

Relative SE 0.951 2.053×10
-2

 
 

Table 4.3 Summary of 
410  simulations of relatively large errors ( 1u = 10%) in the top concentration 

for the actual and naive estimators. Simulation parameters are IC50=2, 1β =0.301, and 

2 ~ (0,0.01)Nεσ . 

 

Error size Measures  Actual Naive 

Mean bias -1.020×10
-4

 -4.149×10
-2

 

|Mean relative bias|×100 3.389×10
-2

 13.78 

Averaged model-based SE 4.550×10
-4

 4.550×10
-4

 

Monte Carlo SE 4.844×10
-4

 4.150×10
-2

 

+10% 

Relative SE 0.939 1.096×10
-2

 

Error size  Actual Naive 

Mean bias -5.433×10
-5

 4.570×10
-2

 

|Mean relative bias|×100 1.805×10
-2

 15.18 

Averaged model-based SE 4.564×10
-4

 4.564×10
-4

 

Monte Carlo SE 4.785×10
-4

 4.571×10
-2

 

-10% 

Relative SE 0.954 9.986×10
-3

 
 

 

The Monte Carlo SE of 1,
ˆ

naiveβ is the correct figure and the true variability to be used in 

subsequent statistical inferential calculations. Table 4.2 shows it is 2.129×10
-2

, hence larger 

than the one that would be used if the errors in setting the concentrations were ignored, i.e. 

4.554×10
-4

. Thus the true variability is severely underestimated since the naive analysis 

ignores the inaccuracies in the concentration levels, in fact the average model-based SEs from 

the actual and naive approaches are the same. The SE is an increasing function in the 

magnitude of 1u . For example, the relative SE of 1,
ˆ

naiveβ
 
from +5% and +10% error is 
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2.139×10
-2 

and 1.096×10
-2

. So larger errors lead to a more severe underestimation of the true 

standard error of 1,
ˆ

naiveβ .  

The relative SE from the actual analysis is 0.944 at +5%. One may expect that more 

accurate estimates of the Monte Carlo SE of 1,
ˆ

actualβ  should have been obtained, however the 

estimates of the standard errors of the NLS estimates are only approximations to the true ones 

(see Section 4.2.2).  

The naive estimator 1,
ˆ

naiveβ
 
is biased even when small +5% or -5% errors occur. We can 

also notice that since the bias is negative at +5% errors, the naive estimator 1,
ˆ

naiveβ
 

underestimates the statistical parameter but overestimate the true potency. On the other hand, 

the true potency is underestimated by ignoring -5% errors. Note that, the smaller the potency 

estimator of a compound, the more potent the compound is, hence from +5% and -5% errors, 

the true potencies are actually overestimated and underestimated biologically.  

The bias is an increasing function in the magnitude of 1u . For example, the mean bias in 

1,
ˆ

naiveβ  from +5% and +10% errors are -2.128×10
-2 

and -4.149×10
-2

, respectively. The 

percentages of absolute mean relative bias from +5% and +10% are approximately 7.069% 

and 13.78%, respectively. 

The values of the mean bias from + 1u  and - 1u  are not equal but they are very close. For 

example, the mean bias from +10% and -10% errors are -4.149×10
-2 

and 4.570×10
-2

, 

respectively. So we can expect that if 1u  follows a symmetrical distribution (e.g. normal), 

asymptotically the bias in 1,
ˆ

naiveβ
 
could be relatively small. This is going to be verified by 

studying the case of N-D and N-I errors. In general, these results are important since they do 

not depend on any distributional assumptions about the errors in concentrations. So an idea 

about the effect of the errors can be developed, in case the distribution of the errors is 
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unknown. Other model parameters were seen to be unaffected by the errors. For instance, the 

mean bias in 2β , 3β , and 4β  from +5% and -5% errors in topw  are approximately the same 

when using the naive and actual approaches.  

Remember that the assumption of known EIV rarely holds in practice and we examine it 

here only to have a primer idea about the effect of the errors in various situations. In the 

following simulation scenarios, the errors are assumed to have a known statistical distribution, 

which is an assumption that holds more to various practical situations. If a compound is tested 

on different occasions, the errors in setting the concentrations are most likely to be randomly 

distributed and not fixed values. The parameters of these distributions could be estimated from 

historical data or pilot studies. 

4.2.1.2 N-D Errors 

 

Assume the errors are dependent and normally distributed with mean zero and variance 

2
uσ , i.e. 2

1 ~ (0, )uu N σ , the actual top concentration 1x  is given by model (4.14), where 

1 1( )E x w= and 2 2
1 1var( ) ux w σ= . For relatively small and medium to large errors, uσ  is set to 

0.031 and 0.062, respectively. Table 4.4 summarises the results of 410  Monte Carlo 

simulations.  

From Table 4.4, the mean bias and percentage of absolute mean relative bias in 1,
ˆ

naiveβ , 

when both uσ  is 0.031 and 0.062, are very small or negligible. The bias was expected to 

increase with the error size. By looking at the bias figures in Table 4.4, it may seem like there 

is no relation between the bias and uσ . However, on other simulation trials, we have assumed 

a larger range of values for 
1uσ , and as a result, a monotonic relation was found between the 

absolute bias in 1,
ˆ

naiveβ  and 
1uσ . Therefore, the estimates here are unbiased.  
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Table 4.4 Summary of 
410  simulations of small ( uσ =0.031) and medium to large ( uσ =0.062) N-D 

errors for the actual and naive estimators. Simulation parameters are IC50=2, 1β =0.301, and 

2 ~ (0,0.01)Nεσ . 

 

Error size Measures Actual Naive 

Mean bias -8.230×10
-5

 -1.885×10
-4

 

|Mean relative bias|×100 2.734×10
-2

 6.261×10
-2

 

Averaged model-based SE 4.569×10
-4

 4.569×10
-4

 

MC SE 4.845×10
-4

 1.328×10
-2

 
uσ =0.031 

Relative SE 0.943 3.441×10
-2

 

Error size Measures Actual Naive 

Mean bias -8.233×10
-5

 1.122×10
-4

 

|Mean relative bias|×100 2.735×10
-2

 3.727×10
-2

 

Averaged model-based SE 4.569×10
-4

 4.569×10
-4

 

MC SE  4.846×10
-4

 2.661×10
-2

 
uσ =0.062 

Relative SE 0.943 1.717×10
-2

 

 

There is a noticeable effect on the estimates of the variance of 1,
ˆ

naiveβ . From the naive 

analysis, the relative SE’s are 3.441×10
-2 

and 1.717×10
-2

, at uσ =0.031 and uσ = 0.062, 

respectively, which shows a severe underestimation of the true SE. The estimated averaged 

model-based SE of 1β̂  from the actual and naive analysis are the same. The variability is 

inflated by increasing uσ . For example, when uσ =0.062, the MC SE is 2.661×10
-2

, in the 

mean while for uσ =0.031, the MC SE is 1.328×10
-2

. 

4.2.1.3 N-I Errors 

 

Assume the errors tu , 1,2, ,t n= … , in concentrations of a SDD are independent and 

normally distributed with a mean zero and fixed variance 2
uσ , i.e. 2~ (0, )t uu N σ . The actual 

concentrations tx , 1,2, ,t n= … , can be given by model (4.10), where [ | ]t t tE x w w= and  

( ) 2 2var |t t t ux w w σ= . For relatively small and medium to large errors, uσ  is set to 0.031 and 

0.062, respectively. Table 4.5 summarises the results of 410  MC simulations. As we can see 

from Table 4.5, 1,
ˆ

naiveβ is asymptotically unbiased at uσ =0.031, and it adapted a considerably 

small mean bias at uσ =0.062. 
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Table 4.5 Summary of 
410  simulations of small ( uσ =0.031) and medium to large ( uσ =0.062) N-I 

errors for the actual and naive estimators. Simulation parameters are IC50=2, 1β =0.301, and 

2 ~ (0,0.01)Nεσ . 

