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Abstract 

The present thesis was written by Olivier Cozzi at the University of Manchester in pursuance 

of the degree of Master of Philosophy in 2010. It presents “Free surface flow simulation: 

correcting and benchmarking the ALE method in Code_Saturne”, that is to say the 

implementation of free surface flows within Code_Saturne, an in-house code developed by 

EDF (Électricité de France) to solve CFD problems, using the Arbitrary Lagrangian Eulerian 

(ALE) method already embedded in this code. 

For a code like Code_Saturne, which aims at being easily implemented in a wide range of 

applications, the handling of free surface flows is critical because it extends the range of 

possible applications (tank filling, marine turbine interactions with waves and currents, water 

supply and reject points ...). Up to now, the ALE module within Code_Saturne was only used 

for fluid coupling with a solid structure; thus we had to adapt it to free-surface flows by 

adding a convergence loop to perform the free surface movement incrementally within each 

time step. Afterwards, the geometry was updated at the outer iterations level by imposing the 

displacement of each cell-vertex within the global domain: the cell-vertex motion is then 

computed for the free-surface cell-vertices in the first place and for the internal cell-vertices 

secondly. 

The new free-surface module was then implemented to three different test cases: 

- a standing wave in a tank (unsteady test case with a periodic analytic solution), 

- a solitary wave in a tank (unsteady test case with an analytic solution), 

- a submerged hydrofoil (steady test case with experimental measurements). 

The results are encouraging and the feasibility is clearly demonstrated. Some limitations still 

exist – mainly caused by the inaccurate interpolation performed by Code_Saturne between the 

free-surface cell-vertex displacement and the free-surface cell-face centre velocities – but 

these could be eliminated during the next stages of the project. 
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Chapter 1  

Introduction 

1.1. Background 

The massive increase in the capacity and affordability of computers, as well as a greater 

awareness of the potential usefulness of numerical simulation (design optimization, physics 

simulation ...) have led to Computational Fluid Dynamics (CFD) being used to cope with 

increasingly complex and varied fluid-flow problems. In this work the development and 

application of moving-mesh and free surface capabilities within the general-purpose finite 

volume industrial code of EDF (Electricité de France) Code_Saturne are described and 

illustrated with flow calculations for different cases. 

 

Flows with moving boundaries are indeed common among engineering problems; the 

movement of moving boundaries may be externally imposed (e.g., piston motion in an engine 

cylinder) or it may be caused by fluid forcing (for example, flow-induced vibration of the 

nuclear fuel rods inside a nuclear core). Moving free surfaces are frequent in hydraulic 

engineering, especially when it consists in an air-water interface such as in waves and tidal 

flows. The free surface shape, most of the times, is not easily determined, even when the free 

surface is stationary – such as a flow over a hydrofoil under a free surface. 

The vast range of physical problems involving free surface flows has led to the 

implementation of a variety of CFD approaches, each with its specific applications. 

Among all these approaches, the shallow water equations are applicable for long-length 

waves, that is to say when the horizontal length scale is much greater than the vertical length 

scale and when the vertical velocities are small; that is why the shallow water equations are 

frequently used in tidal flows and to simulate non-breaking wave propagation. These 

equations, also called Saint-Venant equations in their uni-dimensional form, are derived from 

depth-integrating the Navier-Stokes equations and considering that vertical pressure gradients 

are nearly hydrostatic. This shallow water approach is used in the finite element code 
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Telemac-2D, a free and open source CFD code, for applications in free-surface maritime or 

river hydraulics, such as the study presented in [1] by Chini. 

The potential flow methods – which consist in describing the velocity field as the gradient of a 

scalar function – are applicable for flows with low vorticity effects and are used for wave 

dynamics and water-entry problems; in the potential flow approach, unsteady flow can be 

described accurately [2]. 

These methods are powerful tools in their own areas but their embedded approximations make 

them unsuitable for general-purpose flow solvers. 

 

Among the general purpose grid-based flow solvers with free surface capabilities, one can list: 

- OpenFOAM (Open Field Operation and Manipulation), a free and open source CFD 

software, is based on a finite volume approach to solve systems of partial differential 

equations ascribed on any 3D unstructured mesh of polyhedral cells. The fluid flow 

solvers are developed within a robust, implicit, pressure-velocity, iterative solution 

framework and space parallel computation is available. For free surface flows, both 

surface tracking and surface capturing methods are available. 

- STAR-CCM+, a finite-volume-based program package for the modelling of fluid flow 

problems, is developed by the computer software company CD-adapco. It solves the 

Navier-Stokes equations with a segregated, algebraic multigrid solver using the Rhie & 

Chow interpolation for pressure-velocity coupling. Furthermore the SIMPLE algorithm 

is applied to control the overall solution. For free surface flows, STAR-CCM+ uses the 

Volume of Fluid (VOF) approach. The numerical model can be applied to any 

structured and unstructured grid with arbitrarily shaped control volumes. 

- CFX is developed by the engineering simulation software company ANSYS. In CFX, a 

conservative finite-element-based control volume method (i.e. a finite volume approach 

with parts of the finite element method) is implemented. The Navier-Stokes equations 

are discretized in a collocated way and solved by an algebraic multigrid solver. To 

avoid pressure-velocity decoupling, the Rhie & Chow interpolation is used; all 

conservation equations are solved in one linear equation system, with all equations 

being fully coupled. The reconstruction of the free surface is based on the VOF 

approach where the volume fraction is computed using an upwind-biased discretization. 
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- FLOW-3D is a general purpose CFD code based on a finite volume/finite difference 

approach. For free surface flows, an adapted version of the Volume of Fluid method 

known as TruVOF is used. FLOW-3D and its TruVOF technique consider the three 

ingredients of the original VOF method: a scheme to locate the free surface, an 

algorithm to track the free surface as a sharp interface moving through a computational 

grid, and a means of applying boundary conditions at the free surface. 

Other codes like FLUENT (ANSYS) or STAR-CD (CD-adapco) must also be mentioned. 

As presented further in the section 3.1.1, Code_Saturne is a general purpose, free and open 

source industrial CFD code developed by EDF. It is based on a collocated finite volume 

approach and accepts unstructured and non-conform meshes. The velocity and the pressure are 

both considered with a cell-centered co-located approach. The velocity-pressure coupling is 

obtained by a predictor-corrector scheme based on the SIMPLEC method. 

1.2. Objectives 

The aim of the ReDAPT (Reliable Data Acquisition Platform for Tidal) project is to simulate 

the flow around marine turbines with the presence of free-surface effects. Within the 

framework of this project, Code_Saturne was chosen for the development of a 3D numerical 

model of an idealised geometry of a horizontal-axis tidal turbine. Indeed, some capabilities 

within Code_Saturne, such as the fully validated Arbitrary Lagrangian Eulerian method and 

the fluid-structure coupling, make it capable of handling numerical simulations of a 

submerged and rotating marine turbine. This is why a free-surface capability must be 

implemented and validated within Code_Saturne; this is the objective of the present work. 

1.3. Outline of the report 

After an introduction to free surface flows and free surface modeling in Computational Fluid 

Dynamics in Chapter 2, the Arbitrary Lagrangian Eulerian method already embedded in 

Code_Saturne (Chapter 3) is used to develop a free surface module (Chapter 4). Then in 

Chapter 6, limits of existing module are explained and an outline of improvements for a new 

version is presented. A number of applications are described in Chapter 5. These are: (5.1) 

oscillation of small-amplitude waves in a tank and (5.2) solitary wave in a channel, both with 

inviscid fluid; and (5.3) flow over a hydrofoil under a free surface, for which J.H. Duncan 

realized many experiments. 



  Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne  

14 

Chapter 2  

Introduction to free surface flows and 

computational fluid dynamics 

2.1. Free surface flows 

2.1.1. Definition of a free surface 

In physics a free surface is the surface of a fluid that is subject to constant perpendicular 

normal stress and zero parallel shear stress, such as the boundary between two homogeneous 

fluids, for example liquid water and the air in the Earth's atmosphere. 

A liquid in a gravitational field will form a free surface if unconfined from above. Under 

mechanical equilibrium this free surface must be perpendicular to the forces acting on the 

liquid; if not there would be a force along the surface, and the liquid would flow in that 

direction. Thus, on the surface of the Earth, all free surfaces of liquids are horizontal unless 

disturbed (except near solids dipping into them, where surface tension distorts the surface 

locally). 

In a free liquid at rest, that is to say one subject to internal attractive forces only and not 

affected by outside forces such as a gravitational field, its free surface will assume the shape 

with the least surface area for its volume: a perfect sphere. This can be seen under weightless 

conditions, such as the spatial flight of Tintin and Captain Haddock during their journey to the 

moon (Figure 2.1.1-1). 
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FIGURE 2.1.1-1: CAPTAIN HADDOCK AND A SPHERICAL DROP OF HIS BELOVED WHISKY 

(“THE ADVENTURES OF TINTIN: EXPLORERS ON THE MOON” BY HERGÉ, CASTERMAN  - 1954) 

2.1.2. Computational fluid dynamics and free surface 
modeling 

A state-of-the-art of the numerical methods used for the computation of incompressible flows 

involving a nonlinear free surface is presented by Tsai and Yue in [3]: in this article, potential 

as well as rotational and viscous free surface flows are considered. 

In [4], Floryan and Rasmussen classify the available algorithms for the analysis of viscous 

flows with moving interfaces in three groups: Lagrangian, Eulerian and mixed, i.e. Eulerian-

Lagrangian methods. The Lagrangian group mainly consists of strictly Lagrangian and particle 

methods. The Eulerian group is composed by fixed grid and adaptive grid methods. The third 

group of the mixed methods relies on both Lagrangian and Eulerian concepts. 

In [5], Ferziger and Peric present the three main CFD approaches to solve free surface 

problems: fixed-mesh methods, moving-mesh methods and mesh-free methods. 

In fixed-mesh methods (interface-capturing methods), the computation is performed on a fixed 

grid, which extends beyond the free surface, and the shape of the free surface is determined by 

computing the fluid-containing fraction of each near-interface cell. In the context of free-

surface flows, well-known techniques include the volume-of-fluid (VOF) method where a 

transport equation is solved for the fraction of the cell occupied by the liquid phase (also 

known as void fraction), and the marker-and-cell (MAC) method where the free surface is 

tracked by following the motion of particles on the interface. Hirt and Nichols present the 

VOF method in [6], whereas the MAC method is described by Harlow and Welch in [7]. The 
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fixed-mesh methods are more robust than the moving mesh ones presented below. They can 

indeed handle breaking waves, but the drawback is that these methods are not effective for 

resolving a sharp interface and, for free surfaces which are rapidly varying in time or space, 

they require an extremely fine mesh that needs to be created beforehand (one needs to know 

where the free surface will be located); these methods can be very time consuming. 

Moving-mesh methods (interface-tracking methods) consist in adapting dynamically the mesh 

in such a way that it is always surface-conforming (mesh cells always contain fluid): boundary 

faces are then impermeable solids or free surfaces. We will adopt these methods in the present 

work because they are particularly adapted to the finite volume approach, thanks to their 

natural relationship with the fundamental integral forms of the governing conservation 

equations (equations (1) to (4)). This approach was applied by Mayer in [8] and by Thé, 

Raithby and Stubley in [9]. However, the handling of breaking waves with a moving mesh is 

quite complex: it requires an algorithm capable of removing or adding cells around the 

multiple connected regions where the wave breaks. 

Mesh-free methods can also solve free surface flows. The popular smoothed-particle 

hydrodynamics (SPH) method is the earliest mesh-free particle method to be developed: it is a 

mesh-free Lagrangian method particularly adapted to model fluid motion, with a lot of 

benefits over traditional grid-based techniques (for example mass conservation, pressure 

computation, free surface geometry) but also drawbacks – such as the need for a large number 

of particles to obtain similar results, which is time consuming. An interesting application of 

the SPH method to complex turbulent free surface flows is presented by Violeau and Issa in 

[10], using the SPHysics code developed at the University of Manchester. 

