

Free surface flow simulation:

correcting and benchmarking

the ALE method in

Code_Saturne

A thesis submitted to The University of Manchester for the degree of

Master of Philosophy in the Faculty of Engineering and Physical Sciences

2010

Olivier COZZI

School of Mechanical, Aerospace and Civil Engineering

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

2

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

3

Table of Contents

Table of Figures .. 6

Abstract .. 8

Declaration ... 9

Copyright.. 9

Acknowledgements ... 10

Chapter 1 Introduction ... 11

1.1. Background .. 11

1.2. Objectives ... 13

1.3. Outline of the report.. 13

Chapter 2 Introduction to free surface flows and computational fluid dynamics 14

2.1. Free surface flows ... 14

2.1.1. Definition of a free surface .. 14

2.1.2. Computational fluid dynamics and free surface modeling 15

2.2. Equations of the free surface ... 16

Chapter 3 Code_Saturne and its ALE module .. 19

3.1. Code_Saturne ... 19

3.1.1. Presentation of Code_Saturne .. 19

3.1.2. Calling tree .. 23

3.2. ALE module ... 24

3.2.1. Navier-Stokes equations for a moving domain ... 24

3.2.2. Mesh velocity computation .. 24

3.2.3. Algorithm .. 25

3.2.4. Limitations .. 26

Chapter 4 Free Surface module .. 33

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

4

4.1. Method ... 33

4.1.1. Convergence loop .. 34

4.1.2. Free-surface cell-vertices displacement .. 36

4.1.3. Internal cell-vertices displacement ... 38

4.2. Features .. 38

4.3. Implementation of the new module ... 39

Chapter 5 Application of the new module to different test cases 40

5.1. Standing wave .. 40

5.1.1. Presentation ... 40

5.1.2. Physical characteristics .. 41

5.1.3. Mesh characteristics... 41

5.1.4. Boundary conditions .. 42

5.1.5. Main computations .. 42

5.1.6. Results ... 43

5.1.7. Computing resources used ... 54

5.2. Solitary wave .. 56

5.2.1. Presentation ... 56

5.2.2. Physical characteristics .. 58

5.2.3. Boundary conditions .. 58

5.2.4. Main computation .. 59

5.2.5. Results ... 59

5.2.6. Effectiveness of parallel computing ... 64

5.3. Duncan’s hydrofoil ... 65

5.3.1. Presentation ... 65

5.3.2. Mesh characteristics... 65

5.3.3. Physical characteristics .. 66

5.3.4. Boundary conditions .. 66

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

5

5.3.5. Main computations .. 67

5.3.6. Results ... 68

Chapter 6 Limits of existing module and proposal for a new version 70

6.1. Local volume conservation ... 70

6.2. Parallel computation ... 70

6.3. Convergence loop ... 71

6.4. Energy conservation ... 71

6.5. Support of irregular mesh with different types of cell .. 71

6.6. CFL condition... 71

Conclusion .. 72

Appendices ... 74

Appendix 1: Successive stages within a time step .. 74

Appendix 2: Implementation of the new module ... 75

Appendix 3: Solitary test case – paddle movement .. 83

References .. 84

Word count: 16 744 words

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

6

Table of Figures

Figure 2.1.1-1: Captain Haddock and a spherical drop of his beloved whisky 15

Figure 2.1.2-1: 2D representation of the mesh geometry under the free surface 18

Figure 3.1.1-1: Representation of a cell and a boundary face .. 20

Figure 3.1.2-1: Successive stages within a time step (ALE enabled). 23

Figure 3.2.4-1: Increasing 2D rectangular control volume ... 26

Figure 3.2.4-2: Random deformation of the mesh.. 28

Figure 3.2.4-3: Relative error as a function of time for three different time steps 28

Figure 3.2.4-4: Mesh velocity values for the 3D geometry .. 30

Figure 3.2.4-5: Nodes displacement for the 3D geometry .. 30

Figure 3.2.4-6: Mesh velocity values for the 2D geometry .. 31

Figure 3.2.4-7: Nodes displacement for the 2D geometry .. 31

Figure 4.1.1-1: Presentation of the free surface algorithm.. 35

Figure 4.1.2-1: Cell-centres, cell-face centres and cell-vertices location 37

Figure 5.1.1-1: Initial shape for the standing wave test case .. 41

Figure 5.1.6-1: Free surface shape, pressure and velocity fields at t1 = 875 s 43

Figure 5.1.6-2: Free surface shape, pressure and velocity fields at t2 = 950 s 43