 

Error size Measures Actual Naive 

Mean bias -7.683×10
-5

 1.267×10
-4

 

|Mean relative bias|×100 2.552×10
-2

 4.210×10
-2

 

Averaged model-based SE 4.561×10
-4

 7.694×10
-3

 

MC SE 4.830×10
-4

 7.846×10
-3

 
uσ =0.031 

Relative SE 0.944 0.981 

Error size Measures Actual Naive 

Mean bias -7.674×10
-5 

7.617×10
-4

 

|Mean relative bias|×100 2.549×10
-2

 0.253 

Averaged model-based SE 4.562×10
-4

 1.542×10
-2

 

MC SE 4.832×10
-4

 1.575×10
-2

 
uσ =0.062 

Relative SE 0.944 0.979 

 

This is made clear from the figures of percentages of absolute mean relative biases. The 

variability is inflated as a result of ignoring the errors in the data, and there is a monotonic 

relation between true variability and 
1uσ . For example, the MC SE is 7.846×10

-3 
and 

1.575×10
-2

, at uσ =0.031 and uσ =0.062, respectively.  

Unlike in the case of N-D errors in concentrations of SDD, the estimated averaged 

model-based SE of 1β̂  from the naive analysis is larger than the one from the actual analysis. 

For example, when uσ =0.062, the averaged model-based standard errors of 1,
ˆ

actualβ  and 

1,
ˆ

naiveβ  are 4.562×10
-4

 and 1.542×10
-2

, respectively. The relative SE of 1,
ˆ

naiveβ  from both 

small and medium to large errors are 0.981 and 0.979, respectively. Surprisingly, the actual 

standard errors at both uσ =0.031 and uσ =0.062 seem worse than the naive ones. Again, this 

is because the nonlinear least squares approach, only approximates the true standard errors of 

the estimators. However, we still believe the actual analysis is adequately used in the 

comparison to evaluate the results of the naive analysis.  

In the previously studied scenarios of errors (known dependent and N-D), the naive 

analysis showed a severe underestimation of the true variability of the naive estimates. Unlike 

those cases, the relative SE shows that the naive analysis did capture the effect of the errors on 
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the variability. Thus, when N-I errors occur in concentrations of SDD, the naive analysis can 

provide sufficiently valid inferences.  

4.2.1.4 G-D Errors 

 

Let 1x  be less than the target amount, and it is given by model (4.15), where 1u  follows a 

gamma distribution with shape and scale parameters γ  and δ , respectively. The parameters 

settings were γ =1 and δ = uσ , respectively, i.e. 1 ~ (1, )uu σΓ . According to distributional 

properties of variables with gamma distribution (see Appendix B for more information), 

setting the parameters in this way produces true concentrations that follows a gamma 

distribution with non-zero mean 1 1 1 1[ | ] uE x w w wσ= − , and variance 2 2
1 1 1var( | ) ux w w σ= . 

These settings are more feasible in bioassay data.   

Similar to equation (4.7), the rest of the concentrations in the SDD can be given by; 

1
2 2 1 1x w k w u−= − , 2

3 3 1 1x w k w u−= − ,…, ( 1)
1 1

n
n nx w k w u− −= − , and in general, the actual 

concentrations can be generated by; 

                                 ( 1)
1 1

t
t tx w k w u− −= − ,     1,2, ,t n= … . (4.16) 

where xt is a linear function in 1u , so that it also follows a gamma distribution.  

To find the shape and scale parameters of the distribution of xt, the following simple 

algebra can be implemented. From (4.16), it follows [ | ]t t t t uE x w w wσ= −  and 

2 2var( | )t t t ux w w σ= . From the distributional properties of a variable with a gamma distribution, 

the mean and variance of xt can be given by, [ ]tE x =γ ×δ  and var( )tx =γ ×δ 2
, respectively. 

Solving for [ ]tE x  and var( )tx  gives the shape and scale parameters, 

[ ]
12 2 2

t t u t uw w wσ σ
−

 −   and [ ] 12 2
t u t t uw w wσ σ −

− , respectively, for the actual concentrations xt, 

1,2, ,t n= … . The median of the gamma distribution is undefined so no closed form for its 
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values is given here. For relatively small and medium to large errors, uσ  take the values 0.023 

and 0.044, respectively. Table 4.6, summarises the results of 10
4 

MC simulations.  

Table 4.6 Summary of 
410  simulations of small ( uσ =0.023) and medium to large ( uσ =0.044) G-D 

errors for the actual and naive estimators. Simulation parameters are IC50=2, 1β =0.301, and 

2 ~ (0,0.01)Nεσ . 

 

Error size Measures Actual Naive 

Median bias -6.687×10
-5

 6.887×10
-3

 

Mean bias -6.687×10
-5

 1.009×10
-2

 

|Median relative bias|×100 2.222×10
-2

 2.288 

|Mean relative bias|×100 2.222×10
-2

 3.352 

Averaged model-based SE 4.555×10
-4

 4.555×10
-4 

MC SE 4.763×10
-4

 1.459×10
-2

 

uσ =0.023 

Relative SE 0.956 3.122×10
-2

 

Error size Measures Actual Naive 

Median bias -6.166×10
-5

 1.332×10
-2

 

Mean bias -6.166×10
-5

 1.983×10
-2

 

|Median relative bias|×100 2.049×10
-2

 4.319 

|Mean relative bias|×100 2.049×10
-2

 6.645 

Averaged model-based SE 4.556×10
-4

 4.556×10
-4 

MC SE 4.757×10
-4

 2.904×10
-2

 

uσ =0.044 

Relative SE 0.958 1.569×10
-2

 

 

From Table 4.6, we conclude some of similarities and differences between the naive 

analysis of bioassay data with N-D and G-D errors. Unlike the case of N-D errors, here the 

estimators were found to be biased. For example, at uσ =0.044, the median and mean biases 

are 1.332×10
-2 

and 1.983×10
-2

, respectively. It seems also there is a monotonic relation 

between the biases and uσ .  

The effect on the averaged model-based SE is approximately the same. Perhaps it is not 

surprising that the estimates adapted larger biases when the non-Gaussian errors with non-zero 

mean occur since the measurements are biased from the target doses. This result was also 

pointed out by Wang (2006) for the case of classical errors.  

4.2.1.5 G-I Errors  

 

If independent errors occur in each concentration and the actual concentrations are less 

than the target amounts, model (4.10) can be written by;  
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                              t t t tx w w u= − ,      1,2, ,t n= … .       (4.17) 

Assume the errors tu  follow a gamma distribution with γ  and δ  parameters 1 and uσ , 

respectively, i.e. ~ (1, )t uu σΓ . We here assume for simplicity that the errors occurring in 

different concentrations have a constant standard deviation uσ . Consequently, the actual 

concentrations follow a gamma distribution with mean [ ]t t t uE x w wσ= −  and variance 

2 2var( )t t ux w σ= , shape and scale parameters [ ]
12 2 2

t t u t uw w wσ σ
−

 −   and [ ] 12 2
t u t t uw w wσ σ −

− , 

respectively. Table 4.7 summarises the results of 410  Monte Carlo simulations.  

Table 4.7 Summary of 
410  simulations of small ( uσ =0.023) and medium to large ( uσ =0.044) G-I 

errors for the actual and naive estimators. Simulation parameters are IC50=2, 1β =0.301, and 

2 ~ (0,0.01)Nεσ . 

 

Error size Measures Actual Naive 

Median bias -6.964×10
-5 

8.963×10
-3

 

Mean bias -6.800×10
-5 

1.016×10
-2

 

|Median relative bias|×100 2.313×10
-2 

2.978 

|Mean relative bias|×100 2.259×10
-2 

3.375 

Averaged model-based SE 4.588×10
-4

 5.533×10
-3

 

MC SE 4.793×10
-4

 1.192×10
-2

 

uσ =0.023 

Relative SE 0.957 0.464 

Error size Measures Actual Naive 

Median bias -6.276×10
-5

 1.740×10
-2

 

Mean bias -6.383×10
-5

 1.988×10
-2

 

|Median relative bias|×100 2.085×10
-2

 5.781 

|Mean relative bias|×100 2.120×10
-2

 6.603 

Averaged model-based SE 4.610×10
-4

 1.103×10
-2

 

MC SE 4.806×10
-4

 2.360×10
-2

 

uσ =0.044 

Relative SE 0.959 0.467 
 

In Table 4.7, the relative SE at uσ =0.044 and uσ =0.023, from the naive analysis are 

0.464 and 0.471, respectively. Therefore, the true variability is underestimated. The naive 

estimates were also biased with relative medians of 2.978 and 5.808, at uσ =0.044 and 

uσ =0.023, respectively. 

