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Abstract 

 

In this thesis, we introduce commonsense reasoning, some of its features and 

reasoning types. We establish the Event Calculus as a logical formalisation to 

handle commonsense reasoning; and introduce circumscription as a mathematical 

machinery to implement default reasoning.  

 

We define a framework in which we simulate a world scenario, initiated by an 

idea from Shin and Davis [40]. They simulate a real world scenario in which an 

agent moves from a location to another and fills in some buckets with liquid. 

They implement this in PDDL+. We develop their idea further, represent the 

scenario in the Event Calculus and elaborate on their formalisations weak points. 

We introduce a flagging system to deal with triggered events and prevent them 

from repeated occurrence. We show the elaboration tolerance of the Event 

Calculus and discuss that carrying out modifications on an already-developed 

framework does not need performing surgeries on the formalisation. We compare 

our Event Calculus formulas with PDDL+ of Shin and Davis. We show that their 

formalism not only does not handle many "commonsense" aspects of their own 

scenario, performing small changes in their scenario requires major modifications 

whereas in the Event Calculus representation this is not the case due to its 

elaboration tolerance. 

 

Later in the thesis, a method to transform Event Calculus formulas into 

propositional logic will be introduced that can be fed into a SAT solver for 

automated reasoning. The results can be transformed back into Event Calculus 

formulas by reverse mapping. 

 

Different automated reasoners that deal with the Event Calculus are discussed and 

SAT solving method is explained in more detail. 
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Chapter 1 

Introduction 

 

For decades many scientists have been interested in building machines with 

human-like intelligence and computational power [1]. Even though there have 

been numerous advances in the field since its birth in 1940s, Artificial 

Intelligence simulation on a machine is still difficult due to the lack of full 

understanding of how a human‟s brain works. 

 

 

1.1 Commonsense Reasoning  

Commonsense reasoning is the process of using implicit world knowledge for 

making inferences about a scenario based on the facts provided; the world 

knowledge we implicitly obtain by various methods such as learning from one‟s 

own experiences, others‟ experiences, reading about them, observation and so on. 

Most often, when we hear or read a sentence, we perceive some information. It is 

very clear, however, that not everything could be said in one sentence. So when 

we read a sentence and we understand it, we are using much more knowledge 

than could be extracted from the sentence. Therefore, the implicit knowledge 

which we already possess makes this understanding possible. This is exactly what 

commonsense reasoning is about. 
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For instance, when a person is watching a scene in which an object is falling from 

some height, they know (or actually infer) that it is not going to stop until it 

reaches the ground; and when it reaches the ground, it will either bounce or stay 

still, depending on the mass, material and other properties of the object and the 

ground. 

 

During decades of research, various researchers have tried to describe and capture 

commonsense, starting with a call by John McCarthy [4] to use logic to build 

computer applications with commonsense. Following a suggestion by McCarthy, 

Lifschitz [10] created a list of commonsense reasoning benchmark problems 

which helped the researchers of the field to focus their attempts and which 

resulted in many new features added to the commonsense reasoning 

representational languages. Morgenstern keeps an up to date list of commonsense 

benchmark problems [11]. 

 

1.1.1   Reasoning Types 

The kinds of reasoning that a human performs are not fully identified. The 

following, lists some of the reasoning types that have been simulated on a 

machine. The list is by no means exhaustive but contains the reasoning types that 

we are interested in commonsense reasoning simulation on a machine: 

 Prediction 

 Planning 

 Postdiction 

 Model Finding 
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Prediction consists of determining the state of the world after a sequence of 

actions. For instance in the example of a falling object, we predict that the object 

is going to land on the ground based on various facts, such as that we know when 

an object that is falling will continue to fall until it reaches a surface and will not 

magically disappear; an object that is falling is most likely to continue falling in a 

straight line; a falling object will be going towards the ground not upwards; and 

so on. Formally, we can present this as: 

Initiates(Fall(object), Falling(object), t). 

Terminates(HitSurface(object), Falling(object), t). 

HoldsAt(Height(object, h1), t1)  h2 = Max(0, h1 – t2
2
)  

Trajectory(Falling(object), t1, Height(object, h2), t2). 

 The above representations are in the Event Calculus (EC) format which we will 

fully describe later in the report. What they mean, however, is that the event of 

falling an object initiates falling of that object. The event of it hitting a surface 

will terminate the fact that object is falling. The last axiom reads that if an object 

starts falling at time t1, then its height at time t2 will be Max(0,h1-t2
2
). The above 

representation is not a full prediction problem represented in EC, it is only a 

simple representation of small facts. However it is by the combination of these 

little facts that a full proposition can be proved; we will show this later in the 

report. 

 

Planning consists of determining what events will lead to a final state from an 

initial state in the world. For instance if we know there is a hungry cat in the 

kitchen and there is a piece of meat on the table and the cat can reach the table, 

then we could devise a plan in which the cat approaches and eats the meat. 
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Postdiction consists of determining an initial state of the world given a sequence 

of events and a final state. For instance, if the cat is no longer hungry, then there 

was some food in the kitchen for the cat to have. 

 

Model Finding consists of generating possible models from states of the world 

and events that can happen in the world. For example, if Fred is at home and he 

potentially can turn off the light, the TV or the fan, and that each of these actions 

have different effects, it is possible that at a later timepoint the light is off, or the 

TV is off, or the fan is off, all of them are off, none of them are off or 

combination of some off and some on. This potentiality makes reasoning more 

complex and some cases impossible due to infinite number of possibilities, one 

leading to another. How we deal with this problem is through default reasoning. 

 

 

1.1.2   Default Reasoning 

When performing commonsense reasoning, it is rarely the case that we have 

complete information about the state of the world. Therefore we need to make 

certain assumptions and make inferences based on them to proceed. That is why 

commonsense reasoning requires default reasoning. Commonsense reasoning is 

based on actions and their effects on the state of the world. For this reason, when 

performing commonsense reasoning we need to have the default (commonsense) 

assumption that: 

 Unexpected events do not occur; and 

 Events do not have unexpected effects 
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This way we could make inferences based on incomplete information (which we 

are likely to have in most cases) and proceed. We will give a detailed explanation 

of using circumscription to implement default reasoning on a machine. 

 

 

1.1.3   Space 

Many instances of commonsense reasoning involve space. In this section we 

briefly describe space axiomatisation in our commonsense representation. 

Space: In the commonsense world, objects stand in various relations to each other 

or to a base point. For instance, a pencil is in a jar, a person is in a room, two 

objects moving with varied velocities might collide and so on. In discussing 

commonsense, we need to take these relations into account. In one of the 

scenarios presented at a later chapter, we use the spatial theories about space in 

the commonsense world of Region Connection Calculus (RCC) by Randell, Cui 

and Cohn [12]. In their theory, the ontological primitives include physical objects, 

regions and sets of entities. For example, basic relations such as P(x, y) „x is part 

of y‟, C(x, y) „x is connected with y‟, PO(x, y) „x partially overlaps y‟ and 

composite relations such as INSIDE(x, y) „x is inside y‟, P-INSIDE(x, y) „x is 

partially inside y‟ and OUTSIDE(x, y) „x is outside y‟ resemble (partially) space 

domain of commonsense. It is easy to see that these formalisms represent 

concepts of commonsense. As an example, if two distinct objects which are not 

disjoint initially and over time they become connected, then those objects collide 

(the commonsense fact is clear in this theory that it is odd that two regions can be 

distinct but occupy the same amount of space). 
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1.1.4   Analogical Processing  

In analogy, a given situation is understood by comparison with another similar 

situation. Analogy could be used to guide reasoning, to generate conjectures about 

an unfamiliar domain, or to generalise several experiences into an abstract schema.  

 

Analogical Processing: It deals with novel situations that an agent might 

encounter and has no direct commonsense knowledge of; in such a case, the agent 

might be able to reason about the novel situation by matching the analogy to a 

familiar situation. Consider the following example: If an agent puts a stopper in 

place in the sink and opens the tap, the water will eventually start spilling onto the 

floor because it reaches and goes over the rim of the sink (example from 

Shanahan [48, 56 pp. 302-304]). An agent might have encountered and reasoned 

about the previous situation before, but a novel situation could be formed by 

replacing water by sand. Using analogical processing, and in particular a well-

developed mechanism called Structure-Mapping Engine (SME) this comparison 

is possible. For details of SME please refer to [25] as we will not discuss it here. 

We would like, however, to present an example from [25] to show how SME can 

be partially used to solve commonsense reasoning problems: 

The comparison between water flow and heat flow is represented as follows: 

The base (already encountered) domain: 

Causes(GreaterThan(Pressure(Beaker), Pressure(Vial)). 

Flow(Beaker, Vial, Water, Pipe)). 

GreaterThan(Diameter(Beaker), Diameter(Vial)). 

Liquid(Water). 

FlatTop(Water). 
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The above reads: when the pressure of the beaker is greater than the pressure of 

the vial it causes the flow of water from the beaker to the vial through the pipe; 

the diameter of the beaker is greater than that of the vial in general; water is liquid 

and it has a flat top. 

The target (novel) domain: 

GreaterThan(Temperature(Coffee), Temperature(IceCube)). 

Flow(Coffee, IceCube, Heat, Bar). 

Liquid(Coffee). 

FlatTop(Coffee). 

It reads that the temperature of coffee is greater than ice cube; heat can flow from 

coffee to the ice cube through the bar; coffee is liquid and it has a flat top. 

The SME can then produce global mappings and choose the one with the highest 

score: 

Beaker  Coffee. 

Vial  IceCube. 

Water  Heat. 

Pipe  Bar. 

Pressure(Beaker)  Temperature(Coffee). 

Pressure(Vial)  Temperature(IceCube). 

GreaterThan(Pressure(Beaker), Pressure(Vial))  

GreaterThan(Temperature(Coffee), Temperature(IceCube)). 

Flow(Beaker, Vial, Water, Pipe)  Flow(Coffee, IceCube, Heat, Bar). 

And the following candidate inference is produced: 

Causes(GreaterThan(Temperature(Coffee), Temperature(IceCube)), 

Flow(Coffee, IceCube, Heat, Bar)). 



18 

 

SME is only a partial solution for commonsense reasoning. Other commonsense 

reasoning mechanisms are required to evaluate and draw inferences; SME can be 

used to produce potential inference candidates, as a complement method. 

 

1.2 The Cyc project 

Doug Lenat, founder of the Cyc project explains: “The purpose of Cyc is to 

provide computers with a store of formally represented „common sense‟: real 

world knowledge that can provide a basis for additional knowledge to be gathered 

and interpreted automatically” [46]. 

Cyc project began in 1984 and has been evolving and gathering commonsense 

knowledge from various sources for more than 26 years to this day. Cyc states its 

long term goal as: “automating the process of building a consistent formalised 

representation of the world in Cyc knowledge bases on machine learning” [47]. 

Cyc, however, uses logic for commonsense reasoning [7, 17]. Cyc‟s knowledge 

base is quite reliable due to the methods that it uses before any new knowledge is 

added to its knowledgebase. We briefly describe the methods here. 

 

The Cyc ontologists asserted some basic facts into Cyc in the early days in order 

to enable Cyc to crawl the web and gather new information based on what it 

already knows [7]. With the knowledge in the knowledgebase, Cyc decides to 

search for an “interesting” subject using the following algorithm  (the topic is 

either picked from the knowledge base or set by a human expert and the search is 

run on the Internet via Google) [47]: 
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For a given search run, a depth of D is selected. D is the maximum number of 

different values that can be used for each argument of a predicate. For each binary 

predicate pi in the test set P, the types of constraint in each of the two arguments 

are retrieved from the knowledge base. The D most fully represented values from 

the knowledge base are retrieved unless the type is generalised to an infinite class. 

The D fully represented values means those that appear in the most assertions and 

therefore about which the most is known. These are assumed to be the most 

“interesting” terms of that type and the ones most likely to be found by a web 

search. There are the types T
i1

 and T
i2

 for pi. The D best represented values are 

(t
i1

1 … t
i1

D) and (t
i2

1 …t
i2

D). 

If neither of a predicate‟s arguments are of values of a continuous type, there will 

be 2D*|P| queries generated (in CycL): 

(p1 t
11

1 ?VAR) … (p1 t
11

D ?VAR) 

(p1 ?VAR t121 ) … (p1 ?VAR t
12

D) 

… 

(p|P| t
|P|1

1 ?VAR) … (p|P| t
|P|1

D ?VAR) 

(p|P| ?VAR t
|P|2

1 ) … (p|P| ?VAR t
|P|2

D) 

The limit of binary predicates (p) is set by the ontologists. The number of p is 

currently 134 predicates. 

When Cyc decides to learn about a new fact, it poses a query. Then the query is 

translated into natural language from CycL (Cyc‟s representational language) and 

is searched on the web via Google. This translation is done by 233 manually 

created special generation templates for the 134 predicates. Cyc knowledgebase 

generally contains one or two generation templates for any given predicate. For 

instance, Cyc might pose the queries: 
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“Microsoft company founder _____” 

“MS company founder _____” 

“Microsoft company founded by _____” 

“MS company founded by _____” 

Whose aims are to find out the founder of Microsoft. 

The results of the query are then translated back into CycL. Since Cyc uses 

predefined templates for generating natural language queries, it also expects the 

results to be in the same predefined forms. For instance, when Cyc poses the 

above queries, it expects the results to be in the form of: 

“Microsoft founder Bill Gates is still running the company.”. Depending on where 

the position of ____ was in the initial query, Cyc will assume that position to fill 

in the predicate argument (Bill Gates in this case). 

Then Cyc checks the result for inconsistency or redundancy against the already 

known (and supposedly correct) knowledgebase. Cyc discards redundant or 

inconsistent search results; then rechecks the remaining results in Google by 

adding a word (from the same concept) to the query. If there are no results 

returned then the “fact” is discarded otherwise the fact is sent to an ontologist to 

review and insert into the knowledgebase if correct. 

Using this method and the fact that a human expert will review the acquired fact 

before assertion, it is guaranteed that the asserted knowledge in the 

knowledgebase are (at least to a human-expert level) correct. 
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CycL 

CycL‟s syntax is based on the syntax of First-order Logic and Lisp [45]. CycL 

handles all of FOL connectives such as and, or, implies and also quantifiers. 

CycL also handles default reasoning which makes a suitable language to deal with 

commonsense [24, Sec. 1]. It has five different truth values for statements (fluents) 

which are: monotonically false, default false, unknown, default true and 

monotonically true. As a regularly updated knowledgebase, the default values can 

be overridden. For instance a statement such as “Dogs have four legs” in standard 

truth-conditional logic would raise inconsistency since there are dogs who have 

three legs as well. The approach of different truth values taken by Cyc helps to 

prevent inconsistency and also makes the ontology more robust (by solving the 

problem that three-legged dogs, for instance, are still “dogs” which are still 

“mammals” and so on). Cyc also uses “microtheories” [24] which are small and 

dynamically generated concepts depending on implicit context of reference. For 

instance, the following conversation would raise inconsistency by using standard 

truth-conditional logic: 

CHILD: Who is Dracula, Dad? 

FATHER: A vampire. 

CHILD: Are there really vampires? 

FATHER: No, vampires don‟t exist. 

Of course, is as discussed in [24], the father‟s answer to the first question is in 

context of mythology and fiction but the answer to the second question is in 

context of the real world. Assertions in a microtheory must be consistent with 

each other (local consistency) but do not need to be consistent with other 
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microtheories. This way, global consistency is assured while local consistencies 

can exist in different microtheories. 

 

1.3 Aims of The Project 

The principal aim of this thesis is to 

 1.    show and emphasise on the Event Calculus to be a robust and flexible 

  formalisation to deal with commonsense reasoning 

This will be complemented by a series of further aims: 

2. explain the event calculus in detail 

3. introduce circumscription to deal with default reasoning 

4. compare the Event Calculus with PDDL+ in practice 

5. introduce a method for converting the Event Calculus formulas into 

 propositional logic to be reasoned over by a SAT solver 

6. introduce automated reasoners that deal with the Event Calculus 

 

In this chapter we talked about commonsense reasoning in general and some of its 

specifications and reasoning types. We also talked about the Cyc project, a good 

example of a systematic approach towards commonsense reasoning using a 

logical formalisation. In the rest of this report: 

 To achieve our second aim we will introduce the Event Calculus, a 

formalisation that deals with commonsense reasoning in detail. This will 

be complemented with examples to better emphasise the features of the 

Event Calculus (EC). 

 For achieving the third aim, we will introduce circumscription which will 

be our mathematical machinery to implement default reasoning. This will 
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be followed by an example in EC to show the use of circumscription in the 

EC in practice. 

 For satisfying the fourth aim, we will present a framework which we have 

constructed in the Event Calculus with a real world scenario. Our 

framework is an abstract simulation of a real world model in which we 

have tried to capture some commonsense facts and rules. The initial idea 

of this model was based on Shin and Davis formalisation of a similar (but 

much more abstract)  world. We prove a proposition in the scenario in 

which an agent has a goal in mind and sets off to perform some actions to 

achieve the goal. We show that by using the EC formalisation and 

modelling of the world we could indeed prove the proposition.  A flagging 

system is introduced which prevents repeated occurences of an action 

while all its conditions hold. We compare our formalism in EC with that 

of Shin and Davis and mention the advantages and shortcomings. Then we 

analyse and talk about the importance of determining the level of details 

we need to focus on to solve a commonsense problem. 

 To achieve our fifth aim, we present an encoding method to transform EC 

formulas into a satisfiability problem so that we could automatically 

perform reasoning on a commonsense problem by sending the then-

propositional problem to a SAT solver. The results will be converted back 

to EC formulas by using reverse mapping. 

 To satisfy our sixth aim, we mention automatic reasoning methods that 

deal with the EC in the literature and describe how a SAT solver works in 

greater detail. 
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 We then draw conclusions on this report and the achievements of it and 

talk about the future work and the many great possibilities that the Event 

Calculus provides to handle commonsense problems. By this point, we 

will have achieved our principal aim which is to show and emphasise on 

the Event Calculus to be a robust and flexible formalisation to deal with 

commonsense reasoning. 

One note to take into account here is that although we give many EC examples in 

this report in different sections, we do not perform the propositional encoding on 

our framework. The reason for this is simply because this is not an aim of the 

project. Using a SAT solver for automating the proof is a different piece of work 

which we did not intend to achieve (and compare performances of different 

solvers and reasoners). This could be a follow-up piece of work but not in the 

intention or scope of this project. 
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Chapter 2 

 

The Event Calculus 

 

In this chapter we introduce the event calculus; the standard representational 

language of representing and reasoning with commonsense.  

 

2.1   History 

 

The event calculus (EC) uses the syntax of First-order Logic. Mueller [14, pp. 

271-289] investigates the evolution of different logical approaches in 

commonsense reasoning which started from the introduction of the Situation 

Calculus by John McCarthy [27] and McCarthy and Hayes [28]. 

 

The Event Calculus was developed by Kowalski and Sergot [50]. A lot of 

research and work has gone into the Event Calculus and new extensions have 

been appended hence it has evolved enormously over time. The extensions to the 

EC have brought the advantages of the other logics such as the Forced Separation 

of Features and Fluents introduced by Murray Shanahan [56, Ch. 16], Causal 

constraints of Fluent Calculus and Continuous Change to make the Event 

Calculus the most robust and the standard logic for commonsense reasoning.  
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Figure 2.1 shows a brief history of evolution of the Event Calculus. This figure 

does not mean Situation Calculus is out of use today – it simply shows how Event 

Calculus has evolved to where it is now and the properties it has borrowed from 

other formalisations. 

 

Figure 2.1: Logics for Commonsense Reasoning 
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2.2   Formal definition of the Event Calculus 

 

2.2.1   Introduction 

The event calculus is a narrative-based formalism for reasoning about action [5]. 

Shanahan [56, p155] defines a narrative as: “A distinguished course of events 

about which we may have incomplete information”. The event calculus addresses 

all of the key issues of commonsense reasoning for which we will give more 

details later in this chapter. EC is the language of action and change and therefore 

has three basic notions as follows: 

 Events: which represent actions or events that may occur in the world such 

as breaking a glass. An event may happen at a timepoint. 

 Fluents: which represent time-varying properties in the world such as 

location of a glass. A fluent has a truth value at any given timepoint or a 

timepoint interval. 

 Timepoints: which represent an instant of time such as 8:00 AM 

Greenwich Mean Time on September 20 2007. 

After an event occurs (or in EC terms: happens), the truth values of fluents may 

change. We have commonsense background knowledge about the effects of 

events on fluents such as dropping an object results in the object falling. 

We represent the basic notions in the Event Calculus as follows: 

HoldsAt(f, t): means fluent „f‟ holds at timepoint „t‟. 

Happens(e, t): means event „e‟ occurs at timepoint „t‟. 

Initiates(e, f, t): represents that if event „e‟ happens at timepoint „t‟, then 

fluent „f‟ will be true after „t‟. 
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Terminates(e, f, t): represents that if event „e‟ happens at timepoint „t‟, 

then fluent „f‟ will be false after „t‟. 

For instance, the following is an EC representation of if somebody wakes up then 

they will be awake and not sleeping anymore. Also that John is initially not awake 

but then he wakes up: 

 

Our EC axioms (commonsense or background knowledge): 

Ex1.1: Initiates(WakeUp(a), Awake(a), t) 

Ex1.2: Terminates(WakeUp(a), Asleep(a), t) 

 

Initial situation (observations): 

Ex1.3: HoldsAt(Awake(John), 0) 

 

Event occurrences (narrative): 

Ex1.4: Happens(WakeUp(John),1) 

 

In the above example, from Ex1.4 and Ex1.1 we can conclude that John is awake 

after 0 or in other words HoldsAt(Awake(John), 1). Since as humans we have 

background knowledge, we can deduce this conclusion easily. But formally, we 

cannot make this conclusion yet; we are missing some information. 

In the event calculus, there are several basic axioms and definitions which make 

reasoning on EC formulas possible. These axioms and definitions are available in 

Appendix A for the Event Calculus (EC) and Appendix B for Discrete Event 

Calculus (DEC - which we will discuss in section 2.2.3). We have borrowed the 

axioms of the event calculus from Mueller [14, pp. 24-29] who represents them in 
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a neat way (he has originally taken them from Miller and Shanahan [51, 52]). 

Discrete Event Calculus axioms, however, are from Mueller [14]. 

Using the EC and DEC axioms, we can prove our example. We need to assert the 

following axiom in order to be able to draw conclusions: 

Ex1.5: ReleasedAt(f, t) 

Axiom Ex1.5 tells us that no fluent „f‟ is released from the commonsense law of 

Inertia at any timepoint. Although this axiom has not been defined in the report 

yet, we will discuss it in section 2.2.2. Let us accept it for the sake of argument, 

for now. 

Now with the conjunction of axioms Ex1.1 to Ex1.5 and DEC axioms (in 

Appendix B) we can systematically draw the following conclusions: 

From Ex1.4 and Ex1.1 and DEC9 we have HoldsAt(Awake(John), 2). This says 

that John is awake at timepoint 2 (as the result of waking up at timepoint 1). 

From Ex1.4 and Ex1.2 and DEC10 we can conclude HoldsAt(Asleep(John), 2) 

which says that John is not asleep at timepoint 2. 

However, we can also represent the opposite of these axioms: if somebody sleeps, 

then they will be asleep and not awake anymore. To represent this, we need to 

insert the following axioms: 

Ex1.6: Initiates(Sleep(a), Asleep(a), t) 

Ex1.7: Terminates(Sleep(a), Awake(a), t) 

And suppose we have the following narrative: 

Ex1.8: Happens(Sleep(John), 3) 

Similarly, we can show that from Ex1.6, Ex1.8 and DEC9 we have 

HoldsAt(Asleep(John), 4) and from Ex1.7, Ex1.8 and DEX10 we have 

HoldAt(Awake(John), 4). 
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This works. However, there seems to be redundancy between axioms Ex1.1, 

Ex1.2, Ex1.6 and Ex1.7: There is no indication that these actions or fluents are 

exactly the opposite of each other. This must be represented in our formalism to 

simulate the commonsense knowledge that if something is on, then it is not off or 

if someone is awake, then they are not asleep. The event calculus is a very strong 

and flexible representational language. We can show this by using State 

Constraints: 

HoldsAt(Asleep(a), t)  HoldsAt(Awake(a), t) 

The above axiom says that somebody is asleep if and only if they are not awake. 

We shall discuss State Constraints and some other features of the event calculus 

more in detail in the following section. 

 

2.2.2   Features 

We briefly discuss some of these features of the event calculus as follows: 

Elaboration Tolerance: The event calculus is elaboration tolerant. That means it 

allows for an axiomatisation to be extended through the addition of new axioms 

rather than performing surgery on existing axioms. This is particularly important 

for a representation of commonsense since new information is constantly gathered 

through time. Elaboration tolerance increases the efficiency and reduces 

inconsistency in a knowledge base. For instance if we have the following axiom: 

Initiates(MoveInside(agent), AlarmOn(alarm), t). 