Figure 5.1.6-3: L2 error of the free surface shape as a function of time 44

Figure 5.1.6-4: L2 error of the free surface shape (log-log scale) ... 45

Figure 5.1.6-5: Relative error of global volume as a function of time 46

Figure 5.1.6-6: Relative error of global energy as a function of time 47

Figure 5.1.6-7: Free surface shape at the time T = 200 s .. 48

Figure 5.1.6-8: Free surface shape at the time T = 875 s .. 49

Figure 5.1.6-9: L2 error of the free surface height as a function of time................................. 50

Figure 5.1.6-10: Relative error of global volume as a function of time 51

Figure 5.1.6-11: Relative error of global energy as a function of time 52

Figure 5.1.6-12: Free surface shape at the time T = 25 s .. 53

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

7

Figure 5.1.6-13: Free surface shape at the time T = 200 s .. 54

Figure 5.2.1-1: Original mesh and initial shape for the solitary wave test case 56

Figure 5.2.5-1: Free surface shape, pressure and velocity fields at t1 = 8.75 s 59

Figure 5.2.5-2: Free surface shape, pressure and velocity fields at t2 = 25 s 59

Figure 5.2.5-3: Free surface shape, pressure and velocity fields at t3 = 50 s 60

Figure 5.2.5-4: Free surface shapes at 8 different physical times ... 61

Figure 5.2.5-5: Free surface shapes at 4 different physical times ... 62

Figure 5.2.5-6: Wave profile at physical time T=20s ... 63

Figure 5.2.5-7: Wave profile at physical time T=40s ... 63

Figure 5.3.1-1: Schematic of NACA foil with normalized dimensions 65

Figure 5.3.2-1: Original mesh (Code_Saturne version – long domain)................................... 66

Figure 5.3.2-2: Mesh near the NACA 0012 hydrofoil (Code_Saturne version) 66

Figure 5.3.6-1: Free surface shape and velocity field at T = 25 s ... 68

Figure 5.3.6-2: Pressure and velocity fields near the hydrofoil at T = 25 s 68

Figure 5.3.6-3: Wave profile for a depth of submergence of 21.0 cm..................................... 69

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

8

Abstract

The present thesis was written by Olivier Cozzi at the University of Manchester in pursuance

of the degree of Master of Philosophy in 2010. It presents “Free surface flow simulation:

correcting and benchmarking the ALE method in Code_Saturne”, that is to say the

implementation of free surface flows within Code_Saturne, an in-house code developed by

EDF (Électricité de France) to solve CFD problems, using the Arbitrary Lagrangian Eulerian

(ALE) method already embedded in this code.

For a code like Code_Saturne, which aims at being easily implemented in a wide range of

applications, the handling of free surface flows is critical because it extends the range of

possible applications (tank filling, marine turbine interactions with waves and currents, water

supply and reject points ...). Up to now, the ALE module within Code_Saturne was only used

for fluid coupling with a solid structure; thus we had to adapt it to free-surface flows by

adding a convergence loop to perform the free surface movement incrementally within each

time step. Afterwards, the geometry was updated at the outer iterations level by imposing the

displacement of each cell-vertex within the global domain: the cell-vertex motion is then

computed for the free-surface cell-vertices in the first place and for the internal cell-vertices

secondly.

The new free-surface module was then implemented to three different test cases:

- a standing wave in a tank (unsteady test case with a periodic analytic solution),

- a solitary wave in a tank (unsteady test case with an analytic solution),

- a submerged hydrofoil (steady test case with experimental measurements).

The results are encouraging and the feasibility is clearly demonstrated. Some limitations still

exist – mainly caused by the inaccurate interpolation performed by Code_Saturne between the

free-surface cell-vertex displacement and the free-surface cell-face centre velocities – but

these could be eliminated during the next stages of the project.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

9

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institution of learning.

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns

certain copyright or related rights in it (the Copyright) and s/he has given The University of

Manchester certain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may

be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended)

and regulations issued under it or, where appropriate, in accordance with licensing agreements

which the University has from time to time. This page must form part of any such copies

made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual

property (the “Intellectual Property”) and any reproductions of copyright works in the thesis,

for example graphs and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the prior written

permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy (see

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf), in any

relevant Thesis restriction declarations deposited in the University Library, The University

Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in

The University’s policy on presentation of Theses.

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.manchester.ac.uk/library/aboutus/regulations

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

10

Acknowledgements

I would like to thank my supervisors, Professor Peter Stansby, Professor Dominique Laurence

and Dr Yacine Addad, for their valuable help and support throughout this project. I would like

to thank Juan Uribe, Flavien Billard and Stefano Rolfo for sharing their knowledge about

Code_Saturne and Linux.