2.2. Equations of the free surface 

Considering a control volume   with a moving boundary   , the three usual conservation 

laws in fluid mechanics which have to be considered are: 

- Mass Conservation Law: 

 
 

  
    
 

           
  

   (1) 

- Momentum Conservation Law: 
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 (2) 

- Scalar Conservation Law (concentration, thermal energy, ...): 

 
 

  
     
 

                
  

      
 

 (3) 

Where   is the fluid velocity,   is the velocity of the boundary    of the control volume   

(e.g. the free surface velocity),    is the surface vector,   represents the fluid density,   

stands for any scalar quantity,    and    are the volumetric sources of scalar quantity and 

momentum, and   and   are respectively the stress tensor and the flux vector. 

 

Because of the moving boundary, the surface velocity   needs to meet the Space 

Conservation Law (SCL): 

 
 

  
   
 

      
  

   (4) 

This equation describes the conservation of space when the domain changes its shape and 

position with time. Considering the SCL, the equations (1) to (3) simplify to: 

- Mass Conservation Law: 

  
  

  
  

 

       
  

   (5) 

- Momentum Conservation Law: 

  
  

  
  

 

                 
  

            
  

      
 

 (6) 

- Scalar Conservation Law (concentration, thermal energy, ...): 

  
  

  
  

 

                
  

            
  

      
 

 (7) 

  

The specificity of free surface flows is based on two additional equations, the kinematic and 

the dynamic boundary conditions for the free surface: 

- The dynamic boundary condition is quite simple when shear stress, normal stress and 

effect of the surface tension can be neglected on the free surface; it then consists in: 
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        (8) 

where   and      are respectively the free surface pressure and atmospheric pressure. 

- The kinematic boundary condition can be thought of as a “zero mass flux through the 

free surface”: 

            (9) 

where   is the fluid density and   is the surface vector as it is shown in Figure 2.1.2-1: 

 

FIGURE 2.1.2-1: 2D REPRESENTATION OF THE MESH GEOMETRY UNDER THE FREE SURFACE 

Considering that the fluid density is constant (incompressible flows) and the mesh 

velocity is only in the vertical direction (       where the unit vector    depends 

on the gravity vector   such as          ), the kinematic boundary condition can 

be rewritten as: 

    
   

    
 

    
   

 (10) 

where    is the vertical component of the surface vector  , and      is the mass flux 

through the free surface (or rather the mass flux supposed to go through the free 

surface when the free surface is considered as fixed). 

In the present work, a moving-mesh method will be adopted to tackle free surface flows with 

Code_Saturne. This requires two capabilities: the handling of a moving mesh and the control 

of the free surface motion. The first of these two capabilities is managed by the Arbitrary 

Lagrangian Eulerian module (ALE) already embedded in Code_Saturne and presented in the 

next chapter. The second is the result of this work and is presented in Chapter 4. 
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Chapter 3  

Code_Saturne and its ALE module 

3.1. Code_Saturne 

3.1.1. Presentation of Code_Saturne 

All the developments presented in this report have been done using Code_Saturne, a code 

developed by EDF (Electricité de France) to solve CFD problems. A complete description of 

this code can be found in [11] or in the document “Theory and Programmer’s Guide” of 

Code_Saturne. Below is a relatively short presentation of Code_Saturne. 

 

Code_Saturne is initially designed to solve the Navier-Stokes equations for three-dimensional 

single phase flows using a finite volume discretization scheme. It handles unstructured and 

non-uniform meshes for steady or transient, laminar or turbulent, incompressible or slightly 

compressible flows. Code_Saturne also computes the transport of passive scalar and features 

many other modules to handle a wide range of particular physics, such as combustion 

problems. Code_Saturne is divided into two separate programs: 

- the kernel solves the problem equations – e.g. the Navier-Stokes, turbulence, passive 

scalars equations, 

- and the shell processes the mesh to make it readable by the kernel and also creates the 

outputs necessary for post-processing software. 

Code_Saturne uses the finite volume approach in which the equations are written in a 

conservative form and then integrated over control volumes in order to be solved. This finite 

volume method is described by Versteeg and Malalasekera in [12] and by Zwart in his thesis 

[13]. The velocity and the pressure are both considered with a cell-centered co-located 

approach. The Gauss theorem is used to transform integrals of the divergence of any vector 

field into surface integral of flux over faces; this way the conservative form of the momentum 

equation reads: 
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where   is the molecular viscosity (the turbulent viscosity is ignored here). 

The velocity-pressure coupling is obtained by a predictor-corrector scheme: at each time step 

n, the momentum equation is first solved taking the pressure as explicit, that is the velocity 

prediction step and leads to the predicted velocity       . This predicted velocity is then 

modified by the corrector step in order to be divergence free (incompressible flow). The time 

discretization (fractional step scheme) can be associated with the SIMPLEC method. The 

SIMPLEC algorithm is also presented by Versteeg and Malalasekera in their book [12] 

presenting the volume finite method. 

A - The predictor step 

In this step, Code_Saturne solves the following equation using an Euler implicit scheme: 

 
         

  
                  

                                      

The mass flux       in the left-hand side of this equation is taken as explicit in order to 

uncouple the 3 components of the velocity. 

As usually done in the finite volume method, the domain   is partitioned in control 

volumes   . Let     be defined as             the common face to    and   , and      the 

k-th boundary face of        , represented in Figure 3.1.1-1 below. 

 

FIGURE 3.1.1-1:  REPRESENTATION OF A CELL AND A BOUNDARY FACE 
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Thanks to the Gauss theorem, the volume integral                     
  

 of the 

convective term is transformed into                   
   

. The discretization over the 

faces of    reads: 

       
            

     

          

         
              

     

       

 

The terms     
       and       

        stand for the mass fluxes, expressed on inner faces and 

boundary faces. The set          and       represent respectively the neighbouring cells of 

the cell i and its adjacent boundary faces. The unknown values of      
     

 and       
     

 have to 

be related to the values of the variables expressed at the nearby cell centres. Code_Saturne 

uses three schemes to compute these unknowns: 

- The UPWIND scheme (first order): 

     
        

      if      
         

     
        

      if      
         

- The Second Order Linear Upwind (SOLU) scheme: 

     
        

                     
 
 if      

         

     
        

                     
 
 if      

         

- The second order scheme: 

     
           

               
       

 

 
             

 
             

 
    ,  

using     
   

    
 (see Figure 3.1.1-1) 

In second order schemes, the computation of the gradients needs a gradient reconstruction 

technique when the mesh has non-orthogonalities (    ). It is an iterative process that takes 

into account first order terms in space. 

At the boundaries, the value of the predicted velocity is always given by:       
        

     
 if 

      
          and       

        
     

 if       
         . 

 



  Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne  

22 

Thanks to the Gauss theorem, the volume integral                     
  

 of the 

convective term is transformed into                   
   

. The discretization over the 

faces of    reads: 

As for the diffusion term, in the finite volume method, the volume integral 

                      
  

 is transformed into                
   

    and is expressed, 

after discretization: 

  
 

  
       

  
     

    
   

          

   
    

       
  
     

    
    

       

 

This manner of discretizing the diffusion term does not cause any problems on orthogonal 

meshes (when     ). Otherwise, as done for the convection term, reconstruction techniques 

are necessary. The value of the velocity at the boundaries       
     

 depends on the velocity in 

the adjacent cell I and the boundary conditions given by the user. 

B - The correction step 

In the correction step, i.e. the second step of the SIMPLEC scheme, a Poisson equation is 

solved to compute the pressure and then a divergence free corrected velocity field      is 

obtained. The pressure    is updated by adding an increment       (             ). 

The following problem has to be solved (the convection term is neglected in the SIMPLEC 

algorithm): 

                 

  
              

             

In order to solve this system of equations, the divergence operator is applied to the first 

equation above, which produces a Laplacian of the pressure increment: 

                                

With the usual discretization of the Laplace operator, odd and even nodes are uncoupled, 

leading to the well known chessboard-like pressure field: a pressure field, whose values are −1 

on odd nodes and +1 on even nodes on a hexahedral regular mesh is solution of the 

homogeneous Poisson equation, and can appear for any solution and alter it. In order to avoid 

this problem, the Rhie & Chow filter [14] is used in Code_Saturne. 
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At this point, the mass flows and the velocity field are updated according to: 

                                

Afterwards the turbulence and scalar equations are solved. When all the values of the new 

time step n+1 are known, the algorithm can carry on with the next time step. 

3.1.2. Calling tree 

In the Code_Saturne documentation, and particularly in the “Theory and Programmer’s 

Guide”, a calling tree is presented (see Appendix 1: Successive stages within a time step) but 

this calling tree is not very clear for our subject: the routines related to the Arbitrary 

Lagrangian Eulerian method (ALE) are not mentioned and the links between routines are not 

explained. Let us consider this other calling tree (Figure 3.1.2-1): 

caltri.F: 

 CALL USTBUS Routine to define the dimensions of the user's and developer's tables 

 CALL LECAMO Loading of previous run files (if ISUITE = 1) 
 CALL INIVAR  Initialisation of the computation variables, of the time step, etc 

  Start of the time-loop 

     
    CALL TRIDIM  Solving of Navier-Stokes and scalar equations for one time step 

   Start of the fluid-structure coupling loop 

         

     CALL USCLIM Routine for the filling in of the boundary conditions tables 
        (ICODCL, RCODCL) for the unknown variables 

     CALL USALCL Routine for the filling in of the boundary conditions tables 

        (IALTYB, ICODCL, RCODCL) for the mesh velocity 
     (CALL STRPRE) (Structure motion prediction, if fluid/structure coupling) 

     CALL CONDLI Loading of the boundary conditions in usclim.F 

     CALL ALELAP Solving of the diffusion equation for the mesh velocity 
     CALL NAVSTO Solving of the Navier-Stokes equations for one time step 

     (CALL STRDEP) (Structures displacement, if fluid/structure coupling) 

 

   End of the fluid-structure coupling loop 

    CALL USPROJ  User's modification at the end of the time step 

    CALL ALEMAJ Mesh update when ALE method enabled 

     

  End of the time-loop 

 CALL ECRAVA Writing of the output files 

FIGURE 3.1.2-1: SUCCESSIVE STAGES WITHIN A TIME STEP (ALE ENABLED). 

In the above calling tree, a fluid-structure coupling loop appears. This loop is necessary when 

the coupling between fluid forces and mobile structures is enabled; this allows the code to 
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iterate on the structures displacement until convergence. The free surface module is built in a 

similar way as explained in Chapter 4. 

3.2. ALE module 

The Arbitrary Lagrangian Eulerian (ALE) method has been introduced by e.g. Chan in [15]. A 

first version for an ALE module within Code_Saturne was developed in 1999 in what was 

then called “Solveur Commun”, the prototype of Code_Saturne developed by EDF; this is 

specifically presented in the EDF report [16]. The current version of the ALE module is still 

very similar and was only used, up to now, for fluid coupling with a solid structure. Hereafter 

is a short summary of the method. 

3.2.1. Navier-Stokes equations for a moving domain 

In Code_Saturne, the Navier-Stokes equations for an incompressible flow (momentum (6) and 

mass (5) conservation with the velocity-pressure formulation) are, for a moving domain  : 

 
  

  
                             

                 

(11) 

       (12) 

The variables   and   are the fluid velocity and pressure,   is the mesh velocity and   is the 

gravity vector. All velocities are defined in a Galilean reference frame (i.e. not tied to the 

mesh motion). 

The mesh velocity field   appears: this term represents the moving nature of the global 

domain   for the current time step. 