If an agent moves inside, then the alarm will be triggered. If we later find out that 

the agent we are referring to must be either one of Fred, John or Richard, we can 

add an axiom to the formula without changing the existing ones: 
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Happens(MoveInside(a), t)  HoldsAt(At(Fred, location), t)  HoldsAt(At(John, 

location), t)  HoldsAt(At(Richard, location), t) 

 

Reification: McCarthy [54, p 1034] defines reification as “making objects out of 

sentences and other entities”. He introduces reification [55] in order to reason 

about knowledge and belief in First-order Logic. He introduces [p. 129] terms to 

represent concepts such as “Mike‟s telephone number” in the sentence “Pat 

knows Mike‟s telephone number”. Using this technique we would be able to 

represent this sentence as follows: Mike represents Mike in the sentence, 

Telephone(Mike) represent‟s Mike’s telephone number, and Know(Pat, 

Telephone(Mike)) represents the whole sentence. The event calculus is based on 

reification. 

 

Default Reasoning: Default reasoning is handled in the event calculus by using 

circumscription as technical machinery. A detailed description of circumscription 

is presented in the next section. As described in Chapter 1, default reasoning is 

necessary when reasoning about commonsense to cope with the incomplete 

information we have about our scenario and state of the world. Default reasoning 

makes it possible to only consider the events that we know do happen and ignore 

all the other possibilities; and that the state of the world does not change unless 

some event happens to change it. We also take it that the events only have their 

intended effects. For instance, when Fred turns on the light, it does not cause the 

door to open, or when an object is left on the table, it will not suddenly disappear 

and will be there until something happens to it and moves it. Or if our scenario is 
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that Fred goes to the kitchen we should not assume that the TV is turned off. 

Circumscription does not allow this to happen. 

 

Effect Axioms: Represent the effect of events on fluents. The effect axioms, 

namely Initiates and Terminates have already been discussed in the previous 

section. 

 

Preconditions: In the Event Calculus, it is possible to make certain actions or 

fluents conditional on some other actions or fluents. There are two types of 

preconditions in the event calculus, Fluent Precondition and Action Precondition. 

 Fluent Precondition must be satisfied for an event to have an effect. If a 

fluent precondition is not satisfied, then the event may occur but it will not 

have the intended effects. For instance, if a device is not broken, then it 

can be turned on: 

HoldsAt(Broken(d), t)  Initiates(TurnOn(a, d), On(d), t) 

In this example, if d is broken, the event TurnOn might happen, but since 

Initiates is conditioned on d not being broken, On(d) will not change 

because of this event. 

 

 Action Precondition must be satisfied for an event to occur. If an action 

precondition is not satisfied then the event cannot occur. For example, to 

pick up a book one must be near the book. 

Happens(PickUp(a, Book), t)  HoldsAt(Near(a, Book), t) 

(By contraposition, Happens(, )   is equivalent to   

Happens(, ) ) 
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Usage of preconditions is a partial solution to the Qualification Problem which 

will be discussed shortly. 

 

State Constraints: Some properties of the commonsense world work in a law-

like fashion. For instance the fact that an object cannot be on top of itself 

(HoldsAt(On(o,o), t)) or as already seen in the previous section someone cannot 

be awake and asleep at the same time (HoldsAt(Asleep(a), t)  

¬HoldsAt(Awake(a), t)) or a device could not be on and off at the same time 

(HoldsAt(On(d), t)  ¬HoldsAt(Off(d), t) ). State constraints are important 

axioms describing some of our world and domain-specific knowledge. 

 

Qualification Problem [8]: A condition that prevents an event from having its 

intended effects or prevents the event from occurring is called a qualification and 

the problem of representing and reasoning about a qualification is called the 

qualification problem. With the help of preconditions, state constraints and 

default reasoning the qualification problem can be solved. For instance, the 

example of a broken device that does not turn on or a “not broken” device can be 

turned on is a qualification problem: 

HoldsAt(Broken(d), t)  Initiates(TurnOn(a, d), On(d), t) 

And since the event calculus is elaboration tolerant, we could assert the following 

axiom at a later time: 

HoldsAt(CutWire(d), t)  HoldsAt(Broken(d), t) 

HoldsAt(Broken(b), t)  HoldsAt(Broken(d), t) 

(b stands for the button of a device). 
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Trigger Axiom: It is possible to assert events or fluents in the EC which are 

triggered by other axioms. This feature is a basic and fundamental concept in 

commonsense reasoning. For instance, if an agent puts a stopper in the drain of 

the sink and opens the tap (in case there is water flowing from the tap; the sink 

has no cracks or holes; and so on, i.e. qualification problem is dealt with), the 

water will eventually start spilling onto the floor because it reaches and goes over 

the rim of the sink (example from Shanahan [48, 56 pp. 302-304]). Another 

example is an alarm clock. The clock will start beeping once the present moment 

is the set alarm time (example from [14 pp. 75-78] which contains axioms and 

proof of the proposition). 

 

Indirect Effects of Events: The event calculus can be used to represent and 

reason with indirect effect of events or ramification. An example of indirect 

effects of actions is moving from one room to another while holding an object 

(which results in the change of location of the object, we will discuss this example 

in more detail toward the end of the chapter). A detailed discussion of 

ramification is presented in [14 pp. 101-130]. 

 

Commonsense Law of Inertia: As the law states, objects tend to stay in the same 

state unless affected by events. The event calculus makes use of the Releases(e, f, 

t) and ReleasedAt(f, t) predicates to indicate, respectively: an action releases a 

fluent from this law at a time; a fluent is released from this law at a time. Initiates 

and Terminates predicates, if used, will restore the law for a fluent. A practical 

example of this law is the Yale Shooting Scenario of Hanks and McDermott [59, 
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60, 61 pp. 387-390]. EC works in timepoints and each timepoint is separate and 

different from the others. Existing fluents are only transferred from a timepoint to 

the next if and only if they are not released. For instance, given we have some 

other axioms which describe the height of the object decreasing over time, with 

HoldsAt(At(Object, Table), 1), if nothing happens to terminate or release this 

fluent, by DEC5 we can conclude that HoldsAt(At(Object, Table), 2). However, if 

we have that Releases(e, At(Object, Table), 2) or Terminates(e, At(Object, Table), 

1) then we cannot make this conclusion anymore. 

ReleasedAt fluents are very important and useful specially when a fluent has an 

integer value and is changing over time e.g.: the height of a falling object. We 

need EC to discard the previous height of the object at each timepoint so that an 

object will only have one height at a time. For instance consider the following 

example:  

(The object falls at timepoint 1.) 

Happens(Fall(Object), 1) 

 

(The object has the height 50 at timepoint 2.) 

HoldsAt(Height(Object, 50), 2) 

 

(The event of Fall initiates the fluent Falling.) 

Initiates(Fall(Object), Falling(Object), t) 

 

 (The event DecreaseHeight initiates the fluent Height with the 

value x-1.) 

Initiates(DecreaseHeight(Object, x), Height(Object, x-1), t) 



36 

 

 

(If the object is falling, then decrease its height.) 

HoldsAt(Falling(Object), t) ∧ HoldsAt(Height(Object, x)  

Happens(DecreaseHeight(Object, x), t) 

 

From Happens(Fall(Object), 1) and Initiates(Fall(Object), Falling(Object), t) and 

DEC9 we have: 

HoldsAt(Falling(Object), 2) 

From this, HoldsAt(Height(Object, 50), 2) and HoldsAt(Falling(Object), t) ∧ 

HoldsAt(Height(Object, x)  Happens(DecreaseHeight(Object, x), t) we have: 

Happens(DecreaseHeight(Object, 50), 2) 

 

From this, Initiates(DecreaseHeight(Object, x), Height(Object, x-1), t) and DEC9 

we have: 

HoldsAt(Height(Object, 49), 3) 

Here is where a problem potentially lies: not enforcing the commonsense law of 

Inertia – nothing happens to terminate HoldsAt(Height(Object, 50), 3) which 

means the height of the object is both 49 and 50 at the timepoint 3. And as 

timepoints increase, so does the presence of the previous values of the height of 

the object. We need to have a rule enforcing Intertia law to avoid having multiple 

values for the same fluent at the same timepoint. We need to have either of these: 

 A Terminates fluent (which by DEC12 enforces this law) such as 

Terminates(DecreaseHeight(Object, x), Height(Object, x), t). 

 A fluent such as ReleasedAt(Height(Object, x), t) that says the height of 

the object is submissive towards the Inertia law – using this predicate the 
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previous values of the height of the object do not hang on at the timepoints 

that follow. This is because DEC5 and DEC6 need a fluent not to be 

released [¬ReleasedAt(f, t)] to maintain its value at the next timepoint. 

Therefore if we do not have one of the above remedies, using DEC5 we can 

conclude that: 

Timepoint 3: 

HoldsAt(Height(Object, 50), 3). 

HoldsAt(Height(Object, 49), 3). 

Timepoint 4: 

HoldsAt(Height(Object, 50), 4). 

HoldsAt(Height(Object, 49), 4). 

HoldsAt(Height(Object, 48), 4). 

Timepoint 5: 

HoldsAt(Height(Object, 50), 5). 

HoldsAt(Height(Object, 49), 5). 

HoldsAt(Height(Object, 48), 5). 

HoldsAt(Height(Object, 47), 5). 

And so on. Commonsense law of Inertia (through Initiates, Terminates, Releases 

and ReleasedAt predicates) prevent this from happening. 

 

Nondeterministic Effects: An event has nondeterministic effects if the event can 

have more than one alternative effect. For instance, flipping a coin could result in 

the coin landing with head or tail. The event calculus deals with nondeterminism 

by allowing event occurrences to give rise to several classes of models using 

determining fluents [56 pp. 294-297, 72 pp. 419-420] or disjunctive event axioms 
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[56 pp. 297-298, 342-345 and 359-361]. Disjunctive event axioms are represented 

in the Event Calculus as: 

Happens(, )  Happens(1, t)  …  Happens(n, t) 

 

 

2.2.3   Discrete Event Calculus 

The Discrete Event Calculus is the same as the Event Calculus with the only 

difference that timepoint sort in DEC is restricted to positive integers. DEC was 

developed by Erik E. Mueller [14 p. 27] and as Mueller has proven [14, Ch. B] if 

time is restricted to integers, then DEC is equivalent to EC axiomatisation of 

Miller and Shanahan [52]. We have presented the basic DEC axioms in Appendix 

B. 

 

We have not used Trajectory or AntiTrajectory axioms in this report. These 

axioms, however, are defined in Appendices A and B. They deal with gradual 

change of fluents over time. Their usage is no more complex than the other 

axioms of EC and the reason we have not mentioned them is due to the space 

constraint of this report. The only occurrence of these axioms is in an example in 

Chapter 1 regarding gradual change of height of a falling object. 

 

2.3   Formal definition of circumscription 

The main reason for using circumscription (and non-monotonic reasoning in 

general) comes from the theory of knowledge representation. Axiomatic theory of 

classical logic cannot directly represent defaults. And since default reasoning is 
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an essential key factor of commonsense reasoning, circumscription is used in 

commonsense representation and reasoning. Circumscription, introduced by John 

McCarthy [42], is the technical device to implement default reasoning. 

Before we formally define representation, we need to explain some basic notions. 

We start introducing circumscription by an example from Lifschitz (90). Suppose 

we have a default rule that: 

CE1.1  “Normally, a block is on the table”. 

And we have the assertion: 

CE1.2  “B1 is not on the table”. 

Since nothing is mentioned about B2 (which is also a block), we want to conclude 

that B2 therefore must be on the table: 

CE1.3  “B2 is on the table”. 

Assertion CE1.1 and CE1.2 can be mathematically represented as: 

CE1.4  Block(x)  Ab(x)  OnTable(x) 

CE1.5  OnTable(B1) 

 

(Predicate Ab(x) means that x is not abnormal. So CE1.4 means: “if x is a block 

and x is not abnormal, then x is on the table”.) 

We also have: 

CE1.6  Block(B1)  Block(B2)  B1  B2 

Our goal would be to conclude that B2 is on the table (formalisation of CE1.3): 

CE1.7  OnTable(B2) 

We cannot draw this conclusion by classical logic only, since CE1.7 is not a 

consequence of axioms CE1.4, CE1.5 and CE1.6. Axioms CE1- CE1.6 say too 

little about the abnormality predicate Ab. So, for instance, we could find models 
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in which the universe of M consists of two objects, represented by constants B1 

and B2. The predicates Block and Ab are true for B1 and B2 and OnTable is false 

for B1 and B2. In this model, CE1.4- CE1.6 are true but CE1.7 is false. The 

problem is, axiom CE1.4 is the only axiom that mentions Ab and yet it does not 

say whether there are few or many abnormal objects. Therefore there exists an 

identical model M
′
 to M with the only difference that the extension of Ab is {B1} 

rather than {B1, B2}, which was the case for model M. Therefore the extension of 

Ab in M
′
 is a proper subset of the extension of Ab in M. And since M and M

′ 
only 

differ on the extension of Ab, we therefore can say that M
′
 is minimal to M with 

respect to the predicate Ab: 

We now formally introduce the concept of minimality. But before that, we need to 

know what it means for a model to be as small as another model. 

Formal definition of as small as: If M
’
 and M are interpretations, then M

’
 is as 

small as M with respect to a predicate P (written as M
’
 ⊑P M) if: 

 M
’
 and M agree on the interpretation of everything except possibly P and 

 The extension of P in M
’
 is a subset of its extension in M. 

Formal definition of minimality: A model M
’
 of a formula ϕ is minimal with 

respect to ⊑P if there is no model M of ϕ such that M ⊑P M
’
 and not M

’
 ⊑P M. 

 

This is very similar to our concept of circumscription which we will explain in the 

next section. We therefore need to verify that (Theorem 0): A model M
’
 of a 

formula ϕ is a model of the circumscription of ϕ minimising the predicate P if 

and only if M
’
 is minimal with respect to ⊑P. 
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Proof: Since the theorem uses if and only if, we use two half-proofs for each if (if 

and only if). First, the if part: We use contradiction. Suppose M
’
 is a minimal 

model of ϕ with respect to ⊑P but is not a model of circumscription. Then there 

must be some q such that ϕ(q) ⋀ q < P is satisfied in M
’
 (extension of q in M

’
 is 

smaller than the extension of P in M
’
). We can then construct a model M which is 

identical to M
’
 except that the interpretation of P in M is the same as the 

interpretation of q in M
’
 (M[P] = M

’
 [q]). Clearly M ⊑P M

’
 however it is not the 

case that M
’
 ⊑P M. Therefore M

’
 is not minimal which is a contradiction. 

 

Now the only if part: We use contradiction again. Suppose M
’
 is a model of 

circumscription of ϕ minimising P (written as CIRC[ϕ; P]) but M
’
 is not minimal 

with respect to ⊑P. Then there must be a model M of ϕ such that M [P] ⊂ M
’
 [P]. 

In this case, since it is possible to let M
’ 
[q] = M[P], M

’
 does not satisfy ¬∃q[ϕ(q) 

⋀ q < P] and therefore is not a model of the circumscription which is a 

contradiction. (¬∃q[ϕ(q) ⋀ q < P] is the formal definition of circumscription, we 

will introduce it  later). 

 

Back to our example, since M
’
 is the minimal model with respect to ⊑Ab, we have 

the following condition: 

CE1.8  Ab(x) ⇔ x = B1 
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Formal Definition and Implementation of Circumscription 

Circumscription is concerned with the extension of predicates in models. We need 

to introduce some notations in order to actually formally implement 

circumscription: 

Let P and Q be n-ary predicate symbols and v1 to vn distinct variables of 

appropriate sort. We have the following relations: 

P = Q is an abbreviation for ∀v1, …, vn P(v1, …, vn)  Q(v1, …, vn). 

P ≤ Q is an abbreviation for ∀v1, …, vn P(v1, …, vn)  Q(v1, …, vn). 

P < Q is an abbreviation for (P ≤ Q)  (P = Q). 

 

Formal definition of circumscription: If Φ is a formula containing the predicate 

symbol ρ, then the circumscription of Φ minimising ρ, written as CIRC[Φ; ρ], is 

the formula of second-order logic: 

Φ  ¬∃q[Φ(q)  q<ρ] 

where q is a predicate variable with the same arity and argument sorts as ρ, and 

Φ(q) is the formula obtained from Φ by replacing each occurrence of ρ with q. 

This says in every model of CIRC[Φ; ρ], the extension of ρ complies with Φ and 

there is no proper subset of the extension of ρ that complies with Φ. That is, the 

extension of ρ is minimal given Φ. 

An example: Suppose Φ = P(A). Then CIRC[Φ; P] is given by the second-order 

formula: 

P(A) ⋀ ¬∃q[q(A) ⋀ q < P) 

This means for every model M of CIRC[Φ; P], if A is the object named by A in M, 

then A ∈ P
M

 and there is no proper subset Q of P
M

 such that A ∈ Q, from which 
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we conclude that P
M

 = {A}. Therefore, CIRC[Φ; P] is equivalent to the first-order 

formula 

∀x(P(x) ⇔ x = A) 

 

Non-monotonicity of circumscription: Classical logic is monotonic. This means if, 

for instance, a sentence q follows from a collection of A sentences and A ⊂ B, 

then q also follows from B (A ⊢ q  A ⊂ B  B ⊢ q). A proof from the premises 

A is a sequence of sentences each of which is either a premise, an axiom or 

follows from a subset of sentences occurring earlier in the proof by one of the 

rules of inference. Therefore a proof from A can also serve as a proof from B. We 

know that the semantic notation of entailment in classical logic is monotonic. For 

instance A entails q (A ⊨ q) if q is true in all models of A. And if A ⊨ q and A ⊂ B, 

then all the models of A are also models of B which means B ⊨ q too. In other 

words, we can show monotonicity of classical logic with the notation: 

A ⊢ q  Conjunction[A] ⊨ q 

in which Conjunction[A] is the conjunction of all sentences in G. 

The formal definition of circumscription states that the circumscription of a 

formula is a sentence of second-order logic. The consequence relation of second-

order logic is classical and monotonic. So how is circumscription non-monotonic? 

Circumscription preserves monotonicity to the extent that it makes use of classical 

consequence relation. But it is non-monotonic in the sense that, given a predicate 

P, it does not guarantee that for any conjunction of formulas Ψ and any two 

formulas σ and ϕ, 

 CIRC[Ψ; P] ⊨ ϕ  CIRC[Ψ  σ; P] ⊨ ϕ. The non-monotonicity of a 

circumscription minimising a predicate P can be shown with the notation: 
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Ψ ⊢ ϕ  CIRC[Ψ; P] ⊨ ϕ. 

John McCarthy [42] himself remarks: 

“Circumscription is not a non-monotonic logic. It is a form if non-monotonic 

reasoning augmenting ordinary first-order logic.” 

Parallel circumscription: Circumscription also allows for parallel minimisation of 

predicates. If Φ is a formula containing the predicate symbols ρ1, …, ρn, the then 

parallel circumscription of Φ minimising the predicates ρ1,…, ρn, written as 

CIRC[Φ; ρ1,…, ρn], is the formula of second-order logic: 

Φ ⋀ ¬∃q1,…, qn[Φ(q1, …, qn) ⋀  qi < ρi  

where q1,…, qn are distinct predicate variables with the same arities and argument 

sorts as ρ1,…,ρn respectively and Φ(q1, …, qn) is the formula obtained from Φ by 

replacing each occurrence of ρ1,…,ρn with q1, …, qn respectively. 

 

Let us consider an example: 

We have the following knowledgebase: 

CE2.1  Initiates(SwitchOn, DeviceOn, t) 

CE2.2  Terminates(SwitchOff, DeviceOn, t) 

We have the following narrative: 

CE2.3  Happens(SwitchOn, 2) 

These formulas state what effects some actions have. But they say nothing about 

what effects they do not have and which events do not occur. For instance, the 

following could also be the case: 

CE2.4  Initiates(SwitchOn, Snowing, t) 

CE2.5  Happens(SwitchOff, 5) 
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By using circumscription, we ensure that this is not the case, i.e. no unintended 

events occur and events do not have unintended effects. 

Result of using circumscription on CE2.1, written as CIRC[CE2.1; Initiates], is 

the following formula: 

CE2.6  (e = SwitchOn  f = DeviceOn)  Initiates(e, f, t) 

 

Similarly CIRC[CE2.2; Terminates] is: 

CE2.7  (e = SwitchOff  f = DeviceOn)  Terminates(e, f, t) 

And CIRC[CE2.3; Happens] is: 

CE2.8  (e = SwitchOn  t = 2)  Happens(e, t). 

We will discuss how we compute circumscription shortly. For now, let us look at 

this example more closely. If we know that the only event occurring is CE2.3, 

then from CE2.6, CE2.7, CE2.8 and DEC axioms, we can conclude that 

HoldsAt(DeviceOn, 6). 

However, if later we find out that in addition to CE2.3, event CE2.5 also occurs, 

then the circumscription of CIRC[CE2.3  CE2.5; Happens] is: 

(e = SwitchOn  t = 2)  (e = SwitchOff  t = 5)  Happens(e, t). 

From this, CE2.6, CE2.7 and DEC axioms we can no longer conclude that 

HoldsAt(DeviceOn, 6). In fact, we can actually conclude HoldsAt(DeviceOn, 6). 

This, clearly, shows the non-monotonicity property of circumscription. It also 

shows how elaboration tolerant the event calculus and circumscription are, i.e. we 

add new axioms without needing to change any of the previous ones. 

Computing circumscription: For computing circumscription, there are two 

significant theorems which are due to Lifschitz [41]: 
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Theorem 1: Let ρ be an n-ary predicate symbol and Δ(x1,…,xn) be a formula 

whose only free variables are x1,…,xn. If Δ(x1,…,xn) does not contain ρ, then the 

basic circumscription CIRC[∀x1,…,xn (Δ(x1,…,xn)  ρ(x1,…,xn)); ρ] is equivalent 

to ∀x1,…,xn (Δ(x1,…,xn)  ρ(x1,…,xn)). 

Proof: Please see the proof of proposition 2 in Lifschitz [41]. 

Using this, we can compute circumscription of ρ in a formula by rewriting the 

formula in the form: 

∀x1,…,xn (Δ(x1,…,xn)  ρ(x1,…,xn)) 

where Δ(x1,…,xn) does not contain ρ and then apply Theorem 1. 

Although this is the most widely used method for computing circumscription, 

rewriting the formula in this way may not always be possible. However, due to 

flexibility and robustness of the Event Calculus, we can often formulate the 

formulas in a way to get around this problem in the first place. 

For instance: 

 HoldsAt(Holding(a, o), t)  

     Initiates(e, InRoom(a, r), t)  

     Initiates(e, InRoom(o, r), t) 

This formula says that if an agent is holding an object and by some event such as 

entering a room then they will be in that room, and so will the object. 

Unfortunately this formula cannot be rewritten so that we can apply Theorem 1. 

However, we can solve the problem by writing the formula in a different way in 

the first place: 

 Initiates(Walk(a, r1, r2), InRoom(a, r2), t) 

 HoldsAt(Holding(a, o), t)  

 Initiates(Walk(a, r1, r2), InRoom(o, r2), t) 
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Now we can simply apply Theorem 1 to these two formulas. 

The second theorem provides a method for computing parallel circumscription of 

the circumscription of several predicates. Before mentioning the theorem, 

however, we need to explain a definition: A formula Δ is positive relative to a 

predicate symbol ρ if and only if all occurrences of ρ in Δ are in the range of even 

number of negations in an equivalent formula obtained by eliminating  and  

from Δ. We eliminate  from a formula by replacing all instances of (α  β) 

with (α  β). We eliminate ⇔ from a formula by replacing all instances of (α ⇔ 

β) with ((α  β)  (β  α)). 

 

Theorem 2: Let ρ1,…,ρn be predicate symbols and Δ be a formula. If Δ is positive 

relative to every ρi, then the parallel circumscription CIRC[Δ; ρ1,…,ρn] is 

equivalent to the conjunction of the basic circumscription  CIRC[Δ; ρi]. 

 

Proof: Please see the proof of proposition 14 in Lifschitz [41]. 

 

Let us consider some examples: 

Let Δ = Happens(E1, T1) ⋀ Happens(E2, T2). We can compute CIRC[Δ; 

Happens] by rewriting Δ as the logically equivalent formula: 

(e = E1  t = T1)  (e = E2  t = T2)  Happens(e, t). 

Applying Theorem 1 to the above formula gives: 

 

(e = E1  t = T1)  (e = E2  t = T2)  Happens(e, t). 

which is the result of our circumscription. 
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Another example: Let Σ = Initiates(E1(x), F1(x), t)  Initiates(E2(x, y), F2(x, y), 

t). We can compute CIRC[Σ; Initiates] by rewriting Σ as 

∃x(e = E1(x)  f = F1(x))  ∃x, y(e = E2(x, y)  f = F2(x, y))  Initiates(e, f, t). 