Many thanks also to EDF in general for the funding of this MPhil, and particularly Frédéric

Archambaud, Marc Sakiz, David Monfort and François Jusserand from the MFEE department

at EDF R&D, and also Michel Benoit from the LNHE department at EDF R&D.

I will conclude thanking all my colleagues, both at the School of Mechanical, Aerospace and

Civil Engineering in Manchester and at the MFEE department in Chatou for everything they

taught me and for the amazing atmosphere they created; and finally a special

acknowledgement to my sister, my helpful proofreader.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

11

Chapter 1

Introduction

1.1. Background

The massive increase in the capacity and affordability of computers, as well as a greater

awareness of the potential usefulness of numerical simulation (design optimization, physics

simulation ...) have led to Computational Fluid Dynamics (CFD) being used to cope with

increasingly complex and varied fluid-flow problems. In this work the development and

application of moving-mesh and free surface capabilities within the general-purpose finite

volume industrial code of EDF (Electricité de France) Code_Saturne are described and

illustrated with flow calculations for different cases.

Flows with moving boundaries are indeed common among engineering problems; the

movement of moving boundaries may be externally imposed (e.g., piston motion in an engine

cylinder) or it may be caused by fluid forcing (for example, flow-induced vibration of the

nuclear fuel rods inside a nuclear core). Moving free surfaces are frequent in hydraulic

engineering, especially when it consists in an air-water interface such as in waves and tidal

flows. The free surface shape, most of the times, is not easily determined, even when the free

surface is stationary – such as a flow over a hydrofoil under a free surface.

The vast range of physical problems involving free surface flows has led to the

implementation of a variety of CFD approaches, each with its specific applications.

Among all these approaches, the shallow water equations are applicable for long-length

waves, that is to say when the horizontal length scale is much greater than the vertical length

scale and when the vertical velocities are small; that is why the shallow water equations are

frequently used in tidal flows and to simulate non-breaking wave propagation. These

equations, also called Saint-Venant equations in their uni-dimensional form, are derived from

depth-integrating the Navier-Stokes equations and considering that vertical pressure gradients

are nearly hydrostatic. This shallow water approach is used in the finite element code

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

12

Telemac-2D, a free and open source CFD code, for applications in free-surface maritime or

river hydraulics, such as the study presented in [1] by Chini.

The potential flow methods – which consist in describing the velocity field as the gradient of a

scalar function – are applicable for flows with low vorticity effects and are used for wave

dynamics and water-entry problems; in the potential flow approach, unsteady flow can be

described accurately [2].

These methods are powerful tools in their own areas but their embedded approximations make

them unsuitable for general-purpose flow solvers.

Among the general purpose grid-based flow solvers with free surface capabilities, one can list:

- OpenFOAM (Open Field Operation and Manipulation), a free and open source CFD

software, is based on a finite volume approach to solve systems of partial differential

equations ascribed on any 3D unstructured mesh of polyhedral cells. The fluid flow

solvers are developed within a robust, implicit, pressure-velocity, iterative solution

framework and space parallel computation is available. For free surface flows, both

surface tracking and surface capturing methods are available.

- STAR-CCM+, a finite-volume-based program package for the modelling of fluid flow

problems, is developed by the computer software company CD-adapco. It solves the

Navier-Stokes equations with a segregated, algebraic multigrid solver using the Rhie &

Chow interpolation for pressure-velocity coupling. Furthermore the SIMPLE algorithm

is applied to control the overall solution. For free surface flows, STAR-CCM+ uses the

Volume of Fluid (VOF) approach. The numerical model can be applied to any

structured and unstructured grid with arbitrarily shaped control volumes.

- CFX is developed by the engineering simulation software company ANSYS. In CFX, a

conservative finite-element-based control volume method (i.e. a finite volume approach

with parts of the finite element method) is implemented. The Navier-Stokes equations

are discretized in a collocated way and solved by an algebraic multigrid solver. To

avoid pressure-velocity decoupling, the Rhie & Chow interpolation is used; all

conservation equations are solved in one linear equation system, with all equations

being fully coupled. The reconstruction of the free surface is based on the VOF

approach where the volume fraction is computed using an upwind-biased discretization.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

13

- FLOW-3D is a general purpose CFD code based on a finite volume/finite difference

approach. For free surface flows, an adapted version of the Volume of Fluid method

known as TruVOF is used. FLOW-3D and its TruVOF technique consider the three

ingredients of the original VOF method: a scheme to locate the free surface, an

algorithm to track the free surface as a sharp interface moving through a computational

grid, and a means of applying boundary conditions at the free surface.

Other codes like FLUENT (ANSYS) or STAR-CD (CD-adapco) must also be mentioned.