3.2.2. Mesh velocity computation 

The computation of the mesh velocity is based on the solving of a Laplace equation: thanks to 

the imposed deformation on the moving boundary, the mesh velocity at the cell centres is 

computed within the internal domain. 

           (13) 

       and          (14) 
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where      is the moving boundary and         is the remaining boundary of the domain  . 

The boundary conditions for the mesh velocity can be value specified (i.e. Dirichlet condition 

– e.g. a fixed mesh on a side), or gradient specified (i.e. Neumann condition – e.g. when the 

mesh is allowed to slide along a wall). 

3.2.3. Algorithm 

The ALE algorithm within Code_Saturne is summarised here: 

(i) The boundary conditions       for the moving boundary (routine usalcl.F) are: 

o known when the deformation is imposed by a law, 

o extrapolated from the previous time values when there is no information about 

the border at the current time step (which is the case for free surface flows). 

The boundary displacements are then known (or projected) at the centre of the border 

faces (routine altycl.F). 

The mesh velocity system, a Laplace equation, is solved (routine alelap.F) in the 

known geometry of time step t
n
. 

(ii) The Navier-Stokes equations are solved in two steps (predictor-corrector algorithm, 

routine navsto.F) with the addition of two supplementary terms related to the mesh 

velocity in the prediction step. The equations are solved in the known geometry of time 

step t
n
. 

(iii) The geometry is updated (routine alemaj.F): 

o the mesh velocity for the cell centres has been calculated (because of the finite 

volume approach); a value for the vertices displacement is then deduced, 

o the vertices position   is updated, 

                  

o at this point, the new geometry of the domain      and the associated values 

      and      are known – considering that                      where 

      is the approximation of the fluid velocity calculated at time step t
n+1

 in the 

known geometry of time step t
n
. 
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3.2.4. Limitations 

A - Discrete Geometric Conservation Law 

Given that the ALE method requires a moving grid, we have to consider an additional law: the 

Discrete Geometric Conservation Law (DGCL), which is the discretized form of the Space 

Conservation Law (SCL). That is explained by J.H. Ferziger and M. Peric in [5]. 

For a moving domain of volume   and closed surface    filled with an incompressible fluid, 

the SCL can be thought as the continuity equation (1) in the limit of zero fluid velocity:    . 

Then the continuity equation simplifies to the SCL: 

 
 

  
   
 

       
  

   (15) 

where   is the mesh velocity and   the normal vector. 

 

If we consider a 2D displacement, we can draw the following diagram (Figure 3.2.4-1): 

 

FIGURE 3.2.4-1: INCREASING 2D RECTANGULAR CONTROL VOLUME 

Using the implicit Euler time scheme, a discretized form of the SCL is the DGCL: 

 
             

  
          

 

 (16) 

where           are the four sides of the 2D rectangular control volume. 

According to the figure above: 
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There is a problem though in equation (16) given that an artificial mass source term appears: 

      
    

  
 (17) 

This error     disappears if the domain moves in only one direction (i.e.      or     ), 

or if the grid velocities are equal at opposite sides of the control volume (i.e.       or 

     , then      or      respectively). 

 

For most of the simulations we will test, the domain only moves vertically, that is to say in 

only one direction; this way, the SCL is always satisfied. However, it is interesting to check if 

Code_Saturne does meet the DGCL in the general case of a mesh moving in the three 

directions. With that aim, Charbel Farhat et al. propose an application with a uniform flow in 

[17]. 

This application consists in considering the case of a one-dimensional uniform flow      at 

a Mach number        inside a rigid tube of length        and a           square 

cross section. The four lateral sides of the tube have symmetry-boundary conditions so that 

they do not have an influence on the uniform velocity field. 

The computational domain is discretized by 200 equally spaced nodes in the direction x of the 

flow (lengthwise of the tube), and 10 equally spaced nodes in each of the y and z directions 

(square cross section of the tube). A first mesh is constructed by connecting these nodes with 

simple tetrahedral volumes. A random three-dimensional displacement     is then computed 

for every node and we use this random displacement      to perturb the initial position of the 

nodes according to 

                    

without however creating any crossover. 

The vibrating mesh is used to compute the time history of the flow and the relative error: 
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This relative error (a ratio of sums of absolute values so that random errors do not compensate 

each other) is compared for different values of the computational time step Δt. 

If the scheme violates its DGCL, it will lead to a nonlinear instability with spurious 

oscillations appearing around the exact solution of the velocity field. The magnitude of these 

oscillations increases with the computational time step. 

In Code_Saturne, the value            and the mesh described above were taken. For one 

computation, the following random deformation of the mesh appeared (Figure 3.2.4-2) and the 

following results were obtained for three different time step values (Figure 3.2.4-3): 

 

FIGURE 3.2.4-2: RANDOM DEFORMATION OF THE MESH 

 

FIGURE 3.2.4-3: RELATIVE ERROR AS A FUNCTION OF TIME FOR THREE DIFFERENT TIME STEPS 
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Figure 3.2.4-3 shows that, for the three different time steps, there is no instability when the 

mesh is moved randomly in the three directions, the uniform flow is exactly predicted (indeed 

E-12 is negligible compared to the relative precision for the solution of the linear systems 

whose default value is E-8). In that case, it seems that Code_Saturne naturally satisfies its 

DGCL. 

B - Diffusion equation for the mesh velocity solver 

From the boundary conditions for the mesh velocity contained in the usalcl.F, the alelap.F 

routine solves a diffusion equation in order to know this mesh velocity on the whole domain. 

In reality different problems can occur: mesh crossover due to an excessive deformation, 

inaccuracy in the interpolation of the velocities, etc. 

When a mesh crossover occurs, negative volumes appear and that stops the computation 

immediately. The occurrence of a crossover is often caused when the Courant number 

(   
    

  
 where   is the local fluid velocity,    is the time step and    is the average mesh-

node spacing) is higher than one, but sometimes, the problem is more complicated: time step 

after time step, the global mesh gets increasingly distorted - even when the deformation is just 

in one direction - and that can lead to a mesh crossover. In that case, the longer a computation, 

the more likely this problem will emerge, but it is unfortunately impossible to predict 

beforehand. 

The ALE module has another important limitation: the interpolation between face centre 

velocity and mesh nodes displacement is not accurate enough for a free surface application 

(the volume conservation requires the free surface to be moved precisely). 

To test the accuracy of this interpolation, a simple case was run with a hexahedron as 

computational domain and the following boundary conditions for the mesh velocity: 

- upper side: constant and uniform mesh velocity, 

- lower side: homogeneous Dirichlet condition (fixed mesh), 

- four remaining sides: slip condition. 

This way the hexahedron is distorted and its volume has to increase as a linear function of 

time. For this test case, the initial mesh of the DGCL case is used and a constant and uniform 

vertical mesh velocity           is set at the face centres of the upper side. The physical 

time for the computation is 1s. 
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In the figures hereafter, the mesh velocity values at the face centres (Figure 3.2.4-4) and the 

nodes displacement (Figure 3.2.4-5) of the 3D hexahedron can be seen: 

 

FIGURE 3.2.4-4: MESH VELOCITY VALUES FOR THE 3D GEOMETRY 

 

FIGURE 3.2.4-5: NODES DISPLACEMENT FOR THE 3D GEOMETRY 

In this 3D case, the mesh velocities values are good but an edge effect can be noticed: the 

nodes displacement is not uniform on the moving side. 

To understand the edge effect, it is interesting to run the same case but with a 2D 

computational domain (there is one single mesh in the third direction y). In the following 
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figures, the mesh velocity values at the face centres (Figure 3.2.4-6) and the nodes 

displacement (Figure 3.2.4-7) for the 2D hexahedron are displayed: 

 

FIGURE 3.2.4-6: MESH VELOCITY VALUES FOR THE 2D GEOMETRY 

 

FIGURE 3.2.4-7: NODES DISPLACEMENT FOR THE 2D GEOMETRY 

As we can see here, because of the edge effect, all the mesh velocities are strictly less than 

   and the nodes displacement is not uniform on the moving side. 

As a consequence, when imposing the mesh velocity at the face centres of the moving side 

(constant RCODCL(IFAC,.,1)), the global volume does not increase as expected; whereas 



  Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne  

32 

when calculating and imposing the displacement for each of the free surface nodes 

(DEPALE(INOD,.), the value of the global volume is correct. And that is particularly true for 

2D test cases. 

Therefore, to avoid mesh crossovers and interpolation errors, it will be necessary to control 

precisely the nodes displacement. This will be discussed further in Chapter 4. 

In the following paragraph, the ALE module already embedded in Code_Saturne will be 

adapted to the free surface flows case. 
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Chapter 4  

Free Surface module 

4.1. Method 

The handling of free surface flows using the ALE method has already been done by Souli and 

Zolesio in a finite element formulation [18]; a similar approach with a finite volume 

formulation was applied by Demirdzic and Peric in [19]. Given the existing ALE module 

within Code_Saturne, a free surface module is going to be implemented. With that aim, we 

can start considering the special boundary conditions for the free surface. 

For the dynamic boundary condition (8) (       on the free surface), we only need to set a 

Dirichlet condition for the pressure. 

The kinematic boundary condition (9) is more complicated: we need to move each face of the 

free surface in order to maintain a zero net mass flux through this face. In section 2.2, it was 

written that for incompressible flows with a one-dimensional mesh velocity (we consider that 

the mesh only moves in the vertical direction       ), the kinematic boundary condition 

can be reduced to: 

    
   

    
 

    
   

 (18) 

For each face of the free surface, three elements are needed to compute the face velocity  : 

- the mass flow values through the free surface     , 

- the vertical component of the surface vector   , 

- and the density  . 

The last one is easy to know:   is a constant for an incompressible flow. 

For the mass flow and the surface vector, they vary with time and space position: their values 

change, time step after time step, and depend on the position on the free surface. 
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First, to prevent the mass flow values through the free surface from being affected by the free 

surface boundary conditions, a free outlet has to be set, with a Neumann condition for the 

velocities. 

4.1.1. Convergence loop 

In David Apsley's paper [20], two strategies are presented to enforce the kinematic boundary 

condition numerically. For simplicity, both strategies assume that the displacement of the cell 

vertices or control points is only vertical. 

One of these strategies consists in moving the free-surface (by moving either cell vertices or 

face-centre control points) according to: 

 
  

  

  
         

(19) 

where    is the average height increment over the free-surface cell face for the whole time 

step   . This equation (19) is equivalent to the kinematic boundary condition (18) because we 

can express the free-surface face velocity as        .  

Given that the free-surface displacement    depends on the fluid velocity   (whose value 

varies during the solving of the Navier-Stokes equations), the free-surface face velocity   is 

then performed incrementally within each time step. 

 

So, following this strategy, a convergence loop on the mass flow values through the free-

surface faces has been implemented. This loop is clearly visible in the representation of the 

free surface algorithm hereafter (Figure 4.1.1-1): 
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FIGURE 4.1.1-1: PRESENTATION OF THE FREE SURFACE ALGORITHM 
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Within tridim.F, there is already an optional loop for the fluid/structure coupling (strpre.F and 

strdep.F); a similar structure is used for the free surface convergence loop. 

For this purpose, we need: 

- Two new routines: 

o fssave.F to save the boundary conditions values for the velocities and the 

pressure at the beginning of the time step, 

o fsload.F to load these initial boundary conditions values for the velocities and 

the pressure between two iterations in the convergence loop. To avoid endless 

iterations, a convergence test has to be added here. 

- Three new parameters: 

o ACTIFS to enable the convergence loop on the mass flow values through the 

free surface faces, 

o NBITFS to limit the maximum number of iterations within the loop, 

o EPALFS to test the convergence criterion and end the loop prematurely. 

- One variable: ITERFS to know the number of the current iteration within the 

convergence loop, and possibly stop the loop. 