 

Applying Theorem 1 to the above formula gives: 

∃x(e = E1(x)  f = F1(x))  ∃x, y(e = E2(x, y)  f = F2(x, y))  Initiates(e, f, t). 

 

2.4   A natural language example 

Consider the following scenario involving three locations (Mueller [14, Ch. 10, 

15]): 

“The location L1 is to the left of L2, which is to the left of L3. Our view of 

location L2 is blocked by a screen. Suppose we observe the following (the only 

moves possible are between adjacent locations): 

At timepoint 0, we observe an object, let us call it O1, at L1 and nothing at L3. At 

timepoint 1, we observe no objects at L1 or L3. At timepoint 2, we observe an 

object, let us call it O2, at L3 and nothing at L1. We observe nothing about L2 

because it is blocked by a screen.” 

 

 

Figure 2.2: The Screen Example 
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Figure 2.2 shows a visual representation of the different timepoints. We examine 

how the event calculus can represent and reason with this description and 

conclude that O1 and O2 are indeed the same object: 

 

First we need a simple spatial theory. Please note that this information is 

background knowledge and a commonsense reasoner should have these at its 

disposal: 

An object is exactly at one location at a time: 

Ex2.1  HoldsAt(At(o, p1), t)  HoldsAt(At(o, p2), t)  p1 = p2 

An object does have a location at a time: 

Ex2.2  ∃l HoldsAt(At(o, l), t) 

Two objects cannot occupy the same location at the same time: 

Ex2.3  HoldsAt(At(o1, l), t)  HoldsAt(At(o2, l), t)  o1 = o2 

The Adjacent predicate is symmetric: 

Ex2.4  Adjacent(p1, p2)  Adjacent(p2, p1) 

If an object moves from a location to another adjacent location, then the object 

will be at the new location and no longer at the old location: 

Ex2.5  HoldsAt(At(o, p1), t) ⋀ Adjacent(p1, p2)  

Initiates(Move(o, p1, p2), At(o, p2), t) 

Ex2.6 HoldsAt(At(o, p1), t) ⋀ Adjacent(p1, p2)  Terminates(Move(o, 

p1, p2), At(o, p1), t) 

 

The rest of the formulas are domain specific information. Ex2.1 through Ex2.6 are 

general world knowledge which are true in general and could be reused to solve 

many other problems. 
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In any commonsense reasoning problem, there are two kinds of information: 

• Background (world) knowledge 

• Domain specific information 

 

As we will shortly see, we can apply this small fragment of world knowledge we 

have to another example with a different domain-specific set of formulas and a 

different proposition. We focus on the current example. 

 

We have three adjacent locations, let us call them L1, L2 and L3 as L1 is to the 

left of L2 and L2 is to the left of L3. This is represented in EC as follows: 

Ex2.7  Adjacent(p1, p2)  (p1 = L1 ⋀ p2 = L2) ⋁ 

(p1 = L2 ⋀ p2 = L1) ⋁ (p1 = L2 ⋀ p2 = L3) ⋁ 

(p1 = L3 ⋀ p2 = L2)  

We also have the following observations: 

    Timepoint 0 

 

  (Object O1 holds at location L1 at timepoint 0) 

Ex2.8  HoldsAt(At(O1, L1), 0) 

  (There is nothing at location L3 at timepoint 0) 

Ex2.9  HoldsAt(At(o, L3), 0) 

 

Timepoint 1 

 

  (There is nothing at location L1 at timepoint 1) 

Ex2.10  HoldsAt(At(o, L1), 1) 
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  (There is nothing at location L3 at timepoint 1) 

Ex2.11  HoldsAt(At(o, L3), 1) 

 

Timepoint 2 

 

  (Object O2 is at location L3 at timepoint 2) 

Ex2.12  HoldsAt(At(O2, L3), 2) 

  (There is nothing at location L1 at timepoint 2) 

Ex2.13  HoldsAt(At(o, L1), 2) 

 

General 

 

(Commonsense law of Inertia is preserved at all timepoints.  

No fluent is released from this law at any timepoint.) 

Ex2.14  ReleasedAt(f, t) 

ReleasedAt axiom in Ex2.14 was explained in section 2.2.2. To recap, this axiom 

basically says that Commonsense law of Inertia is preserved at all timepoints.  

No fluent is released from this law at any timepoint. Therefore, a fluent holds or 

does not hold continuously (from a timepoint onwards) unless an event happens 

to initiate or terminate it. Whereas when a fluent that holds at a timepoint and 

does not submit to the commonsense law of Inertia does not necessarily hold for 

the next timepoint (and vice-versa: for a non-submissive fluent that does not hold 

for a timepoint, it is not the case that it does not hold for the following timepoint). 
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The event calculus makes use of Unification [58] to match its variables. Please 

note variables in the EC are represented with small capitals (such as o) whilst 

constants in big capitals (e.g. O1). 

 

Proposition: We want to prove that O1 and O2 are the same object. 

Let Σ be the conjunction of Ex2.5 and Ex2.6, Ψ the conjunction of Ex2.1 to Ex2.4 

and Γ the conjunction of Ex2.7 to Ex2.14. Suppose 

CIRC[Σ; Initiates, Terminates, Releases]  Ψ  Γ  DEC 

Then O1 = O2. 

 

Proof: 

First, we need to compute the circumscriptions to know the events and their 

intended effects in the scenario. Having computed the results of the 

circumscriptions, we can only consider the events and effects specified in our 

scenario. 

We do not have any events in this example. So we only circumscribe Initiates, 

Terminates and Releases. We apply Theorems 1 and 2 to CIRC[Σ; Initiates, 

Terminates, Releases] to obtain: 

Ex2.15  Initiates(e, f, t)  ∃o, p1, p2(e = Move(o, p1, p2)  

f = At(o, p2)  HoldsAt(At(o, p1), t)  Adjacent(p1, p2)) 

 

Ex2.16 Terminates(e, f, t)  ∃o, p1, p2(e = Move(o, p1, p2)  

f = At(o, p1)  HoldsAt(At(o, p1), t)  Adjacent(p1, p2)) 
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In the text, we do not have any events happening which release any fluents from 

the commonsense law of Inertia at any timepoint. Therefore we have: 

Ex2.17  ¬Releases(e, f, t) 

Since axiom Ex2.17 indicates no event happens to release any fluents from Inertia 

law, and by Ex2.14 we know that no fluent is released from this law at any 

timepoint, we can conclude all fluents stay submissive to Inertia law at all times 

(and only Initiates and Terminates predicates change the state of the fluents). 

 

From Ex2.12 and the contrapositive of DEC6 we have: 

Ex2.18 HoldsAt(At(O2, L3), 1)  ReleasedAt(At(O2, L3), 2)  

∃e(Happens(e, 1)  Initiates(e, At(O2, L3), 1)) 

Which means that it is the case that either: 

 O2 is at L3 at timepoint 1; which cannot be the case because by Ex2.11 

we know there is nothing at L3 at timepoint 1. 

 Fluent At(O2, L3) is released from Inertia; which by Ex2.14 we know is 

not the case. 

 Or there is an event that happens at timepoint 1 that initiates the fluent 

At(O2, L3) at timepoint 1. Since this axiom must be true and the above 

two cases did not hold, therefore we can conclude that this must be the 

case. 

So formally, from Ex2.18, Ex2.11 and Ex2.14 we have 

Ex2.19  ∃e(Happens(e, 1)  Initiates(e, At(O2, L3), 1)) 

 

By Ex2.15 we know that for an event to initiate a fluent at a time, that event must 

be the Move action, that fluent must be the At fluent, the object must hold at a 
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location and that the two locations must be adjacent. From Ex2.19 we know that 

an event happens to initiate At at timepoint 1. By unifying variables and constants 

of Ex2.15 and Ex2.19 we have: 

Initiates(e, f, t) ⇔ ∃ p1(e = Move(O2, p1, L3) ⋀ 

f = At(O2, L3) ⋀ HoldsAt(At(O2, p1), t) ⋀ Adjacent(p1, 

L3)) 

Which says that the event Move(O2, p1, L3) at a timepoint t initiates the fluent 

At(O2, L3) whilst O2 is at location p1 at that timepoint and locations p1 and L3 are 

adjacent. 

From this and Ex2.7 we can associate p1 with L2 since it is the only location 

adjacent to L3. So our formula becomes: 

Initiates(e, f, t) ⇔ e = Move(O2, L2, L3)  

f = At(O2, L3)  HoldsAt(At(O2, L2), t)  Adjacent(L2, 

L3) 

 

We therefore have: 

Ex2.20  HoldsAt(At(O2, L2), 1) 

So far, we have concluded that object O2 holds at location L2 at timepoint 1. 

 

From Ex2.10 we have ¬HoldsAt(At(O1, L1), 1). From this and the contrapositive 

of DEC5 we have: 

Ex2.21  ¬HoldsAt(At(O1, L1), 0)  ReleasedAt(At(O1, L1), 1)  

   ∃e(Happens(e, 0)  Terminates(e, At(O1, L1), 0)) 

Ex2.8 says that object O1 is at location L1 at timepoint 0. Therefore 

¬HoldsAt(At(O1, L1), 0) from the above axiom simply is not true. 
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Also, from Ex2.14 we know that no fluent is released from Inertia at any 

timepoint therefore ReleasedAt(At(O1, L1), 1) cannot be true. So the third 

condition in the disjunction in Ex2.21 must be the case. 

Formally, from Ex2.21, Ex2.8 and Ex2.14 we have: 

Ex2.22  ∃e(Happens(e, 0)  Terminates(e, At(O1, L1), 0)) 

 

From this, Ex2.16 and Ex2.7 we have Happens(Move(O1, L1, L2), 0). From this, 

Ex2.8, Ex2.7, Ex2.15 and DEC9 we have: 

Ex2.23  HoldsAt(O1, L2), 1) 

We now concluded that object O1 holds at location L2 at timepoint 1. 

 

Ex2.20 says that object O2 holds at location L2 at timepoint 1 and Ex2.23 says 

that object O1 holds at location L2 at timepoint 1. By Ex2.3 we know that if two 

objects are at the same location at the same time, then those objects must be the 

same object. Therefore we infer that O1 = O2 which is our proposition. 

End of proof. 

 

We now present another scenario which uses the same background knowledge 

presented in the previous example (Ex2.1 to Ex2.6). 

Consider the following scenario involving 5 locations: Location L1 is to the left of 

L2 which is to the left of L3 which is to the left of L4 which is to the left of L5. 

Our view of locations L2 and L4 are blocked by screens. Suppose we observe the 

following (the only moves possible are between adjacent locations): 

At timepoint 0, we observe an object, let us call it O1, at L1 and nothing at L5. At 

timepoint 4 we observe an object, let us call it O2, at L5 and nothing at L1. We 
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never observe an object at L3 and we never observe anything about L2 or L4 

(because of the blocking caused by the screens). In this case, we can easily show 

that the two objects are indeed different. The proof for this example is quite 

similar to the former example [15]. 

The EC can be used to solve a large variety of examples. Many benchmark 

problems have been tacked and solved using the event calculus. For instance 

Shanahan has shown the egg-cracking scenario in [6]. 
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Chapter 3 

 

The Bucket World Scenario 

 

3.1   The Bucket Scenario 

We developed a framework based on the idea of a real life example given by Shin 

and Davis [40]. The framework is of modelling a world in which physical rules 

(in a commonsense perspective) apply. Our framework can handle different 

scenarios and we formally prove a proposition for one. This framework gives us a 

practical ground to compare our formalism against that of Shin and Davis on a 

similar scenario. They use PDDL+ to represent their theory. The scenario for 

which we constructed the EC representation and proved our proposition is as 

follows: 

Fred is initially at home which is 20 meters away from the well. There are two 

empty 2-litre buckets at the well which potentially have spilling amount of 0.1 

litre per second. There is a tap at the well which pours water at 0.1 litre per 

second when on. It is initially off. One of the buckets is initially under the tap. 

Fred can move at the speed of 1 meter per second. Fred goes to the well and then 

fills up both of the buckets of the total of 3 litres and pick them up and takes them 

home. He then pours them into a 10-litre bucket at home which already holds 2 

litres of water. 
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For simplicity‟s sake, we assume some actions as atomic actions such as picking 

up and putting down buckets; representing these is trivial (in an abstract level) in 

this scenario; but will not impose any interesting challenges apart from adding to 

the timepoints. Expanding them in detail, however, would be an interesting follow 

up work; expanding and relating our framework with the Liquid Theory of Davis 

[9] to such a level of detail to deal with the movement of the liquid inside the 

buckets. That will be a first of its kind effort to expand two well developed 

frameworks and connect them together; trying the examples which previously 

worked separately on individual frameworks merged in a new environment, 

observing and analysing the difference in the proving process and timepoint 

changes.  

 

3.2   Details of scenario 

We have manually translated from the natural language description of the 

scenario above into the formulas of the EC. We will present our representations in 

the next section. However, we encountered interesting points during the 

translation process which will be of high importance in automating this process: 

 How the initial state is identified in a scenario: since the reasoning 

(prediction, planning and model finding) in the EC starts from the initial 

state, and the fluents of the initial state have an important role in 

determining the fluents in the consecutive timepoints, it is crucial to 

identify and separate the initial state from the text in EC correctly. 

 How the timepoints in a scenario are associated with narratives: being able 

to differentiate between timepoints in a scenario and temporally ordering 
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them is essential in constructing a precise domain description and 

narrative. 

 How the temporal anaphora are handled in the EC: the temporal anaphora 

such as “then”, “after” and “before” significantly help us to temporally 

order the fluents and events of the domain description and narrative while 

translating. For instance if we know of event E1 occurring “before” event 

E2, we then know that Happens(E1, t1)  Happens(E2, t2)  t1<t2. 

  How conditions in a scenario are dealt with: conditions in a discourse 

often depend on other fluents or events in the same discourse. For instance 

“Fred will go walking only if the weather is sunny” can be represented as: 

Happens(GoWalking(Fred), t)  HoldsAt(SunnyWeather, t) – this is an 

action precondition: going walking event happens only if the weather is 

sunny. Conditions could be of more complicated form, as in our example. 

 Flags: we implement and use a flagging system to control triggered events. 

Triggered events are events which are provoked based on all their 

conditions being satisfied. For instance consider: 

 HoldsAt(c1, t)  HoldsAt(c2, t)  Happens(e, t). 

In this formula event e happens only when both c1 and c2 hold. Now these 

two conditions can be normal formulas, for instance, the level of a bucket: 

HoldsAt(Level(b1), t) as seen in BR50 in our scenario: 

  HoldsAt(PouringFromTo(a, b1, b2), t)    

   HoldsAt(BucketFull(b2), t)  HoldsAt(Level(b1, x), 

   t)  x>0  HoldsAt(SpillAmount(b1, y), t)  

   Happens(IncreaseWastedLiquid(y), t) 
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 which states if a bucket is receiving from another bucket and is full, then 

the liquid is being wasted. It is important to note that the event 

IncreaseWastedLiquid keeps happening until one of its conditions does 

not hold anymore, for example the level of the pouring bucket becomes 

zero (i.e. the pouring bucket becomes empty). At times, especially when 

planning a strategy as in our scenario, we need to falsify a condition of a 

triggered event with a flag. For instance in BNE2: 

 HoldsAt(At(Fred, Well), t) ∧ ¬HoldsAt(On(Tap), t)   

  HoldsAt(Cond1, t) ⇒ 

  Happens(TurnOnTap(Fred, Tap), t) 

we specify that once Fred is at the well and the tap is not on, he turns the 

tap on. Without a flag the event of turning on the tap would occur at every 

timepoint that Fred is at the well and the tap is not on. By introducing 

Cond1, a flag, we ensure this is not the case because once this event 

occurs, then it will have the effect axiom BNC1: 

  HoldsAt(Cond1, t)  

   Terminates(TurnOnTap(Fred, Tap), Cond1, t). 

This effect axiom (which only has this effect if Cond1 holds) falsifies 

Cond1 therefore one of the conditions of BNE2, the flag, does not hold 

anymore hence it happens only once in the scenario. 

In another example in our scenario we have: “Fred goes to the well and 

then fills up both of the buckets of the total of 3 litres and pick them up 

and takes them home.” . The “picking up” and “taking home” events are 

conditioned on the buckets satisfying the intended amount of liquid full 

and Fred being at the well. Once these conditions hold, then the respective 



61 

 

events are provoked. In order to prevent these events from being triggered 

repeatedly, we use flags. We need to identify the conditional relations 

between fluents and events in an EC scenario, and in this example, 

extracted from a scenario in natural language text. 

 How we differentiate between permanent and temporary fluents: some of 

the fluents are temporary and will change over time, but some fluents in 

the same form do not. This usually happens in fluents dealing with 

integers or constant changes. For instance, DistanceBetween(Well, Home, 

20) is a permanent fluent and not likely to ever change where as 

DistanceBetween(George, Home, 10) or DistanceBetween(Car, Office, 50) 

are not. The difference in translating these fluents is using a variable for 

the timepoint. For instance for the distance between Home and Well above 

we will translate this in EC as: HoldsAt(DistanceBetween(Well, Home, 20), 

t). Note that we used a timepoint variable „t‟ here, so it would hold for all 

timepoints in the scenario. Such a translation for a temporary fluent will 

result in contradiction when the fluent changes (there will be uniqueness 

of values constraints such as: 

  HoldsAt(DistanceBetween(loc1, loc2, distance1), t)  

   HoldsAt(DistanceBetween(loc1, loc2, distance2), t) 

    distance1 = distance2.). 

Using this constraint (which is necessary to have), when the value of a 

fluent changes if it holds for all timepoints we will reach a contradiction. 

This is why we need to correctly identify permanent and temporary fluents. 

One solution is to always use temporary fluents as the permanent fluents 

will be available in the consecutive timepoints (as nothing is supposed to 
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happen to terminate or release them. However this will result in 

unnecessary computation). 

 How agents in a scenario are identified: in most of the scenarios and 

worlds, many actions are directly performed by an agent. Depending on 

the formulation, and as in our example, an agent is sometimes required to 

be specified as an agent fluent. 

 “Intelligent” formulas can be posed in the EC. Unlike a typical 

programming language and similar to a logic programming language, the 

formulas in the EC are defined as a whole. One rule represented in the EC 

can only represent so much on its own. So formulas in the EC can be 

looked at as individual methods in a programming language that heavily 

depend on each other. We experienced that, with enough basic formulas, 

more interesting formulas can be constructed representing more intelligent 

behaviour. For instance, formula BR52 of our framework represent such 

behaviour: 

BR52 indicates if we are pouring into a bucket (from the tap or another 

bucket), if the bucket that we are filling in gets full and if there is another 

bucket around which is not full, then we replace the full bucket with the 

non-full bucket. 

 

In our proof, we refer to some fluents with a C postfix such as BNI7C. The C 

stands for Constant. The constant fluents keep their value since they are not 

released and nothing happens to terminate them between the timepoint they hold 

at and the timepoint we are addressing them. If t2 is the timepoint we are 

addressing the fluent, we formally have: 
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For C Fluents: 

   HoldsAt(f, t1)  t (Happens(e, t)  (Terminates(e, f, t)  

   Releases(e, f, t))  t1 ≤ t ≤ t2 

and 

  HoldsAt(f, t1)  t (Happens(e, t)  Initiates(e, f, t) 

    t1 ≤ t ≤ t2 

So if nothing happens to release a fluent from Inertia in between the timepoints 

(DEC11) then by DEC5 and DEC6 we can deduce that the fluent holds or does 

not hold (depending on its condition in t1, the former timepoint) at all consecutive 

timepoints at least till t2, our referring timepoint. 

This convention is for saving space and as just discussed above is correct. 

 

BX1, BX2, BX3 and BX4 are the computed circumscription of Happens, Initiates, 

Terminates and Releases. This means the only events that can happen (in the 

framework) and do happen (in the narrative) in our scenario are the ones in BX1. 

In other words we can say nothing else can happen (in the framework) nor 

happens (in the narrative). Also, BX2 and BX3 state the only effects that these 

events have are the ones in these two formulas. For instance the event of 

TurnTapOn(Fred, Tap) does not initiate Walking(Fred). This is not allowed in our 

framework by using circumscription. BX4 also circumscribes Releases which 

releases a fluent from Inertia. As we can see, PickUp(a, b) only releases At(b, l) 

which is the location of the item b, not its level for instance. In all these four 

formulas, we use a bi-implication that indicates an if-and-only-if relationship, 

therefore formally nothing else is in the scope of Happens, Initiates, Terminates 

and Releases apart from those stated in the bi-implication. 
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In computing circumscription, we take into account all the instances of these four 

predicates in the narrative (scenario-specific) and in the framework (general 

theory). This is only logical because by using default reasoning we want to say 

that the only events that can happen (framework) and do happen (narrative) are 

the ones that we know of.  
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3.3   Representation in Event Calculus 

We represent the domain description and narrative of the scenario in this section. 

The narrative: 

Narrative of the Bucket scenario 

  

 Initial state 

  

BNI1 HoldsAt(At(Fred, Home), 0) 

BNI2 HoldsAt(BucketEmpty(Bucket1), 0) 

BNI3 HoldsAt(BucketEmpty(Bucket2), 0) 

BNI4 HoldsAt(At(Bucket1, Well), 0) 

BNI5 HoldsAt(At(Bucket2, Well), 0) 

BNI6 HoldsAt(Level(Bucket3, 2), 0) 

BNI7 ¬HoldsAt(On(Tap), 0) 

BNI8 HoldsAt(Beneath(Bucket1, Tap), 0) 

BNI9 HoldsAt(AlreadyPoured(0), 0) 

BNI10 HoldsAt(WastedLiquid(0), 0) 

BNI11 ¬HoldsAt(Carrying(Fred, Bucket1), 0) 

BNI12 ¬HoldsAt(Carrying(Fred, Bucket2), 0) 

  

 Permanent Fluents 

  

BNP1 HoldsAt(DistanceBetween(Home, Well, 20), t) 

BNP2 HoldsAt(Capacity(Bucket1, 2), t) 

BNP3 HoldsAt(Capacity(Bucket2, 2), t) 

BNP4 HoldsAt(At(Tap, Well), t) 

BNP5 HoldsAt(FlowRate(Tap,0.1), t) 

BNP6 HoldsAt(At(Bucket3, Home), t) 

BNP7 HoldsAt(Capacity(Bucket3, 10), t) 

BNP8 HoldsAt(WalkingSpeed(Fred, 1), t) 

BNP9 HoldsAt(IntendedAmount(3), t) 

BNP10 HoldsAt(Agent(Fred), t) 

BNP11 HoldsAt(SpillAmount(Bucket1, 0.1), t) 

BNP12 HoldsAt(SpillAmount(Bucket2, 0.1), t) 

  

  

 Conditional events of the narrative 

  

BNE1 Fred leaves home to go to the well at timepoint 0. 
 
Happens(GoFromTo(Fred, Home, Well), 0) 

  

BNE2 Once Fred is at the well and the tap is not on, he turns the tap on. By using 
a ’flag’ here we ensure that this event happens only once, and that only at the 
beginning of our scenario. Had we not used a flag, once Fred is finished at the 
well and wants to go back home, he turns off the tap but then this event would 
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be triggered again and Fred would turn on the tap just after turning it off. A 
flag prevents this from happening. 
 

HoldsAt(At(Fred, Well), t) ∧ ¬HoldsAt(On(Tap), t)  HoldsAt(Cond1, t) ⇒ 
Happens(TurnOnTap(Fred, Tap), t) 

  

BNE3 Once Fred is at home carrying bucket 1 which is not empty, Fred moves bucket 
1 over bucket 3. Using the flag Cond2 here ensures that we have not yet 
started the pouring process. 
 

HoldsAt(At(Fred, Home), t) ∧ HoldsAt(Carrying(Fred, Bucket1), t) 

¬HoldsAt(BucketEmpty(Bucket1), t)  HoldsAt(Cond2, t)  
Happens(MoveOver(Fred, Bucket1, Bucket3), t) 

  

BNE4 Once Fred is at home carrying bucket 1 which is not empty, if bucket 1 is over 
bucket 3 (i.e. bucket 3 is under bucket 1) Fred starts pouring from bucket 1 into 
bucket 3. Using the flag Cond2 here ensures that this event is triggered only 
once. 
 

HoldsAt(At(Fred, Home), t) ∧ HoldsAt(Carrying(Fred, Bucket1), t) 

¬HoldsAt(BucketEmpty(Bucket1), t)  HoldsAt(Beneath(Bucket3,Bucket2), t) 

HoldsAt(Cond2, t)  Happens(PourFromTo(Fred, Bucket1, Bucket3), t) 

  

BNE5 Once Fred is at home carrying bucket 2 which is not empty, if bucket 1 is empty 
(making sure it has already been poured), Fred moves bucket 2 over bucket 3. 
Using the flag Cond3 here ensures that we have not yet started the pouring 
process. 
 
