

AN INVESTIGATION INTO

COMMONSENSE REASONING

A THESIS SUBMITTED TO THE UNIVERSITY OF

MANCHESTER

FOR THE DEGREE OF MASTER OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL

SCIENCES

2011

By

Fardad Jabbary Aslany

School of Computer Science

2

Contents

Abstract 6

Declaration 7

Copyright Statements 8

Acknowledgements 9

1 Introduction 11

1.1 Commonsense Reasoning………………………… 11

 1.1.1 Reasoning Types………………………… 12

 1.1.2 Default Reasoning………………………. 14

 1.1.3 Space…………………………………… 15

 1.1.4 Analogical Proccessing…………………. 16

1.2 The Cyc Project................………………………… 18

1.3 Aims of The Project................……………………. 22

2 The Event Calculus 25

2.1 History…………………………………………… 25

2.2 Formal definition of the Event Calculus………... 27

 2.2.1 Introduction……………………………… 27

 2.2.2 Features………………………………….. 30

 2.2.3 Discrete Event Calculus…………………. 38

2.3 Formal definition of circumscription…………… 38

2.4 A natural language example……………………….. 48

3 The Bucket World Scenario 57

3.1 The Bucket scenario……………………………. 57

3.2 Details of scenario………………………….…… 58

3.3 Representation in Event Calculus……………… 65

3.4 Proof of propositions……………………………. 74

3

3.5 Critical remarks………………………………… 97

4 Commonsense Reasoning with the Event Calculus 101

 4.1 Acquisition of commonsense knowledge……… 101

 4.2 Encoding from the Event Calculus…..………….. 102

4.3 An example of a domain description……………… 106

5 Automated Reasoning Methods for the Event Calculus 111

 5.1 Introduction…………..….…………………...… 111

 5.2 SAT Solving....…………………………………... 113

 5.2.1 Branching..…. 116

 5.2.2 Pruning..…. 119

 5.2.3 Conflict analysis and backtracking.....…. 123

6 Conclusion and Future Work 130

 6.1 Summary………………………………………….. 130

 6.2 Future work………………………………………… 133

Bibliography 136

Appendix A …………………………………………………… 145

 Event Calculus Axioms

Appendix B…………………………………………………… 147

 Discrete Event Calculus Axioms

Appendix C…………………………………………………… 148

 Shin and Davis description of the Bucket domain

Appendix D…………………………………………………… 152

 Shin and Davis version of a scenario for the Bucket domain

4

Appendix E…………………………………………………… 154

 Constraint Programming

Word count: 33,297 words

5

List of Figures

Figure 2.1: Logics for Commonsense Reasoning ………………….… 26

Figure 2.2: The Screen Example…………………………………….… 48

Figure 4.1: Converted clauses C1 to C10 into CNF……………………. 109

Figure 5.1: Head/tail approach towards BCP ………………………. 121

Figure 5.2: DAG of conflict analysis using an implication graph…. 126

Figure 5.3: Head/tail trace of the DAG from Figure 5.2……………. 129

____________________APPENDICES FIGURES_____________________

Figure AE.4: BT labelling algorithm…………..………………………. 159

Figure AE.5: BT unlabelling algorithm ……….………………………. 159

Figure AE.6: CBJ labelling algorithm ..……….………………………. 161

Figure AE.7: CBJ unlabelling algorithm ……….………………………. 161

6

Abstract

In this thesis, we introduce commonsense reasoning, some of its features and

reasoning types. We establish the Event Calculus as a logical formalisation to

handle commonsense reasoning; and introduce circumscription as a mathematical

machinery to implement default reasoning.

We define a framework in which we simulate a world scenario, initiated by an

idea from Shin and Davis [40]. They simulate a real world scenario in which an

agent moves from a location to another and fills in some buckets with liquid.

They implement this in PDDL+. We develop their idea further, represent the

scenario in the Event Calculus and elaborate on their formalisations weak points.

We introduce a flagging system to deal with triggered events and prevent them

from repeated occurrence. We show the elaboration tolerance of the Event

Calculus and discuss that carrying out modifications on an already-developed

framework does not need performing surgeries on the formalisation. We compare

our Event Calculus formulas with PDDL+ of Shin and Davis. We show that their

formalism not only does not handle many "commonsense" aspects of their own

scenario, performing small changes in their scenario requires major modifications

whereas in the Event Calculus representation this is not the case due to its

elaboration tolerance.

Later in the thesis, a method to transform Event Calculus formulas into

propositional logic will be introduced that can be fed into a SAT solver for

automated reasoning. The results can be transformed back into Event Calculus

formulas by reverse mapping.

Different automated reasoners that deal with the Event Calculus are discussed and

SAT solving method is explained in more detail.

7

Declaration

No portion of the work referred to in the thesis has been submitted in support of

an application for another degree or qualification of this or any other university or

other institute of learning.

8

Copyright Statements

i. The author of this thesis (including any appendices and/or

schedules to this thesis) owns certain copyright or related rights in

it (the “Copyright”) and s/he has given The University of

Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in

hard or electronic copy, may be made only in accordance with the

Copyright, Designs and Patents Act 1988 (as amended) and

regulations issued under it or, where appropriate, in accordance

with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks

and other intellectual property (the “Intellectual Property”) and any

reproductions of copyright works in the thesis, for example graphs

and tables (“Reproductions”), which may be described in this

thesis, may not be owned by the author and may be owned by third

parties. Such Intellectual Property and Reproductions cannot and

must not be made available for use without the prior written

permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure,

publication and commercialisation of this thesis, the Copyright and

any Intellectual Property and/or Reproductions described in it may

take place is available in the University IP Policy (see

http://www.campus.manchester.ac.uk/medialibrary/policies/intelle

ctual-property.pdf), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library‟s

regulations (see

http://www.manchester.ac.uk/library/aboutus/regulations) and in

The University‟s policy on presentation of Theses.

9

Acknowledgements

I would like to thank my supervisor Dr. Ian Pratt-Hartmann for his support and

guidance throughout the research and directing me in the path which was unclear

before to me.

I would also like to thank my family, Dr. Farzad Jabbary Aslany, Dr. Shahnaz

Hariri, Dr. Farnaz Jabbary Aslany, Shahrad Jabbary Aslany and John and Mahin

Goodall and Q for their support during this time.

Special thanks to Dr. Elena Martin Ávila, Jaime Martin Ávila, Carlos Martin,

Concepcion Inmaculada Ávila, Ana Sánchez, La Abuela, Amin Rismanchian,

Brako and Chipy. And in the memory of Tuna.

Hilverd Reker, Lily Safie and Mo Pouya Haghighi have been amazing friends and

colleagues with whom this difficult world is a better place to live in.

Many thanks to Dr. Daniel Neagu whose support I will forever appreciate. I also

would like to thank Dr. Keshav Dahal for his positive thinking and good spirit.

Special thanks to Emmanuel Giannopoulos and Los Cochinotes: Víctor Parrilla

Mesa (Cochinote Grande), Rodrigo Martin (Tito), Concepción Fernández López

(Conchita), Ana Navarro (hermana de Bea), Lorraine Richard (catwoman), Susel

Arzuaga (la Cubana), Benoit Lepetitcolin (enamoredo de calimocho) and Jean

Plateau.

This period of life was engraved into memory with the company of Claire Tolley,

Silvia Sáenz Romo, George Peltekis, Braulio Girela, Laura Rubio Moreno and

Alba Ibáñez-Vivanco.

I have great gratitude towards Malcolm Harper for his great help, support and

understanding. Also towards my friends and colleagues at George Kenyon Hall,

specially Saurabh Sunder.

10

At the end, many thanks to Dr. Daniel Espino, Dr. Pablo Vivanco, Dr. Rocío

Ortuño Casanova, Cheryl Williams, Dr. Cesar Lopez Camacho, Dr. Lars Nilse, Dr.

Gisela Orozco, Dr. Roberto Carrasco, Dr. Neil Armitage, Gregorio Barba, Ander,

Deborah Twigger and Omid Karimpour.

11

Chapter 1

Introduction

For decades many scientists have been interested in building machines with

human-like intelligence and computational power [1]. Even though there have

been numerous advances in the field since its birth in 1940s, Artificial

Intelligence simulation on a machine is still difficult due to the lack of full

understanding of how a human‟s brain works.

1.1 Commonsense Reasoning

Commonsense reasoning is the process of using implicit world knowledge for

making inferences about a scenario based on the facts provided; the world

knowledge we implicitly obtain by various methods such as learning from one‟s

own experiences, others‟ experiences, reading about them, observation and so on.

Most often, when we hear or read a sentence, we perceive some information. It is

very clear, however, that not everything could be said in one sentence. So when

we read a sentence and we understand it, we are using much more knowledge

than could be extracted from the sentence. Therefore, the implicit knowledge

which we already possess makes this understanding possible. This is exactly what

commonsense reasoning is about.

12

For instance, when a person is watching a scene in which an object is falling from

some height, they know (or actually infer) that it is not going to stop until it

reaches the ground; and when it reaches the ground, it will either bounce or stay

still, depending on the mass, material and other properties of the object and the

ground.

During decades of research, various researchers have tried to describe and capture

commonsense, starting with a call by John McCarthy [4] to use logic to build

computer applications with commonsense. Following a suggestion by McCarthy,

Lifschitz [10] created a list of commonsense reasoning benchmark problems

which helped the researchers of the field to focus their attempts and which

resulted in many new features added to the commonsense reasoning

representational languages. Morgenstern keeps an up to date list of commonsense

benchmark problems [11].

1.1.1 Reasoning Types

The kinds of reasoning that a human performs are not fully identified. The

following, lists some of the reasoning types that have been simulated on a

machine. The list is by no means exhaustive but contains the reasoning types that

we are interested in commonsense reasoning simulation on a machine:

 Prediction

 Planning

 Postdiction

 Model Finding

13

Prediction consists of determining the state of the world after a sequence of

actions. For instance in the example of a falling object, we predict that the object

is going to land on the ground based on various facts, such as that we know when

an object that is falling will continue to fall until it reaches a surface and will not

magically disappear; an object that is falling is most likely to continue falling in a

straight line; a falling object will be going towards the ground not upwards; and

so on. Formally, we can present this as:

Initiates(Fall(object), Falling(object), t).

Terminates(HitSurface(object), Falling(object), t).

HoldsAt(Height(object, h1), t1)  h2 = Max(0, h1 – t2
2
) 

Trajectory(Falling(object), t1, Height(object, h2), t2).

 The above representations are in the Event Calculus (EC) format which we will

fully describe later in the report. What they mean, however, is that the event of

falling an object initiates falling of that object. The event of it hitting a surface

will terminate the fact that object is falling. The last axiom reads that if an object

starts falling at time t1, then its height at time t2 will be Max(0,h1-t2
2
). The above

representation is not a full prediction problem represented in EC, it is only a

simple representation of small facts. However it is by the combination of these

little facts that a full proposition can be proved; we will show this later in the

report.

Planning consists of determining what events will lead to a final state from an

initial state in the world. For instance if we know there is a hungry cat in the

kitchen and there is a piece of meat on the table and the cat can reach the table,

then we could devise a plan in which the cat approaches and eats the meat.

14

Postdiction consists of determining an initial state of the world given a sequence

of events and a final state. For instance, if the cat is no longer hungry, then there

was some food in the kitchen for the cat to have.

Model Finding consists of generating possible models from states of the world

and events that can happen in the world. For example, if Fred is at home and he

potentially can turn off the light, the TV or the fan, and that each of these actions

have different effects, it is possible that at a later timepoint the light is off, or the

TV is off, or the fan is off, all of them are off, none of them are off or

combination of some off and some on. This potentiality makes reasoning more

complex and some cases impossible due to infinite number of possibilities, one

leading to another. How we deal with this problem is through default reasoning.

1.1.2 Default Reasoning

When performing commonsense reasoning, it is rarely the case that we have

complete information about the state of the world. Therefore we need to make

certain assumptions and make inferences based on them to proceed. That is why

commonsense reasoning requires default reasoning. Commonsense reasoning is

based on actions and their effects on the state of the world. For this reason, when

performing commonsense reasoning we need to have the default (commonsense)

assumption that:

 Unexpected events do not occur; and

 Events do not have unexpected effects

15

This way we could make inferences based on incomplete information (which we

are likely to have in most cases) and proceed. We will give a detailed explanation

of using circumscription to implement default reasoning on a machine.

1.1.3 Space

Many instances of commonsense reasoning involve space. In this section we

briefly describe space axiomatisation in our commonsense representation.

Space: In the commonsense world, objects stand in various relations to each other

or to a base point. For instance, a pencil is in a jar, a person is in a room, two

objects moving with varied velocities might collide and so on. In discussing

commonsense, we need to take these relations into account. In one of the

scenarios presented at a later chapter, we use the spatial theories about space in

the commonsense world of Region Connection Calculus (RCC) by Randell, Cui

and Cohn [12]. In their theory, the ontological primitives include physical objects,

regions and sets of entities. For example, basic relations such as P(x, y) „x is part

of y‟, C(x, y) „x is connected with y‟, PO(x, y) „x partially overlaps y‟ and

composite relations such as INSIDE(x, y) „x is inside y‟, P-INSIDE(x, y) „x is

partially inside y‟ and OUTSIDE(x, y) „x is outside y‟ resemble (partially) space

domain of commonsense. It is easy to see that these formalisms represent

concepts of commonsense. As an example, if two distinct objects which are not

disjoint initially and over time they become connected, then those objects collide

(the commonsense fact is clear in this theory that it is odd that two regions can be

distinct but occupy the same amount of space).

16

1.1.4 Analogical Processing

In analogy, a given situation is understood by comparison with another similar

situation. Analogy could be used to guide reasoning, to generate conjectures about

an unfamiliar domain, or to generalise several experiences into an abstract schema.

Analogical Processing: It deals with novel situations that an agent might

encounter and has no direct commonsense knowledge of; in such a case, the agent

might be able to reason about the novel situation by matching the analogy to a

familiar situation. Consider the following example: If an agent puts a stopper in

place in the sink and opens the tap, the water will eventually start spilling onto the

floor because it reaches and goes over the rim of the sink (example from

Shanahan [48, 56 pp. 302-304]). An agent might have encountered and reasoned

about the previous situation before, but a novel situation could be formed by

replacing water by sand. Using analogical processing, and in particular a well-

developed mechanism called Structure-Mapping Engine (SME) this comparison

is possible. For details of SME please refer to [25] as we will not discuss it here.

We would like, however, to present an example from [25] to show how SME can

be partially used to solve commonsense reasoning problems:

The comparison between water flow and heat flow is represented as follows:

The base (already encountered) domain:

Causes(GreaterThan(Pressure(Beaker), Pressure(Vial)).

Flow(Beaker, Vial, Water, Pipe)).

GreaterThan(Diameter(Beaker), Diameter(Vial)).

Liquid(Water).

FlatTop(Water).

17

The above reads: when the pressure of the beaker is greater than the pressure of

the vial it causes the flow of water from the beaker to the vial through the pipe;

the diameter of the beaker is greater than that of the vial in general; water is liquid

and it has a flat top.

The target (novel) domain:

GreaterThan(Temperature(Coffee), Temperature(IceCube)).

Flow(Coffee, IceCube, Heat, Bar).

Liquid(Coffee).

FlatTop(Coffee).

It reads that the temperature of coffee is greater than ice cube; heat can flow from

coffee to the ice cube through the bar; coffee is liquid and it has a flat top.

The SME can then produce global mappings and choose the one with the highest

score:

Beaker  Coffee.

Vial  IceCube.

Water  Heat.

Pipe  Bar.

Pressure(Beaker)  Temperature(Coffee).

Pressure(Vial)  Temperature(IceCube).

GreaterThan(Pressure(Beaker), Pressure(Vial)) 

GreaterThan(Temperature(Coffee), Temperature(IceCube)).

Flow(Beaker, Vial, Water, Pipe)  Flow(Coffee, IceCube, Heat, Bar).

And the following candidate inference is produced:

Causes(GreaterThan(Temperature(Coffee), Temperature(IceCube)),

Flow(Coffee, IceCube, Heat, Bar)).

18

SME is only a partial solution for commonsense reasoning. Other commonsense

reasoning mechanisms are required to evaluate and draw inferences; SME can be

used to produce potential inference candidates, as a complement method.

1.2 The Cyc project

Doug Lenat, founder of the Cyc project explains: “The purpose of Cyc is to

provide computers with a store of formally represented „common sense‟: real

world knowledge that can provide a basis for additional knowledge to be gathered

and interpreted automatically” [46].

Cyc project began in 1984 and has been evolving and gathering commonsense

knowledge from various sources for more than 26 years to this day. Cyc states its

long term goal as: “automating the process of building a consistent formalised

representation of the world in Cyc knowledge bases on machine learning” [47].

Cyc, however, uses logic for commonsense reasoning [7, 17]. Cyc‟s knowledge

base is quite reliable due to the methods that it uses before any new knowledge is

added to its knowledgebase. We briefly describe the methods here.

The Cyc ontologists asserted some basic facts into Cyc in the early days in order

to enable Cyc to crawl the web and gather new information based on what it

already knows [7]. With the knowledge in the knowledgebase, Cyc decides to

search for an “interesting” subject using the following algorithm (the topic is

either picked from the knowledge base or set by a human expert and the search is

run on the Internet via Google) [47]:

19

For a given search run, a depth of D is selected. D is the maximum number of

different values that can be used for each argument of a predicate. For each binary

predicate pi in the test set P, the types of constraint in each of the two arguments

are retrieved from the knowledge base. The D most fully represented values from

the knowledge base are retrieved unless the type is generalised to an infinite class.

The D fully represented values means those that appear in the most assertions and

therefore about which the most is known. These are assumed to be the most

“interesting” terms of that type and the ones most likely to be found by a web

search. There are the types T
i1

 and T
i2

 for pi. The D best represented values are

(t
i1

1 … t
i1

D) and (t
i2

1 …t
i2

D).

If neither of a predicate‟s arguments are of values of a continuous type, there will

be 2D*|P| queries generated (in CycL):

(p1 t
11

1 ?VAR) … (p1 t
11

D ?VAR)

(p1 ?VAR t121) … (p1 ?VAR t
12

D)

…

(p|P| t
|P|1

1 ?VAR) … (p|P| t
|P|1

D ?VAR)

(p|P| ?VAR t
|P|2

1) … (p|P| ?VAR t
|P|2

D)

The limit of binary predicates (p) is set by the ontologists. The number of p is

currently 134 predicates.

When Cyc decides to learn about a new fact, it poses a query. Then the query is

translated into natural language from CycL (Cyc‟s representational language) and

is searched on the web via Google. This translation is done by 233 manually

created special generation templates for the 134 predicates. Cyc knowledgebase

generally contains one or two generation templates for any given predicate. For

instance, Cyc might pose the queries:

20

“Microsoft company founder _____”

“MS company founder _____”

“Microsoft company founded by _____”

“MS company founded by _____”

Whose aims are to find out the founder of Microsoft.

The results of the query are then translated back into CycL. Since Cyc uses

predefined templates for generating natural language queries, it also expects the

results to be in the same predefined forms. For instance, when Cyc poses the

above queries, it expects the results to be in the form of:

“Microsoft founder Bill Gates is still running the company.”. Depending on where

the position of ____ was in the initial query, Cyc will assume that position to fill

in the predicate argument (Bill Gates in this case).

Then Cyc checks the result for inconsistency or redundancy against the already

known (and supposedly correct) knowledgebase. Cyc discards redundant or

inconsistent search results; then rechecks the remaining results in Google by

adding a word (from the same concept) to the query. If there are no results

returned then the “fact” is discarded otherwise the fact is sent to an ontologist to

review and insert into the knowledgebase if correct.

Using this method and the fact that a human expert will review the acquired fact

before assertion, it is guaranteed that the asserted knowledge in the

knowledgebase are (at least to a human-expert level) correct.

21

CycL

CycL‟s syntax is based on the syntax of First-order Logic and Lisp [45]. CycL

handles all of FOL connectives such as and, or, implies and also quantifiers.

CycL also handles default reasoning which makes a suitable language to deal with

commonsense [24, Sec. 1]. It has five different truth values for statements (fluents)

which are: monotonically false, default false, unknown, default true and

monotonically true. As a regularly updated knowledgebase, the default values can

be overridden. For instance a statement such as “Dogs have four legs” in standard

truth-conditional logic would raise inconsistency since there are dogs who have

three legs as well. The approach of different truth values taken by Cyc helps to

prevent inconsistency and also makes the ontology more robust (by solving the

problem that three-legged dogs, for instance, are still “dogs” which are still

“mammals” and so on). Cyc also uses “microtheories” [24] which are small and

dynamically generated concepts depending on implicit context of reference. For

instance, the following conversation would raise inconsistency by using standard

truth-conditional logic:

CHILD: Who is Dracula, Dad?

FATHER: A vampire.

CHILD: Are there really vampires?

FATHER: No, vampires don‟t exist.

Of course, is as discussed in [24], the father‟s answer to the first question is in

context of mythology and fiction but the answer to the second question is in

context of the real world. Assertions in a microtheory must be consistent with

each other (local consistency) but do not need to be consistent with other

22

microtheories. This way, global consistency is assured while local consistencies

can exist in different microtheories.

1.3 Aims of The Project

The principal aim of this thesis is to

 1. show and emphasise on the Event Calculus to be a robust and flexible

 formalisation to deal with commonsense reasoning

This will be complemented by a series of further aims:

2. explain the event calculus in detail

3. introduce circumscription to deal with default reasoning

4. compare the Event Calculus with PDDL+ in practice

5. introduce a method for converting the Event Calculus formulas into

 propositional logic to be reasoned over by a SAT solver

6. introduce automated reasoners that deal with the Event Calculus

In this chapter we talked about commonsense reasoning in general and some of its

specifications and reasoning types. We also talked about the Cyc project, a good

example of a systematic approach towards commonsense reasoning using a

logical formalisation. In the rest of this report:

 To achieve our second aim we will introduce the Event Calculus, a

formalisation that deals with commonsense reasoning in detail. This will

be complemented with examples to better emphasise the features of the

Event Calculus (EC).

 For achieving the third aim, we will introduce circumscription which will

be our mathematical machinery to implement default reasoning. This will

23

be followed by an example in EC to show the use of circumscription in the

EC in practice.

 For satisfying the fourth aim, we will present a framework which we have

constructed in the Event Calculus with a real world scenario. Our

framework is an abstract simulation of a real world model in which we

have tried to capture some commonsense facts and rules. The initial idea

of this model was based on Shin and Davis formalisation of a similar (but

much more abstract) world. We prove a proposition in the scenario in

which an agent has a goal in mind and sets off to perform some actions to

achieve the goal. We show that by using the EC formalisation and

modelling of the world we could indeed prove the proposition. A flagging

system is introduced which prevents repeated occurences of an action

while all its conditions hold. We compare our formalism in EC with that

of Shin and Davis and mention the advantages and shortcomings. Then we

analyse and talk about the importance of determining the level of details

we need to focus on to solve a commonsense problem.

 To achieve our fifth aim, we present an encoding method to transform EC

formulas into a satisfiability problem so that we could automatically

perform reasoning on a commonsense problem by sending the then-

propositional problem to a SAT solver. The results will be converted back

to EC formulas by using reverse mapping.

 To satisfy our sixth aim, we mention automatic reasoning methods that

deal with the EC in the literature and describe how a SAT solver works in

greater detail.

24

 We then draw conclusions on this report and the achievements of it and

talk about the future work and the many great possibilities that the Event

Calculus provides to handle commonsense problems. By this point, we

will have achieved our principal aim which is to show and emphasise on

the Event Calculus to be a robust and flexible formalisation to deal with

commonsense reasoning.

One note to take into account here is that although we give many EC examples in

this report in different sections, we do not perform the propositional encoding on

our framework. The reason for this is simply because this is not an aim of the

project. Using a SAT solver for automating the proof is a different piece of work

which we did not intend to achieve (and compare performances of different

solvers and reasoners). This could be a follow-up piece of work but not in the

intention or scope of this project.

25

Chapter 2

The Event Calculus

In this chapter we introduce the event calculus; the standard representational

language of representing and reasoning with commonsense.

2.1 History

The event calculus (EC) uses the syntax of First-order Logic. Mueller [14, pp.

271-289] investigates the evolution of different logical approaches in

commonsense reasoning which started from the introduction of the Situation

Calculus by John McCarthy [27] and McCarthy and Hayes [28].

The Event Calculus was developed by Kowalski and Sergot [50]. A lot of

research and work has gone into the Event Calculus and new extensions have

been appended hence it has evolved enormously over time. The extensions to the

EC have brought the advantages of the other logics such as the Forced Separation

of Features and Fluents introduced by Murray Shanahan [56, Ch. 16], Causal

constraints of Fluent Calculus and Continuous Change to make the Event

Calculus the most robust and the standard logic for commonsense reasoning.

26

Figure 2.1 shows a brief history of evolution of the Event Calculus. This figure

does not mean Situation Calculus is out of use today – it simply shows how Event

Calculus has evolved to where it is now and the properties it has borrowed from

other formalisations.

Figure 2.1: Logics for Commonsense Reasoning

27

2.2 Formal definition of the Event Calculus

2.2.1 Introduction

The event calculus is a narrative-based formalism for reasoning about action [5].

Shanahan [56, p155] defines a narrative as: “A distinguished course of events

about which we may have incomplete information”. The event calculus addresses

all of the key issues of commonsense reasoning for which we will give more

details later in this chapter. EC is the language of action and change and therefore

has three basic notions as follows:

 Events: which represent actions or events that may occur in the world such

as breaking a glass. An event may happen at a timepoint.

 Fluents: which represent time-varying properties in the world such as

location of a glass. A fluent has a truth value at any given timepoint or a

timepoint interval.

 Timepoints: which represent an instant of time such as 8:00 AM

Greenwich Mean Time on September 20 2007.

After an event occurs (or in EC terms: happens), the truth values of fluents may

change. We have commonsense background knowledge about the effects of

events on fluents such as dropping an object results in the object falling.

We represent the basic notions in the Event Calculus as follows:

HoldsAt(f, t): means fluent „f‟ holds at timepoint „t‟.

Happens(e, t): means event „e‟ occurs at timepoint „t‟.