4.2.2 Discussion  
 

In the simulation studies, we examined the effect of different types of error scenarios, on 

the naive analysis of a bioassay experiment. The effects of EIV may have a wide range of 
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implications on the results. Each error scenario affects the results differently. In the cases of 

G-D and G-I, the estimates of potencies were found to be biased. In the cases of N-D and N-I 

errors, the estimators were found asymptotically unbiased particularly with small errors. The 

bias in the estimates is determined by the error distributional assumptions. Thus, when the 

distribution of the errors is asymmetric with nonzero mean, the bias was seen to be significant. 

When the errors follow a normal distribution with zero mean and relatively small to medium 

variance (since the bias increases with very large EIV), the naive estimator of the potency is 

unbiased. Therefore, the results from the cases of N-D and N-I errors support those found by 

most of the previous studies, such as, Racine-Poon et al. (1991).  

In the same way the results of further inferences will vary according to the error type. 

The estimates of the true variability of 1,
ˆ

naiveβ  have been severely underestimated in cases 

where the errors are dependent. On the other hand, independent errors lead to more 

satisfactory inferences about 1β . Thus our results extend findings by Buonaccorsi and Lin 

(2002), since they examined different error assumption but only in a class of linear models 

with Gaussian distributed errors.  

  The size of the errors in concentrations also has an important effect on the bioassay 

results. For example, we found an increasing monotonic relationship, across all the error types, 

between the severity of underestimation of the true variability, and the size of errors in doses.  

According to the results of the previous simulation studies, G-D and G-I errors have 

been found to produce biased estimates of 1β  and variance estimates. In the following section, 

we discuss the possible correction methods for the N-D, N-I, G-D, and G-I error scenarios and 

propose a method to correct for the effect of asymmetric errors in bioassays.  
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4.3 Adjusting for G-D and G-I Errors in Concentrations of 

SDD 

 

Previous studies focused on adjusting the estimates of variability as a result of 

investigating the effect of normally distributed errors on the analysis. We believe that when D-

N errors occur, the same approaches of analysis as those in Racine-Poon et al. (1991) can be 

applied, for example, Bayesian inferences and maximum likelihood approaches. The case of 

N-I has been shown here to give accurate bioassay results, hence we do not discuss an 

adjustment approach for such type of errors. We will be concerned with the effects on both the 

bias and the variance estimates of data with asymmetric errors. This has not been examined 

before, so the adjustment approach gives an unconventional way of analysing bioassay EIV 

models.   

The approach SIMEX is commonly chosen as a bias correction method due to its 

successful use in a wide range of applications. It is a simulation-based approach, and therefore 

it needs to be modified according to the error structure under study. The method is defined to 

be “ideally suited to problems with additive measurement error, and more generally to any 

problem in which the measurement error generating process can be imitated on a computer via 

Monte Carlo methods” (Carroll et al., 2006, p. 97).  

Here we propose an approach to correct for the effect of EIV based on SIMEX method 

and call it BSIMEX. It can be applied under the assumption of asymmetric Berkson errors in 

the design variables. The BSIMEX estimator is obtained and then compared with the 

estimators from the actual and naive approaches using the standard nonlinear least squares 

approach. The robustness of the approach is also examined against misspecified error 

assumptions. Moreover, a comparison between the performance of BSIMEX and the proposed 

regression calibration approaches in Chapter 3 is presented. 
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4.3.1 BSIMEX for G-D Errors 

 

The approach BSIMEX is appropriate for any error scenarios wherein the Berkson errors 

follow asymmetric distribution. The basic concept behind the approach relies in the simulation 

step in the original approach SIMEX.  

In SIMEX the errors are randomly generated and added to the observed variables 

(contaminated with errors). However, in BSIMEX randomly generated errors are either added 

or subtracted from the value of the variables specified by experimental design. For example, in 

the case of heteroscedastic dependent errors with asymmetric distribution, wherein the actual 

concentrations are less than the target ones, the generated errors will be added to the target 

design points. These errors are increasing by a factor λ . The relation between the errors and 

the estimators is fitted and it is extrapolated back to the actual scenario, which is in the 

opposite direction of the naive and the artificially generated data. Models (2.4), (2.5), and (2.6) 

can be used to describe this relation. Similar to SIMEX, the approach requires some 

information on the moments of the distribution of the EIV.  

To calculate the variance of BSIMEX, we use the method of the simulation-extrapolation 

information variance estimation (Stefanski & Cook, 1995). In Chapter 2, Section 2.3.2, a full 

review on the approach can be found. Other methods to compute the variance of SIMEX have 

not been examined.  

4.3.2 Simulation Example 
 

Design Choice and Simulation Parameters: A Monte Carlo simulation was conducted 

to examine a typical situation in practice wherein BSIMEX estimator can be applied. The 

target of the simulation is to examine the adjusting effect of BSIMEX on the bias of the naive 

estimators, as a result of small G-D EIV. In the simulation, the multiplicative factor λ  was set 

to 0,0.5,1,1.5, and 2, and B=1500 simulated samples are generated. We choose the number of 

simulated samples in the simulation step of SIMEX to be large, in order to guarantee the 
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minimum amount of variability in the simulation as possible, as it can be achieved 

computationally. If the approach would be applied in practice, any number of B samples can 

be used. In our example, we found 100, 500, and 1000 are all possible values for B. For the 

current simulation settings, the single run consume around one minute. The SIMEX method 

used the NLS approach to estimate the parameters in the simulation step. The actual 

concentrations are generated by model (4.16).  

In the simulation step, B new values 
*
, ( )b tx λ  are generated for each λ , by using 

1 2* ( 1)
, 1 ,1( ) t

b t t bx w k w uλ λ− −= + , 1,2, ,t n= … , Bb ,,2,1 …= . Other simulation parameters and 

settings are same to those that have been used to illustrate the effects of G-D errors. The SDD 

is the design in Table 4.1, where λ  is the multiplication factor, ,1bu , Bb ,,2,1 …=  are 

identically independent random errors, simulated from gamma distribution with variance 2
uσ , 

the generated values 
*
, ( )b tx λ , 1,2, ,t n= … , Bb ,,2,1 …= , are constantly larger than the target 

concentrations, and have the same distribution of the errors ,1bu . 

 In each b, Bb ,,2,1 …= , the estimates ˆ( )λβ , for each λ , will be estimated from the data 

and averaged over B. Assume that ]2,0[∈λ , if λ = 0, then 
*
, (0)b t tx w= , which is the naive 

case, wherein we assume var( | )t tx w  is zero. Similar to the extrapolation step in SIMEX, the 

parameter vector ˆ( )λβ  is modelled as a function in λ . The relation is then extrapolated by 

setting λ = -1, so a BSIMEX estimator ˆ
bsimexβ  is obtained. 

Simulation Results: Figure 4.3 shows an evidence of the improvement of the BSIMEX 

estimator over the naive one. The actual estimate is also shown for the purpose of 

comparisons.  
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Figure 4.3 A comparison between the actual, naive, and SIMEX estimators.  
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In the plot the horizontal axis is the multiplicative factor which controls the increasing 

amounts of the error variance verses the vertical axis which represents the values of the 

estimators from the actual, SIMEX and naive approaches. It can be noticed that as the error 

variance increases, larger biases in the nonlinear least squares estimates are found from adding 

positive errors to the design points, causing the potency estimates to be overestimated.   

4.3.3 Simulation Example  
 

Design Choice and Simulation Parameters: A Monte Carlo simulation was conducted 

to examine the asymptotic properties of the BSIMEX estimator under the assumption of G-D 

EIV. For 10
4
 simulations, each simulation used the same parameters settings as in Section 

4.3.2. The multiplicative factor λ , was set to 0,0.5,1,1.5, and 2, and B=1500 simulated 

samples were generated. The 10
4 

simulations consume around 24×7 hours. Again the SIMEX 

method used the NLS approach to estimate the parameters in the simulation step. The actual 

concentrations are generated by model (4.16).  
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The results of 10
4 

simulations are given in Table 4.8. They are similar to the one in Table 

4.6, only the BSIMEX approach is applied and compared with the actual and naive 

approaches. Both assumptions of small ( uσ = 0.023) and medium to large ( uσ = 0.044) errors 

in top concentration were examined. The target here is to improve the naive analysis of 1β .  