 

HoldsAt(At(Fred, Home), t) ∧ HoldsAt(Carrying(Fred, Bucket2), t) 

∧HoldsAt(BucketEmpty(Bucket1), t) ¬HoldsAt(BucketEmpty(Bucket2), t)  

HoldsAt(Cond3, t)  Happens(MoveOver(Fred, Bucket2, Bucket3), t) 

  

BNE6 Once Fred is at home carrying bucket 2 which is not empty, if bucket 2 is over 
bucket 3 (i.e. bucket 3 is under bucket 2) Fred starts pouring from bucket 2 into 
bucket 3. Using the flag Cond3 here ensures that this event is triggered only 
once. 
 
 

HoldsAt(At(Fred, Home), t) ∧ HoldsAt(Carrying(Fred, Bucket2), t) 

∧HoldsAt(BucketEmpty(Bucket1), t) ¬HoldsAt(BucketEmpty(Bucket2), t)  

HoldsAt(Beneath(Bucket3,Bucket2), t) HoldsAt(Cond3, t)  
Happens(PourFromTo(Fred, Bucket2, Bucket3), t) 

  

BNE7 Once Fred is at the well and has sufficient amount of liquid in his buckets which 
he is carrying then he leaves the well and starts going towards home. 
 

HoldsAt(Carrying(Fred, Bucket1), t) ∧ HoldsAt(Carrying(Fred, Bucket2), t) 

∧HoldsAt(Level(Bucket1, x), t) ∧ HoldsAt(Level(Bucket2, y), t)  

HoldsAt(IntendedAmount(z), t)  x+y=z  HoldsAt(At(Fred, Well), t)  



67 

 

Happens(GoFromTo(Fred, Well, Home), t) 

  

BNE8 Once Fred is at the well and he has sufficient liquid in his buckets, if he is not 
already carrying bucket 1 then he picks it up. 
 

HoldsAt(At(Fred, Well), t)  HoldsAt(Level(Bucket1, x), t)  

HoldsAt(Level(Bucket2, y), t)  HoldsAt(IntendedAmount(z), t)  x+y=z 

¬HoldsAt(Carrying(Fred, Bucket1), t)  Happens(PickUp(Fred, Bucket1), t) 

  

BNE9 Once Fred is at the well and he has sufficient liquid in his buckets, if he is not 
already carrying bucket 2 then he picks it up. 
 

HoldsAt(At(Fred, Well), t)  HoldsAt(Level(Bucket1, x), t)  

HoldsAt(Level(Bucket2, y), t)  HoldsAt(IntendedAmount(z), t)  x+y=z 

¬HoldsAt(Carrying(Fred, Bucket2), t)  Happens(PickUp(Fred, Bucket2), t) 

  

 Effect axioms to deal with conditions of the narrative events (flags in EC) 

 (Terminate CondX fluents so these events are triggered only once) 

BNC1 HoldsAt(Cond1, t)  Terminates(TurnOnTap(Fred, Tap), Cond1, t) 

BNC2 HoldsAt(Cond2, t)  Terminates(PourFromTo(Fred, Bucket1, Bucket3), Cond2, 
t) 

BNC3 HoldsAt(Cond3, t)  Terminates(PourFromTo(Fred, Bucket2, Bucket3), Cond3, 
t) 

  

 Initial condition flags: 

  

BNC6 HoldsAt(Cond1), 0) 

BNC7 HoldsAt(Cond2), 0) 

BNC8 HoldsAt(Cond3), 0) 

  

BIN1 f  At(x, y)  ¬ReleasedAt(f, t) 
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Domain framework: 

Domain Formalisation of the Bucket World 

  

 Actions and their effects: 

 (Actions on tap) 

  

BR2 Initiates(TurnOnTap(a, p), On(p), t) 

  

BR4 Terminates(TurnOffTap(a, p), On(p), t) 

  

 (Moving Axioms) 

BR5 Initiates(MoveOver(a, b1, b2), Beneath(b2, b1), t) 

  

BR6 Initiates(PickUp(a, b), Carrying(a, b), t) 

  

BR7 When an agent picks up an item, then the location of that item is not 
submissive to Inertia anymore. That means its location is not at a fixed place, 
but that of its carrier. 
 

HoldsAt(At(b, l), t)  Releases(PickUp(a, b), At(b, l), t) 

  

BR9 Putting down an object will result in the location of object being re-established 
at the same as the agent by reinforcing Inertia. 
 

HoldsAt(At(a, l), t)  Initiates(PutDown(a, b), At(b, l), t) 

  

BR10 Terminates(PutDown(a, b), Carrying(a, b), t) 

  

BR12 l1  l2 Initiates(GoFromTo(a, l1, l2), Walking(a), t) 

  

BR13 HoldsAt(At(a, l1), t)  l1  l2  Terminates(GoFromTo(a, l1, l2), At(a, l1), t) 

  

BR15 Initiates(GoFromTo(a, 1l, l2), Destination(a, l2), t) 

  

BR16 HoldsAt(DistanceBetween(l1, l2, x), t)  Initiates(GoFromTo(a, l1, l2), 
DistanceToWalk(a, x), t) 

  

BR17 Initiates(Arrive(a, l), At(a, l), t) 

  

BR18 Terminates(Arrive(a, l), Walking(a), t) 

  

 (Pouring from a bucket into another:) 

  

BR20 Initiates(PourFromTo(a, b1, b2), PouringFromTo(a, b1, b2), t) 

  

 (Replacing buckets by each other) 

  

BR24 Initiates(MoveUnder(a, x, y), Beneath(x, y), t) 
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BR27 Terminates(MoveAside(a, x, y) , Beneath(x, y), t) 

  

BR28 HoldsAt(At(a, l), t)  Initiates(MoveAside(a, x, y) , At(x, l), t) 

  

BR29 When replacing an item, we move the first item aside from its location. 
 

HoldsAt(Beneath(b1, p), t)  Happens(Replace(a, b1, b2), t)  
Happens(MoveAside(a, b1, p), t) 

  

BR25 When replacing an item, we move the second item into the position of the first 
item (under an object). 
 

HoldsAt(Beneath(b1, p), t)  Happens(Replace(a, b1, b2), t)  
Happens(MoveUnder(a, b2, p), t) 

  

 (Stop pouring from a bucket to another) 

BR30 Initiating the fluent Level makes it submissive towards the commonsense law of 
Inertia. Therefore the fluent’s value will hold until something happens to 
change it. 
 

HoldsAt(Level(b1, x), t)  Initiates(StopPouringFromTo(a, b1, b2), Level(b1, x), 
t) 

  

BR31 Initiating the fluent Level makes it submissive towards the commonsense law of 
Inertia. Therefore the fluent’s value will hold until something happens to 
change it. 
 

HoldsAt(Level(b2, x), t)  Initiates(StopPouringFromTo(a, b1, b2), Level(b2, x), 
t) 

  

BR32 Terminates(StopPouringFromTo(a, b1, b2), PouringFromTo(a, b1, b2), t) 

  

 Actions for changing the levels of integer fluents 

BR33 HoldsAt(Level(b, y), t)  Initiates(IncreaseLiquidLevel(b, x), Level(b, x+y), t) 

  

BR34 Increase in the liquid level makes the old value obsolete. 
 

HoldsAt(Level(b, y), t)  Terminates(IncreaseLiquidLevel(b, x), Level(b, y), t) 

  

BR35 HoldsAt(Level(b, y), t)  y>x  Initiates(DecreaseLiquidLevel(b, x), Level(b, y-x), 
t) 

  

BR37 Decrease in the liquid level makes the old value obsolete. 
 

HoldsAt(Level(b, y), t)  Terminates(DecreaseLiquidLevel(b, x), Level(b, y), t) 

  

BR38 HoldsAt(AlreadyPoured(y), t)  Initiates(IncreasePouredLiquid(x), 
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AlreadyPoured(x+y), t) 

  

BR39 Increase in the amount of AlreadyPouredLiquid makes its old value obsolete. 
 

HoldsAt(AlreadyPoured(y), t)  Terminates(IncreasePouredLiquid(x), 
AlreadyPoured(y), t) 

  

BR40 HoldsAt(WastedLiquid(y), t)  Initiates(IncreaseWastedLiquid(x), 
WastedLiquid(x+y), t) 

  

BR41 The amount of wasted liquid being increased makes the old value obsolete. 
 

HoldsAt(WastedLiquid(y), t)  Terminates(IncreaseWastedLiquid(x), 
WastedLiquid(y), t) 

  

BR42 HoldsAt(DistanceToWalk(a, od)   Initiates(DecreaseDistanceToWalk(a, nd), 
DistanceToWalk(a, od-nd), t) 

  

BR43 HoldsAt(DistanceToWalk(a, od)   Terminates(DecreaseDistanceToWalk(a, nd), 
DistanceToWalk(a, od), t) 

  

  

 State constraints (general knowledge): 

 (General commonsense knowledge of the world related to our domain) 

BR44 If an agent is walking and the distance he walks is greater than 0 then decrease 
the distance to walk. 
 

HoldsAt(Walking(a), t)  HoldsAt(DistanceToWalk(a, d), t)  0<d  

HoldsAt(WalkingSpeed(a, ws), t)  0<=d-ws  
Happens(DecreaseDistanceToWalk(a, ws), t) 

  

BR45 If an agent is walking and the distance to walk is less than 0 then the agent 
arrives at the destination. 
 

HoldsAt(Walking(a), t)  HoldsAt(DistanceToWalk(a, d), t)  d<=0  

HoldsAt(Destination(a, l), t)  Happens(Arrive(a, l), t) 

  

BR46 A bucket is being filled if and only if it is not full and either it is under an open 
tap or another bucket is pouring into it. 
 

HoldsAt(Filling(b), t)  HoldsAt(BucketFull(b), t)  (HoldsAt(Beneath(b, p), t) 

 HoldsAt(On(p), t))  (HoldsAt(PouringFromTo(a, b2, b), t)  HoldsAt(Level(b2, 

x), t)  x>0) 

  

BR47 If a tap is on and the bucket is under the tap and the bucket is not full [implicit 
in the Filling fluent], then increase the level of already poured amount. 
 

HoldsAt(Filling(b), t)  HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t)  

HoldsAt(FlowRate(p, f), t)  Happens(IncreasePouredLiquid(f), t) 
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BR74 If a tap is on and the bucket is under the tap and the bucket is not full [implicit 
in the Filling fluent], then increase the level of . 
 

HoldsAt(Filling(b), t)  HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t)  

HoldsAt(FlowRate(p, f), t)  Happens(IncreaseLiquidLevel(b, f), t) 

  

BR48 If a bucket is pouring to another and still has liquid, then if the receiving bucket 
is not full (implicit in Filling), increase its level. 
 

HoldsAt(Filling(b), t)  HoldsAt(PouringFromTo(a, b2, b), t)  

HoldsAt(SpillAmount(b, x), t)  HoldsAt(Level(b2, y), t)  y>0  
Happens(IncreaseLiquidLevel(b, x), t) 

  

BR75 If a bucket is pouring to another and still has liquid, then if the receiving bucket 
is not full (implicit in Filling), decrease the level of the pouring bucket. 
 

HoldsAt(Filling(b), t)  HoldsAt(PouringFromTo(a, b2, b), t)  

HoldsAt(SpillAmount(b, x), t)  HoldsAt(Level(b2, y), t)  y>0  
Happens(DecreaseLiquidLevel(b2, x), t) 

  

BR49 If a bucket is receiving from a tap and the bucket is full, then the liquid is being 
wasted. 
 

HoldsAt(BucketFull(b), t)  HoldsAt(Beneath(b, p), t)  HoldsAt(On(p), t) 

HoldsAt(Beneath(b2, p), t) HoldsAt(BucketFull(b2), t)  

HoldsAt(FlowRate(p, f), t)  Happens(IncreaseWastedLiquid(f), t) 

  

BR50 If a bucket is receiving from another bucket and is full, then the liquid is being 
wasted. 
 

HoldsAt(PouringFromTo(a, b1, b2), t)  HoldsAt(BucketFull(b2), t)  

HoldsAt(Level(b1, x), t)  x>0  HoldsAt(SpillAmount(b1, y), t)  
Happens(IncreaseWastedLiquid(y), t) 

  

BR51 When pouring if the giving bucket runs out of liquid, then the pouring process is 
stopped. 
 

HoldsAt(PouringFromTo(a, b1, b2), t)  HoldsAt(Level(b1, x), t)  x<=0  
Happens(StopPouringFromTo(a, b1, b2), t) 

  

BR52 If the bucket we are filling by the tap or another bucket is full, if there is 
another bucket at the same location and that bucket is not full, then replace 
the current bucket with that bucket. 
 

(HoldsAt(PouringFromTo(a, bo, b), t)  (HoldsAt(Beneath(b, p), t)  

HoldsAt(On(p), t)))  HoldsAt(BucketFull(b), t)  HoldsAt(IntendedAmount(x), t) 

 HoldsAt(AlreadyPoured(y), t)  y<x  HoldsAt(At(b, l), t)  HoldsAt(At(b2, l), t) 

 ¬HoldAt(BucketFull(b2), t)   HoldsAt(Agent(a), t)  Happens(Replace(a, b, 
b2), t) 
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BR53 If we have reached the intended amount, if we are filling the bucket with the 
tap, we turn off the tap.  
 

HoldsAt(Filling(b), t)  HoldsAt(IntendedAmount(x), t)  

HoldsAt(AlreadyPoured(y), t)  y>=x  HoldsAt(At(p, l), t),  HoldsAt(Agent(a), 

t)  HoldsAt(At(a, l), t)  HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t)  
Happens(TurnOffTap(a, p), t) 

  

BR54 HoldsAt(Beneath(x, y), t)  HoldsAt(Over(y, x), t) 

  

BR55 HoldsAt(Level(b, x), t)  HoldsAt(Capacity(b, y), t)  y<=x  
HoldsAt(BucketFull(b), t) 

  

BR56 HoldsAt(Level(b, x), t)  x=0  HoldsAt(BucketEmpty(b), t) 

  

BR57 HoldsAt(On(x), t)  ¬HoldsAt(Off(x), t) 

  

BR58 HoldsAt(DistanceBetween(l1, l2, x)  HoldsAt(DistanceBetween(l2, l1, x), t) 

  

  

 Uniqueness of values for fluents dealing with integer sort 

  

BR59 HoldsAt(Level(b, x1), t)  HoldsAt(Level(b, x2), t)  x1=x2 

  

BR60 HoldsAt(Capacity(b, x1), t)  HoldsAt(Capacity(b, x2), t)  x1=x2 

  

BR61 HoldsAt(DistanceBetween(l1, l2, d1), t)  HoldsAt(DistanceBetween(l1, l2, d2), 

t)  d1=d2 

  

BR62 HoldsAt(DistanceBetween(l1, l2, d1), t)  HoldsAt(DistanceBetween(l2, l1, d2), 

t)  d1=d2 

  

BR63 HoldsAt(DistanceBetween(l1, l2, d), t)  d=0  l1=l2 

  

BR64 HoldsAt(DistanceToWalk(a, d1), t)  HoldsAt(DistanceToWalk(a, d2), t)  
d1=d2 

  

BR65 HoldsAt(At(o, l1), t)  HoldsAt(o, l2), t)  l1=l2 

  

BR66 HoldsAt(WalkingSpeed(a, ws1), t)  HoldsAt(WalkingSpeed(a, ws2), t)  
ws1=ws2 

  

BR67 HoldsAt(Beneath(x, y), t) HoldsAt(Beneath(y, x), t) 

  

BR68 HoldsAt(AlreadyPoured(x1), t)  HoldsAt(AlreadyPoured(x2), t)  x1=x2 
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BR69 HoldsAt(WastedLiquid(x1), t)  HoldsAt(WastedLiquid(x2), t)  x1=x2 

  

BR70 HoldsAt(IntendedAmount(x1), t)  HoldsAt(IntendedAmount(x2), t)  x1=x2 

  

BR71 HoldsAt(FlowRate(p, f1), t)  HoldsAt(FlowRate(p, f2), t)  f1=f2 

  

BR72 HoldsAt(BucketEmpty(b), t)  HoldsAt(BucketFull(b), t) 

  

BR73 HoldsAt(BucketFull(b), t)  HoldsAt(BucketEmpty(b), t) 
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3.4   Proof of propositions 

Computed circumscription of  and  (defined in the proof): 

Circumscription of the events and the effect axioms 

  

BX1 Happens(e, t)  

a, l1, l2, t (e= GoFromTo(a, l1, l2)  a=Fred  l1=Home  l2=Well  t=0)  

a, p, l, c, t (e= TurnOnTap (a, p)  HoldsAt(c, t)  HoldsAt(At(a, l), t)  

¬HoldsAt(On(p), t)  l=Well  p=Tap  a=Fred  c=Cond1)  

a, b1, b2, l, c, t (e= MoveOver (a, b1, b2)  HoldsAt(At(a, l), t)  

HoldsAt(Carrying(a, b1), t)  ¬HoldsAt(BucketEmpty(b1, t)  HoldsAt(c, 

t)  a=Fred  l=Home  b1=Bucket1 b2=Bucket3  c=Cond2)  

a, b1, b2, l, c, t (e= PourFromTo (a, b1, b2)  HoldsAt(At(a, l), t)   

HoldsAt(Carrying(a, b1), t)  ¬HoldsAt(BucketEmpty(b1), t)  

HoldsAt(Beneath(b3, b2), t)  HoldsAt(c, t)  a=Fred  b1=Bucket1  

b2=Bucket3  l=Home  c=Cond2)  

a, b1, b2, b3, l, c, t (e= MoveOver (a, b2, b3)  HoldsAt(At(a, l), t)   

HoldsAt(Carrying(a, b2), t)  ¬HoldsAt(BucketEmpty(b2), t)  

HoldsAt(BucketEmpty(b1), t)  HoldsAt(c, t)  a=Fred  b1=Bucket1  

b2=Bucket2  l=Home  b3=Bucket3  c=Cond3)  

a, b1, b2, b3, l, c, t (e= PourFromTo (a, b2, b3)  HoldsAt(At(a, l), t)   

HoldsAt(Carrying(a, b2), t)  ¬HoldsAt(BucketEmpty(b2), t)  

HoldsAt(BucketEmpty(b1), t)  HoldsAt(Beneath(b3, b2), t)  HoldsAt(c, 

t)  a=Fred  b1=Bucket1  b2=Bucket2  l=Home  b3=Bucket3  

c=Cond3)  

a, b1, b2, x, y, z, l1, l2, t (e= GoFromTo (a, l1, l2)  HoldsAt(Carrying(a, 

b1), t)  HoldsAt(Carrying(a, b2), t)  HoldsAt(Level(b1, x), t)  

HoldsAt(Level(b2, y), t)  HoldsAt(IntendedAmount(z), t)  

HoldsAt(At(a, l), t)  HoldsAt(c, t)  x+y=z  a=Fred  b1=Bucket1  

b2=Bucket2  l1=Well   l2=Home)  

a, b1, b2, x, y, z, l, t (e= PickUp (a, b1)  ¬HoldsAt(Carrying(a, b1), t)  

HoldsAt(Level(b1, x), t)  HoldsAt(Level(b2, y), t)  

HoldsAt(IntendedAmount(z), t)  HoldsAt(At(a, l), t)  HoldsAt(c, t)  

x+y=z  a=Fred  b1=Bucket1  b2=Bucket2  l=Well)  

a, b1, b2, x, y, z, l, t (e= PickUp (a, b2)  ¬HoldsAt(Carrying(a, b2), t)  

HoldsAt(Level(b1, x), t)  HoldsAt(Level(b2, y), t)  

HoldsAt(IntendedAmount(z), t)  HoldsAt(At(a, l), t)  HoldsAt(c, t)  

x+y=z  a=Fred  b1=Bucket1  b2=Bucket2  l=Well)  
 
 

a, ws, d (e=DecreaseDistanceToWalk(a, ws)  HoldsAt(Walking(a), t)  

HoldsAt(DistanceToWalk(a, d), t)  0<d  HoldsAt(WalkingSpeed(a, ws), 

t)  0<=d-ws)  

a, l, d (e= Arrive(a, l)  HoldsAt(Walking(a), t)  

HoldsAt(DistanceToWalk(a, d), t)  d<=0)  HoldsAt(Destination(a, l), t)) 

 
f, b, p (e=IncreasePouredLiquid(f)  e=IncreaseLiquidLevel(b, f)  

HoldsAt(Filling(b), t)  HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t)  
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HoldsAt(FlowRate(p, f), t))  

b, f, p, t (e=IncreaseLiquidLevel(b, f)  HoldsAt(Filling(b), t)  

HoldsAt(Beneath(b, p), t)  HoldsAt(FlowRate(p, f), t))  

b, x, b2, y, t (e=IncreaseLiquidLevel(b, x)  HoldsAt(Filling(b), t)  

HoldsAt(SpillAmount(b, x), t)  HoldsAt(Level(b2, y), t)  y>0)  

a, b, x, y, b2, t (e= DecreaseLiquidLevel (b2, x)  HoldsAt(Filling(b), t)  

HoldsAt(SpillAmount(b, x), t)  HoldsAt(Level(b2, y), t)  y>0  

HoldsAt(PouringFromTo(a, b2, b), t))  

f, b, p, b2, f (e=IncreaseWastedLiquid(f)  HoldsAt(BucketFull(b), t)  

HoldsAt(Beneath(b, p), t)  HoldsAt(On(p), t) HoldsAt(Beneath(b2, 

p), t) HoldsAt(BucketFull(b2), t)  HoldsAt(FlowRate(p, f), t))  

y, a, b1, b2, x (e=IncreaseWastedLiquid(y)  HoldsAt(PouringFromTo(a, 

b1, b2), t)  HoldsAt(BucketFull(b2), t)  HoldsAt(Level(b1, x), t)  x>0 

 HoldsAt(SpillAmount(b1, y), t))  

a, b1, b2, x (e=StopPouringFromTo(a, b1, b2)  

HoldsAt(PouringFromTo(a, b1, b2), t)  HoldsAt(Level(b1, x), t)  x<=0) 

 
a, b, b2, bo, p, x, y (e= Replace(a, b, b2)   (HoldsAt(PouringFromTo(a, bo, 

b), t)  (HoldsAt(Beneath(b, p), t)  HoldsAt(On(p), t)))  

HoldsAt(BucketFull(b), t)  HoldsAt(IntendedAmount(x), t)  

HoldsAt(AlreadyPoured(y), t)  y<x  HoldsAt(At(b, l), t)  

HoldsAt(At(b2, l), t)  ¬HoldAt(BucketFull(b2), t)   HoldsAt(Agent(a), 

t))  

a, p, b, x, y, l (e=TurnOffTap(a, p)  HoldsAt(Filling(b), t)  

HoldsAt(IntendedAmount(x), t)  HoldsAt(AlreadyPoured(y), t)  y>=x 

 HoldsAt(At(p, l), t),  HoldsAt(Agent(a), t)  HoldsAt(At(a, l), t)  

HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t)) 

  

BX2 Initiates(e, f, t)  

a, p, t (e=TurnOnTap(a, p)  f=On(p))  

a, b1, b2, t (e=MoveOver(a, b1, b2)  f=Beneath(b2, b1))  

a, b, t (e=PickUp(a, b)  f=Carrying(a, b))  

a, b, l, t (e=PutDown(a, b)  f=At(b, l))  HoldsAt(At(a, l), t))  

a, l1, l2, t (e=GoFromTo(a, l1, l2)  f =Walking(a)  l1  l2)  

a, l1, l2, t (e=GoFromTo(a, 1l, l2)  f=Destination(a, l2))  

a, l1, l2, x, t (e=GoFromTo(a, l1, l2)  f =DistanceToWalk(a, x)  

HoldsAt(DistanceBetween(l1, l2, x), t))  

a, l, t (e=Arrive(a, l)  f=At(a, l))  

a, b1, b2, t (e=PourFromTo(a, b1, b2)  f=PouringFromTo(a, b1, b2))  

a, x, y, t (e=MoveUnder(a, x, y)  f=Beneath(x, y))  

a, x, y, l, t (e=MoveAside(a, x, y)  f=At(x, l)  HoldsAt(At(a, l), t))  

a, b1, b2, x, t (e=StopPouringFromTo(a, b1, b2)  f=Level(b1, x)  

HoldsAt(Level(b1, x), t))  

a, b1, b2, x, t (e=StopPouringFromTo(a, b1, b2)  f=Level(b2, x)  

HoldsAt(Level(b2, x), t))  

b, x, y, t (e=IncreaseLiquidLevel(b, x)  f=Level(b, x+y)  

HoldsAt(Level(b, y), t))  

b, x, y, t (e=DecreaseLiquidLevel(b, x)  f=Level(b, y-x) 

HoldsAt(Level(b, y), t)  y>x)  
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x, y, t (e=IncreasePouredLiquid(x),  f=AlreadyPoured(x+y) 

HoldsAt(AlreadyPoured(y), t))  

x, y, t (e=IncreaseWastedLiquid(x)  f=WastedLiquid(x+y) 

HoldsAt(WastedLiquid(y), t))  

a, nd, od, t (e=DecreaseDistanceToWalk(a, nd)  f=DistanceToWalk(a, od 

nd) HoldsAt(DistanceToWalk(a, od)) 

  

BX3 Terminates(e, f, t)  

a, p, c, t (e=TurnOnTap(a, p)  f=c  c=Cond1  HoldsAt(c, t)  a=Fred  

p=Tap)  

a, b1, b2, c, t (e=PourFromTo(a, b1, b2)  f=c  c=Cond2  HoldsAt(c, t)  
a=Fred 

 b1=Bucket1  b2=Bucket3)  

a, b1, b2, c, t (e=PourFromTo(a, b1, b2)  f=c  c=Cond3  HoldsAt(c, t)  
a=Fred 

 b1=Bucket2  b2=Bucket3)  

a, p, t (e=TurnOffTap(a, p)  f=On(p))  

a, b, t (e=PutDown(a, b)  f=Carrying(a, b))  

a, l1, l2, t (e=GoFromTo(a, l1, l2)  f= At(a, l1)  HoldsAt(At(a, l1), t)  l1  l2) 

 
a, l, t (e=Arrive(a, l) f=Walking(a))  

a, x, y, t (e=MoveAside(a, x, y) f=Beneath(x, y))  

a, b1, b2, x, y, t (e=StopPouringFromTo(a, b1, b2)  f=PouringFromTo(a, b1, 

b2))  

b, x, y, t (e=IncreaseLiquidLevel(b, x)  f=Level(b, y)  HoldsAt(Level(b, y), t)  

x>0)  

b, x, y, t (e=DecreaseLiquidLevel(b, x)  f=Level(b, y)HoldsAt(Level(b, y), t)  

x>0)  

x, y, t (e=IncreasePouredLiquid(x) f=AlreadyPoured(y)  

HoldsAt(AlreadyPoured(y), t)  x>0)  

x, y, t (e=IncreaseWastedLiquid(x) 

f=WastedLiquid(y)HoldsAt(WastedLiquid(y), 

t)  x>0)  

a, nd, od, t (e=DecreaseDistanceToWalk(a, nd) f=DistanceToWalk(a, 

od)HoldsAt(DistanceToWalk(a, od)) 

  

BX4 Releases(e, f, t)  

a, b, l (e=PickUp(a, b)  f=At(b, l)  HoldsAt(At(b, l), t)) 
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The proof our proposition is presented below: 

Proof of a proposition for the Bucket scenario 

 Let  be the conjunction of (Initiates, Terminates and Releases formulas): 
BR2, BR5, BR6, BR9, BR12, BR15, BR16, BR17, BR20, BR24, BR28, BR30, BR31, 
BR33, BR35, BR38, BR40, BR42, BNC1, BNC2, BNC3, BR4, BR10, BR13, BR18, BR27, 
BR32, BR34, BR37, BR39, BR41, BR43 and BR7. 
 