Initiates(e, f, t): represents that if event „e‟ happens at timepoint „t‟, then

fluent „f‟ will be true after „t‟.

28

Terminates(e, f, t): represents that if event „e‟ happens at timepoint „t‟,

then fluent „f‟ will be false after „t‟.

For instance, the following is an EC representation of if somebody wakes up then

they will be awake and not sleeping anymore. Also that John is initially not awake

but then he wakes up:

Our EC axioms (commonsense or background knowledge):

Ex1.1: Initiates(WakeUp(a), Awake(a), t)

Ex1.2: Terminates(WakeUp(a), Asleep(a), t)

Initial situation (observations):

Ex1.3: HoldsAt(Awake(John), 0)

Event occurrences (narrative):

Ex1.4: Happens(WakeUp(John),1)

In the above example, from Ex1.4 and Ex1.1 we can conclude that John is awake

after 0 or in other words HoldsAt(Awake(John), 1). Since as humans we have

background knowledge, we can deduce this conclusion easily. But formally, we

cannot make this conclusion yet; we are missing some information.

In the event calculus, there are several basic axioms and definitions which make

reasoning on EC formulas possible. These axioms and definitions are available in

Appendix A for the Event Calculus (EC) and Appendix B for Discrete Event

Calculus (DEC - which we will discuss in section 2.2.3). We have borrowed the

axioms of the event calculus from Mueller [14, pp. 24-29] who represents them in

29

a neat way (he has originally taken them from Miller and Shanahan [51, 52]).

Discrete Event Calculus axioms, however, are from Mueller [14].

Using the EC and DEC axioms, we can prove our example. We need to assert the

following axiom in order to be able to draw conclusions:

Ex1.5: ReleasedAt(f, t)

Axiom Ex1.5 tells us that no fluent „f‟ is released from the commonsense law of

Inertia at any timepoint. Although this axiom has not been defined in the report

yet, we will discuss it in section 2.2.2. Let us accept it for the sake of argument,

for now.

Now with the conjunction of axioms Ex1.1 to Ex1.5 and DEC axioms (in

Appendix B) we can systematically draw the following conclusions:

From Ex1.4 and Ex1.1 and DEC9 we have HoldsAt(Awake(John), 2). This says

that John is awake at timepoint 2 (as the result of waking up at timepoint 1).

From Ex1.4 and Ex1.2 and DEC10 we can conclude HoldsAt(Asleep(John), 2)

which says that John is not asleep at timepoint 2.

However, we can also represent the opposite of these axioms: if somebody sleeps,

then they will be asleep and not awake anymore. To represent this, we need to

insert the following axioms:

Ex1.6: Initiates(Sleep(a), Asleep(a), t)

Ex1.7: Terminates(Sleep(a), Awake(a), t)

And suppose we have the following narrative:

Ex1.8: Happens(Sleep(John), 3)

Similarly, we can show that from Ex1.6, Ex1.8 and DEC9 we have

HoldsAt(Asleep(John), 4) and from Ex1.7, Ex1.8 and DEX10 we have

HoldAt(Awake(John), 4).

30

This works. However, there seems to be redundancy between axioms Ex1.1,

Ex1.2, Ex1.6 and Ex1.7: There is no indication that these actions or fluents are

exactly the opposite of each other. This must be represented in our formalism to

simulate the commonsense knowledge that if something is on, then it is not off or

if someone is awake, then they are not asleep. The event calculus is a very strong

and flexible representational language. We can show this by using State

Constraints:

HoldsAt(Asleep(a), t)  HoldsAt(Awake(a), t)

The above axiom says that somebody is asleep if and only if they are not awake.

We shall discuss State Constraints and some other features of the event calculus

more in detail in the following section.

2.2.2 Features

We briefly discuss some of these features of the event calculus as follows:

Elaboration Tolerance: The event calculus is elaboration tolerant. That means it

allows for an axiomatisation to be extended through the addition of new axioms

rather than performing surgery on existing axioms. This is particularly important

for a representation of commonsense since new information is constantly gathered

through time. Elaboration tolerance increases the efficiency and reduces

inconsistency in a knowledge base. For instance if we have the following axiom:

Initiates(MoveInside(agent), AlarmOn(alarm), t).

If an agent moves inside, then the alarm will be triggered. If we later find out that

the agent we are referring to must be either one of Fred, John or Richard, we can

add an axiom to the formula without changing the existing ones:

31

Happens(MoveInside(a), t)  HoldsAt(At(Fred, location), t)  HoldsAt(At(John,

location), t)  HoldsAt(At(Richard, location), t)

Reification: McCarthy [54, p 1034] defines reification as “making objects out of

sentences and other entities”. He introduces reification [55] in order to reason

about knowledge and belief in First-order Logic. He introduces [p. 129] terms to

represent concepts such as “Mike‟s telephone number” in the sentence “Pat

knows Mike‟s telephone number”. Using this technique we would be able to

represent this sentence as follows: Mike represents Mike in the sentence,

Telephone(Mike) represent‟s Mike’s telephone number, and Know(Pat,

Telephone(Mike)) represents the whole sentence. The event calculus is based on

reification.

Default Reasoning: Default reasoning is handled in the event calculus by using

circumscription as technical machinery. A detailed description of circumscription

is presented in the next section. As described in Chapter 1, default reasoning is

necessary when reasoning about commonsense to cope with the incomplete

information we have about our scenario and state of the world. Default reasoning

makes it possible to only consider the events that we know do happen and ignore

all the other possibilities; and that the state of the world does not change unless

some event happens to change it. We also take it that the events only have their

intended effects. For instance, when Fred turns on the light, it does not cause the

door to open, or when an object is left on the table, it will not suddenly disappear

and will be there until something happens to it and moves it. Or if our scenario is

32

that Fred goes to the kitchen we should not assume that the TV is turned off.

Circumscription does not allow this to happen.

Effect Axioms: Represent the effect of events on fluents. The effect axioms,

namely Initiates and Terminates have already been discussed in the previous

section.

Preconditions: In the Event Calculus, it is possible to make certain actions or

fluents conditional on some other actions or fluents. There are two types of

preconditions in the event calculus, Fluent Precondition and Action Precondition.

 Fluent Precondition must be satisfied for an event to have an effect. If a

fluent precondition is not satisfied, then the event may occur but it will not

have the intended effects. For instance, if a device is not broken, then it

can be turned on:

HoldsAt(Broken(d), t)  Initiates(TurnOn(a, d), On(d), t)

In this example, if d is broken, the event TurnOn might happen, but since

Initiates is conditioned on d not being broken, On(d) will not change

because of this event.

 Action Precondition must be satisfied for an event to occur. If an action

precondition is not satisfied then the event cannot occur. For example, to

pick up a book one must be near the book.

Happens(PickUp(a, Book), t)  HoldsAt(Near(a, Book), t)

(By contraposition, Happens(, )   is equivalent to  

Happens(, ))

33

Usage of preconditions is a partial solution to the Qualification Problem which

will be discussed shortly.

State Constraints: Some properties of the commonsense world work in a law-

like fashion. For instance the fact that an object cannot be on top of itself

(HoldsAt(On(o,o), t)) or as already seen in the previous section someone cannot

be awake and asleep at the same time (HoldsAt(Asleep(a), t) 

¬HoldsAt(Awake(a), t)) or a device could not be on and off at the same time

(HoldsAt(On(d), t)  ¬HoldsAt(Off(d), t)). State constraints are important

axioms describing some of our world and domain-specific knowledge.

Qualification Problem [8]: A condition that prevents an event from having its

intended effects or prevents the event from occurring is called a qualification and

the problem of representing and reasoning about a qualification is called the

qualification problem. With the help of preconditions, state constraints and

default reasoning the qualification problem can be solved. For instance, the

example of a broken device that does not turn on or a “not broken” device can be

turned on is a qualification problem:

HoldsAt(Broken(d), t)  Initiates(TurnOn(a, d), On(d), t)

And since the event calculus is elaboration tolerant, we could assert the following

axiom at a later time:

HoldsAt(CutWire(d), t)  HoldsAt(Broken(d), t)

HoldsAt(Broken(b), t)  HoldsAt(Broken(d), t)

(b stands for the button of a device).

34

Trigger Axiom: It is possible to assert events or fluents in the EC which are

triggered by other axioms. This feature is a basic and fundamental concept in

commonsense reasoning. For instance, if an agent puts a stopper in the drain of

the sink and opens the tap (in case there is water flowing from the tap; the sink

has no cracks or holes; and so on, i.e. qualification problem is dealt with), the

water will eventually start spilling onto the floor because it reaches and goes over

the rim of the sink (example from Shanahan [48, 56 pp. 302-304]). Another

example is an alarm clock. The clock will start beeping once the present moment

is the set alarm time (example from [14 pp. 75-78] which contains axioms and

proof of the proposition).

Indirect Effects of Events: The event calculus can be used to represent and

reason with indirect effect of events or ramification. An example of indirect

effects of actions is moving from one room to another while holding an object

(which results in the change of location of the object, we will discuss this example

in more detail toward the end of the chapter). A detailed discussion of

ramification is presented in [14 pp. 101-130].

Commonsense Law of Inertia: As the law states, objects tend to stay in the same

state unless affected by events. The event calculus makes use of the Releases(e, f,

t) and ReleasedAt(f, t) predicates to indicate, respectively: an action releases a

fluent from this law at a time; a fluent is released from this law at a time. Initiates

and Terminates predicates, if used, will restore the law for a fluent. A practical

example of this law is the Yale Shooting Scenario of Hanks and McDermott [59,

35

60, 61 pp. 387-390]. EC works in timepoints and each timepoint is separate and

different from the others. Existing fluents are only transferred from a timepoint to

the next if and only if they are not released. For instance, given we have some

other axioms which describe the height of the object decreasing over time, with

HoldsAt(At(Object, Table), 1), if nothing happens to terminate or release this

fluent, by DEC5 we can conclude that HoldsAt(At(Object, Table), 2). However, if

we have that Releases(e, At(Object, Table), 2) or Terminates(e, At(Object, Table),

1) then we cannot make this conclusion anymore.

ReleasedAt fluents are very important and useful specially when a fluent has an

integer value and is changing over time e.g.: the height of a falling object. We

need EC to discard the previous height of the object at each timepoint so that an

object will only have one height at a time. For instance consider the following

example:

(The object falls at timepoint 1.)

Happens(Fall(Object), 1)

(The object has the height 50 at timepoint 2.)

HoldsAt(Height(Object, 50), 2)

(The event of Fall initiates the fluent Falling.)

Initiates(Fall(Object), Falling(Object), t)

 (The event DecreaseHeight initiates the fluent Height with the

value x-1.)

Initiates(DecreaseHeight(Object, x), Height(Object, x-1), t)

36

(If the object is falling, then decrease its height.)

HoldsAt(Falling(Object), t) ∧ HoldsAt(Height(Object, x) 

Happens(DecreaseHeight(Object, x), t)

From Happens(Fall(Object), 1) and Initiates(Fall(Object), Falling(Object), t) and

DEC9 we have:

HoldsAt(Falling(Object), 2)

From this, HoldsAt(Height(Object, 50), 2) and HoldsAt(Falling(Object), t) ∧

HoldsAt(Height(Object, x)  Happens(DecreaseHeight(Object, x), t) we have:

Happens(DecreaseHeight(Object, 50), 2)

From this, Initiates(DecreaseHeight(Object, x), Height(Object, x-1), t) and DEC9

we have:

HoldsAt(Height(Object, 49), 3)

Here is where a problem potentially lies: not enforcing the commonsense law of

Inertia – nothing happens to terminate HoldsAt(Height(Object, 50), 3) which

means the height of the object is both 49 and 50 at the timepoint 3. And as

timepoints increase, so does the presence of the previous values of the height of

the object. We need to have a rule enforcing Intertia law to avoid having multiple

values for the same fluent at the same timepoint. We need to have either of these:

 A Terminates fluent (which by DEC12 enforces this law) such as

Terminates(DecreaseHeight(Object, x), Height(Object, x), t).

 A fluent such as ReleasedAt(Height(Object, x), t) that says the height of

the object is submissive towards the Inertia law – using this predicate the

37

previous values of the height of the object do not hang on at the timepoints

that follow. This is because DEC5 and DEC6 need a fluent not to be

released [¬ReleasedAt(f, t)] to maintain its value at the next timepoint.

Therefore if we do not have one of the above remedies, using DEC5 we can

conclude that:

Timepoint 3:

HoldsAt(Height(Object, 50), 3).

HoldsAt(Height(Object, 49), 3).

Timepoint 4:

HoldsAt(Height(Object, 50), 4).

HoldsAt(Height(Object, 49), 4).

HoldsAt(Height(Object, 48), 4).

Timepoint 5:

HoldsAt(Height(Object, 50), 5).

HoldsAt(Height(Object, 49), 5).

HoldsAt(Height(Object, 48), 5).

HoldsAt(Height(Object, 47), 5).

And so on. Commonsense law of Inertia (through Initiates, Terminates, Releases

and ReleasedAt predicates) prevent this from happening.

Nondeterministic Effects: An event has nondeterministic effects if the event can

have more than one alternative effect. For instance, flipping a coin could result in

the coin landing with head or tail. The event calculus deals with nondeterminism

by allowing event occurrences to give rise to several classes of models using

determining fluents [56 pp. 294-297, 72 pp. 419-420] or disjunctive event axioms

38

[56 pp. 297-298, 342-345 and 359-361]. Disjunctive event axioms are represented

in the Event Calculus as:

Happens(, )  Happens(1, t)  …  Happens(n, t)

2.2.3 Discrete Event Calculus

The Discrete Event Calculus is the same as the Event Calculus with the only

difference that timepoint sort in DEC is restricted to positive integers. DEC was

developed by Erik E. Mueller [14 p. 27] and as Mueller has proven [14, Ch. B] if

time is restricted to integers, then DEC is equivalent to EC axiomatisation of

Miller and Shanahan [52]. We have presented the basic DEC axioms in Appendix

B.

We have not used Trajectory or AntiTrajectory axioms in this report. These

axioms, however, are defined in Appendices A and B. They deal with gradual

change of fluents over time. Their usage is no more complex than the other

axioms of EC and the reason we have not mentioned them is due to the space

constraint of this report. The only occurrence of these axioms is in an example in

Chapter 1 regarding gradual change of height of a falling object.

2.3 Formal definition of circumscription

The main reason for using circumscription (and non-monotonic reasoning in

general) comes from the theory of knowledge representation. Axiomatic theory of

classical logic cannot directly represent defaults. And since default reasoning is

39

an essential key factor of commonsense reasoning, circumscription is used in

commonsense representation and reasoning. Circumscription, introduced by John

McCarthy [42], is the technical device to implement default reasoning.

Before we formally define representation, we need to explain some basic notions.

We start introducing circumscription by an example from Lifschitz (90). Suppose

we have a default rule that:

CE1.1 “Normally, a block is on the table”.

And we have the assertion:

CE1.2 “B1 is not on the table”.

Since nothing is mentioned about B2 (which is also a block), we want to conclude

that B2 therefore must be on the table:

CE1.3 “B2 is on the table”.

Assertion CE1.1 and CE1.2 can be mathematically represented as:

CE1.4 Block(x)  Ab(x)  OnTable(x)

CE1.5 OnTable(B1)

(Predicate Ab(x) means that x is not abnormal. So CE1.4 means: “if x is a block

and x is not abnormal, then x is on the table”.)

We also have:

CE1.6 Block(B1)  Block(B2)  B1  B2

Our goal would be to conclude that B2 is on the table (formalisation of CE1.3):

CE1.7 OnTable(B2)

We cannot draw this conclusion by classical logic only, since CE1.7 is not a

consequence of axioms CE1.4, CE1.5 and CE1.6. Axioms CE1- CE1.6 say too

little about the abnormality predicate Ab. So, for instance, we could find models

40

in which the universe of M consists of two objects, represented by constants B1

and B2. The predicates Block and Ab are true for B1 and B2 and OnTable is false

for B1 and B2. In this model, CE1.4- CE1.6 are true but CE1.7 is false. The

problem is, axiom CE1.4 is the only axiom that mentions Ab and yet it does not

say whether there are few or many abnormal objects. Therefore there exists an

identical model M
′
 to M with the only difference that the extension of Ab is {B1}

rather than {B1, B2}, which was the case for model M. Therefore the extension of

Ab in M
′
 is a proper subset of the extension of Ab in M. And since M and M

′
only

differ on the extension of Ab, we therefore can say that M
′
 is minimal to M with

respect to the predicate Ab:

We now formally introduce the concept of minimality. But before that, we need to

know what it means for a model to be as small as another model.

Formal definition of as small as: If M
’
 and M are interpretations, then M

’
 is as

small as M with respect to a predicate P (written as M
’
 ⊑P M) if:

 M
’
 and M agree on the interpretation of everything except possibly P and

 The extension of P in M
’
 is a subset of its extension in M.

Formal definition of minimality: A model M
’
 of a formula ϕ is minimal with

respect to ⊑P if there is no model M of ϕ such that M ⊑P M
’
 and not M

’
 ⊑P M.

This is very similar to our concept of circumscription which we will explain in the

next section. We therefore need to verify that (Theorem 0): A model M
’
 of a

formula ϕ is a model of the circumscription of ϕ minimising the predicate P if

and only if M
’
 is minimal with respect to ⊑P.

41

Proof: Since the theorem uses if and only if, we use two half-proofs for each if (if

and only if). First, the if part: We use contradiction. Suppose M
’
 is a minimal

model of ϕ with respect to ⊑P but is not a model of circumscription. Then there

must be some q such that ϕ(q) ⋀ q < P is satisfied in M
’
 (extension of q in M

’
 is

smaller than the extension of P in M
’
). We can then construct a model M which is

identical to M
’
 except that the interpretation of P in M is the same as the

interpretation of q in M
’
 (M[P] = M

’
 [q]). Clearly M ⊑P M

’
 however it is not the

case that M
’
 ⊑P M. Therefore M

’
 is not minimal which is a contradiction.

Now the only if part: We use contradiction again. Suppose M
’
 is a model of

circumscription of ϕ minimising P (written as CIRC[ϕ; P]) but M
’
 is not minimal

with respect to ⊑P. Then there must be a model M of ϕ such that M [P] ⊂ M
’
 [P].

In this case, since it is possible to let M
’
[q] = M[P], M

’
 does not satisfy ¬∃q[ϕ(q)

⋀ q < P] and therefore is not a model of the circumscription which is a

contradiction. (¬∃q[ϕ(q) ⋀ q < P] is the formal definition of circumscription, we

will introduce it later).

Back to our example, since M
’
 is the minimal model with respect to ⊑Ab, we have

the following condition:

CE1.8 Ab(x) ⇔ x = B1

42

Formal Definition and Implementation of Circumscription

Circumscription is concerned with the extension of predicates in models. We need

to introduce some notations in order to actually formally implement

circumscription:

Let P and Q be n-ary predicate symbols and v1 to vn distinct variables of

appropriate sort. We have the following relations:

P = Q is an abbreviation for ∀v1, …, vn P(v1, …, vn)  Q(v1, …, vn).

P ≤ Q is an abbreviation for ∀v1, …, vn P(v1, …, vn)  Q(v1, …, vn).

P < Q is an abbreviation for (P ≤ Q)  (P = Q).

Formal definition of circumscription: If Φ is a formula containing the predicate

symbol ρ, then the circumscription of Φ minimising ρ, written as CIRC[Φ; ρ], is

the formula of second-order logic:

Φ  ¬∃q[Φ(q)  q<ρ]

where q is a predicate variable with the same arity and argument sorts as ρ, and

Φ(q) is the formula obtained from Φ by replacing each occurrence of ρ with q.

This says in every model of CIRC[Φ; ρ], the extension of ρ complies with Φ and

there is no proper subset of the extension of ρ that complies with Φ. That is, the

extension of ρ is minimal given Φ.

An example: Suppose Φ = P(A). Then CIRC[Φ; P] is given by the second-order

formula:

P(A) ⋀ ¬∃q[q(A) ⋀ q < P)

This means for every model M of CIRC[Φ; P], if A is the object named by A in M,

then A ∈ P
M

 and there is no proper subset Q of P
M

 such that A ∈ Q, from which

43

we conclude that P
M

 = {A}. Therefore, CIRC[Φ; P] is equivalent to the first-order

formula

∀x(P(x) ⇔ x = A)

Non-monotonicity of circumscription: Classical logic is monotonic. This means if,

for instance, a sentence q follows from a collection of A sentences and A ⊂ B,

then q also follows from B (A ⊢ q  A ⊂ B  B ⊢ q). A proof from the premises

A is a sequence of sentences each of which is either a premise, an axiom or

follows from a subset of sentences occurring earlier in the proof by one of the

rules of inference. Therefore a proof from A can also serve as a proof from B. We

know that the semantic notation of entailment in classical logic is monotonic. For

instance A entails q (A ⊨ q) if q is true in all models of A. And if A ⊨ q and A ⊂ B,

then all the models of A are also models of B which means B ⊨ q too. In other

words, we can show monotonicity of classical logic with the notation:

A ⊢ q  Conjunction[A] ⊨ q

in which Conjunction[A] is the conjunction of all sentences in G.

The formal definition of circumscription states that the circumscription of a

formula is a sentence of second-order logic. The consequence relation of second-

order logic is classical and monotonic. So how is circumscription non-monotonic?

Circumscription preserves monotonicity to the extent that it makes use of classical

consequence relation. But it is non-monotonic in the sense that, given a predicate

P, it does not guarantee that for any conjunction of formulas Ψ and any two

formulas σ and ϕ,

 CIRC[Ψ; P] ⊨ ϕ  CIRC[Ψ  σ; P] ⊨ ϕ. The non-monotonicity of a

circumscription minimising a predicate P can be shown with the notation:

44

Ψ ⊢ ϕ  CIRC[Ψ; P] ⊨ ϕ.

John McCarthy [42] himself remarks:

“Circumscription is not a non-monotonic logic. It is a form if non-monotonic

reasoning augmenting ordinary first-order logic.”

Parallel circumscription: Circumscription also allows for parallel minimisation of

predicates. If Φ is a formula containing the predicate symbols ρ1, …, ρn, the then

parallel circumscription of Φ minimising the predicates ρ1,…, ρn, written as

CIRC[Φ; ρ1,…, ρn], is the formula of second-order logic:

Φ ⋀ ¬∃q1,…, qn[Φ(q1, …, qn) ⋀ qi < ρi

where q1,…, qn are distinct predicate variables with the same arities and argument

sorts as ρ1,…,ρn respectively and Φ(q1, …, qn) is the formula obtained from Φ by

replacing each occurrence of ρ1,…,ρn with q1, …, qn respectively.

Let us consider an example:

We have the following knowledgebase:

CE2.1 Initiates(SwitchOn, DeviceOn, t)

CE2.2 Terminates(SwitchOff, DeviceOn, t)

We have the following narrative:

CE2.3 Happens(SwitchOn, 2)

These formulas state what effects some actions have. But they say nothing about

what effects they do not have and which events do not occur. For instance, the

following could also be the case:

CE2.4 Initiates(SwitchOn, Snowing, t)

CE2.5 Happens(SwitchOff, 5)

45

By using circumscription, we ensure that this is not the case, i.e. no unintended

events occur and events do not have unintended effects.

Result of using circumscription on CE2.1, written as CIRC[CE2.1; Initiates], is

the following formula:

CE2.6 (e = SwitchOn  f = DeviceOn)  Initiates(e, f, t)

Similarly CIRC[CE2.2; Terminates] is:

CE2.7 (e = SwitchOff  f = DeviceOn)  Terminates(e, f, t)

And CIRC[CE2.3; Happens] is:

CE2.8 (e = SwitchOn  t = 2)  Happens(e, t).

We will discuss how we compute circumscription shortly. For now, let us look at

this example more closely. If we know that the only event occurring is CE2.3,

then from CE2.6, CE2.7, CE2.8 and DEC axioms, we can conclude that

HoldsAt(DeviceOn, 6).

However, if later we find out that in addition to CE2.3, event CE2.5 also occurs,

then the circumscription of CIRC[CE2.3  CE2.5; Happens] is:

(e = SwitchOn  t = 2)  (e = SwitchOff  t = 5)  Happens(e, t).

From this, CE2.6, CE2.7 and DEC axioms we can no longer conclude that

HoldsAt(DeviceOn, 6). In fact, we can actually conclude HoldsAt(DeviceOn, 6).

This, clearly, shows the non-monotonicity property of circumscription. It also

shows how elaboration tolerant the event calculus and circumscription are, i.e. we

add new axioms without needing to change any of the previous ones.

Computing circumscription: For computing circumscription, there are two

significant theorems which are due to Lifschitz [41]:

46

Theorem 1: Let ρ be an n-ary predicate symbol and Δ(x1,…,xn) be a formula

whose only free variables are x1,…,xn. If Δ(x1,…,xn) does not contain ρ, then the

basic circumscription CIRC[∀x1,…,xn (Δ(x1,…,xn)  ρ(x1,…,xn)); ρ] is equivalent

to ∀x1,…,xn (Δ(x1,…,xn)  ρ(x1,…,xn)).

Proof: Please see the proof of proposition 2 in Lifschitz [41].

Using this, we can compute circumscription of ρ in a formula by rewriting the

formula in the form:

∀x1,…,xn (Δ(x1,…,xn)  ρ(x1,…,xn))

where Δ(x1,…,xn) does not contain ρ and then apply Theorem 1.

Although this is the most widely used method for computing circumscription,

rewriting the formula in this way may not always be possible. However, due to

flexibility and robustness of the Event Calculus, we can often formulate the

formulas in a way to get around this problem in the first place.

For instance:

 HoldsAt(Holding(a, o), t) 

 Initiates(e, InRoom(a, r), t) 

 Initiates(e, InRoom(o, r), t)

This formula says that if an agent is holding an object and by some event such as

entering a room then they will be in that room, and so will the object.

Unfortunately this formula cannot be rewritten so that we can apply Theorem 1.

However, we can solve the problem by writing the formula in a different way in

the first place:

 Initiates(Walk(a, r1, r2), InRoom(a, r2), t)

 HoldsAt(Holding(a, o), t) 

 Initiates(Walk(a, r1, r2), InRoom(o, r2), t)

47

Now we can simply apply Theorem 1 to these two formulas.