As presented further in the section 3.1.1, Code_Saturne is a general purpose, free and open

source industrial CFD code developed by EDF. It is based on a collocated finite volume

approach and accepts unstructured and non-conform meshes. The velocity and the pressure are

both considered with a cell-centered co-located approach. The velocity-pressure coupling is

obtained by a predictor-corrector scheme based on the SIMPLEC method.

1.2. Objectives

The aim of the ReDAPT (Reliable Data Acquisition Platform for Tidal) project is to simulate

the flow around marine turbines with the presence of free-surface effects. Within the

framework of this project, Code_Saturne was chosen for the development of a 3D numerical

model of an idealised geometry of a horizontal-axis tidal turbine. Indeed, some capabilities

within Code_Saturne, such as the fully validated Arbitrary Lagrangian Eulerian method and

the fluid-structure coupling, make it capable of handling numerical simulations of a

submerged and rotating marine turbine. This is why a free-surface capability must be

implemented and validated within Code_Saturne; this is the objective of the present work.

1.3. Outline of the report

After an introduction to free surface flows and free surface modeling in Computational Fluid

Dynamics in Chapter 2, the Arbitrary Lagrangian Eulerian method already embedded in

Code_Saturne (Chapter 3) is used to develop a free surface module (Chapter 4). Then in

Chapter 6, limits of existing module are explained and an outline of improvements for a new

version is presented. A number of applications are described in Chapter 5. These are: (5.1)

oscillation of small-amplitude waves in a tank and (5.2) solitary wave in a channel, both with

inviscid fluid; and (5.3) flow over a hydrofoil under a free surface, for which J.H. Duncan

realized many experiments.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

14

Chapter 2

Introduction to free surface flows and

computational fluid dynamics

2.1. Free surface flows

2.1.1. Definition of a free surface

In physics a free surface is the surface of a fluid that is subject to constant perpendicular

normal stress and zero parallel shear stress, such as the boundary between two homogeneous

fluids, for example liquid water and the air in the Earth's atmosphere.

A liquid in a gravitational field will form a free surface if unconfined from above. Under

mechanical equilibrium this free surface must be perpendicular to the forces acting on the

liquid; if not there would be a force along the surface, and the liquid would flow in that

direction. Thus, on the surface of the Earth, all free surfaces of liquids are horizontal unless

disturbed (except near solids dipping into them, where surface tension distorts the surface

locally).

In a free liquid at rest, that is to say one subject to internal attractive forces only and not

affected by outside forces such as a gravitational field, its free surface will assume the shape

with the least surface area for its volume: a perfect sphere. This can be seen under weightless

conditions, such as the spatial flight of Tintin and Captain Haddock during their journey to the

moon (Figure 2.1.1-1).

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

15

FIGURE 2.1.1-1: CAPTAIN HADDOCK AND A SPHERICAL DROP OF HIS BELOVED WHISKY

(“THE ADVENTURES OF TINTIN: EXPLORERS ON THE MOON” BY HERGÉ, CASTERMAN - 1954)

2.1.2. Computational fluid dynamics and free surface
modeling

A state-of-the-art of the numerical methods used for the computation of incompressible flows

involving a nonlinear free surface is presented by Tsai and Yue in [3]: in this article, potential

as well as rotational and viscous free surface flows are considered.

In [4], Floryan and Rasmussen classify the available algorithms for the analysis of viscous

flows with moving interfaces in three groups: Lagrangian, Eulerian and mixed, i.e. Eulerian-

Lagrangian methods. The Lagrangian group mainly consists of strictly Lagrangian and particle

methods. The Eulerian group is composed by fixed grid and adaptive grid methods. The third

group of the mixed methods relies on both Lagrangian and Eulerian concepts.

In [5], Ferziger and Peric present the three main CFD approaches to solve free surface

problems: fixed-mesh methods, moving-mesh methods and mesh-free methods.

In fixed-mesh methods (interface-capturing methods), the computation is performed on a fixed

grid, which extends beyond the free surface, and the shape of the free surface is determined by

computing the fluid-containing fraction of each near-interface cell. In the context of free-

surface flows, well-known techniques include the volume-of-fluid (VOF) method where a

transport equation is solved for the fraction of the cell occupied by the liquid phase (also

known as void fraction), and the marker-and-cell (MAC) method where the free surface is

tracked by following the motion of particles on the interface. Hirt and Nichols present the

VOF method in [6], whereas the MAC method is described by Harlow and Welch in [7]. The

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

16

fixed-mesh methods are more robust than the moving mesh ones presented below. They can

indeed handle breaking waves, but the drawback is that these methods are not effective for

resolving a sharp interface and, for free surfaces which are rapidly varying in time or space,

they require an extremely fine mesh that needs to be created beforehand (one needs to know

where the free surface will be located); these methods can be very time consuming.