- Several modifications in other routines: 

o tridim.F to create the structure of the free surface loop, 

o navsto.F to save the mass flow values through the free surface faces. These are 

the values of the mass flows which will be used to compute the free surface 

mesh velocities; the convergence test will also compare these values between 

two consecutive iterations. 

Some of these modifications can be seen in the Figure 4.1.1-1. 

4.1.2. Free-surface cell-vertices displacement 

We saw in the section 3.2.4.B that it is better to impose the cell-vertices displacement on the 

free surface. Indeed the interpolation done by Code_Saturne between the free-surface cell-face 

centre velocities and the free-surface cell-vertices displacement is not accurate enough; 

therefore, it seems wiser, for now, to compute directly the displacement of these cell-vertices, 

without using Code_Saturne solver. For this purpose, there are two main possibilities: 
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- computing straight away an explicit free-surface cell-vertices displacement thanks to 

the free-surface cell-face centre velocities  ; this scheme does not meet the local 

volume conservation, but does meet the global one. 

- or, to compute an implicit free-surface cell-vertices displacement by solving a system 

of equations between free-surface cell-vertices displacement and free-surface cell-face 

centre velocities; this scheme does verify the local volume conservation and thus the 

global one. 

Figure 4.1.2-1 is a diagram showing the interpolation between free-surface cell-face centre 

velocities and free-surface cell-vertices displacement: 

 

FIGURE 4.1.2-1: CELL-CENTRES, CELL-FACE CENTRES AND CELL-VERTICES LOCATION 

In this figure, red and green points represent cell-vertices (i.e. the “corners” of cells, defining 

the mesh and its displacement; red point for a free-surface cell-vertex, green point for an 

internal cell-vertex), black crosses locate free-surface cell-face centres and blue crosses point 

to cell-centres (where all discrete values of variables are computed). 

In the following table, index           represents a free-surface cell-vertex, index   

        represents a free-surface cell-face centre; therefore    is the velocity of the free-

surface cell-vertex 1 and    is the velocity of the free-surface cell-face centre A. 
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Explicit scheme Implicit scheme 

On a corner:       e.g.       

On a side:    
      

 
 e.g.    

     

 
 

Otherwise:    
               

 
 

                           e.g.    
            

 
 

   
                 

 
  

                              e.g.    
           

 
 

That gives us (n-1)*(N-1) equations (one 

equation for each free-surface face centre); 

but there are n*N free-surface vertices. 

 We need to add n+N-1 conditions in 

order to solve the system (e.g.      ). 

4.1.3. Internal cell-vertices displacement 

For the internal cell-vertices, as seen in the section 3.2.4.B, in order to avoid mesh crossovers, 

it is better to impose the displacement of each cell-vertex. To do that, each internal cell-vertex 

i below a free-surface cell-vertex imax can be displaced according to the initial ratio between 

their two heights:         

  

     

 (e.g.       
   

  
). This way, crossovers should be avoided. 

4.2. Features 

In this section, the main features of the free surface module are presented: 

- Embedded module in the Code_Saturne 1.3.3 version. 

- Activation variable for the free surface module ACTIFS: when enabled, Code_Saturne 

is able to compute free surface flows, otherwise it’s just the “classic” Code_Saturne 

(there is no side effects due to the new module implementation). 

- Control of the free surface convergence loop thanks to the convergence accuracy 

EPALFS and the max iteration number NBITFS parameters. 

- Time scheme selection (second-order Crank-Nicolson method or first-order implicit 

Euler method) is available. 

- Parallel computation available (at least partially). 

- 3D computation available with the explicit prediction of the free-surface cell-vertices 

displacement. 
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4.3. Implementation of the new module 

To implement the free surface module, new routines were created and some routines of 

Code_Saturne were modified. The main modifications (
*
) within the routines are listed in 

Appendix 2: Implementation of the new module. 

 

  

                                                

* All the modifications in non-user routines can be found, by searching for “C MOD OLIVIER” in the body of 

the file. 
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Chapter 5  

Application of the new module to 

different test cases 

5.1. Standing wave 

The first test problem considered in the present study is a standing wave in a water tank; this is 

a common test case for the development of free surface codes because, for low-amplitude 

waves, an analytic solution for the wave shape exists. Indeed, this case was previously run in 

1999 with the “Solveur Commun”, a prototype of Code_Saturne developed by EDF (see the 

EDF report [21]). 

5.1.1. Presentation 

The test case deals with the standing wave motion in a tank of length  . The shape is two-

dimensional and initially set to: 

              
   

 
 

 
   

 
   

 

      
   
  

 
 

      
   
  

     
   

 
  

(20) 

where: 

-        is the tank depth, 

-             represents the tank length, 

-       is the wave amplitude, 

-               is the wave length. 

Figure 5.1.1-1 shows the initial shape set for the free surface in this test case: 
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FIGURE 5.1.1-1: INITIAL SHAPE FOR THE STANDING WAVE TEST CASE 

Thus a standing wave is created, and considering the inviscid theory, the Chabert d'Hières’ 

formula presented in [22] gives a second order approximation in A of the wave shape: 

              
   

 
     

   

 
 

 
   

 
      

   

 
  

 

      
   
  

 
     

   
  

      
   
  

     
   

 
  

(21) 

where   
 

 
 is the time period and   is the wave celerity, given by the Airy’s formula: 

     
 

  
   

   

 
  (22) 

In this case, the numerical application gives          . 

5.1.2. Physical characteristics 

The test case is run with the following physical characteristics: 

- fluid density:              (water value), 

- fluid viscosity:                    (small enough to consider an inviscid fluid), 

- gravity:             , 

- Reynolds number:      for an inviscid fluid. 

5.1.3. Mesh characteristics 

The mesh is structured and composed by hexahedra; the mesh spacing is constant in the 

horizontal direction, variable in the vertical direction and has only one cell in the third 
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direction (     ). Three meshes were used: 106*1*20, 212*1*40 and 424*1*80 for the x, y 

and z directions respectively. 

5.1.4. Boundary conditions 

The boundary conditions for the fluid velocity are: 

- free surface: homogeneous Neumann condition, 

- tank bottom: homogeneous Dirichlet condition, 

- walls: slip condition. 

The boundary conditions for the mesh velocity are: 

- free surface: Dirichlet condition according to the formula (9) page 18, 

- tank bottom: homogeneous Dirichlet condition, 

- walls: slip condition. 

The boundary conditions for the pressure are: 

- free surface: homogeneous Dirichlet condition according to the formula (8) page 18, 

- tank bottom: Neumann condition, 

- walls: Neumann condition. 

5.1.5. Main computations 

All the computations here were run with Code_Saturne version 1.3.3 using only one core of a 

quad-core processor (Intel Xeon processor at 2.80 GHz with 4 GB of system RAM available); 

the laminar turbulence model and a second order time scheme were adopted. The most 

significant ones are listed hereafter and will be presented in the following paragraph of results. 

Computation 

name 

Time step 

(constant) 

   

Horizontal 

discretization 

Vertical 

discretization 

Physical 

time 

Maximum 

Courant 

number 

Dt=200ms - 106*20 200 ms 106 20 1000 s        

Dt=100ms - 106*20 100 ms 106 20 1000 s        

Dt=50ms - 106*20 50 ms 106 20 1000 s        

Dt=20ms - 106*20 20 ms 106 20 1000 s         

Dt=50ms - 212*40 50 ms 212 40 200 s        
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Dt=25ms - 424*80 25 ms 424 80 200 s        

Theoretical height These are the analytical results of the Chabert d'Hières’ formula 

The maximum Courant number       
       

  
 is done by Code_Saturne using the 

computed values of the fluid velocities. When the maximum Courant number is larger than 1 

(for example           with the 106*20 mesh), the computation tends to crash quickly. 

5.1.6. Results 

The Figure 5.1.6-1 and Figure 5.1.6-2 show the free surface shape, pressure and velocity fields 

at the physical times          and          respectively (for the computation: Dt=100ms 

- 106*20), after 90 time periods approximately. In both figures, the pressure and velocity 

fields seem to be physically right while the free surface shapes are in good agreement with the 

second order approximation in amplitude solution given by the formula (21) of Chabert 

d'Hières.  

 

FIGURE 5.1.6-1: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T1 = 875 S 

 

FIGURE 5.1.6-2: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T2 = 950 S 

The L2 error between the free surface height   and its theoretical value     (given by the 

Chabert d'Hières’ formula) is computed on the whole free surface: 
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where the two heights are compared at each free surface vertex. 

The Figure 5.1.6-3 presents, for a fixed mesh and different time steps, this L2 error as a 

function of time. The results are quite good: the worst value is a L2 error of 0.6% after        

of physical time, i.e. more than 100 time periods. That means: 

- that the time period observed in the results is really close to the theoretical value of the 

Airy’s formula (22), 

- and that the free surface shape is very similar to the theoretical shape given by the 

Chabert d'Hières’ formula (21). 

This figure also shows that the L2 error tends to decrease when the time step gets smaller: 

after        of physical time, the L2 error ranges from 0.6% for a time step           to 

0.04% for a time step         . When the time step decreases, the L2 error seems to reduce 

to a non-zero value which increases with elapsed time; maybe this is caused by the fact that 

the Chabert d'Hières’ formula is a second order approximation in amplitude of the free surface 

shape and not an exact solution. Further analysis is then required to confirm convergence. 

 

FIGURE 5.1.6-3: L2 ERROR OF THE FREE SURFACE SHAPE AS A FUNCTION OF TIME 

Figure 5.1.6-4 is the log-log plot of Figure 5.1.6-3. The equation for a line of slope   on a 

log-log scale is                         , thus            on a linear scale. 
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In the log-log scale, the L2 error tends to increase linearly with time: for the fixed mesh 

106*20 and the different time steps, the slope is quite constant:    . That means that the L2 

error increases with time squared:             . 

 

FIGURE 5.1.6-4: L2 ERROR OF THE FREE SURFACE SHAPE (LOG-LOG SCALE) 
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The relative error of global volume is given by: 

            
       

  
 

where    is the initial volume of water in the tank. 

The Figure 5.1.6-5 presents, for a fixed mesh and different time steps, this relative error of 

global volume as a function of time. The worst value is a relative increase in volume of 5e-7 

after 1000 s of physical time: this is a really small value, close to the numerical error of the 

code given by the relative precision for the solution of the linear system (the default value is 

1e-8). We can therefore conclude that, in this test case, the free surface module is volume 

conservative (and then mass conservative given that an incompressible flow is considered). 

This figure also shows that the variations of the relative error of global volume as a function of 

the time step value are complex: with a small time step         , the volume tends to 

decrease slightly whereas for a time step          , the volume increases. 

 

FIGURE 5.1.6-5: RELATIVE ERROR OF GLOBAL VOLUME AS A FUNCTION OF TIME 
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The relative error of global energy is given by: 

           
       

  
 

where: 

-    is the initial energy of the water in the tank:       
, 

-      is the energy of the water in the tank at the physical time t:            

       , 

The Figure 5.1.6-6 presents, for a fixed mesh and different time steps, this relative error of 

global energy as a function of time. The worst value is a relative increase in energy of 0.3% 

after 1000 s of physical time. Because this value is quite important, we can conclude that the 

free surface module is not strictly conservative for the energy. This is logical considering that, 

in Code_Saturne, no equation for the energy conservation is solved (even the momentum 

conservation equation is solved in a way that is not strictly conservative). 

This figure also shows that the variations of the relative error of global energy as a function of 

the time step value are complex: with a big time step          , the energy tends to 

increase whereas for a time step         , some energy is lost. 

 

FIGURE 5.1.6-6: RELATIVE ERROR OF GLOBAL ENERGY AS A FUNCTION OF TIME 
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In the Figure 5.1.6-7, we can see that, at the physical time        , the computed free 

surface shapes for the different simulations are really close to the theoretical height given by 

the Chabert d'Hières’ formula (21). 