The second theorem provides a method for computing parallel circumscription of

the circumscription of several predicates. Before mentioning the theorem,

however, we need to explain a definition: A formula Δ is positive relative to a

predicate symbol ρ if and only if all occurrences of ρ in Δ are in the range of even

number of negations in an equivalent formula obtained by eliminating  and 

from Δ. We eliminate  from a formula by replacing all instances of (α  β)

with (α  β). We eliminate ⇔ from a formula by replacing all instances of (α ⇔

β) with ((α  β)  (β  α)).

Theorem 2: Let ρ1,…,ρn be predicate symbols and Δ be a formula. If Δ is positive

relative to every ρi, then the parallel circumscription CIRC[Δ; ρ1,…,ρn] is

equivalent to the conjunction of the basic circumscription CIRC[Δ; ρi].

Proof: Please see the proof of proposition 14 in Lifschitz [41].

Let us consider some examples:

Let Δ = Happens(E1, T1) ⋀ Happens(E2, T2). We can compute CIRC[Δ;

Happens] by rewriting Δ as the logically equivalent formula:

(e = E1  t = T1)  (e = E2  t = T2)  Happens(e, t).

Applying Theorem 1 to the above formula gives:

(e = E1  t = T1)  (e = E2  t = T2)  Happens(e, t).

which is the result of our circumscription.

48

Another example: Let Σ = Initiates(E1(x), F1(x), t)  Initiates(E2(x, y), F2(x, y),

t). We can compute CIRC[Σ; Initiates] by rewriting Σ as

∃x(e = E1(x)  f = F1(x))  ∃x, y(e = E2(x, y)  f = F2(x, y))  Initiates(e, f, t).

Applying Theorem 1 to the above formula gives:

∃x(e = E1(x)  f = F1(x))  ∃x, y(e = E2(x, y)  f = F2(x, y))  Initiates(e, f, t).

2.4 A natural language example

Consider the following scenario involving three locations (Mueller [14, Ch. 10,

15]):

“The location L1 is to the left of L2, which is to the left of L3. Our view of

location L2 is blocked by a screen. Suppose we observe the following (the only

moves possible are between adjacent locations):

At timepoint 0, we observe an object, let us call it O1, at L1 and nothing at L3. At

timepoint 1, we observe no objects at L1 or L3. At timepoint 2, we observe an

object, let us call it O2, at L3 and nothing at L1. We observe nothing about L2

because it is blocked by a screen.”

Figure 2.2: The Screen Example

49

Figure 2.2 shows a visual representation of the different timepoints. We examine

how the event calculus can represent and reason with this description and

conclude that O1 and O2 are indeed the same object:

First we need a simple spatial theory. Please note that this information is

background knowledge and a commonsense reasoner should have these at its

disposal:

An object is exactly at one location at a time:

Ex2.1 HoldsAt(At(o, p1), t)  HoldsAt(At(o, p2), t)  p1 = p2

An object does have a location at a time:

Ex2.2 ∃l HoldsAt(At(o, l), t)

Two objects cannot occupy the same location at the same time:

Ex2.3 HoldsAt(At(o1, l), t)  HoldsAt(At(o2, l), t)  o1 = o2

The Adjacent predicate is symmetric:

Ex2.4 Adjacent(p1, p2)  Adjacent(p2, p1)

If an object moves from a location to another adjacent location, then the object

will be at the new location and no longer at the old location:

Ex2.5 HoldsAt(At(o, p1), t) ⋀ Adjacent(p1, p2) 

Initiates(Move(o, p1, p2), At(o, p2), t)

Ex2.6 HoldsAt(At(o, p1), t) ⋀ Adjacent(p1, p2)  Terminates(Move(o,

p1, p2), At(o, p1), t)

The rest of the formulas are domain specific information. Ex2.1 through Ex2.6 are

general world knowledge which are true in general and could be reused to solve

many other problems.

50

In any commonsense reasoning problem, there are two kinds of information:

• Background (world) knowledge

• Domain specific information

As we will shortly see, we can apply this small fragment of world knowledge we

have to another example with a different domain-specific set of formulas and a

different proposition. We focus on the current example.

We have three adjacent locations, let us call them L1, L2 and L3 as L1 is to the

left of L2 and L2 is to the left of L3. This is represented in EC as follows:

Ex2.7 Adjacent(p1, p2)  (p1 = L1 ⋀ p2 = L2) ⋁

(p1 = L2 ⋀ p2 = L1) ⋁ (p1 = L2 ⋀ p2 = L3) ⋁

(p1 = L3 ⋀ p2 = L2)

We also have the following observations:

 Timepoint 0

 (Object O1 holds at location L1 at timepoint 0)

Ex2.8 HoldsAt(At(O1, L1), 0)

 (There is nothing at location L3 at timepoint 0)

Ex2.9 HoldsAt(At(o, L3), 0)

Timepoint 1

 (There is nothing at location L1 at timepoint 1)

Ex2.10 HoldsAt(At(o, L1), 1)

51

 (There is nothing at location L3 at timepoint 1)

Ex2.11 HoldsAt(At(o, L3), 1)

Timepoint 2

 (Object O2 is at location L3 at timepoint 2)

Ex2.12 HoldsAt(At(O2, L3), 2)

 (There is nothing at location L1 at timepoint 2)

Ex2.13 HoldsAt(At(o, L1), 2)

General

(Commonsense law of Inertia is preserved at all timepoints.

No fluent is released from this law at any timepoint.)

Ex2.14 ReleasedAt(f, t)

ReleasedAt axiom in Ex2.14 was explained in section 2.2.2. To recap, this axiom

basically says that Commonsense law of Inertia is preserved at all timepoints.

No fluent is released from this law at any timepoint. Therefore, a fluent holds or

does not hold continuously (from a timepoint onwards) unless an event happens

to initiate or terminate it. Whereas when a fluent that holds at a timepoint and

does not submit to the commonsense law of Inertia does not necessarily hold for

the next timepoint (and vice-versa: for a non-submissive fluent that does not hold

for a timepoint, it is not the case that it does not hold for the following timepoint).

52

The event calculus makes use of Unification [58] to match its variables. Please

note variables in the EC are represented with small capitals (such as o) whilst

constants in big capitals (e.g. O1).

Proposition: We want to prove that O1 and O2 are the same object.

Let Σ be the conjunction of Ex2.5 and Ex2.6, Ψ the conjunction of Ex2.1 to Ex2.4

and Γ the conjunction of Ex2.7 to Ex2.14. Suppose

CIRC[Σ; Initiates, Terminates, Releases]  Ψ  Γ  DEC

Then O1 = O2.

Proof:

First, we need to compute the circumscriptions to know the events and their

intended effects in the scenario. Having computed the results of the

circumscriptions, we can only consider the events and effects specified in our

scenario.

We do not have any events in this example. So we only circumscribe Initiates,

Terminates and Releases. We apply Theorems 1 and 2 to CIRC[Σ; Initiates,

Terminates, Releases] to obtain:

Ex2.15 Initiates(e, f, t)  ∃o, p1, p2(e = Move(o, p1, p2) 

f = At(o, p2)  HoldsAt(At(o, p1), t)  Adjacent(p1, p2))

Ex2.16 Terminates(e, f, t)  ∃o, p1, p2(e = Move(o, p1, p2) 

f = At(o, p1)  HoldsAt(At(o, p1), t)  Adjacent(p1, p2))

53

In the text, we do not have any events happening which release any fluents from

the commonsense law of Inertia at any timepoint. Therefore we have:

Ex2.17 ¬Releases(e, f, t)

Since axiom Ex2.17 indicates no event happens to release any fluents from Inertia

law, and by Ex2.14 we know that no fluent is released from this law at any

timepoint, we can conclude all fluents stay submissive to Inertia law at all times

(and only Initiates and Terminates predicates change the state of the fluents).

From Ex2.12 and the contrapositive of DEC6 we have:

Ex2.18 HoldsAt(At(O2, L3), 1)  ReleasedAt(At(O2, L3), 2) 

∃e(Happens(e, 1)  Initiates(e, At(O2, L3), 1))

Which means that it is the case that either:

 O2 is at L3 at timepoint 1; which cannot be the case because by Ex2.11

we know there is nothing at L3 at timepoint 1.

 Fluent At(O2, L3) is released from Inertia; which by Ex2.14 we know is

not the case.

 Or there is an event that happens at timepoint 1 that initiates the fluent

At(O2, L3) at timepoint 1. Since this axiom must be true and the above

two cases did not hold, therefore we can conclude that this must be the

case.

So formally, from Ex2.18, Ex2.11 and Ex2.14 we have

Ex2.19 ∃e(Happens(e, 1)  Initiates(e, At(O2, L3), 1))

By Ex2.15 we know that for an event to initiate a fluent at a time, that event must

be the Move action, that fluent must be the At fluent, the object must hold at a

54

location and that the two locations must be adjacent. From Ex2.19 we know that

an event happens to initiate At at timepoint 1. By unifying variables and constants

of Ex2.15 and Ex2.19 we have:

Initiates(e, f, t) ⇔ ∃ p1(e = Move(O2, p1, L3) ⋀

f = At(O2, L3) ⋀ HoldsAt(At(O2, p1), t) ⋀ Adjacent(p1,

L3))

Which says that the event Move(O2, p1, L3) at a timepoint t initiates the fluent

At(O2, L3) whilst O2 is at location p1 at that timepoint and locations p1 and L3 are

adjacent.

From this and Ex2.7 we can associate p1 with L2 since it is the only location

adjacent to L3. So our formula becomes:

Initiates(e, f, t) ⇔ e = Move(O2, L2, L3) 

f = At(O2, L3)  HoldsAt(At(O2, L2), t)  Adjacent(L2,

L3)

We therefore have:

Ex2.20 HoldsAt(At(O2, L2), 1)

So far, we have concluded that object O2 holds at location L2 at timepoint 1.

From Ex2.10 we have ¬HoldsAt(At(O1, L1), 1). From this and the contrapositive

of DEC5 we have:

Ex2.21 ¬HoldsAt(At(O1, L1), 0)  ReleasedAt(At(O1, L1), 1) 

 ∃e(Happens(e, 0)  Terminates(e, At(O1, L1), 0))

Ex2.8 says that object O1 is at location L1 at timepoint 0. Therefore

¬HoldsAt(At(O1, L1), 0) from the above axiom simply is not true.

55

Also, from Ex2.14 we know that no fluent is released from Inertia at any

timepoint therefore ReleasedAt(At(O1, L1), 1) cannot be true. So the third

condition in the disjunction in Ex2.21 must be the case.

Formally, from Ex2.21, Ex2.8 and Ex2.14 we have:

Ex2.22 ∃e(Happens(e, 0)  Terminates(e, At(O1, L1), 0))

From this, Ex2.16 and Ex2.7 we have Happens(Move(O1, L1, L2), 0). From this,

Ex2.8, Ex2.7, Ex2.15 and DEC9 we have:

Ex2.23 HoldsAt(O1, L2), 1)

We now concluded that object O1 holds at location L2 at timepoint 1.

Ex2.20 says that object O2 holds at location L2 at timepoint 1 and Ex2.23 says

that object O1 holds at location L2 at timepoint 1. By Ex2.3 we know that if two

objects are at the same location at the same time, then those objects must be the

same object. Therefore we infer that O1 = O2 which is our proposition.

End of proof.

We now present another scenario which uses the same background knowledge

presented in the previous example (Ex2.1 to Ex2.6).

Consider the following scenario involving 5 locations: Location L1 is to the left of

L2 which is to the left of L3 which is to the left of L4 which is to the left of L5.

Our view of locations L2 and L4 are blocked by screens. Suppose we observe the

following (the only moves possible are between adjacent locations):

At timepoint 0, we observe an object, let us call it O1, at L1 and nothing at L5. At

timepoint 4 we observe an object, let us call it O2, at L5 and nothing at L1. We

56

never observe an object at L3 and we never observe anything about L2 or L4

(because of the blocking caused by the screens). In this case, we can easily show

that the two objects are indeed different. The proof for this example is quite

similar to the former example [15].

The EC can be used to solve a large variety of examples. Many benchmark

problems have been tacked and solved using the event calculus. For instance

Shanahan has shown the egg-cracking scenario in [6].

57

Chapter 3

The Bucket World Scenario

3.1 The Bucket Scenario

We developed a framework based on the idea of a real life example given by Shin

and Davis [40]. The framework is of modelling a world in which physical rules

(in a commonsense perspective) apply. Our framework can handle different

scenarios and we formally prove a proposition for one. This framework gives us a

practical ground to compare our formalism against that of Shin and Davis on a

similar scenario. They use PDDL+ to represent their theory. The scenario for

which we constructed the EC representation and proved our proposition is as

follows:

Fred is initially at home which is 20 meters away from the well. There are two

empty 2-litre buckets at the well which potentially have spilling amount of 0.1

litre per second. There is a tap at the well which pours water at 0.1 litre per

second when on. It is initially off. One of the buckets is initially under the tap.

Fred can move at the speed of 1 meter per second. Fred goes to the well and then

fills up both of the buckets of the total of 3 litres and pick them up and takes them

home. He then pours them into a 10-litre bucket at home which already holds 2

litres of water.

58

For simplicity‟s sake, we assume some actions as atomic actions such as picking

up and putting down buckets; representing these is trivial (in an abstract level) in

this scenario; but will not impose any interesting challenges apart from adding to

the timepoints. Expanding them in detail, however, would be an interesting follow

up work; expanding and relating our framework with the Liquid Theory of Davis

[9] to such a level of detail to deal with the movement of the liquid inside the

buckets. That will be a first of its kind effort to expand two well developed

frameworks and connect them together; trying the examples which previously

worked separately on individual frameworks merged in a new environment,

observing and analysing the difference in the proving process and timepoint

changes.

3.2 Details of scenario

We have manually translated from the natural language description of the

scenario above into the formulas of the EC. We will present our representations in

the next section. However, we encountered interesting points during the

translation process which will be of high importance in automating this process:

 How the initial state is identified in a scenario: since the reasoning

(prediction, planning and model finding) in the EC starts from the initial

state, and the fluents of the initial state have an important role in

determining the fluents in the consecutive timepoints, it is crucial to

identify and separate the initial state from the text in EC correctly.

 How the timepoints in a scenario are associated with narratives: being able

to differentiate between timepoints in a scenario and temporally ordering

59

them is essential in constructing a precise domain description and

narrative.

 How the temporal anaphora are handled in the EC: the temporal anaphora

such as “then”, “after” and “before” significantly help us to temporally

order the fluents and events of the domain description and narrative while

translating. For instance if we know of event E1 occurring “before” event

E2, we then know that Happens(E1, t1)  Happens(E2, t2)  t1<t2.

 How conditions in a scenario are dealt with: conditions in a discourse

often depend on other fluents or events in the same discourse. For instance

“Fred will go walking only if the weather is sunny” can be represented as:

Happens(GoWalking(Fred), t)  HoldsAt(SunnyWeather, t) – this is an

action precondition: going walking event happens only if the weather is

sunny. Conditions could be of more complicated form, as in our example.

 Flags: we implement and use a flagging system to control triggered events.

Triggered events are events which are provoked based on all their

conditions being satisfied. For instance consider:

 HoldsAt(c1, t)  HoldsAt(c2, t)  Happens(e, t).

In this formula event e happens only when both c1 and c2 hold. Now these

two conditions can be normal formulas, for instance, the level of a bucket:

HoldsAt(Level(b1), t) as seen in BR50 in our scenario:

 HoldsAt(PouringFromTo(a, b1, b2), t) 

 HoldsAt(BucketFull(b2), t)  HoldsAt(Level(b1, x),

 t)  x>0  HoldsAt(SpillAmount(b1, y), t) 

 Happens(IncreaseWastedLiquid(y), t)

60

 which states if a bucket is receiving from another bucket and is full, then

the liquid is being wasted. It is important to note that the event

IncreaseWastedLiquid keeps happening until one of its conditions does

not hold anymore, for example the level of the pouring bucket becomes

zero (i.e. the pouring bucket becomes empty). At times, especially when

planning a strategy as in our scenario, we need to falsify a condition of a

triggered event with a flag. For instance in BNE2:

 HoldsAt(At(Fred, Well), t) ∧ ¬HoldsAt(On(Tap), t) 

 HoldsAt(Cond1, t) ⇒

 Happens(TurnOnTap(Fred, Tap), t)

we specify that once Fred is at the well and the tap is not on, he turns the

tap on. Without a flag the event of turning on the tap would occur at every

timepoint that Fred is at the well and the tap is not on. By introducing

Cond1, a flag, we ensure this is not the case because once this event

occurs, then it will have the effect axiom BNC1:

 HoldsAt(Cond1, t) 

 Terminates(TurnOnTap(Fred, Tap), Cond1, t).

This effect axiom (which only has this effect if Cond1 holds) falsifies

Cond1 therefore one of the conditions of BNE2, the flag, does not hold

anymore hence it happens only once in the scenario.

In another example in our scenario we have: “Fred goes to the well and

then fills up both of the buckets of the total of 3 litres and pick them up

and takes them home.” . The “picking up” and “taking home” events are

conditioned on the buckets satisfying the intended amount of liquid full

and Fred being at the well. Once these conditions hold, then the respective

61

events are provoked. In order to prevent these events from being triggered

repeatedly, we use flags. We need to identify the conditional relations

between fluents and events in an EC scenario, and in this example,

extracted from a scenario in natural language text.

 How we differentiate between permanent and temporary fluents: some of

the fluents are temporary and will change over time, but some fluents in

the same form do not. This usually happens in fluents dealing with

integers or constant changes. For instance, DistanceBetween(Well, Home,

20) is a permanent fluent and not likely to ever change where as

DistanceBetween(George, Home, 10) or DistanceBetween(Car, Office, 50)

are not. The difference in translating these fluents is using a variable for

the timepoint. For instance for the distance between Home and Well above

we will translate this in EC as: HoldsAt(DistanceBetween(Well, Home, 20),

t). Note that we used a timepoint variable „t‟ here, so it would hold for all

timepoints in the scenario. Such a translation for a temporary fluent will

result in contradiction when the fluent changes (there will be uniqueness

of values constraints such as:

 HoldsAt(DistanceBetween(loc1, loc2, distance1), t) 

 HoldsAt(DistanceBetween(loc1, loc2, distance2), t)

  distance1 = distance2.).

Using this constraint (which is necessary to have), when the value of a

fluent changes if it holds for all timepoints we will reach a contradiction.

This is why we need to correctly identify permanent and temporary fluents.

One solution is to always use temporary fluents as the permanent fluents

will be available in the consecutive timepoints (as nothing is supposed to

62

happen to terminate or release them. However this will result in

unnecessary computation).

 How agents in a scenario are identified: in most of the scenarios and

worlds, many actions are directly performed by an agent. Depending on

the formulation, and as in our example, an agent is sometimes required to

be specified as an agent fluent.

 “Intelligent” formulas can be posed in the EC. Unlike a typical

programming language and similar to a logic programming language, the

formulas in the EC are defined as a whole. One rule represented in the EC

can only represent so much on its own. So formulas in the EC can be

looked at as individual methods in a programming language that heavily

depend on each other. We experienced that, with enough basic formulas,

more interesting formulas can be constructed representing more intelligent

behaviour. For instance, formula BR52 of our framework represent such

behaviour:

BR52 indicates if we are pouring into a bucket (from the tap or another

bucket), if the bucket that we are filling in gets full and if there is another

bucket around which is not full, then we replace the full bucket with the

non-full bucket.

In our proof, we refer to some fluents with a C postfix such as BNI7C. The C

stands for Constant. The constant fluents keep their value since they are not

released and nothing happens to terminate them between the timepoint they hold

at and the timepoint we are addressing them. If t2 is the timepoint we are

addressing the fluent, we formally have:

63

For C Fluents:

 HoldsAt(f, t1)  t (Happens(e, t)  (Terminates(e, f, t) 

 Releases(e, f, t))  t1 ≤ t ≤ t2

and

 HoldsAt(f, t1)  t (Happens(e, t)  Initiates(e, f, t)

  t1 ≤ t ≤ t2

So if nothing happens to release a fluent from Inertia in between the timepoints

(DEC11) then by DEC5 and DEC6 we can deduce that the fluent holds or does

not hold (depending on its condition in t1, the former timepoint) at all consecutive

timepoints at least till t2, our referring timepoint.

This convention is for saving space and as just discussed above is correct.

BX1, BX2, BX3 and BX4 are the computed circumscription of Happens, Initiates,

Terminates and Releases. This means the only events that can happen (in the

framework) and do happen (in the narrative) in our scenario are the ones in BX1.

In other words we can say nothing else can happen (in the framework) nor

happens (in the narrative). Also, BX2 and BX3 state the only effects that these

events have are the ones in these two formulas. For instance the event of

TurnTapOn(Fred, Tap) does not initiate Walking(Fred). This is not allowed in our

framework by using circumscription. BX4 also circumscribes Releases which

releases a fluent from Inertia. As we can see, PickUp(a, b) only releases At(b, l)

which is the location of the item b, not its level for instance. In all these four

formulas, we use a bi-implication that indicates an if-and-only-if relationship,

therefore formally nothing else is in the scope of Happens, Initiates, Terminates

and Releases apart from those stated in the bi-implication.

64

In computing circumscription, we take into account all the instances of these four

predicates in the narrative (scenario-specific) and in the framework (general

theory). This is only logical because by using default reasoning we want to say

that the only events that can happen (framework) and do happen (narrative) are

the ones that we know of.

65

3.3 Representation in Event Calculus

We represent the domain description and narrative of the scenario in this section.

The narrative:

Narrative of the Bucket scenario

 Initial state

BNI1 HoldsAt(At(Fred, Home), 0)

BNI2 HoldsAt(BucketEmpty(Bucket1), 0)

BNI3 HoldsAt(BucketEmpty(Bucket2), 0)

BNI4 HoldsAt(At(Bucket1, Well), 0)

BNI5 HoldsAt(At(Bucket2, Well), 0)

BNI6 HoldsAt(Level(Bucket3, 2), 0)

BNI7 ¬HoldsAt(On(Tap), 0)

BNI8 HoldsAt(Beneath(Bucket1, Tap), 0)

BNI9 HoldsAt(AlreadyPoured(0), 0)

BNI10 HoldsAt(WastedLiquid(0), 0)

BNI11 ¬HoldsAt(Carrying(Fred, Bucket1), 0)

BNI12 ¬HoldsAt(Carrying(Fred, Bucket2), 0)

 Permanent Fluents

BNP1 HoldsAt(DistanceBetween(Home, Well, 20), t)

BNP2 HoldsAt(Capacity(Bucket1, 2), t)

BNP3 HoldsAt(Capacity(Bucket2, 2), t)

BNP4 HoldsAt(At(Tap, Well), t)

BNP5 HoldsAt(FlowRate(Tap,0.1), t)

BNP6 HoldsAt(At(Bucket3, Home), t)

BNP7 HoldsAt(Capacity(Bucket3, 10), t)

BNP8 HoldsAt(WalkingSpeed(Fred, 1), t)

BNP9 HoldsAt(IntendedAmount(3), t)

BNP10 HoldsAt(Agent(Fred), t)

BNP11 HoldsAt(SpillAmount(Bucket1, 0.1), t)

BNP12 HoldsAt(SpillAmount(Bucket2, 0.1), t)

 Conditional events of the narrative

BNE1 Fred leaves home to go to the well at timepoint 0.

Happens(GoFromTo(Fred, Home, Well), 0)

BNE2 Once Fred is at the well and the tap is not on, he turns the tap on. By using
a ’flag’ here we ensure that this event happens only once, and that only at the
beginning of our scenario. Had we not used a flag, once Fred is finished at the
well and wants to go back home, he turns off the tap but then this event would

66

be triggered again and Fred would turn on the tap just after turning it off. A
flag prevents this from happening.

HoldsAt(At(Fred, Well), t) ∧ ¬HoldsAt(On(Tap), t)  HoldsAt(Cond1, t) ⇒
Happens(TurnOnTap(Fred, Tap), t)

BNE3 Once Fred is at home carrying bucket 1 which is not empty, Fred moves bucket
1 over bucket 3. Using the flag Cond2 here ensures that we have not yet
started the pouring process.

HoldsAt(At(Fred, Home), t) ∧ HoldsAt(Carrying(Fred, Bucket1), t)

¬HoldsAt(BucketEmpty(Bucket1), t)  HoldsAt(Cond2, t) 
Happens(MoveOver(Fred, Bucket1, Bucket3), t)

BNE4 Once Fred is at home carrying bucket 1 which is not empty, if bucket 1 is over
bucket 3 (i.e. bucket 3 is under bucket 1) Fred starts pouring from bucket 1 into
bucket 3. Using the flag Cond2 here ensures that this event is triggered only
once.

HoldsAt(At(Fred, Home), t) ∧ HoldsAt(Carrying(Fred, Bucket1), t)

¬HoldsAt(BucketEmpty(Bucket1), t)  HoldsAt(Beneath(Bucket3,Bucket2), t)

HoldsAt(Cond2, t)  Happens(PourFromTo(Fred, Bucket1, Bucket3), t)

BNE5 Once Fred is at home carrying bucket 2 which is not empty, if bucket 1 is empty
(making sure it has already been poured), Fred moves bucket 2 over bucket 3.
Using the flag Cond3 here ensures that we have not yet started the pouring
process.

HoldsAt(At(Fred, Home), t) ∧ HoldsAt(Carrying(Fred, Bucket2), t)

∧HoldsAt(BucketEmpty(Bucket1), t) ¬HoldsAt(BucketEmpty(Bucket2), t) 

HoldsAt(Cond3, t)  Happens(MoveOver(Fred, Bucket2, Bucket3), t)

BNE6 Once Fred is at home carrying bucket 2 which is not empty, if bucket 2 is over
bucket 3 (i.e. bucket 3 is under bucket 2) Fred starts pouring from bucket 2 into
bucket 3. Using the flag Cond3 here ensures that this event is triggered only
once.