Moving-mesh methods (interface-tracking methods) consist in adapting dynamically the mesh

in such a way that it is always surface-conforming (mesh cells always contain fluid): boundary

faces are then impermeable solids or free surfaces. We will adopt these methods in the present

work because they are particularly adapted to the finite volume approach, thanks to their

natural relationship with the fundamental integral forms of the governing conservation

equations (equations (1) to (4)). This approach was applied by Mayer in [8] and by Thé,

Raithby and Stubley in [9]. However, the handling of breaking waves with a moving mesh is

quite complex: it requires an algorithm capable of removing or adding cells around the

multiple connected regions where the wave breaks.

Mesh-free methods can also solve free surface flows. The popular smoothed-particle

hydrodynamics (SPH) method is the earliest mesh-free particle method to be developed: it is a

mesh-free Lagrangian method particularly adapted to model fluid motion, with a lot of

benefits over traditional grid-based techniques (for example mass conservation, pressure

computation, free surface geometry) but also drawbacks – such as the need for a large number

of particles to obtain similar results, which is time consuming. An interesting application of

the SPH method to complex turbulent free surface flows is presented by Violeau and Issa in

[10], using the SPHysics code developed at the University of Manchester.

2.2. Equations of the free surface

Considering a control volume with a moving boundary , the three usual conservation

laws in fluid mechanics which have to be considered are:

- Mass Conservation Law:

 (1)

- Momentum Conservation Law:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

17

 (2)

- Scalar Conservation Law (concentration, thermal energy, ...):

 (3)

Where is the fluid velocity, is the velocity of the boundary of the control volume

(e.g. the free surface velocity), is the surface vector, represents the fluid density,

stands for any scalar quantity, and are the volumetric sources of scalar quantity and

momentum, and and are respectively the stress tensor and the flux vector.

Because of the moving boundary, the surface velocity needs to meet the Space

Conservation Law (SCL):

 (4)

This equation describes the conservation of space when the domain changes its shape and

position with time. Considering the SCL, the equations (1) to (3) simplify to:

- Mass Conservation Law:

 (5)

- Momentum Conservation Law:

 (6)

- Scalar Conservation Law (concentration, thermal energy, ...):

 (7)

The specificity of free surface flows is based on two additional equations, the kinematic and

the dynamic boundary conditions for the free surface:

- The dynamic boundary condition is quite simple when shear stress, normal stress and

effect of the surface tension can be neglected on the free surface; it then consists in:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

18

 (8)

where and are respectively the free surface pressure and atmospheric pressure.

- The kinematic boundary condition can be thought of as a “zero mass flux through the

free surface”:

 (9)

where is the fluid density and is the surface vector as it is shown in Figure 2.1.2-1:

FIGURE 2.1.2-1: 2D REPRESENTATION OF THE MESH GEOMETRY UNDER THE FREE SURFACE

Considering that the fluid density is constant (incompressible flows) and the mesh

velocity is only in the vertical direction (where the unit vector depends

on the gravity vector such as), the kinematic boundary condition can

be rewritten as:

 (10)

where is the vertical component of the surface vector , and is the mass flux

through the free surface (or rather the mass flux supposed to go through the free

surface when the free surface is considered as fixed).

In the present work, a moving-mesh method will be adopted to tackle free surface flows with

Code_Saturne. This requires two capabilities: the handling of a moving mesh and the control

of the free surface motion. The first of these two capabilities is managed by the Arbitrary

Lagrangian Eulerian module (ALE) already embedded in Code_Saturne and presented in the

next chapter. The second is the result of this work and is presented in Chapter 4.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

19

Chapter 3

Code_Saturne and its ALE module

3.1. Code_Saturne

3.1.1. Presentation of Code_Saturne

All the developments presented in this report have been done using Code_Saturne, a code

developed by EDF (Electricité de France) to solve CFD problems. A complete description of

this code can be found in [11] or in the document “Theory and Programmer’s Guide” of

Code_Saturne. Below is a relatively short presentation of Code_Saturne.

Code_Saturne is initially designed to solve the Navier-Stokes equations for three-dimensional

single phase flows using a finite volume discretization scheme. It handles unstructured and

non-uniform meshes for steady or transient, laminar or turbulent, incompressible or slightly

compressible flows. Code_Saturne also computes the transport of passive scalar and features

many other modules to handle a wide range of particular physics, such as combustion

problems. Code_Saturne is divided into two separate programs:

- the kernel solves the problem equations – e.g. the Navier-Stokes, turbulence, passive

scalars equations,

- and the shell processes the mesh to make it readable by the kernel and also creates the

outputs necessary for post-processing software.