At the physical time        , that is to say 69 wave periods after        , Figure 5.1.6-8 

shows that the difference between the computed free surface shapes and the theoretical height 

tends to get smaller when the time step decreases. However, for the four different time steps, 

this difference increased from        . Indeed, as presented in the following table, the wave 

periods of the simulations are slightly different from the theoretical value of the Airy’s 

formula (22): 

Mesh 106*20 Dt=200ms Dt=100ms Dt=50ms Dt=20ms Theory 

Wave period 9.772 s 9.778 s 9.779 s 9.780 s 9.783 s 

This explains why the difference between the computed and theoretical free surface shapes 

tends to increase with elapsed time. 

 

FIGURE 5.1.6-7: FREE SURFACE SHAPE AT THE TIME T = 200 S 
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FIGURE 5.1.6-8: FREE SURFACE SHAPE AT THE TIME T = 875 S 
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The Figure 5.1.6-9 presents, for three different meshes and time step values (chosen in order to 

have a constant maximum Courant number       ), the L2 error for the free surface height 

as a function of time. after       of physical time, the L2 error ranges from 0.02% for the 

424*80 mesh to 0.01% for the 106*20 mesh, i.e. the L2 error tends to increase when the mesh 

gets finer. This conclusion is interesting because, as a general rule, the opposite occurs. 

However this is true for classical steady-state CFD test case (such as the lid driven cavity), but 

here we are dealing with an initial value problem where the error will grow with physical time. 

When we compare different meshes for the same physical time, the smaller meshes and time 

steps will have involved more iterations and interpolations. 

 

FIGURE 5.1.6-9: L2 ERROR OF THE FREE SURFACE HEIGHT AS A FUNCTION OF TIME 
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The Figure 5.1.6-10 presents, for the same three different meshes and time step values, the 

relative error of global volume as a function of time. The relative error of global volume 

ranges from something really close to zero after 200 s of physical time for the 424*80 mesh to 

1e-7 for the 106*20 mesh, that is to say that the finer the mesh, the more the mass 

conservation is met. 

 

FIGURE 5.1.6-10: RELATIVE ERROR OF GLOBAL VOLUME AS A FUNCTION OF TIME 
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For the three different meshes and time step values, the Figure 5.1.6-11 shows the relative 

error of global energy as a function of time. The relative error of global energy ranges from 

0.01% after 200 s of physical time for the 424*80 mesh to 0.04% for the 106*20 mesh, that is 

to say that the finer the mesh, the more the energy conservation is met. 

 

FIGURE 5.1.6-11: RELATIVE ERROR OF GLOBAL ENERGY AS A FUNCTION OF TIME 

  



  Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne  

53 

In the Figure 5.1.6-12, we can see that, at the physical time       , the computed free 

surface shapes for the different simulations are quite close to the theoretical height given by 

the Chabert d'Hières’ formula (21). 

At the physical time        , Figure 5.1.6-13 shows that the difference between the 

computed free surface shapes and the theoretical height tends to get smaller when the mesh is 

coarser. Indeed, as presented in the following table, the difference between the wave periods 

of the simulations and the theoretical value of the Airy’s formula (22) increases when the 

mesh gets finer: 

 
Dt=100ms – 

106*20 

Dt=50ms – 

212*40 

Dt=25ms – 

424*80 
Theory 

Wave period 9.776 s 9.769 s 9.766 s 9.783 s 

These results show that the convergence in space of the method is not met. A possible 

explanation is that we are dealing here with an unsteady test case which is an initial value 

problem. The free surface shape is initially set according to the Chabert d'Hières’ theory which 

is only a second order approximation in amplitude A of the wave shape; the initial error due to 

the second order approximation will grow with physical time and, for the same physical time, 

the smaller meshes and time steps need more iterations and interpolations, which can increase 

the final error. 

 

FIGURE 5.1.6-12: FREE SURFACE SHAPE AT THE TIME T = 25 S 
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FIGURE 5.1.6-13: FREE SURFACE SHAPE AT THE TIME T = 200 S 

 

To sum up, results are quite encouraging for this test case: the mass conservation is met and 

the time period of the standing wave oscillations is really close to the theoretical value given 

by the Airy’s formula (22). The free surface shape is also in good agreement with the results 

given by the Chabert d'Hières’ formula (21). Convergence in time shows encouraging results 

but convergence in space is unexpected and need a further analysis: for this nonlinear case, the 

simulations should be initially set and compared to a theory more accurate than the second 

order theory of Chabert d'Hières. 

5.1.7. Computing resources used 

All the computations presented before were run on a single core of a quad-core processor 

(Intel Xeon processor at 2.80 GHz with 4 GB of system RAM available) with a constant 

relative precision for the computation of the free surface mesh velocities (i.e. EPALFS criteria 

as explained in Appendix 2: Implementation of the new module); for each of them, the table 

hereafter shows the average number of sub-iterations required to converge within the free-

surface loop and also the average computation time spent per time step. 
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Computation name 

(time step – mesh) 

Average sub-

iteration number 

Average 

computation time 

Maximum 

Courant number 

Dt=200ms - 106*20 6.2 1.05 s        

Dt=100ms - 106*20 5.6 811 ms        

Dt=50ms - 106*20 4.8 616 ms        

Dt=20ms - 106*20 4.0 452 ms         

Dt=50ms - 212*40 6.0 11.4 s        

Dt=25ms - 424*80 4.6 30.0 s        

The mesh 106*20 being fixed, the average sub-iteration number and the average computation 

time tend to decrease when the time step gets smaller. For a constant maximum Courant 

number       , when the mesh gets finer, the average sub-iteration number tends to 

decrease whereas the average computation time tends to increase. 

  



  Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne  

56 

5.2. Solitary wave 

The second test problem considered in the present study is another common test case for the 

development of free surface codes: a solitary wave in a water tank; this case is interesting 

because an analytic solution for the wave shape exists. As the standing wave, this case was 

already run in 1999 with Solveur Commun (see the EDF report [21]). 

5.2.1. Presentation 

The test case deals with the solitary wave motion in a tank of length         and depth 

      . The solitary wave amplitude is      . The mesh used in this test case is 

composed by hexahedra and is structured; its mesh spacing is constant in both the horizontal 

direction with 500 cells (   ), and the vertical direction with 20 cells (     ) and has only 

one cell in the third direction (     ). The original mesh is presented below in Figure 5.2.1-1: 

 

FIGURE 5.2.1-1: ORIGINAL MESH AND INITIAL SHAPE FOR THE SOLITARY WAVE TEST CASE 

The shape is two-dimensional and the solitary wave is created by a velocity profile set on the 

inlet and coded in the routine usclim.F (the velocity profile was coded by Dr Yacine Addad, 

University of Manchester): 

C Compute inlet velocity 

      D = 10.D0 ! still water depth 

      WAVEHT = 2.D0 ! wave height or amplitude 

      GRAVITY = 9.81D0 

      TWAVE = 10.0D0 

C Wave quantities 

      AK = SQRT(0.75*WAVEHT/D**3) 

      C = SQRT(GRAVITY*(D+WAVEHT)) 

      DDX = C*TWAVE 

C --- We set for the color "INLET" an inlet 

      CALL GETFBR('INLET',NLELT,LSTELT) 

C     =========== 

      DO ILELT = 1, NLELT 



  Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne  

57 

        IFAC = LSTELT(ILELT) 

        DO IPHAS = 1, NPHAS 

C the solitary wave is created by a velocity profile set on the inlet 

          ITYPFB(IFAC,IPHAS) = IENTRE 

C the velocities are computed hereafter 

C======================== 

          ARG = AK *((CDGFBO(1,IFAC)+DDX)-C*TTCABS) 

          ARG = MIN (MAX (ARG, -100.0D0),100.0D0) 

          ETA = WAVEHT / COSH( ARG )**2 

          UIN = C *ETA/ (D+ETA) 

          DWDZ = 2.0D0*AK*D*UIN*TANH (ARG) / (D+ETA)  

C 

          ICODCL(IFAC,IU(IPHAS))   = 1 

          RCODCL(IFAC,IU(IPHAS),1) = UIN  

          RCODCL(IFAC,IU(IPHAS),2) = RINFIN 

          RCODCL(IFAC,IU(IPHAS),3) = 0.D0 

C 

          ICODCL(IFAC,IV(IPHAS))   = 1 

          RCODCL(IFAC,IV(IPHAS),1) = 0.0D0 

          RCODCL(IFAC,IV(IPHAS),2) = RINFIN 

          RCODCL(IFAC,IV(IPHAS),3) = 0.D0 

C 

          ICODCL(IFAC,IW(IPHAS))   = 1 

          RCODCL(IFAC,IW(IPHAS),1) = DWDZ * CDGFBO(3,IFAC) 

          RCODCL(IFAC,IW(IPHAS),2) = RINFIN 

          RCODCL(IFAC,IW(IPHAS),3) = 0.D0 

C                       

          ICODCL(IFAC,IPR(IPHAS))   = 3 

          RCODCL(IFAC,IPR(IPHAS),1) = 0 

          RCODCL(IFAC,IPR(IPHAS),2) = RINFIN 

          RCODCL(IFAC,IPR(IPHAS),3) = 0.D0 

        ENDDO 

      ENDDO 

 

Thus a solitary wave of       amplitude is created. Considering the inviscid theory, the 

wave should move with a constant crest velocity and amplitude. The analytic solution for the 

wave shape is given by Archambeau et al. in [21]: 

            
      

          
  (23) 

where the function        is defined hereafter: 
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(24) 

In this case, the numerical application gives a crest velocity              . 

As presented in Appendix 3: Solitary test case – paddle movement, an attempt to create the 

solitary wave by a paddle movement set on the inlet was made and coded in the routine 

usalcl.F (the paddle motion was coded by Rui Xu, University of Manchester, according to the 

wavemaker theory of Dean and Dalrymple [23]); first results were interesting and needed 

further development. 

5.2.2. Physical characteristics 

The test case is run with the following physical characteristics: 

- fluid density:              (water value), 

- fluid viscosity:                    (small enough to consider an inviscid fluid), 

- gravity:             , 

- Reynolds number:      for an inviscid fluid. 

5.2.3. Boundary conditions 

The boundary conditions for the fluid velocity are: 

- free surface and outlet: homogeneous Neumann condition, 

- inlet: imposed velocity profile, 

- tank bottom: homogeneous Dirichlet condition, 

- symmetric walls: slip condition. 

The boundary conditions for the mesh velocity are: 

- free surface: Dirichlet condition according to the formula (9) page 18, 

- tank bottom: homogeneous Dirichlet condition, 

- symmetric walls, inlet and outlet: slip condition. 

The boundary conditions for the pressure are: 

- free surface: homogeneous Dirichlet condition according to the formula (8) page 18, 
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- tank bottom: Neumann condition, 

- symmetric walls, inlet and outlet: Neumann condition. 

5.2.4. Main computation 

All the computations were run on two cores of an Intel Xeon quad-core processor (clock 

speed: 2.80 GHz, 4 GB of system RAM available) with Code_Saturne version 1.3.3 (the 

geometry allowed this given that all the internal nodes under a free surface node stayed in the 

same parallelised domain); the laminar turbulence model and a second order time scheme 

were adopted. The most significant computation was a 50s simulation run with a constant time 

step         ; its results are presented hereafter. 

5.2.5. Results 

The Figure 5.2.5-1, Figure 5.2.5-2 and Figure 5.2.5-3 show the free surface shape, pressure 

and velocity fields at the physical times          ,         and         respectively. In 

these figures, the pressure and velocity fields seem to be physically right while the free surface 

shapes are in good agreement with the inviscid theory: the wave crest appears to have a 

constant amplitude and velocity. 