HoldsAt(At(Fred, Home), t) ∧ HoldsAt(Carrying(Fred, Bucket2), t)

∧HoldsAt(BucketEmpty(Bucket1), t) ¬HoldsAt(BucketEmpty(Bucket2), t) 

HoldsAt(Beneath(Bucket3,Bucket2), t) HoldsAt(Cond3, t) 
Happens(PourFromTo(Fred, Bucket2, Bucket3), t)

BNE7 Once Fred is at the well and has sufficient amount of liquid in his buckets which
he is carrying then he leaves the well and starts going towards home.

HoldsAt(Carrying(Fred, Bucket1), t) ∧ HoldsAt(Carrying(Fred, Bucket2), t)

∧HoldsAt(Level(Bucket1, x), t) ∧ HoldsAt(Level(Bucket2, y), t) 

HoldsAt(IntendedAmount(z), t)  x+y=z  HoldsAt(At(Fred, Well), t) 

67

Happens(GoFromTo(Fred, Well, Home), t)

BNE8 Once Fred is at the well and he has sufficient liquid in his buckets, if he is not
already carrying bucket 1 then he picks it up.

HoldsAt(At(Fred, Well), t)  HoldsAt(Level(Bucket1, x), t) 

HoldsAt(Level(Bucket2, y), t)  HoldsAt(IntendedAmount(z), t)  x+y=z

¬HoldsAt(Carrying(Fred, Bucket1), t)  Happens(PickUp(Fred, Bucket1), t)

BNE9 Once Fred is at the well and he has sufficient liquid in his buckets, if he is not
already carrying bucket 2 then he picks it up.

HoldsAt(At(Fred, Well), t)  HoldsAt(Level(Bucket1, x), t) 

HoldsAt(Level(Bucket2, y), t)  HoldsAt(IntendedAmount(z), t)  x+y=z

¬HoldsAt(Carrying(Fred, Bucket2), t)  Happens(PickUp(Fred, Bucket2), t)

 Effect axioms to deal with conditions of the narrative events (flags in EC)

 (Terminate CondX fluents so these events are triggered only once)

BNC1 HoldsAt(Cond1, t)  Terminates(TurnOnTap(Fred, Tap), Cond1, t)

BNC2 HoldsAt(Cond2, t)  Terminates(PourFromTo(Fred, Bucket1, Bucket3), Cond2,
t)

BNC3 HoldsAt(Cond3, t)  Terminates(PourFromTo(Fred, Bucket2, Bucket3), Cond3,
t)

 Initial condition flags:

BNC6 HoldsAt(Cond1), 0)

BNC7 HoldsAt(Cond2), 0)

BNC8 HoldsAt(Cond3), 0)

BIN1 f  At(x, y)  ¬ReleasedAt(f, t)

68

Domain framework:

Domain Formalisation of the Bucket World

 Actions and their effects:

 (Actions on tap)

BR2 Initiates(TurnOnTap(a, p), On(p), t)

BR4 Terminates(TurnOffTap(a, p), On(p), t)

 (Moving Axioms)

BR5 Initiates(MoveOver(a, b1, b2), Beneath(b2, b1), t)

BR6 Initiates(PickUp(a, b), Carrying(a, b), t)

BR7 When an agent picks up an item, then the location of that item is not
submissive to Inertia anymore. That means its location is not at a fixed place,
but that of its carrier.

HoldsAt(At(b, l), t)  Releases(PickUp(a, b), At(b, l), t)

BR9 Putting down an object will result in the location of object being re-established
at the same as the agent by reinforcing Inertia.

HoldsAt(At(a, l), t)  Initiates(PutDown(a, b), At(b, l), t)

BR10 Terminates(PutDown(a, b), Carrying(a, b), t)

BR12 l1  l2 Initiates(GoFromTo(a, l1, l2), Walking(a), t)

BR13 HoldsAt(At(a, l1), t)  l1  l2  Terminates(GoFromTo(a, l1, l2), At(a, l1), t)

BR15 Initiates(GoFromTo(a, 1l, l2), Destination(a, l2), t)

BR16 HoldsAt(DistanceBetween(l1, l2, x), t)  Initiates(GoFromTo(a, l1, l2),
DistanceToWalk(a, x), t)

BR17 Initiates(Arrive(a, l), At(a, l), t)

BR18 Terminates(Arrive(a, l), Walking(a), t)

 (Pouring from a bucket into another:)

BR20 Initiates(PourFromTo(a, b1, b2), PouringFromTo(a, b1, b2), t)

 (Replacing buckets by each other)

BR24 Initiates(MoveUnder(a, x, y), Beneath(x, y), t)

69

BR27 Terminates(MoveAside(a, x, y) , Beneath(x, y), t)

BR28 HoldsAt(At(a, l), t)  Initiates(MoveAside(a, x, y) , At(x, l), t)

BR29 When replacing an item, we move the first item aside from its location.

HoldsAt(Beneath(b1, p), t)  Happens(Replace(a, b1, b2), t) 
Happens(MoveAside(a, b1, p), t)

BR25 When replacing an item, we move the second item into the position of the first
item (under an object).

HoldsAt(Beneath(b1, p), t)  Happens(Replace(a, b1, b2), t) 
Happens(MoveUnder(a, b2, p), t)

 (Stop pouring from a bucket to another)

BR30 Initiating the fluent Level makes it submissive towards the commonsense law of
Inertia. Therefore the fluent’s value will hold until something happens to
change it.

HoldsAt(Level(b1, x), t)  Initiates(StopPouringFromTo(a, b1, b2), Level(b1, x),
t)

BR31 Initiating the fluent Level makes it submissive towards the commonsense law of
Inertia. Therefore the fluent’s value will hold until something happens to
change it.

HoldsAt(Level(b2, x), t)  Initiates(StopPouringFromTo(a, b1, b2), Level(b2, x),
t)

BR32 Terminates(StopPouringFromTo(a, b1, b2), PouringFromTo(a, b1, b2), t)

 Actions for changing the levels of integer fluents

BR33 HoldsAt(Level(b, y), t)  Initiates(IncreaseLiquidLevel(b, x), Level(b, x+y), t)

BR34 Increase in the liquid level makes the old value obsolete.

HoldsAt(Level(b, y), t)  Terminates(IncreaseLiquidLevel(b, x), Level(b, y), t)

BR35 HoldsAt(Level(b, y), t)  y>x  Initiates(DecreaseLiquidLevel(b, x), Level(b, y-x),
t)

BR37 Decrease in the liquid level makes the old value obsolete.

HoldsAt(Level(b, y), t)  Terminates(DecreaseLiquidLevel(b, x), Level(b, y), t)

BR38 HoldsAt(AlreadyPoured(y), t)  Initiates(IncreasePouredLiquid(x),

70

AlreadyPoured(x+y), t)

BR39 Increase in the amount of AlreadyPouredLiquid makes its old value obsolete.

HoldsAt(AlreadyPoured(y), t)  Terminates(IncreasePouredLiquid(x),
AlreadyPoured(y), t)

BR40 HoldsAt(WastedLiquid(y), t)  Initiates(IncreaseWastedLiquid(x),
WastedLiquid(x+y), t)

BR41 The amount of wasted liquid being increased makes the old value obsolete.

HoldsAt(WastedLiquid(y), t)  Terminates(IncreaseWastedLiquid(x),
WastedLiquid(y), t)

BR42 HoldsAt(DistanceToWalk(a, od)  Initiates(DecreaseDistanceToWalk(a, nd),
DistanceToWalk(a, od-nd), t)

BR43 HoldsAt(DistanceToWalk(a, od)  Terminates(DecreaseDistanceToWalk(a, nd),
DistanceToWalk(a, od), t)

 State constraints (general knowledge):

 (General commonsense knowledge of the world related to our domain)

BR44 If an agent is walking and the distance he walks is greater than 0 then decrease
the distance to walk.

HoldsAt(Walking(a), t)  HoldsAt(DistanceToWalk(a, d), t)  0<d 

HoldsAt(WalkingSpeed(a, ws), t)  0<=d-ws 
Happens(DecreaseDistanceToWalk(a, ws), t)

BR45 If an agent is walking and the distance to walk is less than 0 then the agent
arrives at the destination.

HoldsAt(Walking(a), t)  HoldsAt(DistanceToWalk(a, d), t)  d<=0 

HoldsAt(Destination(a, l), t)  Happens(Arrive(a, l), t)

BR46 A bucket is being filled if and only if it is not full and either it is under an open
tap or another bucket is pouring into it.

HoldsAt(Filling(b), t)  HoldsAt(BucketFull(b), t)  (HoldsAt(Beneath(b, p), t)

 HoldsAt(On(p), t))  (HoldsAt(PouringFromTo(a, b2, b), t)  HoldsAt(Level(b2,

x), t)  x>0)

BR47 If a tap is on and the bucket is under the tap and the bucket is not full [implicit
in the Filling fluent], then increase the level of already poured amount.

HoldsAt(Filling(b), t)  HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t) 

HoldsAt(FlowRate(p, f), t)  Happens(IncreasePouredLiquid(f), t)

71

BR74 If a tap is on and the bucket is under the tap and the bucket is not full [implicit
in the Filling fluent], then increase the level of .

HoldsAt(Filling(b), t)  HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t) 

HoldsAt(FlowRate(p, f), t)  Happens(IncreaseLiquidLevel(b, f), t)

BR48 If a bucket is pouring to another and still has liquid, then if the receiving bucket
is not full (implicit in Filling), increase its level.

HoldsAt(Filling(b), t)  HoldsAt(PouringFromTo(a, b2, b), t) 

HoldsAt(SpillAmount(b, x), t)  HoldsAt(Level(b2, y), t)  y>0 
Happens(IncreaseLiquidLevel(b, x), t)

BR75 If a bucket is pouring to another and still has liquid, then if the receiving bucket
is not full (implicit in Filling), decrease the level of the pouring bucket.

HoldsAt(Filling(b), t)  HoldsAt(PouringFromTo(a, b2, b), t) 

HoldsAt(SpillAmount(b, x), t)  HoldsAt(Level(b2, y), t)  y>0 
Happens(DecreaseLiquidLevel(b2, x), t)

BR49 If a bucket is receiving from a tap and the bucket is full, then the liquid is being
wasted.

HoldsAt(BucketFull(b), t)  HoldsAt(Beneath(b, p), t)  HoldsAt(On(p), t)

HoldsAt(Beneath(b2, p), t) HoldsAt(BucketFull(b2), t) 

HoldsAt(FlowRate(p, f), t)  Happens(IncreaseWastedLiquid(f), t)

BR50 If a bucket is receiving from another bucket and is full, then the liquid is being
wasted.

HoldsAt(PouringFromTo(a, b1, b2), t)  HoldsAt(BucketFull(b2), t) 

HoldsAt(Level(b1, x), t)  x>0  HoldsAt(SpillAmount(b1, y), t) 
Happens(IncreaseWastedLiquid(y), t)

BR51 When pouring if the giving bucket runs out of liquid, then the pouring process is
stopped.

HoldsAt(PouringFromTo(a, b1, b2), t)  HoldsAt(Level(b1, x), t)  x<=0 
Happens(StopPouringFromTo(a, b1, b2), t)

BR52 If the bucket we are filling by the tap or another bucket is full, if there is
another bucket at the same location and that bucket is not full, then replace
the current bucket with that bucket.

(HoldsAt(PouringFromTo(a, bo, b), t)  (HoldsAt(Beneath(b, p), t) 

HoldsAt(On(p), t)))  HoldsAt(BucketFull(b), t)  HoldsAt(IntendedAmount(x), t)

 HoldsAt(AlreadyPoured(y), t)  y<x  HoldsAt(At(b, l), t)  HoldsAt(At(b2, l), t)

 ¬HoldAt(BucketFull(b2), t)  HoldsAt(Agent(a), t)  Happens(Replace(a, b,
b2), t)

72

BR53 If we have reached the intended amount, if we are filling the bucket with the
tap, we turn off the tap.

HoldsAt(Filling(b), t)  HoldsAt(IntendedAmount(x), t) 

HoldsAt(AlreadyPoured(y), t)  y>=x  HoldsAt(At(p, l), t),  HoldsAt(Agent(a),

t)  HoldsAt(At(a, l), t)  HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t) 
Happens(TurnOffTap(a, p), t)

BR54 HoldsAt(Beneath(x, y), t)  HoldsAt(Over(y, x), t)

BR55 HoldsAt(Level(b, x), t)  HoldsAt(Capacity(b, y), t)  y<=x 
HoldsAt(BucketFull(b), t)

BR56 HoldsAt(Level(b, x), t)  x=0  HoldsAt(BucketEmpty(b), t)

BR57 HoldsAt(On(x), t)  ¬HoldsAt(Off(x), t)

BR58 HoldsAt(DistanceBetween(l1, l2, x)  HoldsAt(DistanceBetween(l2, l1, x), t)

 Uniqueness of values for fluents dealing with integer sort

BR59 HoldsAt(Level(b, x1), t)  HoldsAt(Level(b, x2), t)  x1=x2

BR60 HoldsAt(Capacity(b, x1), t)  HoldsAt(Capacity(b, x2), t)  x1=x2

BR61 HoldsAt(DistanceBetween(l1, l2, d1), t)  HoldsAt(DistanceBetween(l1, l2, d2),

t)  d1=d2

BR62 HoldsAt(DistanceBetween(l1, l2, d1), t)  HoldsAt(DistanceBetween(l2, l1, d2),

t)  d1=d2

BR63 HoldsAt(DistanceBetween(l1, l2, d), t)  d=0  l1=l2

BR64 HoldsAt(DistanceToWalk(a, d1), t)  HoldsAt(DistanceToWalk(a, d2), t) 
d1=d2

BR65 HoldsAt(At(o, l1), t)  HoldsAt(o, l2), t)  l1=l2

BR66 HoldsAt(WalkingSpeed(a, ws1), t)  HoldsAt(WalkingSpeed(a, ws2), t) 
ws1=ws2

BR67 HoldsAt(Beneath(x, y), t) HoldsAt(Beneath(y, x), t)

BR68 HoldsAt(AlreadyPoured(x1), t)  HoldsAt(AlreadyPoured(x2), t)  x1=x2

73

BR69 HoldsAt(WastedLiquid(x1), t)  HoldsAt(WastedLiquid(x2), t)  x1=x2

BR70 HoldsAt(IntendedAmount(x1), t)  HoldsAt(IntendedAmount(x2), t)  x1=x2

BR71 HoldsAt(FlowRate(p, f1), t)  HoldsAt(FlowRate(p, f2), t)  f1=f2

BR72 HoldsAt(BucketEmpty(b), t)  HoldsAt(BucketFull(b), t)

BR73 HoldsAt(BucketFull(b), t)  HoldsAt(BucketEmpty(b), t)

74

3.4 Proof of propositions

Computed circumscription of  and  (defined in the proof):

Circumscription of the events and the effect axioms

BX1 Happens(e, t) 

a, l1, l2, t (e= GoFromTo(a, l1, l2)  a=Fred  l1=Home  l2=Well  t=0) 

a, p, l, c, t (e= TurnOnTap (a, p)  HoldsAt(c, t)  HoldsAt(At(a, l), t) 

¬HoldsAt(On(p), t)  l=Well  p=Tap  a=Fred  c=Cond1) 

a, b1, b2, l, c, t (e= MoveOver (a, b1, b2)  HoldsAt(At(a, l), t) 

HoldsAt(Carrying(a, b1), t)  ¬HoldsAt(BucketEmpty(b1, t)  HoldsAt(c,

t)  a=Fred  l=Home  b1=Bucket1 b2=Bucket3  c=Cond2) 

a, b1, b2, l, c, t (e= PourFromTo (a, b1, b2)  HoldsAt(At(a, l), t) 

HoldsAt(Carrying(a, b1), t)  ¬HoldsAt(BucketEmpty(b1), t) 

HoldsAt(Beneath(b3, b2), t)  HoldsAt(c, t)  a=Fred  b1=Bucket1 

b2=Bucket3  l=Home  c=Cond2) 

a, b1, b2, b3, l, c, t (e= MoveOver (a, b2, b3)  HoldsAt(At(a, l), t) 

HoldsAt(Carrying(a, b2), t)  ¬HoldsAt(BucketEmpty(b2), t) 

HoldsAt(BucketEmpty(b1), t)  HoldsAt(c, t)  a=Fred  b1=Bucket1 

b2=Bucket2  l=Home  b3=Bucket3  c=Cond3) 

a, b1, b2, b3, l, c, t (e= PourFromTo (a, b2, b3)  HoldsAt(At(a, l), t) 

HoldsAt(Carrying(a, b2), t)  ¬HoldsAt(BucketEmpty(b2), t) 

HoldsAt(BucketEmpty(b1), t)  HoldsAt(Beneath(b3, b2), t)  HoldsAt(c,

t)  a=Fred  b1=Bucket1  b2=Bucket2  l=Home  b3=Bucket3 

c=Cond3) 

a, b1, b2, x, y, z, l1, l2, t (e= GoFromTo (a, l1, l2)  HoldsAt(Carrying(a,

b1), t)  HoldsAt(Carrying(a, b2), t)  HoldsAt(Level(b1, x), t) 

HoldsAt(Level(b2, y), t)  HoldsAt(IntendedAmount(z), t) 

HoldsAt(At(a, l), t)  HoldsAt(c, t)  x+y=z  a=Fred  b1=Bucket1 

b2=Bucket2  l1=Well  l2=Home) 

a, b1, b2, x, y, z, l, t (e= PickUp (a, b1)  ¬HoldsAt(Carrying(a, b1), t) 

HoldsAt(Level(b1, x), t)  HoldsAt(Level(b2, y), t) 

HoldsAt(IntendedAmount(z), t)  HoldsAt(At(a, l), t)  HoldsAt(c, t) 

x+y=z  a=Fred  b1=Bucket1  b2=Bucket2  l=Well) 

a, b1, b2, x, y, z, l, t (e= PickUp (a, b2)  ¬HoldsAt(Carrying(a, b2), t) 

HoldsAt(Level(b1, x), t)  HoldsAt(Level(b2, y), t) 

HoldsAt(IntendedAmount(z), t)  HoldsAt(At(a, l), t)  HoldsAt(c, t) 

x+y=z  a=Fred  b1=Bucket1  b2=Bucket2  l=Well) 

a, ws, d (e=DecreaseDistanceToWalk(a, ws)  HoldsAt(Walking(a), t) 

HoldsAt(DistanceToWalk(a, d), t)  0<d  HoldsAt(WalkingSpeed(a, ws),

t)  0<=d-ws) 

a, l, d (e= Arrive(a, l)  HoldsAt(Walking(a), t) 

HoldsAt(DistanceToWalk(a, d), t)  d<=0)  HoldsAt(Destination(a, l), t))


f, b, p (e=IncreasePouredLiquid(f)  e=IncreaseLiquidLevel(b, f) 

HoldsAt(Filling(b), t)  HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t) 

75

HoldsAt(FlowRate(p, f), t)) 

b, f, p, t (e=IncreaseLiquidLevel(b, f)  HoldsAt(Filling(b), t) 

HoldsAt(Beneath(b, p), t)  HoldsAt(FlowRate(p, f), t)) 

b, x, b2, y, t (e=IncreaseLiquidLevel(b, x)  HoldsAt(Filling(b), t) 

HoldsAt(SpillAmount(b, x), t)  HoldsAt(Level(b2, y), t)  y>0) 

a, b, x, y, b2, t (e= DecreaseLiquidLevel (b2, x)  HoldsAt(Filling(b), t) 

HoldsAt(SpillAmount(b, x), t)  HoldsAt(Level(b2, y), t)  y>0 

HoldsAt(PouringFromTo(a, b2, b), t)) 

f, b, p, b2, f (e=IncreaseWastedLiquid(f)  HoldsAt(BucketFull(b), t) 

HoldsAt(Beneath(b, p), t)  HoldsAt(On(p), t) HoldsAt(Beneath(b2,

p), t) HoldsAt(BucketFull(b2), t)  HoldsAt(FlowRate(p, f), t)) 

y, a, b1, b2, x (e=IncreaseWastedLiquid(y)  HoldsAt(PouringFromTo(a,

b1, b2), t)  HoldsAt(BucketFull(b2), t)  HoldsAt(Level(b1, x), t)  x>0

 HoldsAt(SpillAmount(b1, y), t)) 

a, b1, b2, x (e=StopPouringFromTo(a, b1, b2) 

HoldsAt(PouringFromTo(a, b1, b2), t)  HoldsAt(Level(b1, x), t)  x<=0)


a, b, b2, bo, p, x, y (e= Replace(a, b, b2)  (HoldsAt(PouringFromTo(a, bo,

b), t)  (HoldsAt(Beneath(b, p), t)  HoldsAt(On(p), t))) 

HoldsAt(BucketFull(b), t)  HoldsAt(IntendedAmount(x), t) 

HoldsAt(AlreadyPoured(y), t)  y<x  HoldsAt(At(b, l), t) 

HoldsAt(At(b2, l), t)  ¬HoldAt(BucketFull(b2), t)  HoldsAt(Agent(a),

t)) 

a, p, b, x, y, l (e=TurnOffTap(a, p)  HoldsAt(Filling(b), t) 

HoldsAt(IntendedAmount(x), t)  HoldsAt(AlreadyPoured(y), t)  y>=x

 HoldsAt(At(p, l), t),  HoldsAt(Agent(a), t)  HoldsAt(At(a, l), t) 

HoldsAt(On(p), t)  HoldsAt(Beneath(b, p), t))

BX2 Initiates(e, f, t) 

a, p, t (e=TurnOnTap(a, p)  f=On(p)) 

a, b1, b2, t (e=MoveOver(a, b1, b2)  f=Beneath(b2, b1)) 

a, b, t (e=PickUp(a, b)  f=Carrying(a, b)) 

a, b, l, t (e=PutDown(a, b)  f=At(b, l))  HoldsAt(At(a, l), t)) 

a, l1, l2, t (e=GoFromTo(a, l1, l2)  f =Walking(a)  l1  l2) 

a, l1, l2, t (e=GoFromTo(a, 1l, l2)  f=Destination(a, l2)) 

a, l1, l2, x, t (e=GoFromTo(a, l1, l2)  f =DistanceToWalk(a, x) 

HoldsAt(DistanceBetween(l1, l2, x), t)) 

a, l, t (e=Arrive(a, l)  f=At(a, l)) 

a, b1, b2, t (e=PourFromTo(a, b1, b2)  f=PouringFromTo(a, b1, b2)) 

a, x, y, t (e=MoveUnder(a, x, y)  f=Beneath(x, y)) 

a, x, y, l, t (e=MoveAside(a, x, y)  f=At(x, l)  HoldsAt(At(a, l), t)) 

a, b1, b2, x, t (e=StopPouringFromTo(a, b1, b2)  f=Level(b1, x) 

HoldsAt(Level(b1, x), t)) 

a, b1, b2, x, t (e=StopPouringFromTo(a, b1, b2)  f=Level(b2, x) 

HoldsAt(Level(b2, x), t)) 

b, x, y, t (e=IncreaseLiquidLevel(b, x)  f=Level(b, x+y) 

HoldsAt(Level(b, y), t)) 

b, x, y, t (e=DecreaseLiquidLevel(b, x)  f=Level(b, y-x)

HoldsAt(Level(b, y), t)  y>x) 

76

x, y, t (e=IncreasePouredLiquid(x),  f=AlreadyPoured(x+y)

HoldsAt(AlreadyPoured(y), t)) 

x, y, t (e=IncreaseWastedLiquid(x)  f=WastedLiquid(x+y)

HoldsAt(WastedLiquid(y), t)) 

a, nd, od, t (e=DecreaseDistanceToWalk(a, nd)  f=DistanceToWalk(a, od

nd) HoldsAt(DistanceToWalk(a, od))

BX3 Terminates(e, f, t) 

a, p, c, t (e=TurnOnTap(a, p)  f=c  c=Cond1  HoldsAt(c, t)  a=Fred 

p=Tap) 

a, b1, b2, c, t (e=PourFromTo(a, b1, b2)  f=c  c=Cond2  HoldsAt(c, t) 
a=Fred

 b1=Bucket1  b2=Bucket3) 

a, b1, b2, c, t (e=PourFromTo(a, b1, b2)  f=c  c=Cond3  HoldsAt(c, t) 
a=Fred

 b1=Bucket2  b2=Bucket3) 

a, p, t (e=TurnOffTap(a, p)  f=On(p)) 

a, b, t (e=PutDown(a, b)  f=Carrying(a, b)) 

a, l1, l2, t (e=GoFromTo(a, l1, l2)  f= At(a, l1)  HoldsAt(At(a, l1), t)  l1  l2)


a, l, t (e=Arrive(a, l) f=Walking(a)) 

a, x, y, t (e=MoveAside(a, x, y) f=Beneath(x, y)) 

a, b1, b2, x, y, t (e=StopPouringFromTo(a, b1, b2)  f=PouringFromTo(a, b1,

b2)) 

b, x, y, t (e=IncreaseLiquidLevel(b, x)  f=Level(b, y)  HoldsAt(Level(b, y), t) 

x>0) 

b, x, y, t (e=DecreaseLiquidLevel(b, x)  f=Level(b, y)HoldsAt(Level(b, y), t) 

x>0) 

x, y, t (e=IncreasePouredLiquid(x) f=AlreadyPoured(y) 

HoldsAt(AlreadyPoured(y), t)  x>0) 

x, y, t (e=IncreaseWastedLiquid(x)

f=WastedLiquid(y)HoldsAt(WastedLiquid(y),

t)  x>0) 

a, nd, od, t (e=DecreaseDistanceToWalk(a, nd) f=DistanceToWalk(a,

od)HoldsAt(DistanceToWalk(a, od))

BX4 Releases(e, f, t) 

a, b, l (e=PickUp(a, b)  f=At(b, l)  HoldsAt(At(b, l), t))

77

The proof our proposition is presented below:

Proof of a proposition for the Bucket scenario

 Let  be the conjunction of (Initiates, Terminates and Releases formulas):
BR2, BR5, BR6, BR9, BR12, BR15, BR16, BR17, BR20, BR24, BR28, BR30, BR31,
BR33, BR35, BR38, BR40, BR42, BNC1, BNC2, BNC3, BR4, BR10, BR13, BR18, BR27,
BR32, BR34, BR37, BR39, BR41, BR43 and BR7.