For the purpose of comparison linear, nonlinear and quadratic extrapolation functions 

were applied. A rank approach was used to determine which function obtain the worst and the 

best estimates of 1β , since plotting the relation between ˆ( )λβ  and λ , was not sufficient to 

identify an appropriate extrapolation choice. The approach is based on ranking the estimators 

according to their differences from 1β , and then computing the percentages of these ranks 

over 10
4
 simulations.  

Simulation Results: In terms of the appropriate extrapolation function for BSIMEX 

estimator, results showed that both at uσ = 0.023 and uσ = 0.044, the best estimator was linear 

BSIMEX with (36.89%) and (36.44%), respectively. The quadratic BSIMEX was second with 

(25.16%) and (26.23%), followed by the naive estimator and nonlinear BSIMEX, respectively. 

As regards to the worst estimator, at uσ = 0.023 and uσ = 0.044, the quadratic BSIMEX was 

the worst in the simulation runs by (54.36%) and (53.37%), respectively. The naive estimator 

came second with (45.64%) and (46.63%), respectively. The linear and nonlinear BSIMEX 

were not the worst estimators for both types of error.  

Thus, all the approaches of the analysis produced an adequate estimator (that is least 

biased) in some trials, but only the naive estimator and the estimator when using the quadratic 

extrapolation function, interchangeably took the place of the worst estimates of 1β . Therefore, 

the estimators from the linear and nonlinear functions are good candidates.   

We then considered making the choice of the best extrapolation function based on the 

variance estimates. That is, the desirable extrapolation function produces an estimate 1,
ˆ

bsimexβ  
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with the least variance. However, we found no significance differences between the variance 

of linear, quadratic and nonlinear BSIMEX. Thus in terms of the best estimator for the current 

case study, linear BSIMEX showed more convincing results.  

In Table 4.8, only the simulation results of the BSIMEX estimator obtained using the 

linear extrapolation function is reported. These results show that BSIMEX produces better 

estimates than the naive approach that ignores the errors in concentrations. 

Table 4.8 Summary of 
410  simulations of small ( uσ =0.023) and medium to large ( uσ =0.044) G-D 

errors for the actual, naive and BSIMEX estimators. Simulation parameters are IC50=2, 1β =0.301, and 

~ (0,0.01)Nε . 
 

Error size Measures  Actual Naive BSIMEX 

Median bias -6.687×10
-5

 6.887×10
-3

 2.411×10
-3

 

Mean bias -6.687×10
-5

 1.009×10
-2

 5.615×10
-3

 

|Median relative bias|×100 2.222×10
-2

 2.288 0.801 

|Mean relative bias|×100 2.222×10
-2

 3.352 1.865 

Averaged model-based SE 4.555×10
-4

 4.555×10
-4

 9.305×10
-3

 

MC SE 4.763×10
-4

 1.459×10
-2

 1.194×10
-2

 

uσ =0.023 

Relative SE 0.956 3.122×10
-2

 0.779 

Error size Measures  Actual Naive BSIMEX 

Median bias -6.166×10
-5

 1.332×10
-2

 5.111×10
-3

 

Mean bias -6.166×10
-5

 1.983×10
-2

 1.160×10
-2

 

|Median relative bias|×100 2.049×10
-2

 4.425 1.698 

|Mean relative bias|×100 2.049×10
-2

 6.588 5.316 

Averaged model-based SE 4.556×10
-4

 4.556×10
-4

 1.678×10
-2

 

MC SE 4.757×10
-4

 2.904×10
-2

 2.417×10
-2

 

uσ =0.044 

Relative  SE 0.958 1.569×10
-2

 0.694 
 

 At uσ =0.023, the percentage of median relative bias 1,
ˆ

bsimexβ  is 0.801%, and the 

percentage of median relative bias in 1,
ˆ

naiveβ  is 2.288%. Thus, on average BSIMEX reduced 

more than half the bias in the estimate of potency. 

 At uσ =0.023, the median and mean biases of BSIMEX estimator are 2.411×10
-3

 and 

5.615×10
-3

, respectively, which shows that the BSIMEX reduced the bias but not eliminated it 

from the analysis. A possible reason for that is because the extrapolation function was only 

chosen approximately; hence the correction of bias is made in an approximate way. Similar 

results were found when comparing the percentages of the relative mean bias in the estimates 
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of potency from both the naive and BSIMEX approaches. These results also hold at 

uσ =0.044. 

BSIMEX gives a notable improvement in estimating the true variability. The naive 

analysis severely underestimates the true SE with a relative SE of 3.122×10
-2

 at uσ = 0.023, 

and 1.569×10
-2 

at uσ = 0.044. BSIMEX in the mean while gives a relative SE of 0.779 at 

uσ =0.023, and 0.694 at uσ =0.044. The efficiency of 1,
ˆ

bsimexβ  is affected by increasing the 

error size, which explains why the relative SE was dropped down at uσ =0.044. The variability 

of the BSIMEX estimator is also slightly less than the naive one. For example, at uσ =0.023, 

the MC SE of 1,
ˆ

naiveβ
 
is 1.459×10

-2
, in the mean while the MC SE of 1,

ˆ
bsimexβ  is 1.194×10

-2
.  

The extrapolation step of BSIMEX also introduces more variability, since the chosen 

function to perform the extrapolation is only an approximate to the true one. The extra 

variability from the extrapolation step is causing an inflated SE of BSIMEX estimator, but it is 

mostly accounted for when estimating the variance. When the errors are large, the 

extrapolation step is the largest, which introduces more variability to BSIMEX’s estimator 

(since the relative SEs are not as large as the actual analysis). However, BSIMEX still 

produces estimators with slightly less SEs than the naive approach and more efficient 

estimators.  

To study the distributional properties of the actual, naive, and BSIMEX estimators, 

histograms are plotted for the data from 10
4 

simulations at uσ =0.023. These plots are given in 

Figures 4.4, 4.5 and 4.6, respectively. Asymptotically, the bias corrected estimator 1,
ˆ

bsimexβ , 

follows the distribution of the errors in the top concentrations, which is in our example gamma 

distribution. The naive estimator is also asymptotically gamma distributed; whereas the actual 

estimator follows a normal distribution as it fully accountable for the errors in the response 

models.  



 128 

Figure 4.4 Histogram of the actual nonlinear least squares estimators.  
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Figure 4.5 Histogram of the naive nonlinear least squares estimators.  
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Figure 4.6 Histogram of BSIMEX estimators.  
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4.3.4 Robustness of BSIMEX for Misspecification of the Error 

Variance 

 

We now study the robustness of BSIMEX approach under the assumption of misspecified 

error variance. The original SIMEX method is known to be robust for misspecification in the 

error variance. Assumes the case of small errors in the top concentrations, when the error 

variance is estimated, two possible estimation problems can occur: the error variance could be 

either underestimated, or overestimated. The following simulation example examines the 

robustness of BSIMEX for both underestimated and overestimated error variance. For the 

misspecified values of the error variances, a sensible range has been chosen, determined by 

practical considerations, and wider ranges would not be of interest but ones up to those limits 

are of interest. 

4.3.5 Simulation Example  
 

Design Choice and Simulation Parameters: In the simulation, the multiplicative factor 

λ , was set to 0,0.5,1,1.5, and 2, and B=1500 simulated samples are generated. The actual 

concentrations are generated by equation (4.16). Other simulation parameters and settings are 

similar to the ones used to illustrate the effects of G-D errors, except that only the case of 

relatively small errors in the concentrations with uσ =0.023 is investigated here. Therefore, the 

actual and naive estimates have the same values for both underestimated and overestimated 

errors.   

To simulate the cases of underestimated and overestimated error variance, the true 

variance is divided and multiplied, respectively by a constant 2. So that uσ =0.023, is replaced 

by roughly 0.012 and 0.046, respectively. The results of the simulation are summarised in 

Table 4.9. 
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Simulation Results: Table 4.9 shows that the robustness of BSIMEX estimators can be 

affected if the error variance is misspecified. In comparison with the analysis in Table 4.8, a 

major reduced in the performance of BSIMEX can be noticed when the errors are 

underestimated. 

Table 4.9 Summary of 
410  simulations of small ( uσ =0.023) and medium to large ( uσ =0.044) G-D 

errors for the actual and naive and BSIMEX estimators. The errors are underestimated ( ˆ
uσ =0.012) and 

overestimated ( ˆ
uσ =0.046). Simulation parameters are IC50=2, 1β =0.301, and ~ (0,0.01)Nε .  