Let  be conjunction of (Happens formulas): 
BNE1, BNE2, BNE3, BNE4, BNE5, BNE6, BNE7, BNE8, BNE9, BR44, BR45, BR47, 
BR74, BR48, BR75, BR49, BR50, BR51, BR52 and BR53. 
 

Let  be the conjunction of all other formulas in our scenario. 
 
 

 Proposition 

 Our proposition states that the level of Bucket 3 will be 5 at a timepoint. Our 
proof shows this and provides the timepoint at which this will be true. 
 
Formally, 
 
 

CIRC[; Initiates, Terminates, Releases]  CIRC[; Happens]  DEC  |= 
HoldsAt(Level(Bucket3, 5), t) 
 

Circumscription of  is computed in BX2, BX3 and BX4 respectively. 

Circumscription of  is computed in BX1. 
 
Computing circumscription of Happens ensures that the only events that occur in 
our scenario are the ones computed in their circumscription and nothing else 
happens. Also, by circumscribing Initiates, Terminates and Releases we ensure 
that the effects of these events are the ones in their circumscription and they do 
not have other effects. 

  

BXP1 
BXP2 
BXP3 
BXP4 

BNE1 happens at timepoint 0 - this is in the narrative: 
Happens(GoFromTo(Fred, Home, Well), 0) 
 
From this and: 

 BR12: 

Initiates(GoFromTo(Fred, Home, Well), Walking(Fred), 0) 

 

From this, BNE1 and DEC9 we have: 

BXP1: HoldsAt(Walking(Fred), 1) 

 

 BNI1, BR13 and BNE1: 
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Terminates(GoFromTo(Fred, Home, Well), At(Fred, Home), 0) 

 

From this, BNE1 and DEC10 we have: 

BXP2: ¬HoldsAt(AT(Fred, Home), 1) 

 

 BR15: 

Initiates(GoFromTo(Fred, Home, Well), Destination(Fred, Well), 0) 

 

From this, BNE1 and DEC9 we have: 

BXP3: HoldsAt(Destination(Fred, Well), 1) 

 

 BNP1 and BR16: 

Initiates(GoFromTo(Fred, Home, Well), DistanceToWalk(Fred, 20), 0) 

 

From this, BNE1 and DEC9 we have: 

BXP4: HoldsAt(DistanceToWalk(Fred, 20), 1) 

  

BXP5 
BXP6 
BXP7 

From BR44, BXP1, BXP4 and BNP8 we have: 
 
BXP5: Happens(DecreaseDistanceToWalk(Fred, 1), 1) 
(this event keeps occurring at every timepoint as long as all the conditions hold - 
therefore the derived deductions will also be repeated) 
 
From this and: 
 

 BR42: 

BXP6: Initiates(DecreaseDistanceToWalk(Fred, 1), DistanceToWalk(Fred, 

19), 1) 

 

 BR43: 

BXP7: Terminates(DecreaseDistanceToWalk(Fred, 1), 

DistanceToWalk(Fred, 20), 1) 
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BXP8 From BXP5, BXP6 and DEC9 we have: 
 
HoldsAt(DistanceToWalk(Fred, 19), 2) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have a 
decreasing distance till timepoint 21. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  
BXP8: HoldsAt(DistanceToWalk(Fred, 0), 21) 

  

BXP9 From BXP5, BXP7 and DEC10 we have: 
 

HoldsAt(DistanceToWalk(Fred, 20), 2)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete decreasing distance till timepoint 21. To save space, we do not repeat 
this. 
…. 
[we eventually reach the following:] 
 

BXP9: HoldsAt(DistanceToWalk(Fred, 1), 21) 

  

  

BXP10 
BXP11 
BXP12 
BXP13 
BXP14 

From BR45 and BXP1C and BXP8 and BXP3C we have: 
BXP10: Happens(Arrive(Fred, Well), 21) 
 
From this and: 
 

 BR17 and DEC9: 

BXP11: Initiates(Arrive(Fred, Well), At(Fred, Well), 21) 

 

From this, BXP10 and DEC9 we have: 
BXP12: HoldsAt(At(Fred, Well), 22) 

 

 BR18 and DEC10: 

BXP13: Terminates(Arrive(Fred, Well), Walking(Fred), 21) 

 

From this, BXP10 and DEC10 we have: 

BXP14: HoldsAt(Walking(Fred), 22) 
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BXP15 
BXP16 
BXP17 
BXP18 
BXP19 

From BNE2, BXP12, BNI7C and BNC6C we have: 
BXP15: Happens(TurnOnTap(Fred, Tap), 22) 
 
From this and: 
 

 BNC1 and BNC6C: 

BXP16: Terminates(TurnOnTap(Fred, Tap), Cond1, 22) 

From this, BIN1 and DEC10 we have: 

BXP17: HoldsAt(Cond1, 23) 
 

 BR2: 

BXP18: Initiates(TurnOnTap(Fred, Tap), On(Tap), 22) 

 

From this, BXP15 and DEC9 we have: 

BXP19: HoldsAt(On(Tap), 23) 

  

BXP20 From BNI2 and BR72 we have: 
 

BXP20: HoldsAt(BucketFull(Bucket1), 0) 

  

 
BXP21 

 
From BR46, BXP20C, BNI8C and BXP19 we have: 
 
BXP21: HoldsAt(Filling(Bucket1), 23) 

  

BXP22 
BXP23 

From BXP21, BXP19, BNI8C and BNP5 and: 
 

 BR47: 

BXP22: Happens(IncreasePouredLiquid(0.1), 23) 

 

 BR74: 

BXP23: Happens(IncreaseLiquidLevel(Bucket1, 0.1), 23) 

(this event keeps occurring at every timepoint as long as all the conditions 

hold - therefore the derived deductions will also be repeated) 

  

BXP24 From BNI2C and BR56 we have: 
BXP24: HoldsAt(Level(Bucket1, 0), 0) 

  

BXP25 From BXP23, BXP24C and: 
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BXP26  

 BR33: 

BXP25: Initiates(IncreaseLiquidLevel(Bucket1, 0.1), Level(Bucket1, 0.1), 

23) 

(the event that this deduction has come from (BXP23) is repeated at every 

timepoint as long as all conditions hold - so this deduction is also 

repeated) 

 

 

 BR34: 

BXP26: Terminates(IncreaseLiquidLevel(Bucket1, 0.1), Level(Bucket1, 0), 

23) 

(the event that this deduction has come from (BXP23) is repeated at every 

timepoint as long as all conditions hold - so this deduction is also 

repeated) 

  

BXP27 From BXP23, BXP25 and DEC9 we have: 
 
HoldsAt(Level(Bucket1, 0.1), 24)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an increasing level till timepoint 43. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  
BXP27: HoldsAt(Level(Bucket1, 2), 43)  

  

 
BXP28 

 
From BXP23, BXP26 and DEC10 we have: 
 

HoldsAt(Level(Bucket1, 0), 24) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete increasing level till timepoint 43. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  

BXP28: HoldsAt(Level(Bucket1, 1.9), 43) 

  

BXP29 From BR55 and BNP2 and BXP27V we have: 
 
BXP29: HoldsAt(BucketFull(Bucket1), 43) 
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BXP30 From BR46 and BXP29 we have: 

BXP30: HoldsAt(Filling(Bucket1), 43) 

  

BXP31 
BXP32 

From BXP22, BNI9C and: 
 

 BR38: 

BXP31: Initiates(IncreasePouredLiquid (0.1), AlreadyPoured(0.1), 23) 

(the event that this deduction has come from (BXP22) is repeated at every 

timepoint as long as all conditions hold - so this deduction is also 

repeated) 

 

 BR39: 

BXP32: Terminates(IncreasePouredLiquid (0.1), AlreadyPoured(0), 23) 

(the event that this deduction has come from (BXP22) is repeated at every 

timepoint as long as all conditions hold - so this deduction is also 

repeated) 

  

BXP33 From BXP22, BXP31 and DEC9 we have: 
 
HoldsAt(AlreadyPoured(0.1), 24)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an increasing poured level till timepoint 43. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  
BXP33: HoldsAt(AlreadyPoured(2), 43)  

  

BXP34 From BXP22, BXP32 and DEC10 we have: 
  

HoldsAt(AlreadyPoured(0), 24) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete increasing poured level till timepoint 43. To save space, we do not 
repeat this. 
…. 
[we eventually reach the following:] 
  

BXP34: HoldsAt(AlreadyPoured(1.9), 43)  

  

BXP35 From BNI3C and BR72 we have: 
 

BXP35: HoldsAt(BucketFull(Bucket2), 0) 
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BXP36 From BNI3C and BR56 we have: 
 
BXP36: HoldsAt(Level(Bucket2, 0), 0) 

  

BXP37 
BXP38 
BXP39 
BXP40 
BXP41 
BXP42 
BXP43 
BXP44 
BXP45 

From BR52, BNI8C, BXP19C, BXP29, BNP9, BXP33C, BNI4C, BNI5C, BXP35 and 
BNP10 we have: 
 
BXP37: Happens(Replace(Fred, Bucket1, Bucket2), 43) 
 
From this and: 
 

 BNI8C and BR29: 

BXP38: Happens(MoveAside(Fred, Bucket1, Tap), 43) 

 

From this and: 

 

o BR27: 

BXP39: Terminates(MoveAside(Fred, Bucket1, Tap), 

Beneath(Bucket1, Tap), 43) 

 

From this and BXP38 and DEC10 we have: 

BXP40: HoldsAt(Beneath(Bucket1, Tap), 44) 

o BR28 and BXP12C: 

BXP41: Initiates(MoveAside(Fred, Bucket1, Tap), At(Bucket1, 

Well), 43) 

 

From this, BXP38 and DEC9 we have: 

BXP42: HoldsAt(At(Bucket1, Well), 44) 

 BNI8C and BR25: 

BXP43: Happens(MoveUnder(Fred, Bucket2, Tap), 43) 

 

From this and BR24 we have: 

BXP44: Initiates(MoveUnder(Fred, Bucket2, Tap), Beneath(Bucket2, Tap), 
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43) 

 

From this, BXP38 and DEC10 we have: 

BXP45: HoldsAt(Beneath(Bucket2, Tap), 44) 

  

BXP46 From BR46, BXP35C, BXP45, BXP19C we have: 
 
BXP46: HoldsAt(Filling(Bucket2), 44) 

  

BXP47 
BXP48 
BXP49 
BXP50 
BXP51 
BXP52 

From BXP46, BXP19C, BXP45 and BNP5 and: 

 BR47: 

BXP47: Happens(IncreasePouredLiquid(0.1), 44) 

(this event keeps occurring at every timepoint as long as all the conditions 

hold - therefore the derived deductions will also be repeated) 

 

 

From this, BXP33C and: 

 

BR38: 

BXP48: Initiates(IncreasePouredLiquid (0.1), AlreadyPoured(2.1), 44) 

 

BR38: 

BXP49: Terminates(IncreasePouredLiquid (0.1), AlreadyPoured(2), 44) 

 

 

 BR74: 

BXP50: Happens(IncreaseLiquidLevel(Bucket2, 0.1), 44) 

(this event keeps occurring at every timepoint as long as all the conditions 

hold - therefore the derived deductions will also be repeated) 
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From this, BXP36C and: 

 

BR33: 

BXP51: Initiates(IncreaseLiquidLevel(Bucket2, 0.1), Level(Bucket2, 0.1), 

44) 

 

BR34: 

BXP52: Terminates(IncreaseLiquidLevel(Bucket2, 0.1), Level(Bucket2, 0), 

44) 

  

BXP53 From BXP47, BXP48 and DEC9 we have: 
 
HoldsAt(AlreadyPoured(2.1), 45)   
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an increasing poured level till timepoint 54. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  
BXP53: HoldsAt(AlreadyPoured(3), 54) 

  

BXP54 From BXP47, BXP49 and DEC10 we have: 
  

HoldsAt(AlreadyPoured(2), 45)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete increasing poured level till timepoint 43. To save space, we do not 
repeat this. 
…. 
[we eventually reach the following:] 
  

BXP54: HoldsAt(AlreadyPoured(2.9), 54) 

  

BXP55 From BXP50, BXP51 and DEC9 we have: 
 
HoldsAt(Level(Bucket2, 0.1), 45) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an increasing level till timepoint 43. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
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BXP55: HoldsAt(Level(Bucket2, 1), 54) 

  

BXP56 From BXP50, BXP52 and DEC10 we have: 
 

HoldsAt(Level(Bucket2, 0), 45)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete increasing level till timepoint 43. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  

BXP56: HoldsAt(Level(Bucket2, 0.9), 54) 

  

  

BXP57 
BXP58 
BXP59 

From BR53, BX46C, BNP9, BXP53, BNP4, BNP10, BXP12C, BXP19C, BXP45C we 
have: 
 
BXP57: Happens(TurnOffTap(Fred, Tap), 54) 
 

From this and: 
 
BR4: 
BXP58: Terminates(TurnOffTap(Fred, Tap), On(Tap), 54) 
 
From this BXP57 and DEC10 we have: 

BXP59: HoldsAt(On(Tap), 55) 

  

  

BXP60 
BXP61 
BXP62 
BXP63 
BXP64 

From BNE8, BXP12C, BXP27C, BXP55C, BNP9 and BNI11C we have: 
 
BXP60: Happens(PickUp(Fred, Bucket1), 54) 
 

From this and: 
 

 BR6: 

BXP61: Initiates(PickUp(Fred, Bucket1), Carrying(Fred, Bucket1), 54) 

 

From this and DEC9 we have: 

BXP62: HoldsAt(Carrying(Fred, Bucket1), 55) 

 

 BR7 and BXP42C: 

BXP63: Releases(PickUp(Fred, Bucket1), At(Bucket1, Well), 54) 
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From this and DEC11 we have: 

BXP64: ReleasedAt(At(Bucket1, Well), 55) 

  

BXP65 
BXP66 
BXP67 
BXP68 
BXP69 

From BNE9, BXP12C, BXP27C, BXP55C, BNP9 and BNI12C we have: 
 
BXP65: Happens(PickUp(Fred, Bucket2), 54) 
 

From this and: 
 

 BR6: 

BXP66: Initiates(PickUp(Fred, Bucket2), Carrying(Fred, Bucket2), 54) 

 

From this and DEC9 we have: 

BXP67: HoldsAt(Carrying(Fred, Bucket2), 55) 

 

 BR7 and BNI5C: 

BXP68: Releases(PickUp(Fred, Bucket2), At(Bucket2, Well), 54) 

 

From this and DEC11 we have: 

BXP69: ReleasedAt(At(Bucket2, Well), 55) 

  

BXP70 
BXP71 
BXP72 
BXP73 
BXP74 
BXP75 
BXP76 
BXP77 
BXP78 

From BNE7, BXP62, BXP67, BXP27C, BXP55C, BNP9, BXP12C we have: 
 
BXP70: Happens(GoFromTo(Fred, Well, Home), 55) 
 
From this and: 

 BR12: 

BXP71: Initiates(GoFromTo(Fred, Well, Home), Walking(Fred), 55) 

 

From this, BXP70 and DEC9 we have: 

BXP72: HoldsAt(Walking(Fred), 56) 
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 BR13 and BXP12C: 

BXP73: Terminates(GoFromTo(Fred, Well, Home), At(Fred, Well), 

55) 

 

From this, BXP70 and DEC10 we have: 

BXP74: ¬HoldsAt(AT(Fred, Well), 56) 

 

 BR15: 

BXP75: Initiates(GoFromTo(Fred, Home, Well), Destination(Fred, 

Well), 0) 

 

From this, BXP70 and DEC9 we have: 

BXP76: HoldsAt(Destination(Fred, Home), 56) 

 

 BNP1 and BR16: 

BXP77: Initiates(GoFromTo(Fred, Well, Home), 

DistanceToWalk(Fred, 20), 55) 

 

From this, BXP70 and DEC9 we have: 

BXP78: HoldsAt(DistanceToWalk(Fred, 20), 56) 

  

BXP79 
BXP80 
BXP81 

From BR44, BXP72, BXP78 and BNP8 we have: 
 
BXP79: Happens(DecreaseDistanceToWalk(Fred, 1), 56) 

(this event keeps occurring at every timepoint as long as all the conditions 

hold - therefore the derived deductions will also be repeated) 

 
 
From this and: 
 

 BR42: 

BXP80: Initiates(DecreaseDistanceToWalk(Fred, 1), DistanceToWalk(Fred, 
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19), 56) 

 

 BR43: 

BXP81: Terminates(DecreaseDistanceToWalk(Fred, 1), 

DistanceToWalk(Fred, 20), 56) 

  

BXP82 From BXP79, BXP80 and DEC9 we have: 
 
HoldsAt(DistanceToWalk(Fred, 19), 57) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have a 
decreasing distance till timepoint 21. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  
BXP82: HoldsAt(DistanceToWalk(Fred, 0), 76) 

  

BXP83 From BXP79, BXP81 and DEC10 we have: 
 

HoldsAt(DistanceToWalk(Fred, 20), 57) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete decreasing distance till timepoint 21. To save space, we do not repeat 
this. 
…. 
[we eventually reach the following:] 
 

BXP83: HoldsAt(DistanceToWalk(Fred, 1), 76) 

  

BXP84 
BXP85 
BXP86 
BXP87 
BXP88 

From BR45 and BXP72C and BXP82 and BXP76C we have: 
BXP84: Happens(Arrive(Fred, Home), 76) 
 
From this and: 
 

 BR17 and DEC9: 

BXP85: Initiates(Arrive(Fred, Home), At(Fred, Home), 76) 

 

From this, BXP84 and DEC9 we have: 
BXP86: HoldsAt(At(Fred, Home), 77) 

 

 BR18 and DEC10: 
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BXP87: Terminates(Arrive(Fred, Home), Walking(Fred), 76) 

 

From this, BXP84 and DEC10 we have: 

BXP88: HoldsAt(Walking(Fred), 77) 

  

BXP89 From BR56 and BXP27C we have: 
 
BXP89: ¬HoldsAt(BucketEmpty(Bucket1), 77) 

  

BXP90 From BR56 and BXP55C we have: 
 
BXP90: ¬HoldsAt(BucketEmpty(Bucket2), 77) 

  

BXP91 
BXP92 
BXP93 

From BNE3, BXP86, BXP62C, BXP89 and BNC7C we have: 
 
BXP91: Happens(MoveOver(Fred, Bucket1, Bucket3), 77) 
 

From this and BR5 we have: 
BXP92: Initiates(MoveOver(Fred, Bucket1, Bucket3), Beneath(Bucket3, 
Bucket1), 77) 
 
From this and DEC9 we have: 
BXP93: HoldsAt(Beneath(Bucket3, Bucket1), 78) 

  

BXP94 
BXP95 
BXP96 
BXP97 
BXP98 

From BNE3, BXP86C, BXP62C, BXP89, BNC7C and BXP93 we have: 
 
BXP94: Happens(PourFromTo(Fred, Bucket1, Bucket3), 78) 
 
From this and: 
 

 BR20: 

BXP95: Initiates(PourFromTo(Fred, Bucket1, Bucket3), 

PouringFromTo(Fred, Bucket1, Bucket3), 78) 

 

From this and DEC9 we have: 

BXP96: HoldsAt(PouringFromTo(Fred, Bucket1, Bucket3), 79) 

 

 BNC2 and BNC7C: 

BXP97: Terminates(PourFromTo(Fred, Bucket1, Bucket3), Cond2, 78) 
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From this and DEC10 we have: 

BXP98: HoldsAt(Cond2, 79) 

  

BXP99 From BR55 and BNI6 we have: 
 

BXP99: HoldsAt(BucketFull(Bucket3), 0) 

  

BXP100 From BR46, BXP99C, BXP96, BXP27C we have: 
 
BXP100: HoldsAt(Filling(Bucket3), 79) 

  

BXP101 
BXP102 
BXP103 
BXP104 
BXP105 
BXP106 
 

From BXP100, BXP96, BNP11, BXP27C and: 
 

 BR48: 

BXP101: Happens(IncreaseLiquidLevel(Bucket3, 0.1), 79) 

(this event keeps occurring at every timepoint as long as all the conditions 

hold - therefore the derived deductions will also be repeated) 

 

 

From this, BNI6C and: 

 

BR33: 

BXP102: Initiates(IncreaseLiquidLevel(Bucket3, 0.1), Level(Bucket3, 2.1), 

79) 

 

BR34: 

BXP103: Terminates(IncreaseLiquidLevel(Bucket3, 0.1), Level(Bucket3, 2), 

79) 

 

 BR75: 

BXP104: Happens(DecreaseLiquidLevel(Bucket1, 0.1), 79) 

(this event keeps occurring at every timepoint as long as all the conditions 
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hold - therefore the derived deductions will also be repeated) 

 

From this, BXP27C and: 

 

BR35: 

BXP105: Initiates(DecreaseLiquidLevel(Bucket1, 0.1), Level(Bucket1, 1.9), 

79) 

 

BR37: 

BXP106: Terminates(DecreaseLiquidLevel(Bucket1, 0.1), Level(Bucket1, 2), 

79) 

  

BXP107 From BXP101, BXP102 and DEC9 we have: 
 
HoldsAt(Level(Bucket3, 2.1), 80) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an increasing level till timepoint 99. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  
BXP107: HoldsAt(Level(Bucket3, 4), 99) 

  

BXP108 From BXP101, BXP103 and DEC10 we have: 
 

HoldsAt(Level(Bucket3, 2), 80)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete increasing level till timepoint 99. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  

BXP108: HoldsAt(Level(Bucket3, 3.9), 99) 

  

BXP109 From BXP104, BXP105 and DEC9 we have: 
 
HoldsAt(Level(Bucket1, 1.9), 80) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have a 
decreasing level till timepoint 99. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
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BXP109: HoldsAt(Level(Bucket1, 0), 99) 

  

BXP110 From BXP104, BXP106 and DEC10 we have: 
 