Let  be conjunction of (Happens formulas):
BNE1, BNE2, BNE3, BNE4, BNE5, BNE6, BNE7, BNE8, BNE9, BR44, BR45, BR47,
BR74, BR48, BR75, BR49, BR50, BR51, BR52 and BR53.

Let  be the conjunction of all other formulas in our scenario.

 Proposition

 Our proposition states that the level of Bucket 3 will be 5 at a timepoint. Our
proof shows this and provides the timepoint at which this will be true.

Formally,

CIRC[; Initiates, Terminates, Releases]  CIRC[; Happens]  DEC |=
HoldsAt(Level(Bucket3, 5), t)

Circumscription of  is computed in BX2, BX3 and BX4 respectively.

Circumscription of  is computed in BX1.

Computing circumscription of Happens ensures that the only events that occur in
our scenario are the ones computed in their circumscription and nothing else
happens. Also, by circumscribing Initiates, Terminates and Releases we ensure
that the effects of these events are the ones in their circumscription and they do
not have other effects.

BXP1
BXP2
BXP3
BXP4

BNE1 happens at timepoint 0 - this is in the narrative:
Happens(GoFromTo(Fred, Home, Well), 0)

From this and:

 BR12:

Initiates(GoFromTo(Fred, Home, Well), Walking(Fred), 0)

From this, BNE1 and DEC9 we have:

BXP1: HoldsAt(Walking(Fred), 1)

 BNI1, BR13 and BNE1:

78

Terminates(GoFromTo(Fred, Home, Well), At(Fred, Home), 0)

From this, BNE1 and DEC10 we have:

BXP2: ¬HoldsAt(AT(Fred, Home), 1)

 BR15:

Initiates(GoFromTo(Fred, Home, Well), Destination(Fred, Well), 0)

From this, BNE1 and DEC9 we have:

BXP3: HoldsAt(Destination(Fred, Well), 1)

 BNP1 and BR16:

Initiates(GoFromTo(Fred, Home, Well), DistanceToWalk(Fred, 20), 0)

From this, BNE1 and DEC9 we have:

BXP4: HoldsAt(DistanceToWalk(Fred, 20), 1)

BXP5
BXP6
BXP7

From BR44, BXP1, BXP4 and BNP8 we have:

BXP5: Happens(DecreaseDistanceToWalk(Fred, 1), 1)
(this event keeps occurring at every timepoint as long as all the conditions hold -
therefore the derived deductions will also be repeated)

From this and:

 BR42:

BXP6: Initiates(DecreaseDistanceToWalk(Fred, 1), DistanceToWalk(Fred,

19), 1)

 BR43:

BXP7: Terminates(DecreaseDistanceToWalk(Fred, 1),

DistanceToWalk(Fred, 20), 1)

79

BXP8 From BXP5, BXP6 and DEC9 we have:

HoldsAt(DistanceToWalk(Fred, 19), 2)

The same deduction is repeatedly at every timepoint applied. Therefore we have a
decreasing distance till timepoint 21. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP8: HoldsAt(DistanceToWalk(Fred, 0), 21)

BXP9 From BXP5, BXP7 and DEC10 we have:

HoldsAt(DistanceToWalk(Fred, 20), 2)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete decreasing distance till timepoint 21. To save space, we do not repeat
this.
….
[we eventually reach the following:]

BXP9: HoldsAt(DistanceToWalk(Fred, 1), 21)

BXP10
BXP11
BXP12
BXP13
BXP14

From BR45 and BXP1C and BXP8 and BXP3C we have:
BXP10: Happens(Arrive(Fred, Well), 21)

From this and:

 BR17 and DEC9:

BXP11: Initiates(Arrive(Fred, Well), At(Fred, Well), 21)

From this, BXP10 and DEC9 we have:
BXP12: HoldsAt(At(Fred, Well), 22)

 BR18 and DEC10:

BXP13: Terminates(Arrive(Fred, Well), Walking(Fred), 21)

From this, BXP10 and DEC10 we have:

BXP14: HoldsAt(Walking(Fred), 22)

80

BXP15
BXP16
BXP17
BXP18
BXP19

From BNE2, BXP12, BNI7C and BNC6C we have:
BXP15: Happens(TurnOnTap(Fred, Tap), 22)

From this and:

 BNC1 and BNC6C:

BXP16: Terminates(TurnOnTap(Fred, Tap), Cond1, 22)

From this, BIN1 and DEC10 we have:

BXP17: HoldsAt(Cond1, 23)

 BR2:

BXP18: Initiates(TurnOnTap(Fred, Tap), On(Tap), 22)

From this, BXP15 and DEC9 we have:

BXP19: HoldsAt(On(Tap), 23)

BXP20 From BNI2 and BR72 we have:

BXP20: HoldsAt(BucketFull(Bucket1), 0)

BXP21

From BR46, BXP20C, BNI8C and BXP19 we have:

BXP21: HoldsAt(Filling(Bucket1), 23)

BXP22
BXP23

From BXP21, BXP19, BNI8C and BNP5 and:

 BR47:

BXP22: Happens(IncreasePouredLiquid(0.1), 23)

 BR74:

BXP23: Happens(IncreaseLiquidLevel(Bucket1, 0.1), 23)

(this event keeps occurring at every timepoint as long as all the conditions

hold - therefore the derived deductions will also be repeated)

BXP24 From BNI2C and BR56 we have:
BXP24: HoldsAt(Level(Bucket1, 0), 0)

BXP25 From BXP23, BXP24C and:

81

BXP26

 BR33:

BXP25: Initiates(IncreaseLiquidLevel(Bucket1, 0.1), Level(Bucket1, 0.1),

23)

(the event that this deduction has come from (BXP23) is repeated at every

timepoint as long as all conditions hold - so this deduction is also

repeated)

 BR34:

BXP26: Terminates(IncreaseLiquidLevel(Bucket1, 0.1), Level(Bucket1, 0),

23)

(the event that this deduction has come from (BXP23) is repeated at every

timepoint as long as all conditions hold - so this deduction is also

repeated)

BXP27 From BXP23, BXP25 and DEC9 we have:

HoldsAt(Level(Bucket1, 0.1), 24)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an increasing level till timepoint 43. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP27: HoldsAt(Level(Bucket1, 2), 43)

BXP28

From BXP23, BXP26 and DEC10 we have:

HoldsAt(Level(Bucket1, 0), 24)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete increasing level till timepoint 43. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP28: HoldsAt(Level(Bucket1, 1.9), 43)

BXP29 From BR55 and BNP2 and BXP27V we have:

BXP29: HoldsAt(BucketFull(Bucket1), 43)

82

BXP30 From BR46 and BXP29 we have:

BXP30: HoldsAt(Filling(Bucket1), 43)

BXP31
BXP32

From BXP22, BNI9C and:

 BR38:

BXP31: Initiates(IncreasePouredLiquid (0.1), AlreadyPoured(0.1), 23)

(the event that this deduction has come from (BXP22) is repeated at every

timepoint as long as all conditions hold - so this deduction is also

repeated)

 BR39:

BXP32: Terminates(IncreasePouredLiquid (0.1), AlreadyPoured(0), 23)

(the event that this deduction has come from (BXP22) is repeated at every

timepoint as long as all conditions hold - so this deduction is also

repeated)

BXP33 From BXP22, BXP31 and DEC9 we have:

HoldsAt(AlreadyPoured(0.1), 24)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an increasing poured level till timepoint 43. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP33: HoldsAt(AlreadyPoured(2), 43)

BXP34 From BXP22, BXP32 and DEC10 we have:

HoldsAt(AlreadyPoured(0), 24)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete increasing poured level till timepoint 43. To save space, we do not
repeat this.
….
[we eventually reach the following:]

BXP34: HoldsAt(AlreadyPoured(1.9), 43)

BXP35 From BNI3C and BR72 we have:

BXP35: HoldsAt(BucketFull(Bucket2), 0)

83

BXP36 From BNI3C and BR56 we have:

BXP36: HoldsAt(Level(Bucket2, 0), 0)

BXP37
BXP38
BXP39
BXP40
BXP41
BXP42
BXP43
BXP44
BXP45

From BR52, BNI8C, BXP19C, BXP29, BNP9, BXP33C, BNI4C, BNI5C, BXP35 and
BNP10 we have:

BXP37: Happens(Replace(Fred, Bucket1, Bucket2), 43)

From this and:

 BNI8C and BR29:

BXP38: Happens(MoveAside(Fred, Bucket1, Tap), 43)

From this and:

o BR27:

BXP39: Terminates(MoveAside(Fred, Bucket1, Tap),

Beneath(Bucket1, Tap), 43)

From this and BXP38 and DEC10 we have:

BXP40: HoldsAt(Beneath(Bucket1, Tap), 44)

o BR28 and BXP12C:

BXP41: Initiates(MoveAside(Fred, Bucket1, Tap), At(Bucket1,

Well), 43)

From this, BXP38 and DEC9 we have:

BXP42: HoldsAt(At(Bucket1, Well), 44)

 BNI8C and BR25:

BXP43: Happens(MoveUnder(Fred, Bucket2, Tap), 43)

From this and BR24 we have:

BXP44: Initiates(MoveUnder(Fred, Bucket2, Tap), Beneath(Bucket2, Tap),

84

43)

From this, BXP38 and DEC10 we have:

BXP45: HoldsAt(Beneath(Bucket2, Tap), 44)

BXP46 From BR46, BXP35C, BXP45, BXP19C we have:

BXP46: HoldsAt(Filling(Bucket2), 44)

BXP47
BXP48
BXP49
BXP50
BXP51
BXP52

From BXP46, BXP19C, BXP45 and BNP5 and:

 BR47:

BXP47: Happens(IncreasePouredLiquid(0.1), 44)

(this event keeps occurring at every timepoint as long as all the conditions

hold - therefore the derived deductions will also be repeated)

From this, BXP33C and:

BR38:

BXP48: Initiates(IncreasePouredLiquid (0.1), AlreadyPoured(2.1), 44)

BR38:

BXP49: Terminates(IncreasePouredLiquid (0.1), AlreadyPoured(2), 44)

 BR74:

BXP50: Happens(IncreaseLiquidLevel(Bucket2, 0.1), 44)

(this event keeps occurring at every timepoint as long as all the conditions

hold - therefore the derived deductions will also be repeated)

85

From this, BXP36C and:

BR33:

BXP51: Initiates(IncreaseLiquidLevel(Bucket2, 0.1), Level(Bucket2, 0.1),

44)

BR34:

BXP52: Terminates(IncreaseLiquidLevel(Bucket2, 0.1), Level(Bucket2, 0),

44)

BXP53 From BXP47, BXP48 and DEC9 we have:

HoldsAt(AlreadyPoured(2.1), 45)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an increasing poured level till timepoint 54. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP53: HoldsAt(AlreadyPoured(3), 54)

BXP54 From BXP47, BXP49 and DEC10 we have:

HoldsAt(AlreadyPoured(2), 45)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete increasing poured level till timepoint 43. To save space, we do not
repeat this.
….
[we eventually reach the following:]

BXP54: HoldsAt(AlreadyPoured(2.9), 54)

BXP55 From BXP50, BXP51 and DEC9 we have:

HoldsAt(Level(Bucket2, 0.1), 45)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an increasing level till timepoint 43. To save space, we do not repeat this.
….
[we eventually reach the following:]

86

BXP55: HoldsAt(Level(Bucket2, 1), 54)

BXP56 From BXP50, BXP52 and DEC10 we have:

HoldsAt(Level(Bucket2, 0), 45)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete increasing level till timepoint 43. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP56: HoldsAt(Level(Bucket2, 0.9), 54)

BXP57
BXP58
BXP59

From BR53, BX46C, BNP9, BXP53, BNP4, BNP10, BXP12C, BXP19C, BXP45C we
have:

BXP57: Happens(TurnOffTap(Fred, Tap), 54)

From this and:

BR4:
BXP58: Terminates(TurnOffTap(Fred, Tap), On(Tap), 54)

From this BXP57 and DEC10 we have:

BXP59: HoldsAt(On(Tap), 55)

BXP60
BXP61
BXP62
BXP63
BXP64

From BNE8, BXP12C, BXP27C, BXP55C, BNP9 and BNI11C we have:

BXP60: Happens(PickUp(Fred, Bucket1), 54)

From this and:

 BR6:

BXP61: Initiates(PickUp(Fred, Bucket1), Carrying(Fred, Bucket1), 54)

From this and DEC9 we have:

BXP62: HoldsAt(Carrying(Fred, Bucket1), 55)

 BR7 and BXP42C:

BXP63: Releases(PickUp(Fred, Bucket1), At(Bucket1, Well), 54)

87

From this and DEC11 we have:

BXP64: ReleasedAt(At(Bucket1, Well), 55)

BXP65
BXP66
BXP67
BXP68
BXP69

From BNE9, BXP12C, BXP27C, BXP55C, BNP9 and BNI12C we have:

BXP65: Happens(PickUp(Fred, Bucket2), 54)

From this and:

 BR6:

BXP66: Initiates(PickUp(Fred, Bucket2), Carrying(Fred, Bucket2), 54)

From this and DEC9 we have:

BXP67: HoldsAt(Carrying(Fred, Bucket2), 55)

 BR7 and BNI5C:

BXP68: Releases(PickUp(Fred, Bucket2), At(Bucket2, Well), 54)

From this and DEC11 we have:

BXP69: ReleasedAt(At(Bucket2, Well), 55)

BXP70
BXP71
BXP72
BXP73
BXP74
BXP75
BXP76
BXP77
BXP78

From BNE7, BXP62, BXP67, BXP27C, BXP55C, BNP9, BXP12C we have:

BXP70: Happens(GoFromTo(Fred, Well, Home), 55)

From this and:

 BR12:

BXP71: Initiates(GoFromTo(Fred, Well, Home), Walking(Fred), 55)

From this, BXP70 and DEC9 we have:

BXP72: HoldsAt(Walking(Fred), 56)

88

 BR13 and BXP12C:

BXP73: Terminates(GoFromTo(Fred, Well, Home), At(Fred, Well),

55)

From this, BXP70 and DEC10 we have:

BXP74: ¬HoldsAt(AT(Fred, Well), 56)

 BR15:

BXP75: Initiates(GoFromTo(Fred, Home, Well), Destination(Fred,

Well), 0)

From this, BXP70 and DEC9 we have:

BXP76: HoldsAt(Destination(Fred, Home), 56)

 BNP1 and BR16:

BXP77: Initiates(GoFromTo(Fred, Well, Home),

DistanceToWalk(Fred, 20), 55)

From this, BXP70 and DEC9 we have:

BXP78: HoldsAt(DistanceToWalk(Fred, 20), 56)

BXP79
BXP80
BXP81

From BR44, BXP72, BXP78 and BNP8 we have:

BXP79: Happens(DecreaseDistanceToWalk(Fred, 1), 56)

(this event keeps occurring at every timepoint as long as all the conditions

hold - therefore the derived deductions will also be repeated)

From this and:

 BR42:

BXP80: Initiates(DecreaseDistanceToWalk(Fred, 1), DistanceToWalk(Fred,

89

19), 56)

 BR43:

BXP81: Terminates(DecreaseDistanceToWalk(Fred, 1),

DistanceToWalk(Fred, 20), 56)

BXP82 From BXP79, BXP80 and DEC9 we have:

HoldsAt(DistanceToWalk(Fred, 19), 57)

The same deduction is repeatedly at every timepoint applied. Therefore we have a
decreasing distance till timepoint 21. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP82: HoldsAt(DistanceToWalk(Fred, 0), 76)

BXP83 From BXP79, BXP81 and DEC10 we have:

HoldsAt(DistanceToWalk(Fred, 20), 57)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete decreasing distance till timepoint 21. To save space, we do not repeat
this.
….
[we eventually reach the following:]

BXP83: HoldsAt(DistanceToWalk(Fred, 1), 76)

BXP84
BXP85
BXP86
BXP87
BXP88

From BR45 and BXP72C and BXP82 and BXP76C we have:
BXP84: Happens(Arrive(Fred, Home), 76)

From this and:

 BR17 and DEC9:

BXP85: Initiates(Arrive(Fred, Home), At(Fred, Home), 76)

From this, BXP84 and DEC9 we have:
BXP86: HoldsAt(At(Fred, Home), 77)

 BR18 and DEC10:

90

BXP87: Terminates(Arrive(Fred, Home), Walking(Fred), 76)

From this, BXP84 and DEC10 we have:

BXP88: HoldsAt(Walking(Fred), 77)

BXP89 From BR56 and BXP27C we have:

BXP89: ¬HoldsAt(BucketEmpty(Bucket1), 77)

BXP90 From BR56 and BXP55C we have:

BXP90: ¬HoldsAt(BucketEmpty(Bucket2), 77)

BXP91
BXP92
BXP93

From BNE3, BXP86, BXP62C, BXP89 and BNC7C we have:

BXP91: Happens(MoveOver(Fred, Bucket1, Bucket3), 77)

From this and BR5 we have:
BXP92: Initiates(MoveOver(Fred, Bucket1, Bucket3), Beneath(Bucket3,
Bucket1), 77)

From this and DEC9 we have:
BXP93: HoldsAt(Beneath(Bucket3, Bucket1), 78)

BXP94
BXP95
BXP96
BXP97
BXP98

From BNE3, BXP86C, BXP62C, BXP89, BNC7C and BXP93 we have:

BXP94: Happens(PourFromTo(Fred, Bucket1, Bucket3), 78)

From this and:

 BR20:

BXP95: Initiates(PourFromTo(Fred, Bucket1, Bucket3),

PouringFromTo(Fred, Bucket1, Bucket3), 78)

From this and DEC9 we have:

BXP96: HoldsAt(PouringFromTo(Fred, Bucket1, Bucket3), 79)

 BNC2 and BNC7C:

BXP97: Terminates(PourFromTo(Fred, Bucket1, Bucket3), Cond2, 78)

91

From this and DEC10 we have:

BXP98: HoldsAt(Cond2, 79)

BXP99 From BR55 and BNI6 we have:

BXP99: HoldsAt(BucketFull(Bucket3), 0)

BXP100 From BR46, BXP99C, BXP96, BXP27C we have:

BXP100: HoldsAt(Filling(Bucket3), 79)

BXP101
BXP102
BXP103
BXP104
BXP105
BXP106

From BXP100, BXP96, BNP11, BXP27C and:

 BR48:

BXP101: Happens(IncreaseLiquidLevel(Bucket3, 0.1), 79)

(this event keeps occurring at every timepoint as long as all the conditions

hold - therefore the derived deductions will also be repeated)

From this, BNI6C and:

BR33:

BXP102: Initiates(IncreaseLiquidLevel(Bucket3, 0.1), Level(Bucket3, 2.1),

79)

BR34:

BXP103: Terminates(IncreaseLiquidLevel(Bucket3, 0.1), Level(Bucket3, 2),

79)

 BR75:

BXP104: Happens(DecreaseLiquidLevel(Bucket1, 0.1), 79)

(this event keeps occurring at every timepoint as long as all the conditions

92

hold - therefore the derived deductions will also be repeated)

From this, BXP27C and:

BR35:

BXP105: Initiates(DecreaseLiquidLevel(Bucket1, 0.1), Level(Bucket1, 1.9),

79)

BR37:

BXP106: Terminates(DecreaseLiquidLevel(Bucket1, 0.1), Level(Bucket1, 2),

79)

BXP107 From BXP101, BXP102 and DEC9 we have:

HoldsAt(Level(Bucket3, 2.1), 80)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an increasing level till timepoint 99. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP107: HoldsAt(Level(Bucket3, 4), 99)

BXP108 From BXP101, BXP103 and DEC10 we have:

HoldsAt(Level(Bucket3, 2), 80)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete increasing level till timepoint 99. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP108: HoldsAt(Level(Bucket3, 3.9), 99)

BXP109 From BXP104, BXP105 and DEC9 we have:

HoldsAt(Level(Bucket1, 1.9), 80)

The same deduction is repeatedly at every timepoint applied. Therefore we have a
decreasing level till timepoint 99. To save space, we do not repeat this.
….
[we eventually reach the following:]

93

BXP109: HoldsAt(Level(Bucket1, 0), 99)

BXP110 From BXP104, BXP106 and DEC10 we have:

HoldsAt(Level(Bucket1, 2), 80)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete decreasing level till timepoint 99. To save space, we do not repeat
this.
….
[we eventually reach the following:]

BXP110: HoldsAt(Level(Bucket1, 0.1), 99)

BXP111 From BXP109 and BR56 we have:

BXP111: HoldsAt(BucketEmpty(Bucket1), 99)

BXP112 From BR46 and BXP110 we have:

BXP112: HoldsAt(Filling(Bucket3), 99)

BXP113
BXP114
BXP115

From BNE5, BXP86C, BXP67C, BXP111, BXP90C and BNC8C we have:

BXP113: Happens(MoveOver(Fred, Bucket2, Bucket3), 99)

From this and BR5 we have:
BXP114: Initiates(MoveOver(Fred, Bucket1, Bucket3), Beneath(Bucket3,
Bucket1), 99)

From this and DEC9 we have:
BXP115: HoldsAt(Beneath(Bucket3, Bucket1), 100)

BXP116
BXP117
BXP118
BXP119

From BNE6, BXP86C, BXP67C, BXP111, BXP90C, BXP115 and BNC8C we have:

BXP116: Happens(PourFromTo(Fred, Bucket2, Bucket3), 100)

From this and:

 BR20:

BXP117: Initiates(PourFromTo(Fred, Bucket2, Bucket3),

PouringFromTo(Fred, Bucket2, Bucket3), 100)

94

From this and DEC9 we have:

BXP118: HoldsAt(PouringFromTo(Fred, Bucket2, Bucket3), 101)

 BNC3 and BNC8C:

BXP118: Terminates(PourFromTo(Fred, Bucket2, Bucket3), Cond3, 100)

From this and DEC10 we have:

BXP119: HoldsAt(Cond3, 101)

BXP120 From BR55 and BXP107 we have:

BXP120: HoldsAt(BucketFull(Bucket3), 99)

BXP121 From BR46, BXP120C, BXP118, BXP55C we have:

BXP121: HoldsAt(Filling(Bucket3), 101)

BXP122
BXP123
BXP124
BXP125
BXP126
BXP127

From BXP121, BXP118, BNP12, BXP55C and:

 BR48:

BXP122: Happens(IncreaseLiquidLevel(Bucket3, 0.1), 101)

(this event keeps occurring at every timepoint as long as all the conditions

hold - therefore the derived deductions will also be repeated)

From this, BXP107C and:

BR33:

BXP123: Initiates(IncreaseLiquidLevel(Bucket3, 0.1), Level(Bucket3, 4.1),

101)

BR34:

BXP124: Terminates(IncreaseLiquidLevel(Bucket3, 0.1), Level(Bucket3, 4),

101)

95

 BR75:

BXP125: Happens(DecreaseLiquidLevel(Bucket2, 0.1), 101)

(this event keeps occurring at every timepoint as long as all the conditions

hold - therefore the derived deductions will also be repeated)

From this, BXP55C and:

BR35:

BXP126: Initiates(DecreaseLiquidLevel(Bucket2, 0.1), Level(Bucket2, 0.9),

101)

BR37:

BXP127: Terminates(DecreaseLiquidLevel(Bucket2, 0.1), Level(Bucket2, 1),

101)

BXP128 From BXP122, BXP123 and DEC9 we have:

HoldsAt(Level(Bucket3, 4.1), 102)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an increasing level till timepoint 111. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP128: HoldsAt(Level(Bucket3, 5), 111)

BXP129 From BXP122, BXP124 and DEC10 we have:

HoldsAt(Level(Bucket3, 4), 102)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete increasing level till timepoint 111. To save space, we do not repeat
this.
….
[we eventually reach the following:]

BXP129: HoldsAt(Level(Bucket3, 4.9), 111)

BXP130 From BXP125, BXP126 and DEC9 we have:

96

HoldsAt(Level(Bucket2, 0.9), 102)

The same deduction is repeatedly at every timepoint applied. Therefore we have a
decreasing level till timepoint 111. To save space, we do not repeat this.
….
[we eventually reach the following:]

BXP130: HoldsAt(Level(Bucket2, 0), 111)

BXP131 From BXP104, BXP106 and DEC10 we have:

HoldsAt(Level(Bucket2, 1), 102)

The same deduction is repeatedly at every timepoint applied. Therefore we have
an obsolete decreasing level till timepoint 111. To save space, we do not repeat
this.
….
[we eventually reach the following:]

BXP131: HoldsAt(Level(Bucket2, 0.1), 111)

END
OF
PROOF

BXP128 is the proof of our proposition:
HoldsAt(Level(Bucket3, 5), 111)

The level of Bucket3 will be 5 litres at timepoint 111.

97

3.5 Critical remarks

In the framework BR7:

 HoldsAt(At(b, l), t)  Releases(PickUp(a, b), At(b, l), t)

states that the action of picking up an item releases the location of that item from

Inertia. This means that, unlike fluents that are not released from Inertia, for

released fluents we cannot use DEC5 to deduce that they hold for the timepoints

afterwards. By picking up an item, the location of that item will that of its carrier

which is only commonsense. Therefore that item does not have a specific location.

This is represented on our framework by BR7. Inertia is restored in a released

fluent by initiating or terminating that fluent. In our framework BR9 indicates:

 HoldsAt(At(a, l), t)  Initiates(PutDown(a, b), At(b, l), t)

although this formula is not employed in our scenario (not in our natural language

scenario, Fred never puts down the buckets), our framework supports this. So if

we were to modify the scenario by putting down the buckets in the middle of the

way, that would be perfectly fine in our framework: the buckets would have a

location - where they were dropped - and they could be picked up again. Once

again this shows the elaboration tolerance and robustness of the Event Calculus.

Our framework makes use of Beneath and Over as two fluents. BR54, however,

defines the relationship between these two fluents:

 HoldsAt(Beneath(x, y), t)  HoldsAt(Over(y, x), t)

this shows these fluents have an exclusive relationship saying if x is beneath y,

then y is over x. We also make use of two actions MoveUnder and MoveOver. We

need to emphasise while it is good practice to use Beneath and Over

interchangeably (taking into account to swap x and y), it is not allowed to do so

98

with MoveUnder and MoveOver. This is due to the commonsense fact that while

it might be possible to squeeze something under another, it is not always possible

to do so with moving something over another. For instance, in our scenario it is

ok to use MoveUnder for moving a bucket under a tap or another bucket, it is not

ok to use MoveOver for moving a tap over a bucket (but it is ok to move a bucket

over another).