Code_Saturne uses the finite volume approach in which the equations are written in a

conservative form and then integrated over control volumes in order to be solved. This finite

volume method is described by Versteeg and Malalasekera in [12] and by Zwart in his thesis

[13]. The velocity and the pressure are both considered with a cell-centered co-located

approach. The Gauss theorem is used to transform integrals of the divergence of any vector

field into surface integral of flux over faces; this way the conservative form of the momentum

equation reads:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

20

where is the molecular viscosity (the turbulent viscosity is ignored here).

The velocity-pressure coupling is obtained by a predictor-corrector scheme: at each time step

n, the momentum equation is first solved taking the pressure as explicit, that is the velocity

prediction step and leads to the predicted velocity . This predicted velocity is then

modified by the corrector step in order to be divergence free (incompressible flow). The time

discretization (fractional step scheme) can be associated with the SIMPLEC method. The

SIMPLEC algorithm is also presented by Versteeg and Malalasekera in their book [12]

presenting the volume finite method.

A - The predictor step

In this step, Code_Saturne solves the following equation using an Euler implicit scheme:

The mass flux in the left-hand side of this equation is taken as explicit in order to

uncouple the 3 components of the velocity.

As usually done in the finite volume method, the domain is partitioned in control

volumes . Let be defined as the common face to and , and the

k-th boundary face of , represented in Figure 3.1.1-1 below.

FIGURE 3.1.1-1: REPRESENTATION OF A CELL AND A BOUNDARY FACE

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

21

Thanks to the Gauss theorem, the volume integral

 of the

convective term is transformed into

. The discretization over the

faces of reads:

The terms
 and

 stand for the mass fluxes, expressed on inner faces and

boundary faces. The set and represent respectively the neighbouring cells of

the cell i and its adjacent boundary faces. The unknown values of

 and

 have to

be related to the values of the variables expressed at the nearby cell centres. Code_Saturne

uses three schemes to compute these unknowns:

- The UPWIND scheme (first order):

 if

 if

- The Second Order Linear Upwind (SOLU) scheme:

 if

 if

- The second order scheme:

 ,

using

 (see Figure 3.1.1-1)

In second order schemes, the computation of the gradients needs a gradient reconstruction

technique when the mesh has non-orthogonalities (). It is an iterative process that takes

into account first order terms in space.

At the boundaries, the value of the predicted velocity is always given by:

 if

 and

 if
 .

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

22

Thanks to the Gauss theorem, the volume integral

 of the

convective term is transformed into

. The discretization over the

faces of reads:

As for the diffusion term, in the finite volume method, the volume integral

 is transformed into

 and is expressed,

after discretization:

This manner of discretizing the diffusion term does not cause any problems on orthogonal

meshes (when). Otherwise, as done for the convection term, reconstruction techniques

are necessary. The value of the velocity at the boundaries

 depends on the velocity in

the adjacent cell I and the boundary conditions given by the user.

B - The correction step

In the correction step, i.e. the second step of the SIMPLEC scheme, a Poisson equation is

solved to compute the pressure and then a divergence free corrected velocity field is

obtained. The pressure is updated by adding an increment ().

The following problem has to be solved (the convection term is neglected in the SIMPLEC

algorithm):

In order to solve this system of equations, the divergence operator is applied to the first

equation above, which produces a Laplacian of the pressure increment:

With the usual discretization of the Laplace operator, odd and even nodes are uncoupled,

leading to the well known chessboard-like pressure field: a pressure field, whose values are −1

on odd nodes and +1 on even nodes on a hexahedral regular mesh is solution of the

homogeneous Poisson equation, and can appear for any solution and alter it. In order to avoid

this problem, the Rhie & Chow filter [14] is used in Code_Saturne.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

23

At this point, the mass flows and the velocity field are updated according to:

Afterwards the turbulence and scalar equations are solved. When all the values of the new

time step n+1 are known, the algorithm can carry on with the next time step.