 

FIGURE 5.2.5-1: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T1 = 8.75 S 

 

 

FIGURE 5.2.5-2: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T2 = 25 S 
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FIGURE 5.2.5-3: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T3 = 50 S 

 

In the following two figures (Figure 5.2.5-4 and Figure 5.2.5-5), the computed free surface 

shape and its analytical solution are plotted at twelve different physical times (from          

to         ). For all of them, the free surface shape is in good agreement with the analytic 

solution (23): the computed solitary wave and the analytical one are very similar, they both 

have the same crest velocity. 

Nevertheless the computed amplitude decreases; this is maybe caused by the fact that 

perturbations are created when the solitary wave enters the computational domain: parasitic 

oscillations appear and cannot be damped (the water is considered here as an inviscid fluid). It 

seems that these parasitic oscillations do not occur when both the free surface elevation and 

the inlet velocity profile are specified, thus they appear to be due to the calculation of the free 

surface elevation as a function of the mass flow entering the domain. 
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FIGURE 5.2.5-4: FREE SURFACE SHAPES AT 8 DIFFERENT PHYSICAL TIMES 
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FIGURE 5.2.5-5: FREE SURFACE SHAPES AT 4 DIFFERENT PHYSICAL TIMES 

 

Figure 5.2.5-6 and Figure 5.2.5-7 illustrate the solitary wave shape at two consecutive physical 

times,        and       . For the Code_Saturne predictions, two methods are considered: 

- Saturne (method-1) in which the mesh velocity is imposed at the free-surface cell-face 

centres, 

- Saturne (method-2) in which the displacement of the free-surface cell-vertices is 

interpolated as presented in 4.1.2. 

The Code_Saturne results are compared with the analytical solution (23) and the numerical 

predictions of the in-house code STREAM (
*
). 

The results confirm what we saw in the section 3.2.4.B: it is better to impose the displacement 

of the free-surface cell-vertices. Indeed, using method-1 in Code_Saturne is causing a small 

                                                

* As presented by Apsley in [20], STREAM is a finite-volume solver which uses the SIMPLE pressure-correction 

algorithm to solve the Reynolds-Averaged Navier–Stokes (RANS) equations. For free surface predictions, the 

ALE method is used and, within each time step, several free-surface updates are realised; each free surface 

update leads to a mesh adjustment for which several cycles of the SIMPLE algorithm are needed to update the 

pressure and velocity fields. The solution proceed to the next time step when mass, momentum and free-surface 

kinematic equations are simultaneously satisfied. 
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phase lag of the wave displacement, whereas method-2 and STREAM are in good agreement 

with the analytical solution. From the figures, it is also observed that all three numerical 

methods appear to underpredict the free surface elevation after the crest. 

 

FIGURE 5.2.5-6: WAVE PROFILE AT PHYSICAL TIME T=20S 

 

FIGURE 5.2.5-7: WAVE PROFILE AT PHYSICAL TIME T=40S 
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To sum up, the results of this test case confirmed the validation base on the standing wave in 

section 5.1: the motion of the computed solitary wave (created here by an imposed velocity 

profile on the inlet) within the tank is in good agreement with the analytic solution and 

STREAM predictions. 

It could be interesting to study how the parasitic oscillations are created by the inlet and why 

the free surface elevation after the crest is underpredicted. 

5.2.6. Effectiveness of parallel computing 

In order to evaluate the effectiveness of the free surface module for parallel computing, the 

main computation presented in 5.2.4 was also run on a single processor core. For each 

computation, the table hereafter shows the average computation time spent per time step and 

the average number of sub-iterations required to converge within the free-surface loop. 

Number of cores Average sub-iteration number Average computation time 

1 4.8 4.20 s 

2 4.8 2.32 s 

The average sub-iteration number is exactly the same for the two computations: that is the 

proof that, in this case, the parallelisation of the code works properly given that the results of 

the two computations are not influenced by the parallelisation. In addition, the parallelisation 

seems to be quite effective: from 4.20 s required for the computation on a single core, the 

average computation time decreases to 2.32 s for the computation on two cores, it is almost 

two times faster. 
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5.3. Duncan’s hydrofoil 

This test case considers the flow over a hydrofoil under a free surface. This flow was studied 

experimentally by J.H. Duncan [24] and numerically by S. Muzaferija et al. [25]. It is an 

interesting case because it eventually converges to a steady state solution. Two codes are 

considered: Code_Saturne with its ALE technique and the commercial code STAR-CD with its 

VOF approach. 

5.3.1. Presentation 

The hydrofoil of length                 has a NACA 0012 profile, a           fluid 

velocity, and 5° angle of attack; the undisturbed water above the profile is        , and the 

Froude Number is      . 

The numerical domain is shown in Figure 5.3.1-1 (the dimensions are normalized according to 

the hydrofoil length      ): 

 

FIGURE 5.3.1-1: SCHEMATIC OF NACA FOIL WITH NORMALIZED DIMENSIONS 

The free surface is initially undisturbed and the resistance of the hydrofoil creates 

progressively a wave downstream; this wave should converge towards a steady solution, 

according to Duncan’s experimental results [24]. 

5.3.2. Mesh characteristics 

Figure 5.3.2-1 is the original mesh used in this test case for the computation with 

Code_Saturne: 
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FIGURE 5.3.2-1: ORIGINAL MESH (CODE_SATURNE VERSION – LONG DOMAIN) 

This mesh is particularly refined near the hydrofoil, as the Figure 5.3.2-2 shows: 

 

FIGURE 5.3.2-2: MESH NEAR THE NACA 0012 HYDROFOIL (CODE_SATURNE VERSION) 

5.3.3. Physical characteristics 

The test case is run with the following physical parameters: 

- fluid density:              (water value), 

- fluid viscosity:                   (water value), 

- gravity:             , 

- NACA length:                , 

- inlet fluid velocity:              , 

- Froude number:    
 

        
      , 

- Reynolds number:    
         

 
        . 

5.3.4. Boundary conditions 

The boundary conditions for the fluid velocity are: 

- free surface: homogeneous Neumann condition, 

- inlet: constant inlet velocity, 
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- outlet: convective boundary condition for Code_Saturne (
*
) and standard outlet for the 

commercial code STAR-CD, 

- tank bottom and hydrofoil: homogeneous Dirichlet condition, 

- symmetric walls: slip condition. 

The boundary conditions for the mesh velocity are: 

- free surface: Dirichlet condition according to the formula (9) page 18, 

- tank bottom and hydrofoil: homogeneous Dirichlet condition, 

- symmetric walls, inlet and outlet: slip condition. 

The boundary conditions for the pressure are: 

- free surface: homogeneous Dirichlet condition according to the formula (8) page 18, 

- outlet: convective boundary condition for Code_Saturne (
*
) and standard outlet for the 

commercial code STAR-CD, 

- tank bottom, hydrofoil, symmetric walls and inlet: Neumann condition. 

5.3.5. Main computations 

To predict the free-surface shape, two codes are considered: Code_Saturne (version 1.3.3) 

with the ALE technique and the commercial code STAR-CD (version 4.02) with the VOF 

approach. 

The simulations reported in section 5.3.6 were completed in collaboration with Dr Yacine 

Addad and a report presenting the wave profile and pressure coefficients around the NACA 

hydrofoil was co-authored [26]: 

- First, numerical tests were conducted with the code STAR-CD using the VOF 

technique in order to examine the effects of a turbulence model on the flow predictions 

at such a low Reynolds number. (          ). 

- Then, an extended domain (         canal length behind the hydrofoil instead 

of           ) was used in the comparative runs to avoid boundary effects on the zone 

of interest. 

                                                

* The convective boundary condition was implemented in Code_Saturne by Dr Yacine Addad (University of 

Manchester); it consists in satisfying an equation of the form 
  

  
   

  

  
   for all the variables Φ including the 

pressure. A detailed description can be found in [26]. 



  Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne  

68 

5.3.6. Results 

Figure 5.3.6-1 shows the free surface shape and the velocity field for the global domain while 

Figure 5.3.6-2 focuses on the velocity and pressure fields near the hydrofoil, both at the 

physical time          for the Code_Saturne computation in the extended domain. In both 

figures, we can see that the fluid flow is disturbed by the hydrofoil in its proximity, which 

creates a wave downstream. 

 

FIGURE 5.3.6-1: FREE SURFACE SHAPE AND VELOCITY FIELD AT T = 25 S 

 

FIGURE 5.3.6-2: PRESSURE AND VELOCITY FIELDS NEAR THE HYDROFOIL AT T = 25 S 

 

The results of wave profile, presented in Figure 5.3.6-3, reveal that the activation of a 

turbulence model with the VOF method in the short domain (“k-ε” and “no model” 

computations) has only small effects on the flow predictions, thus justifying the validity of the 

computations carried out with no turbulence model (i.e. assuming a laminar regime). 
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As illustrated in Figure 5.3.6-3, both ALE (in Code_Saturne) and VOF (in STAR-CD) methods 

under-predict the wave amplitude for the same “long domain” mesh resolution but are well in 

phase with the experimental measurements. 

The first wave is better predicted with the VOF method, while further downstream, the waves 

predicted with the VOF method dissipate much faster than those obtained with the ALE 

method which remain at the same amplitude. This is maybe due to the fact that computations 

run with Code_Saturne were performed using the second-order centred difference scheme 

(CD) for convection while a first order Upwind scheme was selected for the STAR-CD code in 

order to enhance stability (as recommended in the code documentation). 

 

FIGURE 5.3.6-3: WAVE PROFILE FOR A DEPTH OF SUBMERGENCE OF 21.0 CM 

 

To sum up, the Code_Saturne ALE results are in a fairly reasonable agreement with the STAR-

CD VOF approach predictions. Discrepancies between flow-solvers predictions and 

experimental values, particularly for the wave amplitude, prove that the case is more 

challenging in the sense that many factors need to be taken into account such as grid 

resolution, numerical schemes, boundary conditions, turbulence models. Identifying the main 

reasons of these discrepancies is an interesting topic for further research. 
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Chapter 6  

Limits of existing module and 

proposal for a new version 

6.1. Local volume conservation 

We saw that, because of the inaccurate Code_Saturne interpolation between the free-surface 

cell-vertices displacement and the free-surface cell-face centres velocities, we have to compute 

“by hand” the cell-vertices displacement. The easiest way to do that is to consider an explicit 

formulation, but it has the disadvantage of not satisfying the local mass conservation. 

As seen in section 3.2.4.B, the interpolation inaccuracy occurs as an edge effect and is 

probably caused by the way the boundary conditions for the mesh velocity are treated within 

Code_Saturne. If this problem is solved, the local volume conservation will then be met and 

that will improve the code accuracy in predicting free surface flows. 

6.2. Parallel computation 

The last version of the free surface module does support parallel computation considering 

some conditions: 

- The global domain cannot be divided anyhow: in the global mesh, all the internal cell-

vertices under a free-surface cell-vertex (considering the gravity vector) must stay in 

the same parallelised domain. 

- The moving boundary conditions have to match the parallelised domain. 

- The post processing outputs need to be implemented considering the parallel 

constraints. 

It will be useful to smooth over these constraints; this way the range of available test-cases 

will be larger. 
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6.3. Convergence loop 

Sometimes, the convergence loop does not converge towards one unique value, but towards 

two different values. Even the increase of the maximum iteration number of the convergence 

loop does not solve the problem; however, by reducing the time step, the convergence loop 

seems to converge eventually towards one unique value. 

Therefore, the implementation of a variable time step method based on both the Courant 

number and the convergence loop accuracy seems necessary. 

6.4. Energy conservation 

In the standing wave test-case, the global energy (that is to say the gravitational potential 

energy plus the kinetic energy) tends to vary slightly sometimes. No energy conservation law 

is solved, so the global energy conservation is not inherent, but it would be interesting to 

understand the causes of this phenomenon and its possible solutions. 