Our representation of the domain description can handle the scenario and also

variations to the scenario. There is room for further improvement however and

making it more robust. For instance, in the calculating of wasted liquid, the

following concurrency is not handled: the tap is left on (with no bucket

underneath it, so liquid being wasted); and we are pouring water from a bucket

into another, and the receiving bucket gets full and starts spilling (wasting liquid).

This concurrency is however trivial and can be handled by small modifications. It

was of no interest to this scenario and that is the reason why it was not handled.

Our representation initially did not handle a small change to the scenario: if Fred

stops in the middle of the way for a moment and then continues on his way. With

modifications made to the representation, it calculates the distance between

current location of Fred and the destination.

Shin and Davis representation (Appendix C) does not handle a scenario in which

a bucket is pushed underneath an open tap (say by a dog). In their representation

the only way to increase the water level of a bucket is for an agent to turn on the

tap (and initiate the Filling process). But in our representation, this is represented

as a state constraint representing rules of the world. So if a bucket gets pushed

under an open tap by any means, it will start filling regardless of the reason why

and by whom it was pushed there. The effect of turning on the tap is only for the

99

tap to be on, not filling the bucket. So if we were to represent this in Shin and

Davis representation, we would need to change at least one action (turn on tap)

and add new actions. However this is not the case in our representation of the

problem in EC due to the elaboration tolerance of EC.

New additions or modifications can be made to our representation easily. For

instance, if we want to say that an agent can only pick up a bucket if it is not “too

heavy”, we could represent this by adding:

 Happens(PickUp(agent, bucket), t) 

 HoldsAt(TooHeavy(bucket), t).

And “TooHeavy” can be defined in another assertion (yet again, elaboration

tolerance).

Our framework is able to calculate the amount of wasted liquid. Wasted liquid is

defined as if a tap is left on with no empty bucket underneath it or pouring from a

bucket into another bucket which is full. However, it would be interesting to

integrate the Liquid Theory of Davis [9] and represent what happens to the liquid

being wasted: if it is pouring to a full bucket how it will move to the sides of the

bucket and slowly flows down. This would be an interesting follow up of this

work.

By alterations to our presented scenario we can show how wasted liquid can also

be calculated: If Fred moves the bucket underneath the tap aside, opens the tap

and after 5 timepoints put the bucket back underneath the tap, the framework

calculates the liquid being wasted for those 5 timepoints.

Shin and Davis‟s framework is less developed in this sense as the condition they

impose is by turning on the tap, if bucket is as at the same location as the tap, then

a filling process is initiated (turning off the tap works in a similar fashion).

100

Therefore adding a new feature to the framework, such as calculating wasted

liquid, needs major changes to the existing formulas; as in our framework, these

formulas work separately. If we remove the wasted liquid calculating formulas,

our proved proposition is proved yet again with no change. Or if the TurnOnTap

or TurnOffTap are changed or omitted, our framework does not suffer. Although

omitting these events might result in never being able to calculate the wasted

liquid from the tap (but that is only logical, if a tap cannot be turned on, then there

will not be any wasted liquid from it), our wasted liquid formulas are still valid

for pouring from a bucket into another. This shows elaboration tolerance of the

EC and our representations in comparison to that of Shin and Davis.

101

Chapter 4

Commonsense Reasoning with the Event

Calculus

4.1 Acquisition of world knowledge

As described in Chapter 1 and shown in an example in Chapter 2, use of world

knowledge is essential to make commonsense inferences. It is important, however,

to determine to what extent we need this background knowledge. For example

consider this scenario: Fred leaves home at 8am, stops by the shop at 8:30 and

arrives at work at 9am. In a scenario in which Fred starts working at 9 and leaves

his office at 5pm, we are not concerned with where Fred has been before starting

his job (from the card reader point of view at work). But if we are interested to

find out why the fuel of Fred‟s car is less than usual, we would like to know if he

has stopped by any place on his way to work. In another scenario of the same

world, if Fred‟s car is broken, we might want to know how he got to his work, but

we did not care about the means in the previous scenario.

Let us make this clearer by a more detailed example. The Fluid Theory of Davis

[9] defines a commonsense framework in which movements of the liquid inside a

pitcher pouring the liquid inside a pail is formalised. His theory deals with the

movement of liquid from a commonsense perspective, meaning it does not go into

102

that much detail of the movements of molecules of the liquid over each other; yet

it is not so abstract to take Happens(PourFromTo(Pitcher, Pail), t) as an event of

the theory either. Finding the correct level of abstraction is very important to

make inferences possible, especially if this external knowledge is being imported

to the reasoning system. An example which we worked on and will give more

details later in the report is of an agent carrying buckets and pouring liquid from a

bucket into another. In that example, we have not gone into as much detail as in

Davis‟s theory therefore Happens(PourFromTo(Pitcher, Pail), t) would suffice

there. We need to identify, for a given scenario, what knowledge we need to

automatically import for automated reasoning.

4.2 Encoding from the Event Calculus

An EC problem can be proved using a SAT solver. A SAT problem is a specific

constraint satisfaction problem in which every variable ranges over the values

{true, false}. We describe how we can encode EC problems into propositional

calculus problems.

In this thesis, we use two methods to carry out reasoning with Event Calculus:

 Manual theorem proving: the examples of this can be seen in the literature

such as the egg cracking scenarios tackled by Shanahan [6] and

Morgestern [13]. We also present some examples we have represented and

manually proved in this report in a later chapter.

 Automated theorem proving: Shanahan and Witkowski [64] proposed that

event calculus planning be carried out using satisfiability. They presented

103

a method for encoding EC planning problems as satisfiability problems.

Mueller [65] extended their method for a larger subset of EC.

The domain description of an EC description is as follows:

CIRC[; Initiates, Terminates, Releases]  CIRC[; Happens]      DEC

In which:

  is a conjunction of Initiates, Terminates and Releases formulas

  is a conjunction of Happens and temporal ordering formulas (t1<t2)

  is a conjunction of state constraints

  is a conjunction of HoldsAt and ReleasedAt formulas

Satisfiability solvers (SAT solvers) take a set of Boolean variables and a

propositional formula over those variables as input and as output produce zero or

more models or satisfying truth assignments for the variables such that the

formula is true. A complete SAT solver produces all satisfying truth assignments.

As mentioned before, SAT solvers take a propositional formula in the conjunctive

normal form (CNF) which is a conjunction of clauses; where each clause is a

disjunction of literals; where each literal is a variable or a negated variable.

We start by introducing some definitions over the EC:

Def. 4.2.1: a comparison is a formula of the form t1<t2, t1≤t2, t1=t2, t1≥t2, t1>t2

or t1t2 where t1 and t2 are terms.

Def. 4.2.2: If t is a variable then a condition over t is defined:

 A comparison is a condition over t

 If f is a term then HoldsAt(f, t) and HoldsAt(f, t) are conditions over t

104

 If c1 and c2 are conditions over t, then c1c2 and c1c2 are conditions over

t. If v is a variable and c is a condition over t, then v c is a condition over

t

Def. 4.2.3: If  is the predicate symbol Initiates, Terminates or Releases, then a 

effect axiom is a formula of the form e, f, t[(e, f, t)  (e, f, t)], where (e, f, t)

is a condition over t with only e, f and t free.

Def. 4.2.4: A  effect description is a collection of  effect axioms written as a

single, logically equivalent  effect axiom of the form e, f, t[(e, f, t)  (e, f,

t)], where (e, f, t) is a condition over t with only e, f and t free.

 Let init be the Initiates effect description e, f, t[init(e, f, t)  Initiates(e,

f, t)].

 Let term be the Terminates effect description e, f, t[term(e, f, t) 

Terminates(e, f, t)].

 Let rel be the Releases effect description e, f, t[rel(e, f, t)  Releases(e,

f, t)].

Def. 4.2.5: A trigger axiom is a formula of the form e, t[(e, t)  Happens(e, t)]

where (e, t) is a condition over t with only e and t free.

Def. 4.2.6: A trigger description is a collection of trigger axioms written as a

single, logically equivalent trigger axiom of the form e, t[(e, t)  Happens(e,

t)] where (e, t) is a condition over t with only e and t free.

Def. 4.2.7: An event occurrence is a formula of the form Happens(e, t) where e is

an event ground term and t is a timepoint ground term.

105

Def. 4.2.8: An event occurrence description is a collection of event occurrences

written as a single, logically equivalent trigger axiom of the form e, t[(e, t) 

Happens(e, t)] where (e, t) is a condition over t with only e and t free.

Def. 4.2.9: An event description is a trigger description and an event occurrence

description written as a single, logically equivalent trigger axiom of the form e,

t[(e, t)  Happens(e, t)] where (e, t) is a condition over t with only e and t

free.

Let  be an event description.

Def. 4.2.10: A state constraint is a formula of the form c1c2 or c1c2 where c1

and c2 are conditions over some variable t.

Let  be a conjunction of state constraints.

Def. 4.2.11: A state description is a conjunction of formulas of the form HoldsAt(f,

t), HoldsAt(f, t), ReleasedAt(f, t) or ReleasedAt(f, t) where f is a fluent ground

term and t is a timepoint ground term.

Let  be a state description.

We will use circumscription which was formally introduced in Chapter 2.

EC and DEC contain atoms involving Initiates, Terminates and Releases which

lead to a large number of ground atoms. For instance, Initiates(e, f, t) gives rise to

E*F*T ground atoms where E is the number of events, F is the number of fluents

and T is the number of timepoints. In order to eliminate such atoms, we expand

DEC by performing the following substitutions:

 Initiates(e, f, t) replaced by init(e, f, t)

 Terminates(e, f, t) replaced by term(e, f, t)

 Releases(e, f, t) replaced by rel(e, f, t)

106

For instance, if init is:

[e = Hold(a, o)  f = Holding(a, o)]  Initiates(e, f, t)

Then we replace DEC9 of Appendix B with:

[Happens(e, t)  [e = Hold(a, o)  f = Holding(a, o)]]  HoldsAt(f, t+1)

The next step is to circumscribe Happens. So using the methods explained in

Chapter 2, we compute: CIRC[; Happens]. We then conjoin ,  the new

substituted DEC and CIRC[; Happens].

Then we instantiate quantifiers by replacing x (x) with i (xi) and x (x)

with i (xi) where xi are constants of the sort of x. This gives us a propositional

calculus formula.

We simplify the formula using standard techniques [44].

We construct a one-to-one and onto map B that maps the ground atoms of the

formula to Boolean variables. We construct an inverse map B
-1

 from B for

converting the results back into the EC formulas.

We construct a formula to pass to the SAT solvers by replacing each ground atom

u in the formula with B(u). In order to perform model finding we give the formula

to a SAT solver. We can then decode the satisfying truth assignments produced

by the solver by applying B
-1

 inverse map.

4.3 An example of a domain description

We convert and feed the following domain description to a SAT solver and see

how the SAT solver will find a model based on the model at the initial time.

107

We have an Initiates effect description that states that if a person holds an object,

then the person will be holding the object (example adopted from [65]):

Ex3.4.1 [e = Hold(a, o)  f = Holding(a, o)]  Initiates(e, f, t)

There is a state description that says at timepoint 0 agent A1 is not holding object

O1 and this fact is not released from the commonsense law of Inertia:

Ex3.4.2 HoldsAt(Holding(A1, O1), 0)  RleasedAt(Holding(A1, O1), 0)

There is an event description that says at timepoint 0 agent A1 holds object O1:

Ex3.4.3 [e = Hold(A1, O1)  t = 0)  Happens(e, t)

We assume that 0 and 1 are the only constants of the timepoint sort, A1 is the only

constant of the sort Agent and O1 is the only constant of the sort Object. The

conjunctive normal form from encoding this domain description will consist of 10

clauses.

We have the following clauses for Ex3.4.2:

C1: HoldsAt(Holding(A1, O1), 0).

C2: ReleasedAt(Holding(A1, O1), 0).

From Ex3.4.1 and expansion of DEC5,6, 7,9 and DEC12 we have:

C3: ReleasedAt(Holding(A1, O1), 1)  HoldsAt(Holding(A1, O1), 1)

  HoldsAt(Holding(A1, O1), 0).

C4: Happens(Hold(A1, O1), 0)  HoldsAt(Holding(A1, O1), 0) 

 ReleasedAt(Holding(A1, O1), 1)  HoldsAt(Holding(A1,

 O1), 1).

C5: Happens(Hold(A1, O1), 0)  ReleasedAt(Holding(A1, O1), 1) 

 HoldsAt(Holding(A1, O1), 0).

C6: ReleasedAt(Holding(A1, O1), 0)  ReleasedAt(Holding(A1, O1),

1).

108

C7: HoldsAt(Holding(A1, O1), 1)  Happens(Hold(A1, O1), 0).

C8: Happens(Hold(A1, O1), 0)  ReleasedAt(Holding(A1, O1), 1).

Formulas DEC10 and DEC11 are trivially satisfied since there are no Terminates

or Releases formulas in the domain description.

The circumscription of Happens results in the following clauses:

C9: Happens(Hold(A1, O1), 1).

C10: Happens(Hold(A1, O1), 0).

We construct our B map from ground atoms to Boolean variables - assigning each

axiom a number:

Happens(Hold(A1, O1), 0) → 1

HoldsAt(Holding(A1, O1), 0) → 2

ReleasedAt(Holding(A1, O1), 0) → 3

Happens(Hold(A1, O1), 1) → 4

ReleasedAt(Holsing(A1, O1), 1) → 5

HoldsAt(Holding(A1, O1), 1) → 6

Converting the clauses into the standard DIMACS format for satisfiability

problems [43] results in Figure 4.1 which represents the translation of our clauses

(C1 to C10) to their equivalent Boolean variables we just assigned (1 to 6).

109

Clauses Equivalent Boolean variables in the clause

C1 -2 0

C2 -3 0

C3 5 6 -2 0

C4 1 2 5 -6 0

C5 1 5 -3 0

C6 3 -5 0

C7 6 -1 0

C8 -1 -5 0

C9 -4 0

C10 1 0

Figure 4.1 – Converted clauses C1 to C10 into CNF using Boolean variables 1 to 6

A negated variable v is represented by –v and a non-negated variable v is

represented by v. Each row in Figure 4.1 is a sequence of numbers and terminates

with the number 0.

So for instance clause C5:

 Happens(Hold(A1, O1), 0) 

 ReleasedAt(Holding(A1, O1), 1) 

 HoldsAt(Holding(A1, O1), 0).

is represented respectively as:

 1

 5

 -3

 0 (indicates the termination of the sequence)

110

Invoking a SAT solver on this problem will produce one model as output:

1 -2 -3 -4 -5 6

By applying the inverse map, B
-1

, we get:

Happens(Hold(A1, O1), 0). (1)

HoldsAt(Holding(A1, O1), 0). (-2)

ReleasedAt(Holding(A1, O1), 0). (-3)

Happens(Hold(A1, O1), 1). (-4)

ReleasedAt(Holding(A1, O1), 1). (-5)

HoldsAt(Holding(A1, O1), 1). (6)

Our proposition is proved by a SAT solver successfully.

Table 4.1 shows a list of commonsense encoders which make use of SAT solvers.

Description Technique Reasoning Type

Event Calculus Planner

[62, 63]

Abductive logic

programming

Abduction

Event calculus planner

[64]

Propositional

satisfiability

Abduction

Discrete Event Calculus

Reasoner [65, 66]

Propositional

satisfiability

Deduction, Abduction,

Postdiction, Model

Finding

Discrete event calculus

theorem prover [67, 68,

69]

First-order logic

automated theorem

proving

Deduction

Table 4.1: Commonsense encoders which make use of SAT solvers

111

Chapter 5

Automated Reasoning Methods for the

Event Calculus

5.1 Introduction

Over the past decades, large amounts of time and resources have been dedicated

to research in Automated Reasoning (AR) methods. Generally, the methods

which have specifically dealt with the Event Calculus are the following:

 SAT Solving: there are many implementations which use a SAT solver to

perform reasoning on the Event Calculus. For instance, E-RES [71]

system which deals with Language E and Modular E [70] (essentially EC

representations) use RelSat. Mueller‟s DECReasoner [72] also ultimately

uses three different SAT solvers (RelSat, Walksat and MiniSat) to perform

reasoning. We elaborate how a SAT solver works in this chapter.

 Logic Programming: There are implementations of reasoning on EC using

logic programming. For instance, Shanahan‟s Abductive Event Calculus

112

Planner [62] or ACLP [74]. We describe Constraint Programming in more

detail in Appendix E but will not focus any more on it since it is not in the

scope of this report. In the literature there is more usage of SAT solving

methods over logic programming. For performing reasoning over EC,

Mueller argues for superiority and high efficiency of SAT solvers and

their success in the International Planning Competition from 2004 to 2006

and their ability to perform abduction, deduction and model finding. It

should also be noted that since SAT solvers use propositional logic which

is decidable.

 First-order automated theorem proving: in the literature, there has only

been one attempt to use a first-order theorem prover on EC problems [73].

However Mueller and Sutcliffe show that SAT solving method is much

more efficient by taking significantly lower time to solve some benchmark

problems. Although they conclude ATP has the benefit that the derivation

retains meaning and can be understood by humans, it not only takes longer

to solve the problems, in many cases it fails to terminate. SAT solving

method results, however, can also be humanly understandable by reverse

mapping, as discussed before in this report.

In this chapter we will explain Propositional satisfiability solving (SAT solving)

in more detail; an AR technology that has been developing and widely used in the

industry during the recent decades.

113

5.2 SAT Solving

SAT solving approach provides a generic language that can be used to express

complex problems such as scheduling or hardware verification. It employs a

general-purpose algorithm to automatically search for solutions to the problem at

hand. This algorithm is called a solver. Where a general purpose algorithm (i.e. a

solver) is at use, the need is avoided to redevelop new algorithmic solutions from

scratch for each application where intelligent search is needed.

There are generally two categories of constraint solving methods:

 Incomplete methods: In this method, the aim is to find solutions by means

of heuristics without exhaustively covering the whole search space.

Therefore, it is most often the case that these methods are unable to

determine that no solution exists. There is, however, a time threshold after

which the search is stopped and “no solution” is generated. In this case it

is not possible to tell if the solutions were actually missed in the search or

the problem is indeed unsatisfiable. There are mainly two categories of

methods in this approach:

o Population based algorithms: a list of individuals which typically

correspond to points of the search space is maintained, and

iteratively modified; with the goal of an individual which satisfies

all constraints. An example of this type would be the ant colony

optimisation algorithms [38] and other swarm-based collective

intelligence algorithms.

o Local search methods: a unique point at every timepoint is

considered until a solution is reached by exploring the

114

neighbourhood of the current selected point, moving stochastically

along the search space.

 Complete methods: In this method, the aim is to find solutions by

exploring the entire search space by means of backtrack searches and local

reasoning at each node to prune away certain branches. Exhaustive

enumeration of search space would, however, be too costly. Therefore

pruning techniques are employed to determine certain areas of the search

space do not contain a solution, hence better efficiency.

Satisfiability is the problem of determining if the variables of a given Boolean

formula can be assigned in such a way to make the formula evaluate to true

(satisfiable) or to determine whether no such assignments exist which implies that

the function expressed by the formula is false for all possible variable

assignments (unsatisfiable). Therefore we can define a SAT solver as: given a

propositional formula on a set of Boolean variables, a SAT solver determines if

there exists an assignment of the variables such that the formula evaluates to true

or proves no such assignment exists.

A very simple yet concrete example of the kinds of problems handled by SAT

solvers is the following:

For each vertex (for instance V), we have 3 Boolean variables (V1, V2 and V3)

which will be true if one of the colours 1, 2, or 3 is assigned to the vertex. There

is also the constraint that each vertex must be assigned exactly one colour. In

other words, we could rewrite this constraint as: At least one colour is assigned to

the vertex and the vertex cannot have two colours.

So for V we have:

115

V1  V2  V3 V1  V2 V2  V3 V3  V1

These constraints are clauses. A clause is a disjunction of literals where a literal is

either a positive or a negative instance of a variable. SAT solvers take the input in

the format of conjunctive normal form (or CNF). A CNF is a conjunction of one

or more clauses.

Now let us make the problem more interesting by introducing more vertices (for

instance add W, X, Y and Z) and the constraint that each edge must have a

different colour to its extremities.

Then we will have:

V1  W1 V2  W2 V3  W3 ...

So far, we have 15 variables and 41 clauses to express this simple problem. SAT

is quite a low-level language. Were we to add more constraints or simply add

another colour to the problem, say 4, the number of clauses and variables would

significantly grow higher. Therefore for practical reasons, the formulas are

typically generated from automatic translation of a problem, instead of

handwriting them.

In general, there are two ways to use a SAT solver in an application. One way is

for the application to generate a Boolean formula and ask a SAT solver to

determine its satisfiability and produce a satisfying assignment (if any). This is

called the eager approach [39]. The other way is for the application to reduce the

problem to a series of related SAT queries which are incrementally solved by the

SAT solver. Subsequent SAT queries are then dynamically generated based on

the results of previous queries (the lazy approach [39]).

116

SAT solving approach is essentially a black box. Once the problem is stated, the

solver is to find a solution without the need for any external interaction. However,

in SAT, constraints (clauses) are expressed in an indirect way. That is although

they can be used to state complex problems, once translated into CNF which is

very low-level, the internal structure of the problems are lost and the clauses

would not make much structural sense to a human eye. But the advantage of this

simple representational language is that all the effort is focused on a single

representation resulting in more optimised datastructures and efficient

implementation of the reasoning and performing deductions on CNF formulas.

SAT solvers are generally used as a target utility by higher-level reasoning tools

which automatically translate other formalisms into CNF formulas.

Generally, a SAT solver only needs to answer true or false depending on the

satisfiability of the formula. Some SAT solvers may also produce a satisfying

assignment (a model) if the formula is satisfiable. Arithmetics are not native to

SAT solvers, since they only deal with CNF formulas. Therefore they need to be

represented in Boolean logic. One simple way is, given x as a numerical variable,

to create a Boolean variable Bi for each possible value i of x. Bi will be true if and

only if x = i. There needs to be a constraint stating that only one of the Bi

variables is true at any given moment.

5.2.1 Branching

In SAT, a common way to solve problems is to use backtracking search methods,

most of which are variations of the DPLL algorithm [37]. In SAT, only two

choices are possible for each variable, making variable selection and assignment

117

very important since different branching decisions lead to very different search

trees being explored. At each step DPLL assigns one of the two possible values to

a variable, applying a restricted form of resolution called Unit Propagation (UP).

If there is only one literal present in a unary clause, then UP automatically sets it

to True as it must be True. Having done so, UP also reduces the size of any clause

containing the opposite of this literal by one as that instance is definitely False.

This process is repeated until no more unary clauses appear or an empty clause is

derived. In the latter case, the other value of the currently selected variable will be

tried. If this causes an empty clause as well (called a dead-end), then the

algorithm backtracks to the previously assigned variable.

Using UP, the SAT problem is reduced to fewer and smaller clauses, while dead-

ends are discovered at earlier stages. Therefore, the length of a clause C is

essentially the number of unassigned literals in C.

The heuristics of choosing values are more or less arbitrary, however. They are

usually based on some obvious statistics. The solver has to search the entire

search space in one way or another, therefore discovering conflicts and dead-ends

as early as possible is vital to higher and more efficient performance. Although

branching heuristics are important in determining the efficiency of SAT solvers,

they must also be cheap to evaluate. A heuristic that requires iterating through all

the clauses of the problem is not affordable on (typically) large problems.

Moskewicz et al. proposed a branching heuristic called Variable State

Independent Decaying Sum (VSIDS) [29]. VSIDS keeps a score for each of the

two Boolean values of a SAT variable (True or False). The scores are initially the

118

number of occurrences of the corresponding literals in the original CNF formula.

But as the search progresses, additional clauses and literals are added to the clause

database. The score of a literal is increased by a constant value whenever a newly

added clause contains this literal.

All the scores are periodically divided by a constant (the decaying-scores effect).

VSIDS does this in order to overcome the problems encountered by older solvers;

namely, the significant overhead of recalculating all the free variables at every

branching point; and the dependability of the counts on the current state of the

solver (as in GRASP [26]).

In VSIDS, however, more recently added literals have higher weight for

calculating a score which is essentially a literal count. VSIDS will then branch on

the free literal with the highest score.

Scores in VSIDS are very cheap to maintain because they are variable-state

independent (i.e. unrelated to the current variable assignment). In VSIDS, the

scores are not static statistics; they take the search history into consideration.

Variables that are recently active will have preference to be branched on. The

activity of a variable is determined by the score that is related to the literal‟s

occurrences. The decaying-scores effect mentioned above helps to keep the focus

on recent events.

Search-based solvers detect the consequences of the assignments imposed by the

branching heuristics through deduction mechanisms called pruning.

119

5.2.2 Pruning

Resolution: A main deduction mechanism in SAT solvers is propositional

resolution [23]. Mathematically, it can be shown as:

A ∨ x , x ∨ B ⊢ A ∨ B.

This is to say that if there are both a clause containing a positive occurrence of

variable x and a clause with a negated occurrence of x, then we can deduce a new

clause by merging these two clauses and removing the occurrences of x,

remaining other literals from the original clauses (A and B here for example).

This new clause is called a resolvent (i.e. A ∨ B here).

Resolution is a complete deduction mechanism on its own. It computes the

resolvents of the problem until saturation is achieved. This means we have the

guarantee that the empty clause will be generated if and only if the problem is

inconsistent.

Unit Resolution (UR) is an important type of resolution. It is a restriction of

resolution in which we impose that one of the clauses we resolve on, be a single

literal (or a unit clause, defined further down) [37]. We can mathematically show

UR as:

x, x ∨ A ⊢ A and that x, x ∨ A ⊢ A.

UR is not a complete deduction mechanism. However, it can be performed

efficiently. It essentially works well with search algorithms, owing to the fact that

branching works by assigning values to the variables of the problem (i.e. adding

unit clauses to the problem).

