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Abstract 

The alkylation of pyrimidyl aldehyde by diisopropylzinc has received immense 

attention over the last decade. This is mainly because the reaction which was 

discovered by Soai and coworkers is capable of achieving a homochiral product from 

an essentially achiral precursor. The strong amplification of the enantiomeric excess 

occurs because of a transition state complex which is responsible for autocatalysis.  

Clarifying the structural nature of the organometallic species involved in the reaction 

is vital for understanding the mechanism of the chiral amplification process. Known 

mechanistic details are patchy and based on studies that address molecular level 

details by NMR, computational chemistry, calorimetric and kinetic studies. The 

studies reported in this thesis for the first time directly addressed the nature of the 

intermediate by structural analysis with X-ray Absorption Fine Structure (XAFS) 

Spectroscopy at the Zn K-edge. These measurements provide bond distances, local 

coordination numbers and the geometry of ligands in the local environment around 

the Zn centres. 

First, the molecular level origin of the solvent dependencies in the asymmetric 

amplification by the Soai process is elucidated. A rationale for the behaviour of 

dialkylzinc compounds in polar and non-polar solvents is reported. Structural causes 

for often observed chirality depletion in polar solvents are elucidated. 

Further studies then examined the nature of the products formed by the reaction of 

various chiral ligands and dialkylzinc compounds. Different chiral ligands are 

examined and the complex structure was determined. 

Finally, first results of in situ studies of the reaction progress in continuous flow 

channel cells are reported. 
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1. Introduction 

The remarkable Soai autocatalytic reaction which is capable of amplifying chirality 

is the main focus of this project. This thesis for the first time examines the 

mechanism underlying chiral amplification in asymmetric synthesis mainly using X-

ray absorption spectroscopy. This reaction which has intrigued numerous scientists 

begins with a very minute enantiomeric excess in the chiral initiator (4) which 

catalyses its own formation in greatly amplified enantiomeric excess (4).
[1-6]

  

Figure 1.1: Soai autocatalytic reaction
[1]

 

 

Prior to the details of this research, this chapter embarks on the principles of 

stereoisomerism and conventional approaches of generating chiral compounds.  

1.1  Enantiomers and chiral molecules 

Stereochemistry (Greek: stereos, solid) considers the geometry of molecules in three 

dimensions. Stereoisomerism describes compounds that have the same chemical 

formula but a geometrically different arrangement of the atoms in space. 

Enantiomers are a subset of stereoisomers as seen in the classification below (Figure 

1.2)
[2]

. An enantiomer is one of two stereoisomers that are chiral, i.e., they are mirror 
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images of each other are "non-superposable" (not identical), similar to one's left and 

right hands are "the same" but opposite. The word chiral is derived from the Greek 

word cheir, which meanings “hand.” The expression chiral, describes molecules of 

enantiomers since they are related in the same manner that a right hand is related to a 

left hand.
[3]

 

Samples with molecules of the same chirality are enantiopure compounds. 

Enantiomers can be distinguished using different nomenclature. The nomenclature 

initially used was (+) and (-) signs or d(dextro) or l(levo). (+) or d(dextro) implies 

rotation of plane polarized light to the right (clockwise) and (-) or l(levo) to the left 

or anticlockwise. The notation which has almost replaced the d/l notation is the 

Cahn-Ingold-Prelog (CIP) convention. Instead R and S are assigned according to CIP 

in which the order of priority of the substituents on the centre of chirality is 

determined on the basis of decrease in the atomic number of the atoms directly 

bonded to the centre of chirality. The heaviest atomic number is given the highest 

priority.
[4]
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Figure 1.2: Subdivision of isomers.
[3]

 

 

The chirality of simple molecules can be illustrated with 2-butanol, 

CH3CH(OH)CH2CH3. Molecules of 2-butanol are chiral because their enantiomers 

are non-superimposable as shown in the models in Fig. 1.3. 
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Figure 1.3: (a) Models of 2-Butanol enantiomers. (b) Non superimposable models 

  

A pair of enantiomers can be recognized by the attachment of four different groups 

to the stereocenter which in the illustration above is carbon (blue). One enantiomer is 
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a non-superimposable mirror image of the other as seen in the three dimensional 

illustration below. 

 

                                                                           Mirror 

Figure 1.4: Relationship of enantiomers 

 

Both enantiomers have different spatial arrangements and consequently cannot be 

superimposed on each other.  

1.2 Enantiomerism: the discovery 

Optical isomerism was discovered by the French chemist Jean-Baptiste and has been 

known since 1815. Louis Pasteur discovered enantiomerism and is the founder of 

stereochemistry. His discovery resulted from the separation of a racemic form of 

tartaric acid in 1848 at Ecole Normale in Paris. Pasteur repeated the early work of a 

chemist on salts of tartaric acid and found something nobody had noticed. He found 

that optically inactive ammonium tartrate existed as a mixture of two types of 

crystals which were mirror images of each other. Pasteur used a hand lens and a pair 

of tweezers to separate the mixture into two: one right handed and the other left 

handed crystals. The original mixture was found optically inactive, the separated 

piles of crystals dissolved in water were found to be active. In addition it was noticed 

that the specific rotation of both solutions were equal but opposite in sign. Pasteur 

concluded that it was a property not of the crystals but the molecules since the 
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distinction in optical activity was noticed in solution. He then proposed that the two 

piles of crystals were composed of molecules which were mirror images to each 

other. Pasteur proposed the existence of isomers that have differing mirror images 

with a difference in the direction of rotation of plane polarized light. The discovery 

of enantiomerism by Louis Pasteur led to the proposal of a tetrahedral structure of 

carbon by van‟t Hoff and Le Bel in 1874. Van‟t Hoff in 1901 was the first recipient 

of the Nobel Prize in Chemistry.
[2, 3]

  

1.3 The biological importance of chirality 

Out of the 20 amino acids that make up naturally occurring proteins all but one are 

chiral. All naturally occurring amino acids are left handed. On the other hand 

naturally occurring sugars are right handed.
[3, 5-7]

  

The important applications of chiral isomers today are in the pharmaceutical, 

agrochemical, food, environment and petrochemical industry. Chirality in the 

pharmaceutical industry received much attention through the thalidomide tragedy in 

the 1960s, when an unfortunate outcome of stereochemistry was revealed. 

Thalidomide was administered to pregnant women in the late 1950s in its racemic 

form to cure morning sickness. The consequence was birth defects and deaths as a 

result of the harmful (S) isomer. The (R) isomer was the effective drug. This tragedy 

has led to approved and strict guidelines for the development of new drugs. The 

physiological effects of enantiomers of chiral drugs must be fully understood to 

avoid any harmful effects. This revelation was as a result of the keen interest of 

Francis Kelsey, a researcher at the U.S Food and Drug Administration. The 
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restriction of thalidomide from the work of Kelsey was due the high rate of abortions 

in rats.
[8-10]

   

 

 

 

 

  

                    (S) – Thalidomide                               (R) - Thalidomide 

Figure 1.5 Chiral forms of Thalidomide 

 

Some reasons for synthesizing optically active pure materials are:  

i. The biologically activity may be attributed to only one enantiomer. 

ii. The separation of effects of differing enantiomers; both of which may be 

beneficial or one may be beneficial and the other not. 

iii. Some optical active compounds are twice as active as the racemate due to 

antagonism. 

iv. Some enantiomers, when compared to their racemates, possess physical 

properties which may give development and formulation advantages.  

Examples of the differing properties of enantiomers are abundant and remarkable as 

seen below in the case of Limonene present in the flavour of lemon and orange. One 

enantiomeric form is responsible for the zest of oranges while the other enantiomer is 

responsible for the zest of lemons. 
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               R-Limonene (Lemon)                                  S-Limonene (Orange) 

Figure 1.6: Chiral forms of Limonene in Lemon and Orange 

1.4 The physical properties of stereoisomers  

Two enantiomers possess different physical properties which include melting point, 

boiling point, solubility, similar IR and NMR spectra. These properties do not 

include how they differ in plane polarized light. As previously seen, chiral molecules 

have non superimposable mirror images contrary to achiral compounds which are 

superimposable.
[9]

 Several compounds may be found in two forms with a different 

molecular three dimensional geometry that are mirror images. Both forms are 

enantiomers as seen in the former section. Other enantiomers include amino acids 

e.g. alanine, which has two mirror image forms. The relative configuration of an 

enantiomer can be determined by firstly identifying the stereogenic atom, which has 

CH3

HCCH2

CH3

CH3

H C CH2

H3C
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non identical groups attached. In the case of alanine, the central carbon atom bears 

four different groups.
[11-13]

   

            

 

                         

                                          Figure 1.7 S-Stereoconfiguration of alanine
[11]

  

 

Enantiomers however differ in the rotation of plane polarized light and this is the 

basis of the nomenclature of enantiomers. Plane polarized light rotation is measured 

by a polarimeter as seen below, where the angle of rotation (α) is defined as: 

                                                     [α]D
 
= αobs/lc                                                                       1.1 

[α]D is the specific rotation at a specific temperature of the D-line of sodium light; 

αobs is the observed angle of rotation; l is the length of the medium (decimetres) and c 

is the concentration of the medium (g/dm
3
).  
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Figure 1.8 Schematic of a polarimeter 

The enantiomeric excess, which is often used to measure the optical purity of chiral 

compounds, is calculated as following equation where [R] > [S]: 

Figure 1.9: Schematic of polarimeter
[13]

 

 
 
An equal amount of two enantiomers is a racemic mixture or a racemate. Racemic 

mixtures are optically inactive. The enantiomeric excess ee (also called optical 

purity) gives information on the excess of one enantiomer over the other.
[13]

     

                                

    
    SR

SR
ExcessicEnantiomer




                                                          1.2  

The electric field in light waves oscillates in different directions perpendicular to the 

direction in which it propagates. Plane polarized light on the other hand oscillates in 

one direction and is created by passing ordinary radiation through a Nicol prism 

(placed between lamp and sample).
[8]
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1.5 Chemical properties of enantiomers 

The rate of reaction of two enantiomers with an achiral molecule is the same. 

However, the rate of reaction changes when they react with chiral or non racemic 

reagents. In this section some applications will be visited. Living organisms are 

composed of chiral molecules. Most drugs which are chiral must interact with a 

chiral receptor or chiral enzyme to be effective. One enantiomer has the potential of 

curing an illness whereas the other does not. (S)-Ibuprofen is the active substance in 

Motrin and Advil (both anti inflammatory agents). (R)-Fluoxetine is the active 

ingredient of Prozac (antidepressant). 

 

 

 

 

 

 

 

 

 

Figure 1.10: (S)-Ibuprofen (left), antiinflammatory and (R)-Fluoxetine (right), 

antidepressant.
[13]

 

        

(S)-Naproxen is also an anti-inflammatory agent, but the (R) enantiomer has been 

established to be harmful to the liver. Because of the change in orientation of both 

enantiomers the biological activity is modified leading to unwanted side effects. The 

sale of chiral drugs would be preferred to be delivered as the single active 

enantiomer. The process of separating from a racemic mixture is rather expensive 

and would be reflected on the sale of chiral drugs. 

 

O

OH
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CF3
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In addition to chiral drugs, enantiomers have a specific odour. This is caused by their 

shape. Hexachloroethane and cyclophane are dissimilar in structure but have a 

similar odour because of their similarity in shape.  

 

Figure 1.11: Structure and shape of hexachloroethane (left) and cyclooctane (right).
[13]

 

 

The difference in smell is caused by the difference in interaction of the enantiomers 

with chiral receptors in the nose. An example is seen in Figure 1.6 which shows the 

chiral forms of limonene found in lemon and orange. The enantiomers are 

responsible for the difference in odour and taste.    

   

1.6 Methods of obtaining optically active compounds 

The pharmaceutical industry remains the key driver for chiral compound 

development with an estimated 80% of chiral intermediates and related products 

going into the pharmaceutical market.
[8]

 15% of optical active intermediates are used 

in chemical building blocks, auxiliaries or advanced intermediates. The fraction of 

chiral compounds in the pharmaceutical industry will increase with the enforcement 

of the stricter regulations by the US Food and Drug Administration (FDA). 

Authorities responsible for the registration of new active compounds have 

emphasized the demand to increase the targeted synthesis of one enantiomer. The 

FDA and the European Committee for Proprietary Medicinal Products since 1992 

have stipulated that the physiological action of each enantiomer must be fully 
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understood. In addition since 1997 the emergence of the fast track single isomer 

program of FDA has been a driving force for pharmaceutical companies to convert 

racemic active compounds into enantiomerically pure forms. This trend is also found 

in the agrochemical industry in order to improve economics and reduce quantities 

applied, thus reducing the environmental impact. 

The synthesis of active pharmaceutical and agricultural products can be achieved 

from optically active important compounds which include amines, alcohols and 

carboxylic acids. The development of new technologies focuses on large scale 

industrial processes prior to previous times.  This has opened up new opportunities 

and economically attractive methods for the production of optically active 

compounds.
[14]

 

Three primary sources of pure enantiomers include:  

i. Extraction of naturally occuring molecules from plants. 

ii. By the de novo fermentation process of inexpensive available 

feedstocks. 

iii. Synthesis of optically active compounds from the above two or 

prochiral starting materials. 

The above three methods are schematically characterized below.   
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Figure 1.12: Methods of producing optically active compounds.
[8]

 

1.6.1 The Chiral Pool 

A group of inexpensive readily available optical natural products comprise a chiral 

pool which mainly includes chemicals such as carbohydrates, amino acids, hydroxyl 

acids, terpenes and alkaloids.
[8]

 

Carbohydrates form the largest group of chiral compounds found in nature 

predominantly with a D configuration. 

Amino acids constitute the most valuable chemicals in the chiral pool. They are 

desirable because they are simple in structure i.e. one or two chiral centres and can 

easily be functionally modified. Significant quantities of natural α-amino acids can 

be produced by biological processes, fermentation and hydrolyzing plant and animal 

proteins. 

Hydroxy acids are produced by fermentation of glucose or microbial oxidation of 

aliphatic acids. Chiral α- and β- hydroxy acids are a good source for synthesizing 

optically active products and preparing pharmaceutical intermediates respectively.  

Terpenes are extracted from natural sources. They are the starting material for the 

preparation of resolving agents and chiral ligands in asymmetric synthesis.
[9]
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Alkaloids are the most expensive compounds of the chiral pool. They are extracted 

from plants and are used primarily in resolving racemic mixtures. Their use in 

asymmetric synthesis as chiral ligands is growing. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1 Representative substances from the chiral pool
[9]

 

1.6.2 Separation of enantiomers 

The separation of enantiomers can be achieved by four resolution processes which 

include preferential crystallization, diastereomeric salt crystallization, kinetic 

resolution and HPLC. 

Preferential crystallization, separates racemates that exist as a conglomerate. Only 

10% of all compounds, exists as conglomerates implying that this technique is not 

usable for the other 90% of racemates referred to as racemic compounds. The 

process involves the pumping of a supersaturated solution through chambers in 

contact with crystals of the pure isomers responsible for seeding. The removed 

         Compound Price, US ($/kg) 

Ascorbic acid 13 

(+)- Calcium pantothenate 16 

(-)- Carvone 23 

Ephedrinehydrochloride 62 

(+)- Limonene 3 

L-Lysine 3.2 

L-Tryptophan 68 

Quinidine sulphate 130 

Quinine sulphate 75 

L-Threonine 12-50 
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substance is substituted as a racemic mixture in another chamber prior to re-cooling 

and repeating the process. α – Methyl-L-Dopa is prepared using this method as seen 

in the scheme. 

 

 

NHAc

CN

HO

CH3O Direct 

Crystallization
Me

Me NHAc

CN

NH2

 HO

HO
Me

COOH

CH3O

HO

 

                                       Figure 1.13 Preparation of α – Methyl-L-Dopa
[9]

 

 

Diastereomer crystallization involves the crystallization of diastereomeric salts to 

prepare optically active compounds which are mostly pharmaceuticals. The resolving 

agent, solvent composition and recovery of chiral auxiliary are crucial in deciding the 

effectiveness of the process. The table includes some drugs and resolving agents used 

in diastereomer crystallization.  
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Drug Resolving Agent Activity 

Ampicillin D-camphosulfonic 

Acid                    

Antibiotic 

Ethambutol L-(+)-tartaric Acid                           Tuberculostatic 

Choramphenicol D-camphosulfonic 

Acid                    

Anti-infective 

Fosfomycin R-(+)-phenethylamine                       Antibiotic 

Thiampenicol                D-(-)-tartaric Acid                            Antiinfective 

Naproxen                     Cinchonidine Anti-

inflammatory 

Diltiazem R-(+)-phenethylamine               Calcium 

antagonist                                                 

Table 1.2: Drugs prepared via Classical Resolution
[9]

 

 

Kinetic resolution is another method of resolving enantiomers. One enantiomer 

reacts quicker than the other resulting in two products i.e. an unreacted enantiomer 

and a formation of a new product.  The purity of the wanted enantiomer is influenced 

by the degree of conversion. This method is both chemically and enzymatically 

possible. An example of this is Sharpless epoxidation as seen in the scheme below. 

OH
OH

H
+

 TBHP

Ti(OiPr4)

DIPT
H

OH

>96%

TBHP = t-butylhydroperoxide
Ti(OiPr4) = titanium (IV) isoproxide
DIPT = diisopropyl tartrate

O

 

                          Figure 1.14: Epoxidation reaction of only one enantiomer
[9]
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1.6.3 Resolution by chromatography on chiral materials 

Enantiomers have difference physical properties. In addition they have different 

affinities to adhere to a chiral stationary phase. One chiral form can be achieved by 

passing the racemic mixture through a chiral column. 

 

Racemic 

mixture loaded 

on to column. 

Compounds forced 

through column 

using an eluent. 

Enantiomer has a greater chance affinity for the 

chiral stationary phase, so it travels more slowly. 

    R + S 

 

 

 

 

 

 

 

 

 

 

 

 

                                           R enantiomer reaches the  

                                                            bottom first. 

 

Figure 1.15: Separation of enantiomers by chromatography.
[15]

 

 

Chromatography is especially crucial for enantiomers which have no functional 

groups suitable for the development of further derivatives.
[15]
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1.6.4 Asymmetric synthesis 

Asymmetric synthesis is the main method studied in this research study. Prochiral 

substrates are converted into optically active compounds.  

 

 

 

 

 

 

 

 

                                                                                                        

 

                                                Figure 1.16: Asymmetric synthesis scheme 

 

This reaction could either be homogeneous or heterogeneous. Organometallic 

catalysts have a wider reactivity application compared to enzymes. Catalysts are 

more stable and have higher levels of enantioselectivity. Transition metals are 

predominantly used as catalysts in asymmetric synthesis for the following reasons: 

i. The existence of several different oxidation states permits the addition and 

elimination of substrates, reactants and products.  

ii. Transition metals coordinate to ligands and ascertain stereo- and 

regioselectivity. 

They possess the ability to stabilize reactive intermediates which are not 

probable via other synthetic methods.  
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2. Asymmetric Autocatalysis 

This section explains the principles of asymmetric autocatalysis and some important 

reaction examples. It includes different models that describe the process of 

amplifying chirality. Frank postulated an autocatalytic process for the amplification 

of chirality in the 1950s, even though no actual reaction capable of amplifying 

chirality was known at the time.
[16]

 Kagan and coworkers later discovered the first 

examples of reactions in which positive nonlinear effects achieve the amplification of 

chirality.
[17]

 Noyori successfully studied the positive nonlinear effect of the 

alkylation of benzaldehyde in the presence of a chiral catalyst.
[18]

 Finally, the 

autocatalytic asymmetric reaction developed by Soai and coworkers will be explored 

because it is the focus of the investigations in this thesis.
[1, 19-27]

 

Central to a discussion of chiral amplification is the concept of the enantiomeric 

excess, ee (see equation 1.2). It can vary from 0 (100% racemic) to 1 (100% 

enantiopure). In asymmetrical stereoselective synthesis, enantiomeric excess of the 

product (eeprod) is not always proportional to that of the auxiliary (eeaux), as shown in 

the equation below.  

                                                                                       2.1 

Whereby, 

eeprod = ee in reaction product 

ee0 = ee in reaction product if enantiopure reagents are used (normally 100%) 

eeaux = ee of chiral auxiliary 

 

A graphical representation is shown below that illustrates the linear relationship.
[17]

 

auxprod eeeeee  0
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Figure 2.1: Non-linear effects with partially resolved chiral auxiliaries
[17]

 

 

From the above illustration, the deviation from linearity is either positive 

(amplification) if the eeprod is higher than eeaux as seen in red curve or negative 

(depletion) if the eeprod is lower than eeaux as seen in the green curve. The blue curve 

represents the proportionality between eeprod and eeaux.   

Systems that deviate from the linear relationship have a Non Linear Effect (NLE). 

An excess in the ee of the product over the chiral catalysts is known as Positive 

NLEs or (+)-NLEs. The studies presented in this thesis focus on such a system, 

which possesses the potential of amplifying ee. The negative NLEs or (-)-NLEs on 

the other hand represents a system with the chiral product having a lower ee than the 

chiral catalyst as seen in the above figure.             

2.1 Nonlinear Effects in Asymmetrical Stereoselective Reactions 

The enantiomeric excess of the product, eeprod is not directly proportional to the 

enantiomeric excess of the auxiliary, eeaux for most asymmetrical stereoselective 
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synthesis. The models below represent the special cases were non-linear 

amplification effects are present.  

2.1.1 The Frank Model 

Frank proposed a mechanism for asymmetric autocatalysis decades before the Soai 

reaction was discovered. His work led the way to feasible mechanism for asymmetric 

autocatalysis. The mechanism was purely theoretical and not designed for any 

particular chemical reaction.
[16]

 This mechanism is a plausible explanation of 

homochirality as well as amplification of chirality in the Soai autocatalytic reaction. 

Frank‟s mechanism describes the process as “a chemical substance which is a 

catalyst for its own production and an anti-catalyst for the production of its optical 

antimer.”
[16]

 His postulate suggests that if it is possible to suppress one reaction route 

compared to the other, the ee multiplies increasingly as autocatalytic amplification 

emphasizes. He describes the rate of increase of each enantiomer with the following 

differential equations: 

                                      dn1/dt = (k1 – k2n2)n1                                                                   2.2 

                     

                                                  dn2/dt = (k1 – k2n1)n2                                                              2.3 

Where  

1 and 2 are optical antimers 

k1 and k2 are positive rate constants 

n1 and n2 are concentrations   
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The negative terms of both equations represent the interaction parameters of the 

enantiomers which may be considered for each enantiomer to decrease the rate of 

formation of the opposite enantiomer. 

Subtracting the above two equations we get:  

                                        d(n1- n2)/dt = k1(n1 – n2)                                                           2.4 

implying 

                                                   (n1- n2) = (n01- n02)e 
k
1

t  
                                                     2.5 

Where n01 and n02 are initial concentrations of the antimers: there is an exponential 

increase of the difference in antimer concentration. 

Dividing equation 2.2 and 2.3 results in: 

                                              dn1/ dn2 = [(k1 – k2n2)n1]/[ (k1 – k2n1)n2]                                    2.6              

hence  

                                  n1/ n2 = (n01/ n02) exp [k2(n1 - n2 - n01 + n02 )(e
 k

1
t
 – 1)]                  2.7 

Combining equation 2.5 and 2.7  

                                       n1/ n2 = (n01/ n02) exp [k2(n01 - n02)(e
 k

1
t
 – 1)]                                  2.8 

An exponential increase in the concentration ratio is the case when n01 - n02 is 

positive. The corresponding decrease occurs if this difference is negative as 

illustrated in the figure below.  
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Figure 2.2: Sketch of general form of solutions of equations 2.2 and 2.3
[16] 

 

The above plot shows the relationship of time to the logarithm of the distance and the 

distance from the line n1 = n2. The difference n1 – n2 increases significantly, however 

there is always the possibility of a reverse in the sign of the difference. An analogy 

demonstrating this statistical fluctuation is a marble running downhill which is likely 

to find itself in the gutter on either side of the road. The marble on its path may 

encounter pebbles which will displace to the opposite side, however it is likely to end 

up at the side where it is at that time. Even though the travelling path of the marble 

before finishing off in the gutter is infinite its statistical variation is very limited.
[16, 

28]
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2.1.2 The Kagan Model 

Kagan put together empirical models for NLEs mainly applied to diastereomeric 

interactions between metals and chiral ligands.
[17]

 Kagan‟s group has published work 

on asymmetric autocatalysis since 1986. In recent years, Blackmond et al have built 

on this work in understanding asymmetric autocatalysis.  

Kagan argued against the linear relationship between product and starting material ee 

for certain reactions. The mechanisms of the reactions studied by Kagan et al in 1986 

all required complex intermediates. In conclusion the interactions between reagents, 

generating diastereoisomeric intermediates, influenced the ee of the reaction 

products.
[29]

  

Kagan and co-workers defined a system in which metal atoms form complexes with 

ligands with the outcome of amplification of ee. This system was described as MLn, 

with the M referring to the metal atom and Ln referring to n molecules of the L 

ligand. The ML2 system is likely relevant to the Soai reaction, which will be 

examined in this thesis in more depth.
[29]

        

                                                        Homochiral                Homochiral               Heterochiral 

Figure 2.3: Outline of Kagan ML2 mechanism 

Whereby: 

M = Metal centre to which ligands attach 

L = Ligand (can be either R or S) 

M + LR+ LS MLRLR +       MLSLS +      MLRLS 

R product 

 

 

S product 

kRR kSS kRS 

xR yS zH 

Racemic product 
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LR = R- enantiomer of the ligand 

LS = S- enantiomer of the ligand 

xR= Steady-state concentration of R homochiral complex (mol dm
-3

) 

yS= Steady-state concentration of S homochiral complex (mol dm
-3

) 

zH= Steady-state concentration of heterochiral complex (mol dm
-3

) 

kRR = First order rate constant for formation of R enantiomer (s
-1

) 

kSS = First order rate constant for formation of S enantiomers (equal to kRR) (s
-1

) 

kRS = First order rate constant for formation of racemic product (s
-1

) 

 

The ML2 mechanism describes a metal binding with 2 chiral ligands to form either 

homochiral (MLRLR and MLSLS) or heterochiral (MLRLS) complexes (MLRLS is 

considered equivalent to MLSLR). The assumption is that the homochiral complex 

catalyses the formation of its respective enantiomer; the heterochiral complex 

catalyses the formation of a racemic product. Another assumption made was non-

dependence of the metal in any of these catalytic reaction steps i.e. first-order 

reaction.
[29]

 From these assumptions the following set of equations relating the ee of 

products to that of the starting materials were derived. 

                                                ,                                             2.9 

Wherein: 

                                                                                                                                     2.10 

                                                                                                                                            2.11 
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β denotes the ratio of heterochiral to homochiral complexes in the reacting mixture, 

whereas g denotes the ratio of the activity of heterochiral to homochiral complexes in 

product formation. 

The absence of any heterochiral complexes is represented by the case with β = 0. 

This according to equation 2.5 would imply a linear relationship between the ee of 

the product and the ee of the starting material. In this case equation 2.1 and 2.5 are 

similar implying that heterochiral dimers are fundamental for non-linear effects in 

the mechanism proposed by Kagan because β is not zero. 