6.5. Support of irregular mesh with different 

types of cell 

In the free surface module, the actual cell-vertices displacement method consists in an explicit 

formulation which works only with regular meshes (ordered rectangular grid on the free 

surface, similar to a chessboard as presented in Figure 4.1.2-1). This limits the range of test 

cases compatible with Code_Saturne. Actually, if the mesh velocity interpolation within 

Code_Saturne is made reliable, unstructured and non-conform meshes will then be supported. 

6.6. CFL condition 

The Courant number must stay less than one:    
    

  
  . Otherwise the free surface loop 

has difficulties to converge, and that can lead to a computation crash. 
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Conclusion 

The feasibility of the implementation within Code_Saturne of a free surface module based on 

the ALE method was demonstrated. Indeed, the original ALE module within Code_Saturne 

has been adapted to free-surface flows by adding a convergence loop to perform the free 

surface movement incrementally within each time step. The geometry was then updated at the 

end of the time step, thanks to the implemented method, which explicitly computes the 

displacement of each cell-vertex within the global domain; this allows the module to be 

globally volume conservative. 

 

Several computations on free surface configurations were run. The first test case is a standing 

wave in a tank; results are quite good: the time period of the standing wave oscillations and 

the free surface shape are close to the theoretical values, the mass conservation is met. 

Convergence in time shows a good behaviour; on the contrary, convergence in space is odd: a 

lack of convergence is observed with decreasing spatial resolution. This would need a further 

analysis to be complete: the case should be initially set and compared to a theory more 

accurate than the second order theory of Chabert d'Hières. 

The second configuration deals with a solitary wave in a water tank; the results are in good 

agreement with the analytic solution – in terms of crest amplitude, crest velocity and solitary 

wave shape. Parasitic oscillations are created when the solitary wave enters the computational 

domain and, to get rid of them, it would be interesting to understand how they are created. 

Further research is needed to understand why the free surface elevation after the crest is 

underpredicted for both Code_Saturne and STREAM code. 

For the third test case, the flow over a hydrofoil under a free surface, Code_Saturne is in fairly 

good agreement with the STAR-CD VOF approach predictions and the experimental 

measurements of J.H. Duncan, but this case proves to be more challenging: discrepancies 

between flow-solvers predictions and experimental values, particularly for the wave 

amplitude, show that many factors would need to be further analyzed – such as grid resolution, 

numerical schemes, turbulence models and boundary conditions – in order to get better 

predictions. 
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To sum up, these first results are encouraging even if, for now, the method shows some 

important limitations: the local volume conservation law is not met, parallel computations are 

only available for few configurations and irregular meshes are not supported anymore. Most of 

these limitations could already be overcome if the Code_Saturne interpolation between the 

free-surface cell-vertices displacement and the free-surface cell-face centres velocities is made 

reliable; this is definitely the first improvement to do in the next stages of the project. Indeed, 

Code_Saturne will then be able to run complex 3D applications, such as the flow around a 

marine turbine with the presence of free-surface effects, a simulation required for the ReDAPT 

project. 
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Appendices 

Appendix 1: Successive stages within a time step 

Calculation of the physical properties 

Boundary Conditions 

 condli 

  clptur “turbulent” conditions at the wall 
  clsyvt symmetry conditions for the vectors and the tensors 

Navier-Stokes solution 

 navsto 

  Velocity prediction 
   preduv 

    vissec momentum source terms related to the  transposed gradient 

     of the velocity 
    viscfa calculation of the viscosity at the faces 

    codits iterative solution of the system using an incremental method 

  Pressure correction 
   resolp 

    viscfa calculation of the time step at the faces... 

    visort ...according to the selected options 

    matrix calculation of the Poisson equation matrix 
    inimas initialisation of the mass flow rate 

    itrmas update of the mass flow rate 

  Velocity correction 
    standard method or ... 

   recvmc ... least square method 

k − epsilon  model 
 turbke 

  viscfa preliminary steps before... 

  bilsc2 ...source terms coupling 

  viscfa calculation of the viscosity at the faces 
  codits iterative solution of the systems using an incremental method 

Reynolds stress model 

 turrij 
  visort calculation of the viscosity at the faces 

  codits iterative solution of the systems using an incremental method 

Equations for the scalars 
 covofi 

  viscfa calculation of the viscosity at the faces 

  codits iterative solution of the systems using an incremental method 
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Appendix 2: Implementation of the new module 

Structure of the convergence loop (routines independent of 

the test case) 

The following routines manage the convergence loop: they are independent of the test case 

simulated, and a basic new user would not need to modify them. 

cs_ale.h (header file to declare parallelisation functions – modified file): 

The new parallelisation function ALEFRS is declared here: this function computes the free 

surface nodes displacement for the parallelised border nodes. 

cs_ale.c (C file to define parallelisation functions – modified file): 

The new parallelisation function ALEFRS is defined here: this function computes the free 

surface nodes displacement for the parallelised border nodes by creating a table of 

connectivity between the border nodes and the parallelised domains they belong to. 

albase.h (include file to declare global variables – modified file): 

Three new global variables are created: 

- ACTIFS (integer): use of an iterative scheme to compute the free surface mesh 

velocities (equal to 0 when disabled, equal to 1 when enabled), 

- NBITFS (integer): maximum iterations number for the computation of the free surface 

mesh velocities (i.e. when ACTIFS = 1), 

- EPALFS (real): relative precision for the computation of the free surface mesh 

velocities. 

usalin.F (user's routine for ALE's settings – modified routine): 

The three new global variables required to settle the convergence loop are initialized here. 

C     Activation of the iterative scheme for the computation of the free surface mesh velocities 

      ACTIFS = 1 

C     Maximum iterations number for the computation of the free surface mesh velocities when ACTIFS = 1 

      NBITFS = 10 

C     Relative precision for the computation of free surface mesh velocities 

      EPALFS = 1.D-6 

ustbus.F (user's routine to define the dimensions of the user's and developer's tables – 

modified routine): 
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The dimensions of the user's and developer's tables are required: the developer's table is used 

to store the boundary conditions and mass flows values, whereas the user's table stores data is 

needed for post processing. 

      NITUSE = NNOD 

      NIDEVE = 5*NFABOR 

      NRTUSE = 4*NFABOR+5+2*NNOD 

      NRDEVE = NFAC+9*NFABOR+1+NNOD 

tridim.F (solving of Navier-Stokes and scalar equations for one time step – modified routine): 

This routine sets the structure of the free surface convergence loop. 

If the iterative scheme to compute the free surface mesh velocities is enabled and the ALE 

initialisation iteration already occurred, then the convergence loop can start. 

      IF (ACTIFS.EQ.1 .AND. ITRALE.NE.0) THEN 

        ITERFS = 1 

      ELSE 

        ITERFS = -1 

      ENDIF 

Next, the initial boundary conditions values for the variables are saved at the first iteration. 

        IF (ACTIFS.EQ.1 .AND. ITERFS.EQ.1) THEN 

          CALL FSSAVE 

C         =========== 

     & ( IFINIA , IFINRA , ITRALE , ITALIM , INEEFL , 

     &   NDIM   , NCELET , NCEL   , NFAC   , NFABOR , NFML   , NPRFML , 

     &   NNOD   , LNDFAC , LNDFBR , NCELBR , 

     &   NIDEVE , NRDEVE , NITUSE , NRTUSE , 

     &   IFACEL , IFABOR , IFMFBR , IFMCEL , IPRFML, 

     &   IPNFAC , NODFAC , IPNFBR , NODFBR , 

     &   IA(IIMPAL)      , 

     &   IDEVEL , ITUSER , IA     , 

     &   XYZCEN , SURFAC , SURFBO , CDGFAC , CDGFBO , 

     &   XYZNOD , VOLUME , 

     &   RTP    , RTPA   , PROPCE , PROPFA , PROPFB , 

     &   COEFA  , COEFB  , 

     &   RDEVEL , RTUSER , RA  ) 

C 

        ENDIF 

And lastly, if the convergence criterion is not met, the initial boundary conditions and 

variables values are reloaded and the convergence loop starts a new iteration. 

      IF (ACTIFS.EQ.1) THEN 

        CALL FSLOAD 

C       =========== 

     & ( IFNIA1 , IFINRA , 
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     &   ITRALE , ITERFS , 

     &   NDIM   , NCELET , NCEL   , NFAC   , NFABOR , NFML   , NPRFML , 

     &   NNOD   , LNDFAC , LNDFBR , NCELBR , NVAR   , 

     &   NIDEVE , NRDEVE , NITUSE , NRTUSE , 

     &   IFACEL , IFABOR , IFMFBR , IFMCEL , IPRFML , 

     &   MAXELT , IA(ILS), 

     &   IPNFAC , NODFAC , IPNFBR , NODFBR , 

     &   IDEVEL , ITUSER , IA     , 

     &   XYZCEN , SURFAC , SURFBO , CDGFAC , CDGFBO , XYZNOD , VOLUME , 

     &   DT     , RTP    , RTPA   , PROPCE , PROPFA , PROPFB , 

     &   COEFA  , COEFB  , 

     &   RDEVEL , RTUSER , 

     &   RA     ) 

C 

        IF (ITERFS.NE.-1) THEN 

          ITERFS = ITERFS + 1 

          GOTO 300 

        ENDIF 

      ENDIF 

fssave.F (save of the mass flows and boundary conditions values when the free surface 

module is enabled – new routine): 

The values of the mass flows and fluid velocity and pressure boundary conditions are saved in 

the developer’s real table RDEVEL. 

navsto.F (solving of the Navier-Stokes equations for one time step – modified routine): 

During the solving of the Navier-Stokes equations, in the correction step, the values of the 

mass flows through the free surface are saved just before the addition of the mesh velocity to 

the convective flux; these mass flows actually count the fluid supposed to go through the free 

surface if the free surface is considered as fixed. These values are stored in the user’s real table 

RTUSER. 

      IF (ACTIFS.EQ.1) THEN 

        CALL GETFBR('FREE_SURF',NLELT,LSTELT) 

C       =========== 

        DO ILELT = 1, NLELT 

          IFAC = LSTELT(ILELT) 

          RTUSER(4*IFAC) = RTUSER(4*IFAC+1) 

          RTUSER(4*IFAC+1) = PROPFB(IFAC,IPPROB(IFLUMA(IU(1)))) 

        ENDDO 

      ENDIF 
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fsload.F (possible back to the saved values of the variables and boundary conditions 

(fssave.F) when the free surface with iterative prediction of the free surface mesh velocities is 

enabled – new routine): 

The difference between the new mass flows RTUSER(4*IFAC+1) on the free surface and the 

ones of the previous iteration of the convergence loop RTUSER(4*IFAC) is calculated: 

      DELTA = 0.D0 

      CALL GETFBR('FREE_SURF',NLELT,LSTELT) 

C     =========== 

      DO ILELT = 1, NLELT 

        IFAC = LSTELT(ILELT) 

        IF(DELTA.LT.(SQRT((RTUSER(4*IFAC+1)-RTUSER(4*IFAC))**2)/ABS(RTUSER(4*IFAC+1)))) 
THEN 

          DELTA=(SQRT((RTUSER(4*IFAC+1)-RTUSER(4*IFAC))**2)/ABS(RTUSER(4*IFAC+1))) 

        ENDIF 

      ENDDO 

That gives us a value DELTA which can be compared with EPALFS: 

      IF (DELTA.LE.EPALFS) THEN 

        ITERFS = -1 

        WRITE(NFECRA,*) 'Convergence', DELTA 

      ELSEIF (ITERFS.EQ.NBITFS) THEN 

        CALL GETFBR('FREE_SURF',NLELT,LSTELT) 

C       =========== 

        DO ILELT = 1, NLELT 

          IFAC = LSTELT(ILELT) 

          RTUSER(4*IFAC+1) = (RTUSER(4*IFAC+1)+RTUSER(4*IFAC))/2 

        ENDDO 

        WRITE(NFECRA,*) 'Non Convergence', DELTA 

      ELSEIF (ITERFS.GT.NBITFS) THEN 

        ITERFS = -1 

      ENDIF 

If the convergence criterion is met (i.e. DELTA < EPALFS), the convergence loop can be 

ended directly by putting ITERFS = -1. 