HoldsAt(Level(Bucket1, 2), 80)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete decreasing level till timepoint 99. To save space, we do not repeat 
this. 
…. 
[we eventually reach the following:] 
  

BXP110: HoldsAt(Level(Bucket1, 0.1), 99) 

  

BXP111 From BXP109 and BR56 we have: 
 
BXP111: HoldsAt(BucketEmpty(Bucket1), 99) 

  

BXP112 From BR46 and BXP110 we have: 
 

BXP112: HoldsAt(Filling(Bucket3), 99) 

  

BXP113 
BXP114 
BXP115 

From BNE5, BXP86C, BXP67C, BXP111, BXP90C and BNC8C we have: 
 
BXP113: Happens(MoveOver(Fred, Bucket2, Bucket3), 99) 
 

From this and BR5 we have: 
BXP114: Initiates(MoveOver(Fred, Bucket1, Bucket3), Beneath(Bucket3, 
Bucket1), 99) 
 
From this and DEC9 we have: 
BXP115: HoldsAt(Beneath(Bucket3, Bucket1), 100) 

  

BXP116 
BXP117 
BXP118 
BXP119 

 
 
From BNE6, BXP86C, BXP67C, BXP111, BXP90C, BXP115 and BNC8C we have: 
 
 
BXP116: Happens(PourFromTo(Fred, Bucket2, Bucket3), 100) 
 
From this and: 
 

 BR20: 

BXP117: Initiates(PourFromTo(Fred, Bucket2, Bucket3), 

PouringFromTo(Fred, Bucket2, Bucket3), 100) 
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From this and DEC9 we have: 

BXP118: HoldsAt(PouringFromTo(Fred, Bucket2, Bucket3), 101) 

 

 BNC3 and BNC8C: 

BXP118: Terminates(PourFromTo(Fred, Bucket2, Bucket3), Cond3, 100) 

 

From this and DEC10 we have: 

BXP119: HoldsAt(Cond3, 101) 

  

BXP120 From BR55 and BXP107 we have: 
 

BXP120: HoldsAt(BucketFull(Bucket3), 99) 

  

BXP121 From BR46, BXP120C, BXP118, BXP55C we have: 
 
BXP121: HoldsAt(Filling(Bucket3), 101) 

  

BXP122 
BXP123 
BXP124 
BXP125 
BXP126 
BXP127 

From BXP121, BXP118, BNP12, BXP55C and: 
 

 BR48: 

BXP122: Happens(IncreaseLiquidLevel(Bucket3, 0.1), 101) 

(this event keeps occurring at every timepoint as long as all the conditions 

hold - therefore the derived deductions will also be repeated) 

 

From this, BXP107C and: 

 

BR33: 

BXP123: Initiates(IncreaseLiquidLevel(Bucket3, 0.1), Level(Bucket3, 4.1), 

101) 

 

BR34: 

BXP124: Terminates(IncreaseLiquidLevel(Bucket3, 0.1), Level(Bucket3, 4), 

101) 
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 BR75: 

BXP125: Happens(DecreaseLiquidLevel(Bucket2, 0.1), 101) 

(this event keeps occurring at every timepoint as long as all the conditions 

hold - therefore the derived deductions will also be repeated) 

 

From this, BXP55C and: 

 

BR35: 

BXP126: Initiates(DecreaseLiquidLevel(Bucket2, 0.1), Level(Bucket2, 0.9), 

101) 

 

BR37: 

BXP127: Terminates(DecreaseLiquidLevel(Bucket2, 0.1), Level(Bucket2, 1), 

101) 

  

BXP128 From BXP122, BXP123 and DEC9 we have: 
 
HoldsAt(Level(Bucket3, 4.1), 102) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an increasing level till timepoint 111. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  
BXP128: HoldsAt(Level(Bucket3, 5), 111) 

  

BXP129 From BXP122, BXP124 and DEC10 we have: 
 

HoldsAt(Level(Bucket3, 4), 102)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete increasing level till timepoint 111. To save space, we do not repeat 
this. 
…. 
[we eventually reach the following:] 
  

BXP129: HoldsAt(Level(Bucket3, 4.9), 111) 

  

BXP130 From BXP125, BXP126 and DEC9 we have: 
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HoldsAt(Level(Bucket2, 0.9), 102) 
 
The same deduction is repeatedly at every timepoint applied. Therefore we have a 
decreasing level till timepoint 111. To save space, we do not repeat this. 
…. 
[we eventually reach the following:] 
  
BXP130: HoldsAt(Level(Bucket2, 0), 111) 

  

BXP131 From BXP104, BXP106 and DEC10 we have: 
 

HoldsAt(Level(Bucket2, 1), 102)  
 
The same deduction is repeatedly at every timepoint applied. Therefore we have 
an obsolete decreasing level till timepoint 111. To save space, we do not repeat 
this. 
…. 
[we eventually reach the following:] 
  

BXP131: HoldsAt(Level(Bucket2, 0.1), 111) 

  

END 
OF 
PROOF 

BXP128 is the proof of our proposition: 
HoldsAt(Level(Bucket3, 5), 111) 
 
The level of Bucket3 will be 5 litres at timepoint 111. 
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3.5   Critical remarks 

In the framework BR7: 

  HoldsAt(At(b, l), t)  Releases(PickUp(a, b), At(b, l), t) 

states that the action of picking up an item releases the location of that item from 

Inertia. This means that, unlike fluents that are not released from Inertia, for 

released fluents we cannot use DEC5 to deduce that they hold for the timepoints 

afterwards. By picking up an item, the location of that item will that of its carrier 

which is only commonsense. Therefore that item does not have a specific location. 

This is represented on our framework by BR7. Inertia is restored in a released 

fluent by initiating or terminating that fluent. In our framework BR9 indicates: 

  HoldsAt(At(a, l), t)  Initiates(PutDown(a, b), At(b, l), t) 

although this formula is not employed in our scenario (not in our natural language 

scenario, Fred never puts down the buckets), our framework supports this. So if 

we were to modify the scenario by putting down the buckets in the middle of the 

way, that would be perfectly fine in our framework: the buckets would have a 

location - where they were dropped - and they could be picked up again. Once 

again this shows the elaboration tolerance and robustness of the Event Calculus. 

 

Our framework makes use of Beneath and Over as two fluents. BR54, however, 

defines the relationship between these two fluents: 

  HoldsAt(Beneath(x, y), t)  HoldsAt(Over(y, x), t) 

this shows these fluents have an exclusive relationship saying if x is beneath y, 

then y is over x. We also make use of two actions MoveUnder and MoveOver. We 

need to emphasise while it is good practice to use Beneath and Over 

interchangeably (taking into account to swap x and y), it is not allowed to do so 
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with MoveUnder and MoveOver. This is due to the commonsense fact that while 

it might be possible to squeeze something under another, it is not always possible 

to do so with moving something over another. For instance, in our scenario it is 

ok to use MoveUnder for moving a bucket under a tap or another bucket, it is not 

ok to use MoveOver for moving a tap over a bucket (but it is ok to move a bucket 

over another). 

Our representation of the domain description can handle the scenario and also 

variations to the scenario. There is room for further improvement however and 

making it more robust. For instance, in the calculating of wasted liquid, the 

following concurrency is not handled: the tap is left on (with no bucket 

underneath it, so liquid being wasted); and we are pouring water from a bucket 

into another, and the receiving bucket gets full and starts spilling (wasting liquid). 

This concurrency is however trivial and can be handled by small modifications. It 

was of no interest to this scenario and that is the reason why it was not handled. 

Our representation initially did not handle a small change to the scenario: if Fred 

stops in the middle of the way for a moment and then continues on his way. With 

modifications made to the representation, it calculates the distance between 

current location of Fred and the destination. 

Shin and Davis representation (Appendix C) does not handle a scenario in which 

a bucket is pushed underneath an open tap (say by a dog). In their representation 

the only way to increase the water level of a bucket is for an agent to turn on the 

tap (and initiate the Filling process). But in our representation, this is represented 

as a state constraint representing rules of the world. So if a bucket gets pushed 

under an open tap by any means, it will start filling regardless of the reason why 

and by whom it was pushed there. The effect of turning on the tap is only for the 
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tap to be on, not filling the bucket. So if we were to represent this in Shin and 

Davis representation, we would need to change at least one action (turn on tap) 

and add new actions. However this is not the case in our representation of the 

problem in EC due to the elaboration tolerance of EC. 

New additions or modifications can be made to our representation easily. For 

instance, if we want to say that an agent can only pick up a bucket if it is not “too 

heavy”, we could represent this by adding: 

  Happens(PickUp(agent, bucket), t)  

   HoldsAt(TooHeavy(bucket), t). 

And “TooHeavy” can be defined in another assertion (yet again, elaboration 

tolerance).  

Our framework is able to calculate the amount of wasted liquid. Wasted liquid is 

defined as if a tap is left on with no empty bucket underneath it or pouring from a 

bucket into another bucket which is full. However, it would be interesting to 

integrate the Liquid Theory of Davis [9] and represent what happens to the liquid 

being wasted: if it is pouring to a full bucket how it will move to the sides of the 

bucket and slowly flows down. This would be an interesting follow up of this 

work. 

By alterations to our presented scenario we can show how wasted liquid can also 

be calculated: If Fred moves the bucket underneath the tap aside, opens the tap 

and after 5 timepoints put the bucket back underneath the tap, the framework 

calculates the liquid being wasted for those 5 timepoints. 

Shin and Davis‟s framework is less developed in this sense as the condition they 

impose is by turning on the tap, if bucket is as at the same location as the tap, then 

a filling process is initiated (turning off the tap works in a similar fashion). 
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Therefore adding a new feature to the framework, such as calculating wasted 

liquid, needs major changes to the existing formulas; as in our framework, these 

formulas work separately. If we remove the wasted liquid calculating formulas, 

our proved proposition is proved yet again with no change. Or if the TurnOnTap 

or TurnOffTap are changed or omitted, our framework does not suffer. Although 

omitting these events might result in never being able to calculate the wasted 

liquid from the tap (but that is only logical, if a tap cannot be turned on, then there 

will not be any wasted liquid from it), our wasted liquid formulas are still valid 

for pouring from a bucket into another. This shows elaboration tolerance of the 

EC and our representations in comparison to that of Shin and Davis. 
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Chapter 4 

 

Commonsense Reasoning with the Event 

Calculus 

 

4.1   Acquisition of world knowledge 

As described in Chapter 1 and shown in an example in Chapter 2, use of world 

knowledge is essential to make commonsense inferences. It is important, however, 

to determine to what extent we need this background knowledge. For example 

consider this scenario: Fred leaves home at 8am, stops by the shop at 8:30 and 

arrives at work at 9am. In a scenario in which Fred starts working at 9 and leaves 

his office at 5pm, we are not concerned with where Fred has been before starting 

his job (from the card reader point of view at work). But if we are interested to 

find out why the fuel of Fred‟s car is less than usual, we would like to know if he 

has stopped by any place on his way to work. In another scenario of the same 

world, if Fred‟s car is broken, we might want to know how he got to his work, but 

we did not care about the means in the previous scenario. 

Let us make this clearer by a more detailed example. The Fluid Theory of Davis 

[9] defines a commonsense framework in which movements of the liquid inside a 

pitcher pouring the liquid inside a pail is formalised. His theory deals with the 

movement of liquid from a commonsense perspective, meaning it does not go into 
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that much detail of the movements of molecules of the liquid over each other; yet 

it is not so abstract to take Happens(PourFromTo(Pitcher, Pail), t) as an event of 

the theory either. Finding the correct level of abstraction is very important to 

make inferences possible, especially if this external knowledge is being imported 

to the reasoning system. An example which we worked on and will give more 

details later in the report is of an agent carrying buckets and pouring liquid from a 

bucket into another. In that example, we have not gone into as much detail as in 

Davis‟s theory therefore Happens(PourFromTo(Pitcher, Pail), t) would suffice 

there. We need to identify, for a given scenario, what knowledge we need to 

automatically import for automated reasoning. 

 

 

4.2   Encoding from the Event Calculus 

An EC problem can be proved using a SAT solver.  A SAT problem is a specific 

constraint satisfaction problem in which every variable ranges over the values 

{true, false}. We describe how we can encode EC problems into propositional 

calculus problems. 

In this thesis, we use two methods to carry out reasoning with Event Calculus: 

 Manual theorem proving: the examples of this can be seen in the literature 

such as the egg cracking scenarios tackled by Shanahan [6] and 

Morgestern [13]. We also present some examples we have represented and 

manually proved in this report in a later chapter. 

 Automated theorem proving: Shanahan and Witkowski [64] proposed that 

event calculus planning be carried out using satisfiability. They presented 
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a method for encoding EC planning problems as satisfiability problems. 

Mueller [65] extended their method for a larger subset of EC. 

 

The domain description of an EC description is as follows: 

CIRC[; Initiates, Terminates, Releases]  CIRC[; Happens]      DEC 

In which:  

  is a conjunction of Initiates, Terminates and Releases formulas 

  is a conjunction of Happens and temporal ordering formulas (t1<t2) 

  is a conjunction of state constraints 

  is a conjunction of HoldsAt and ReleasedAt formulas 

Satisfiability solvers (SAT solvers) take a set of Boolean variables and a 

propositional formula over those variables as input and as output produce zero or 

more models or satisfying truth assignments for the variables such that the 

formula is true. A complete SAT solver produces all satisfying truth assignments. 

As mentioned before, SAT solvers take a propositional formula in the conjunctive 

normal form (CNF) which is a conjunction of clauses; where each clause is a 

disjunction of literals; where each literal is a variable or a negated variable. 

 

We start by introducing some definitions over the EC: 

Def. 4.2.1: a comparison is a formula of the form t1<t2, t1≤t2, t1=t2, t1≥t2, t1>t2 

or t1t2 where t1 and t2 are terms. 

Def. 4.2.2: If t is a variable then a condition over t is defined: 

 A comparison is a condition over t 

 If f is a term then HoldsAt(f, t) and HoldsAt(f, t) are conditions over t 
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 If c1 and c2 are conditions over t, then c1c2 and c1c2 are conditions over 

t. If v is a variable and c is a condition over t, then v c is a condition over 

t 

Def. 4.2.3: If  is the predicate symbol Initiates, Terminates or Releases, then a  

effect axiom is a formula of the form e, f, t[(e, f, t)  (e, f, t)], where (e, f, t) 

is a condition over t with only e, f and t free. 

Def. 4.2.4: A  effect description is a collection of  effect axioms written as a 

single, logically equivalent  effect axiom of the form e, f, t[(e, f, t)  (e, f, 

t)], where (e, f, t) is a condition over t with only e, f and t free. 

 Let init be the Initiates effect description e, f, t[init(e, f, t)  Initiates(e, 

f, t)]. 

 Let term be the Terminates effect description e, f, t[term(e, f, t)  

Terminates(e, f, t)]. 

 Let rel be the Releases effect description e, f, t[rel(e, f, t)  Releases(e, 

f, t)]. 

Def. 4.2.5: A trigger axiom is a formula of the form e, t[(e, t)  Happens(e, t)] 

where (e, t) is a condition over t with only e and t free. 

Def. 4.2.6: A trigger description is a collection of trigger axioms written as a 

single, logically equivalent trigger axiom of the form e, t[(e, t)  Happens(e, 

t)] where (e, t) is a condition over t with only e and t free. 

Def. 4.2.7: An event occurrence is a formula of the form Happens(e, t) where e is 

an event ground term and t is a timepoint ground term. 
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Def. 4.2.8: An event occurrence description is a collection of event occurrences 

written as a single, logically equivalent trigger axiom of the form e, t[(e, t)  

Happens(e, t)] where (e, t) is a condition over t with only e and t free. 

Def. 4.2.9: An event description is a trigger description and an event occurrence 

description written as a single, logically equivalent trigger axiom of the form e, 

t[(e, t)  Happens(e, t)] where (e, t) is a condition over t with only e and t 

free. 

Let  be an event description. 

Def. 4.2.10: A state constraint is a formula of the form c1c2 or c1c2 where c1 

and c2 are conditions over some variable t. 

Let  be a conjunction of state constraints. 

Def. 4.2.11: A state description is a conjunction of formulas of the form HoldsAt(f, 

t), HoldsAt(f, t), ReleasedAt(f, t) or ReleasedAt(f, t) where f is a fluent ground 

term and t is a timepoint ground term. 

Let  be a state description. 

We will use circumscription which was formally introduced in Chapter 2. 

EC and DEC contain atoms involving Initiates, Terminates and Releases which 

lead to a large number of ground atoms. For instance, Initiates(e, f, t) gives rise to 

E*F*T ground atoms where E is the number of events, F is the number of fluents 

and T is the number of timepoints. In order to eliminate such atoms, we expand 

DEC by performing the following substitutions: 

 Initiates(e, f, t) replaced by init(e, f, t) 

 Terminates(e, f, t) replaced by term(e, f, t) 

 Releases(e, f, t) replaced by rel(e, f, t) 
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For instance, if init is: 

[e = Hold(a, o)  f = Holding(a, o)]  Initiates(e, f, t) 

Then we replace DEC9 of Appendix B with: 

[Happens(e, t)  [e = Hold(a, o)  f = Holding(a, o)]]  HoldsAt(f, t+1) 

The next step is to circumscribe Happens. So using the methods explained in 

Chapter 2, we compute: CIRC[; Happens]. We then conjoin ,  the new 

substituted DEC and CIRC[; Happens]. 

Then we instantiate quantifiers by replacing x (x) with i (xi) and x (x) 

with i (xi) where xi are constants of the sort of x. This gives us a propositional 

calculus formula. 

We simplify the formula using standard techniques [44]. 

We construct a one-to-one and onto map B that maps the ground atoms of the 

formula to Boolean variables. We construct an inverse map B
-1

 from B for 

converting the results back into the EC formulas. 

We construct a formula to pass to the SAT solvers by replacing each ground atom 

u in the formula with B(u). In order to perform model finding we give the formula 

to a SAT solver. We can then decode the satisfying truth assignments produced 

by the solver by applying B
-1

 inverse map.  

 

 

4.3 An example of a domain description 

We convert and feed the following domain description to a SAT solver and see 

how the SAT solver will find a model based on the model at the initial time. 
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We have an Initiates effect description that states that if a person holds an object, 

then the person will be holding the object (example adopted from [65]): 

Ex3.4.1 [e = Hold(a, o)  f = Holding(a, o)]  Initiates(e, f, t) 

There is a state description that says at timepoint 0 agent A1 is not holding object 

O1 and this fact is not released from the commonsense law of Inertia: 

Ex3.4.2 HoldsAt(Holding(A1, O1), 0)  RleasedAt(Holding(A1, O1), 0) 

There is an event description that says at timepoint 0 agent A1 holds object O1: 

Ex3.4.3 [e = Hold(A1, O1)  t = 0)  Happens(e, t) 

We assume that 0 and 1 are the only constants of the timepoint sort, A1 is the only 

constant of the sort Agent and O1 is the only constant of the sort Object. The 

conjunctive normal form from encoding this domain description will consist of 10 

clauses.  

We have the following clauses for Ex3.4.2: 

C1: HoldsAt(Holding(A1, O1), 0). 

C2: ReleasedAt(Holding(A1, O1), 0). 

From Ex3.4.1 and expansion of DEC5,6, 7,9 and DEC12 we have: 

C3: ReleasedAt(Holding(A1, O1), 1)  HoldsAt(Holding(A1, O1), 1) 

  HoldsAt(Holding(A1, O1), 0). 

C4: Happens(Hold(A1, O1), 0)  HoldsAt(Holding(A1, O1), 0)  

 ReleasedAt(Holding(A1, O1), 1)  HoldsAt(Holding(A1, 

 O1), 1). 

C5: Happens(Hold(A1, O1), 0)  ReleasedAt(Holding(A1, O1), 1)  

 HoldsAt(Holding(A1, O1), 0). 

C6: ReleasedAt(Holding(A1, O1), 0)  ReleasedAt(Holding(A1, O1), 

1). 
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C7: HoldsAt(Holding(A1, O1), 1)  Happens(Hold(A1, O1), 0). 

C8: Happens(Hold(A1, O1), 0)  ReleasedAt(Holding(A1, O1), 1). 

Formulas DEC10 and DEC11 are trivially satisfied since there are no Terminates 

or Releases formulas in the domain description. 

The circumscription of Happens results in the following clauses: 

C9: Happens(Hold(A1, O1), 1). 

C10: Happens(Hold(A1, O1), 0). 

 

We construct our B map from ground atoms to Boolean variables - assigning each 

axiom a number: 

Happens(Hold(A1, O1), 0)  → 1 

HoldsAt(Holding(A1, O1), 0)  → 2 

ReleasedAt(Holding(A1, O1), 0) → 3 

Happens(Hold(A1, O1), 1)  → 4 

ReleasedAt(Holsing(A1, O1), 1) → 5 

HoldsAt(Holding(A1, O1), 1)  → 6 

 

Converting the clauses into the standard DIMACS format for satisfiability 

problems [43] results in Figure 4.1 which represents the translation of our clauses 

(C1 to C10) to their equivalent Boolean variables we just assigned (1 to 6). 
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Clauses Equivalent Boolean variables in the clause 

C1 -2 0    

C2 -3 0    

C3 5 6 -2 0  

C4 1 2 5 -6 0 

C5 1 5 -3 0  

C6 3 -5 0   

C7 6 -1 0   

C8 -1 -5 0   

C9 -4 0    

C10 1 0    

Figure 4.1 – Converted clauses C1 to C10 into CNF using Boolean variables 1 to 6 

 

A negated variable v is represented by –v and a non-negated variable v is 

represented by v. Each row in Figure 4.1 is a sequence of numbers and terminates 

with the number 0. 

 

So for instance clause C5:  

   Happens(Hold(A1, O1), 0)  

   ReleasedAt(Holding(A1, O1), 1)  

   HoldsAt(Holding(A1, O1), 0). 

is represented respectively as: 

   1 

   5 

   -3 

   0 (indicates the termination of the sequence) 
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Invoking a SAT solver on this problem will produce one model as output: 

1 -2 -3 -4 -5 6 

By applying the inverse map, B
-1

, we get: 

Happens(Hold(A1, O1), 0).   (1) 

HoldsAt(Holding(A1, O1), 0).  (-2) 

ReleasedAt(Holding(A1, O1), 0).  (-3) 

Happens(Hold(A1, O1), 1).   (-4) 

ReleasedAt(Holding(A1, O1), 1).  (-5) 

HoldsAt(Holding(A1, O1), 1).  (6) 

Our proposition is proved by a SAT solver successfully. 

 

Table 4.1 shows a list of commonsense encoders which make use of SAT solvers. 

 

Description Technique Reasoning Type 

Event Calculus Planner 

[62, 63] 

Abductive logic 

programming 

Abduction 

Event calculus planner 

[64] 

Propositional 

satisfiability 

Abduction 

Discrete Event Calculus 

Reasoner [65, 66] 

Propositional 

satisfiability 

Deduction, Abduction, 

Postdiction, Model 

Finding 

Discrete event calculus 

theorem prover [67, 68, 

69] 

First-order logic 

automated theorem 

proving 

Deduction 

Table 4.1: Commonsense encoders which make use of SAT solvers 
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Chapter 5 

 

Automated Reasoning Methods for the 

Event Calculus 

 

5.1   Introduction 

 

Over the past decades, large amounts of time and resources have been dedicated 

to research in Automated Reasoning (AR) methods.  Generally, the methods 

which have specifically dealt with the Event Calculus are the following: 

 SAT Solving: there are many implementations which use a SAT solver to 

perform reasoning on the Event Calculus. For instance, E-RES [71] 

system which deals with Language E and Modular E [70] (essentially EC 

representations) use RelSat. Mueller‟s DECReasoner [72] also ultimately 

uses three different SAT solvers (RelSat, Walksat and MiniSat) to perform 

reasoning. We elaborate how a SAT solver works in this chapter. 

 Logic Programming: There are implementations of reasoning on EC using 

logic programming. For instance, Shanahan‟s Abductive Event Calculus 
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Planner [62] or ACLP [74]. We describe Constraint Programming in more 

detail in Appendix E but will not focus any more on it since it is not in the 

scope of this report. In the literature there is more usage of SAT solving 

methods over logic programming. For performing reasoning over EC, 

Mueller argues for superiority and high efficiency of SAT solvers and 

their success in the International Planning Competition from 2004 to 2006 

and their ability to perform abduction, deduction and model finding. It 

should also be noted that since SAT solvers use propositional logic which 

is decidable. 

 First-order automated theorem proving: in the literature, there has only 

been one attempt to use a first-order theorem prover on EC problems [73]. 

However Mueller and Sutcliffe show that SAT solving method is much 

more efficient by taking significantly lower time to solve some benchmark 

problems. Although they conclude ATP has the benefit that the derivation 

retains meaning and can be understood by humans, it not only takes longer 

to solve the problems, in many cases it fails to terminate. SAT solving 

method results, however, can also be humanly understandable by reverse 

mapping, as discussed before in this report. 