From equation 2.5 the value of the factor [(1 + )/(1 + g)] needs to be as large as 

possible in order to have a large (+)-NLEs. This can be achieved by having a large 

value for β and a minute value for g. A large β value would mean there must be a 

large amount of heterochiral material formed in the reacting mixture; this would 

consume large amounts of the minor enantiomer. Mostly monomers of the 

enantiomer and inactive (since g is very small) heterochiral dimers are present in the 

reaction mixture. Dimerisation therefore acts to sequester away large quantities of 

the minor enantiomer into a catalytically inactive heterochiral species. The 

monomers left behind would gradually unite and develop into homochiral 

complexes. These formed homochiral complexes catalyse the development of the 

same enantiomer resulting in amplification of chirality. 

Another variable defining the inter-conversion of homochiral and heterochiral dimers 

was used by Kagan and co-workers to calculate β.
[17]
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Prior to the above calculation of β, Kagan et al suggested a purely statistical 

distribution of ligands, KKagan = 4. Substituting KKagan = 4 in equation 2.13: 

                                                                                                                                  2.14 

Further combination of equation 2.10 and 2.5 acquires: 

                                                                                 2.15 

The above derived equation demonstrates that for a statistical distribution of ligands 

a non-linear effect exists except in cases where g = 1. Small values of g imply large 

(+)-NLEs; as g tends to 1, the probability of producing racemic products increases. 

2.1.3 The Noyori Model 

The reaction mechanism of the addition of dialkylzinc compounds to aldehydes using 

(-)-3-exo-(dimethylamino)isoborneol [commonly called (-)- DAIB] as a chiral 

catalyst was studied by Noyori and co-workers in 1989.
[18]

 The proposed mechanism 

involves the reaction of DIAB and dialkylzinc to form a product which can either be 

R or S. Further combination of these products leads either to the formation of 

homochiral (RR or SS) or heterochiral (RS equivalent to SR) dimeric complexes.  

The suggested mechanism is different from the Kagan scheme (Figure 2.3) because 

the monomeric species in the mechanism act as catalysts and the dimeric species are 

totally inactive. Kagan describes the dimeric species as catalytically active whereas 

the monomers are inactive. 
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Figure 2.4: Illustration of the mechanism developed by Noyori et al to explain amplification of 

ee. 

Whereby: 

KN,hom = Equilibrium constant for the dissociation of homochiral dimers (mol dm
-3

) 

KN,het = Equilibrium constant for the dissociation of heterochiral dimers (mol dm
-3

) 

SS = S-homochiral dimer 

RR = R-homochiral dimer 

SR = Heterochiral dimer 

 

From Figure 2.4 the dissociation constant values of KN,hom and KN,het are extremely 

important. Noyori et al established that if KN,hom = 2KN,het, the system confirms a 

linear effect; no amplification or depletion of ee. is the case. A positive non-linear 

effect is observed when KN,hom> 2KN,het and the ee of the product is amplified.
[30]

   

For KN,hom>>KN,het, the homochiral dimers are less stable than heterochiral dimers. 

Heterochiral dimers form stable, catalytically inactive species, which would consume 

most of the minor enantiomer. Mostly inactive heterochiral dimers would be present 

in the resulting solution with a small amount of active monomers. These active 

S R R Product 

KN,hom 

½ SS 

S Product 

KN,het 

½ RR 

+ 

SR 
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monomers are derived primarily from the enantiomer which was initially in excess, 

since the enantiomer which was not in excess would be consumed in heterochiral 

dimer formation. Dimer formation is therefore necessary in sequestering away the 

minor enantiomer into an inactive heterochiral species. 

Summarily, the required condition of KN,hom> 2KN,het in the Noyori et al model is 

similar to the required condition of β>>1 in the Kagan et al mechanisms. The 

formation of dimers is preferred to monomers in both mechanisms, because the 

heterochiral dimers sequester away the minor enantiomer. In the Kagan et al 

mechanisms, the heterochiral dimers are inert, while the homochiral dimers are 

active catalysts. In the Noyori et al mechanism, both heterochiral and homochiral 

dimers are inert; monomers are the active catalysts.
[18]

  

2.2 The Soai Autocatalytic Reaction 

2.2.1 Introduction 

The Soai Autocatalytic reaction is an example of asymmetric synthesis seen in the 

previous section. Considerable attention has been paid to understanding the 

mechanism of this reaction, which was discovered by Kenso Soai and coworkers 

over a decade ago.
[1, 19-27, 31-33]

  

Unlike ordinary asymmetric catalysis, the Soai autocatalytic reaction is special 

because the chiral auxiliary and the product are identical. As a result, amplification 

of chirality is possible because the chiral product serves as the catalyst for its own 

generation. The enantiomeric excess ee can therefore be amplified to extremely high 

values, close to 99%. 
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                               Figure 2.5: An example of the Soai autocatalytic reaction
[1]

 

 

The autocatalytic Soai scheme involves the reaction of the pyrimidyl aldehyde 1 with 

diisopropylzinc 2 to an organozinc complex 3, from which the pyrimidyl alcohol 

(product 4) can be derived by hydrolysis.  The chiral product 3 forms the pyrimidyl 

alcohol 4, which further reacts with diisopropylzinc 2 to generate the same product 

i.e. the product of alkylation 4 and the chiral auxiliary are identical. Chiral 

amplification is attained because the configuration of the product alcohol leads to 

increased formation of more product alcohol with the same configuration. The 

advantages of asymmetric autocatalysis over conventional asymmetric synthesis 

include:
[26, 27]

  

i. A high efficiency by virtue of the amplification process. 

ii. The chiral catalyst concentration increases in the course of the reaction. 

iii. Separation of the product and the catalysts is not required since both are 

chemically identical. 
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2.2.2 Discovery and development of highly enantioselective asymmetric 

autocatalysis 

Enormous developments in asymmetric synthesis have been realized over the last 

decades.
[26, 27, 34-38]

 Development is targeted towards achieving high 

enantioselectivity by designing precursors and chiral catalysts. Within this field of 

synthetic chemistry research, the automultiplication of chiral compounds has been 

regarded as kind of molecular replication that has attracted scientists including Soai 

and co-workers.  

Soai and co-workers reacted aldehydes with dialkylzincs in the presence of β-amino 

alcohols as chiral catalysts. Examples of such chiral catalysts include N,N-

dibutylnorephedrine (DBNE) 1, 1-phenyl-2-(1-pyrrolidinyl)-1-propanol (PPP) 2 and 

diphenyl(1-methylpyrrolidin-2-yl)methanol (DPMPM) 3.
[22]

 

 

Figure 2.6: Dialkylzinc addition  to aldehydes using chiral catalysts.
[22]
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Further studies revealed that the reaction of diethylzinc with pyridine-3-

carbaldehyde, a nitrogen-containing aldehyde, at 0ºC in the presence of DBNE 1 

(chiral catalyst), reached completion 16 times faster than a similar reaction utilizing 

benzaldehyde. A possible reason for this may be ethylzinc alkoxide of 3-pyridyl 

alkanol 5, acting as an asymmetric autocatalyst. This observation was the 

breakthrough of the first asymmetric autocatalytic reaction involving the 

enantioselective addition of diisopropylzinc (i-Pr2Zn) to pyridine-3-carbaldehyde 4 

with a 35% ee of (S)-3-pyridyl alkanol 5.     

 

Figure 2.7 Enantioselective addition of dialkylzincs to pyridine aldehydes.
[22]

 

 

Chiral 5-pyrimidyl alkanol 7 which comprises two nitrogen atoms on the aromatic 

ring acts as a highly enantioselective asymmetric autocatalyst. In the case of (S)-2-

methyl-5-pyrimidyl alkanol 7 up to 98% ee is attainable with the same structure as 

the autocatalyst. 
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Figure 2.8: Enantioselective alkylation of pyrimidine aldehyde
[22]

 

 

Interestingly the R group of the pyrimidyl aldehyde influences the degree of 

enantioselectivity. Practically perfect asymmetric autocatalysis was found to be the 

case when 10 is the autocatalyst with up to >99.5% ee. 

 

Figure 2.9: Practically perfect asymmetric autocatalysis in which the product is used as the 

asymmetric autocatalyst for the next run.
[22]

 

 

The positive non-linear effect in the above is obvious with the ee of the produced 

pyrimidyl alcohol higher than the asymmetric autocatalyst. Consecutive asymmetric 

autocatalysis was found to achieve a high ee with minute initial amounts of the 

autocatalyst.  
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Figure 2.10: Consecutive asymmetric autocatalysis of (S)-16 with amplification of enantiomeric 

excess.
[22]
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3. Mechanistic approaches to understanding the Soai 

autocatalytic reaction 

A summary of recently proposed mechanisms for the Soai autocatalytic reaction is 

visited in this section. Of particular importance are the mechanisms proposed by 

Blackmond, Brown, Soai, Buhse and co-workers. The essence of this section is to 

obtain knowledge that so far contributes to the understanding of the molecular 

mechanism behind amplification of chirality. 

3.1 The Blackmond Model 

Blackmond‟s first publication on non-linear effects was built on the Kagan ML2 and 

ML3 models (introduced in section 2.1.2),
[39]

 which were evaluated using 

experimentally determined rates of asymmetric synthesis reactions. These studies 

formed the foundation for subsequent mechanistic studies of the Soai reaction, which 

will be summarised further below.
[40, 41]

 

3.1.1 Dimer Model 

The foundation of the dimer model as the active catalyst is based on its suitability 

when compared with experimental data. Reaction microcalorimetry (Omnical 

CRC90) at room temperature has been used as a kinetic tool to follow the progress of 

the Soai reaction.
[41-44]

 Three optical purities were tested, with autocatalyst of 97% 

ee, 43% ee and a racemic autocatalyst mixture. As can be seen in Figure 3.1 the rate 

of reaction is higher with an enantiopure catalyst and least with a racemic catalyst. 

However, after normalisation to relative conversion the kinetic profiles of the 

different autocatalyst are very similar.
[42]
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Figure 3.1: Reaction heat flow against time of differing enantiomeric excess: 97%, 43% and 

0%
[42]

  

 

In fact, the normalized rate profiles for the 97% ee and racemic autocatalyst mixtures 

were found to be almost identical. This suggests that the kinetic order and hence the 

reaction mechanism is similar. Very significantly, the reaction rate observed with the 

97% enantiopure autocatalyst was approximately twice that of the rate observed with 

the racemic system. This indicates that the concentration of the active catalyst is 

influenced by the catalyst ee, supporting the view that the action of some 

components in the racemic system, are suppressed. The system therefore appears to 

exhibit features intrinsic to the Kagan and Noyori models discussed in section 2.1 

above. 

Predictions derived from the amplification mechanisms proposed by Kagan and 

Noyori (section 2.1.3 above) were therefore discussed in light of the experimentally 

catalytic cycle 
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derived dependence of the reaction rate on enantiopurity.
[42]

 The main features of the 

Noyori and Kagan schemes are summarised once more in Figure 3.3 below, which 

indicate the role of monomer and dimer catalysts respectively. 

 

Figure 3.2: Simplified Kagan and Noyori mechanisms.
[43]
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and the equilibrium constant for the dissociation of heterochiral dimers, RS and SR 

(mol
-1

 dm
3
) 

][][

][
hetero

SR

SR
K   

It can be seen that in the Noyori scheme formation of catalytically inactive 

homodimers according to the equilibrium constant Khomo lowers the concentration of 

both monomeric enantiomers, but without any influence on enantiomeric excess in 

the reactant solution. Amplification of enantiomeric excess can occur when the 

equilibrium constant for the formation of the RS heterodimer is sufficiently high: 

removal of equal amounts of minor and major enantiomer in the form of the RS 

dimer then depletes the concentration of the minor enantiomer relatively more than 

that of the major enantiomer. The reactant solution then has a lower total 

concentration [S] + [R] of the monomers, but a higher enantiomeric excess. For this 

effect to become significant a reasonably high value of Khetero is necessary. The 

dependence on the magnitude of Khetero is illustrated quantitatively (Figure 3.3). 
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Figure 3.3: Amplification of enantiomeric excess in a 1 molar solution of S and R monomers 

through RS heterodimer formation (Noyori model). The lines represent increasing values of the 

equilibrium constant Khetero for heterodimer formation (see inset for values of Khetero). 

 

Blackmond et al suggested that the observed doubling of the reaction rate when 

replacing the racemic mixture with an enantiopure reactant (Figure 3.1) can be 

reconciled with the Noyori mechanism only if all three types of dimers are formed 

with equal probability. Such a purely statistical („non-selective‟) distribution would 

imply the absence of any free energy difference between hetero- and homochiral 

dimers, and the concentrations of SS, RS and RR dimers formed in the racemate 

would follow a distribution of 1:2:1, respectively. Half of the dimers would be RS, 

while RR and SS dimers contribute 25% of the total dimer population. As will be 
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shown in the next section, the equilibrium constants Khetero and Khomo for a purely 

statistical dimer distribution are related through Khetero = 2Khomo. Blackmond et al 

appear to be arguing that the halving of the reaction rate in the racemic system is due 

to removing ~50% of the monomeric S and R molecules from the available pool as 

RS dimers. By implication, if dimer formation were indeed non-selective, the 

remaining 25% each of R and S molecules would have to form quantitatively RR and 

SS dimers. To achieve such quantitative turnover into dimers the absolute values of 

the equilibrium constants for heterodimer formation, Khetero, and for homodimer 

formation, Khomo, would have to be very large. To achieve the halved reaction rate of 

the racemate the homochiral dimer species then would also have to carry the chiral 

amplification reaction, in contradiction to the original Noyori mechanism, in which 

all dimer species are presumed inactive. 

Blackmond et al argue further that amplification of chirality is not possible with a 

statistical selection of dimers, with Khetero = 2Khomo. This would indeed be the case if 

monomers are quantitatively transformed into homochiral and heterochiral dimers, 

because in this case the diastereomeric distribution of dimers would always mirror 

the original enantiomeric excess. 

It is instructive for further discussions below to derive the relationship Khetero = 

2Khomo from first principles, using elementary statistics. For this we consider n 

molecule pairs randomly drawn (without replacement) from a pool of 2n molecules, 

of which r molecules have R-configuration and s molecules have S-configuration, 

with 2n = r + s. If the two types of molecules cannot otherwise be distinguished then 

the probability of drawing an R molecule from such a pool is r/2n. The probability of 

immediately drawing another R molecule is (r-1)/(2n-1), hence the probability of 

forming an RR pair is 
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On average this probability remains the same for all of the n pair formation events. 

Hence the expectation value E(RR) for forming pairs of RR molecules in n pairing 

events will be 
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The expectation value for pairs of SS molecules can now be calculated with the 

equivalent formula, as 
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For a racemate (n = r) this expression becomes E(RS)  2 E(RR). 

We also find that 
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, 

which is an expression useful for showing why the equilibrium constant for 

homodimer formation in a non-selective system is always half that of heterodimer 

formation. For this we consider the ratio between Khetero and Khomo  
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The ratio between the concentrations of hetero- and homodimers concentrations is 

equal to the ratio between their statistical expectation values, 
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so we can also write 
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We now identify 2n – r as just the number of S molecules in SS dimers, which will 

be proportional to the equilibrium concentration of [S]. Furthermore, for a large 

population of molecules )( r  r - 1  r. Because S and R molecules are 

chemically indistinguishable the proportionality as for s and [S] applies equally to r 

and [R]. For a large population of molecules we can therefore write that 

2
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From which follows the expression Khetero = 2Khomo used by Blackmond et al. 

However, within the Noyori monomer catalysis scheme an alternative interpretation 

of the experimental findings of Blackmond et al is possible. If the equilibrium 

constants for dimerisation were such that 50% of all monomers are removed from the 

solution then the halving of the reaction rate indicated by the data in Figure 3.1 could 

be achieved as well, even though monomer catalysis would be taking place. If there 

was additionally a preference for heterochiral RS dimer formation then chiral 

amplification similar to that illustrated in Figure 3.3 could be achieved. Such 

mechanisms have in fact been explored by Buhse and co-workers who have shown 
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that Noyori-type monomeric chiral amplification is at least theoretically compatible 

with the rate measurements presented by Blackmond.
[42]

 It appears that more detailed 

further experimental work might be required to identify the species that is actually 

the catalyst responsible for amplification.  

Currently, on balance, the experimental consensus leans towards acknowledging the 

presence of large quantities of dimer species, and hence the construction of 

mechanistic scenarios based on dimer catalysis. This is a reasonable choice because 

large quantities of dimers have been observed by NMR spectroscopic 

investigations.
[42]

 Dimer catalysis is the basis of the Kagan model, in which the 

homochiral dimers (and not the monomers) are the chiral auxiliaries for amplifying 

enantiomeric excess. Kdimer is the dimensionless equilibrium constant for the direct 

formation of heterochiral dimers from homochiral dimers: 

][][

][ 2

dimer
SSRR

SR
K   

By simple substitution with the values for Khetero and Khomo (derived above in the 

context of the Noyori model) it also follows that 

 
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SRK
K  

which implies that Kdimer = 4 based on the proposal that Khetero = 2Khomo . 

The rate equation in the modified ML2 Kagan system (considers the homodimer as 

the active catalysts as seen in section 2.1.2) used by Blackmond et al follows as:
[42]

 

                                                     3.1 
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k1B = Reaction rate constant for the rate limiting step in the Blackmond et al 2001 

mechanism (mol
-2

 dm
6
 s

-1
)
[42]

 

It is necessary that g<<1 for amplification of e.e. Blackmond reported that the rate 

profiles are modelled very accurately by the Kagan ML2 system and the heterochiral 

dimers are rendered completely inactive (i.e. g = 0).
[42]

 The proposed bimetallic 

active catalytic species responsible for the Soai autocatalytic reaction is seen in 

Figure 3.4. 

 

 

 

 

 

 

 

Figure 3.4 : Blackmond’s proposed active metal catalyst.
[42]

  

Further work by Blackmond refined the dimer-catalysis model, as summarised in 

Figure 3.5. The formation of the dimers (RR, SS and RS) was again by virtue of a 

statistical distribution (no free energy difference between homo- and heterochiral 

dimers) and the amplification of ee was achieved by the active homochiral dimer 

catalyst.
[45]
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Figure 3.5: Formation of dimer species from monomeric alkoxides.
[45]

  

Later in 2006, Blackmond without any given justification decided to neglect the 

reaction for the direct interconversion of homochiral and heterochiral dimers, i.e. 

RSSSRR 2 .
[44]

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Experimental kinetic data and dimer model calculations for reactions at 22% and 

6% initial ee Initial concentrations [A] = 0.2M; [Z] = 0.4M; catalyst 10%.
[44]
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The kinetic model used to fit experimental data was obtained from the following 

sequence of equations similar to the model developed in Figure 3.5. However, as 

previously mentioned the interconversion of homochiral and heterochiral dimers was 

completely omitted without justification (see Figure 3.7). Blackmond confirmed the 

stochastic distribution of dimer species by proton NMR in which racemic mixtures 

disclose the existence of heterochiral and homochiral dimmers in a 50:50 ratio within 

experimental error as suggested by the kinetic model i.e. Kdimer = 4. Blackmond 

describes the reaction of an aldehyde A and dialkylzinc Z with homodimers (RR or 

SS) as the active catalysts to produce alkanol products R and S; RS as the inactive 

catalytic species.   

 

Figure 3.7: Blackmond’s dimer model.
[44]

 

 

From the above equations large values of Khomo and Khetero are necessary for the 

formation of the hetero- and homodimers which are reported to have equal stability. 

The enantiomeric excess of the alkanol product is defined as follows: 
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3.1.2 Tetramer 

Blackmond also proposed a tetrameric model to explain the Soai autocatalytic 

reaction rates. The rate equation developed in previous works (equation 3.1) is used 

but the parameters g and β are excluded.
[40]

  

                                                                      3.3 

Whereby: 

k2B = Rate constant in the rate limiting step (mol
-2

 dm
6
 s

-1
) 

                                       [Catalyst]active = [RR] + [SS]                                                         3.4  

Blackmond and Buono suggested that equation 3.1 is only obeyed for equimolar 

ratios of the aldehyde and iPr2Zn. Figure 3.8 shows the reaction rate and the 

enantiomeric excess of four reactions with different stoichiometric ratios. 

 

Figure 3.8: Reaction rate as a function of aldehyde. Blue circles: Experimental data; dash black 

line: Equation 3.1; solid pink line: Equation 3.2.
[40]

     

 

The results shown above were obtained in toluene at 298 K and the initial 

concentration of the aldehyde was 0.1 M, with 10 mol% chiral alcohol catalyst. The 

     
active

i

22 CatalystZnPrAldehyde  Rate  Bk
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respective conditions of the above profiles are (a) ee (cat) = 0.22, 1.8 equiv iPr2Zn, 

(b) ee (cat) = 0.02, 2.0 equiv iPr2Zn, (c) ee (cat) = 0.97, 2.0 equiv iPr2Zn, (d) ee (cat) 

= 0.22, 3.6 equiv iPr2Zn. Blackmond and Buono justify equation 3.3 by proposing 

the formation of a complex between the aldehyde and iPr2Zn (Figure 3.9) before the 

transfer of the alkyl group. Tetrameric structures are reported to be familiar in the 

reactions of diakylzinc and amino alcohols.
[40]

  

 

 

 

 

Figure 3.9: Aldehyde- iPr2Zn complex
[40]

 

3.2 The Soai model  

Soai and co-workers also made substantial effort in understanding the kinetics of the 

autocatalytic reaction capable of amplifying chirality using HPLC to determine the 

yield of the products with naphthalene as an internal standard. They proposed a 

model that focused on the kinetics and did not cater for the amplification of 

enantiomeric excess. The kinetic model was developed from different reactions of 

aldehyde and iPr2Zn in the presence of minute amounts of an enantiopure catalyst.
[19]

  

 

                              Figure 3.10: Scheme proposed by Soai and coworkers
[19]

  

A = Aldehyde; Z = iPr2Zn 
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P = Reaction product (either R or S) 

P.P = Dimeric catalyst species (either homochiral or heterochiral) 

ks = Rate constant for dimer-catalysed product formation (mol
-2

 dm
6
 s

-1
) 

Ks = Equilibrium constant for the formation of dimeric catalyst species (mol
-1

 dm
3
) 

 

From this scheme the rate of reaction, v (mol dm
-3

 s
-1

) is defined as: 

                          
         2. PZAKkPPZAk
dt

Ad
v sss                                                 3.5 

Introducing the amount of reactant consumed or product formed results in:     

                      
       

dt

dx
xPxZxAKk

dt

Ad
ss 

2

000                                              3.6 

A0 = Initial aldehyde concentration (mol dm
-3

) 

P0 = Initial alkoxide product concentration (mol dm
-3

) 

Z0 = Initial diisopropylzinc concentration (mol dm
-3

) 

x = Amount of reactant consumed / amount of product formed (mol dm
-3

) 

 

A comparison of kinetic simulation of the derived rate equation and experimental 

data is shown below. Clearly, it is a second order reaction and not first order as 

depicted by the simulation represented by dash lines. 
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Figure 3.11: Comparison of simulation (solid lines) with experimental points. T = 273K; 

A0=2.08X10-2 M; Z0 = 3.13X10-2 M; P0 = 2.08X10-4 M. Broken line represents simulation 

assuming a first-order autocatalytic reaction.
[19]

   

 

This model which elucidates the kinetics does not provide information on a model to 

explain the amplification of ee in the reaction. They claim that this dimer model is 

suitable because of agreement between experimental and calculated data. However 

this work has been criticized by Blackmond et al because of the lack of crucial 

information on the suppression of a minor enantiomer and stereochemical 

information.
[46]

 

The model was eventually improved by Soai and co-workers by considering 

amplification of ee.
[32]

 The newly proposed mechanism shows similarity to that 

proposed by Blackmond and co-workers in 2001.
[42]

 However unlike Blackmond, it 

is assumed that the heterodimers are active catalysts and there is a free association of 

dimers implying no statistical distribution.   
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Figure 3.12: Model proposed by Soai and coworkers.
[32]

  

 

K3S = Equilibrium constant for homochiral dimer formation (mol
-1

 dm
3
) 

K’3S = Equilibrium constant for heterochiral dimer formation (mol
-1

 dm
3
) 

k3s = Reaction rate constant for homochiral dimer-catalysed alkoxide 

 formation (mol
-2

 dm
-6

 s
-1

) 

k’3s = Reaction rate constant for heterochiral dimer-catalysed alkoxide  

formation (mol
-2

 dm
-6

 s
-1

) 

ks,homo = Reaction rate constant for association of homochiral dimers (mol
-1

 dm
3
 s

-1
) 

k’s,homo = Reaction rate constant for the dissociation of homochiral dimers (s
-1

) 

ks,het = Reaction rate constant for association of heterochiral dimers (mol
-1

 dm
3
 s

-1
) 

k’s,het = Reaction rate constant for the dissociation of heterochiral dimers (s
-1

) 

 

The parameters K3S and K’3S in the above mechanism are similar to Khomo and Khetero 

respectively in the models developed by Blackmond et al in Figure 3.5. However, 

there is no statistical distribution i.e. Khetero = 2Khomo in the Soai model. In addition 
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the Soai model does not include the interconversion of homochiral to heterochiral 

dimers which agrees with Blackmond‟s 2006 model.
[44]

 

From the model (Figure 3.12) the following equations were derived on the basis that 

the concentration of the dimer is small relative to the monomer. However, this 

assumption may not be obeyed at later stages of the reaction. 

                                        

         
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The experimental and calculated results from the above rate equations are illustrated 

below. Yields and the ee (59.4 to 94 %) were found to increase rapidly after short 

incubation periods.  
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Figure 3.13: Comparison of simulation [yield: broken line; ee: solid line] with experimental 

points [yield: hollow circles; ee: filled circle] on asymmetric autocatalysis with initial ee of 

59.4% at -25
0
C.

[32]
  

 

It is obvious from this work that Soai and coworkers have proven that their dimer 

model explains the amplification of ee in asymmetric autocatalysis. 

3.3 The Buhse model 

The model proposed by Buhse and co-workers is apparently more realistic than the 

models earlier proposed by Blackmond
[42]

 and Soai
[32]

 in 2001 and 2003 respectively. 

The latter mentioned models consider that the association of iPr2Zn, the aldehyde and 

the dimeric catalysts occurs in one concerted rate limiting step. Buhse basically 

separated the three molecules in their model into two steps. In their model they 

assume that two alkoxide molecules combine to form dimeric species; a complex 

formed between the dimer and aldehyde; the aldehyde-dimer complex then reacts 

with iPr2Zn to form a product.
[47]
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Process Reaction Rate Law 

Irreversible formation of the 

zinc alkoxide 

COH+ZnCOZn  

CHO+ZnCOZn 

R1=k1[COH][Zn]  

R2=k2[CHO][Zn] 

Reversible zinc alkoxide 

dimerization equilibrium 

COZn+COZn(COZn)2 R3a=k3[COZn]
2  

R3b=k-3[(COZn)2] 

Reversible association of the 

carbaldehyde 

(COZn)2+CHO(COZn)2-CHO R4a=k4[(COZn)2][CHO] 

R4b=k-4[(COZn)2-CHO] 

Irreversible catalyzed 

formation of the zinc alkoxide 

(COZn)2-CHO+Zn(COZn)2 +COZn R5=k5[(COZn)2-CHO][Zn] 

Side reaction COH+CHOReaction by-product  R6=k6[COH][CHO] 

Figure 3.14: Proposed kinetic model. k:rate constant
[47]

 

 

In this model the possibility of an unspecified by product which was not considered 

by the other mentioned models is taken into account. This consideration evolves 

from the formation of fewer products than expected from the limiting reagent. In 

contrast to Blackmond and Soai, Buhse suggested that both homodimers and 

heterodimers are catalytically active.  