120

Unit resolution‟s philosophy is simple: if the assignment of variable x contradicts

the value imposed to it by the clause, then one of the other literals in the clause

has to be true. Specifically, when all literals of the clause, but one, contradict the

current assignment, then the remaining literal has to be true and we can assign the

variable of this literal accordingly. The clause in this case is called a unit clause.

For instance, under the current assignment: x = 0, z = 1, using UR in the clause x

∨ y ∨ z, we can assign y to 0.

Search-based solvers use UR to propagate the consequences of every decision

made. The process of iteratively applying this rule until no unit clause exists in

CNF is called unit propagation. A clause whose literals all evaluate to false is

called a conflicting clause. When there exists a conflicting clause in the formula,

the current assignment cannot be extended to a solution; therefore we must

backtrack.

The process of giving assignments in a chain using UR rule and of detecting

conflicts is called Boolean constraint propagation (BCP) [22].

SAT solvers perform some reasoning before the search in order to help simplify

the problem (preprocessing). Since preprocessing is applied only once, it is

possible to incorporate some deduction rules that are otherwise too expensive to

be applied at every node of the search tree. For instance, it is generally the case to

perform operations such as variable renaming or elimination in preprocessing to

generate simpler SAT instances. Such operations are usually difficult and too

costly to perform during the search process due to the bookkeeping overhead.

121

Figure 5.1 – Head/tail approach towards BCP

In BCP concept, there are three possibilities for a literal:

1. It is free: if it is not assigned a value by the current partial assignment.

2. It has value 0 if the partial assignment contradicts the value imposed by

the clause.

3. It has value 1 if the partial assignment satisfies it.

An example of case 2 would be that an assignment imposes x = 1, while the

clause contains the literal x. Case 3 means that the clause is satisfied.

Having determined the literals of a clause, BCP has to determine one of these

cases for every clause, for every new assignment:

 If all literals of the clause have value 0 then we have reached

inconsistency by detecting a conflicting clause and must backtrack.

 The clause is a unit clause (i.e. all literals but one have value 0) in which

case the remaining literal forces a new assignment for propagation.

122

 Undeterministic situation because the clause either contains at least two

free literals or already a value 1 literal. In this case this clause is useless in

making further deductions until either more variables get assigned (or a

backtrack occurs).

There are mechanisms to improve the efficiency of propagation. Zhang and

Stickel [21] proposed the use of a mechanism for BCP using head/tail lists. The

algorithm states that as long as a clause contains two different literals with a value

other than 0 (including free literals too), then the clause is neither unit nor

conflicting. Therefore they propose keeping track of two nonzero literals and

avoid performing any action as long as these literals exist. In this algorithm, the

two literals we keep track of are the first and last nonzero literals of each clause.

These clauses will be pointed to by head and tail pointers.

In this algorithm, an invariant is maintained for the head pointer to be on the first

nonzero literal of the clause and the tail pointer on the last one, as shown in

Figure 5.1 (taken from [32]). The algorithm has it that if both the head and tail

pointers point to the same literal, then the clause is either unit or conflicting,

depending on the value of that particular literal. Because in this algorithm we

keep track of only two literals, it is more efficient than the literal counting

algorithm.

Figure 5.1 comments: For simplicity, the clause considered here consists of

variables x1 to x10. The darker cells correspond to literals with value 0 and empty

ones to free literals. At phase 1 (initially), the head and tail pointers point to the

123

first and last free variables in the array, respectively (because there has not been

any assignments yet, these happen to be the first and last items in the array). At

phase 2, new assignments have been imposed on the literals of the clause (x2 = 0,

x6 = 0, x8 = 0 and x9 = 1, hence x9 cell being darkened) but no action is needed

here because the new assignment does not affect the head and tail literals (i.e. the

literals we are watching). At phase 3, a new assignment of 0 is imposed on x10, a

literal we are watching. The algorithm states that if a watched literal is assigned

value 0, the pointer is moved right (for head literal) and left (for tail literal)

until a free or value 1 variable is reached – or they reach the same free variable

hence a unit clause or a conflict if they reach the same variable with value 0.

Therefore here pointer is moved to x7 and our tail literal is now x7 and no longer

x10. At phase 4, with the new assignments imposed, the pointers move again to

find a free variable. The pointers meet each other at x4 since it is the only free

variable left in the clause. We therefore have a unit clause here which means that

x4 must have value 1.

5.2.3 Conflict analysis and backtracking

Sometimes the choices made at an earlier stage in the search tree, causes a

conflict at later levels in the search. Any branch that does not reconsider these

decisions will eventually become inconsistent. To find a solution and avoid being

stuck in the search space, the SAT solver needs to backtrack to a previous branch

and explore another branch, when a conflict is found. A simple algorithm would

be to go back up only one level of the search tree (to the immediate most recent

decision level) and assign a different value for the branching variable

124

(chronological backtracking). This approach could take a very long time to search

an entire search tree, of an average size. Instead, intelligent backtracking

algorithms try to analyse the conflict and then backtrack to a decision level that

will resolve it (non-chronological backtracking).

SAT solvers use a process called clause learning which is to analyse a situation

and gain some knowledge from it and store the knowledge to prevent similar

conflicts. When based on a current assignment, all literals of a clause evaluate to

false, we have a conflict. This is called a conflicting clause, as mentioned earlier.

Clause learning in SAT can learn from a conflicting situation by memorising the

clause that lead to the conflict in order to prevent it from happening again; and

also figure out the decision level to backtrack to, that would lead to a different

search tree where the conflict would not happen anymore.

Using implication graphs [18] is one of the main methods used for conflict

analysis.

Implication graphs: a representation that captures the variable assignments made

by the solver both by propagation and by branching. This representation is a

directed acyclic graph (DAG). In this DAG, the vertices represent the assignment

of values 0 or 1 to variables and the edges the dependencies between the

assignments. For instance, an arc from a to b (represented as a → b in the graph)

means that assignment of a is one of the factors that lead to the assignment of b

(for instance x1 → x4 in Figure 5.2). Logically, each assignment is a consequence

of the conjunction of all its predecessors in the graph (i.e. all the arcs leading to

that particular variable).

125

For the purpose of conflict analysis and being able to backtrack to another

different decision level, each node in the graph has a depth level, indicating its

branching level. The depth levels start from 1 and increase for subsequent

branchings. All the variables implied by a decision variable then have the same

depth level as their corresponding decision variable. (x9 and x7 in Figure 5.2 for

instance, since x7 is implied by x9, it has the same depth level, shown by P9 – P

standing for phase). The current depth level is the highest decision level in the

branching stack (9 in this example). After backtracking, some variables become

unassigned, and we decrease the current depth level accordingly.

In the DAG, the vertices with no predecessor are the decision variables assigned

by the solver (e.g. x9 and x1 in Figure 5.2).

Constraints of the problem related to our example (there well may be more

constraints in the problem – but they may not affect the branching we are

discussing here):

C1: x9 ∨ x7

C2: x5 ∨x7 ∨ x8

C3: x2 ∨ x3

C4: x4 ∨ x1 ∨ x5 ∨ x6

C5: x6 ∨x8 ∨ x1

C6: x4 ∨ x6 ∨x3

126

Figure 5.2 comments and analysis: shows a partial DAG of an implication

graph of a conflict analysis problem. The filled-in circles (namely x1, x2, x6 and x9)

represent decision variables; hollow circles (namely x3, x4, x6, x7 and x8) represent

solver deductions using the constraints and other implied or assigned variables.

The current depth level is 9 (represented by P9).

In this example, we only consider phases 3, 4, 6 and 9 (represented by P3, P4, P6

and P9 respectively). The decisions at each phase are represented by similar

colours in this graph. The reason we do not consider other phases the solver goes

through and the decisions it makes, is because those do not affect our branching

decisions in this part of the search space (i.e. they are not connected to our graph

- somehow unrelated). We call these unrelated events because whatever events

that do happen in those phases and whatever decisions are made there, they do not

affect this part of the tree.

Figure 5.2 - DAG of conflict analysis using an implication graph

127

We now observe the chronological decision making and consequences of those

decisions of the solver in this search tree:

P1 and P2: Unrelated events happen.

P3:

The solver assigns value 1 to x2:

o by C3 and x2 = 1 we then have: x3 = 1

P4:

The solver assigns value 0 to x1.

P5: Unrelated events.

P6: The solver assigns value 0 to x5.

P7 and P8: Unrelated events.

P9:

 The solver assigns value 0 to x9.

o by C1 and x9 = 0 we then have: x7 = 1;

o by C2, x5 = 0 and x7 = 1 we then have: x8 = 1;

o by C5, x1 = 0 and x8 = 1 we then have: x6 = 0;

(at this point we have reached a unit clause, so we can determine a

value for x4).

o by C6, x3 = 1 and x6 = 0 we then have: x4 = 1;

o by C4, x1 = 0, x5 = 0 and x6 = 0 we then have: x4 = 0.

Although we did reach a unit clause and assigned a value to x4, but the solver

found two values for x4. x4 cannot both be 0 and 1 at the same time therefore we

have reached a conflict. We call x4 a conflicting variable.

128

There are many ways of how to interpret this conflict and determining where to

backtrack to, to avoid doing redundant computations and being stuck in an

endless loop in this local branching problem. But the solver can also use this

information to prevent future conflicts which follow the same pattern. Marques

Silva and Sakallah explain the Unit Implication Point in [17]. However, these

methods are out of the scope of this report and we will not discuss them further

here.

We did reach a conflict in this example, but we also reached a unit clause (hence

the solver being able to determine the values for x4). We have also presented the

head/tail approach leading up to the conflict, in Figure 5.3, following similar

conventions from Figure 5.1. Figure 5.3 is self-explanatory. Since there are a

number of consequences in phase 9, we represent each step in a separate table for

more clarification. At table P9-4, we have reached the unit clause and also the

conflict.

129

P0

Head/tail ↓ ↓

Value

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9

P3

Head/tail ↓ ↓

Value 1 1

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9

P4

Head/tail ↓ ↓

Value 0 1 1

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9

P6

Head/tail ↓ ↓

Value 0 1 1 0

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9

P9-1

Head/tail ↓ ↓

Value 0 1 1 0 0

Variable x1 x2 x3 x4 x5 x6 x8 x9

P9-2

Head/tail ↓ ↓

Value 0 1 1 0 1 0

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9

P9-3

Head/tail ↓ ↓

Value 0 1 1 0 1 1 0

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9

P9-4

Head/tail ↓↓

Value 0 1 1 0 0 1 1 0

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 5.3 – Head/tail trace of the DAG from Figure 5.2.

130

Chapter 6

Conclusion and Future Work

6.1 Summary

In this report we aimed to show and emphasise on the Event Calculus to be a

robust and flexible formalisation to deal with commonsense reasoning. We started

by describing commonsense reasoning and some of its features and reasoning

types in Chapter 1. A detailed description of the Cyc project was given and it was

explained how it gathers information about the world.

Cyc's world knowledge is automatically collected and filtered by machine and

then approved by human ontologists. Cyc crawls the web to collect the knowledge

it finds interesting based on what it already knows. However, it does allow for

manual assertions as well. New concepts in Cyc are encouraged to be formed if

there are more than 10 properties of that concept to be stored on the knowledge

base otherwise it is advised to use a combination of existing concepts. This is a

good example of a systematic approach towards tackling acquisition of

commonsense knowledge in the real world.

In Chapter 2, an introduction of the Event Calculus was given: a representational

tool for formalising commonsense. We also talked about the features of the EC

and discussed how to compute circumscription, the mathematical device to deal

with default reasoning. An example was presented: an EC representation of a real

world scenario was constructed from a natural language description.

131

We then presented our framework of the Bucket World in Chapter 3 in which we

simulate the real world in an abstract commonsense point of view. Our agent in

this scenario has a goal to achieve and we elaborate the steps of the proof. In this

chapter we compared our methods with those of Shin and Davis [40]. Our

flagging system was described which deals with triggered events - to stop them

from occurring repeatedly. In formalising a world scenario in the Event Calculus,

we have to define a framework which simulates the world and the relationship

between entities and actions can potentially happen and their effects. We then

have to formalise the scenario which will be the narrative of our simulation. The

framework and the narrative together form our domain description.

Chapter 4 discussed the acquisition of commonsense knowledge and the problem

of identifying the correct level of detail of knowledge to be imported to the

reasoning system. We introduced a method of transforming formulas of the Event

Calculus into propositional logic in the Conjunctive Normal Form; which would

be suitable for feeding into SAT solvers. We presented an example of a domain

description in the EC and then converted it into propositional logic; and showed

that using this method we could automatically prove propositions by a SAT solver

as we could do manually.

Chapter 5 discussed different automated reasoning methods that deal with the

Event Calculus. We then go into detail of one of these methods: SAT solving.

Branching and pruning methods in SAT solving were described.

In general, performing commonsense reasoning based on the domain specific

problem heavily depends on the background knowledge about the world. For a

132

systematic approach towards gathering background knowledge for solving a

commonsense problem we need to determine:

• What knowledge is related to our specific domain of problem;

• The consistency of this knowledge with our domain-specific

 representation;

• To what extent of detail we need the extra knowledge on a given problem:

For instance when Fred leaves home and stops by a shop on his way to the

office, do we care how he got to the office? Do we care by which means

he went to the shop and from there to the office? Or do we care to know

that he has stopped by the shop? In different scenarios we care about

different aspects of the problem.

We showed various features of the Event Calculus in this report. In the

comparison of our scenario with the one of Shin and Davis, we showed the

superiority of the EC.

133

6.2 Future Work

An interesting and useful follow up of this work would be to convert the Fluid

Theory of Davis [9] into the event calculus formalism and then combine it with

the example presented in Chapter 3. This will be the first instance of its kind to

combine two well developed commonsense aspects of the real world in a merged

framework. The example in Chapter 3 is investigated at a general level of

commonsense, one which we use every day: it does not go into too much details

of the entities. For instance it does not care about the details of the walking action

such as that the left leg should go forward after the right leg has landed and so on.

However, this is not to say that this level of detail is not useful; quite the opposite

it potentially is. It all depends on what we need it for. From a robotic point of

view for instance, the smallest details of a robot walking are the most important

for the walking action. The approach towards using the Event Calculus in

performing commonsense reasoning for robots is already being tackled by pioneer

researchers of the field such as Murray Shanahan, Mark Witkowsky and David

Randell [75, 76, 77]. This is a promising approach since it works on an abstract

level to deal with everyday problems that a robot has to deal with. On the other

hand, a detailed perspective is very useful in different situations. For instance,

Davis is researching on a detailed commonsense level (as to movements of a

liquid molecules) that is used in a factory (he uses PDDL+ for his formalism but

as discussed in Chapter 3, the EC can outperform PDDL+ on various grounds in

commonsense reasoning).

Both perspectives (i.e. general and detailed) are necessary and useful. However,

there has not been any attempt to combine these and create a new merged

framework in which both views can be investigated.

134

We will create such framework and analyse the result of this combination. So it

will not only model for an agent to fill in a bucket until it is full, and then move

the bucket, but also it will model the movement of water inside the bucket on a

molecular movement level. Therefore the filling-in action will have actual

physical representation in the framework. This will render the Event Calculus as a

suitable representational task for planning some robotics actions.

In Chapters 2 and 3, we translated natural language scenarios into the Event

Calculus and then proved our propositions on those translations. We discussed

automation of this process with Murray Shanahan and Erik Mueller in verbal and

correspondence. We aim to investigate this by means of shallow parsing of the

text and then derive algorithms to represent them in EC. However, this is a

difficult task considering the notes pointed out in section 3.2 of Chapter 3 but

quite fruitful: a machine with the ability to translate natural language text into the

EC and perform commonsense reasoning on them. This will be of interest to

researchers in various fields of Artificial Intelligence such as automated reasoning,

natural language processing, robotics and commonsense reasoning. The Cyc

project has developed a similar fashion, but as an independent and private

company. This will show the strengths of the Event Calculus and establish it as a

strong representational tool for handling commonsense reasoning extracted from

natural language text. Developing such algorithms will also result in a reduction

of the time spent on manual translation [2, 3]. This automatic translation is non-

trivial and implicates the following tasks:

• Find relations between entities of the discourse or sentence

• Identify the commonsense relations with help of external knowledge

• Formulate this knowledge in the EC

135

We have identified Cyc's world knowledge to be a good source of external

knowledge for this purpose. For using Cyc‟s knowledgebase, however, we will

need to:

• Match and extract relations from Cyc, based on our domain-specific

knowledge

• Check for inconsistency between the knowledge coming from Cyc and our

problem representation

• Formulate the knowledge from CycL into EC

136

Bibliography

[1] Douglas Lenat. Computers versus Common Sense, May 30
th

 2006. Google

TechTalk, available on Google Videos.

[2] E. Mueller. Understanding script-based stories using commonsense reasoning.

ScienceDirect July 2004. IBM Thomas J. Watson Research Center, P. O. Box 704,

Yorktown Heights, NY 10598, USA. Cognitive Systems Research 5, pp. 307-340,

2004.

[3] E. Mueller. Story understanding through multi-representation model

construction. IBM Thomas J. Watson Research Center, P. O. Box 704, Yorktown

Heights, NY 10598, USA

[4] John McCarthy. Programs with common sense. In Mechanisation of Thought

Processes: Proceedings of a symposium held at the National Physical Laboratory

on 24
th

, 25
th

, 26
th

 and 27
th

 November 1958 (Vol. 1 pp.75-91). London: Her

Majesty‟s Stationery Office, 1958.

[5] Murray Shanahan. The event calculus explained. In Wooldridge and Veloso,

Artificial Intelligence today: Recent trends and developments (Lecture Notes in

Computer Science, Vol. 1600 pp. 409-430). Berlin: Springer, 1999.

[6] M. Shanahan. An attempt to formalise a non-trivial benchmark problem in

common sense reasoning. Artificial Intelligence 153, pp. 141-165, 2004.

[7] Lenat and Guha. Building large knowledge-based systems: Representation and

inference in the Cyc project. Reading, MA: Addison-Wesley, 1990.

[8] M. Ginsberg, D. Smith. Reasoning about action II: The qualification problem:

- Artificial Intelligence, 1988

137

[9] E. Davis. Pouring Liquids: A Study in Commonsense Physical Reasoning.

Artificial Intelligence, Elsevier, 2008.

[10] V. Lifschitz. Benchmark problems for formal nonmonotonic reasoning:

Version 2.00, 1989. In Reinfrank, Kleer, Ginsberg, and Sandewall, Non-

Monotonic reasoning: Proceedings of the second international workshop (Lecture

Notes in Computer Science, Vol. 346, pp. 202-219). Berlin: Springer.

[11] Morgenstern and Miller. Common sense problem page, 2004. From Stanford

University Web-site: http://www-formal.stanford.edu/leora/commonsense/

[12] Randell, Cui and Cohn. A spatial logic based on regions and connection,

1992. In Nebel, Rich and Swartout, Proceedings of the Third International

Conference on Principles of Knowledge Representation and Reasoning (pp. 165-

176). San Mateo, CA: Morgan Kaufmann.

[13] L. Morgenstern. Mid-sized axiomatizations of commonsense problems: A

case study in egg cracking. Studia Logica, 2001

[14] E. Mueller. Commonsense Reasoning, 2006. Elselvier, Morgan Kaufmann

[15] N. Cassimatis. Polyscheme: A cognitive architecture for integrating multiple

representation and inference schemes, 2002. Unpublished doctoral dissertation,

Massachusetts Institute of Technology, Cambridge, MA.

[16] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem.

Computational Intelligence. Vol. 9, pp. 268–299, 1993.

[17] Jao Marques Silva and Karem Sakallah. A new search algorithm for

satisfiability. International Conference on Computer Aided Design (ICCAD). pp.

220–227, 1996.

138

[18] Gilles Audemard, Lucas Bordeaux, Youssef Hamadi, Said Jabbour and

Lakhdar Sais. A Generalized Framework for Conflict Analysis. Microsoft

Research, Technical Report MSR-TR-2008-34, 2008.

[19] Ugo Montanari. Networks of constraints: Fundamental properties and

applications to picture processing. Information Sciences Vol. 7, 2, pp. 85–132,

1974.

[20] David Waltz. Generating semantic descriptions from drawings of scenes with

shadows. The Psychology of Computer Vision, McGraw-Hill, Chapter 3, 1972

(Preliminary version as MIT research report (MACAI- TR-271), 1972.)

[21] Hanto Zhang and Mark Stickel. Implementing the Davis-Putnam method.

Journal of Automated Reasoning. Vol. 24, Issues 1 and 2, pp. 277–296, 2000.

[22] David McAllester. Truth Maintenance. North American National Conference

on Artificial Intelligence (AAAI), pp. 1109–1116, 1990.

[23] Martin Davis and Hilary Putnam. A computing procedure for quantification

theory. J. ACM Vol. 7, Issue 3, pp. 201–215, 1960.

[24] Kathy Panton, Cynthia Matuszek, Douglas Lenat, Dave Schneider, Michael

Witbrock, Nick Siegel and Blake Shepard. From Cyc to Intelligent Assistant,

2006. In Cai and Abascal, Ambient Intelligence in Everyday Life, LNAI 3864 pp.

1-31. Berlin: Springer.

[25] Falkenhainer, Forbus and Genter. The structure-mapping engine: Algorithm

and examples. Artificial Intelligence, 3 pp. 251-288, 1989.

[26] João Marques-Silva. The Impact of Branching Heuristics in Propositional

Satisfiability Algorithms. 9th Portuguese Conference on Artificial Intelligence

(EPIA), 1999.

139

[27] John McCarthy. Situations, actions and causal laws (Memo 2), 1963.

Stanford, CA: Stanford Artificial Intelligence Project, Stanford University.

[28] McCarthy and Hayes. Some philosophical problems fram the standpoint of

artificial intelligence, 1969. In Meltzer and Michie, Machine intelligence 4 pp.

463-502. Edinburgh, Scotland: Edinburgh University Press.

[29] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and

Sharad Malik. Chaff: Engineering an efficient SAT solver. International Design

Automation Conference (DAC), pp. 530–535, 2001.

[30] Pedro Meseguer. Interleaved depth-first search. International Joint

Conference on Artificial Intelligence (IJCAI), pp. 1382–1387, 1997.

[31] William Harvey and Matthew Ginsberg. Limited discrepancy search.

Proceedings of the 14th international joint conference on Artificial intelligence -

Volume 1, pp. 607-613 1995.

[32] Lucas Bordeaux, Youssef Hamadi and Lintao Zhang. Propositional

Satisfiability and Constraint Programming: A Comparative Survey. ACM

Computing Surveys, Volume 38, Issue 4, 2006.

[33] Fredric Boussemart, Fred Hemery, Christopher Lecoutre and Sais Lakhdar.

Boosting systematic search by weighting contraints. Proceedings of ECAI, 2004.

[34] Rina Dechter and Itay Meiri. Experimental evaluation of preprocessing

algorithms for constraint satisfaction problems. Artificial Intelligence 68, pp.

211–241, 1994.

[35] Robert M. Haralick and Gordon L. Elliot. Increasing Tree Search Efficiency

for Constraint Satisfaction Problems. Artificial Intelligence 14, pp. 263–313, 1980.

140

[36] Yannis Argyropoulos and Kostas Stergiou. A Study of SAT-Based

Branching Heuristics for the CSP. Artificial Intelligence: Theories, Models and

Applications, pp. 38-50, 2008.

[37] Martin Davis, George Logemann, Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, VOL. 5, Issue 7, pp. 393–397,

1962.

[38] Marco Dorigo, Mauro Birattari, Thomas Stutzle,. Ant Colony Optimization.

Computational Intelligence, VOL. 1, Issue 4, pp. 28-39, 2006.

[39] Robert Nieuwenhuis, and Albert Oliveras. DPLL(T) with exhaustive theory

propagation and its application to difference logic. International Conference on

Computer-Aided Verification. 321–334, 2005.

[40] J. Shin and E. Davis. Processes and Continuous Change in a SAT-based

Planner. Artificial Intelligence, Vol. 166, Issue 1-2, PP. 194 – 253, 2005.

[41] Vladimir Lifschitz. Circumscription, 1994. In Handbook of Logic in

Artificial Intelligence and Logic Programming, Volume 3, pages 297-352. Oxford

University Press.

[42] John McCarthy. Circumscription: A form of non-monotonic reasoning, 1980.

Artificial Intelligence 13(1-2):23-79.

[43] DIMACS. Satisfiability suggested format. Technical report, Center for

Discrete Mathematics and Theoretical Computer Science, 1993.

[44] K. Doets. From logic to logic programming. MIT Press, Cambridge, 1994.

PP. 17-18.

[45] Cycorp. Ontological engineer‟s handbook version 0.7, 2002. Austin, TX:

Cycorp.

141

[46] Lenat. Cyc: A large-scale investment in knowledge infrastructure, 1995.

Communications of the ACM, 38(11) pp. 33-48.

[47] Cynthia Matuszek, Michael Witbrock, Robert Kahlert, John Cabral, Dave

Schneider, Purvesh Shah and Dough Lenat. Searching for Common Sense:

Populating Cyc from the Web, 2005. In Proceedings of the Twentieth National

Conference on Artificial Intelligence, Pittsburgh, Pennsylvania.

[48] Murray Shanahan. Representing continuous change in the event calculus,

1990. In Aiello, Proceedings of the Ninth European Conference on Artificial

Intelligence (pp. 598-603). London: Pitman.

[49] R. Reiter. Natural actions, concurrency and continuous time in situation

calculus, 1996. In Aiello, Doyle and Shapiro, Proceedings of the Fifth

International Conference on Principles of Knowledge Representation and

Reasoning (pp. 2-13). San Francisco: Morgan Kaufmann.

[50] Kowalski and Sergot. A logic-based calculus of events, 1986. New

Generation Computing, 4(1) pp. 67-95.

[51] Miller and Shanahan. The event calculus in classical logic-alternative

axiomatisations, 1999. Linkoping Electronic Articles in Computer and

Information Science, 4(016).

[52] Miller and Shanahan. Some alternative formulations of the event calculus,

2002. In Kakas and Sadri, Computational logic: Logic programming and beyond:

Essays in honour of Robert Kowalski, part II (Lecture Notes in Computer Science

Vol. 2048 pp. 452-490). Berlin: Springer.