 

In this chapter we will explain Propositional satisfiability solving (SAT solving) 

in more detail; an AR technology that has been developing and widely used in the 

industry during the recent decades. 
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5.2   SAT Solving 

 

SAT solving approach provides a generic language that can be used to express 

complex problems such as scheduling or hardware verification. It employs a 

general-purpose algorithm to automatically search for solutions to the problem at 

hand. This algorithm is called a solver. Where a general purpose algorithm (i.e. a 

solver) is at use, the need is avoided to redevelop new algorithmic solutions from 

scratch for each application where intelligent search is needed. 

There are generally two categories of constraint solving methods: 

 Incomplete methods: In this method, the aim is to find solutions by means 

of heuristics without exhaustively covering the whole search space. 

Therefore, it is most often the case that these methods are unable to 

determine that no solution exists. There is, however, a time threshold after 

which the search is stopped and “no solution” is generated. In this case it 

is not possible to tell if the solutions were actually missed in the search or 

the problem is indeed unsatisfiable. There are mainly two categories of 

methods in this approach: 

o Population based algorithms: a list of individuals which typically 

correspond to points of the search space is maintained, and 

iteratively modified; with the goal of an individual which satisfies 

all constraints. An example of this type would be the ant colony 

optimisation algorithms [38] and other swarm-based collective 

intelligence algorithms. 

o Local search methods: a unique point at every timepoint is 

considered until a solution is reached by exploring the 
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neighbourhood of the current selected point, moving stochastically 

along the search space. 

 Complete methods: In this method, the aim is to find solutions by 

exploring the entire search space by means of backtrack searches and local 

reasoning at each node to prune away certain branches. Exhaustive 

enumeration of search space would, however, be too costly. Therefore 

pruning techniques are employed to determine certain areas of the search 

space do not contain a solution, hence better efficiency. 

 

Satisfiability is the problem of determining if the variables of a given Boolean 

formula can be assigned in such a way to make the formula evaluate to true 

(satisfiable) or to determine whether no such assignments exist which implies that 

the function expressed by the formula is false for all possible variable 

assignments (unsatisfiable). Therefore we can define a SAT solver as: given a 

propositional formula on a set of Boolean variables, a SAT solver determines if 

there exists an assignment of the variables such that the formula evaluates to true 

or proves no such assignment exists. 

A very simple yet concrete example of the kinds of problems handled by SAT 

solvers is the following: 

For each vertex (for instance V), we have 3 Boolean variables (V1, V2 and V3) 

which will be true if one of the colours 1, 2, or 3 is assigned to the vertex. There 

is also the constraint that each vertex must be assigned exactly one colour. In 

other words, we could rewrite this constraint as: At least one colour is assigned to 

the vertex and the vertex cannot have two colours. 

So for V we have: 
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V1  V2  V3  V1  V2   V2  V3   V3  V1 

These constraints are clauses. A clause is a disjunction of literals where a literal is 

either a positive or a negative instance of a variable. SAT solvers take the input in 

the format of conjunctive normal form (or CNF). A CNF is a conjunction of one 

or more clauses. 

Now let us make the problem more interesting by introducing more vertices (for 

instance add W, X, Y and Z) and the constraint that each edge must have a 

different colour to its extremities. 

Then we will have: 

V1  W1    V2  W2    V3  W3 ... 

So far, we have 15 variables and 41 clauses to express this simple problem. SAT 

is quite a low-level language. Were we to add more constraints or simply add 

another colour to the problem, say 4, the number of clauses and variables would 

significantly grow higher. Therefore for practical reasons, the formulas are 

typically generated from automatic translation of a problem, instead of 

handwriting them. 

In general, there are two ways to use a SAT solver in an application. One way is 

for the application to generate a Boolean formula and ask a SAT solver to 

determine its satisfiability and produce a satisfying assignment (if any). This is 

called the eager approach [39]. The other way is for the application to reduce the 

problem to a series of related SAT queries which are incrementally solved by the 

SAT solver. Subsequent SAT queries are then dynamically generated based on 

the results of previous queries (the lazy approach [39]). 
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SAT solving approach is essentially a black box. Once the problem is stated, the 

solver is to find a solution without the need for any external interaction. However, 

in SAT, constraints (clauses) are expressed in an indirect way. That is although 

they can be used to state complex problems, once translated into CNF which is 

very low-level, the internal structure of the problems are lost and the clauses 

would not make much structural sense to a human eye. But the advantage of this 

simple representational language is that all the effort is focused on a single 

representation resulting in more optimised datastructures and efficient 

implementation of the reasoning and performing deductions on CNF formulas. 

SAT solvers are generally used as a target utility by higher-level reasoning tools 

which automatically translate other formalisms into CNF formulas. 

 

Generally, a SAT solver only needs to answer true or false depending on the 

satisfiability of the formula. Some SAT solvers may also produce a satisfying 

assignment (a model) if the formula is satisfiable. Arithmetics are not native to 

SAT solvers, since they only deal with CNF formulas. Therefore they need to be 

represented in Boolean logic. One simple way is, given x as a numerical variable, 

to create a Boolean variable Bi for each possible value i of x. Bi will be true if and 

only if x = i. There needs to be a constraint stating that only one of the Bi 

variables is true at any given moment. 

 

5.2.1 Branching 

In SAT, a common way to solve problems is to use backtracking search methods, 

most of which are variations of the DPLL algorithm [37]. In SAT, only two 

choices are possible for each variable, making variable selection and assignment 
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very important since different branching decisions lead to very different search 

trees being explored. At each step DPLL assigns one of the two possible values to 

a variable, applying a restricted form of resolution called Unit Propagation (UP). 

If there is only one literal present in a unary clause, then UP automatically sets it 

to True as it must be True. Having done so, UP also reduces the size of any clause 

containing the opposite of this literal by one as that instance is definitely False. 

This process is repeated until no more unary clauses appear or an empty clause is 

derived. In the latter case, the other value of the currently selected variable will be 

tried. If this causes an empty clause as well (called a dead-end), then the 

algorithm backtracks to the previously assigned variable. 

Using UP, the SAT problem is reduced to fewer and smaller clauses, while dead-

ends are discovered at earlier stages. Therefore, the length of a clause C is 

essentially the number of unassigned literals in C. 

 

The heuristics of choosing values are more or less arbitrary, however. They are 

usually based on some obvious statistics. The solver has to search the entire 

search space in one way or another, therefore discovering conflicts and dead-ends 

as early as possible is vital to higher and more efficient performance. Although 

branching heuristics are important in determining the efficiency of SAT solvers, 

they must also be cheap to evaluate. A heuristic that requires iterating through all 

the clauses of the problem is not affordable on (typically) large problems. 

 

Moskewicz et al. proposed a branching heuristic called Variable State 

Independent Decaying Sum (VSIDS) [29]. VSIDS keeps a score for each of the 

two Boolean values of a SAT variable (True or False). The scores are initially the 
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number of occurrences of the corresponding literals in the original CNF formula. 

But as the search progresses, additional clauses and literals are added to the clause 

database. The score of a literal is increased by a constant value whenever a newly 

added clause contains this literal. 

All the scores are periodically divided by a constant (the decaying-scores effect). 

VSIDS does this in order to overcome the problems encountered by older solvers; 

namely, the significant overhead of recalculating all the free variables at every 

branching point; and the dependability of the counts on the current state of the 

solver (as in GRASP [26]). 

In VSIDS, however, more recently added literals have higher weight for 

calculating a score which is essentially a literal count. VSIDS will then branch on 

the free literal with the highest score. 

Scores in VSIDS are very cheap to maintain because they are variable-state 

independent (i.e. unrelated to the current variable assignment). In VSIDS, the 

scores are not static statistics; they take the search history into consideration. 

Variables that are recently active will have preference to be branched on. The 

activity of a variable is determined by the score that is related to the literal‟s 

occurrences. The decaying-scores effect mentioned above helps to keep the focus 

on recent events.  

 

Search-based solvers detect the consequences of the assignments imposed by the 

branching heuristics through deduction mechanisms called pruning. 
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5.2.2 Pruning 

 

Resolution: A main deduction mechanism in SAT solvers is propositional 

resolution [23]. Mathematically, it can be shown as: 

A ∨  x , x ∨ B  ⊢ A ∨ B. 

This is to say that if there are both a clause containing a positive occurrence of 

variable x and a clause with a negated occurrence of x, then we can deduce a new 

clause by merging these two clauses and removing the occurrences of x, 

remaining other literals from the original clauses (A and B here for example). 

This new clause is called a resolvent (i.e. A ∨ B here). 

Resolution is a complete deduction mechanism on its own. It computes the 

resolvents of the problem until saturation is achieved. This means we have the 

guarantee that the empty clause will be generated if and only if the problem is 

inconsistent.  

 

Unit Resolution (UR) is an important type of resolution. It is a restriction of 

resolution in which we impose that one of the clauses we resolve on, be a single 

literal (or a unit clause, defined further down) [37]. We can mathematically show 

UR as: 

x,  x ∨ A   ⊢ A     and that  x, x ∨ A   ⊢ A. 

 

UR is not a complete deduction mechanism. However, it can be performed 

efficiently. It essentially works well with search algorithms, owing to the fact that 

branching works by assigning values to the variables of the problem (i.e. adding 

unit clauses to the problem). 
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Unit resolution‟s philosophy is simple: if the assignment of variable x contradicts 

the value imposed to it by the clause, then one of the other literals in the clause 

has to be true. Specifically, when all literals of the clause, but one, contradict the 

current assignment, then the remaining literal has to be true and we can assign the 

variable of this literal accordingly. The clause in this case is called a unit clause. 

For instance, under the current assignment: x = 0, z = 1, using UR in the clause x 

∨ y ∨ z, we can assign y to 0. 

 

Search-based solvers use UR to propagate the consequences of every decision 

made. The process of iteratively applying this rule until no unit clause exists in 

CNF is called unit propagation. A clause whose literals all evaluate to false is 

called a conflicting clause. When there exists a conflicting clause in the formula, 

the current assignment cannot be extended to a solution; therefore we must 

backtrack. 

The process of giving assignments in a chain using UR rule and of detecting 

conflicts is called Boolean constraint propagation (BCP) [22]. 

 

 

SAT solvers perform some reasoning before the search in order to help simplify 

the problem (preprocessing). Since preprocessing is applied only once, it is 

possible to incorporate some deduction rules that are otherwise too expensive to 

be applied at every node of the search tree. For instance, it is generally the case to 

perform operations such as variable renaming or elimination in preprocessing to 

generate simpler SAT instances. Such operations are usually difficult and too 

costly to perform during the search process due to the bookkeeping overhead. 
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Figure 5.1 – Head/tail approach towards BCP 

 

In BCP concept, there are three possibilities for a literal: 

1. It is free: if it is not assigned a value by the current partial assignment. 

2. It has value 0 if the partial assignment contradicts the value imposed by 

the clause. 

3. It has value 1 if the partial assignment satisfies it. 

An example of case 2 would be that an assignment imposes x = 1, while the 

clause contains the literal x. Case 3 means that the clause is satisfied. 

 

Having determined the literals of a clause, BCP has to determine one of these 

cases for every clause, for every new assignment: 

 If all literals of the clause have value 0 then we have reached 

inconsistency by detecting a conflicting clause and must backtrack. 

 The clause is a unit clause (i.e. all literals but one have value 0) in which 

case the remaining literal forces a new assignment for propagation. 
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 Undeterministic situation because the clause either contains at least two 

free literals or already a value 1 literal. In this case this clause is useless in 

making further deductions until either more variables get assigned (or a 

backtrack occurs). 

 

There are mechanisms to improve the efficiency of propagation. Zhang and 

Stickel [21] proposed the use of a mechanism for BCP using head/tail lists. The 

algorithm states that as long as a clause contains two different literals with a value 

other than 0 (including free literals too), then the clause is neither unit nor 

conflicting. Therefore they propose keeping track of two nonzero literals and 

avoid performing any action as long as these literals exist. In this algorithm, the 

two literals we keep track of are the first and last nonzero literals of each clause. 

These clauses will be pointed to by head and tail pointers. 

 

In this algorithm, an invariant is maintained for the head pointer to be on the first 

nonzero literal of the clause and the tail pointer on the last one, as shown in 

Figure 5.1 (taken from [32]). The algorithm has it that if both the head and tail 

pointers point to the same literal, then the clause is either unit or conflicting, 

depending on the value of that particular literal. Because in this algorithm we 

keep track of only two literals, it is more efficient than the literal counting 

algorithm. 

 

Figure 5.1 comments: For simplicity, the clause considered here consists of 

variables x1 to x10. The darker cells correspond to literals with value 0 and empty 

ones to free literals. At phase 1 (initially), the head and tail pointers point to the 
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first and last free variables in the array, respectively (because there has not been 

any assignments yet, these happen to be the first and last items in the array). At 

phase 2, new assignments have been imposed on the literals of the clause (x2 = 0, 

x6 = 0, x8 = 0 and x9 = 1, hence x9 cell being darkened) but no action is needed 

here because the new assignment does not affect the head and tail literals (i.e. the 

literals we are watching). At phase 3, a new assignment of 0 is imposed on x10, a 

literal we are watching. The algorithm states that if a watched literal is assigned 

value 0, the pointer is moved right (for head literal) and left (for tail literal) 

until a free or value 1 variable is reached – or they reach the same free variable 

hence a unit clause or a conflict if they reach the same variable with value 0. 

Therefore here pointer is moved to x7 and our tail literal is now x7 and no longer 

x10. At phase 4, with the new assignments imposed, the pointers move again to 

find a free variable. The pointers meet each other at x4 since it is the only free 

variable left in the clause. We therefore have a unit clause here which means that 

x4 must have value 1. 

 

5.2.3 Conflict analysis and backtracking 

 

Sometimes the choices made at an earlier stage in the search tree, causes a 

conflict at later levels in the search. Any branch that does not reconsider these 

decisions will eventually become inconsistent. To find a solution and avoid being 

stuck in the search space, the SAT solver needs to backtrack to a previous branch 

and explore another branch, when a conflict is found.  A simple algorithm would 

be to go back up only one level of the search tree (to the immediate most recent 

decision level) and assign a different value for the branching variable 
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(chronological backtracking). This approach could take a very long time to search 

an entire search tree, of an average size. Instead, intelligent backtracking 

algorithms try to analyse the conflict and then backtrack to a decision level that 

will resolve it (non-chronological backtracking). 

SAT solvers use a process called clause learning which is to analyse a situation 

and gain some knowledge from it and store the knowledge to prevent similar 

conflicts. When based on a current assignment, all literals of a clause evaluate to 

false, we have a conflict. This is called a conflicting clause, as mentioned earlier. 

Clause learning in SAT can learn from a conflicting situation by memorising the 

clause that lead to the conflict in order to prevent it from happening again; and 

also figure out the decision level to backtrack to, that would lead to a different 

search tree where the conflict would not happen anymore. 

 

Using implication graphs [18] is one of the main methods used for conflict 

analysis. 

 

Implication graphs: a representation that captures the variable assignments made 

by the solver both by propagation and by branching. This representation is a 

directed acyclic graph (DAG). In this DAG, the vertices represent the assignment 

of values 0 or 1 to variables and the edges the dependencies between the 

assignments. For instance, an arc from a to b (represented as a → b in the graph) 

means that assignment of a is one of the factors that lead to the assignment of b 

(for instance x1 → x4 in Figure 5.2). Logically, each assignment is a consequence 

of the conjunction of all its predecessors in the graph (i.e. all the arcs leading to 

that particular variable). 
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For the purpose of conflict analysis and being able to backtrack to another 

different decision level, each node in the graph has a depth level, indicating its 

branching level. The depth levels start from 1 and increase for subsequent 

branchings. All the variables implied by a decision variable then have the same 

depth level as their corresponding decision variable. (x9 and x7 in Figure 5.2 for 

instance, since x7 is implied by x9, it has the same depth level, shown by P9 – P 

standing for phase). The current depth level is the highest decision level in the 

branching stack (9 in this example). After backtracking, some variables become 

unassigned, and we decrease the current depth level accordingly. 

In the DAG, the vertices with no predecessor are the decision variables assigned 

by the solver (e.g. x9 and x1 in Figure 5.2). 

 

Constraints of the problem related to our example (there well may be more 

constraints in the problem – but they may not affect the branching we are 

discussing here):  

C1: x9 ∨ x7 

C2: x5 ∨x7 ∨ x8 

C3: x2 ∨ x3 

C4: x4 ∨ x1 ∨ x5 ∨ x6 

C5: x6 ∨x8 ∨ x1 

C6: x4 ∨ x6 ∨x3 
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Figure 5.2 comments and analysis: shows a partial DAG of an implication 

graph of a conflict analysis problem. The filled-in circles (namely x1, x2, x6 and x9) 

represent decision variables; hollow circles (namely x3, x4, x6, x7 and x8) represent 

solver deductions using the constraints and other implied or assigned variables. 

The current depth level is 9 (represented by P9). 

In this example, we only consider phases 3, 4, 6 and 9 (represented by P3, P4, P6 

and P9 respectively). The decisions at each phase are represented by similar 

colours in this graph. The reason we do not consider other phases the solver goes 

through and the decisions it makes, is because those do not affect our branching 

decisions in this part of the search space (i.e. they are not connected to our graph 

- somehow unrelated). We call these unrelated events because whatever events 

that do happen in those phases and whatever decisions are made there, they do not 

affect this part of the tree. 

 

Figure 5.2 - DAG of conflict analysis using an implication graph 
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We now observe the chronological decision making and consequences of those 

decisions of the solver in this search tree: 

 

P1 and P2: Unrelated events happen. 

P3: 

The solver assigns value 1 to x2: 

o by C3 and x2 = 1 we then have: x3 = 1 

P4: 

The solver assigns value 0 to x1. 

P5: Unrelated events. 

P6: The solver assigns value 0 to x5. 

P7 and P8: Unrelated events. 

P9: 

 The solver assigns value 0 to x9. 

o by C1 and x9 = 0 we then have: x7 = 1; 

o by C2, x5 = 0 and x7 = 1 we then have: x8 = 1; 

o by C5, x1 = 0 and x8 = 1 we then have: x6 = 0; 

(at this point we have reached a unit clause, so we can determine a 

value for x4). 

o by C6, x3 = 1 and x6 = 0 we then have: x4 = 1; 

o by C4, x1 = 0, x5 = 0 and x6 = 0 we then have: x4 = 0. 

 

Although we did reach a unit clause and assigned a value to x4, but the solver 

found two values for x4. x4 cannot both be 0 and 1 at the same time therefore we 

have reached a conflict. We call x4 a conflicting variable. 
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There are many ways of how to interpret this conflict and determining where to 

backtrack to, to avoid doing redundant computations and being stuck in an 

endless loop in this local branching problem. But the solver can also use this 

information to prevent future conflicts which follow the same pattern. Marques 

Silva and Sakallah explain the Unit Implication Point in [17]. However, these 

methods are out of the scope of this report and we will not discuss them further 

here. 

 

We did reach a conflict in this example, but we also reached a unit clause (hence 

the solver being able to determine the values for x4). We have also presented the 

head/tail approach leading up to the conflict, in Figure 5.3, following similar 

conventions from Figure 5.1. Figure 5.3 is self-explanatory. Since there are a 

number of consequences in phase 9, we represent each step in a separate table for 

more clarification. At table P9-4, we have reached the unit clause and also the 

conflict. 
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P0 

Head/tail ↓        ↓ 

Value          

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 

 

P3 

Head/tail ↓        ↓ 

Value  1 1       

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 

 

P4 

Head/tail    ↓     ↓ 

Value 0 1 1       

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 

 

P6 

Head/tail    ↓     ↓ 

Value 0 1 1  0     

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 

 

P9-1 

Head/tail    ↓    ↓  

Value 0 1 1  0    0 

Variable x1 x2 x3 x4 x5 x6  x8 x9 

 

P9-2 

Head/tail    ↓    ↓  

Value 0 1 1  0  1  0 

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 

  

P9-3 

Head/tail    ↓  ↓    

Value 0 1 1  0  1 1 0 

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 

 

P9-4 

Head/tail    ↓↓      

Value 0 1 1  0 0 1 1 0 

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 

 

Figure 5.3 – Head/tail trace of the DAG from Figure 5.2. 
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Chapter 6 

Conclusion and Future Work 

 

6.1   Summary 

In this report we aimed to show and emphasise on the Event Calculus to be a 

robust and flexible formalisation to deal with commonsense reasoning. We started 

by describing commonsense reasoning and some of its features and reasoning 

types in Chapter 1. A detailed description of the Cyc project was given and it was 

explained how it gathers information about the world. 

Cyc's world knowledge is automatically collected and filtered by machine and 

then approved by human ontologists. Cyc crawls the web to collect the knowledge 

it finds interesting based on what it already knows. However, it does allow for 

manual assertions as well. New concepts in Cyc are encouraged to be formed if 

there are more than 10 properties of that concept to be stored on the knowledge 

base otherwise it is advised to use a combination of existing concepts. This is a 

good example of a systematic approach towards tackling acquisition of 

commonsense knowledge in the real world. 

  

In Chapter 2, an introduction of the Event Calculus was given: a representational 

tool for formalising commonsense. We also talked about the features of the EC 

and discussed how to compute circumscription, the mathematical device to deal 

with default reasoning. An example was presented: an EC representation of a real 

world scenario was constructed from a natural language description.  
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We then presented our framework of the Bucket World in Chapter 3 in which we 

simulate the real world in an abstract commonsense point of view. Our agent in 

this scenario has a goal to achieve and we elaborate the steps of the proof. In this 

chapter we compared our methods with those of Shin and Davis [40]. Our 

flagging system was described which deals with triggered events - to stop them 

from occurring repeatedly. In formalising a world scenario in the Event Calculus, 

we have to define a framework which simulates the world and the relationship 

between entities and actions can potentially happen and their effects. We then 

have to formalise the scenario which will be the narrative of our simulation. The 

framework and the narrative together form our domain description. 

Chapter 4 discussed the acquisition of commonsense knowledge and the problem 

of identifying the correct level of detail of knowledge to be imported to the 

reasoning system. We introduced a method of transforming formulas of the Event 

Calculus into propositional logic in the Conjunctive Normal Form; which would 

be suitable for feeding into SAT solvers. We presented an example of a domain 

description in the EC and then converted it into propositional logic; and showed 

that using this method we could automatically prove propositions by a SAT solver 

as we could do manually. 

Chapter 5 discussed different automated reasoning methods that deal with the 

Event Calculus. We then go into detail of one of these methods: SAT solving. 

Branching and pruning methods in SAT solving were described. 

 

In general, performing commonsense reasoning based on the domain specific 

problem heavily depends on the background knowledge about the world. For a 
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systematic approach towards gathering background knowledge for solving a 

commonsense problem we need to determine: 

• What knowledge is related to our specific domain of problem; 

• The consistency of this knowledge with our domain-specific 

 representation; 

• To what extent of detail we need the extra knowledge on a given problem: 

For instance when Fred leaves home and stops by a shop on his way to the 

office, do we care how he got to the office? Do we care by which means 

he went to the shop and from there to the office? Or do we care to know 

that he has stopped by the shop? In different scenarios we care about 

different aspects of the problem. 

 

We showed various features of the Event Calculus in this report. In the  

comparison of our scenario with the one of Shin and Davis, we showed the 

superiority of the EC. 
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6.2 Future Work 

An interesting and useful follow up of this work would be to convert the Fluid 

Theory of Davis [9] into the event calculus formalism and then combine it with 

the example presented in Chapter 3. This will be the first instance of its kind to 

combine two well developed commonsense aspects of the real world in a merged 

framework. The example in Chapter 3 is investigated at a general level of 

commonsense, one which we use every day: it does not go into too much details 

of the entities. For instance it does not care about the details of the walking action 

such as that the left leg should go forward after the right leg has landed and so on. 

However, this is not to say that this level of detail is not useful; quite the opposite 

it potentially is. It all depends on what we need it for. From a robotic point of 

view for instance, the smallest details of a robot walking are the most important 

for the walking action. The approach towards using the Event Calculus in 

performing commonsense reasoning for robots is already being tackled by pioneer 

researchers of the field such as Murray Shanahan, Mark Witkowsky and David 

Randell [75, 76, 77]. This is a promising approach since it works on an abstract 

level to deal with everyday problems that a robot has to deal with. On the other 

hand, a detailed perspective is very useful in different situations. For instance, 

Davis is researching on a detailed commonsense level (as to movements of a 

liquid molecules) that is used in a factory (he uses PDDL+ for his formalism but 

as discussed in Chapter 3, the EC can outperform PDDL+ on various grounds in 

commonsense reasoning). 