Further kinetic models were developed by Buhse
[48]

 which considered the work of 

Noyori, Frank and Kagan. Three models that incorporate mutual inhibition and chiral 

autocatalytic steps have been proposed. 
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Model 1 which is based on the Frank mechanism is seen below (k: rate constants): 

 

 

                                                Figure 3.15: Frank model.
[48]

   

 

Model 2 introduces an organozinc reactant Z with uncatalyzed steps. In this model 

the reversible formation of homochiral and heterochiral zinc alkoxide dimers is 

assumed based on the work of Noyori and coworkers.   
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Figure 3.16: Noyori model.
[48]

  

 

Model 3 is based on the work of Kagan and coworkers who began mentioning dimer 

catalysis to explain amplification of chirality. The monocatalysed steps are then 

substituted by dimer catalyzed steps. 
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Figure 3.17: Kagan model
[48]

 

 

According to Buhse and co-workers because of more chemical realism, model 1 and 

2 are comparable in mirror-breaking and amplification of chirality. However, 

amongst all three models, model 2 was found to give the best fit of the Soai reaction 

based on experimental kinetic data.
[48]

 

3.4 The Brown model 

The Soai autocatalytic reaction according to Brown like other scientists does not tally 

with well studied reactions of dialkylzinc with aldehydes. In contrast the monomeric 

catalysts cannot be used to explain the amplification process. Brown and co-workers 

support their studies with kinetic, NMR and computational techniques in order to 

elucidate possible mechanisms to explain asymmetric autocatalysis.
[34, 49-51]

  

The fundamentals of the formation of a chelate complex capable of forming a dimer, 

is demonstrated by the work of Noyori and Kitamura in the illustration below. 
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Figure 3.18: Fundamentals of Noyori and Kitamura model
[51]

 

 

The monomer which forms a zinc chelate, is clearly reactive as it provides sites for 

the carbonyl compound by coordinating with zinc and dialkylzinc through oxygen 

coordination. The reason given for the high ee of the product over the catalyst is 

suggested to be due to the reservoir dimer behavior that releases the reactive 

monomer.
[50]

 The presence of a ligand is important in identifying accessible sites for 

reactants and reagents. The catalyst is suggested to be a dimer that acts as a reservoir 

that releases monomers. The heterodimer which is energetically more stable than the 

homodimer reduces the concentration of one enantiomer resulting in a higher ee of 

the reactant product than the starting ee of the catalysts.    

The main technique used to understand the Soai reaction by Brown and co-workers 

was NMR analyses in which species are identified in solution. Amplification of 

chirality occurs with non-polar solvents in which precipitation unfortunately occurs. 

THF which is a polar solvent has a lower tendency to precipitate and is a better 
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medium to provide interpretable data without difficulty. A spectra of racemic and 

enantiopure zinc alkoxide showed distinct NMR spectra in THF.  

 

Figure 3.19: Double resonance from homochiral to heterochiral
[51]

 

 

Equivalent amounts of homo and heterodimers can be approved by two sets of 

resonance (evidence of statistical distribution). According to Brown the likelihood of 

higher oligomers is low since they ought to produce more signals. Further 

computational studies considered that zinc could be bonded to N or O in pyrimidine 

carbaldehyde and consequently suggests three possible structures of the dimer. 

Brown suggests that the most likely dimer from his NMR analyses is a Zn-O square 

dimer. He also specifies that characteristic conditions for an autocatalytic turnover 

are 0-25°C, 0.05-0.2M iPr2Zn.
[50, 51]

  

THF 
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Figure 3.20: Proposed square planar homo- and hetero- dimer
[50]

 

 

At ambient temperature the half life of a dimer molecule is about 15 s and there is 

equilibrium between the homo- and hetero- dimer.
[34, 49-51]
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Figure 3.21: Dynamic exchange between homo- and hetero- dimer a) A: Observed B: Calculated 

b) Arrhenius plot. Half life approx. 14s at 293 K.
[51]

 

 

From the spectra above it is observed that increasing the temperature causes the 

broadening and coalescence of singlets. Clearly a monomer is not formed in the 

equilibrium between the dimers but probably at higher temperatures where small 
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changes in chemical shift are noticeable suggesting dissociative structural 

modification. Further NMR studies were carried out to determine zinc site binding to 

either the pyrimidine nitrogen or carbonyl group by monitoring the 
13

C, 
1
H and 

15
N 

chemical shift changes.  

   

Figure 3.22: Chemical shift of binding of diisopropylzinc to pyrimidine aldehyde.
[51]

 

  

From the above results the site of binding is the pyrimidine nitrogen. Further 

computational studies were carried out in order to compare with the NMR data. 

iPr2Zn which is used in the Soai autocatalytic reaction was replaced by Me2Zn. The 

successive binding with Me2Zn initially with the aldehyde is seen in the scheme 

below. The calculations were done by DFT at the B3LYP functional level with 6-

31G basis set for all atoms. It is obvious that the experimental and computed results 

agree with the zinc prefering N- over O- in the pyrimidine aldehyde.
[34, 51]
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Figure 3.23: Enthalpy of binding ZnMe2 to pyrimidine aldehyde (Units: kcal/mol). N- preferred 

over O- complexation.
[51]

 

  

The significance of the relative stabilities of dimers was also computationally studied 

in support of the (ZnO)2 planar structure over O-Zn-N macrocycles and even more 

over {OZnO, NZnN} isomeric macromocycle. No reported evidence is however 

present for the existence of a macrocycle from NMR studies.
[51]
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                       Figure 3.24: Closed cyclic dimers derived by DFT.
[51]

  

 

The difference between homochiral and heterochiral dimers in autocatalysis has been 

studied by Brown et al. Based on enthalpy it was found that homodimers dominate 

with syn- pyrimidines whereas heterodimers have anti- related pyrimidines as 

illustrated below. Syn- related pyrimidines have a significant dipole moment 

compared to anti- which may explain why they have a role in autocatalysis.
[51]
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Figure 3.25: DFT calculated ground state conformations (preferred) of iPr2Zn derived homo- 

(Ar, Ar` syn) and hetero- (Ar, Ar` anti) dimers.
[51, 52]

  

 

Other possible species which include trimers and tetramers were derived from 

computational calculations. Adding the aldehyde to the dimeric catalyst and akyl 

zinc gives a trimer. The option of tetramers which was earlier visited by Blackmond 

in this report was also explored by Brown et al in the DFT calculations. The 

tetramers were based on a square dimer template. Four distinct tetramer structures 

were computationally defined.
[34, 50]
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Figure 3.26: (a) Four closed tetramers with alkyl substituents removed; (b) Space filling model 

of cube and square-capped macrocycle (both homochiral).
[51, 52]

  

 

The cubic tetramer is noted to have tight nonbonding H – H bonding interactions. 

From DFT calculations, over 40 kcal/mol is lost from going from a methylzinc to an 

isopropylzinc derived structure due to increased steric hindrance. The isopropyl 

derived [Zn-O]2 square-based tetramer was found to be more strained than its 

methylzinc counterpart. The isopropyl derived square-capped tetramer is not 

excessively strained and does not have acute H – H interactions. Two H – H contacts 

were found less than 2.3 Å. The ladder structured tetramer which lacks one pair of 
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Zn-O associations and the barrel like structure tetramer are both less stable than the 

cube tetramer.  

Entry
a
 Structure Binding 

Energy (Me) 

kcal mol
-1

 

Binding Energy 

(i-Pr) kcal mol
-1

 

Binding Energy 

(relative to 2x 

precursor 

dimer) kcal 

mol
-1

 

1C Me cube all-R 129.51  39.53 

2C Pr
i 
cube all-(S)  91.68 7.46 

3C Me cube 

(RRSS) 

129.58  40.86 

4C Pr
i 
cube (RRSS)  91.86 6.78 

1L Me ladder all-S 110.81  20.83 

2L Pr
i 
ladder all S  80.88 -3.34 

1B Me barrel all R 128.95  38.97 

2B Pr
i 
barrel all R  104.8 20.58 

1M Me SMS all-S 116.02  26.04 

2M Pr
i 
SMS all S  101.3 17.11 

a
C = cube, L = ladder, B = barrel, M = (square macrocycle square (SMS)) 

Table 3.1: Binding enthalpies of tetrameric compared to dimeric structures
[52]

 

 

The most likely active catalyst tetramer has a square-capped structure which 

remarkably preserves its trigonal unsaturated Zn geometry for coordination. From 
1
H 

NMR studies at low temperature there is evidence of highly dynamic and 

unsymmetrical tetrameric Zn alkoxide species formed by the association of dimers. It 

has been noted that the observed ee is higher than the ee calculated with a dimer 

catalyst. According to Brown and co-workers, full consideration should be given to 

higher homochiral oligomers in the explanation of the autocatalytic pathway. Models 

with higher oligomers as the autocatalysts have been noted to give a higher 

calculated ee for a given level of turnover.
[51, 52]
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An autocatalytic turnover is present only with diisopropylzinc. Other dialkylzinc 

groups which include cyclopropyl, cyclopentyl or tertbutyl do not perform. 

According to Klankermayer the bulkiness of the isopropyl group is responsible for its 

exceptional performance in the autocatalytic amplification of chirality.
[51, 52]

 

However, iPr and Et are of similar size with respective A-values of 2.21 and 1.79 Å 

but the presence of longer range H – H interactions changes the setting.  

Brown and co-workers have so far done kinetic, computational and NMR studies to 

understand autocatalytic amplification. The solution structure of the resting state has 

been well considered, yet Brown suggests that an X-ray structure of the oligomer 

would be a step forward. No fully agreeable model explaining this process is known 

at present.
[51]

  

3.5 Research objective 

The objective of this research study is to make a significant contribution to support 

the numerous models already mentioned. As seen earlier, the nature of the catalyst 

responsible for amplification of chirality is not definite. The characteristic of the 

transition state structure has so far been suggested to be a monomer, dimer or 

tetramer etc. Different techniques have been used to determine the catalyst, but none 

of these techniques provides electronic and structural information which is necessary 

in determining the molecular mechanism during amplification of chirality. 

X-ray absorption fine structure (XAFS) which is the main technique used in this 

work, provides structural and electronic information of the solution structure 

responsible for autocatalysis. It is a powerful probing method for the quantitative 

determination of structural parameters. Using this method it is possible to probe Zn 

species in solution to generate structural information during amplification of 
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chirality. Information such as the oxidation number, coordination number and bond 

distances can be acquired to build a model after probing the Zn species. Details of 

the Zn sites which could be linear, trigonal, tetrahedral etc. can be revealed by 

probing the Zn species. XAFS should be able to determine the transition state 

structure at an initial stage of the reaction and also at different stages of the reaction. 

It would be obvious if the central zinc probed has one or more zinc neighbours which 

would imply the existence of a monomer, dimer etc. Evidence of the characteristic 

structure of zinc species in toluene and THF is expected to be different using XAFS 

because THF is a polar solvent and therefore has an affinity for metals. This would 

confirm the poor performance of the Soai autocatalytic reaction in THF by the 

provision of a model which has so far not been visited. 

It is expected that chapters further in this work provide one model that suitably 

characterises the Zn catalyst. This is unlike other models proposed earlier in this 

chapter which suggest different models using the same technique.     
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4. Experimental 

4.1 X-ray Absorption Spectroscopy (XAS) 

X-ray absorption Fine Structure (XAFS) is the main technique used in this study to 

characterize Zn species in solution. The XAFS is usually divided into of two regions, 

the XANES (X-ray Absorption Near Edge Structure) and EXAFS (Extended X-ray 

Absorption Fine Structure). The local atomic coordination and chemical/oxidation 

state of Zn can be calculated using XAFS at low concentrations.
[53, 54]

 

4.1.1 Principles of X-ray absorption spectroscopy 

X-ray absorption takes place due to the excitation of core level electrons in atoms by 

X-ray photons.   

 

 

Figure 4.1: Illustration of X-ray absorption process in an atom
[55]

 

 

X-rays 
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The more weakly bound valence electrons occupy outer shell orbitals. These 

electrons take part in chemical bond formation.  

X-rays are photons, which are electromagnetic radiation. The electromagnetic 

spectrum includes radio and television waves, microwaves, infrared light, X-rays and 

gamma rays. 

 

Figure 4.2: Spectrum of photon energy in wavelength and frequency
[55]

 

 

Photons possess wave and particle like properties. The energy of X-rays is usually 

expressed in electron volts (eV). The relation between energy and wavelength is: 

                                              E = hc/,     (in Joules, J)                                                                      4.1 

Where h is Planck‟s constant and c is the speed of light.  

 

Three types of X-ray scattering are known which include Compton, Rayleigh and X-

ray Raman scattering. They all result from the interaction of electrons with X-rays. 

Compton scattering is an inelastic process in which the X-ray loses energy, whereas 

Rayleigh scattering is elastic and occurs because the oscillating electric field induces 

oscillation in the electrons. Stronger elastic X-ray scattering is observed for heavier 

atoms, because they have more electrons.  

When an atom acquires all the energy of an X-ray, X-ray absorption occurs. This 

gained energy excites the core electrons into higher energy unoccupied electron 
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orbitals or into the continuum where the electron is no longer bound by the atom. 

The latter free electrons are usually referred to as photoelectrons. When the core 

electrons are excited, a core hole is left behind. Within less than 10
-15 

s, an electron 

from a higher energy orbital fills the core hole. This transition results in the release 

of energy which can be in the form of fluorescence radiation, Auger electron 

production or secondary electron production.
 
 

The filling of a core hole by a more weakly bound electron can also result in X-ray 

fluorescence. The fluorescent X-ray energy is, in a first approximation, the difference 

between the binding energy of the two core levels involved in the transition. The 

fluorescence X-ray energy for a given electronic transition is element specific. 

An alternative way for the system to lose energy during the process of core hole 

deexcitation is the loss of energy by emission of additional electrons, either from the 

same core levels involved in the deexcitation process or from different shells. This is 

known as Auger electron production. The final steps of core hole relaxation by 

electron emission is the production of secondary electrons and lower energy 

(UV/Vis) photons.
[55]

  

4.1.2 XANES and EXAFS 

X-ray absorption spectra are typically acquired from about 200 eV below the 

absorption edge to 1000 eV above. The X-ray absorption near edge structure 

(XANES) is the region ranging from the absorption edge to about 40 eV above the 

edge (Figure 4.3). The near-edge structure is determined by the density of states 

available to the excited photoelectron. The coordination geometry and oxidation state 

affect this part of the spectrum. The region after the XANES is known as the 
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Extended X-ray absorption fine structure (EXAFS). The EXAFS gives information 

about the local structure which is calculated by curve fitting.                                         

 

Figure 4.3: Plot of XANES and EXAFS region.
[54]

 

 

The information found in the XANES and EXAFS region is different. XAFS 

spectroscopy gives information on the electronic and structural properties under 

reaction conditions and in the presence of a catalyst. X-ray diffraction (XRD) also 

provides geometric information, but it is unsuitable for studying reaction 

mechanisms in solution because it requires crystalline samples with long range order. 

X-ray photoelectron spectroscopy (XPS) is not also suitable because it is limited to 

giving only electronic information specifically under ultra-high vacuum conditions. 

XAFS technique is widely used in catalysis research and is used to determine the 

electronic and structural properties of homogeneous and heterogeneous catalysts.  
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4.1.3 Physical principles 

An incident beam of X-ray photons of intensity I, will be decreased by an amount 

that is determined by the absorption characteristics of the irradiated material. The 

relation between the path length dx and intensity is:  

                                                                           dI = -µ(E)Idx                                                          4.2 

Lambert‟s law is derived by integrating the above equation considering the total 

thickness x: 

                                                                        It = I0e
-µ(E)x                                                      

                 4.3 

The excitation of an electron from a core to a vacant excited state or the continuum 

results in a sudden rise (threshold energy or absorption edge) in the absorption 

intensity. The kinetic energy of the electron (Ek) for any energy above the absorption 

edge is defined by:                    

                                                           Ek = h- Ebinding                                                                 4.4      

 

Figure 4.4: (a) Photoelectric effect in terms of excitation of different orbital or different energy 

levels. (b) Illustration of neighbouring shells of atoms about the absorber. Interference between 

outgoing photoelectron wave and backscattered off neighbouring atoms shell.
[56] 



91 

 

4.1.4 EXAFS equation 

A scattering theory can be modeled to define the XAFS oscillation, i(k), where k is 

the wave number. In the plane wave approximation, the sum of the modified sine 

waves i(k) with different frequency and phase from each backscattering 

coordination shell j, around the central atom i is expressed as: 

i(k)=∑Aj(k)sinΦj(k)                                                                   4.5 

Aj(k): Total backscattering amplitude of the j
th

 shell of backscattering atoms.     

Φj(k): Total phase function.  

The amplitude and phase functions provide structural information. The amplitude 

Aj(k) is further defined as:  

                                          Aj(k) = 
kRk

j

j

j jj eekFS
kR

N  /222

02

22

)(


                                

                  4.6 

Fj (k): The backscattering amplitude (element specific). 2

0S : The amplitude reduction 

factor representing many-body effects such as central atom shake-up and shake-off 

due to relaxation processes. The finite lifetime of the excited state is justified by the 

exponential term which includes the photoelectron mean-free path, λ.
[56]

 

4.1.5 Data analysis 

The XAFS function, χ(k), is defined as: 

                                                          
)(

)]()([
)(

0

0

k

kk
k









              
                            

                4.7 

 : Measured absorbance; including all fine structure 

 0: The XAFS-free absorbance of a single free atom. 

 

The first step in the extraction of the experimental XAFS function is the pre-edge 

background removal followed by normalization. The energy is then calibrated 
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(calibrated with zinc foil in this study) and it is converted to k-space. Several known 

programs are available to process XAFS data which include Ifeffit packages: Athena 

and Artermis, WinXAS, GNXAS
[57]

 and EXAFSPAK. In this work the Iffefit 

packages: Athena and Artemis are utilized in the extraction of EXAFS oscillation 

and data refinement.
[58]

 Two spectra were collected on an average for XANES and 

EXAFS during this study and no changes were observed over short periods.  

Background correction: Correction is necessary to eliminate effects that affect the 

experimental absorption spectrum. Such effects include instrumental effects, sample 

cell absorption, effects of other atoms (or electrons) in a sample. Ideally, only the 

specific absorption of the atom chosen for study should remain for EXAFS analysis. 

The pre-edge region is fitted with a polynomial (linear or quadratic) function and the 

fit values are deducted from raw data.  

Normalization: Normalization ensures that amplitude of the signal is in the right 

scale and compensates for uncertainties in the concentration and sample thickness. 

This process is achieved after pre-edge background correction and is done by 

dividing experimental data collected from a synchrotron by the edge step.
[59]

 

Threshold energy, E0: E0 is the minimum energy needed to excite a photoelectron and 

can be correlated to the kinetic energy of the electron.
[60]

 The photon energy E of the 

incident beam defines the wave vector k of the photoelectron: 

                                                 k = {0.2625(E-E0)}
1/2                                                

                  4.8 

E0 is the Fermi energy in version 8 of the FEFF program and is in a first 

approximation taken as the first maximum derivative of the edge. E0 can be affected 

by the oxidation state, covalency in chemical bonds etc.  
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Conversion to k-space: The energy scale can be changed from eV to the 

photoelectron wave number, k (Å
-1

) by the following correlations: 

Kinetic energy of the photoelectron, E- E0 = 1/2mev
2 

= (mev)
2
/2me = P

2
/2me 

                                      Photoelectron momentum, P = ħ.k                                                      4.9                                                                                

k = wave vector = 
e

2
 = photoelectron wave number                                                      4.10 

        E- E0 = 

em

k

2

22
      k  

2

0 )(2



EEme 
 =  2/1

0 )}(2625.0 EE 
              

                 4.11 

When k = 0; the energy is the threshold energy. 

Spline atomic background removal: The total absorption coefficient µ(k) of an 

isolated atom is expressed as:  

                                            
)}(1){()( 0 kkk  

                                                  
                4.12 

Where )(k  denotes the fractional change (modulation) in the absorption coefficient 

induced by neighbouring atoms and contains structural information.  

XAFS )(k  can therefore be defined as: 

                                                     )(k = 
)(

)]()([

0

0

k

kk



 

                                           

                 4.13 

µ0(k) is the atomic background absorption for an isolated atom at the same energy. 

With high k values the amplitude of the oscillations becomes smaller because of a 

decrease in absorption with increasing energy. Dividing by µ0(k) normalises the 

XAFS data. The EXAFS region µ0(k) function is determined by the smooth curve, 

µspline(k) fitted from experimental data. µspline(k) is used as an approximation for µ0(k) 

during normalization: 

                                                   
)(k = 

)(

)]()([

k

kk

spline

splinedata



 

                                  

                 4.14 

The Victoreen approximation of the absorption coefficient, µvic which is given by: 

µvic = Cvic λ
3
 - Dvic λ

4
. The EXAFS function is then defined as:  
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)(k = 

)(

)]()([

k

kk

vic

splinedata



 

                                   

                 4.15 

The extraction of the XAFS function can be seen in the following figure. 

          

Figure 4.5: a) Pt edge fluorescence data for Pt complex. The µvic function better represents the 

‘fall off’ of the atomic background absorption µ0 with increasing energy than µspline. b) 

Transmission L egde data showing that µspline can be a good approximation to µvic and µ0.
[59]

    

 

Fourier transform: The Fourier transformation is expressed as  

                                          FT(R) =  
max

min

2)(
2

1 k

k

kRin kekk 
                                    

                  4.16  
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An example of the radial distribution function defined in R-space is the distance from 

the absorber atom. Different k weightings used to distinguish low mass (e.g. oxygen) 

and high mass (e.g. Pt). Pt will scatter at higher k-values as seen below.  

 

Figure 4.6: Radial distribution function after Fourier transformation of Pt foil. Absolute (full 

line) and imaginary (- - - -).
[56]

  
 

The Fourier transformation is a complex function that includes an imaginary (Im) 

and a real part (Re). The absolute part or envelope of the Fourier transform is defined 

by 

                                                 Absolute part = Im
2
 + Re

2                                               
                 4.17 

The number of neighbours and disorder determines the absolute part. An accurate 

determination of the absorber–scatterer distance can be derived from the imaginary 

part. The weighting by k
2
 or k

3
 emphasises the high Z contributions i.e. high Z 

elements have more scattering power at high values of k than low Z elements.
[56]
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FEFF program: FEFF8 can be used for data analysis. It calculates the phase shifts, 

effective scattering amplitudes for single and multiple scattering pathways for XAFS 

and XANES spectra.
[61]

 

ATOMS: This program converts crystallographic data to a text file that is a Feff input 

file.
[56, 58, 62]

  

4.2 Miniaturized continuous flow reaction vessels  

In this study a continuous flow tubular reactor and microcentrifuge tubes are used to 

measure XAFS data in situ. The physical importance of downscaling to miniaturized 

reactors is explored in this section. 

4.2.1 Introduction 

In the laboratory reactions are carried out in large volumes from to a few hundred 

milliliters. Aliquots can be withdrawn from reactions off-line and analyzed batch-

wise. The disadvantage of such large quantities is analysis is slow and it takes longer 

for a homogenous temperature and concentration distribution to be attained. This 

may however lead to side products giving rise to lower yields and process 

selectivity.
[63]

 Microreactor technology minimizes this problem and is used today by 

several researchers. It involves a low volume of reagents in a laminar flow in which a 

thermal and concentration gradient is present. The yield of reactions in microreactors 

is notably high in much shorter times. Clearly microreactors are a new, safe and 

efficient method to increase awareness of complex chemical processes.
[64-66]
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4.2.2 Fabrication of microreactors 

Several materials are used to build microreactors which include silicon, quartz, glass, 

metals and polymers. Compatibility of the reagent with the microreactor material is 

crucial. Microfabrication methods include photolithography, hot embossing, powder 

blasting, injection moulding and laser micro-forming.
[67]

 In this study the material of 

choice should be compatible with X-ray Absorption Fine Spectroscopy in-situ 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 4.7: Photolithographic fabrication of channel networks in glass.
[67] 

 

Most organic chemists prefer to use glass microreactors.
[64]

 The material of choice 

should generally be chemically inert, resistant to solvents and transparent for optical 
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inspection. The material should avoid chemical species absorption and should have 

suitable thermal and electrical properties.
[63]

     

4.2.3 Microfluidic handling and effects of downsizing 

Methods used to drive liquids in microchannels are electrokinetic, pressure driven 

and flow driven. Driving a liquid through microchannels should target optimal 

control on reaction conditions. A homogenous flow rate should be provided by the 

pumping mechanism and this should not be affected by temperature, viscosity or 

pressure that may change with time.  In addition dead volumes due to connections 

and tubings should be minimized to optimize control.
[63]

 In this study a flow driven 

mechanism is used to pump the liquid through a cell while XAFS measurements are 

collected. Flow with a high level of control is ensured by the use of syringe pumps or 

peristaltic pumps and is suitable for time resolved reactions.
[63, 68]

 

Reducing the reactor size has the advantage over lab-scale because less space is 

required, less energy and reagents; and a shorter reaction time is involved. Process 

safety and higher yields are also more likely. The consequence of downscaling is a 

large surface to volume ratio which causes a higher mass and heat transfer compared 

to lab scale reactors. An investigation of a study of the reliance of the reaction yield 

on the residence times in microreactors under isothermal conditions is illustrated 

below. 
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Figure 4.8: (a) Microreactors used in chemical synthesis; (b) dependence of the product yields 

from the reaction time.
[63] 

Diffusion and convection are the first step of any chemical reaction. The mass 

transport is expected to be faster than the reaction kinetics as expressed by the 

Damkohler number, which is the ratio of the characteristic time for a chemical 

reaction and for fluid dynamics. Reaction kinetics is unaffected by downscaling, 

however mass transfer coefficients are increased as a result of reduced reactor size. 

Mixing in microreactors is quicker due to shorter diffusion lengths. Characteristic 

specific surface areas (surface [m
2
]/volume [m

3
]) in microreactors are between 

10,000 and 50,000 m
–1

, while those for lab-scale reactors are about 1000 m
–1

.  

The Reynold number, Re is the ratio of the inertia (ρv
2
l
2
) to viscous force (vl). This 

ratio quantifies these forces for given flow conditions. When the Reynold number is 

small, Re<<1, the viscous forces dominate and when Re>>1 the inertia forces 

dominate.  