3.1.2. Calling tree

In the Code_Saturne documentation, and particularly in the “Theory and Programmer’s

Guide”, a calling tree is presented (see Appendix 1: Successive stages within a time step) but

this calling tree is not very clear for our subject: the routines related to the Arbitrary

Lagrangian Eulerian method (ALE) are not mentioned and the links between routines are not

explained. Let us consider this other calling tree (Figure 3.1.2-1):

caltri.F:

 CALL USTBUS Routine to define the dimensions of the user's and developer's tables

 CALL LECAMO Loading of previous run files (if ISUITE = 1)
 CALL INIVAR Initialisation of the computation variables, of the time step, etc

 Start of the time-loop

 CALL TRIDIM Solving of Navier-Stokes and scalar equations for one time step

 Start of the fluid-structure coupling loop

 CALL USCLIM Routine for the filling in of the boundary conditions tables
 (ICODCL, RCODCL) for the unknown variables

 CALL USALCL Routine for the filling in of the boundary conditions tables

 (IALTYB, ICODCL, RCODCL) for the mesh velocity
 (CALL STRPRE) (Structure motion prediction, if fluid/structure coupling)

 CALL CONDLI Loading of the boundary conditions in usclim.F

 CALL ALELAP Solving of the diffusion equation for the mesh velocity
 CALL NAVSTO Solving of the Navier-Stokes equations for one time step

 (CALL STRDEP) (Structures displacement, if fluid/structure coupling)

 End of the fluid-structure coupling loop

 CALL USPROJ User's modification at the end of the time step

 CALL ALEMAJ Mesh update when ALE method enabled

 End of the time-loop

 CALL ECRAVA Writing of the output files

FIGURE 3.1.2-1: SUCCESSIVE STAGES WITHIN A TIME STEP (ALE ENABLED).

In the above calling tree, a fluid-structure coupling loop appears. This loop is necessary when

the coupling between fluid forces and mobile structures is enabled; this allows the code to

ti
m

e-
lo

o
p

fl
/s

tr
 c

o
u

p
li

n
g
 l

o
o
p

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

24

iterate on the structures displacement until convergence. The free surface module is built in a

similar way as explained in Chapter 4.

3.2. ALE module

The Arbitrary Lagrangian Eulerian (ALE) method has been introduced by e.g. Chan in [15]. A

first version for an ALE module within Code_Saturne was developed in 1999 in what was

then called “Solveur Commun”, the prototype of Code_Saturne developed by EDF; this is

specifically presented in the EDF report [16]. The current version of the ALE module is still

very similar and was only used, up to now, for fluid coupling with a solid structure. Hereafter

is a short summary of the method.

3.2.1. Navier-Stokes equations for a moving domain

In Code_Saturne, the Navier-Stokes equations for an incompressible flow (momentum (6) and

mass (5) conservation with the velocity-pressure formulation) are, for a moving domain :

(11)

 (12)

The variables and are the fluid velocity and pressure, is the mesh velocity and is the

gravity vector. All velocities are defined in a Galilean reference frame (i.e. not tied to the

mesh motion).

The mesh velocity field appears: this term represents the moving nature of the global

domain for the current time step.

3.2.2. Mesh velocity computation

The computation of the mesh velocity is based on the solving of a Laplace equation: thanks to

the imposed deformation on the moving boundary, the mesh velocity at the cell centres is

computed within the internal domain.

 (13)

 and (14)

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

25

where is the moving boundary and is the remaining boundary of the domain .

The boundary conditions for the mesh velocity can be value specified (i.e. Dirichlet condition

– e.g. a fixed mesh on a side), or gradient specified (i.e. Neumann condition – e.g. when the

mesh is allowed to slide along a wall).

3.2.3. Algorithm

The ALE algorithm within Code_Saturne is summarised here:

(i) The boundary conditions for the moving boundary (routine usalcl.F) are:

o known when the deformation is imposed by a law,

o extrapolated from the previous time values when there is no information about

the border at the current time step (which is the case for free surface flows).

The boundary displacements are then known (or projected) at the centre of the border

faces (routine altycl.F).

The mesh velocity system, a Laplace equation, is solved (routine alelap.F) in the

known geometry of time step t
n
.

(ii) The Navier-Stokes equations are solved in two steps (predictor-corrector algorithm,

routine navsto.F) with the addition of two supplementary terms related to the mesh

velocity in the prediction step. The equations are solved in the known geometry of time

step t
n
.

(iii) The geometry is updated (routine alemaj.F):

o the mesh velocity for the cell centres has been calculated (because of the finite

volume approach); a value for the vertices displacement is then deduced,

o the vertices position is updated,

o at this point, the new geometry of the domain and the associated values

 and are known – considering that where

 is the approximation of the fluid velocity calculated at time step t
n+1

 in the

known geometry of time step t
n
.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

26

3.2.4. Limitations

A - Discrete Geometric Conservation Law

Given that the ALE method requires a moving grid, we have to consider an additional law: the

Discrete Geometric Conservation Law (DGCL), which is the discretized form of the Space

Conservation Law (SCL). That is explained by J.H. Ferziger and M. Peric in [5].