Both perspectives (i.e. general and detailed) are necessary and useful. However, 

there has not been any attempt to combine these and create a new merged 

framework in which both views can be investigated. 
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We will create such framework and analyse the result of this combination. So it 

will not only model for an agent to fill in a bucket until it is full, and then move 

the bucket, but also it will model the movement of water inside the bucket on a 

molecular movement level. Therefore the filling-in action will have actual 

physical representation in the framework. This will render the Event Calculus as a 

suitable representational task for planning some robotics actions. 

In Chapters 2 and 3, we translated natural language scenarios into the Event 

Calculus and then proved our propositions on those translations. We discussed 

automation of this process with Murray Shanahan and Erik Mueller in verbal and 

correspondence. We aim to investigate this by means of shallow parsing of the 

text and then derive algorithms to represent them in EC. However, this is a 

difficult task considering the notes pointed out in section 3.2 of Chapter 3 but 

quite fruitful: a machine with the ability to translate natural language text into the 

EC and perform commonsense reasoning on them. This will be of interest to 

researchers in various fields of Artificial Intelligence such as automated reasoning, 

natural language processing, robotics and commonsense reasoning. The Cyc 

project has developed a similar fashion, but as an independent and private 

company. This will show the strengths of the Event Calculus and establish it as a 

strong representational tool for handling commonsense reasoning extracted from 

natural language text. Developing such algorithms will also result in a reduction 

of the time spent on manual translation [2, 3]. This automatic translation is non-

trivial and implicates the following tasks: 

• Find relations between entities of the discourse or sentence 

• Identify the commonsense relations with help of external knowledge 

• Formulate this knowledge in the EC 
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We have identified Cyc's world knowledge to be a good source of external 

knowledge for this purpose. For using Cyc‟s knowledgebase, however, we will 

need to: 

• Match and extract relations from Cyc, based on our domain-specific 

knowledge 

• Check for inconsistency between the knowledge coming from Cyc and our 

problem representation 

• Formulate the knowledge from CycL into EC 
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Appendices 

 

Appendix A 

 Event Calculus Axioms 

 

EC1: Clipped(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Terminates(e, 

f, t)) 

EC2: Declipped(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Initiates(e, f, 

t)) 

EC3: StoppedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  

Terminates(e, f, t)) 

EC4: StartedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Initiates(e, f, 

t)) 

EC5: (Happens(e, t1)  Initiates(e, f1, t1)  0 < t2  Trajectory(f1, t1, f2, t2) 

 StoppedIn(t1, f1, t1 + t2))  HoldsAt(f2, t1 + t2) 

EC6: (Happens(e, t1)  Terminates(e, f1, t1)  0 < t2  AntiTrajectory(f1, 

t1, f2, t2)  StartedIn(t1, f1, t1 + t2))  HoldsAt(f2, t1 + t2) 

EC7: PersistsBetween(t1, f, t2)  t (ReleasedAt(f, t)  t1 <t  t2) 

EC8: ReleasedBetween(t1, f, t2)  t (Happens(e, t)  t1  t < t2  

Releases(e, f, t)) 

EC9: (HoldsAt(f, t1)  t1 < t2  PersistsBetween(t1, f, t2)  Clipped(t1, f, 

t2))  HoldsAt(f, t2) 

EC10: (HoldsAt(f, t1)  t1 < t2  PersistsBetween(t1, f, t2)  

Declipped(t1, f, t2))  HoldsAt(f, t2) 

EC11: (ReleasedAt(f, t1)  t1 < t2  Clipped(t1, f, t2)  Declipped(t1, f, 

t2))  ReleasedAt(f, t2) 

EC12: (ReleasedAt(f, t1)  t1 < t2  ReleasedBetween(t1, f, t2))  

ReleasedAt(f, t2) 
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EC13: ReleasedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Releases(e, 

f, t)) 

EC14: (Happens(e, t1)  Initiates(e, f, t1)  t1 < t2  StoppedIn(t1, f, t2)  

ReleasedIn(t1, f, t2))  HoldsAt(f, t2) 

EC15: (Happens(e, t1)  Terminates(e, f, t1)  t1 < t2  StartedIn(t1, f, t2) 

 ReleasedIn(t1, f, t2))  HoldsAt(f, t2) 

EC16: (Happens(e, t1)  Releases(e, f, t1)  t1 < t2  StoppedIn(t1, f, t2) 

 StartedIn(t1, f, t2))  ReleasedAt(f, t2) 

EC17: (Happens(e, t1)  (Initiates(e, f, t1)  Terminates(e, f, t1))  t1 < t2 

 ReleasedIn(t1, f, t2)  ReleasedAt(f, t2) 
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Appendix B 

 Discrete Event Calculus Axioms 

 

DEC1: StoppedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  

Terminates(e, f, t)) 

DEC2: StartedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Initiates(e, f, 

t)) 

DEC3: (Happens(e, t1)  Initiates(e, f1, t1)  0 < t2  Trajectory(f1, t1, f2, t2) 

 StoppedIn(t1, f1, t1 + t2))  HoldsAt(f2, t1 + t2) 

DEC4: (Happens(e, t1)  Terminates(e, f1, t1)  0 < t2  AntiTrajectory(f1, 

t1, f2, t2)  StartedIn(t1, f1, t1 + t2))  HoldsAt(f2, t1 + t2) 

DEC5: (HoldsAt(f, t)  ReleasedAt(f, t + 1)  e (Happens(e, t)  

Terminates(e, f, t)))  HoldsAt(f, t + 1) 

DEC6: (HoldsAt(f, t)  ReleasedAt(f, t+1)  e (Happens(e, t)  

Initiates(e, f, t)))  HoldsAt(f, t+1) 

DEC7: (ReleasedAt(f, t)  e (Happens(e, t)  (Initiates(e, f, t)  

Terminates(e, f, t)))  ReleasedAt(f, t + 1) 

DEC8: (ReleasedAt(f, t)  e (Happens(e, t)  (Releases(e, f, t)))  

ReleasedAt(f, t + 1) 

DEC9: (Happens(e, t)  Initiates(e, f, t))  HoldsAt(f, t + 1) 

DEC10: (Happens(e, t)  Terminates(e, f, t))  HoldsAt(f, t + 1) 

DEC11: (Happens(e, t)  Releases(e, f, t))  ReleasedAt(f, t + 1) 

DEC12: (Happens(e, t)  (Initiates(e, f, t)  Terminates(e, f, t)))  

ReleasedAt(f, t + 1) 
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Appendix C 
Shin and Davis description of the Bucket 

domain 

;; 

==========================================================

===== 

;; "Bucket" Domain: ;; 

;;  Deliver a specified amount of water to a specified ;; 

;;  location(s) by a specified deadline. ;; 

;; ;; 

;;  Assumptions: ;; 

;; - An agent can carry at most one bucket at a time. ;; 

;; - Zero or more than one tap are in each location. ;; 

;; - Each tap fills only one bucket at a time. ;; 

;; - Each bucket can be filled by more than one tap ;; 

;;  in a location at a time, allowing concurrent continuous ;; 

;;  changes on the level of a bucket. ;; 

;; 

==========================================================

========= 

(define  (domain  Buckets) 

(:requirements  :time  :continuous-effects) 

(:types  agent  bucket tap  location) 

(:predicates  (at ?o - (either agent bucket tap) ?l - location) 

(on  ?t - tap) 

(filling  ?t - tap ?b - bucket) 

(carrying  ?a - agent ?b - bucket) 

(is_walking  ?a - agent ?d - location) 

(connected  ?s - location ?d - location) 

) 

(:functions  (capacity ?b - bucket) - float 

(flow_rate  ?t - tap) - float 

(walking_speed  ?a - agent) - float 

(distance  ?s - location ?d - location) - float 

(amount_of_water  ?l - location) - fluent 

(distance_to_walk  ?a - agent ?d - location) - fluent 

(level  ?b - bucket) - fluent 

) 

;; 

==========================================================

=== 

;; Filling buckets with taps ;; 

;; 

==========================================================

=== 

(:action  turnOnTap 

:parameters (?a - agent ?t - tap ?b - bucket ?l - location) 
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:precondition (and (at ?a ?l) 

 (at ?b ?l) 

(at ?t ?l) 

(not (on ?t))) 

:effect (and (on ?t) 

(filling ?t ?b)) 

) 

 

(:action  turnOffTap 

:parameters (?a - agent ?t - tap ?b - bucket ?l - location) 

:precondition (and (at ?a ?l) 

(at ?t ?l) 

(on ?t) 

(filling ?t ?b)) 

:effect (and (not (on ?t)) 

(not (filling ?t ?b))) 

) 

 

(:process  fillingBucket 

:parameters (?b - bucket ?t - tap ?l - location) 

:precondition (and (at ?b ?l) 

(at ?t ?l) 

(filling ?t ?l) 

(<= (level ?b) (capacity ?b))) 

:effect (increase (level ?b) (* #t (flow_rate ?t))) 

) 

 

;; 

==========================================================

=== 

;; Moving buckets between locations ;; 

;; 

==========================================================

=== 

 

(:action  pickUp 

:parameters (?a - agent ?b - bucket ?l - location) 

:precondition (and (at ?a ?l) 

(at ?b ?l)) 

:effect (and (not (at ?b ?l)) 

(carrying ?a ?b)) 

) 

 

(:action  putDown 

:parameters (?a - agent ?b - bucket ?l - location) 

:precondition (and (at ?a ?l) 

(carrying ?a ?b)) 

:effect (and (at ?b ?l) 

(not (carrying ?a ?b))) 

) 
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 (:action  go 

:parameters (?a - agent ?s - location ?d - location) 

:precondition (and (at ?a ?s) 

(or (connected ?s ?d) (connected ?d ?s)) 

(not (is_walking ?a ?d))) 

:effect (and (not (at ?a ?s)) 

(is_walking ?a ?d) 

(assign (distance_to_walk ?a ?d) 

(distance ?d ?s))) 

) 

 

(:process  walking 

:parameters (?a - agent ?d - location) 

:precondition (and (is_walking ?a ?d) 

(>= (distance_to_walk ?a ?d) 0) 

:effect (decrease (distance_to_walk ?a ?d) 

(* #t (walking_speed ?a))) 

) 

 

(:event  arrive 

:parameters (?a - agent ?d - location) 

:precondition (and (is_walking ?a ?d) 

(<= (distance-to-walk ?a ?d) 0)) 

:effect (and (not (is_walking ?a ?d)) 

(at ?a ?d)) 

) 

 

;; 

==========================================================

= 

;; Filling among buckets in a location ;; 

;; 

==========================================================

= 

 

(:action  pour 

:parameters 

(?a - agent ?s - bucket ?d - bucket ?q - real ?l - location) 

:precondition (and (at ?a ?l) 

(carrying ?a ?s) 

(at ?d ?l) 

(> ?q 0) 

(<= ?q (level ?s)) 

(<= ?q (- (capacity ?d) (level ?d)))) 

:effect (and (decrease (level ?s) ?q) 

(increase (level ?d) ?q)) 

) 

 

(:action  deliver 
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:parameters (?a - agent ?b - bucket ?l - location ?q - real) 

:precondition (and (at ?a ?l) 

(carrying ?a ?b) 

(> ?q 0) 

(<= ?q (level ?b))) 

:effect (and (increase (amount_of_water ?l) ?q) 

(decrease (level ?b) ?q)) 

) 
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Appendix D 

 Shin and Davis version of a scenario 

for the Bucket domain 

;; 

==========================================================

====== 

;; ;; 

;; A possible solution: ;; 

;;  1. turnOnTap(ERNIE,TAP1,BUCKET1,SL) ;; 

;;   ==> fillingBucket(BUCKET1,TAP1,SL) on ;; 

;;  2. turnOffTAP(ERNIE,TAP1,BUCKET1,SL) ;; 

;;  3. turnOnTap(ERNIE,TAP1,BUCKET2,SL) ;; 

;;   ==> fillingBucket(BUCKET2,TAP1,SL) on ;; 

;;  4. pickUp(ERNIE,BUCKET1,SL) ;; 

;;  5. go(ERNIE,SL,DL) ==> walking(ERNIE,DL) on ;; 

;;  6. arrive(ERNIE,DL) ;; 

;;  7. deliver(ERNIE,BUCKET1,DL,1) ;; 

;;  8. go(ERNIE,DL,SL) ==> walking(ERNIE,SL) on ;; 

;;  9. arrive(ERNIE,SL) ;; 

;;  10. turnOffTAP(ERNIE,TAP1,BUCKET2,SL) ;; 

;;  11. pickUp(ERNIE,BUCKET2,SL) ;; 

;;  12. go(ERNIE,SL,DL) ==> walking(ERNIE,DL) on ;; 

;;  13. arrive(ERNIE,DL) ;; 

;;  14. deliver(ERNIE,BUCKET2,DL,4) ;; 

;; 

==========================================================

====== 

(define  (problem problem1) 

(:domain  Buckets) 

(:requirements  :time :continuous-effects) 

(:objects  SL - location DL - location 

TAP1 - tap 

BUCKET1 - bucket BUCKET2 - bucket 

ERNIE - agent 

) 

 

(:init  (at ERNIE SL) 

(at BUCKET1 SL) 

(at BUCKET2 SL) 

(at TAP1 SL) 

(= (flow_rate TAP1) 0.1) 

(= (walking_speed ERNIE) 5) 

(= (capacity BUCKET1) 4) 

(= (capacity BUCKET2) 4) 

(= (distance SL DL) 100) 
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(= (distance DL SL) 100) 

(= (amount_of_water SL) 0) 

(= (amount_of_water DL) 0) 

(= (distance_to_walk ERNIE SL) 0) 

(= (distance_to_walk ERNIE DL) 0) 

(= (level BUCKET1) 0) 

(= (level BUCKET2) 0) 

(connected SL DL) 

(connected DL SL) 

) 

 

(:goal  (and  (>= (amount_of_water DL) 5)) 

(<= ?total-time 70)) 

) 

) 
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Appendix E 

 Constraint Programming 

Constraint Programming typically provides languages or libraries whose aim is to 

allow the development of application-specific search algorithms. Therefore, the 

way a problem is expressed in CP is generally dependent on the tool which is 

used. In CP the problem is modelled using variables ranging over a finite domain. 

 

Formally, a CP problem is defined [36] as a triple (X, D, C), where X = {x1, x2 ,.. 

xn} is a finite set of n variables, D = {D(x1), D(x2)…., D(xn)} is a set of their 

respective finite domains, and C is a set of constraints. For any constraint c and a 

set x1, x2,… xm of m variables, vars(c) denotes the variables involved, and rel(c)⊆ 

D(x1)× D(x2) × ..× D(xm) is the set of  combinations (or tuples) of assignments for 

the variables x1,x2,..xm that satisfy the constraint. 

A tuple T ∈ rel(c) is called valid when all the values assigned to the respective 

variables x1 ,x2, … xm ∈ vars(c) are available in the corresponding domains. 

For any variable x, |dom(x)| denotes the cardinality of the variable‟s current 

domain; and forward degree (fwdeg) denotes the number of constraints with 

unassigned variables, where x is involved in. The arity of a constraint c is the 

number of variables involved in c. 

 

For instance, the graph colouring problem from the introduction of the previous 

section (SAT Solving) is expressed in CP as: 

V ϵ {1, 2, 3}, W ϵ {1, 2, 3}, … 
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In CP, constraints need to be imposed to enforce inequality for each edge of the 

graph: 

V ≠ W, W ≠ X, X ≠ Y, Y ≠ Z, V ≠ X, … 

 

In CP, a problem must be specified by defining its constraints and variables. CP 

provides users with high-level tools for tuning to express structure of the problem 

and problem-specific knowledge and program the best algorithm for the 

application at hand. Therefore constrains in CP are directly expressible. Although 

this ability makes CP capable of tuning, makes it more difficult to handle because 

the user has to have strong knowledge of these tools in order to use them 

efficiently. For instance, in CP the order in which variables are instantiated during 

the search might determine a better performance than another order. This is in 

contrast to the SAT approach in which CNF formulas would create a black box 

environment in which external tuning is not generally possible. CP tools provide a 

rich set of constraints to express the relations between the variables of the 

problem in the most direct way. For instance, there are constraints to directly 

express numerical relations such as 2a + b = c. Also datastructures such as arrays 

can also be expressed: a[x] = b where a is a variable representing an array, x one 

representing an index and b a value. There are also constraints to express higher 

level constraints with a more complex meaning such as a constraint on a set of 

variables: {xi | i ϵ 1..n} imposing that ∀i ∀j > i.xi ≠ xj. 

 

Branching 

In CP, there are two main heuristics for branching [32]: 
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1. Variable and Value Ordering: this follows the fail-first principle [35]: in 

order to succeed, try where you are most likely to fail, as soon as possible. 

This means to try and discover dead-ends as early as possible. Heuristics 

in this category are mindom [35] (selects the variable with the smallest 

current domain size), max forward degree (fwdeg) [34] (selects the 

variable connected to the largest number of constraints with unassigned 

variables). Alternatively, the solver can simply consider variables 

according to a user-defined variable ordering (or LEX, standing for 

lexicographical ordering). The recently proposed weighted degree 

heuristics wdeg and dom/wdeg [33] base their choices on information 

learned from conflicts discovered during search. These heuristics are 

currently considered amongst the most efficient general-purpose CP 

heuristics.  

2. Intelligent Search Strategies: In order not to get eternally stuck when a 

branching heuristic makes a wrong choice, evolved search strategies have 

been proposed in the CP framework to explore the search tree in an 

intelligent and diversified way. These include: 

 Limited discrepancy search [31] which is based on the assumption 

that a well-chosen heuristic is wrong only a few times along the 

sequence of choices. Search therefore starts by applying the 

heuristics, then exploring other sequences of choices by increasing 

order in the number of discrepancies (i.e. the number of times 

where the heuristic is violated). 

 Interleaved Depth-First Search (IDFS, [30]) searches a number of 

subtrees in parallel in an interleaved manner. The assumption is 
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that the bad choices that are most important to avoid are the ones 

occurring at an early branching stage because they can lead to 

exploring huge subtrees. 

 

Pruning, conflict analysis and backtracking 

Propagation methods first appeared in the context of constraint satisfaction 

problems related to picture processing area [20, 19]. Today‟s propagation engines 

are still mainly based on the original algorithms from [20]. The general idea is to 

reason locally by taking each constraint into consideration in turn. Each constraint 

reacts to modifications of the variables under its scope, reducing the domains of 

the other variables of its scope if needed. For instance, the constraint x ≠ y will 

react to an instantiation of the domain of x to a value a by removing this value 

from the domain of y. The algorithm maintains a queue containing the variables 

that have been recently modified or the constraints depending on these variables. 

 

An efficient algorithm that removes some values from the domains of the 

variables with the guarantee of never deleting any solution can be used in place of 

or in conjunction with constraint propagation. The deduction rules used for 

pruning part of constraint solvers can be seen as closure operators which help 

with: 

 Narrowing: the operators reduce the domain of the variables. 

 Monotonicity: the smaller the initial domains are, the smaller the domains 

obtained after application of the operators will be. 

 Optionally idempotence: applying the operator twice gives the same result 

as applying it once. 
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As explained before, detecting a conflict and backtracking from it not only helps 

the solver not to be eternally stuck in a search space, it also helps avoiding 

redundant computations and preventing future inconsistencies.  

A naïve approach: The simple chronological backtracking technique mentioned 

before [16] is presented in Figure AE.4 and Figure AE.5. In this algorithm, 

variables are incrementally instantiated with values. Once the current variable (v[i] 

in the algorithm) is assigned a value, a backward consistency checking is 

performed against all the past variables. If this consistency check fails, another 

value is selected for v[i] and the consistency check is performed again. If no value 

can be found for v[i] which is consistent with the past variables, then we detect a 

conflict and therefore the variable that is immediately before v[i] (v[h] in the 

algorithm) is uninstantiated and a new value is assigned to it [Figure AE.5]. As 

explained before, this is a naïve approach since v[h] may not have any role at all 

in the conflict detected. 

 

 

1  FUNCTION bt-label(i, consistent): INTEGER 

2  BEGIN 

3   consistent ← false; 

4   FOR v[i] ← EACH ELEMENT OF current-domain[i] WHILE not 

consistent 

5   DO BEGIN 

6    consistent ← true; 

7    FOR h ← 1 TO i - 1 WHILE consistent 

8    DO consistent ← check(i, h); 

9     IF not consistent 

10     THEN current-domain[i] ← remove(v[i], current 
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domain[i]) 

11    END; 

12   IF consistent THEN return (i + 1) ELSE return(i) 

13  END; 

Figure AE.4 – BT labelling algorithm 

 

1 FUNCTION bt-unlabel(i, consistent): INTEGER 

2  BEGIN 

3   h ← i - 1; 

4   current-domain[i] ←domain[i]; 

5   current-domain[h] ← remove(v[h].current-domain[h]): 

6   consistent t current-domain[h] ≠ nil; 

7  return(h) 

8  END; 

Figure AE.5 – BT unlabelling algorithm 

 

 

A more intelligent approach: Conflict-driven back-jumping (or CBJ) adopts a 

more intelligent approach towards detecting conflicts [16]. Using an example 

from [32] we attempt to show the CJP approach: 

Consider variables x1,… , x5 ∈ {0, 1} and the following constraints: 

C1: x4 ≠ x5 

C2: x2 + x3 + x5 ≥ 2x1 

C3: x1 + x4 = x5 

Assigning value 0 to x1 will have the contradictory consequence 0 + x4 = x5 (by 

C3) and by C1: x4 ≠ x5 which is an inconsistency. This inconsistency, however, is 

not necessarily obvious to propagation-based solvers because each of these 

constraints separately impose no inconsistency. A solver will be able to detect the 
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inconsistency once x4 or x5 are instantiated. For instance by assigning value 0 to x4, 

by C3 the solver will deduce that x5 also has to be instantiated to value 0 which 

leads to a contradiction by C1. 

Constraint solvers can sometimes perform the same deductions several times, 

leading to unnecessary repetitions in the branches of the tree. In our case, the 

solver detects the inconsistency by successively assigning values 0 and 1 to x4, 

leading in each case to a failure. Failing to detect the inconsistency involving x4, 

the exploration of the 2 values for x4 is repeated for every branch corresponding 

to an assignment of other variables. 

This conflict is independent of the values assigned to variables x2 and x3, for 

instance.  The constraints that are violated are C1 and C3, which do not involve 

variables x2 and x3. As an analysis of the conflict, therefore, the choice x1 = 0 has 

to be reconsidered (i.e. any branch involving this choice will be inconsistent). The 

idea of CBJ is to keep track of the cause of conflicts by maintaining a conflict set 

that contains the variables involved in the conflicts (conf-set[i] in Figure AE.6). 

 

1  FUNCTION cbj-label (i, consistent): INTEGER 

2  BEGIN 

3   consistent ← false; 

4  FOR v[i] ← EACH ELEMENT OF current-domain[i] WHILE not 

consistent 

5   DO BEGIN 

6   consistent ← true; 

7    FOR h ← 1 TO i-l WHILE consistent 

8   DO consistent ← check(i, h); 

9    IF not consistent 

10    THEN BEGIN 

11     pushnew(h- l, conf-set[i]); 
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12     current-domain[i] +- remove(v[i], current-domain[i]) 

13     END 

14    END; 

15   IF consistent THEN return(i + l) ELSE return(i) 

16  END; 

Figure AE.6 – CBJ labelling algorithm 

 

 

 

1  FUNCTION cbj-unlabel (i, consistent): INTEGER 

2  BEGIN 

3  h ← max-list(conf-set[i]): 

4   conf-sett[h] c-remove(h, union(conf-set[h], conf-set[i])); 

5 FOR j ← h + l TO i 

6 DO BEGIN 

7  conf-set[i] ← {0}; 

8  current-domain[i] ← domain[i] 

9 END; 

10 current-domain[h] ← remove(v[h], current-domain[h]); 

11 consistent ← current-domain[h] ≠ nil; 

12  return(h) 

13  END; 

Figure AE.7 – CBJ unlabelling algorithm 

 

Figures AE.6 and AE.7 (from [16]) show algorithms for implementing CBJ. CBJ 

maintains a conflict set (conf-set[i] in the algorithm) for every variable. conf-set is 

set to be {0} initially. Whenever a consistency check fails between v[h] and v[i], 

h is added to the set conf-set[i] (line 11 of Figure AE.6 - i.e. conf-set[i] is a subset 

of the past variables in conflict with v[i]). If all values are tried in current-

domain[i] and fail the consistency check, then CBJ jumps back to the deepest 



162 

 

variable v[h] where h is a member of the set conf-set[i] – line 3 of Figure AE.7 

where max-list function returns the largest integer in a set of integers. When 

jumping back from v[i] to v[h], CBJ carries the information in conf-set[i] and the 

set of variables in conflict with v[h] and v[i] (conf-set[h] becomes conf-set[h] ⋃ 

conf-set[i] - h). If further backtracking takes place from v[h], CBJ jumps back to 

v[g] where v[g] is the deepest variable in conflict with v[h] or v[i].  

 