                                                                         Re = 


l

                                                                

4.18 
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 [kg m
–3

] is the mass density, [m s
–1

] is the velocity, l [m] is the length, and µ [N s 

m
–2

] is the dynamic viscosity. In microchannels flow is laminar and mixing is 

realized by diffusion. The diffusion time is described below: 

                                                                          td = 
D

L2

                                                 

                 4.19 

 

td is the diffusion time, L [m] is the diffusion distance and D [m
2
 s

–1
] is the diffusion 

coefficient, in which k is the Boltzmann constant (1.38 × 10
–23

 J K
–1

), T [K] the 

absolute temperature, [kg m
–1

 s
–1

] the absolute (solute) viscosity, and r the 

hydrodynamic radius [m]. 

                                                                            D = 
r

kT

6
                                           

                 4.20 

Based on the assumption that the diffusion coefficient is in the order of 1 × 10
–9

 m
2
 s

–

1
 for small molecules the mixing time is in the order of seconds (with L in the order 

of 100 µm) to milliseconds (with L in the order of 10 µm).  

4.3 XAFS measurement experimental set up 

A typical XAS experimental set up is seen below. Data can be collected in 

transmission and fluorescence mode. There are mainly five parts of the experimental 

setup, which include the source, the optics, the sample, the detectors and the 

electronics and computer. 
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Figure 4.9: Schematic of XAS experiment
[69]

  

 

In terms of the optics and detectors several types are known. The illustration below 

includes a monochromator and mirrors for harmonic rejection. 

 

 

Figure 4.10: Optics and detectors
[69]

  

 

The different sorts of detectors mainly used include ion chambers, diodes, energy 

discriminating and wavelength dispersive detectors. 

XAFS data are acquired in transmission mode by passing the photon beam through 

the sample, with the intensities of the incident (I0) and the transmitted (IT) beams 

each collected by an ionization chamber. Fluorescence yield mode takes advantage 

of the fact that the intensity of characteristic X-ray fluorescence, IF, is proportional to 

the absorption coefficient, so the absorption spectrum is obtained from (E) = (IF/I0). 
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4.3.1 Decomposition products of dialkylzinc compounds exposed to ambient 

conditions 

It is intended in this section to show the influence of the environment on dialkylzinc. 

It is therefore crucial that experimental conditions are maintained in an oxygen and 

water free environment to prevent the decomposition as seen in Figure 4.11. 

 

                        Figure 4.11: XANES spectra of dialkylzincs in toluene and water. 

 

Decomposition of dialkylzinc as seen in the XANES spectra is possible with the 

presence of oxygen and water from different sources which include air and solvents. 

0.1 M DEZ (diethylzinc) in toluene initially has a strong resonance peak which 

diminishes with the influence of oxidizing agents. It is observed that the resonance 

peak changes drastically over 4 days and this process is even faster when DEZ is left 
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open to oxygen with an increased rate of oxidation. Diisopropylzinc in water also 

results in a drop in the resonance peak with the formation of a precipitate observed to 

settle at the bottom of the microcentrifuge tube. The change observed is likely from a 

linear complex in toluene to a tetrahedral coordinated system when oxidized. The 

interaction with water as impurity in the solvent is possible at low concentrations of 

dialkylzinc suggesting that very low concentrations of dialkylzinc are not 

recommended. In this section the possibility of oxidation of the dialkylzinc to zinc 

oxide or zinc hydroxide is considered. Crystallographic information of zinc oxide 

and zinc hydroxide was acquired and the acquired coordination numbers of zinc 

oxide and zinc hydroxide were then fixed in order to get the best possible fit. Other 

EXAFS studies of both zinc oxide and zinc hydroxide were considered in order to 

compare the calculated bond distances.
[70, 71]

 An EXAFS fit of decomposed DEZ 

assuming the coordination numbers of zinc hydroxide as the oxidized product is seen 

in Table 4.1. The coordination numbers of zinc were fixed in the 1
st
 shell to 4 i.e. Zn 

to O and the Zn to Zn was fixed to 2.2 in the 2
nd

 shell as expected from 

crystallographic data and other studies.  

 

Table 4.1: EXAFS parameters of exposed DEZ in air (set as zinc hydroxide solid) 

 

Sample 

First shell 

(Zn-O/C/N) 

Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(A) σ2(A2) N R(A) σ2(A2) N R(A) σ2(A2) E0 (eV) 

R 

(%) 

Et2Zn in 

toluene 

4s 

1.96 

(±0.006) 

0.005 

(±0.001) 

   2.2s 

3.24 

(±0.015) 

0.012 

(±0.002) 

3.16 

(±1.027) 

3.5 
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The R-factor of the fit was 3.5 %, which is considered good. However the EXAFS 

spectra are non identical to that of Zn(OH)2. This suggests that the decomposed 

product is not zinc hydroxide. 

  

Figure 4.12: Zinc K-edge EXAFS spectra of decomposed Et2Zn exposed to air. Fit with zinc 

hydroxide coordination numbers fixed. Dash lines are the experimental data and the solid lines 

are the best theoretical fit. 

 

A similar fit was studied with zinc oxide in which the central zinc atom of 

decomposed diethylzinc was set to 4 in the 1
st
 shell with neighbouring oxygen atoms 

and 12 in the 2
nd

 shell with neighbouring zinc atoms based on other studies. 

  

Table 4.2: EXAFS of DEZ in toluene exposed in air (set as zinc oxide) 

 

-1.3

-0.8

-0.3

0.2

0.7

1.2

3 8k
3
χ
(K

)

k [Å-1]

0.0

0.4

0.8

1.2

1.6

0 2 4 6

F
T

 m
a
g

 k
3
χ
(K

)

R [Å]

Sample 

First shell 
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 N R(A) σ2(A2) N R(A) σ2(A2) N R(A) σ2(A2) E0 (eV) 

R 

(%) 

Et2Zn in 

toluene 

4s 
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(±0.004) 
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(±0.0002) 

   12s 
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The EXAFS fit based on zinc oxide has an R-factor of 2.1% implying a better fit 

compared to zinc hydroxide as seen below.  

  

Figure 4.13: Zinc K edge EXAFS spectra of decomposed Et2Zn exposed to air. Fit with zinc 

oxide coordination numbers fixed. Dotted lines are the experimental data and the solid lines are 

the best theoretical fit. 

 

By virtue of the R-factor of the above EXAFS fits of decomposed DEZ it is likely 

that the product formed after DEZ oxidation is closer to zinc oxide (The R-factor 

calculated here is about two times smaller) than zinc hydroxide. It must be noted here 

that neither of them is the decomposed product. The above two fits have similar Zn-

O bond distances in the 1
st
 shell at about 1.96 Å with the same coordination number 

of oxygen (4) around the central zinc atom. There is a slight difference in the Zn..Zn 

bond distance of 0.02 Å between ZnO and Zn(OH)2. The bond distances of this 

EXAFS calculation are similar to other studies.
[70]
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Table 4.3: Local structure of ZnO and Zn(OH)2 derived from this EXAFS and other studies 

 

The table above clearly shows the similarity of bond distances from the XAFS 

calculations of this study compared to the study by Robert and co-workers
[70]

 

eventhough the spectra are different. A comparison is made between the bond 

distances from EXAFS calculations of this and other work in addition to bond 

distances derived from XRD measurements. In the case of zinc oxide the Zn-O and 

Zn-Zn bond distance difference of this study and the above reference are 0.00 and 

0.02 Å. The XRD measurements are higher than both EXAFS bond distances. On the 

other hand, the Zn-O and Zn-Zn bond distances of zinc hydroxide were comparable 

but lower. This comparison may suggest that the Zn-O and Zn-Zn bond distances and 

coordination numbers of decomposed DEZ in this EXAFS study are closer to that of 

ZnO than Zn(OH)2. However decomposed DEZ is neither ZnO nor Zn(OH)2.      

4.3.2 Microcentrifuge Tubes as Batch Reactors for in situ XAFS Studies 

1.5 to 2 mL polypropylene microcentrifuge tubes were used as batch or non-flow 

reactors to collect most of the in situ XAFS data in this study. Solutions of the 

pyrophoric dialkylzinc compounds where dosed into the tubes in an inert gas 

 

 

 Compound 

 

 

Atom 

  This               

EXAFS         

R (Å) 

 Other   

EXAFS
[70]

 

  R (Å) 

          XRD
[70]

 

    

  CN             R (Å)                

Zinc Oxide  Zn-O 

Zn-Zn 

1.96 

3.26 

   1.95 

   3.22 

    4 

   12 

   1.98 

3.50, 3.66 

Zinc Hydroxide Zn-O 

Zn-Zn 

1.96 

3.24 

   1.99 

3.29, 3.47 

    4 

   2.2 

   1.96 

3.29, 3.50 
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environment ensuring the absence of oxygen, either under nitrogen or argon. XAFS 

experiments were carried out subsequently for a maximum of 3 hours. To ensure that 

these tubes are sufficiently leak-tight a series of XANES spectra of 0.1 M Et2Zn 

were collected as a function of time. (Figure 4.14) 

 

 

Figure 4.14: XANES spectra of 0.1 M Et2Zn in non-flow reactor (microcentrifuge) over 2 days 

 

It can be seen that Et2Zn which is very reactive with air remains unreacted for several 

hours when kept airtight in a polypropylene microcentrifuge tube. A significant 

reduction is seen in the resonance peak of the XANES after 2 days. The above 

XANES spectra (Figure 4.14), demonstrates that within periods of a few hours the 

collected XAFS data are not affected by reactions with air or humidity entering 

through the push seal or the walls of the tube. 
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4.3.3 Continuous flow Reactor for XAFS Studies of Organometallic Reactions 

In this study two main XAFS reactors were used: a simple room temperature batch 

previously seen in section 4.3.2 and a continuous flow reactor. Both reactors were 

used to understand the molecular mechanism during the alkylation of aldehydes 

under an inert environment i.e. Ar or N2 gas. The batch reactors were a 1.5 - 2 mL 

microcentrifuge tube chemically resistant to the reagents. An initial design of the 

continuous flow reactor is illustrated below with the flow of colour dyes through 

PTFE tubes of internal diameter 1 mm and a perforated Al cell which should allow 

contact of incident X-rays with the flowing reagent. 

 

                         Figure 4.15: Testing the continuous flow Al reactor with colour dyes. 

 

The internal diameter of 1 mm and slow flow rate permits mixing (yellow and blue 

give green) to occur by diffusion since flow is laminar as explained earlier in section 

4.2. This construction should be suitable to study reaction mechanisms if the mass 

transport is faster than reaction kinetics. A more detailed description of the 

Cell 

Mixed reagent Reagents 

Y - Connector 
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continuous flow reactor as well as the possibilities and limitations of the continuous 

tubular flow reactor for XAFS studies of organometallic reactions (seen in 4.3.4) has 

been published as a conference proceeding.
[72]

 

4.3.4 Continuous Tubular Reactor for XAFS Studies of Organometallic 

Reactions: Possibilities and Limitations for Studies of the Soai Reaction
1
 

 

The in situ flow XAFS measurements at the Zn K-edge were performed at station 9.3 

of the SRS, UK, and at 12ID-B of the Advanced Photon Source (APS) at Argonne 

National Laboratory (USA). Supporting work with non-flowing solutions was 

performed using sealed Eppendorf microcentrifuge tubes at BM29 of the ESRF, 

Grenoble, France. Solutions were loaded into the microcentrifuge tubes in a glove 

bag continuously purged with dry N2. All reactions were performed at room 

temperature. At all three beamlines simultaneous measurements in transmission 

mode with gas ionization chambers and by fluorescence-yield (FY) detection with 

multielement Ge detectors were performed. Reactants and dry toluene solvent were 

obtained from Aldrich. 

                                                 

1
This section has been published in the journal of physics conference series. [72] L. N. Nchari, G. A. 

Hembury, A. M. Beesley, D. J. Meehan, N. Tsapatsaris, M. Hudson, M. Thomason, S. L. M. 

Schroeder, 14th International Conference on X-Ray Absorption Fine Structure (Xafs14), Proceedings 

2009, 190. 
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Figure 4.16: Schematic arrangement of the PTFE tubular flow reactor mounted on a heatable 

Al frame; also shown are representative in situ Zn K-edge FY XANES data taken at positions 

A1, D2 and C4 during the Soai reaction with a 1:1 volume mixture of 0.1 mol L
1

 

diisopropylzinc and pyrimidyl aldehyde solutions. 

 

 

The flow reactor was based on PTFE tubing (1/8 inch outer diameter) attached to an 

aluminium support frame that had 16 holes in a regular 44 pattern machined out of 

it (Figure 4.16). At the positions of these holes in situ monitoring of the reaction 

progress along the tube was possible by combined transmission and fluorescence-

yield detection. For our studies of the Soai reaction the pyrimidyl aldehyde and 

 

       

Figure 4.17: Tubular flow reactor assembled at station 9.3, SRS Daresbury, UK. 
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diisopropylzinc were mixed at the tube inlet by joining the two solution streams in a 

PTFE „T‟-piece (Omnifit). The solution streams were provided by syringe pumps 

(Versa 6, Kloehn) fitted with 1 mL syringes and non-distribution valves; they were 

controlled remotely via a serial interface with a LabVIEW (National Instruments) 

GUI. A pair of syringe pumps was used for each of the two reactants (0.1 mol L
1

 

diisopropylzinc and pyrimidyl aldehyde solutions). Handshaking operation 

synchronised the pump pairs: while one pump was dispensing the other was 

aspirating in preparation for subsequent dosing. As mentioned above, due to the 

oxygen and moisture sensitivity of this iPr2Zn solution a nitrogen atmosphere was 

needed to keep the environment inert within the pump pairs and flow cell apparatus. 

This was achieved by including a nitrogen feed on the multiport pump-head and 

purging before introduction of iPr2Zn solution. The reactant solutions were also 

prepared and stored under nitrogen. By varying the flow rate from the dosing pumps 

it is possible to tune the flow rate in the reactor to obtain information about the 

nature of metal species as a function of reaction time. Positioning in the X-ray beam 

was achieved by using a computer controlled XYZ stage calibrated to the dimensions 

of the reactor system. FY XANES data obtained at the APS during the reaction in a 

solution containing 0.1 mol L
1

 of pyrimidyl aldehyde and 0.1 mol L
1

 

diisopropylzinc are included in Figure 4.16. A photograph of the completely 

assembled system at station 9.3 of the SRS is shown in Figure 4.17. 

Flow Experiments 

The XANES data from Figure 4.19 indicates that under the chosen flow conditions 

the reaction had progressed almost to completion at the initial measurement point, 
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A1. Only minor spectral changes occur as the reaction progresses towards positions 

D2 and C4.  

 

 
Figure 4.18: Electron microscopy and EDX analysis of the organozinc wall deposit on the inside 

of the PTFE reactor tube. 

 

The appearance of occasional „spikes‟ in the XANES data shown in Figure 4.16 was 

traced to the formation of small floating particles of a precipitate formed by the Soai 

process. We found that particles moving into and out of the X-ray beam would cause 

such distortions of the spectra, which were especially strong in transmission mode. In 

fact, several runs of experiments were rendered uninterpretable by the resulting 

presence of strong non-random noise. 

In addition to the observed formation of a precipitate a strongly adherent wall deposit 

became apparent during the flow reactor experiments. These stationary deposits 

additionally influenced the XANES spectra. They form because the velocity of the 

flowing solution near the walls is lower than in the inner volume of the tube. The 
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extent to which wall deposits can grow quickly is illustrated by electron microscopic 

images in Figure 4.18. The lower of the two images shows that after running the Soai 

reaction for 50 min the deposit had a thickness of 5 µm. Ex situ energy-dispersive X-

ray (EDX) analysis (Figure 4.18) confirmed that the deposit contains ZnO and 

organozinc material. It seems likely that the formation of such wall deposits can only 

be suppressed if the reactor design is modified to maintain a high space velocity of 

the reaction medium, for example through strong turbulent flow or shear, near the 

wall where the XAFS measurements take place. Abrupt changes of flow direction or 

introduction of constricted regions on the tube may achieve this objective. 

The XANES data included in Figure 4.19 are reminiscent of the Zn K-edge XANES 

of Zn
2+

 species in a tetrahedral environment, such as ZnO. This is illustrated in figure 

4, in which the spectrum from position C4 is compared to a previously published 

spectrum of solid crystalline ZnO. It can be seen that the energetic positions of the 

shoulder at ~9664 eV, the main resonance at ~9669 eV and the broad resonance 

around ~9682 eV coincide. Note however that the amplitudes of the XANES 

resonances of the Soai product, and especially the features in the EXAFS region 

(e.g., at ~9717 eV), are strongly reduced, indicating disorder relative to crystalline 

ZnO on one hand and the presence of a significant self-absorption effect, likely 

associated with the formation of the observed solid product on the other. It appears 

that deposition of a poorly ordered ZnO and/or Zn(OH)2 product takes place on the 

wall of the reactor tube and dominates the observed XAFS spectrum. The most likely 

origin is the presence of residual water and/or O2 in the reaction system, 

decomposing diisopropylzinc to Zn(OH)2 and ZnO, respectively.  
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Because of the problems associated with solid product formation the flow reactor 

turned out to be unsuitable for a number of Soai aldehyde alkylation systems. For 

this reason we reverted back to a simple static batch reactor experiment with 

microcentrifuge tubes as described in section 4.3.2 that permitted separation of 

solution phase and precipitates by gravitational settling.      

Products of Soai Process under Non-Flow Conditions 

 

 

                

Figure 4.19: In situ transmission XANES (BM29, ESRF) obtained in microcentrifuge tubes. From 

top to bottom: Zn K-edge XANES spectra of a toluene solution containing 0.1 M diisopropylzinc; 

the supernatant of a solution formed by reacting 0.1 M diisopropylzinc and 0.1 M pyrimidine 

aldehyde in toluene; the sediment formed in this solution; a toluene solution containing 0.1 M 

diisopropylzinc and 2 M pyrimidine aldehyde; the spectrum labelled C4 in figure 1 (measured at 

the SRS); a spectrum of ZnO. 
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Experiments with a sealed static reactor cell (a standard Eppendorf polypropylene 

microcentrifuge tube) allowed us to minimise the formation of wall deposits and to 

selectively characterise the precipitate formed by the Soai process. This was 

achieved by allowing sedimentation of the precipitate at the bottom of the 

microcentrifuge tube, which also enabled us to separately examine the remaining 

supernatant solution. Figure 4.19 contains the resulting transmission XANES spectra 

of the sedimented precipitate (3
rd

 spectrum from top) and of the supernatant solution 

(2
nd

 spectrum from top) obtained by mixing 0.1 mol L
-1

 aldehyde and 0.1 mol L
-1

 

iPr2Zn in toluene in a 1:1 molar ratio. It can be seen by comparison with the 

spectrum of iPr2Zn in toluene (top spectrum) that any Zn species remaining in the 

supernatant solution stem from unreacted iPr2Zn. In contrast, the spectrum of the 

sedimented precipitate (second spectrum from top) has no strong white line, 

indicating that p-like valence states are occupied and that the local bonding and/or 

coordination geometry are fundamentally different from that in iPr2Zn. For a 1:1 

mixture of iPr2Zn and aldehyde one would statistically expect a product mixture 

containing unreacted iPr2Zn as well as the monomeric species 3 and some 

monomeric dialkoxide species 5 (Figure 4.19). To address which of these species 

was responsible for the observed spectrum we carried out the reaction of iPr2Zn with 

a 20-fold excess of aldehyde because this reaction is expected to result in the 

formation of only the dialkoxide 5. Interestingly, the XANES spectrum of this 

product (3
rd

 spectrum from bottom in Figure 4.19) is very similar to the spectrum of 

the precipitate formed in the 1:1 mixture, indicating that the dialkoxide is 

preferentially formed even when understoichiometric amounts of aldehyde are 

supplied. What is currently not clear is whether the precipitate contains the 

monomeric species 5 or whether the previously proposed dimers, trimers or 
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oligomers of 5 are formed. In these products the Zn centres would be in a distorted 

tetrahedral coordination environment, which is compatible with the overall 

appearance of the spectra and especially the absence of the strong white line in the 

XANES spectra of the observed product. (4.3.1) 

In summary, fully computer-controlled continuous tubular flow reactor system for 

time-resolved in situ XAFS measurements has been commissioned. Zn K-edge 

XANES data demonstrate that with 3
rd

 generation synchrotron beam spectra of very 

good quality can be achieved with Zn concentrations in the 100 mmol region. 

Heterogeneous processes in the Soai reaction lead to considerable complications with 

the measurements due to the formation of floating particles of the aldehyde/iPr2Zn 

adduct formed in the reaction, while the deposition of solid iPr2Zn decomposition 

products on the walls of the flow reactor dominates the spectra after less than an hour 

of continuous reaction. The Soai precipitate formed in 1:1 iPr2Zn:aldehyde mixtures 

appears to be the dialkoxide complex, while the remaining supernatant still contains 

unreacted iPr2Zn. The XANES data for the dialkoxide do not exclude the presence of 

non-monomeric species; that a precipitate is observed supports the notion that the 

formation of dimers, trimers, tetramers or higher oligomers takes place. 

 

4.4 In situ UV spectroscopy study in parallel reactors 

In the course of this study a noticeable colour change was observed with a mixture of 

cinnamaldehyde, diethylzinc and dimethylaminoethanol. This was quite intriguing 

and as a result the XAS measurements were complemented with UV measurements.  

UV measurements were carried using an in house built high throughput system. 

Different ratios of the mixture of cinnamaldehyde, diethylzinc and 
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dimethylaminoethanol were considered. The change in the absorption characteristics 

overtime was observed by simultaneously measuring five samples. The intensity of 

each cell was measured at intervals of one minute. The illustration below shows the 

automated system suitable for measuring 5 samples simultaneously.
[73]

  

 

Figure 4.20: Overview of ‘5 cuvette’ platform, (a) camera, (b) flow cuvettes in aluminium frame, 

(c) collimating lens, (d) monochromator & light source, (e and f) syringe pump dosing system 

with stock solutions and (g) control PC.
[73]

  

 

The scanning monochromatic light (250 W quartz tungsten halogen lamp) was 

allowed to go through the sample array using a collimating lens. The sample array of 

five cuvettes (Type 71-V, Starna Scientific), were fixed in an aluminium frame. 

(g)
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Figure 4.21: Aluminium frame containing cuvettes
[73]

 

 

The samples were detected by a CMOS (complementary metal oxide semiconductor) 

camera (EC640c, Prosillica) combined with a telecentric lens (Visionmes 70/8/0.1, 

Zeiss). With the aid of a LabVIEW based software, the absorption spectra of all five 

samples over time is registered.
[73]

  

 

Figure 4.22: Image of monochromatic light through five sample cells
[73]

 

 

Scanning was automatically done between 375 – 655 nm at 5 nm intervals as 

illustrated below.  

bank 1

gas manifold

bank 2
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Figure 4.23: Determination of light intensity through sample cells at a range of wavelengths by 

image analysis software.
[73]

  

 

The summation of pixel intensities gives information about the brightness and the 

amount of transmitted light. The measurement of 5 samples is compared to a 

reference image which in this case was toluene at the same wavelength. The 

absorption is calculated by using the Beer-Lambert equation                                                                                                                                   

                                             A = 2 - log(100xI/I0)                                                            4.21 

A - Absorption, I - Measured Intensity and Io - Original Intensity 

Synchronized images acquired are replicated every minute for 35 minutes in order to 

produce a time resolved measurement.
[73]
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5. The influence of solvents on asymmetric amplification 

5.1 Introduction 

Asymmetric amplification can be strongly influenced by the solvent medium. The 

influence is more specifically on the enantiomeric excess, ee and yield. In the Soai 

autocatalytic reaction
[20, 36, 38, 41]

 it has been reported that cumene is a slightly better 

solvent than toluene. The ee is increased to 99.3% in cumene in the following 

reaction.  

 

The table below compares solvents that generally give a high ee and yield with 

cumene being the better solvent in the Soai autocatalytic reaction as earlier 

mentioned.  

Entry X Solvent Asym, autocat. and 

product ee [%] 

 Yield [%] ee [%] 

 1 2.2 Toluene (a)       99.3 (S)     98  99.1 (S) 

 2 2.2 Cumene (a)        99.4 (S)     98  99.3 (S) 

 3 2.2 Tert-

butylbenzene 

(a) 

      99.3 (S)     99  99.1 (S) 

 4 2.2 Cumene (b)      >99.5 (S)     99 >99.5 (S) 

 5 1.7 Cumene (b)      >99.5 (S)     >99 >99.5 (S) 

 6 1.7 Cumene (b)      >99.5 (R)     >99 >99.5 (S) 

(a) With 1M iPr2Zn in toluene                (b) With 1M iPr2Zn in cumene 

Table 5.1: Asymmetric autocatalysis reaction with autocatalytic reaction with (S)- and (R)-2 

with > 99.5% ee.
[36]
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According to studies done by Blackmond, the Soai autocatalytic reaction performs 

chiral amplification well in toluene and diethylether (Figure 5.1).
[45]

  

Figure 5.1: Product ee against initial catalyst ee in toluene, diethylether, Et2O/toluene and 

THF.
[45] 

Interestingly, THF does not lead to amplification but to promotion of a linear 

relationship between the ee of the product and the initial catalyst. In THF the reaction 

is also reported to be extremely sluggish. Further studies indicated that product 

precipitation may be observed during reactions in all solvents.
[45]

 The ee in solution 

and the precipitate is solvent dependent. In the case of toluene the ee of the 

precipitate in toluene is lower than that of the solution. This reverses in diethyl ether 

in which the precipitate gives a higher ee. Blackmond has proposed that these results 
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suggest the physical properties of the heterodimer to be less soluble than homodimer 

species in toluene whereas in diethylether the heterodimer species is more soluble.
[45]

 

 

 

 

Table 5.2: Comparing the ee and % product in solution and the precipitate for the Soai 

reaction.
[45] 

Brown also reported the non-occurrence of amplification in THF.
[50]

 It was suggested 

that the strong Lewis basicity of the solvent has an inhibiting effect that causes a 

slow turnover. Other studies report the binding of the Lewis base to metals.  
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Using PMR spectroscopy Denisov et al
[74]

 examined the formation of complexes of 

diethylzinc with Lewis bases. They proposed that a donor-acceptor complex causes 

an internal shift or change in the electronegativity of Zn atom explaining why for 

complexes with diethylether a small chemical shift is observed than for THF. The 

decreasing strength of complex formation with Et2Zn is in the order THF > 

propylene oxide > diethyl ether.
[74]

 An X-ray absorption spectroscopy study is 

important to understand the interaction of the solvents with alkyl zinc and to explain 

the different levels of the ee of the product and chiral catalyst. 

5.2 Experimental 

Several concentrations of dialkyl zinc were prepared in 2 mL microcentrifuge tubes. 

This preparation was done in the presence of nitrogen gas in a glove bag in the 

absence of oxygen. The behaviour of dialkylzinc was studied in solvents which 

include toluene, diethylether and tetrahydrofuran. In some experiments the solvents 

were mixed in specific ratios. X-ray absorption fine structure (XAS) measurements 

were carried out at the Zn K-edge.
[56]

  The monochromator type used was Si (111) 

and the experiments were performed at beam lines BESSRC 12-BM-B at the 

Advanced Photon Source (USA), BM29 at the European Synchrotron Research 

Facility (ESRF), XAS at ANKA (Germany) and 9.3 at SRS (United Kingdom). The 

X-ray radiation was detected in florescence and transmission mode. 