[53] Kowalski and Sadri. Reconciling the event calculus with the situation

calculus, 1997. Journal of Logic Programming, 31(1-3) pp. 39-58.

 [54] John McCarthy. Generality in artificial intelligence, 1987. Communications

of ACM, 30(12) pp. 1030-1035.

142

[55] John McCarthy. First-order theories of individual concepts and propositions,

1979. In Hayes, Michie and Mikulich, Machine intelligence 9 pp. 129-148.

Chichester, UK: Ellis Horwood.

[56] Murray Shanahan. Solving the Frame Problem, 1997. Cambridge, MA: MIT

Press.

[57] Kowalski and Sadri. The situation calculus and event calculus compared,

1994. In Bruynooghe, Logic Programming: The 1994 international symposium

(pp. 539-553). Cambridge, MA: MIT Press.

[58], M. Kay. Unification, 1992. In Ronser and Johnson, Computational

Linguistics and Formal Semantics. Cambridge University Press.

[59] Hanks and McDermott. Temporal reasoning and default logics (Tech. Rep.

No. YALE/DCS/tr430), 1985. New Haven, CT: Computer Science Department,

Yale University.

[60] Hanks and McDermott. Default reasoning, nonmonotonic logics and the

frame problem, 1986. In Proceedings of the Fifth National Conference on

Artificial Intelligence (pp. 328-333). Los Altos, CAL Morgan Kaufmann.

[61] Hanks and McDermott. Nonmonotonic logic and temporal projection, 1987.

Artificial Intelligence, 33(3) pp. 379-412.

[62] Murray Shanahan. An abductive event calculus planner. Journal of Logic

Programming, 44(1-3) pp.207-240, 2000.

[63] Murray Shanahan. Abductive event calculus planner [Computer Software].

From Department of Electrical and Electronic Engineering, Imperial College

London. Website: http://www.iis.ee.ic.ac.uk/~mpsha/planners.html

143

[64] Shanahan and Witkowski. Event calculus planning through satisfiability,

2004. Journal of Logic and Computation, 14(5) pp. 731-745.

[65] Erik Mueller. Event calculus reasoning through satisfiability. Journal of

Logic and Computation, 14(5) pp. 703-730, 2004.

[66] Erik Mueller. A tool for satisfiability-based commonsense reasoning in the

event calculus. In Barr and Markov, Proceedings of the Seventeenth International

Florida Artificial Intelligence Reasearch Society Conference (pp. 147-152).

Menlo Park, CA: AAAI Press, 2004.

[67] Erik Mueller. Discrete event calculus deduction using first-order automated

theorem proving. In Konev and Schulz, Proceedings of the Fifth International

Workshop on the Implementation of Logics (pp. 43-56). Liverpool, UK:

Department of Computer Science, University of Liverpool, 2005.

[68] Erik Mueller. Reasoning in the event calculus using first-order automated

theorem proving, 2005. In Russel and Markov, Proceedings of the Eighteenth

International Florida Artificial Intelligence Research Society Conference (pp.

840-841). Melno Park, CA: AAAI Press.

[69] Sutcliffe and Suttner. The TPTP problem library for automated theorem

proving, 2005. From Department of Computer Science, University of Miami.

Website: http://www.cs.miami.edu/~tptp

[70] Kakas, Michael and Miller. Modular E: an elaboration tolerant approach to

the ramification and qualification problems. 8
th

 International Conference on Logic

Programming and Nonmonotonic Reasoning, 2005.

[71] Kakas, Miller and Toni. E-RES: Reasoning about Actions, Events and

Observations. the proceedings of LPNMR2001, LNAI Vol. 2173, pp. 254-266,

Springer Verlag, 2001.

144

[72] Erik Muller. Discrete Event Calculus Reasoner. Implementation available at:

http://decreasoner.sourceforge.net/

[73] Mueller and Sutcliffe. Discrete event calculus deduction using first-order

automated theorem proving. In Proceedings of the Fifth International Workshop

on the Implementation of Logics, 2005.

[74] Kakas and Mourlas. ACLP: A Case for Non-Monotonic Reasoning,

Proceedings of the 7th International Workshop on Non- Monotonic Reasoning,

1998.

[75] Shanahan and Witkowski. High-Level Robot Control Through Logic,

Proceedings ATAL 2000, published as Intelligent Agents VII, Springer-Verlag,

pp. 104-121, 2001.

[76] Shanahan and Randell. A Logic-Based Formulation of Active Visual

Perception, Proceedings KR 2004, pp. 64-72.

[77] Murray Shanahan. Perception as Abduction: Turning Sensor Data into

Meaningful Representation, Cognitive Science, vol. 29, pp. 103-134, 2005.

145

Appendices

Appendix A

 Event Calculus Axioms

EC1: Clipped(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Terminates(e,

f, t))

EC2: Declipped(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Initiates(e, f,

t))

EC3: StoppedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2 

Terminates(e, f, t))

EC4: StartedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Initiates(e, f,

t))

EC5: (Happens(e, t1)  Initiates(e, f1, t1)  0 < t2  Trajectory(f1, t1, f2, t2)

 StoppedIn(t1, f1, t1 + t2))  HoldsAt(f2, t1 + t2)

EC6: (Happens(e, t1)  Terminates(e, f1, t1)  0 < t2  AntiTrajectory(f1,

t1, f2, t2)  StartedIn(t1, f1, t1 + t2))  HoldsAt(f2, t1 + t2)

EC7: PersistsBetween(t1, f, t2)  t (ReleasedAt(f, t)  t1 <t  t2)

EC8: ReleasedBetween(t1, f, t2)  t (Happens(e, t)  t1  t < t2 

Releases(e, f, t))

EC9: (HoldsAt(f, t1)  t1 < t2  PersistsBetween(t1, f, t2)  Clipped(t1, f,

t2))  HoldsAt(f, t2)

EC10: (HoldsAt(f, t1)  t1 < t2  PersistsBetween(t1, f, t2) 

Declipped(t1, f, t2))  HoldsAt(f, t2)

EC11: (ReleasedAt(f, t1)  t1 < t2  Clipped(t1, f, t2)  Declipped(t1, f,

t2))  ReleasedAt(f, t2)

EC12: (ReleasedAt(f, t1)  t1 < t2  ReleasedBetween(t1, f, t2)) 

ReleasedAt(f, t2)

146

EC13: ReleasedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Releases(e,

f, t))

EC14: (Happens(e, t1)  Initiates(e, f, t1)  t1 < t2  StoppedIn(t1, f, t2) 

ReleasedIn(t1, f, t2))  HoldsAt(f, t2)

EC15: (Happens(e, t1)  Terminates(e, f, t1)  t1 < t2  StartedIn(t1, f, t2)

 ReleasedIn(t1, f, t2))  HoldsAt(f, t2)

EC16: (Happens(e, t1)  Releases(e, f, t1)  t1 < t2  StoppedIn(t1, f, t2)

 StartedIn(t1, f, t2))  ReleasedAt(f, t2)

EC17: (Happens(e, t1)  (Initiates(e, f, t1)  Terminates(e, f, t1))  t1 < t2

 ReleasedIn(t1, f, t2)  ReleasedAt(f, t2)

147

Appendix B

 Discrete Event Calculus Axioms

DEC1: StoppedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2 

Terminates(e, f, t))

DEC2: StartedIn(t1, f, t2)  e, t (Happens(e, t)  t1  t  t2  Initiates(e, f,

t))

DEC3: (Happens(e, t1)  Initiates(e, f1, t1)  0 < t2  Trajectory(f1, t1, f2, t2)

 StoppedIn(t1, f1, t1 + t2))  HoldsAt(f2, t1 + t2)

DEC4: (Happens(e, t1)  Terminates(e, f1, t1)  0 < t2  AntiTrajectory(f1,

t1, f2, t2)  StartedIn(t1, f1, t1 + t2))  HoldsAt(f2, t1 + t2)

DEC5: (HoldsAt(f, t)  ReleasedAt(f, t + 1)  e (Happens(e, t) 

Terminates(e, f, t)))  HoldsAt(f, t + 1)

DEC6: (HoldsAt(f, t)  ReleasedAt(f, t+1)  e (Happens(e, t) 

Initiates(e, f, t)))  HoldsAt(f, t+1)

DEC7: (ReleasedAt(f, t)  e (Happens(e, t)  (Initiates(e, f, t) 

Terminates(e, f, t)))  ReleasedAt(f, t + 1)

DEC8: (ReleasedAt(f, t)  e (Happens(e, t)  (Releases(e, f, t))) 

ReleasedAt(f, t + 1)

DEC9: (Happens(e, t)  Initiates(e, f, t))  HoldsAt(f, t + 1)

DEC10: (Happens(e, t)  Terminates(e, f, t))  HoldsAt(f, t + 1)

DEC11: (Happens(e, t)  Releases(e, f, t))  ReleasedAt(f, t + 1)

DEC12: (Happens(e, t)  (Initiates(e, f, t)  Terminates(e, f, t))) 

ReleasedAt(f, t + 1)

148

Appendix C
Shin and Davis description of the Bucket

domain

;;

==

=====

;; "Bucket" Domain: ;;

;; Deliver a specified amount of water to a specified ;;

;; location(s) by a specified deadline. ;;

;; ;;

;; Assumptions: ;;

;; - An agent can carry at most one bucket at a time. ;;

;; - Zero or more than one tap are in each location. ;;

;; - Each tap fills only one bucket at a time. ;;

;; - Each bucket can be filled by more than one tap ;;

;; in a location at a time, allowing concurrent continuous ;;

;; changes on the level of a bucket. ;;

;;

==

=========

(define (domain Buckets)

(:requirements :time :continuous-effects)

(:types agent bucket tap location)

(:predicates (at ?o - (either agent bucket tap) ?l - location)

(on ?t - tap)

(filling ?t - tap ?b - bucket)

(carrying ?a - agent ?b - bucket)

(is_walking ?a - agent ?d - location)

(connected ?s - location ?d - location)

)

(:functions (capacity ?b - bucket) - float

(flow_rate ?t - tap) - float

(walking_speed ?a - agent) - float

(distance ?s - location ?d - location) - float

(amount_of_water ?l - location) - fluent

(distance_to_walk ?a - agent ?d - location) - fluent

(level ?b - bucket) - fluent

)

;;

==

===

;; Filling buckets with taps ;;

;;

==

===

(:action turnOnTap

:parameters (?a - agent ?t - tap ?b - bucket ?l - location)

149

:precondition (and (at ?a ?l)

 (at ?b ?l)

(at ?t ?l)

(not (on ?t)))

:effect (and (on ?t)

(filling ?t ?b))

)

(:action turnOffTap

:parameters (?a - agent ?t - tap ?b - bucket ?l - location)

:precondition (and (at ?a ?l)

(at ?t ?l)

(on ?t)

(filling ?t ?b))

:effect (and (not (on ?t))

(not (filling ?t ?b)))

)

(:process fillingBucket

:parameters (?b - bucket ?t - tap ?l - location)

:precondition (and (at ?b ?l)

(at ?t ?l)

(filling ?t ?l)

(<= (level ?b) (capacity ?b)))

:effect (increase (level ?b) (* #t (flow_rate ?t)))

)

;;

==

===

;; Moving buckets between locations ;;

;;

==

===

(:action pickUp

:parameters (?a - agent ?b - bucket ?l - location)

:precondition (and (at ?a ?l)

(at ?b ?l))

:effect (and (not (at ?b ?l))

(carrying ?a ?b))

)

(:action putDown

:parameters (?a - agent ?b - bucket ?l - location)

:precondition (and (at ?a ?l)

(carrying ?a ?b))

:effect (and (at ?b ?l)

(not (carrying ?a ?b)))

)

150

 (:action go

:parameters (?a - agent ?s - location ?d - location)

:precondition (and (at ?a ?s)

(or (connected ?s ?d) (connected ?d ?s))

(not (is_walking ?a ?d)))

:effect (and (not (at ?a ?s))

(is_walking ?a ?d)

(assign (distance_to_walk ?a ?d)

(distance ?d ?s)))

)

(:process walking

:parameters (?a - agent ?d - location)

:precondition (and (is_walking ?a ?d)

(>= (distance_to_walk ?a ?d) 0)

:effect (decrease (distance_to_walk ?a ?d)

(* #t (walking_speed ?a)))

)

(:event arrive

:parameters (?a - agent ?d - location)

:precondition (and (is_walking ?a ?d)

(<= (distance-to-walk ?a ?d) 0))

:effect (and (not (is_walking ?a ?d))

(at ?a ?d))

)

;;

==

=

;; Filling among buckets in a location ;;

;;

==

=

(:action pour

:parameters

(?a - agent ?s - bucket ?d - bucket ?q - real ?l - location)

:precondition (and (at ?a ?l)

(carrying ?a ?s)

(at ?d ?l)

(> ?q 0)

(<= ?q (level ?s))

(<= ?q (- (capacity ?d) (level ?d))))

:effect (and (decrease (level ?s) ?q)

(increase (level ?d) ?q))

)

(:action deliver

151

:parameters (?a - agent ?b - bucket ?l - location ?q - real)

:precondition (and (at ?a ?l)

(carrying ?a ?b)

(> ?q 0)

(<= ?q (level ?b)))

:effect (and (increase (amount_of_water ?l) ?q)

(decrease (level ?b) ?q))

)

152

Appendix D

 Shin and Davis version of a scenario

for the Bucket domain

;;

==

======

;; ;;

;; A possible solution: ;;

;; 1. turnOnTap(ERNIE,TAP1,BUCKET1,SL) ;;

;; ==> fillingBucket(BUCKET1,TAP1,SL) on ;;

;; 2. turnOffTAP(ERNIE,TAP1,BUCKET1,SL) ;;

;; 3. turnOnTap(ERNIE,TAP1,BUCKET2,SL) ;;

;; ==> fillingBucket(BUCKET2,TAP1,SL) on ;;

;; 4. pickUp(ERNIE,BUCKET1,SL) ;;

;; 5. go(ERNIE,SL,DL) ==> walking(ERNIE,DL) on ;;

;; 6. arrive(ERNIE,DL) ;;

;; 7. deliver(ERNIE,BUCKET1,DL,1) ;;

;; 8. go(ERNIE,DL,SL) ==> walking(ERNIE,SL) on ;;

;; 9. arrive(ERNIE,SL) ;;

;; 10. turnOffTAP(ERNIE,TAP1,BUCKET2,SL) ;;

;; 11. pickUp(ERNIE,BUCKET2,SL) ;;

;; 12. go(ERNIE,SL,DL) ==> walking(ERNIE,DL) on ;;

;; 13. arrive(ERNIE,DL) ;;

;; 14. deliver(ERNIE,BUCKET2,DL,4) ;;

;;

==

======

(define (problem problem1)

(:domain Buckets)

(:requirements :time :continuous-effects)

(:objects SL - location DL - location

TAP1 - tap

BUCKET1 - bucket BUCKET2 - bucket

ERNIE - agent

)

(:init (at ERNIE SL)

(at BUCKET1 SL)

(at BUCKET2 SL)

(at TAP1 SL)

(= (flow_rate TAP1) 0.1)

(= (walking_speed ERNIE) 5)

(= (capacity BUCKET1) 4)

(= (capacity BUCKET2) 4)

(= (distance SL DL) 100)

153

(= (distance DL SL) 100)

(= (amount_of_water SL) 0)

(= (amount_of_water DL) 0)

(= (distance_to_walk ERNIE SL) 0)

(= (distance_to_walk ERNIE DL) 0)

(= (level BUCKET1) 0)

(= (level BUCKET2) 0)

(connected SL DL)

(connected DL SL)

)

(:goal (and (>= (amount_of_water DL) 5))

(<= ?total-time 70))

)

)

154

Appendix E

 Constraint Programming

Constraint Programming typically provides languages or libraries whose aim is to

allow the development of application-specific search algorithms. Therefore, the

way a problem is expressed in CP is generally dependent on the tool which is

used. In CP the problem is modelled using variables ranging over a finite domain.

Formally, a CP problem is defined [36] as a triple (X, D, C), where X = {x1, x2 ,..

xn} is a finite set of n variables, D = {D(x1), D(x2)…., D(xn)} is a set of their

respective finite domains, and C is a set of constraints. For any constraint c and a

set x1, x2,… xm of m variables, vars(c) denotes the variables involved, and rel(c)⊆

D(x1)× D(x2) × ..× D(xm) is the set of combinations (or tuples) of assignments for

the variables x1,x2,..xm that satisfy the constraint.

A tuple T ∈ rel(c) is called valid when all the values assigned to the respective

variables x1 ,x2, … xm ∈ vars(c) are available in the corresponding domains.

For any variable x, |dom(x)| denotes the cardinality of the variable‟s current

domain; and forward degree (fwdeg) denotes the number of constraints with

unassigned variables, where x is involved in. The arity of a constraint c is the

number of variables involved in c.

For instance, the graph colouring problem from the introduction of the previous

section (SAT Solving) is expressed in CP as:

V ϵ {1, 2, 3}, W ϵ {1, 2, 3}, …

155

In CP, constraints need to be imposed to enforce inequality for each edge of the

graph:

V ≠ W, W ≠ X, X ≠ Y, Y ≠ Z, V ≠ X, …

In CP, a problem must be specified by defining its constraints and variables. CP

provides users with high-level tools for tuning to express structure of the problem

and problem-specific knowledge and program the best algorithm for the

application at hand. Therefore constrains in CP are directly expressible. Although

this ability makes CP capable of tuning, makes it more difficult to handle because

the user has to have strong knowledge of these tools in order to use them

efficiently. For instance, in CP the order in which variables are instantiated during

the search might determine a better performance than another order. This is in

contrast to the SAT approach in which CNF formulas would create a black box

environment in which external tuning is not generally possible. CP tools provide a

rich set of constraints to express the relations between the variables of the

problem in the most direct way. For instance, there are constraints to directly

express numerical relations such as 2a + b = c. Also datastructures such as arrays

can also be expressed: a[x] = b where a is a variable representing an array, x one

representing an index and b a value. There are also constraints to express higher

level constraints with a more complex meaning such as a constraint on a set of

variables: {xi | i ϵ 1..n} imposing that ∀i ∀j > i.xi ≠ xj.

Branching

In CP, there are two main heuristics for branching [32]:

156

1. Variable and Value Ordering: this follows the fail-first principle [35]: in

order to succeed, try where you are most likely to fail, as soon as possible.

This means to try and discover dead-ends as early as possible. Heuristics

in this category are mindom [35] (selects the variable with the smallest

current domain size), max forward degree (fwdeg) [34] (selects the

variable connected to the largest number of constraints with unassigned

variables). Alternatively, the solver can simply consider variables

according to a user-defined variable ordering (or LEX, standing for

lexicographical ordering). The recently proposed weighted degree

heuristics wdeg and dom/wdeg [33] base their choices on information

learned from conflicts discovered during search. These heuristics are

currently considered amongst the most efficient general-purpose CP

heuristics.

2. Intelligent Search Strategies: In order not to get eternally stuck when a

branching heuristic makes a wrong choice, evolved search strategies have

been proposed in the CP framework to explore the search tree in an

intelligent and diversified way. These include:

 Limited discrepancy search [31] which is based on the assumption

that a well-chosen heuristic is wrong only a few times along the

sequence of choices. Search therefore starts by applying the

heuristics, then exploring other sequences of choices by increasing

order in the number of discrepancies (i.e. the number of times

where the heuristic is violated).

 Interleaved Depth-First Search (IDFS, [30]) searches a number of

subtrees in parallel in an interleaved manner. The assumption is

157

that the bad choices that are most important to avoid are the ones

occurring at an early branching stage because they can lead to

exploring huge subtrees.

Pruning, conflict analysis and backtracking

Propagation methods first appeared in the context of constraint satisfaction

problems related to picture processing area [20, 19]. Today‟s propagation engines

are still mainly based on the original algorithms from [20]. The general idea is to

reason locally by taking each constraint into consideration in turn. Each constraint

reacts to modifications of the variables under its scope, reducing the domains of

the other variables of its scope if needed. For instance, the constraint x ≠ y will

react to an instantiation of the domain of x to a value a by removing this value

from the domain of y. The algorithm maintains a queue containing the variables

that have been recently modified or the constraints depending on these variables.

An efficient algorithm that removes some values from the domains of the

variables with the guarantee of never deleting any solution can be used in place of

or in conjunction with constraint propagation. The deduction rules used for

pruning part of constraint solvers can be seen as closure operators which help

with:

 Narrowing: the operators reduce the domain of the variables.

 Monotonicity: the smaller the initial domains are, the smaller the domains

obtained after application of the operators will be.

 Optionally idempotence: applying the operator twice gives the same result

as applying it once.

158

As explained before, detecting a conflict and backtracking from it not only helps

the solver not to be eternally stuck in a search space, it also helps avoiding

redundant computations and preventing future inconsistencies.

A naïve approach: The simple chronological backtracking technique mentioned

before [16] is presented in Figure AE.4 and Figure AE.5. In this algorithm,

variables are incrementally instantiated with values. Once the current variable (v[i]

in the algorithm) is assigned a value, a backward consistency checking is

performed against all the past variables. If this consistency check fails, another

value is selected for v[i] and the consistency check is performed again. If no value

can be found for v[i] which is consistent with the past variables, then we detect a

conflict and therefore the variable that is immediately before v[i] (v[h] in the

algorithm) is uninstantiated and a new value is assigned to it [Figure AE.5]. As

explained before, this is a naïve approach since v[h] may not have any role at all

in the conflict detected.

1 FUNCTION bt-label(i, consistent): INTEGER

2 BEGIN

3 consistent ← false;

4 FOR v[i] ← EACH ELEMENT OF current-domain[i] WHILE not

consistent

5 DO BEGIN

6 consistent ← true;

7 FOR h ← 1 TO i - 1 WHILE consistent

8 DO consistent ← check(i, h);

9 IF not consistent

10 THEN current-domain[i] ← remove(v[i], current

159

domain[i])

11 END;

12 IF consistent THEN return (i + 1) ELSE return(i)

13 END;

Figure AE.4 – BT labelling algorithm

1 FUNCTION bt-unlabel(i, consistent): INTEGER

2 BEGIN

3 h ← i - 1;

4 current-domain[i] ←domain[i];

5 current-domain[h] ← remove(v[h].current-domain[h]):

6 consistent t current-domain[h] ≠ nil;

7 return(h)

8 END;

Figure AE.5 – BT unlabelling algorithm

A more intelligent approach: Conflict-driven back-jumping (or CBJ) adopts a

more intelligent approach towards detecting conflicts [16]. Using an example

from [32] we attempt to show the CJP approach:

Consider variables x1,… , x5 ∈ {0, 1} and the following constraints:

C1: x4 ≠ x5

C2: x2 + x3 + x5 ≥ 2x1

C3: x1 + x4 = x5

Assigning value 0 to x1 will have the contradictory consequence 0 + x4 = x5 (by

C3) and by C1: x4 ≠ x5 which is an inconsistency. This inconsistency, however, is

not necessarily obvious to propagation-based solvers because each of these

constraints separately impose no inconsistency. A solver will be able to detect the

160

inconsistency once x4 or x5 are instantiated. For instance by assigning value 0 to x4,

by C3 the solver will deduce that x5 also has to be instantiated to value 0 which

leads to a contradiction by C1.

Constraint solvers can sometimes perform the same deductions several times,

leading to unnecessary repetitions in the branches of the tree. In our case, the

solver detects the inconsistency by successively assigning values 0 and 1 to x4,

leading in each case to a failure. Failing to detect the inconsistency involving x4,

the exploration of the 2 values for x4 is repeated for every branch corresponding

to an assignment of other variables.

This conflict is independent of the values assigned to variables x2 and x3, for

instance. The constraints that are violated are C1 and C3, which do not involve

variables x2 and x3. As an analysis of the conflict, therefore, the choice x1 = 0 has

to be reconsidered (i.e. any branch involving this choice will be inconsistent). The

idea of CBJ is to keep track of the cause of conflicts by maintaining a conflict set

that contains the variables involved in the conflicts (conf-set[i] in Figure AE.6).

1 FUNCTION cbj-label (i, consistent): INTEGER

2 BEGIN

3 consistent ← false;

4 FOR v[i] ← EACH ELEMENT OF current-domain[i] WHILE not

consistent

5 DO BEGIN

6 consistent ← true;

7 FOR h ← 1 TO i-l WHILE consistent

8 DO consistent ← check(i, h);

9 IF not consistent

10 THEN BEGIN

11 pushnew(h- l, conf-set[i]);

161

12 current-domain[i] +- remove(v[i], current-domain[i])

13 END

14 END;

15 IF consistent THEN return(i + l) ELSE return(i)

16 END;

Figure AE.6 – CBJ labelling algorithm

1 FUNCTION cbj-unlabel (i, consistent): INTEGER

2 BEGIN

3 h ← max-list(conf-set[i]):

4 conf-sett[h] c-remove(h, union(conf-set[h], conf-set[i]));

5 FOR j ← h + l TO i

6 DO BEGIN

7 conf-set[i] ← {0};

8 current-domain[i] ← domain[i]

9 END;

10 current-domain[h] ← remove(v[h], current-domain[h]);

11 consistent ← current-domain[h] ≠ nil;

12 return(h)

13 END;

Figure AE.7 – CBJ unlabelling algorithm

Figures AE.6 and AE.7 (from [16]) show algorithms for implementing CBJ. CBJ

maintains a conflict set (conf-set[i] in the algorithm) for every variable. conf-set is

set to be {0} initially. Whenever a consistency check fails between v[h] and v[i],

h is added to the set conf-set[i] (line 11 of Figure AE.6 - i.e. conf-set[i] is a subset

of the past variables in conflict with v[i]). If all values are tried in current-

domain[i] and fail the consistency check, then CBJ jumps back to the deepest

162

variable v[h] where h is a member of the set conf-set[i] – line 3 of Figure AE.7

where max-list function returns the largest integer in a set of integers. When

jumping back from v[i] to v[h], CBJ carries the information in conf-set[i] and the

set of variables in conflict with v[h] and v[i] (conf-set[h] becomes conf-set[h] ⋃

conf-set[i] - h). If further backtracking takes place from v[h], CBJ jumps back to

v[g] where v[g] is the deepest variable in conflict with v[h] or v[i].