 

Error size Measures  Actual Naive BSIMEX 

Median bias -6.687×10
-5 

6.887×10
-3

 4.500×10
-3

 

Mean bias -6.687×10
-5

 1.009×10
-2

 7.704×10
-3

 

|Median relative bias|×100 2.222×10
-2

 2.288 1.495 

|Mean relative bias|×100 2.222×10
-2

 3.352 2.559 

Averaged model-based SE 4.555×10
-4

 4.555×10
-4

 5.033×10
-3

 

MC SE 4.763×10
-4

 1.459×10
-2

 1.305×10
-2

 

ˆ
uσ =0.012 

Underestimated 

errors 

Relative SE 0.956 3.122×10
-2

 0.386 

Error size Measures  Actual Naive BSIMEX 

Median bias -6.687×10
-5 

6.887×10
-3

 -1.676×10
-3

 

Mean bias -6.687×10
-5

 1.009×10
-2

 1.516×10
-3

 

|Median relative bias|×100 2.222×10
-2

 2.288 0.557 

|Mean relative bias|×100 2.222×10
-2

 3.352 0.504 

Averaged model-based SE 4.555×10
-4

 4.555×10
-4

 1.745×10
-2

 

MC SE 4.763×10
-4

 1.459×10
-2

 1.064×10
-2

 

ˆ
uσ =0.046 

Overestimated 

errors 

Relative SE 0.956 3.122×10
-2

 1.640 

 

For example, at uσ =0.023 in Table 4.8, the percentage of median relative bias and 

relative SE are 0.801 and 0.779, respectively. However, in Table 4.9 and at ˆ
uσ =0.012, the 

percentage of median relative bias and relative SE are 1.495 and 0.386, respectively. When 

uσ  is overestimated, i.e. ˆ
uσ =0.046, the percentage of relative median bias and relative SE are 

0.557 and 1.640. Hence, better results were seen when the errors are overestimated. Also the 

SE of 1,
ˆ

bsimexβ  when the errors are overestimated is slightly more efficient than if the errors are 

underestimated since the relative SE at ˆ
uσ =0.012 and ˆ

uσ =0.046 are 0.386 and 1.640, 

respectively. Thus unlike SIMEX, when the error variance is misspecified, BSIMEX fails to 

provide robust estimation for the EIV.  

 



 131 

4.3.6 BSIMEX for G-I Errors 
 

As mentioned before, the BSIMEX method is applicable for any type of Berkson errors 

with asymmetric distributions. To verify that, in this section BSIMEX is applied for the case 

of gamma independent errors in concentrations. The results in Table 4.6 showed that G-I 

errors in concentrations lead to biased and inefficient nonlinear least squares estimators. 

Therefore, BSIMEX can be used to correct for the effect of G-I errors on the analysis. The 

same general theory for BSIMEX with G-D errors holds for any distribution with asymmetric 

distribution, with slight change in the simulation step of BSIMEX, so we do not present it 

again.    

4.3.7 Simulation Example 

 

Design Choice and Simulation Parameters: A Monte Carlo simulation was conducted 

to examine the asymptotic properties of the BSIMEX estimator. In the simulation, the 

multiplicative factor λ , is set to 0,0.5,1,1.5, and 2, and B=1500 simulated samples were 

generated. The actual concentrations were generated by model (4.17). Other simulation 

parameters and settings are similar to those that have been used to illustrate the effects of G-I 

errors. We assume the errors occur in the concentrations with a fixed standard deviation uσ .  

For relatively small and medium to large errors, uσ  was assumed to take the values 0.023 and 

0.044, respectively, and the SDD is the design in Table 4.1.  

Simulation Results: Table 4.10 summarises the results of 410  simulations of small and 

medium to large G-I errors. The naive estimator is biased at both uσ =0.023 and uσ =0.044. 

The bias increases as the error size increase. The naive also underestimates the true variability. 

Using the BSIMEX approach on the other hand, has produced less biased and more efficient 

estimators. For example, the median biases at uσ =0.023 from both the naive and BSIMEX 

approaches are 8.963×10
-3 

and 4.507×10
-3

, respectively.  
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The variability of BSIMEX estimator is less than the naive one, with MC SEs of 

1.192×10
-2 

and 8.442×10
-3

, for both estimators respectively. There is an obvious improvement 

in the efficiency at uσ =0.023, however, at uσ =0.044, less efficient estimators of the true 

variability of BSIMEX was obtained as the computed relative SE is 5.347. 

Table 4.10 Summary of 
410  simulations of small ( uσ =0.023) and medium to large ( uσ =0.044) G-I 

errors for the actual, naive and BSIMEX estimators. Simulation parameters are IC50=2, 1β =0.301, and 

~ (0,0.01)Nε .   
 

Error size Measures Actual Naive BSIMEX 

Median bias -6.964×10
-5 

8.963×10
-3

 4.507×10
-3

 

Mean bias -6.800×10
-5 

1.016×10
-2

 5.685×10
-3

 

|Median relative bias|×100 2.313×10
-2 

2.978 1.497 

|Mean relative bias|×100 2.259×10
-2 

3.375 1.888 

Averaged model-based SE 4.588×10
-4

 5.533×10
-3

 8.333×10
-3

 

MC SE 4.793×10
-4

 1.192×10
-2

 8.442×10
-3

 

uσ =0.023 

Relative SE 0.957 0.464 0.987 

Error size Measures Actual Naive BSIMEX 

Median bias -6.276×10
-5

 1.740×10
-2

 9.118×10
-3

 

Mean bias -6.383×10
-5

 1.988×10
-2

 1.164×10
-2

 

|Median relative bias|×100 2.085×10
-2

 5.781 3.029 

|Mean relative bias|×100 2.120×10
-2

 6.603 3.867 

Averaged model-based SE 4.610×10
-4

 1.103×10
-2

 9.223×10
-2

 

MC SE 4.806×10
-4

 2.360×10
-2

 1.725×10
-2

 

uσ =0.044 

Relative SE 0.959 0.467 5.347 
 

Therefore, the estimation approach we use for obtaining the variance of BSIMEX was 

found to be inefficient when the errors are of medium to large magnitude. This issue did not 

arise when applying BSIMEX in case of G-D errors with both small and medium to large 

errors. However, this is not unexpected.  

As pointed out in Chapter 2, Section 2.3.2, the method of variance estimation works well 

when the error size is small or with large sample sizes since the generated variability from the 

simulation step of SIMEX is reduced by these two. In the case of G-D errors, a random error 

u1 is generated only in the top concentration of the design and is then diluted across the other 

concentrations. The extrapolation step of BSIMEX also introduces more variability since the 

chosen function to perform the extrapolation is an approximate to the true one. As mentioned 

before, the extra variability from the extrapolation step is causing an inflated SE of the 
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BSIMEX estimator, but it is accounted for when estimating the variance. Therefore, we expect 

the overall variability of the BSIMEX estimator to be small.   

When the errors are G-I, they occur independently in each concentration of SDD. 

Therefore, we expect the variability in the simulation step of BSIMEX to be much larger than 

in the case of G-D errors, which seems to affect the efficiency of BSIMEX particularly when 

the errors are large. Thus, BSIMEX is suitable for any asymmetric distributed Berkson errors 

with small variability in the data.  

4.4 Comparison between BSIMEX, RCE, RCA, WRCE, and 

WRCA 

 

In Chapter 3, the regression calibration was used to deal with the effect of mixing errors 

on the analysis of mixture experiment. The application of the method was supported by the 

direct estimation in the form of the expectation of the actual variable given the design point. 

Particularly, when the weighted least squares approach is used in combination with the 

regression calibration, the results were found to be approximately unbiased and efficient and 

the method was named WRC. The weights are going to be the inverse of the variances of the 

responses at each design point. The mixing errors occur independently in the amounts of the 

components of a mixture. Therefore, the responses obtained from the different trials are 

independent that is, the off-diagonal elements in the variance-covariance matrix of the 

responses are zeros.  