The local Zn structures in solution were determined from fitting experimental and 

theoretical data in R and k space (Figure 5.5). Theoretical data is from the structure 

of ZnO derived from a crystal structure database and imported into Iffefit. The 

extracted EXAFS function was weighted at k
3 

and Fourier transforms calculated 

between a k range of 3-12 Å. The dialkylzinc models in different solvents were 
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assembled from the fits generated by FEFF8. The amplitude reduction factor was set 

at 0.82. The coordination number, radial distance, Debye-Waller factor and energy 

shifts were calculated considering only two shells.  

5.3 Results and Discussion 

5.3.1 i-Pr2Zn in toluene and THF 

Initial experiments were carried out with diisopropylzinc in toluene and THF at the 

APS, Argonne National Laboratories, USA. The X-ray absorption near edge 

structure (XANES) region in both solvents is different as seen below. The XANES 

spectra of a 0.05 M i-Pr2Zn in toluene and THF are clearly dissimilar. A strong 

„white line‟ near edge resonance is observed in toluene resulting from a 1s-4p 

transition. This peak is reduced with the introduction of THF, even when THF is 

diluted with toluene (black dotted line) as seen in Figure 5.2 below.  
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Figure 5.2: Zn K-egde XANES spectra of 0.1 M i-Pr2Zn in toluene, THF and toluene/THF (1:1). 

 

Considering the red dotted line in the XANES spectra (Figure 5.2), it is noticeable 

that with the addition of THF the second peak moves towards lower energy values. A 

small peak at 9684 eV of i-Pr2Zn in toluene also disappears with THF addition. The 

similarity of the XANES spectra of iPr2Zn in THF and a toluene/THF mixture 

suggests a high affinity of THF to associate itself with Zn thus changing the Zn 

environment or electronegativity. A model of both iPr2Zn in toluene and THF was 

further calculated from the Extended X-ray Absorption Spectroscopy region.  

The EXAFS fit of diisopropylzinc in toluene is shown in Figure 5.3 below.  
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Figure 5.3: Zn K-edge EXAFS spectra and FT of i-Pr2Zn in toluene. Dash lines: Experimental 

data and solid lines: best theoretical fit.  

 

The model suggests that diisopropylzinc is not associated in toluene as seen by the 

EXAFS parameters in Table 5.3. The structural parameters obtained by the fitting 

analysis (Table 5.3) suggests that every Zn atom in the toluene solution has on 

average 1.5 C atoms at a distance of 1.89 Å. Also apparent is a second coordination 

shell of approximately 4 C atoms at a distance of approximately 3.4 Å. These data 

are compatible with a structural model of undissociated iPr2Zn (Figure 5.5). As seen 

below, these structural parameters are compatible with the molecular structure of 

iPr2Zn in the gas phase (Table 5.4). There is no evidence for Zn-Zn scattering in the 

data, supporting the conclusion that self-association of dissolved iPr2Zn does not take 

place. The high statistical uncertaintity on the coordination number of the second 

shell may indicate that complex but relatively weak interactions with toluene 

molecules take place in this region; such weak interactions are difficult to model in 

an EXAFS fit. This would also offer an explanation for the relatively lower fit 

quality.      
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The results of the EXAFS fitting analysis for diisopropylzinc in THF are also shown 

in Figure 5.4.  A strong difference between the EXAFS of diisopropylzinc in toluene 

(Figure 5.3) and in THF (Figure 5.4) is already evident from visual inspection of the 

spectra. 

 

 

 

     

Figure 5.4: Zn K-edge EXAFS spectra and FT of i-Pr2Zn in toluene and THF. Dash lines: 

experimental data and solid lines: best theoretical fit. 
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From the fitted EXAFS calculation in k and R space, it is noticeable that i-Pr2Zn in 

the 1:1 Toluene/THF mixture is more similar to that in THF. In R space, a second 

peak resulting from Zn-Zn backscattering is absent in the case of toluene but present 

in THF or a THF/toluene mixture. A similarity is also seen in k space where there is 

more backscattering at higher k values in THF.  In k space, there is a similarity in 

THF and toluene between 3 and 6 Å. However, changes are seen after this point at 

higher k values where more scattering (probably due to Zn…Zn scattering) is noticed 

with the introduction of THF. The EXAFS parameters used to fit these spectra are 

given in the table below (Table 5.3). 

 

Table 5.3: Zinc K edge EXAFS parameters of i-Pr2Zn in toluene and THF 

Sample 

First shell 

(Zn-O/C/N) 

Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(Å) σ2(Å2) N R(Å) σ2(Å2) N R(Å) σ2(Å2) E0 (eV) R (%) 

Toluene 

i-Pr2Zn 

 

 

1.46 

±0.141 

 

 

1.89 

±0.005 

0.005 

±0.001 

 

3.8 

±1.583 

 

3.40 

±0.013 

 

 

0.003 

±0.007 

 

 

   

 

1.48 

±0.318 

 

5.8 

THF 

i-Pr2Zn 

2.48 

±0.171 

 

 

1.91 

±0.005 

 

 

 

0.008 

±0.001 

 

 

4.3 

±0.83 

 

 

 

3.51 

±0.013 

 

 

 

0.006 

±0.002 

 

 

1.19 

±0.318 

 

 

3.08 

±0.006 

 

0.005 

±0.002 

4.91 

±0.714 
1.2 

Toluene/THF 

i-Pr2Zn 

1.71 

±0.157 

1.96 

±0.007 

0.007 

±0.001 

 

5.82 

±1.895 

 

3.48 

±0.002 

 

0.013 

±0.006 

 

0.89 

±0.671 

3.08 

±0.013 

0.008 

±0.004 

3.48 

±1.024 

1.9 
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The R-factor, which is the goodness of the fit between experimental and theoretical 

spectrum is 1.2 and 1.9 % for iPr2Zn in THF and in the THF/toluene mixture, 

respectively. This means these fits are excellent and the predicted dimeric structures 

are therefore reliable. The structural parameters obtained by the fitting analysis 

(Table 5.3) suggests that every Zn atom in the THF solution has on average 2.5 C 

atoms at a distance of 1.91 Å (slightly more extended than in toluene). The second 

shell has approximately 4 C atoms at a distance of approximately 3.5 Å. The 

structural model of associated iPr2Zn is seen in Figure 5.5. There is evidence for Zn-

Zn scattering in the data implying that self-association occurs in THF but not in 

toluene. In THF the existence of a dimer is evidenced by Zn-Zn backscattering.  

 

Figure 5.5: Models of iPr2Zn in toluene and THF from EXAFS calculations. Because of solvent 

interactions the Zn complex is likely to be a bent structure and therefore depicted as such, even 

though the actual coordination geometry cannot be determined from the XAFS data. 

 

Two distinct models of iPr2Zn can be seen from Figure 5.5 in toluene and THF. 

iPr2Zn exists as a monomer in toluene but dimerizes in THF. A possible link between 

both models and ee is suggested by Mahmoud.
[75]

 The proposed dimer model has a 

Zn-Zn distance of approximately 3.08 Å. There is however no evidence of bond 

formation between the two Zn atoms because a Zn-Zn bond distance is typically 

reported to be about 2 Å i.e. approximately 1 Å less than the model proposed in this 
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study.
[76]

 The Zn atoms are likely held together in a cluster by weak intermolecular 

forces. Using XAS it is otherwise not possible to distinguish Zn-O, Zn-N and Zn-C 

interactions as carbon, nitrogen and oxygen have similar backscattering contributions 

as a result of their close atomic numbers or similar number of electrons in the core of 

their atoms.
[77]

 The EXAFS calculated bond distances are similar to those from other 

studies done by Haaland in which the bond length of zinc-carbon bonds was studied 

by density functional theory calculations, gas electron diffraction and photon electron 

spectroscopy.
[76, 78]

 

 Gas 

Phase
[78]

 

 Solution 

(EXAFS) 

      

 

                       C2       

Zn       C1 

Zn-C1  1.96 Å 1.89 Å 

Zn-C2  3.45 Å 3.40 Å 

 

Table 5.4: Comparison of bond distances in i-Pr2Zn gas phase and solution. Gas phase: 

Haaland’s study,
[78]

 Solution: EXAFS calculation. 

 

Assuming that bond angles in the gas phase and in solution are similar it would 

appear that the EXAFS-derived structural parameters are also compatible with the 

structures reported in Haaland‟s study. The Zn-C1-C2 angle adopted from the studies 

of Haaland is 114˚.
[78]

 

Near edge 

Based on the EXAFS derived models for iPr2Zn we can now understand the 

difference in the near-edge data for iPr2Zn dissolved in toluene and THF. Kau et 

al
[79]

 and Fulton et al
[80, 81]

 related the intensity of the near-edge resonance for Cu
+
 to 

local coordination and geometry by considering the ligand field splitting of Cu
+
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valence orbitals as a function of site geometry.
[79]

 In terms of the electron count, Cu
+
 

corresponds to Zn
2+

, so similar consideration should apply here (Figure 5.6). The 

position and intensity of the preedge of Cu
+ 

is described by Kau et al as follows: A 2-

coordinate complex exhibits a high intensity in the 8984 eV region, the intensity 

reduces in the same region for a 3-coordinate complex. In a 4-coordinate complex 

the reduced preedge peak moves upwards to the 8986 eV region. 

Coordination number 2 3 4 

 Linear T-shaped Trigonal Planar Tetrahedral 

 

              

  

Energy  
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Figure 5.6: Ligand field splitting of Zn
2+

 4p orbitals as a function of site geometry.
[79]

 

The ligand field proposed by Kau et al predicts that the degeneracy in Zn
2+

 is split by 

the ligand field. In a coordinate linear molecule Zn
2+ 

complexes, the energy of the 

antibonding 4pz is increased relative to 4px,y levels due to repulsive interaction along 

the z axis (Figure 5.6). The intensity of the 1s to 4p transition is reduced by virtue of 

an overlap of the covalent ligand. A three coordinate complex is derived from a two 

coordinate electronic structure by introducing a ligand. The 4px,y orbital then splits 

with the py to higher energy thus decreasing the 1s to 4py intensity as observed with 

the addition of THF to diisopropylzinc in  Figure 5.2. Furthermore from a three to 
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four coordinate  structure the 4px,y,z are close to degenerate but shifted to higher 

energy with each 1s to 4p transition having a reduced intensity as seen in Figure 

5.6.
[79]

 

5.3.2 Diethylzinc in different THF/toluene ratios 

Further XAS investigation, on the influence of solvents with dialkylzincs were done 

at the ESRF synchrotron in France. Different concentrations, solvent ratios and 

solvents were considered during measurements. An extensive XANES study was 

carried out with diethylzinc (DEZ) at different THF/toluene ratios to understand the 

interaction of the respective solvents. It was found that only a 10 % (vol %) of THF 

with toluene has a great influence on the zinc environment in DEZ (Figure 5.7). The 

XANES below is comparable to that of i-Pr2Zn in toluene and THF previously seen.   
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                    Figure 5.7: XANES spectra of 0.1M DEZ at different THF/toluene ratios  

  

Evidently THF has a stronger influence than toluene on the resonance peak. From the 

black dash line it can be seen that the resonance peak of Et2Zn reduces and moves to 

a higher photon energy with the addition of THF. With a 10 % presence of THF a 

strong reduction in the resonance peak is observed. Further drops are unnoticed when 

the amount of THF in the solvent mixture increases from 10% to 90%. A linear 

combination of the spectra from the toluene and THF solutions reproduces the 

XANES spectrum of diethylzinc in the 1:1 THF: toluene mixture very well ( 

Figure 5.8). The linear combination fit optimizes with a 69 % contribution from the 

THF and 31 % from the toluene XANES spectra. This suggests that the equimixture 
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has 69 % of zinc present as the dialkylzinc complex with THF. It appears that 

diethylzinc in THF has a significantly higher affinity for binding to diethylzinc than 

toluene.     

 

 
Figure 5.8: XANES spectra of 0.1 M DEZ in toluene and THF. Calculated XANES in 1:1 

(toluene:THF) included. 

 

The linear combination analysis of XANES spectra was expanded to investigating a 

number of toluene/THF mixtures, from 10 to 90 % of THF in the solvent mixture. 

The results are shown in Figure 5.9. At 10, 25, 50 and 90 % of THF in the solvent 

mixture the calculated THF contributions were 62, 66.9, 70 and 74% respectively. 

This is a true indication of the strong influence of THF over toluene even at low 

concentrations of 10 %.  
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Figure 5.9: Comparing the experimental and fitted XANES of 0.1 M Et2Zn at different 

THF/toluene ratios (vol %). 

 

A remarkable increase is noticed at 10 % THF, which then stabilizes between 62 and 

74%. At 90% THF, 74% was calculated in the fitted XANES suggesting the 

influence of toluene on diethylzinc. As the amount of THF increases from zero, a 

cooperative solvent effect is possible in which diethylzinc complexes predominantly 

with toluene when the THF concentration is low. It appears to bind predominantly 

with THF in toluene/THF mixtures when the toluene concentration is below 

approximately 90%, but toluene still appears to influence the electronic structure of 

the complex.  In pure THF (less than ~10% toluene) a complex without toluene 
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influence appears to be formed. At high amounts of THF there is a possibility of 

slight decomposition with water molecules resulting in the reduction of the resonance 

peak, but this effect is not expected to dominate the observed spectra. This 

comparison indicates that diethylzinc has a strong affinity for pure toluene, and 

complexes formed in increasing amounts of THF do not completely overshadow 

complexes in toluene until almost pure THF is used. 

5.3.3 Diethylzinc in THF as a function of concentrations 

Concentrations between 0.001 and 0.05 M of DEZ were investigated. Variations of 

the concentration were found to strongly influence the XANES Zn K-edge spectra of 

diethylzinc in THF (Figure 5.10). 
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                              Figure 5.10: XANES spectra of DEZ in THF at different concentrations  

 

Concentrations beyond 0.2 M were not considered because of the problems 

associated with high absorption, fluorescence detector overload and self-absorption 

effects. At low concentrations (between 0.001 and 0.05 M) the sharp peak at about 

9660 eV changes compared to that observed between 0.025 and 0.05 M. At 0.01 M 

the resonance peak reduces and maintains the same height as the second peak 

compared to higher concentrations considered. Between 0.025 and 0.05 M the 

difference between the 1
st
 and 2

nd
 peak is 0.25 a.u (Figure 5.10). Clearly there is a 

similarity in the XANES spectra between 0.01, 0.025 and 0.05 M which is 

undoubtedly different from 0.001 M. At 0.001 M the XANES structure is completely 
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different from the other measured XANES spectra and is reminiscent of 

ZnO/Zn(OH)2. The similarity between 0.025 and 0.05 M may suggest similar Zn 

species which are likely dimer species as previously seen in this study. At lower 

concentration values below 0.025 M, the DEZ molecules probably interact with 

impurities in the THF solvent, forming other products. Especially water 

contamination is expected to be an issue, and the spectrum obtained for a 

concentration of 0.001 M DEZ is very similar to the previously presented (Figure 

4.11) spectrum of DEZ decomposed by deliberate exposure to water. It should be 

noted in this context that residual water concentration of 0.001 M corresponds to a 

THF purity of 99.9 % with 0.005 % water as impurity (Sigma Aldrich). It is evident 

that avoiding the influence of residual moisture becomes paramount at very low 

dialkylzinc concentrations in THF is reminiscent of the suggestion by Brown who 

suggests in one of his studies that the Soai autocatalytic reaction performs optimally 

between 0.05 and 0.2 M.
[50]

 The influence of residual moisture content diminishes at 

higher concentrations, when DEZ is in excess over the interactions with impurities. 

 

In line with the molecular orbital considerations by Kau et al
[79]

 a 4 coordinate 

geometry is likely the case at 0.001 M with the reduction in the resonance peak and 

energy shift. This is confirmed by the EXAFS previously seen in Table 4.3 of 

decomposed diethylzinc of oxide/hydroxide species formed. 

5.3.4 Concentration versus solvent ratio of diethylzinc 

Another comparison was made to compare the influence of solvents and 

concentration of DEZ.  At 0.1 M the resonance peak is higher than second peak in 

the presence of 10 and 25% THF.  
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          Figure 5.11: XANES spectra of DEZ in THF/toluene mixture at different concentrations  

 

At 0.01 M the first peak intensity equals that of the 2
nd

 with 10 % THF and reduces 

slightly when increased to 25 %. The change of the resonance peak is more 

noticeable at 0.01 M than 0.1 M when THF is increased from 10 to 25% suggesting 

that a higher percentage of DEZ molecules form a complex with THF molecules at 

lower than at higher DEZ concentrations. In addition it appears that increasing the 

THF amount from 10 to 25 % at 0.1 M DEZ is not enough to observe a significant 

change in the electron density. This may indicate that, with an increase of 15% not 

enough THF molecules are available to change the DEZ Zn environment. 
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5.3.5 Interaction of dialkylzincs with different solvents 

Other solvents and dialkylzincs were investigated. Interestingly DEZ in diethyl ether 

gave a massive resonance peak compared to THF. Both solvents are chemically the 

same except that THF, is a cyclic ether. The XANES below suggests that both 

solvents have may have different complexation behavior.  

 

 

Figure 5.12: XANES spectra of 0.1 M dialkylzincs in THF, toluene and water. 

 

From Figure 5.12, a tetrahedral Zn coordinate system can be associated to iPr2Zn in 

water. Considering studies by Denisov the strength of complex formation with DEZ 

would decrease in the following order: THF>DEE>toluene.
[74]

 From EXAFS 

calculations however DEZ does not form a complex with toluene. The dipole 

moment of the solvents decreases from THF to toluene and this corresponds to the 
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decline in the ability of DEZ to form a complex with the respective solvent (Lewis 

basicity).
[82, 83]

 

 

Figure 5.13: Comparing the dipole moment of water, THF, diethyl ether and toluene. 

 

An increase in the dipole moment causes a change in the electron density of the zinc 

atom. In the case of water which has a dipole moment of 1.8 Debye and dielectric 

constant of 80, the change in electron density shift is greatest as can be seen in the 

former XANES spectra (Figure 5.12). The situation here is complicated by the fact 

that water is a protic solvent that can also lead to Bronsted acid-base reactions of the 

alkyl ligands. At low concentrations dialkylzinc interacts with water or oxidizing 

impurities in the solvent. The XANES spectra of i-Pr2Zn in water, is also similar to 

that in a low concentration of DEZ in THF previously seen which may be indicative 

of hydrolyzed dialkylzinc.  

5.3.6 Comparing diethylzinc in THF and toluene at ESRF, ANKA and APS 

The benchmark XAS experiment at the ESRF, APS and ANKA was DEZ in THF 
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and ESRF the XANES spectra from ESRF was similar to APS but not ANKA. This 

was observed in both THF and toluene. It is still unclear why the discrepancy exists. 

In all cases the supplier of DEZ and the solvents was Sigma Aldrich. However at 

ANKA, the solvents were dried, distilled and kept on molecular sieves. 

  

    Figure 5.14: Comparing the XANES spectra of 0.1M DEZ obtained at different synchrotrons. 

 

An expected massive white line which is the case at APS and ESRF is not the case at 

ANKA in toluene. The XANES measured at ANKA in toluene has a reduced peak 

and is similar to the XANES in THF at APS and ESRF. The difference between the 

measurement at ANKA in toluene and APS/ESRF in THF is that the 1
st
 peak of the 

ANKA spectra is slightly broader. In THF the XANES spectra at ANKA is an 
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obvious reminder of zinc oxide suggesting tetrahedral zinc sites. From this XANES 

analysis at the different light sources, one may suspect the presence of trigonal planar 

or tetrahedral zinc sites in both toluene and THF based on the ANKA beam time 

results. One possible explanation could be the oxidation of DEZ or the presence of 

contaminants. The difference might perhaps be synchrotron related but is more likely 

to be the purity of DEZ. This study deals with this inconsistency by relying on the 

XAS measurements at APS and ESRF, in order to develop structural models.           

5.3.7 Comparing the XANES of diethyl-, dimethyl- and diisopropylzinc 

Since the discovery of the Soai reaction, diisopropylzinc has been the only successful 

alkyl donating group capable of amplifying chirality. In this section we shall see the 

Zn K-edge spectra of diisopropyl-, diethyl- and dimethylzinc measured at the APS. 

The dialkylzincs which are pyrophoric were prepared in the same manner in an inert 

environment as previously mentioned. It should be noted that dimethylzinc is the 

most pyrophoric and easily ignites. Figure 5.15 illustrates the similarity in the 

XANES of dialkylzincs measured at APS with three characteristic peaks within this 

energy range. However, it can be seen that dimethylzinc (DMZ) shows a slightly 

different XANES from the other measured spectra. 
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Figure 5.15: Zn K-edge spectra of 0.1 M dimethyl-, diethyl and diisoproylzinc in toluene 

 

Dimethylzinc has a more intense resonance line than the other two. The discrepancy 

in their XANES spectra can be measured and is indicated by the black arrows in the 

above Zn K-edge XANES. With respect to DMZ the white line is higher by 0.2 a.u, 

the trough between the two peaks is 0.1 a.u deeper and the 2
nd

 peak is shifted slightly 

to a higher energy level. The observed difference may be because of the electronic 

and steric effects present in these molecules. Diisopropylzinc and diethylzinc are 

both similar in size whereas dimethylzinc has a smaller radius and has less bulky 
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groups. In terms of the ability to release electrons, ethyl and isopropyl have a greater 

potential of donating electrons in comparison to methyl. Isopropyl is a better electron 

releasing substituent than ethyl even though their spectra are the same. This 

differentiation in the XANES spectra is partly or wholly as a result of the electronic 

effects on the zinc atom. On the other hand other potential causes must be considered 

including steric effects which could support the explanation of this disparity.  

5.3.8 EXAFS analysis of diethylzinc in solvents 

The EXAFS analysis provides evidence of the neighbouring atoms as well as bond 

distances from the central zinc atom in solution. We have established that dialkyl 

zincs tend to bind to polar solvents. According to EXAFS calculations DEZ does not 

form a complex with toluene. In toluene the 1
st
 shell coordination number with 

carbon is 1.42 (±0.121) i.e. approximately 2 and the Zn-C bond distance in the first 

shell is 1.89 (±0.010) Å. This suggests a linear structure which is maintained in 

toluene. 

 

Figure 5.16: Zinc K edge EXAFS spectra of Et2Zn in Toluene. Dotted lines are the experimental 

data and the solid lines are the best theoretical fit. 
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The fits in R and k space have an R-factor of 5.1% indicating a good fit between 

experimental and theoretical data. The table below contains the EXAFS parameters 

of diethyl zinc in toluene. 

 

Table 5.5: EXAFS parameters of diethylzinc in toluene 

 

The above model of DEZ in toluene supports the Denisov study in that toluene which 

is non polar and does not form a complex with DEZ since it has a low dipole moment 

or dielectric constant. From the above EXAFS calculations the Zn-C bond distance 

of toluene is 1.89 Å as seen in Figure 5.17 below. The model has approximately 1.5 

C neighbours to the Zn central atom. It is a monomer since no Zn…Zn interactions 

are present. 

 

The EXAFS analysis is in accordance with the molecular orbital considerations by 

Kau et al
[79]

 in which a 2 coordinated geometry system is predicted when diethylzinc 

is in toluene because of the increased resonance peak.   

 

 

 

Sample 

First shell 

(Zn-O/C/N) 

Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(Å) σ2(Å2) N R(Å) σ2(Å2) N R(Å) σ2(Å2) E0 (eV) 

R 

(%) 

Et2Zn 

in 

toluene 

1.42 

(±0.121) 

 

1.89 

(±0.010) 

 

0.005 

(±0.001) 

6.18 

(±6.279) 

4.265 

(±0.050) 

0.016 

(±0.027) 

-      -      - 
7.22 

(±1.234) 

5.1 
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Figure 5.17: Model of diethyl zinc in toluene from EXAFS calculations. 

 

The EXAFS fit of diethyl zinc in THF suggests that an association of DEZ molecules 

is promoted by the presence of the polar solution i.e. THF. Three EXAFS fit 

calculations were done on diethyl zinc in 100% THF in order to ascertain the nature 

of the structure in THF. The EXAFS fits in Figure 5.18 indicate that in THF it is very 

probable that there is a contribution due to a Zn…Zn interaction. The two best fits 

which include Zn seen in Figure 5.18 have a pronounced second peak at 

approximately 3 Å. This pronounced second peak (mainly Zn…Zn) is absent in 

toluene. From the fits below it is obvious that the structure is more likely a tetramer 

or a dimer than a monomer as indicated by the number of neighbouring Zn atoms. 
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Figure 5.18: EXAFS fits of diethylzinc in THF (a) linear (b) dimer and (c) tetramer. 
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The EXAFS parameters of the most probable complexes in THF are seen below in 

Table 5.6.  

. 

 

Table 5.6: EXAFS parameters of diethylzinc in THF 

 

Table 5.6 shows the parameters from the calculations of diethylzinc in THF. The first 

case is calculated on the basis that there is one Zn neighbour i.e. coordination, N of 

Zn-Zn set to one. The complex which is a dimer is shown below with a Zn-Zn bond 

distance of approximately 3.059 Å. The complex also has only one neighbouring 

carbon atom and a Zn-C bond distance in the first shell is about 1.929 Å.    

 

 

Figure 5.19: Structural calculated model of diethylzinc in THF (Dimer model). 

1.929 Å
Zn

+
Zn

+

3.059 Å

Sample 

First shell 

(Zn-O/C/N) 

Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(Å) σ2(Å2) N R(Å) σ2(Å2) N R(Å) σ2(Å2) 

E0 

(eV) 

R 

% 

Et2Zn 

in THF 

(Zinc 

set, 

N=1) 

1.071 

±0.098 

 

1.929 

±0.006 

 

0.003 

±0.001 

3.325 

±4.047 

4.152 

±0.056 

0.024 

±0.023 

1 

3.059 

±0.010 

0.010 

±0.001 

6.199 

±1.204 

3.3 

Et2Zn 

in THF 

(Zinc 

floating) 

1.043 

±0.072 

 

1.932 

±0.004 

 

0.003 

±0.001 

1.565 

±1.722 

4.143 

±0.050 

0.016 

±0.017 

2.766 

±0.641 

3.351 

±0.009      

0.018 

±0.002 

6.692 

±0.859 

1.8 
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The above model is derived from the dimer model has an R-factor of 3.3%. Allowing 

the Zn-Zn coordination number to float, results in the tetramer model (Figure 5.20). 

The EXAFS parameters that represent the tetramer model are seen in the bottom 

section of Table 5.6. As can be seen from Table 5.6 and Figure 5.18, the tetramer 

model has the best fit with an R-factor 1.8% (best fit). The structure of the tetramer 

model derived from the best fit is shown below. 

  

Figure 5.20: Structural calculated model of diethylzinc in THF (Tetramer model). 