Otherwise, as long as the convergence criterion is not met, the convergence loop carries on 

until the iteration number ITERFS raises the value of NBITFS. At this point, a final iteration is 

added where the mass flow value is the average of the two previous ones. 

If ITERFS is positive, the convergence loop is still active, which means that the code has to 

come back to the previous values of the variables and boundary conditions saved in fssave.F 

(except for the mass flows): 

      IF (ITERFS.NE.-1) THEN 

        DO II = 1, NVAR 
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          DO IEL = 1, NCELET 

            RTP(IEL,II) = RTPA(IEL,II) 

          ENDDO 

        ENDDO 

        DO IFAC = 1, NFABOR 

           COEFA(IFAC,ICLP) = RDEVEL(NFAC+NFABOR+IFAC) 

           COEFA(IFAC,ICLU) = RDEVEL(NFAC+2*NFABOR+IFAC) 

           COEFA(IFAC,ICLV) = RDEVEL(NFAC+3*NFABOR+IFAC) 

           COEFA(IFAC,ICLW) = RDEVEL(NFAC+4*NFABOR+IFAC) 

           COEFB(IFAC,ICLP) = RDEVEL(NFAC+5*NFABOR+IFAC) 

           COEFB(IFAC,ICLU) = RDEVEL(NFAC+6*NFABOR+IFAC) 

           COEFB(IFAC,ICLV) = RDEVEL(NFAC+7*NFABOR+IFAC) 

           COEFB(IFAC,ICLW) = RDEVEL(NFAC+8*NFABOR+IFAC) 

        ENDDO 

      ENDIF 

Boundary conditions (routines dependent of the test case) 

The following routines depend on the simulated test case; the code lines presented here 

focuses on the implementation of the free surface boundary conditions – for the standing wave 

test case. 

usalcl.F (user's routine for the loading of the boundary conditions for the mesh velocity): 

The displacement of the free surface nodes is imposed by using the DEPALE array. This way, 

the problems caused by the use of the RCODCL are avoided (see the section 3.2.4.B). 

First, for the colour “FREE_SURF”, that is to say the free surface, an imposed mesh velocity 

is set. 

      CALL GETFBR('FREE_SURF',NLELT,LSTELT) 

C     =========== 

      DO ILELT = 1, NLELT 

        IFAC = LSTELT(ILELT) 

        IEL = IFABOR(IFAC) 

        IPHAS = 1 

        IALTYB(IFAC) = IVIMPO 

        RCODCL(IFAC,IUMA,1) = 0.D0 

        RCODCL(IFAC,IVMA,1) = 0.D0 

The vertical free surface velocity is directly computed as the ratio between the mass flow 

through the free surface face IFAC (value saved in the RTUSER user’s real table), and the 

density and the vertical component of the face surface vector. 

        RCODCL(IFAC,IWMA,1) = 

  

 (RTUSER(4*IFAC+1)/(PROPFB(IFAC,IPPROB(IROM(IPHAS)))*SURFBO(3,IFAC))) 
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At this point, the code has to compute the free surface nodes displacements; there are two 

ways of doing that: 

- the first scheme is simple and works for all the test cases (2D and 3D): each free 

surface nodes displacement is computed explicitly and is the average of the mesh 

velocities at the closest free surface face centres, except for the side nodes. This 

scheme does meet the global conservation of the mass, but not the local one. 

        IF(NTCABS.GT.0) THEN 

          DO II = IPNFBR(IFAC), IPNFBR(IFAC+1)-1 

            INOD = NODFBR(II) 

            IMPALE(INOD) = 1 

            DEPALE(INOD,1) = 0.D0 

            DEPALE(INOD,2) = 0.D0 

            RTUSER(4*NFABOR+5+INOD) = RTUSER(4*NFABOR+5+INOD) + 

     * RCODCL(IFAC,IWMA,1)*DTREF 

            RTUSER(4*NFABOR+5+NNOD+INOD)=RTUSER(4*NFABOR+5+NNOD+INOD)+1 

            DEPALE(INOD,3) = XYZNOD(3,INOD)-XYZNO0(3,INOD) + 

     *RTUSER(4*NFABOR+5+INOD)/RTUSER(4*NFABOR+5+NNOD+INOD) 

          ENDDO 

        ENDIF 

      ENDDO 

- the second way consists in computing an implicit free surface node displacement by 

solving a system of equations between nodes displacement and face centre velocities. 

This scheme does satisfy its local mass conservation; it is only available for 2D test 

cases with very simple meshes and is not parallelised (at least for the moment). 

This scheme is activated when IUTILE = 1, then the creation of a free surface vertices/faces 

linking table is necessary and created in the developer’s integer table IDEVEL during the 

initialisation step.  

      IF(NTCABS.GT.0 .AND. IUTILE.EQ.1) THEN 

        DO IND = 0, NLELT 

          IFAC = IDEVEL(3*IND) 

          DO II = 1, 2 

            INOD = IDEVEL(3*IND+II) 

            IMPALE(INOD) = 1 

            DEPALE(INOD,1) = 0.D0 

            DEPALE(INOD,2) = 0.D0 

            IF(IND.EQ.0) THEN 

Actually there is one more unknown node displacement than the number of equations, so one 

more arbitrary equation is necessary to be able to compute the free surface nodes displacement 

(e.g. one can add an additional equation on a side node). 
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              IFAC = IDEVEL(3) 

              DEPALE(INOD,3) = XYZNOD(3,INOD)-XYZNO0(3,INOD)+RCODCL(IFAC,IWMA,1)*DTREF 

              RDEVEL(NFAC+9*NFABOR+1+INOD) = RCODCL(IFAC,IWMA,1) 

            ELSE 

              INOD2 = IDEVEL(3*IND+II-3) 

              DEPALE(INOD,3) = XYZNOD(3,INOD)-XYZNO0(3,INOD) 

     *+ (2*RCODCL(IFAC,IWMA,1)-RDEVEL(NFAC+9*NFABOR+1+INOD2))*DTREF 

              RDEVEL(NFAC+9*NFABOR+1+INOD) = (2*RCODCL(IFAC,IWMA,1) 

     *- RDEVEL(NFAC+9*NFABOR+1+INOD2)) 

            ENDIF 

          ENDDO 

        ENDDO 

      ENDIF 

Then the parallelisation of the code has to be ensured: the free surface border nodes 

displacement must have exactly the same value on every parallelised domain. 

      IF(IRANGP.GE.0) THEN 

        CALL ALEFRS 

C       =========== 

     & ( IFACEL , IFABOR , IPNFAC , NODFAC , IPNFBR , NODFBR , 

     &   RTP(1,IUMA), RTP(1,IVMA), RTP(1,IWMA), 

     &   COEFA(1,ICLUMA), COEFA(1,ICLVMA), COEFA(1,ICLWMA), 

     &   COEFB(1,ICLUMA), COEFB(1,ICLVMA), COEFB(1,ICLWMA), 

     &   DT, RTUSER(4*NFABOR+6+NNOD), RTUSER(4*NFABOR+6) ) 

C 

        DO INOD=1, NNOD 

          DEPALE(INOD,3) = XYZNOD(3,INOD)-XYZNO0(3,INOD) + 

     *RTUSER(4*NFABOR+5+INOD)/RTUSER(4*NFABOR+5+NNOD+INOD) 

        ENDDO 

      ENDIF 

Given that the nodes just move in one direction and the mesh is regular, for all the internal 

nodes, their displacement is directly linked to the free surface nodes displacement, according 

to the ratio between heights. 

      IF(NTCABS.GT.0) THEN 

        DO ILELT = 1, NLELT 

        IFAC = LSTELT(ILELT) 

          DO II = IPNFBR(IFAC), IPNFBR(IFAC+1)-1 

            INOD = NODFBR(II) 

            DO INOD2 = 1, NNOD 

              IF(ABS(XYZNO0(1,INOD2)-XYZNO0(1,INOD)).LT.PRECIS 

     *.AND.ABS(XYZNO0(2,INOD2)-XYZNO0(2,INOD)).LT.PRECIS 

     *.AND.ABS(XYZNO0(3,INOD2)-XYZNO0(3,INOD)).GT.PRECIS) THEN 

                IMPALE(INOD2) = 1 

                DEPALE(INOD2,1) = DEPALE(INOD,1) 

                DEPALE(INOD2,2) = DEPALE(INOD,2) 
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                DEPALE(INOD2,3) = DEPALE(INOD,3)*XYZNO0(3,INOD2) 

     */XYZNO0(3,INOD) 

              ENDIF 

            ENDDO 

          ENDDO 

        ENDDO 

      ENDIF 

usclim.F (user's routine for the loading of the boundary conditions for the unknown 

variables): 

For the colour "FREE_SURF" free surface, a free outlet is set, with a Neumann condition for 

the velocities and a Dirichlet condition for the pressure: 

      CALL GETFBR('FREE_SURF',NLELT,LSTELT) 

C     =========== 

      DO ILELT = 1, NLELT 

        IFAC = LSTELT(ILELT) 

        DO IPHAS = 1, NPHAS 

          ITYPFB(IFAC,IPHAS) = ISOLIB 

          ICODCL(IFAC,IU(IPHAS)) = 3 

          RCODCL(IFAC,IU(IPHAS),3) = 0.D0 

          ICODCL(IFAC,IV(IPHAS)) = 3 

          RCODCL(IFAC,IV(IPHAS),3) = 0.D0 

          ICODCL(IFAC,IW(IPHAS)) = 3 

          RCODCL(IFAC,IW(IPHAS),3) = 0.D0 

          ICODCL(IFAC,IPR(IPHAS)) = 1 

          RCODCL(IFAC,IPR(IPHAS),1) = P0(IPHAS) 

        ENDDO 

      ENDDO 

usini1.F (user's routine to set computational parameters): 

If we want to adopt a second order time scheme (Code_Saturne is first order accurate in time 

by default, some turbulence models cannot work with the second order accuracy in time), we 

have to add the following line: 

      ISCHTP(1) = 2 

In addition, the gravity field and the fluid's properties are set here. 
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Appendix 3: Solitary test case – paddle movement 

The solitary wave can be created by a paddle movement coded in the routine usalcl.F: 

      g=sqrt(GX**2+GY**2+GZ**2) 

      H_over_h0 = 0.2d0 

      depth = 10.d0 

      waveHeight = H_over_h0*depth 

      kappa = sqrt(3.0d0*waveHeight/(4.0d0*(depth**3))) 

      celerity = sqrt(g*(depth + waveHeight)) 

      x_paddle_initial = 0.0d0 

      stroke = 2.0d0*H_over_h0/kappa 

      t_0 = 3.8d0/(kappa*celerity)   !3.8 = atanh(1.0) 

      tau = 2.0d0*t_0 + stroke/celerity 

      theta = tau*kappa*celerity*((TTCABS/tau)-0.5d0) + H_over_h0 

      PD = x_paddle_initial + 0.5d0*stroke*(1.0d0 + tanh(theta)) 

      U_P = 0.5d0*stroke*kappa*celerity/((cosh(theta))**2) 

      XINLET = PD 

      VITINL = U_P 

Thus the displacement of the free surface nodes is both in the vertical and horizontal directions 

– it will be interesting to check that the Discrete Geometric Conservation Law (DGCL) is still 

met here. The created solitary wave presents good characteristics even if the resulting wave 

height is higher than its setting. 
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