When the dilution errors occur in the doses of a bioassay experiment, two error 

structures have been studied here: dependent gamma dilution errors and independent gamma 

dilution errors. In both cases, a direct estimation for [ | ]t tE x w  was obtained, which gives an 

analytic way to obtain the calibrated design matrix. An empirical estimate of [ | ]t tE x w  is also 

possible to estimate by generating a large number of a simulated true variables and then 



 134 

averaging over their values. Thus, using [ | ]t tE x w  in the regression model should produce an 

approximation of the true or actual analysis. The assumption of gamma errors is not necessary 

here. As a matter of fact, when Gaussian EIV exist with non-zero mean, the actual values are 

biased from the design points.  

Moreover, if the distributional properties of the responses are available, the WRC 

approach can be seen as a solution for the effect of the dilution errors. Note that, since the 

working model is nonlinear in parameters, the nonlinear weighted least squares approach is 

used to obtain unbiased and efficient results instead of the ordinary weighted least squares in 

the mixture problem. However, two important distinctions between the structures of the 

responses, as a result of the dilution errors must be pointed out here: 

- For G-D errors, the responses are correlated and heterogeneous, that is 2var( )ty εσ≠  

and cov( , ) 0t ty y ′ ≠ , , 1, 2, ,t t n′ = … . This is because the concentrations are correlated 

and heterogeneous.  

- For G-I errors, the responses are independent and heterogeneous, that is 2var( )ty εσ≠  

and cov( , ) 0t ty y ′ = , , 1, 2, ,t t n′ = … . This is because the concentrations are 

independent and heterogeneous.  

Thus only when the errors are of G-I type, WRC approach is applicable since the nonlinear 

weighted least squares approach we apply here assumes independent responses (R CRAN, 

2000). The dependency in the responses as a result of the dilution errors was addressed 

before by researchers, such as, Higgins et al. (1998).  

We expect efficient results to be obtained if the WRC is used. On the other hand, if the 

BSIMEX is applied with large G-I errors, the simulation results in Section 4.3.7 showed that 

BSIMEX gives approximately unbiased but inefficient estimators. This can be an advantage 

for the approach WRC over the BSIMEX method. In the following simulation example, the 
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RC, WRC, and BSIMEX are compared. Comparisons between the empirical and analytic 

approaches RCE /WRCE and RCA/WRCA are also given. Note that, the proposed approaches 

are targeting the reduction of the bias in the estimators of the model parameters. Thus again, 

adjusting the effect of Gaussian distributed errors was not investigated here since the naive 

estimators are asymptotically unbiased.  

  - Simulation Example 
 

 

Design Choice and Simulation Parameters: The same simulation settings in Section 

4.3.7 is used in order to illustrate a comparison between the RC, WRC and BSIMEX. An 

empirical estimate of the calibrated design matrix is computed over 10
4
. This number was seen 

as large enough to achieve convergence. The weights are also computed over 10
4
 simulations. 

The response error variance is assumed to be known or well estimated prior to the analysis and 

its value is 2
εσ =0.01. 

Simulation Results: Table 4.11 shows the results of 10
4
 simulations of the actual, naive, 

BSIMEX, RCE, RCA, WRCE, and WRCA. The approaches are distinguished according to the 

bias adjusted and efficiency of their estimators. The results of the actual, naive, and BSIMEX 

approaches have been reported before in Table 4.10, and they are reported again here to 

compare them with the results from the regression calibration methods.  

The naive estimator was the worst between all the estimators from the other analysis; 

hence the adjustment methods provide an improvement over the naive approach. BSIMEX 

showed more efficient estimators than the other adjustment methods at uσ =0.023, but with 

larger biases than those methods. However, the efficiency of BSIMEX has been reduced with 

larger errors in the concentrations (e.g. at uσ =0.044). At both small and large errors, the 

average model-based SEs of 1,
ˆ

bsimexβ
 
are the largest among the adjustment methods.  
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The WRC performed well in terms of bias-correction and variance estimates. The RC 

estimators, unexpectedly though, had slightly more efficient estimates than the WRC 

estimators. In the meantime, the WRC estimators had less bias than the RC estimators. Note 

that, the mean biases of the estimators from the RC approach are less than the median biases 

of the estimators from the WRC method, however, since the distribution of the parameters is 

skewed, we only focus on the median of the estimators. 

 The SEs of the estimators from WRC were smaller than the ones from the RC, for 

example, at uσ =0.044, the MC SEs from the RCE and WRCE approaches are 1.222×10
-2

 and 

7.615×10
-3

, respectively. Thus, the WRC can be recommended over the RC method, on the 

cost of a slight compromise in the efficiency of the estimators. Moreover, it can be seen that 

BSIMEX is not recommended when the errors are independent, and as an alternative, a 

regression calibration approach can be used to correct for the bias of the naive estimates. If an 

estimate of 
2
εσ  could be obtained, the WRC seems to be an appropriate replacement for 

BSIMEX, else RC can be used instead. 
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4.5 Summary and Discussion  

 

We examined the effect of Berkson error using several Monte Carlo simulations of 

bioassay dose-response experiment. The target was to obtain valid inferences of the biological 

activity that has been studied. The effect on the response measurements was not studied since 

in the practical examples we illustrated, typically more attention is given to the potency 

estimates of compounds. The errors in concentrations were assumed to be heteroscedastic and 

independent or dependent. In the case of independent errors in concentrations of serial dilution 

designs, the effect of EIV on the analysis was smaller than when the errors were dependent.  

We also examined the effect of symmetric and asymmetric EIV on the naive analysis. In 

the literature, major studies have suggested different ways to account for the effect of EIV on 

the variance estimates. These studies have only examined the effect of symmetric errors. We 

developed the Berkson simulation-extrapolation approach to correct for the effects of 

asymmetric errors on the analysis of data.  

A comparison of Example 4.3.3 and Example 4.3.7 presented in Tables 4.8 and 4.10, 

respectively, show that when the EIV have non-zero expectation, the parameter of interest, 

logIC50, is estimated with bias. However, when the EIV are dependent this does not lead to an 

increase in the residual sum of squares (RSS) from the naive estimation and therefore the true 

variability is underestimated. As a result, the RSS from the naive analysis are identical to that 

of the actual analysis. Hence when a bias correction is implemented with BSIMEX, RSS 

closer to the true are obtained. When the EIV are independent, the RSS of the naive estimation 

of the model parameters is increased and estimated correctly. Furthermore, BSIMEX reduces 

the RSS due to the EIV but the averaged model-based standard error of the estimate is not 

efficient.  
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Results showed that the adjusted estimator is approximately unbiased and efficient. 

Although the variances of the estimators are underestimated when the errors are large, the 

approach provides a noticeable improvement over the naive analysis. The extrapolation 

function being used in BSIMEX influences the consistency of the estimators. In all examples 

that we considered, the linear and nonlinear extrapolation function gave consistent results 

regarding the bias. All extrapolation functions also led to approximately efficient estimates 

compared to the naive counterpart, though there might be situations where this is not the case. 

However, the consistency of the original approach SIMEX can also be affected by the wrong 

choice of the extrapolation function. Despite that SIMEX is one of the most used approaches 

for measurement error.  

The assumption of heteroscedastic errors in concentrations has been used in all the 

simulation trials. However, BSIMEX should also work well with homoscedastic errors in 

concentrations. The method is supposed to be applicable for any errors with asymmetric 

distribution other than gamma. The robustness of BSIMEX was also investigated. Results 

showed that it is very important for the error variance to be known prior to the analysis. 

The performance of BSIMEX was compared with the regression calibration and 

weighted regression calibration methods. The later approaches were proposed in Chapter 3 to 

correct the bias in the estimators of the commonly used linear models to fit the responses in 

mixture experiments. The comparison was carried out for the case when the errors are 

independently distributed. It was not carried out when the errors are dependent because it is 

clear that the regression calibration approach would be inadequate in that case as it does not 

account for the dependence of the observations.  

BSIMEX is found to be robust for dependent and heteroscedastic Berkson EIV. The RC 

approaches, on the other hand, are robust for independent and heteroscedastic Berkson EIV. 

For example, the approach BSIMEX is inefficient when the errors are independently 
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distributed; however, the RC methods seem to be performs better than BSIMEX. The reason 

may be due to the increased amount of variability in the simulation step of BSIMEX; however, 

more studies can be implemented to investigate the inappropriateness of BSIMEX for 

independent errors. Table 4.12 summarises the comparison between the naive, Berkson 

simulation-extrapolation, regression calibration, weighted regression calibration approaches 

for dealing with N-D, N-I, G-D and G-I errors.  