 

The above models suggest that toluene molecules therefore do not interact with the 

diethylzinc like THF molecules which cause Zn…Zn interactions. Both the dimer 

and tetramer models in THF possess dissociated DEZ molecules i.e. monoalkylzinc 

(MEZ). Either two or four monoethylzinc molecules are then brought together by 

THF molecules (found between two MEZ molecules) to form a monoethylzinc 

(MEZ) dimer or tetramer respectively. From the EXAFS calculations it is very likely 

that the preferred structure of diethyl zinc in THF is the tetramer model which has a 

better fit in THF. The Zn-C bond distance is 1.932 Å and the Zn….Zn distances are 

Zn
+

Zn
+

Zn
+

Zn
+

3.351 Å
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3.351 Å (longer than that of dimer model). It is also important to note that the Zn-C 

bond distance (1
st
 shell) increases from toluene to THF from 1.89 to 1.93 Å. It is 

likely that monoethylzinc is a radical. This phenomenon, whereby a radical is formed 

by diethylzinc in THF has been proposed by other studies.
[84, 85]

 Diethylzinc is known 

to promote radical formation possibly by its interaction with impurities which 

include oxygen present in THF. The ethyl radical formed then associates with other 

functional groups forming a new compound. Diethylzinc therefore functions as an 

initiator and transfer agent.
[84, 85]

 The electronegative oxygen atom in THF, found 

between two MEZ molecules, is likely responsible for pulling the remaining MEZ 

molecules together thus the Zn…Zn interaction.  

The association of THF molecules with zinc is still present with an excess of toluene 

molecules in a 3:1 ratio as previously seen in the XANES spectra. From this study 

the binding effect experienced with zinc atoms is less severe when less THF 

molecules are present. This finding is logical as fewer THF molecules are available 

to interact with zinc. Astonishingly according to this model, the diethylzinc 

molecules still dissociate to monoethylzinc with a deficiency of THF molecules in 

the solvent mixture.                       

 

In line with the molecular orbital considerations by Kau et al
[79]

 a 3 fold coordinated 

geometry system is expected with the reduction in the resonance peak with the 

interaction of 0.1 M diethylzinc and THF. This is contradicted by a one coordinated 

geometry structure calculated by the EXAFS analysis. The formation of radicals of 

diethylzinc in THF already discussed may be the reason for this discrepancy. 
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5.3.9 Kinetic simulation studies of diethylzinc in solvents 

In an attempt to relate the work of Denisov
[74]

 to this XAFS study, equilibrium 

studies were carried out to compare the interaction of solvents with DEZ or 

dialkylzincs. Kinetic simulation studies were possible using a simulation program, 

Chemical Kinetic Simulator (CKS). The rate of reaction is determined by CKS using 

a stochastic algorithm technique.  

The equilibrium constants derived from Denisov‟s work were used and the reversible 

reaction considered involved the association of DEZ and a solvent to form a 

complex. 

                                        Et2Zn + Solvent ↔ Et2Zn.Solvent     

DEZ and the solvent exist in equilibrium with the donor-acceptor complex. The 

kinetic calculation was done with initial amounts of 0.1 M and an inert solvent was 

assumed to be the medium. Equilibrium constants determined by Denisov i.e. THF: 

0.68 l/m, DEE: 0.2 l/m were considered and the simulations were executed with a 

package called chemical kinetic simulator v1.01.
[86]

 Assumptions made in the 

calculation include equilibrium constants of toluene and polar solvents as 0.05 and 1 

l/mol respectively. The outcome of this calculation should hopefully support the 

findings derived from the XAFS studies.  
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Figure 5.21: Kinetic simulation of DEZ, solvent and the complex. Initial concentration 0.1mol/l  

 

It is clear from the simulation that the DEZ-solvent complex liberates DEZ at 

different rates. The fastest rate of DEZ release is the case of toluene and the least is 

with the polar solvent. The trend seen here is that the more basic the solvent, the 

slower the release of DEZ in the inert solvent. More polar solvents therefore 

coordinate a lot stronger. From the above kinetic plot DEZ is released from toluene 

within a tenth of a second meanwhile the release time triples in THF. There is 

possibly a correlation between this kinetic simulation and XAS studies. The XANES 

spectra of toluene and diethyl ether are similar and that of THF which has a reduced 
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resonance peak is different. In addition, the XANES of DEZ in 1:1 toluene/THF 

mixture shows a weight of THF three times that of toluene relating to the results 

obtained from this kinetic study in which toluene releases DEZ three times faster 

than THF from the complex. In the case of polar solvents the deviation of the 

XANES spectra and rate of release of DEZ is substantial compared to toluene or 

diethyl ether. This trend also follows work by Blackmond
[45]

 (Figure 5.1) in which no 

amplification in THF but in toluene and diethyl ether is observed. This would 

therefore imply that the choice of a solvent in order to promote amplification of 

chirality is obviously from non-polar solvents which have a low affinity for zinc or 

lower complex formation ability. Zinc is electron deficient and would coordinate 

with Lewis bases which donate electrons to form bonds. The appropriate solvent to 

encourage chirality should therefore be able to release DEZ within 0.1 s or less from 

the complex if any is formed. This is likely to happen only with electron poor 

solvents that lack electrons to coordinate with zinc. 

5.4 Conclusion 

X-ray absorption and kinetic simulation studies have been used in this part to 

understand the behaviour of dialkyl zinc compounds in different solvents. Close to 

inert solvents such as toluene promote amplification of chirality meanwhile THF a 

strong Lewis base hinders autocatalysis probably by binding to zinc. Two 

distinguishable models in toluene and THF have been reported. THF causes the 

dimerization of diisoproylzinc and DEZ by pulling two molecules of the dialkylzincs 

together. The non association of toluene with zinc may clarify its outstanding 

functioning in asymmetric amplification in comparison to THF.  
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It has been observed that the presence of only 10 % of THF with toluene causes a 

major change in the XANES of different dialkylzinc species at a 0.1 M 

concentration. A major change is also noticed during the decomposition of 

dialkylzinc. At higher concentrations between 0.025 and 0.1 M, the XANES is 

different from that at lower concentration in toluene (between 0.01 and 0.001 M). 

This may be due to the interaction of DEZ with impurities present in the solvent 

including water and oxygen. Change in concentration has a greater influence on the 

XANES than the solvent ratio change. Denisov‟s study has been found to comply 

with this EXAFS and kinetic study where solvents with higher dipole moments such 

as THF have a higher ability to form a complex.
[74]

 Non polar solvents therefore 

possess a higher ability to release DEZ. 

The structural models from the EXAFS calculations rely on the XAS data from the 

ESRF and APS which are comparable. A linear structure is present in toluene but in 

THF this structure changes to a trigonal zinc site in a dimer or tetramer. From the 

EXAFS calculated model there is a difference between iPr2Zn and DEZ in THF. In 

the latter both a dimer and tetramer model are possible. Further investigation 

suggests that DEZ is easily decomposed overtime as seen by the gradual drop in the 

white line. When dialkylzinc is exposed over longer periods or in interaction with 

water molecules the product likely formed is an oxidized-zinc compound, which is 

neither zinc oxide nor zinc hydroxide.  
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6. Characterisation of a ligand and alkylzinc complex 

6.1 Introduction 

The alkyl-zinc bond in dialkylzincs is rather non polar. Replacing an alkyl group by 

an electronegative substituent increases the polarity of the alkyl-Zn bond thereby 

strengthening the character of the alkyl group and zinc atom as a donor and acceptor 

respectively.  

                                                                             R∂-               X 

                   R - Zn – R                                                 Zn∂+ 

                   Unreactive                                              Reactive 

                                                                     X = alkyl, N, O, halogen, etc. 

This explains the benefit of using chiral ligands which have an X substituent together 

with dialkylzincs. The nature of the aldehyde, alkylzinc and ligand is crucial in 

influencing the reactivity. Noyori suggested the scheme below in which DAIB (3-

exo-(Dimethylamino)isoborneol) was mixed with dialkylzinc in a 1:1 ratio evolving 

the corresponding alkane. A dimeric compound, 1 is also produced among three 

isomers.
[18]
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                                          Figure 6.1: Catalytic cycle proposed by Noyori.
[18] 

 

The monomeric zinc chelate complexes (Figure 6.2) have been recognized by Noyori 

as the active catalyst in DAIB promoted alkylation of aldehydes while the dimeric 

catalysts are unreactive.
[18]

 These catalysts are regarded to be vital in the 

amplification of chirality.       

Figure 6.2: Noyori’s DAIB and the dimer-monomer equilibrium of homochiral zinc chelate 

complexes.
[87]  
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The equilibrium between the inactive dimer and active monomer according to Noyori 

provides evidence on the extent of turnover.
[18]

    

Using XAS, our objective was to use conditions under which amplification of 

chirality is achieved according to Noyori, in order to characterize the zinc complex in 

solution. Experiments done by Noyori, indicate that a 1:2:1 mixture of the aldehyde, 

diethylzinc and ligand gives the highest yield and enantiomeric excess 

(corresponding to fourth row in Table 6.1).
[18]

  

 

Ratio 

(S)-1-phenyl-1-1-           

propanol 

C6H5CHO (C2H5)2Zn (-) DAIB % Yield % ee 

1 1 0 0  

1 1 1 1 0 

1 2 2 0  

1 2 1 88 98 

2 2 1 49 98 

100 50 1 48 98 

50 50 1 97 98 

                  Table 6.1: Effect of aldehyde: dialkylzinc: DAIB ratio on reactivity.
[18]

 

 

The main ligands studied in this report include DMAE (dimethylaminoethanol) and 

2-butanol. Braese and co-workers have proven the suitability of ketimines with a 

[2.2] paracyclophane framework in the asymmetric addition of alkyl groups to 

aldehydes.
[88-92]

 Soai and co-workers have also contributed to the growing interest in 

[2.2] paracyclophane as chiral ligands in enantioselective reactions.
[93]

 For example, 

monosubstituted [2.2] paracyclophane were used as chiral initiators in the 

isopropylation of 2-alkynylpyrimidine-5-carbaldehyde to 2-alkynylpyrimidyl alkanol 

which gives a high enantiomeric excess (97%).      
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The objective of this investigation reported in the following sections is to examine 

the molecular structure of the active catalyst, and in particular whether it is a 

monomer, a dimer or perhaps some other species. 

6.2 Experimental 

The results in this section were obtained at the ESRF in a follow up beamtime to 

previous experiments carried out at ANKA in Karlsruhe, Germany. The 

paracyclophane ligand is mimicked by DMAE which has both O and N 

electronegative atoms. In the first instance the iPr2Zn and 2-butanol which have been 

used by Soai and coworkers will be studied followed by DMAE and DEZ. 

6.3 Results and discussion  

6.3.1 i-Pr2Zn and 2-butanol 

XAS measurements were carried out at different concentrations of i-Pr2Zn and 2-

butanol mostly in toluene which is an ideal solvent to give a high ee and yield. The 

concentration of 0.1 M i-Pr2Zn was maintained in all measurements.   
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Figure 6.3: XANES Zn K-edge spectra of 0.1 M i-Pr2Zn : 2-butanol molar ratios. 

 

Mixing i-Pr2Zn with 2-butanol causes a change in electronic state of the zinc atom as 

seen from the XANES spectra in which a drop of the resonance peak is visible 

compared to i-Pr2Zn in toluene. However it is noticeable that decreasing the i-Pr2Zn: 

2-butanol molar ratio from 1:1 to 1:10 with the ligand in excess there is no visible 

change in the normalized XANES plot. This would imply the zinc environment 

remains unaltered probably because a point of saturation is attained for interaction 

between i-Pr2Zn and 2-butanol molecules. By doubling the dialkylzinc amount, from 

1:1 to 2:1 a similar XANES spectra is also observed in toluene and even THF. In 

such a scenario there is a surplus of i-Pr2Zn molecules meaning all 2-butanol 

molecules will coordinate with i-Pr2Zn and an excess of the dialkylzinc would be 
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present in solution. It is now well known that in THF amplification does not occur, 

the consideration of the 1:1 ratio in toluene is therefore ideal to determine the 

structure of the complex responsible for amplification of chirality.   

The EXAFS fit of a 1:1 molar ratio of DEZ:2-butanol in toluene is seen below.  

 

 

 

 

Figure 6.4: Zinc K edge EXAFS spectra of 0.1M i-Pr2Zn with 2-butanol in 1:1 molar ratio in 

toluene (dimer and tetramer). Dotted lines are the experimental data and the solid lines are the 

best theoretical fit. 
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fits are 3.4 and 2.4 %. For comparison, the R-factor obtained using a monomer 

without Zn…Zn interaction is poor, at 15.9 %. The parameters used in the EXAFS 

fits are given in Table 6.2.  

Table 6.2: Zn K-edge EXAFS parameter of 0.1 M i-Pr2Zn with 2-Butanol in 1:1 molar ratio in 

toluene 

 

The XANES suggests that 2-butanol is reactive as can be seen by XANES of a 1:1 

and 1:10 molar ratio which are similar compared to that of iPr2Zn in toluene. No 

visible difference is seen in both the XANES and EXAFS regions. This would imply 

that there is not enough butanol to react with all the zinc in solution.  

 

The behavior of 2-butanol as observed from the XANES is similar to that of THF. 

The Zn-C bond distance in the 1
st
 shell is 2.02 and 2.03 Å in the dimer and tetramer 

respectively. A difference of 0.25 Å is calculated between the dimer and tetramer 

complex with a Zn…Zn distance of 3.10 Å found in the tetramer.  

 

Model 

First shell 

(Zn-O/C/N) 

Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(Å) σ2(Å2) N R(Å) σ2(Å2) N R(Å) σ2(Å2) E0 (eV) 

R 

% 

Dimer 

3.42 

±0.394 

 

2.017 

±0.011 

 

0.009 

±0.002 

4.02 

±0.991 

3.50 

±0.016 

0.008 

±0.003 

1 
3.348 

±0.010 

0.002 

±0.001 

2.63 

±1.014 

3.4 

Tetrame

r 

3.63 

±0.394 

 

2.031 

±0.009 

 

0.010 

±0.001 

5.15 

±1.719 

3.50 

±0.016 

0.015 

±0.003 
3 

 3.097 

±0.007 

0.010 

±0.001 

4.10 

±1.555 
2.4 
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Figure 6.5: EXAFS calculated structural dimer and tetramer model of i-Pr2Zn with 2-butanol in 

1:1 molar ratio. 

 

A similar XANES and EXAFS with respect to other stoichiometric ratios means the 

same complex is present in solution. It is also likely that the structure model seen in 

Figure 6.5 represents the species also found when the amount of 2-butanol in excess 

by tenfold. This XAFS study therefore proposes that the dimer or tetramer complex 

is more likely formed in toluene compared to the monomer proposed by Noyori.  

6.3.2 Et2Zn and DMAE 

The interaction between DEZ and DMAE was examined. The XANES of different 

molar ratios of i-Pr2Zn and 2-butanol has been studied (Figure 6.3). However, not 

much change is seen in both the XANES and the EXAFS with a surplus of the 

ligand. Figure 6.6 illustrates the change in the zinc environment during the 

interaction of DEZ and DMAE. The illustration shows the XANES spectra with 

decreasing amounts of DEZ in the DEZ:DMAE mixture from top to bottom. The 

topmost spectrum has a mixture of DEZ and DMAE in a 2:1 molar ratio in toluene. 
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A weak „white line‟ is present at approximately 9659 eV which disappears with the 

replacement of toluene with THF in the same molar ratio indicating the presence of 

new zinc species. The „white line‟ reappears in an equimolar ratio DEZ and DMAE 

in toluene. Reducing the DEZ:DMAE ratio in toluene to 1:10 results in the 

disappearance of the white line at 9659 eV suggesting the emergence of new zinc 

species. The XANES of a 2:1 in THF and 1:10 in toluene are similar. The 2:1 

mixture in THF probably has a mixture of DEZ-DMAE, and DEZ-THF complexes 

previously seen in section 5.3.8. On the other hand the 1:10 DEZ:DMAE mixture in 

toluene has DEZ-DMAE complexes since there is enough DMAE to react with all 

zinc centres. This behavior is evidence of the distinction between DMAE and 2-

butanol. Both ligands are used in asymmetric synthesis as chiral initiators to activate 

the dialkylzinc. 
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                                Figure 6.6: XANES Zn K-edge spectra of 0.1 M Et2Zn and DMAE.  

 

The results seen in Figure 6.4 and Figure 6.6 suggest that the degree of interaction of 

both DMAE and 2-butanol with their corresponding dialkylzinc is diverse probably 

because DMAE is a chelating agent compared to 2-butanol. The XANES spectra of a 

2:1 (DEZ: DMAE) in toluene with an excess of DEZ is found to be more similar to a 

1:1 in toluene than a 2:1 mixture in THF. This likely because in toluene, DEZ-

DMAE and DEZ species exist whereas in THF, DEZ-THF species are present in 

addition since THF binds to zinc. THF is known to stabilize diethylzinc.
[94]

  

The presence of oxygen and a nitrogen atom in DMAE is seen in Figure 6.7. The 

dielectric properties of DMAE may therefore have a stronger electronic effect on the 

zinc atom than 2-butanol. DMAE is a chelating agent and 2-butanol is not. DMAE 
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appears to be less reactive in toluene because an excess is required to convert all 

DEZ.  

 

 

 

 

                        Figure 6.7: Structure of 2-butanol (left) and DMAE (right).  

 

Both oxygen and nitrogen in DMAE are capable of donating electrons to the zinc 

atom and are therefore likely to form a bidentate rather than a monodentate 

complex.
[74]

 The similarity of the 1:10 in toluene and 2:1 in THF mixtures potentially 

supports the fact that DMAE is a better electron donor than 2-butanol.
[95-97]

       

Further calculations were done to determine the structure of the DEZ/DMAE 

complex in a 1:1 ratio which according to studies by Noyori is represented by a 

monomeric active complex responsible for amplification of chirality.
[18]

 Structural 

information in this study is ascertained by fitting the EXAFS in k and R space as seen 

in Figure 6.8. An evaluation of the EXAFS, advocates the possibility of dimer or 

tetramer complex formed between DEZ and DMAE.  
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Figure 6.8: Zn K-edge EXAFS of 0.1 M Et2Zn/DMAE in 1:1 ratio (toluene) in k and R space. (a) 

monomer (b) dimer (c) tetramer. Dash lines are the experimental data and the solid lines are the 

best theoretical fit.  
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The EXAFS parameters derived from the above fits show the presence of Zn-Zn 

backscattering, thereby excluding the possibility of monomeric species. The Table 

below shows the monomer, dimer and tetramer model EXAFS parameters 

investigated.  

   

Figure 6.9: Zn K-edge EXAFS parameters of 0.1 M Et2Zn/DMAE in 1:1 ratio in toluene 

(different models). 

 

Their R-factor values are between 2.4 % in the tetramer and dimer and 2.8 % in the 

monomer. The closeness of these values may suggest that one model does not 

entirely dominate the others eventhough the dimer and tetramer have slightly higher 

R-factor values. It is extremely difficult to decide which model could be considered 

but a mixture of species could be possible. It monomer model is likely because the 

Zn…Zn feature in the Fourier transform is not significant.   

Sample 

First shell 

(Zn-O/C/N) 

Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(Å) σ2(Å2) N R(Å) σ2(Å2) N R(Å) σ2(Å2) E0 (eV) R (%) 

Monomer 

2.52 

±0.198 

 

 1.955 

±0.005 

 

0.006 

±0.001 

2.40 

±1.009 

3.385 

±0.020 

0.009 

±0.005 

   
-0.203 

±0.947 

2.8 

Dimer 

2.54 

±0.201 

 

1.956 

±0.006 

 

0.007 

±0.001 

1.82 

±1.159 

3.391 

±0.006 

0.008 

±0.006 
1 

3.343 

±0.179 

0.026 

±0.011 

0.088 

±0.997 
2.5 

Tetramer 

2.57 

±0.198 

 

1.958 

±0.006 

 

0.007 

±0.001 

1.29 

±1.098 

3.385 

±0.034 

0.007 

±0.007 

3 

2.959 

±0.179 

0.034 

±0.008 

0.259 

±0.977 

2.4 
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Figure 6.10: Monomer, Dimer and Tetramer structural models proposed from EXAFS 

parameters of 0.1 M Et2Zn/DMAE in 1:1 ratio (toluene). 

 

Using XAS it is not possible to distinguish Zn-O, Zn-N and Zn-C interactions as 

carbon, nitrogen and oxygen have similar backscattering contributions as a result of 

their close atomic numbers or similar number of electrons. Other studies propose 

comparable Zn-O, Zn-N and Zn-C bond distances.
[98, 99]

 

6.4 Conclusion  

According to Noyori the monomer species is responsible for catalysis. The EXAFS 

calculations in this study indicate that a monomer, dimer, tetramer or a mixture of 

complexes is formed between DEZ and DMAE in a 1:1 molar ratio. From the 

XANES it is apparent that the interaction of dialkylzinc and DMAE is different to its 

interaction with 2-butanol. DEZ is found to be more reactive than 2-butanol. This 

difference in interaction may be because of the presence of two electronegative 

atoms (N and O) in DMAE, which causes a stronger interaction with the zinc centre.  
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The objective of this chapter which is to determine the nature of the complex formed 

between dialkylzinc and the ligand has therefore been successfully resolved. Two 

ligands which include 2-butanol and DMAE where investigated with DEZ. DMAE 

which has both O and N electronegative atoms is similar to paracylcophane ketimine 

ligand which is also of great interest in this study. From the findings of this chapter 

using both ligands, it is therefore very probable that a dimer or tetramer complex is 

formed with 2-butanol, indicating that the monomer complexes, as suggested by 

Noyori, are probably present only in low concentrations. In the case of DMAE a 

monomer, dimer and tetramer complex is possible based on the EXAFS calculations. 

This difference in the structures may also be attributed to DMAE which is less 

reactive with DEZ than 2-butanol.  
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7. Characterisation of the alkylation of aldehydes 

7.1 Introduction 

In the Soai reaction and in many non-autocatalytic stereoselective synthesis reactions 

prochiral carbonyl compounds react with dialkylzinc in the presence of a chiral 

ligand to give the corresponding chiral secondary alcohol after hydrolysis. This 

reaction is capable of giving up to 99% ee. 

 

 

 

 

Several studies
[17, 18, 22, 25, 33, 45, 49, 51]

 have been reported on the enantioselective 

addition of dialkylzincs to aldehydes but a deep understanding of the nature of the 

reaction products is lacking. Two types of reactions that generate chirality will be 

examined in this section. They include the Soai autocatalytic reaction and non-

autocatalytic asymmetric reactions. Both reactions are highly enantioselective but the 

autocatalytic asymmetric reactions are of great interest since the product acts as the 

catalyst which is never depleted. 

As earlier mentioned, the principle of autocatalytic chiral amplification was first 

theoretically suggested by Frank, who established that spontaneous asymmetric 

synthesis is a natural property of life which may be present in simpler autocatalytic 

systems.
[16]

 A laboratory demonstration of the antagonistic principle by Frank was 

first possible by Soai and coworkers who first reported the asymmetric autocatalytic 

reaction.
[19, 26, 27]

  

  H+Ligand

R2Zn +
H R2

OH

R1

R1CHO
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In the Soai autocatalytic reaction, chiral 5-pyrimidyl, 3-quinolyl, and 5-carbamoyl-3-

pyridyl alkanols act as highly enantioselective asymmetric autocatalysts in the 

isopropylation of the respective aldehydes such as pyrimidine-5-carbaldehyde. An 

initial amount of 0.6% of chiral 2-alkynylpyrimidyl alkanol as a result of   

consecutive asymmetric autocatalysis multiplies to the product with up to >99.5% 

ee.
[102]

    

 

Figure 7.1: The increase in the amounts of S and R pyrimidyl alcohol in consecutive asymmetric 

autocatalysis.
[102]

    

 

Approaches so far used to study the reaction mechanism include computational, 

kinetic, NMR and calorimetric methods. Different studies propose different transition 

state structures which include monomers, dimers, trimers and tetramers in solution. 

The transition state structure remains unclear.
[34, 45, 46, 49, 103]

 This section aims to 
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show results derived from EXAFS and XANES analysis that contribute to the 

possible structural models of the active catalysts responsible for autocatalysis. The 

advantage of using X-ray absorption spectroscopy is the possibility of acquiring both 

electronic and structural properties. 

7.2 Experimental 

Zn K-edge measurements of the main reaction between dialkylzinc and different 

aldehydes were carried out at ESRF and APS synchrotron light sources. 

7.3 Results and discussion 

The results discussed here include the reaction of dialkylzinc compounds with 

pyrimidine-5-carbaldehyde, benzaldehyde and cinnamaldehyde in presence of 

DMAE and 2-butanol. The studies described here are therefore a logical continuation 

of the work presented in chapter 6, which examined the interaction of the ligand and 

dialkylzinc compounds. 

7.3.1 i-Pr2Zn and benzaldehyde 

In the first instance the reaction of 0.1 M i-Pr2Zn with benzaldehyde (BA) is 

presented. The molar ratios were varied and changes were observed in the XANES. 

i-Pr2Zn perfectly works in the Soai autocatalytic reaction but chiral amplification up 

to 99% ee achieved with benzaldehyde. Figure 7.2 illustrates the Zn K-edge XANES 

of the i-Pr2Zn/benzaldehyde system. The stong white line resulting from a 1s-4p 

transition of i-Pr2Zn in toluene decreases on addition of benzaldehyde indicating a 

change in the local Zn environment. The two peaks in the XANES region are found 

between 9650 and 9670 eV. Increasing the amount of benzaldehyde from a 1:1 ratio 
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with i-Pr2Zn to 1:20, we notice a lowering of the first peak which eventually equals 

the second peak at high benzaldehyde concentrations.     

 

Figure 7.2: Zinc K-edge of 0.1 M i-Pr2Zn:BA in toluene. 

 

With an excess of i-Pr2Zn in the molar ratio 2:1 of 0.1 M of i-Pr2Zn with 0.05 M 

benzaldehyde we see a slight drop of the near-edge peak. However the resonance 

peak is higher than the 2
nd

 peak. These changes in the XANES suggest the presence 

of different Zn species or a change in their oxidation states. It would appear that at 

room temperature the reaction is rather sluggish or resulting in equilibrium with 

significant amounts of uncoverted reactants, since slight changes can be seen even 

when the amount of benzaldehyde is increased from 10 to 20 times that of i-Pr2Zn.  

It was observed that a precipitate was deposited at the bottom of the microcentrifuge 

tube which gradually formed as the reaction progressed. The strong difference 

0

2

4

6

8

10

12

9650 9670 9690 9710 9730 9750

N
o

rm
a
li
s
e
d

 I
n

te
n

s
it

y
 [

a
.u

]

Photon Energy [e.V]

i-Pr2Zn:BA

1:20

1:10

1:2 precipitate

1:2

1:1

2:1

i-Pr2Zn



175 

 

between the near-edge resonance intensity in the XANES of the precipitate (1:2 

precipitate) at the bottom of the tube as compared to the supernatant solution (Figure 

7.2) suggests that the solution may contain significant unreacted i-Pr2Zn. This 

suggestion is supported by the fact that the XANES of the 1:2 precipitate is similar to 

that of the species present in solution at a benzaldehyde excess of 1:20, which would 

be compatible with the above mentioned equilibrium shifted to products by addition 

of reactant excess, and formation of a product with low solubility.  

7.3.2 i-Pr2Zn and pyrimidine-5-aldehyde 

The XANES spectra of iPr2Zn and pyrimidine-5-carbaldehyde, PA shown below 

follow a similar trend to the reaction with benzaldehyde. 
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Figure 7.3: Zinc K-edge spectra of 0.1 M i-Pr2Zn:PA in toluene. 

 

As also observed for the benzaldehyde system, an increase in the amount of the 

aldehyde, results in a drop of the intensity of the white line resonance. There are two 

peaks between 9650 and 9670 eV which level out with an excess of pyrimidine-5-

carbaldehyde. The XANES of the 1:1 in solution is different from that observed for 

the precipitate at the same molar ratio suggesting the presence of significantly 

different chemical composition of supernatant solution and precipitate most likely 

characterized by the presence of significant amounts of unreacted i-Pr2Zn. Increasing 
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the amount of aldehyde from 1:1 by a factor of 10 results in more subtle XANES 

change in the case of the pyrimidylaldehyde compared to benzaldehyde. This is also 

the case when increased to a factor of 20 whereby one peak almost disappears. 

Comparing the XANES spectra one could therefore conclude that pyrimidine-5-

aldehyde is more reactive with iPr2Zn than benzaldehyde.  

An EXAFS analysis of the Soai reaction products, formed by diisopropylzinc with 

pyrimidylaldehyde (PA) in toluene is carried out. 

Table 7.1: Zn K-edge EXAFS parameter of 0.1 M i-Pr2Zn with PA in 1:1 molar ratio in toluene. 

 

Figure 7.4: Zinc k-edge EXAFS spectra of i-Pr2Zn with pyrimidyl aldehyde in 1:1 molar ratio 

(toluene). Dash lines are the experimental data and the solid lines are the best theoretical fit. 
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A fit of the EXAFS obtained for the 1:1 molar ratio in toluene (Table 7.1, Figure 7.4) 

suggests that in a 1:1 solution of i-Pr2Zn and pyrimidyl aldehyde a dimer exists 

which is so far typical for Zn-O moieties. This dimer structural model is derived 

from an EXAFS fit with R-factor of 3.9 % in the dimer compared to 5.5 % and 6.6 % 

in the trimer and tetramer respectively. Based on the EXAFS calculations around the 

central Zn atom in the 1
st
 shell, there are about 3 atoms: possibly 2 oxygen and 1 

carbon atom distant approximately 1.95 Å from zinc. The bulky pyrimidyl group on 

oxygen probably prevents the formation of higher aggregates. One Zn neighbouring 

atom is also found with a distance 3.34 Å from the zinc central atom. The square 

core of the dimer is a Zn-O-Zn-O around which an isopropyl group is attached to 

zinc and the pyrimidyl group is attached to the oxygen. The 1:1 molar ratio of the 

precipitate formed at the bottom of the 1:1 solution of i-Pr2Zn and pyrimidyl 

aldehyde (PA) was also investigated as tabulated below. 

 

Table 7.2: Zinc K edge EXAFS parameters of i-Pr2Zn with pyrimidyl aldehyde in 1:1 molar 

ratio (precipitate).  Some results are rather unusual due to nonhomogeneity of sample in 

solution, thus the high R-factor. 

 

Sample 

First shell 

(Zn-O/C/N) 

Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(A) σ
2
(A

2
) N R(A) σ

2
(A

2
) N R(A) σ

2
(A

2
) 

E0 

(eV) 

R 

(%) 

iPr2Zn: 

PA 

1:1 

precipitate 

 

3.68 

±0.901 

1.96 

±0.017 

0.007 

±0.002 

86 

±2854 

3.85 

±0.969 

0.132 

±1.006 

1 

3.49 

±0.069 

0.012 

±0.008 

-0.16 

±0.322 

16.4 
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One obvious difference between the solution and precipitate that may influence the 

XAS measurements is that the solution is more homogenous than the precipitate. 

Homogeneity is a fundamental requirement for acquiring good XAS data. The 

EXAFS fit in a 1:1 precipitate is noisy likely because of the heterogeneity of the 

solid/liquid suspension, with precipitate particles moving in and out of the X-ray 

beam. 

  

Figure 7.5: Zinc K edge EXAFS spectra of i-Pr2Zn with pyrimidyl aldehyde in 1:1 molar ratio 

(precipitate). Dotted lines are the experimental data and the solid lines are the best theoretical 

fit. Not significant evidence of Zn…Zn from the fourier transform. 

 

Even though the fit is not very good because of the high noise level in the measured 

data, the EXAFS fit in this case suggests on an average, 4-fold coordinated zinc atom 

similar to the 1:1 molar ratio in solution with 2 O, 1 C and 1 N atom from the 

pyrimidine. The Zn-O/C distance in the 1
st
 shell is 1.96 Å slightly shorter than in 

solution. The Zn-Zn distance was calculated to be 3.49 Å. The EXAFS model of the 

precipitate was based on a fit with a high R-factor of 16.4%. In building the model 
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only the 1
st
 shell is considered similar to all cases in this study. The derived model 

therefore reveals an alkoxide dimer with a Zn-O-Zn-O plane at the centre. 

 

                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: EXAFS model of i-Pr2Zn with pyrimidyl aldehyde in 1:1 molar ratio. Model of 

dimer alkoxide in solution. The oxygen attaches opposite the both Ns’ in the pyrimidyl ring.   

 

Further EXAFS measurements were carried out for the 2:1 molar ratio of i-Pr2Zn and 

PA. In this case an excess of i-Pr2Zn molecules was present in solution suggesting 

that most of the PA molecules would be reacted. i-Pr2Zn molecules have a linear 

coordination (5.3.1). We have previously seen that with a 1:1 molar ratio of i-Pr2Zn 

and PA a dimer complex is formed which posseses a trigonal zinc coordination. One 

would therefore logically expect a combination of both linear and trigonal 

coordinated Zn centres in the first instance. From the EXAFS calculations three C/O 

atoms are around the zinc centre in the 1
st
 shell. The Zn-C/O and Zn-Zn bond 

distances are 1.97 and 3.06 Å
 
respectively. This fit with an R-factor of 12.9% 

therefore complies with the prediction of having excess i-Pr2Zn molecules in 

solution. EXAFS is a bulk technique and in this case two significant zinc species are 
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found in solution which includes the zinc alkoxide dimer and unreacted i-Pr2Zn 

molecules as seen in the model below (Figure 7.9).  

 

Table 7.3: Zinc K edge EXAFS parameter of i-Pr2Zn with pyrimidyl aldehyde in 2:1 molar ratio 

(solution) at t0 (initial). 

  

Figure 7.7: Zinc K edge EXAFS spectra of i-Pr2Zn with pyrimidyl aldehyde in 2:1 molar ratio 

(solution) at t0 (initial). Dotted lines are the experimental data and the solid lines are the best 

theoretical fit. 
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according to the EXAFS calculations the Zn-Zn distance increases as well as the 

intensity but the structural model likely remains the same. 

 

Table 7.4: Zinc K-edge EXAFS spectra of i-Pr2Zn with pyrimidyl aldehyde in 2:1 molar ratio 

(solution) after 3 hours. 

 

  

Figure 7.8: Zinc K edge EXAFS spectra of i-Pr2Zn with pyrimidyl aldehyde in 2:1 molar ratio 

(solution) after 3 hours. Dash lines are the experimental data and the solid lines are the best 

theoretical fit. 

 

The EXAFS fit in Figure 7.8 has an R-factor of 10.9% and the Debye Waller Factors. 

The Zn-C/O and Zn-Zn bond distances are 1.91 and 3.4 Å
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Figure 7.9: EXAFS model of i-Pr2Zn with pyrimidyl aldehyde in 2:1 molar ratio in solution at 

start and after 3 hours. 

 

A molar ratio of 1:2 (i-Pr2Zn:PA) was also considered with an excess of the aldehyde 

in the precipitate. From first instance, one would expect trigonal zinc sites with a Zn-

O-Zn-O plane centre considering the Zn K-edge. An EXAFS fit with an R-factor of 

10.6% reveals a tetrahedral zinc site with calculated Debye Waller Factors between 

0.007 and 0.012 Å
2
. The Zn-C/O and Zn-Zn bond distances were calculated to be 

1.95 and 3.37 Å respectively (see Figure 7.10 and Table 7.5).  

Table 7.5: Zinc K edge EXAFS spectra of i-Pr2Zn with pyrimidyl aldehyde in 1:2 molar ratio 
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Figure 7.10: Zinc K edge EXAFS spectra of i-Pr2Zn with pyrimidyl aldehyde in 1:2 molar ratio 

(precipitate). Dash lines are the experimental data and the solid lines are the best theoretical fit. 

 

The proposed model from the above fit in R- and k- space suggests that tetrahedral 
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molecules (intermolecular attraction) causing the transformation from a trigonal to 

tetrahedral zinc environment. 
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Figure 7.11: EXAFS model of i-Pr2Zn with pyrimidyl aldehyde in 1:2 molar ratio (precipitate). 

 

Increasing the excess of PA over i-Pr2Zn by 10 and then 20 times results in a change 

in the XANES as observed suggesting a further change in the zinc environment. The 

XANES of a 1:1 precipitate was however similar to a 1:10 and 1:20 solution. This 

may suggest that the chemical composition is similar. Unfortunately the EXAFS 

calculations at high ratios of PA were not successful and had extremely high R-

factors of up to 17.9%. Interestingly, it was found that at higher PA amounts over i-

Pr2Zn, there was a uniform distribution in solution which may mean that the excess 

PA molecules solubilize the formed zinc alkoxide molecules. However, it is also 

possible that the excess PA molecules intermolecularly aggregate amongst 

themselves and therefore prevent the association of zinc alkoxide dimers in solution 

to form aggregrates. 

7.3.3 Et2Zn and pyrimidyl aldehyde 

Diethylzinc is widely used as an alkylating agent in organozinc chemistry. Although 

the only suitable alkylating agent in the Soai autocatalytic reaction is i-Pr2Zn, studies 

Zn

Zn

OO
N

N

R R

O

O R

R

= R

3.4 Å 

1.95 Å 

 



186 

 

on DEZ would be beneficial because it is similar to i-Pr2Zn in its functioning and 

size. 

             

Figure 7.12: Zinc K-edge XANES spectra of 0.1 M DEZ:PA in toluene. 

 

The XANES spectra of the reaction of DEZ and PA illustrated above were measured 

under different stoichiometric conditions. The trend of the XANES spectra of DEZ is 
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large white line resonance peak (see 5.3.2). In the case of the reaction of PA and 
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linear structure observed in toluene. The DEZ:PA molar ratios considered in the 

XANES include 1:1, 1:2, 2:1 and 1:20 in toluene. With an increase in DEZ over PA 

the resonance peak increases. The initial XANES spectrum of the 1:1 mixture is 

similar to that observed after 9 hours. On the other hand the XANES of the 2:1 

mixture changes after 9 hours. The resonance peak decreases over time; indicating 

the formation of new zinc species with time. By doubling the amount of PA over 

DEZ, the section between the first two peaks increases. This is even more noticeable 

at a stoichiometric molar ratio of 1:20, where both peaks merge to one large peak.  

 

For the 1:1 solution, EXAFS measurements of the fresh solution are seen below in k- 

and R- space. The Zn K edge EXAFS spectra is rather noisy as seen in Figure 7.13. 

 

 

          

Figure 7.13: Zinc k edge EXAFS spectra of 0.1 M DEZ with pyrimidyl aldehyde in 1:1 molar 

ratio (toluene). Dotted lines are the experimental data and the solid lines are the best theoretical 

fit. 
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Table 7.6: Zinc K edge EXAFS spectra of DEZ with pyrimidyl aldehyde in 1:1 molar ratio 

(toluene). 

 

The noisy XAS data resulted in an R-factor of the EXAFS fit of 21.8%. The Debye-

Waller factors were between 0.002 and 0.015 Å
2
. The proposed model has upto 

about 3 neighbouring atoms to the zinc centre atom i.e. C or O and a zinc atom. The 

Zn-O-Zn-O exists and the Zn-Zn distance is 3.43 Å. The Zn-C/O bond distance in 

the 1
st
 shell is 1.93 Å. From the XANES after 9 hours the plot of the normalized 

intensity versus photon energy looks the same suggesting that the zinc species are 

similar or same.  

 

 

 

 

 

 

 

 

 

 

Sample 

First shell 

(Zn-O/C/N) 

Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(A) σ
2
(A

2
) N R(A) σ

2
(A

2
) N R(A) σ

2
(A

2
) 

E0 

(eV) 

R 

(%) 

DEZ:PA 

1:1 

1.78 

±0.537 

1.93 

±0.022 

0.002 

±0.004 

4.68 

±5.177 

4.04 

±0.027 

0.015 

±0.016 

1 

3.43 

±0.027 

0.008 

±0.002 

0.36 

±3.115 

21.8 
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Figure 7.14: EXAFS model of DEZ with pyrimidyl aldehyde in 1:1 molar ratio (solution). 

 

The EXAFS data are compatible with the presence of a mixture of linear DEZ and 

1:1 trigonal species, as seen above (Figure 7.14). An EXAFS fit of a 2:1 

stoichiometric ratio with an R-factor of 6.7% confirms this prediction. The DWF 

calculated were between 0.005 and 0.010 Å
2 

and the Zn-C/O and Zn-Zn bond 

distances of 1.87 Å
 
and 3.39 Å respectively.  
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Figure 7.15: Zinc k edge EXAFS spectra of DEZ with pyrimidyl aldehyde in 2:1 molar ratio 

(toluene). Dotted lines are the experimental data and the solid lines are the best theoretical fit. 

 

Table 7.7: Zinc K edge EXAFS spectra of DEZ with pyrimidyl aldehyde in 2:1 molar ratio 

(toluene). 

 

 

The above EXAFS fit suggests that in the first shell there 3 C/O atoms or less around 

the zinc centre. As earlier mentioned this confirms that there is a mixture of zinc 

species with linear and trigonal sites as seen in the model below (Figure 7.6).  
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First shell 
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Second shell 

(Zn-O/C/N)                 (Zn-Zn) 

 

 N R(A) σ
2
(A

2
) N R(A) σ

2
(A

2
) N R(A) σ

2
(A

2
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(eV) 

R 

(%) 

DEZ:PA 

2:1 
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±1.519 
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±0.026 

0.018 

±0.007 
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±5.641 
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±0.048 
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Figure 7.16: EXAFS model of DEZ with pyrimidyl aldehyde in 2:1 molar ratio (solution). 

 

From the XANES (Figure 7.12) there is evidence of the formation of new zinc 

species since there is a change with an increase in the stoichiometric amount of PA 

over diethylzinc. All the diethylzinc in toluene will obviously be consumed by excess 

PA. The EXAFS calculations at 1:2 and 1:20 were unfortunately extremely noisy and 

not fully interpretable because increasing the amount of PA increases the amount of 

solid particles in solution. With this increase in PA there is a change in the XANES 

spectra implying that the excess PA molecules still interact with the formed alkoxide 

dimer leading possibly to solubilisation. Another reason for the change in the 

XANES may be the physical state. Increasing the amount of PA gradually moves 

from a liquid solution to a solid. It may also possible that higher aggregates e.g. 

Figure 7.17, may be formed especially with the possibility of intermolecular 

interaction although no direct evidence is immediately available. 
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Figure 7.17: Possible model of DEZ with surplus pyrimidyl aldehyde in solution. 

7.3.4 Et2Zn, DMAE and cinnamaldehyde 

In this section the XANES spectra of diethylzinc, DMAE and cinnamaldehyde (CA) 

will be examined. Basically the main reaction is between the aldehyde and alkylzinc. 

DMAE acts as a chiral ligand that makes the alkylzinc more reactive by replacing 

one alkyl group by an electronegative substituent thereby increasing the polarity of 

the alkyl-Zn bond. Noyori et al
[18]

 report the effect of changing the molar ratio of 

BA: DEZ: DAIB (see Table 6.1). 

From Table 6.1, the optimum ee and yield of the secondary alcohol product are 

obtained with an excess of DEZ.  The work by Noyori et al suggests that two Zn 

atoms per aldehyde account for the alkylation reaction. The reaction mechanism 

proposed by their work involves several structural complexes (see Figure 6.1).
[18]

 

From the molar ratios studied by Noyori and co-workers, XANES studies were made 

to appreciate the structural changes. We have already seen that the XANES of DEZ 
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gives a huge resonance peak. The addition of DMAE in a 1:1 molar ratio brings 

about a change in the zinc as seen in the peak which reduces. From the XANES 

below it can be seen that increasing the substituents from 2 to 3, lessens the number 

of peaks from 2 to 1 between 9650 and 9670 eV. This may be a hint that the zinc 

species present are not the same. Relating the XANES Zn K-edge spectra to table 

3.1, the best ee and yield are at molar ratios of 2:1:1 then 2:1:2. Molar ratios of 1:1:1 

are reported to deliver a poor ee and yield.    

 

Figure 7.18: Zinc k-edge spectra of 0.1 M DEZ:DMAE:CA in toluene. 
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It is noted that the colour of the DEZ/DMAE/Cinnamaldehyde mixture changes from 

straw green to orange then to red. After 36 hours the following colours were 

observed for different stoichiometric amounts. 

Molar ratio 

(DEZ:DMAE:CA) 

Colour observed 

1:1:1 Red 

2:1:1 Bright orange 

2:1:2 Red 

2:2:1 Red 

1:1:2 Bright Orange 

 

Table 7.8: Colour change at different molar ratios of DEZ:DMAE:CA after 36 hours 

 

The first suspicion for the colour
[104, 105]

 to intensify over 36 hours is likely because 

of Claisen-Schmidt condensation
[106-108]

 which involves the reaction of aldehydes 

with the removal of water to form longer chain compounds in the presence of a base. 

In this case two cinnamaldehyde molecules react together in the presence of DMAE 

which is the base to form long chain organic compounds as seen in the reaction 

below. 

O O

-H2O

:Base

 

Organic compounds especially those with a high degree of conjugation absorb visible 

light in the electromagnetic spectrum. Cinnamaldehyde which is conjugated absorbs 

UV and visible light and the absorbance increases in the presence of the base DMAE 
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because of the formation of a longer chain conjugated compound as seen in the 

scheme. The intensity therefore likely changes from an initial pale green to red as a 

result of longer chain conjugation and concentration.  

An investigation to understand the change in colour was carried out using an in 

house high throughput system capable of taking UV measurements. Initially only 

cinnamaldehyde and DMAE were considered as seen in the plot below (Figure 7.19). 

Figure 7.19: Absorption Spectra of reaction of DMAE and cinnamaldehyde 

 

The green colour from mixing DMAE and cinnamaldehyde (CA) does not change as 

seen in the above absorption spectra measured over three hours. The change of 

absorbance is insignificant i.e. 0.03 a.u and the wavelength is constant overtime. The 

maximum wavelength of the maximum intensity, λmax was measured at 400 nm 
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corresponding to the green colour observed. Adding DEZ to the above combination 

changes the situation as seen in the absorption spectra below (Figure 7.20). An 

increase in the absorbance and the wavelength is observed. From Figure 7.20, λmax 

moves from 475 nm to 515 nm which corresponds to the change from green to red 

observed in the reaction over time. The deduction from this change in wavelength is 

the formation of new absorbing species. This may confirm the fact that a longer 

conjugated compound is formed with time which causes an increase in the intensity 

probably due to an increase in concentration over time.  

 

             Figure 7.20: Absorption Spectra of reaction of DMAE, cinnamaldehyde and DEZ 
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From this examination there is no change in colour when DMAE and CA are mixed. 

It was also observed that there was no change in colour when DEZ was mixed with 

CA. These facts imply that the reaction may be zinc catalyzed. DMAE and CA 

initially combine to form a complex which is green in a condensation reaction. The 

presence of Zn tetrahedral sites possibly promotes the formation of monomer 

complex which eventually polymerizes because of the conjugated bonds in CA 

which open and link with other monomers.  

An EXAFS analysis with k values considered between 3 and 12 Å
-1

 is presented here 

with an excellent R-factor of 0.8%. The Debye Waller factors calculated are between 

0.005 and 0.009 Å
2
.  

 

Figure 7.21: Zinc K edge EXAFS spectra of 0.1 M DEZ:DMAE:CA (2:1:2) in toluene. Dotted 

lines are the experimental data and the solid lines are the best theoretical fit. 
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Table 7.9: Zinc K edge EXAFS spectra of DEZ, DMAE and CA. 

 

The model proposes four C/O neighbouring atoms to Zn in the 1
st
 shell, with a Zn-C 

distance approximately 1.97 Å. This EXAFS calculation therefore suggests a dimer 

specie with two zinc centres separated by 3.42 Å. The dimer complex may be a 

polymer or conjugated complex based on the red colour seen in the UV 

measurements (Table 7.8).   

7.3.5 Characterisation of dimer species formed in the Soai reaction 

The results of this section were measured at the APS to confirm the nature of the 

products formed during the autocatalytic Soai process. EXAFS calculations reported 

in the previous sections so far disclosed the distinct possibility of a dimer alkoxide 

complex with specific bond distances, but other possibilities include admixtures of 

monomers, trimers, tetramers and higher oligomers. 

First, the XANES spectra of four different aldehydes that were allowed to react with 

iPr2Zn were considered. The aldehydes examined include: benzaldehyde, pyrimidyl 

aldehydes and pyridyl aldehydes. It is worth mentioning that so far the best 

performing aldehyde discovered by Soai and co-workers is 2-(tert-butylethynyl) 

Sample 

First shell 

(Zn-O/C/N) 

Second shell 

       (Zn-O/C/N)                 (Zn-Zn) 

 

 N R(A) σ2(A2) N R(A) σ2(A2) N R(A) σ2(A2) 

E0 

(eV) 

R 

(%) 

Et2Zn:DMAE: 

CA 

2:1:2 

4.0 

±0.18 

1.97 

±0.003 

0.008 

±0.001 

3.1 

±0.69 

3.47 

±0.015 

0.003 

±0.004 

1 
3.32 

±0.012 

0.006 

±0.002 

-0.10 

±0.545 

0.8 
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pyrimidine-5-carbaldehyde which gives an ee of 99.5 % in a few reaction cycles. The 

influence of the group at 2-position of the pyrimidine ring has been reiterated 

although it has not yet been fully studied. The Zn K-edge XANES spectra of 0.5 M 

equimolar mixtures of iPr2Zn and the respective aldehydes were measured. A similar 

trend is observed with the reduction of the resonance peak in the XANES spectra of 

iPr2Zn with the addition of all tested aldehydes.  

 

Figure 7.22: Zinc K-edge spectra of 0.05M iPr2Zn and different aldehydes (molar ratio 1:1 in 

toluene). Reaction products of i-Pr2Zn with A: pyrimidyl- B: methoxypyrimidyl- C: 

methoxypyridyl- D: benzaldehyde (APS). 
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The XANES (Figure 7.22) shows that the reaction of iPr2Zn with different 

aldehydes, probably forms similar or the same zinc species because of their 

similarity. The addition of each aldehyde causes the drop of the resonance peak 

depicted by the dash line compared to iPr2Zn seen at the bottom of the XANES plot. 

The different structures of the aldehydes are shown below. 

 

 

 

 

 

 

 

 

 

 

                  

Figure 7.23: Structure of the different aldehydes. A: pyrimidyl-   B: methoxypyrimidyl-   C: 

methoxypyridyl-  D: benzaldehyde. 

 

The Zn K-edge XANES spectra of the product of 0.05 M i-Pr2Zn with pyrimidyl 

aldehyde compared to the reference spectra of i-Pr2Zn is distinct. The XANES 

spectra of A, B, C, and D reacting with i-Pr2Zn have peak at 9660 eV caused by 

the strong 1s-4p white line transition mentioned in previous sections. The 

characteristics of the Zn absorption edge is different among the samples due to 

the different chemical environments. The four aldehydes studied show similar 

XANES spectra suggesting similar chemical environment around the zinc atom. 
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Both methoxy groups are para-substituted. Previous studies by Soai and co-

workers prove that asymmetric amplification only occurs with pyrimidyl 

aldehydes. Para substitution with a methoxy group (electron withdrawing), should 

improve the yield and enantiomeric excess. The first asymmetric autocatalytic 

reactions were observed by Soai and co-workers when pyridyl aldehydes were 

allowed to form pyridyl alcohol. They were found not to be highly 

enantioselective like pyrimidylaldehydes. Benzaldehydes do not exhibit 

asymmetric autocatalysis. The XANES can only inform us on the Zn
2+ 

oxidation 

state and also that the zinc coordination of the alkoxide complex formed from 

each aldehyde is likely the same. The EXAFS fit in k and R- space seen below 

shows that the fit of the experimental and theoretical data is reliable. 
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Figure 7.24: Zn K-edge EXAFS and Fourier Transform of 0.5 M iPr2Zn and different aldehydes 

(A, B, C and D) in 1:1 molar ratio in k and R space in toluene. 

 

The R- and Debye-Waller factors calculated from the EXAFS analysis in each case 

were 3.6 - 6.7 % and 0.001-0.010 Å
2
 respectively. The EXAFS calculation proposes 

a dimer model with a Zn-O-Zn-O square core for all aldehydes. 
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Figure 7.25: EXAFS model of alkoxide model from i-Pr2Zn with pyrimidyl aldehyde in 1:1 

molar ratio. Pyrimidylalkoxide dimer (APS). 

 

From this analysis three low scattering atoms C/O are found in the 1
st
 shell 

approximately 2 Å away from zinc. These results do not indicate that the alkoxide 

is predominantly a homo- or hetero- dimer even though one would suspect the 

latter to be energetically more stable. Details of the EXAFS parameters are shown 

in  

Table 7.10. The table shows three models i.e. monomer, dimer and tetramer and 

justifies why the dimer model is chosen as seen in Figure 7.25. A monomer 

cannot be selected due the poorest fit reflected by a high R-factor of 18.6 %. The 

dimer is preferred over the tetramer model mainly because of the higher R-factor 

and Debye Waller factor in the tetramer. 
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Table 7.10: Zn K-edge EXAFS parameters of iPr2Zn and aldehyde A. s: fixed 

 

The Zn-O/C and Zn-Zn bonds in the first shell are similar in all alkoxide models. 

In the second shell the Zn-C bond distances and coordination number varies from 

3.46 in the monomer to 3.54 Å in the tetramer. The most important shell using in 

this study is the 1
st
 shell which has a higher level of accuracy compared to higher 

shells. It is now evident from the XAS data analysed from the APS and ESRF that 

the transition state complex is a dimer. 