Table 4.12 Comparison between the naive, Berkson simulation-extrapolation, regression calibration 

and weighted regression calibration approaches for dealing with N-D, N-I, G-D, and G-I errors.  
 

 

Error 

type 

Naive 

 

Berkson simulation-

extrapolation 

 

Regression 

calibration 

 

 

Weighted 

regression 

calibration 

N-D 

 

Unbiased but 

severely inefficient 

N-I 

 

Unbiased and 

efficient 

 

Not applicable 

(since the naive estimates are unbiased) 

G-D 
Biased and severely 

inefficient 

 

Approximately 

unbiased and 

efficient 

 

Not applicable 

(since it does not account for the 

correlation structure of the responses) 

G-I 

 

Biased and 

moderately 

inefficient 

 

Approximately 

unbiased and 

inefficient 

 

Approximately 

unbiased and 

efficient 

 

Approximately 

unbiased and 

efficient 
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5 Summary and Future Work   
 

 

 

5.1 Summary 

 

This thesis investigated the effect of Berkson errors in the design levels of mixture and 

bioassay dose-response studies. The main target was to develop a comprehensive knowledge 

about the possible consequences of ignoring the errors in the design variables. The target has 

been achieved by examining the effect of the errors, using different experimental design 

situations. The focus was on dependent and heteroscedastic Berkson errors, as they have been 

less examined in the literature of EIV.  

The common assumption about Berkson errors is that they lead to no bias in the 

estimates of parameters. We show that this is not true when the errors are either dependent or 

non-Gaussian with non-zero mean. In some cases, the bias was relatively small, and hence 

may seem to be not important when accounted for in the analysis of the data. However, the 

bias is mainly a function of two components: the model parameters and variances of errors-in-

variables. Thus, larger biases can occur with large values of at least one of these components. 

In addition, mixtures and bioassay studies are one of the vital studies where even a small bias 

must be quantified. After all, such studies are expensive, and run over a long period of time, 
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not to mention their key part in the development of products or medical treatments. Therefore, 

the most efficient and accurate results must be obtained. Here is a review for the contents of 

Chapters 2, 3, and 4. 

 In Chapter 1, an introduction was presented to the concept of errors-in-variables, and the 

different sources of such errors in practical fields of studies. Mainly, two types of errors were 

considered: classical and Berkson errors. In most experiments, predictors can not be measured 

or set exactly and an alternative measure is used. How the measurement related to the exact 

predictor is a question that addresses whether the error is of classical or Berkson’s type. We 

discussed the effect of errors-in-variables on different types of statistical models. Those effects 

can be summarised as larger residual variance and biased least squares estimates. A summary 

of the most well-known adjustment techniques, mostly used to estimate the parameters of 

those models, was also presented. A general pattern about all the estimation methods is that 

each method has some advantages and disadvantages. No particular method works better than 

any other method in all practical situations. There are some factors that control the efficacy of 

an adjustment approach. These factors could be the sample size, the variances of the errors-in-

variables (large or small, known or unknown), the structure of errors-in-variables (e.g. 

classical, Berkson, or both), the model (linear or nonlinear), and the validity of the 

distributional assumption, if it is required (e.g. dependent or independent heterogeneous or 

homogeneous errors-in-variables). 

During the investigation that has been carried our here, a set of novel ideas in regards to 

the general problem of errors-in-variables were established. The main outcomes were 

recognised using, firstly, an example of some of the typical linear response models in mixture 

studies. Secondly, a much used nonlinear response model applied to study the relation 
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between the doses and responses in bioassay studies. 

The study in Chapter 3 regarding the effect of mixing errors on mixture experiments 

identified very interesting results. Using the delta method, analytical results were developed to 

show the effects of those errors on the analysis of the data obtained in mixture experiments. 

The presented results show that ignoring the mixing errors in the design variables of linear 

models leads to approximately biased ordinary least squares estimators of the model 

parameters and overestimated variances of those estimators. The direction and size of the bias 

depend on many factors, but mainly on the size of the mixing error variances. As a result of 

the mixing errors, the model becomes approximately biased and with increased and 

heterogeneous variance. If the mixing error variances are known or accurately estimated, the 

specification of the form of the bias is a very important stage in addressing this problem 

because it allows for correcting for it using the regression calibration approach.  

Moreover, in practice, it is mostly assumed that when mixing errors occur in the amounts 

of a mixture, on average the required proportions are attained. Here we proved that this is not 

true, and we made use of these results by combining a straightforward application of the 

regression calibration approach and the weighted least squares method, and called it weighted 

regression calibration approach. First and second-order Scheffe polynomials were used in the 

simulation examples, but other types of models can be used. To deal with the problem in other 

types of models, an empirical estimate of corrected extended design matrix was estimated as 

well. 

However, there are some limitations with the application of the proposed approaches as 

they could be computationally intensive. In addition, accurate estimates of the error variances 

must be available through validation data, which could not be possible in some practical 
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situations, such as, when expensive materials are used in the study. These limitations are 

common in most of the correction approaches for the effect of EIV as discussed in Chapter 2. 

The approaches we proposed though are very easy to implement as they can be developed 

using both analytical and empirical methods, which is not available in most of the correction 

techniques, particularly in the mixture problem.   

In Chapter 4, examining the effect of ignoring the errors in design levels of doses in 

dose-response studies also turned out to be interesting. The effects are studied by using the 

Hill nonlinear response model, which contains four parameters: top, bottom, slope and 

logIC50. The target was to examine the accuracy and efficiency of the estimates of the logIC50 

parameter under different Berkson error scenarios.  

We show that, different errors have different effects on the analysis. For example, unlike 

most of the researches of the EIV problem, where Gaussian errors are mostly assumed, we 

investigate the assumption of non-Gaussian (dependent and independent) errors. Non-

Gaussian errors are very common in medical researches and bioassay studies, and we have 

shown one example of where these errors can occur. For the purpose of illustration, we 

assume the errors are gamma distributed. However, any other distribution could lead to similar 

results. The main outcomes of our work were based on comparisons between the effect of 

normally dependent, normally independent, gamma dependent and gamma independent errors.   

The results show that ignoring gamma distributed errors lead to biased nonlinear least 

square estimates of the logIC50, and underestimated variances. The effect of dependent 

Gaussian errors on the analysis was also found to be serious, as the variance of the estimator 

of logIC50 is severely underestimated if the errors were ignored. This partially contradicts the 

results we obtained in Chapter 3, since Berkson errors were seen to cause overestimated 



 145 

variances of estimators. 

The dependency between the errors, whether they follow Gaussian or non-Gaussian 

distribution, gives a larger loss of efficiency than the case of independent errors. Therefore, we 

recommend the experimenter to carry on an adjustment approach, if the errors in the design 

variable were believed to be dependent.  

To correct for the effects of the gamma errors-in-variables, we extended the SIMEX 

method, and called the new approach BSIMEX. The approach provides approximately 

unbiased and efficient estimator of logIC50. However, some practical limitations when 

applying the BSIMEX approach have to be considered. BSIMEX is only successful for one of 

the studied error scenarios, that is, non-Gaussian errors in design levels. This is because more 

consistent and efficient results were obtained, when the errors are non-Gaussian and 

dependent, rather than the case of non-Gaussian and independent, particularly in regards to 

estimating the standard errors of the estimators of model parameters.  

As for the case of dependent and non-Gaussian error occuring in the top design level, the 

error is propagated in the design, and hence diluted. On the other hand, if independent non-

Gaussian errors occur in all the concentrations, the variability is increased in the simulation 

step of BSIMEX, as different errors are generated at each design point. A possible solution for 

this is to increase the sample size in the simulation step of BSIMEX, in order to capture more 

of the variability in the generated data. However, this is not a guaranteed solution for more 

efficient estimators, as the number of simulations is an arbitrary measure. 

 The approach is computationally expensive and requires accurate estimator of the error 

variance. It adjusts approximately for the bias, as it depends on an approximate extrapolation 

step. In addition, compared to the regression calibration method, no analytical formulas for the 
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bias, in the estimators of model parameters were developed.   