7.4 Conclusion 

The reaction of iPr2Zn with benzaldehyde, pyrimidylaldehyde, pyridylaldehyde and 

cinnamaldehyde was examined through XANES and EXAFS measurements. The 

reaction of DEZ and pyrimidylaldehyde has also been closely investigated. The 

XANES indicates pyrimidylaldehydes form more strongly bound products with 

Sample First shell  

(Zn-O/C)           

                         Second shell   

(Zn-O/C)                           (Zn-Zn)                                                                   

 

 
N R (Å) 

σ2  

( Å 2) 

N 

R 

 ( Å) 

σ2  

( Å 2) 

N 

R 

 ( Å) 

σ2  

( Å 2) 

E0 

(eV) 

R 

(%) 

i-Pr2Zn 1.46 

±0.141 

1.89 

±0.005 

0.005 

±0.001 

3.8 

±1.583 

3.40 

±0.013 

0.003 

±0.007 

   
1.48 

±0.318 

5.8 

i-Pr2Zn     

+ A 

 

monomer 

(0 Zn...Zn) 

2.29 

±0.621 

1.92 

±0.014 

0.004 

±0.002 

9.39 

±3.305 

3.46 

±0.295 

0.007 

±0.004 

   

1.12 

±1.892 

18.6 

dimer 

(1 Zn...Zn) 

2.44 

±0.295 

2.01 

±0.008 

0.006 

±0.001 

5.44 

±1.376 

3.52 

±0.015 

0.004 

±0.002 
1s 

3.09 

±0.008 

0.003 

±0.001 

5.32 

±1.061 
3.9 

tetramer 

(3Zn...Zn) 

2.46 

±0.299 

2.03 

±0.008 

0.006 

±0.001 

4.17 

±1.595 

3.54 

±0.022 

0.005 

±0.004 

3s 
3.10 

±0.009 

0.010 

±0.001 

6.19 

±1.218 

4.1 



205 

 

iPr2Zn than benzaldehyde. Increasing the amount of benzaldehyde results in less 

drastic changes in the XANES compared to pyrimidylaldehydes where the changes 

are more obvious. The XANES of the reaction products held in solution and 

deposited as a precipitate are different and it appears that in solution the diversity of 

zinc species is greater than in the precipitate. Alkylation of the aldehyde occurs over 

time as seen from the XANES, which changes with time. This EXAFS study does 

not explain why iPr2Zn is preferred to DEZ which is similar in size. The XANES and 

EXAFS analysis of both dialkylzincs are similar and no solid justification has been 

made for the outstanding performance of iPr2Zn in chiral amplification. Considering 

that by using XAS both structural and electronic information can be acquired, one 

may conclude that the performance of iPr2Zn over DEZ may be based on its 

energetic stability. Strangely the Zn…Zn distances calculated (iPr2Zn: PA; 1:1) are 

not the same. The calculations based on experiments at ESRF (Table 7.3) compared 

to the APS (Table 7.10) propose an average Zn-Zn distance of 3.38 and 3.01 Å 

respectively. This difference is likely due to noise caused by the inhomogeneous 

solution. The most important information derived from both data is the existence of a 

dimer complex which is the main objective of this work.  From an energetic 

perspective a thorough look at the bond distance in the dimer alkoxide complex 

formed by DEZ and iPr2Zn may be a breakthrough. Considering only the 1
st
 shell, it 

is remarkable to know that the Zn-C/O is shorter in the DEZ- than the iPr2Zn- 

alkoxide complex. This applies to the 1:1 and 2:1 complexes formed in solution were 

the bond distances are shorter by 0.04 and 0.02 Å respectively. This may advocate 

that the transitions state structure of the DEZ-complex has a higher Gibbs free energy 

than that formed by iPr2Zn. The enantioselectivity may be instigated by the 

difference in free energy between both transition structures. Klankermayer reports 
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that the apparent size of iPr is similar to Et and that the presence of longer H-H 

repulsion may be responsible.
[52]

 Other studies justify the relationship between 

structure and dynamics.
[110-112]

 In spite of this, recognition must be given to DEZ 

because it gives the best yield and enantiomeric excess in asymmetric reactions in 

which the product is not the catalyst. It is now understandable that this XAS study 

clearly defines the transition state structure to be a dimer with a Zn-O-Zn-O plane. 

This is a great achievement which also provides distinct bond distances and 

coordination numbers. The distance between the two centre Zn atoms are 

approximately 3 Å and Zn-O bond distances are about 2 Å. This model suggests that 

there is no significant bonding between the Zn atoms in the core. 

A further investigation of the mixture of DEZ, DMAE and CA suggest a similar 

XANES of three components compositions which are different from DEZ/DMAE. 

This is probably because of the absence of the aldehyde in the latter which suggest 

that it is more reactive than DMAE. The colour change from pale green to red in the 

different DEZ:DMAE:CA molar ratios is because of the formation of long 

conjugated organic compounds formed in Claisen-Schmidt condensation which 

involves the reaction of aldehydes with the removal of water to form longer chain 

compounds in the presence of a base. An increase in the concentration of the 

conjugated organic compound forces the colour to intensify thus the colour change.  

From other studies Zn
2+ 

coordinates exists as tetra-, penta- and hexa- complexes. The 

Cambridge Structural Database also a library of Zn
2+ 

coordination numbers of 4, 5 

and 6. Other studies show that changing the concentration could influence the degree 

of complexation. Berquist
[113]

 also proposes a zinc alkoxide complex and according 

to Lebedeva
[114]

 tetrahedral zinc complexes are energetically more stable. 
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8. Additional work 

An initial beamtime at ANKA, Karlsruhe in Germany was performed to determine 

the nature of diethylzinc/ligand complex. Four different dialkylzincs, two aldehydes, 

four ketones, two imines and two ligands were examined within 5 allocated days. 

As will be reported below, for a combination of reasons, this beamtime did not 

provide conclusive results but indicators for further work summarised in the previous 

chapters. For example, the nature of DMAE and paracyclophane compounds with 

dialkyzinc compounds was later thoroughly examined at the ESRF in France (see 

chapter 6).  

8.1 Experimental 

 X-ray absorption spectroscopy (XAS) experiments were carried out at ANKA with a 

beamline energy range from 2.4 to 25 K.eV. A Si(111) monochromator was used 

with a focused beam size of 8mm × 1mm. At room temperature Zn K-edge 

measurements were done in transmission (3 ionization chambers) and fluorescence 

mode (Ge-detector) as seen in Figure 8.1. The experimental set up described below 

was static i.e. microcentrifuge tube and the samples were prepared with the exclusion 

of oxygen by purging with argon and evacuating with a pump (Figure 8.2). Prior to 

this the solvents used in the experiments were thoroughly dried with sodium and then 

by distillation. The solvents were stored over molecular sieves. The microcentrifuge 

tube was fixed horizontally on a sample holder between two ionization chambers. 

The focused beam was then allowed to impinge on the sample and XAS data was 

collected by transmission and fluorescence. 
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 (b) 

 

 

 

                

Figure 8.1: (a) Ionisation chambers(IC) (b) Sample holder between IC 

 

The influence of oxygen and other electronegative atoms is obvious to the Zn K-edge 

spectra as seen in preceding chapters. The Schlenk technique was conveniently used 

in defence against atmospheric intrusion in the absence of a glove box. The Schlenk 

line shown below was found to be less tedious and less cumbersome compared to 

glove boxes previously used.  
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                                 Figure 8.2: Air free sample preparing set up 

 

XAS data was then acquired after mounting the prepared sample contained in an 

Eppendorf tube (5cm × 0.6cm). Materials used include dialkylzincs, organic 

solvents, aldehydes, N/O ligands, imines and ketones.  

 

Table 8.1: Chemicals used during experiment 

Dialkyl 

-zinc 

Organic 

solvents 

 

Aldehyde 

 

Ketones 

 

N/O ligands 

i-Pr2Zn THF t-

Cinnamaldehyde 

Benzylidene 

Acetone 

Paracyclophane 

Et2Zn Toluene Trans-2-Hexenal Benzyliden 

acetophenone 

N,N-dimethyl 

aminoethanol 

Me2Zn Hexane  Cyclohexenone  

n-Bu2Zn Diethylether    
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8.2 Results and discussion 

XAS acquisition at the Zn K-edge was optimal at a concentration of 0.05 M. This 

concentration was used at the APS prior to this experiment. The results of this 

section include processing the XANES and EXAFS refinement. The applications 

used in data processing include Athena and Artemis (Ifeffit packages).  

8.2.1 Alkylating agents   

Alkyl donating groups investigated include dimethyl-, diethyl-, dibutyl- and 

diisopropylzinc. Diisopropylzinc has been the only successful alkyl donating group 

in the Soai autocatalytic reaction
[19, 102]

 meanwhile diethylzinc gives the best yield 

and enantiomeric excess in asymmetric reactions in which the product is not the 

catalyst. Clearly noticeable from the Zn K-edge spectra is a similar resonance peak 

with all measured dialkylzincs (Figure 8.3).     

 

       Figure 8.3: XANES of different alkylzincs in Toluene. APS-labeled; ANKA-unlabeled 

 

The top most spectra shows that the normalized intensity of i-Pr2Zn at APS, changes 

with the photon energy. The resonance peak is 1.5 a.u and is higher than the spectra 
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of i-Pr2Zn at ANKA by 0.5 a.u. This discrepancy which raises questions was 

observed to be the same for other dialkylzinc measurements at ANKA. Nonetheless, 

attention must be drawn to the fact that the XANES results of the different 

dialkylzinc measured were consistent. From fundamental XAFS principles, exciting 

the Zn atom with an X-ray source causes a change in the electronic configuration; 

one or more electrons populate unoccupied bound or continuum states. A 1s-4p 

transition results in the abrupt increase in the absorption coefficient at the Zn K 

absorption edge. This transition is responsible for the resonance peak which is 

overwhelmingly lower than anticipated. 

8.2.2 Solvent effect 

Solvent choice is crucial in asymmetric reactions. Polar solvents tend to give a 

poorer enantiomeric excess than non-polar. A detailed study is seen in Chapter 5, 

which shows how different solvents, both polar and non polar affect zinc geometry. 

At both APS and ANKA diethylzinc showed different tendencies in toluene and 

THF. It is important to mention that the chronological beam time order was APS, 

ANKA and then ESRF. The yard stick was therefore a massive resonance peak of 

dialkylzinc in toluene. This imperative confirmation was reached at the ESRF 

subsequent to the inquiry at ANKA as seen in the plot below. DEZ according to APS 

has a huge white line in toluene which reduces in THF. The first peak in THF, 

noticeable still exists even though it is trimmed down.  
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Figure 8.4: Comparing XANES of diethylzinc in Toluene and THF. (APS/ANKA data) 

 

The results of DEZ at ANKA are not in harmony with APS. In toluene the first peak 

is shorter by 0.5 a.u and in THF no real resonance peak is present. The peak is 

reduced and then flattened. Based on the outcome at ANKA the observable change 

of the Zn K-edge resonance peak from a non polar to a polar solvent indicates a a 

change in the electron density. The zinc environment evidently changes. The 

XANES spectra of the same sample should have the same signature, clearly this is 

not the case. Synchrotron instrumentation may affect factors such as the signal/noise 

ratio but not the shape of the XANES spectra. The suspicion at this juncture is 

whether the labeling represents the content of the individual chemicals used in the 

0

2

4

6

8

10

12

9650 9670 9690 9710

N
o

rm
a

li
s

e
d

 I
n

te
n

s
it

y
 [

a
.u

]

Photon Energy [e.V]

THF (ANKA)

THF (APS)

Tol (APS)

Tol (ESRF)

THF (ESRF)

Tol (ANKA)



213 

 

experiment. The may be contamination of some kind on the chemicals or solvents 

either from the beam time at ANKA or APS.  

8.2.3 Ethylation with paracyclophane based and dimethylaminoethanol 

ligands 

The use of N,O-ligands such as paracyclophane is important in enantioselectivity 

generally giving a high yield and enantiomeric excess. In this section the Zn K-edge 

of the interaction of DEZ and N,O-ligands such as paracyclophane and 

dimethylaminoethanol are studied.
[88-91]

 The essence of this is to determine the zinc 

environment with different combinations. The main aim was to provide structural 

information of the nature of the complex formed between DEZ and the ligand. The 

illustration below shows the XANES of DEZ with DMAE/Paracyclophane in 

toluene. It also includes the interaction of the DEZ-ligand combination with 

aldehydes and ketones. From basic chemistry ketones are generally less reactive than 

aldehydes because of steric hindrance. Ketones generally have bulky groups 

compared to aldehydes which hinder attacking molecules from reacting. Obvious 

changes are seen from the XANES plot below implying a change in zinc geometry. It 

is also observed that changing the solvent from toluene to a polar solvent, in this case 

THF changes the XANES substantially as previously seen in this work. Only the 

behavior of ketones can be appreciated in the following example. 
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 Figure 8.5: XANES spectra of 0.1 M diethylzinc with ligands and Ketone (ANKA data). 

 

The resonance peak of Et2Zn in toluene is strangely about the same height with the 

second peak seen at a photon energy of 9675 eV. This drops and flattens with the 

addition of DMAE and PCBK. The trough between both peaks in DEZ in toluene 

however increases with the addition of PCBK until both peaks of DEZ and PCBK 

vanish by merging. The above Zn K-egde spectra provides information that in a 2:1:1 

molar ratio of DEZ:Ketone:PCBK there is a change in the XANES from DEZ alone. 

Comparing 2:1:1 and 2:1 it is noticeable that the XANES spectra are similar 

suggesting similar or slightly different Zinc species. The change in the XANES from 

DEZ to 2:1 is observed to be significant than from 2:1 to 2:1:1 which may mean that 

ketone molecules do not react effectively over the period of the XANES 
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measurement. It should be noted that the diethylzinc: ligand: ketone ratio of 2:1:1 

was intentionally taken and is optimal in understanding the structure of the complex 

responsible for catalysis. The influence of THF can also be seen when compared 

with toluene during the ethylation of the ketone in the presence of the 

paracyclophane ligand. This might imply a likely binding of THF molecules to zinc 

as studied in earlier chapters. 

8.2.4 Diethylzinc addition to Imines 

Further XAS studies on the asymmetric diethylzinc addition to imines with 

paracyclophane were also carried out. The XANES below compares DEZ and the 

influence of paracyclophane, the ketone and the imine. The influence of the former 

has been discussed and focus will now be on the later which shows an interesting 

trend over time. From the following illustration the resonance peak of DEZ at 9662 

eV clearly drops and moves to the right with the addition of the paracyclophane 

ligand. A shift in the 2
nd

 peak of DEZ at 9675 eV to lower photon energy is also 

observed. The same trend is seen in the 2:1:1 molar ratio where a slightly deeper 

trough is seen compared to the 2:1. 
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Figure 8.6: XANES spectra of diethylzinc addition to imines (ANKA data). 

 

An obvious change in the zinc environment can be seen from the XANES of 

diethylzinc to the addition of imine. The molar ratio of ethylzinc: ligand: imine 

measured was 3:1:1. The above XANES in the 3:1:1 molar ratio after an hour has an 

excess of DEZ as seen in the 1
st
 huge peak at 9662 eV and a 2

nd
 broad peak is found 

at 9675 eV. The situation changes after 13 hours were a change in the XANES is 

palpable. The maximum peak moves to 9672 eV and the resonance peak previously 

seen at 9662 eV vanishes. This modification of the XANES can only be justified by 

the formation of new zinc species over a period of 13 hours. A defined structure of 

the zinc complex formed can only calculated by an EXAFS analysis in which the 

coordination number and bond distances will be characterized. A potential reason for 

the radical transformation in the Zn K-egde XANES after 13 hours may be due to the 
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low solubility of Imine. The XANES after an hour therefore displays the interaction 

of DEZ and paracyclophane. In addition, it has been reported that deprotonation to 

give the intermediate is the rate-limiting step and the alkyl- addition itself is fast.
[115, 

116]
      

8.2.5 EXAFS Refinement of ANKA data 

As seen in other sections of this report, the XANES compliments the EXAFS 

analysis. The EXAFS analysis is vital in understanding zinc geometry. The core of 

this study is to contribute to the reaction mechanism by describing the nature of the 

zinc complexes in solution. As afore mentioned the same experiments carried out at 

APS were not alike with that at ANKA. This obviously led to suspicion of the 

reliability of the results at ANKA which were arduous to fit. Fitting experimental and 

theoretical data was not possible with the results from ANKA in contrast to APS. 

Only unacceptably high R-factor values were achievable. The reasons for the 

intolerable fit may be a hint of contaminated samples. The EXAFS analysis was not 

possible and therefore not considered in this section. 

8.3 Conclusion 

In this chapter the XANES spectra of dimethyl-, diethyl-, dibutyl and diisopropylzinc 

are comparable though the XANES Zn K edge spectra at ANKA and APS were poles 

apart with a conspicuously huge resonance peak seen in the XAS data collected from 

the APS and ESRF.   

From the beamtime at ANKA, THF reduces the resonance probably as a result of the 

binding of THF molecules to the zinc atom thus changing the zinc environment. Its 

influence is not only seen in dialkylzincs alone but also on the ethylating of ketones 
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in the presence of paracyclophane. The XANES spectra of diethylzinc and DMAE is 

different from that with paracylophane suggesting difference in the change in the 

electron density of the zinc atom. A surplus of DEZ over the ligand results in a 

modification of the XANES compared to the 1:1 mixture where the resonance peak 

is comparably lower and more to the right i.e. higher photon energy values. 

Significant changes can be seen in the XANES during the ethylating of imines over 

time. This may be as a result of the reported low solubility of imines since 

deprotonation to give the intermediate occurs rapidly. 

No full explanation is available for the discrepancy concerning the XAS data 

acquired at ANKA and APS. Both light sources have an international reputation and 

have S/N ratios within acceptable limits. The results from both lights sources should 

therefore be comparable. Assuming that the reason for the inconsistency is not from 

the light source, the only other source of error would be from the sample. This is 

broad ranging from the content of the chemicals to the manner in which the samples 

were prepared. It should be noted that the method of sample preparation at ANKA 

was different from APS where the solvents were not distilled but bought as 

anhydrous solvents from Sigma Aldrich. In addition at APS air exclusion during 

sample preparation was achieved by using a glove bag filled with nitrogen. At 

ANKA a Schlenk line was put in place and the samples were prepared under argon. 

No structures were determined from the EXAFS analysis as only unacceptable 

results were obtained. The benefit of the study at ANKA was the XANES which was 

different depending on the experiment and also coherent. In addition, repeatable 

results were possible meaning that the results in terms of trend were believable. It 

must be noted that a follow up of this beam time was the previously seen 
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experiments at the ESRF, Grenoble, France which tally with the results from the 

APS. 
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9. Summary 

This dissertation reports a series of studies that address the structural properties of 

key organometallic species involved in dialkyzinc-catalysed enantioselective 

reactions, with a particular view to the Soai chiral amplification process. 

Structural causes of solvent effects were revealed through XANES of dialkylzinc 

species in various solvents. According to this study non polar solvents such as 

toluene are favourable in asymmetric amplification because they do not bind to the 

zinc centres, which remain monomeric in the absence of the prochiral reactants. 

EXAFS calculations propose dimers or tetramers in the presence of THF. The 

binding of THF to zinc may also be responsible for the slow turnover, thus producing 

low yield and little enantiomeric excess. The interaction with THF is, relative to that 

with toluene, so strong that even small vol% (~10%) of THF in a mixture with 

toluene cause a significant change to the XANES. Furthermore the influence of 

concentration is more dramatic on the XANES than the polar/non polar solvent ratio. 

The XANES at higher concentrations is different than at lower concentrations where 

the dialkylzinc molecules may be interacting with water molecules (impurities). In 

conjunction with Denisov‟s NMR study from 1975, which has previously not been 

considered in studies on the Soai reaction, the tendency of different solvents to form 

solvate species with dialkylzinc has been introduced as an important concept for 

solvent selection. The EXAFS models also show a distinction between iPr2Zn and 

DEZ in THF. Dimethylzinc on the other hand has a slightly higher first resonance 

peak compared to the other two. This work also demonstrates that over a long period 

dialkylzinc decomposes to a product similar to zinc oxide when slow air ingress into 
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the reactor takes place. There is however also a possibility of the presence of zinc 

hydroxide due to residual H2O which was found to have a higher R-factor than ZnO. 

An examination of the complex formed between a chiral ligand and dialkylzinc 

suggests that dimers or tetramers are possibly formed. The XANES does not change 

drastically with changes in the stoichiometric amount of dialkylzinc and 2-butanol. 

The contrary is the case with DMAE where a considerable change is observed 

probably because it is less reactive. This is likely attributed to the presence of two 

electronegative atoms (O and N) in DMAE which cause a significant electronic 

effect. Overall the XAFS study confirms the possible presence of a monomer, dimer, 

tetramer or a mixture of species in a 1:1 molar ratio of DEZ:DMAE, suggesting that 

no specific specie can be identified, which are central for the Noyori mechanistic 

schemes for chiral amplification.  

One of the most significant contributions of this study is the determination of the 

complex responsible for the catalysis in the Soai autocatalytic reaction. Despite the 

numerous scientific studies no proposal has been made that provides electronic and 

structural information of the proposed dimer structures. For the first time using X-ray 

absorption spectroscopy, we are able to confirm that the transition state structure is a 

dimer built around a centre with a Zn-Zn distance of approximately 3 Å, with no 

significant metal-metal bonding between zinc atoms. Such dimer complexes are 

formed with all aldehydes studied. 

However, the reason for the outstanding performance of iPr2Zn over Et2Zn could not 

be substantiated. From the XANES it appears that pyrimidyl aldehydes bind more 

strongly than benzaldehyde, suggesting that a strongly bound complex is preferable 

for the Soai autocatalytic reaction. This is observed by varying the stoichiometric 

amount of dialkylzinc and aldehyde. Different structures have been established in 
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this evaluation by changing the stoichiometric ratios of dialkylzinc and aldehyde. 

The EXAFS investigation confirms the possibility of trigonal and tetrahedral zinc 

sites in the alkoxide complex depending on the stoichiometric amounts. 

The XANES of a mixture of DEZ, DMAE and cinnamaldehyde is distinct from that 

of DEZ and DMAE. The colour change from pale green (DEZ and DMAE) to red 

(DEZ, DMAE and cinnamaldehyde) over time is likely because of zinc catalyzed 

polymerization. Evidence of this transformation is seen from UV and X-ray 

absorption analysis. 

Results from several synchrotron radiation sources and using a number of 

experimental approaches to the organometalic synthesis at a synchrotron radiation 

source were considered in this study. The findings from Schlenk and glove box 

laboratory experimentation at ANKA were consistent but different from those 

obtained with small volume glove bag experiments at APS and ESRF. An expected 

huge resonance peak of dialkylzinc in toluene was not seen at ANKA suggesting that 

the small volume glove bag approach is more reliable than transferring home 

laboratory techniques to a synchrotron setting. 

The accomplishment of the microcentrifuge tube reactor work overshadows that of 

the continuous flow reactor which is limited due to the formation of a precipitate on 

the inner reactor wall. 

Mainly three coordination numbers of the different measurements of this study can 

be identified as seen in the table below. The table compares the coordination 

numbers predicted from the XANES analysis based on Kau et al (coordination 

number determined from the nature of the resonance peak) and the EXAFS 

calculations.  
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1
st
 shell 

coordination 

number 

derived from 

XANES 

analysis 

(Based on 

Kau
[79]

 et al) 

 

Characteristic 

of white line of 

XANES at 

approximately 

9661 eV 

(Based on 

Kau
[79]

 et al) 

 

1
st
 shell 

coordination 

number 

derived from 

EXAFS 

analysis 

iPr2Zn in 

toluene 
2 Strong 2 

Et2Zn in 

toluene 
2 Strong 2 

iPr2Zn in 

THF 
3 Reduced 3 

Et2Zn in THF 3 Reduced 1 

Et2Zn in 

toluene 

(ANKA) 

3 Reduced - 

Et2Zn in THF 

(ANKA) 
4 None - 

iPr2Zn in H20 4 None - 

Et2Zn 

exposed to 

air 

4 None 4 

iPr2Zn and  

2-butanol 
3 Reduced 3-4 

Et2Zn and 

DMAE 
3 Reduced 3 

iPr2Zn and 

aldehyde 
3 Reduced 3-4 

Et2Zn and 

aldehyde 
3 Reduced 2-4 

Et2Zn,DMAE 

and aldehyde 
4 None 4 

 

Table 9.1: Comparing the 1
st
 shell coordination number analysed by the XANES and EXAFS. 

 

From the comparison above it is obvious that the coordination number from XANES 

and EXAFS analysis correspond except in the case of diethylzinc in THF. Three 

main Zn coordinate systems have been identified in this study, which include 2-

coordinate linear, 3-coordinate trigonal and 4-coordinate tetrahedral structures.  
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10. Future Work 

Precise time resolved measurements are essential in order to fully understand the 

molecular mechanism of organozinc reactions. The continuous tubular flow reactor is 

excellent in design but poor in providing persuasive results. Highly rated results can 

only be achieved if the deposit which builds in the inner wall is eliminated. This 

system may benefit a reaction that does not produce a precipitate. Experiments using 

a stop flow reactor
[117]

 would be essential towards the development of an efficient 

continuous flow reactor. In addition to X-ray absorption spectroscopy it would be 

beneficial to integrate different methods such as IR and XRD simultaneously with 

the XAS measurements.  

From this study the rationale behind the excellence of iPr2Zn has not been fully 

endorsed. It is important to carry out further investigation on the difference between 

iPr2Zn and DEZ. It may also be beneficial to do XAFS studies on a mixture of 

dialkylzincs to understand their interaction with the intention of getting more 

information on their diversity. 

Based on the different stoichiometric amounts of reactants it would make sense to 

correlate the XAFS studies with kinetic models that should explain the reaction 

mechanism. The kinetic together with XAFS data should build a mathematical model 

capable of explaining asymmetric autocatalysis.  

The Mannich reaction
[118-120]

 is another example of an autocatalytic reaction. 

Studying this reaction using X-ray absorption spectroscopy would be of great interest 

and may provide information on the molecular mechanism. 

More emphasis should be placed on ab initio calculations based on the structural 

models derived from this EXAFS study. The structures produced from X-ray 
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absorption analysis should be converted to XYZ coordinates in order to generate Feff 

files. Feff calculations should reveal a theoretical XANES which should be 

compared to the experimental. The agreement between theoretical and experimental 

data should provide evidence on the accuracy of the model.  

Homogenous reactions in which the product is not the catalyst should be studied 

using the continuous flow and batch reactor. Catalysts such as copper
[121, 122]

 have 

been reported in asymmetric synthesis. It would be attention-grabbing to understand 

the change of the catalysts with increasing residence time. 
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11. Peer reviewed work 

“
Reducibility of supported gold (III) precursors: influence of the metal oxide 

support and consequences for CO oxidation activity.”Laurent Delannoy, 

Norbert Weiher, Nikolaos Tsapatsaris, Angela M. Beesley, Luanga Nchari, 

Sven L. M. Schroeder and Catherine Louis:
 
 (Top. Catal.). (2007)  

“Continuous Tubular Flow Reactor for XAFS Studies of Organometallic 

Reactions: Possibilities and Limitations for Studies of the Soai Reaction.” 

Nchari L.N, Hembury, G. A.; Beesley, A. M.; Meehan D.J.; Tsapatsaris N.; 

Schroeder S. L. M., (Journal of Physics, Conference proceeding). (2009) 
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