Even though BSIMEX can be seen to have some practical limitations, it is still worth 

being investigated. The approach SIMEX was developed by Cook and Stefanski (1994) to deal 

with classical Gaussian EIV. Therefore, extending the approach to deal with Berkson errors 

represents a major feature of novelty in this work. The approach is easy to implement and does 

not require a strong mathematical background compared to the previous work on errors in 

bioassays (e.g. see the adjustment approach used by Higgins et al. (1998)). It can be included 

also as a built-in function in R CRAN, similar to the original SIMEX. Note, in future work, it 

would be useful to compare between BSIMEX and the approaches presented in the literature 

to deal with EIV in bioassays, as it is interesting to see how these approaches will be affected 

by the assumption of non-Gaussian errors in the concentration levels.  

The proposed approaches: weighted regression calibration and BSIMEX can be used to 

produce bias-corrected and efficient estimators. However, there are some differences in their 

performances according to the area under study. The adjustment approach we proposed in 

Chapter 3, that is, the weighted regression calibration, is ideally suitable when an estimate of 

the response variance 2
εσ  is available, from historical data or validation studies. On the other 

hand, BSIMEX does not require any knowledge about 2
εσ . In bioassays, an unbiased estimate 

of 2
εσ  may not be as direct as you can get in the mixture problem. Usually the variability 

between the plates where the doses are disposed, and within the plates also, should be 

considered, since these studies incorporate more sources of errors. Moreover, there is always a 

question of whether the expectation of the actual concentration given the target one is 

appropriate to be applied when the distribution of the unobserved variable is non-Gaussian and 

sharply skewed. Thus, over all, the choice to apply BSIMEX over the regression calibration 



 147 

was more sensible, when dealing with errors-in-variables in bioassay studies.  

Using a simulated experiment, we compared between the Berkson simulation-

extrapolation, the regression calibration (empirically and analytically) and weighted regression 

calibration (empirically and analytically). The comparison was useful as it addresses the 

various situations or error structure in which the proposed approaches adjust differently for the 

effect of the errors-in-variables.  

The estimators from the regression calibration approaches were found approximately 

unbiased and more efficient than the BSIMEX’s estimator, in cases where the errors occur 

independently in the diluted concentrations.  An interesting feature was also revealed, that is 

both the regression calibration and weighted regression calibration, adjust approximately in an 

equal way for the errors-in-variables, however, the latter approach seems to perform slightly 

better. Thus, if no estimates for the errors in the responses are available, the regression 

calibration method is sufficient to estimate for the model parameters.   

BSIMEX has its own merit when the errors are dependent and heterogeneous since no 

estimates for the variance-covariance matrix of the responses is needed, in order to adjust for 

the errors. BSIMEX’s estimator was found to be approximately unbiased and more efficient 

than the estimators found using the regression calibration method.    

The classification of the performance of the different adjustment approaches with 

difference error structures is not surprising. In the literature of EIV, this is a common practice, 

as discussed in Chapter 2. Therefore, careful considerations should be taken when adjusting 

for the EIV for the structure of these errors and how they occur in the design points.  
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5.2 Future Work  
 

 

During the research we found some problems that require future work. These problems 

take into account either the study of the EIV combined with another serious concern in fitting 

regression models or new practical scenarios.    

In Chapter 3, we studied the effect of mixing errors using unconstrained design regions. 

In practice this is not commonly the case and it is possible to impose certain limits on the 

maximum and minimum proportion a component could take in a mixture which lead 

constrained or irregular design regions. In future work, the effect of mixing errors could also 

be examined using irregular design regions and also different models.  

In Chapter 4, we only examined empirically the effect of non-Gaussian errors on the 

estimates of logic50. We found that the nonlinear least squares approach produces biased and 

inefficient estimates. However, we do not address the analytical formulas for the bias in the 

estimates. Therefore, further work is needed to develop such formulas and show the relation 

between the bias in the estimates and other model parameters, which may help to provide 

alternative correction approaches.  

 The problem in Chapter 4 was investigated using an example from bioassay dose 

response study. The 4-paramter logistic model was used to illustrate the results. However, 

other examples can be used to demonstrate the problem of study. For example, nonlinear 

response models are commonly used in pharmacokinetic (PK) studies. These studies can be 

defined as ‘the study of absorption, distribution, metabolism, and elimination of drugs’ 

(Rescigno, 1997), or simply as a study of compounds over a period of time. Such type of 

studies is mandatory to develop any drug. 

Few people examined the problem of EIV in PK studies, for example, Wang and 

Dividian (1996), Jia and Nedelman (1996), D'Argenio (1981), Sun et al. (1996) and Sheiner 

and Beal (1981). Different reasons for the gap of investigating measurement error problems in 



 149 

this area were provided by Tod et al. (2002), such as, the error in predictors are assumed to be 

neglected and cannot have a serious effect of the estimates of parameters. Another major 

reason is the lack of comparisons between the different correction methods in 

pharmacokinetics studies, whereas most of the comparisons are made in the epidemiological 

studies. Therefore, the area needs more investigation.  

Wang and Dividian (1996) studied the effect of the error in the time recoded of blood 

samples on the analysis of a pharmacokinetics study. Jia and Nedelman (1996) also 

investigated the problem of measurement error in the time variable using a simulation 

approach and concluded that measurement error cause the analysis to be biased. Other tend to 

use an optimality criteria (e.g. optimal sampling times), to reduce the effect of errors on the 

recorded times. Such criteria proved that the estimates of parameters are more efficient than 

those obtained without considering the error in times (D'Argenio, 1981). Sun et al. (1996) 

examined the effect of random and systematic errors in sampling times in random and fixed 

effect models recommending correction actions to reduce the effect of such errors on 

parameter estimates in different designs. Sheiner and Beal (1981) suggested the use of specific 

means (e.g. the amount of bias, mean prediction error) to assess the difference between the 

observed and unobserved variables in the study and the effect of those differences on the 

parameter estimates. However, the disadvantage related to that is the failure to apply the 

assessment means if the unobserved true predictor cannot be known, such as, in observational 

studies. 

To expand the usefulness of the proposed correction approaches, PK models can be 

examined with the assumption of non-Gaussian errors in the time variable since it is possible 

in many PK studies. Such studies could contain either classical or Berkson errors. For 

example, in a study to administer a new drug, a group of patients is usually assigned to take 

certain doses of the drug at fixed time points. At the end of the study, the experimenter could 



 150 

ask the patients to report the time in which the drug was taken. Hence if the self reported times 

have been used as the independent variable, any errors in the time reported are then classified 

as classical errors. However, if the experimenter used the time variable designed for the study, 

the errors in the time variable can be then classified as of Berkson type. Because of these 

uncertainties, the results from such studies have been found to be informative and not 

accurate. As a solution, practitioners applied the idea of sampling window designs. In these 

designs, the experimenter specifies an interval of time in which the measurements should be 

taken instead of fixed time points (Bogacka et al., 2008). The actual times when the 

measurements were taken may never be known. It would be interesting to study the effect of 

the errors and develop an adjustment approach of analysis.    

The errors in the response variables can be either homogeneous or heterogeneous. In this 

work we have chosen the response error to be homogeneous and with small size in order to 

focus on the effect of EIV on the analysis of response models. This is not the common case in 

practice. So, known estimation problems when 2
εσ  is not fixed were not addressed here, hence 

it is worth to study the effect of EIV on the parameter estimates when the response is 

heterogeneous. 
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Appendices  
 

 

 

Appendix A 
 

 

Delta Method 

 

The delta method (Meyer, 1965, p.128) helps in obtaining the statistical properties for 

some functions of one (or more) random variable(s). It is a well known approximation tool for 

the mean and the variance of these functions. Suppose now that nXX ,,1 …  are independently 

distributed random variables with iiXE µ=)( , 2)( iiXV σ= , ni ,,1…= . Let Z be a function in 

nXX ,,1 …  given by ),,( 1 nXXHZ …= . In addition assume the function ),,( 1 nXXH …  has 

nonzero first and second order derivative with respect to nXX ,,1 … . A second-order Taylor 

series expansion of the function ),,( 1 nXXH …  is given by 
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(A.1) 

Now assume that 0)( =iXE , for ni ,,1…= , taking the expectation of both sides of 

equation (A.1), gives the second-order approximation for the mean of Z 
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As regards to the variance, for simplicity only the first-order approximation is used here. 

It is given by  
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Appendix B 

 

Gamma Distribution  

If a random variable X follows a Gamma distribution with shape γ  and scale δ  

parameters, the density function of X can be written by 
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The mean and variance of X are γδ  and 2γδ , respectively.  
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