For a moving domain of volume and closed surface filled with an incompressible fluid,

the SCL can be thought as the continuity equation (1) in the limit of zero fluid velocity: .

Then the continuity equation simplifies to the SCL:

 (15)

where is the mesh velocity and the normal vector.

If we consider a 2D displacement, we can draw the following diagram (Figure 3.2.4-1):

FIGURE 3.2.4-1: INCREASING 2D RECTANGULAR CONTROL VOLUME

Using the implicit Euler time scheme, a discretized form of the SCL is the DGCL:

 (16)

where are the four sides of the 2D rectangular control volume.

According to the figure above:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

27

There is a problem though in equation (16) given that an artificial mass source term appears:

 (17)

This error disappears if the domain moves in only one direction (i.e. or),

or if the grid velocities are equal at opposite sides of the control volume (i.e. or

 , then or respectively).

For most of the simulations we will test, the domain only moves vertically, that is to say in

only one direction; this way, the SCL is always satisfied. However, it is interesting to check if

Code_Saturne does meet the DGCL in the general case of a mesh moving in the three

directions. With that aim, Charbel Farhat et al. propose an application with a uniform flow in

[17].

This application consists in considering the case of a one-dimensional uniform flow at

a Mach number inside a rigid tube of length and a square

cross section. The four lateral sides of the tube have symmetry-boundary conditions so that

they do not have an influence on the uniform velocity field.

The computational domain is discretized by 200 equally spaced nodes in the direction x of the

flow (lengthwise of the tube), and 10 equally spaced nodes in each of the y and z directions

(square cross section of the tube). A first mesh is constructed by connecting these nodes with

simple tetrahedral volumes. A random three-dimensional displacement is then computed

for every node and we use this random displacement to perturb the initial position of the

nodes according to

without however creating any crossover.

The vibrating mesh is used to compute the time history of the flow and the relative error:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

28

This relative error (a ratio of sums of absolute values so that random errors do not compensate

each other) is compared for different values of the computational time step Δt.

If the scheme violates its DGCL, it will lead to a nonlinear instability with spurious

oscillations appearing around the exact solution of the velocity field. The magnitude of these

oscillations increases with the computational time step.

In Code_Saturne, the value and the mesh described above were taken. For one

computation, the following random deformation of the mesh appeared (Figure 3.2.4-2) and the

following results were obtained for three different time step values (Figure 3.2.4-3):

FIGURE 3.2.4-2: RANDOM DEFORMATION OF THE MESH

FIGURE 3.2.4-3: RELATIVE ERROR AS A FUNCTION OF TIME FOR THREE DIFFERENT TIME STEPS

0

2E-13

4E-13

6E-13

8E-13

1E-12

1,2E-12

1,4E-12

0 0,002 0,004 0,006 0,008 0,01

R
e

la
ti

ve
 e

rr
o

r

Time (s)

Dt = 0.1ms

Dt = 0.2ms

Dt = 0.4ms

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

29

Figure 3.2.4-3 shows that, for the three different time steps, there is no instability when the

mesh is moved randomly in the three directions, the uniform flow is exactly predicted (indeed

E-12 is negligible compared to the relative precision for the solution of the linear systems

whose default value is E-8). In that case, it seems that Code_Saturne naturally satisfies its

DGCL.

B - Diffusion equation for the mesh velocity solver

From the boundary conditions for the mesh velocity contained in the usalcl.F, the alelap.F

routine solves a diffusion equation in order to know this mesh velocity on the whole domain.

In reality different problems can occur: mesh crossover due to an excessive deformation,

inaccuracy in the interpolation of the velocities, etc.

When a mesh crossover occurs, negative volumes appear and that stops the computation

immediately. The occurrence of a crossover is often caused when the Courant number

(

 where is the local fluid velocity, is the time step and is the average mesh-

node spacing) is higher than one, but sometimes, the problem is more complicated: time step

after time step, the global mesh gets increasingly distorted - even when the deformation is just

in one direction - and that can lead to a mesh crossover. In that case, the longer a computation,

the more likely this problem will emerge, but it is unfortunately impossible to predict

beforehand.

The ALE module has another important limitation: the interpolation between face centre

velocity and mesh nodes displacement is not accurate enough for a free surface application

(the volume conservation requires the free surface to be moved precisely).

To test the accuracy of this interpolation, a simple case was run with a hexahedron as

computational domain and the following boundary conditions for the mesh velocity:

- upper side: constant and uniform mesh velocity,

- lower side: homogeneous Dirichlet condition (fixed mesh),

- four remaining sides: slip condition.

This way the hexahedron is distorted and its volume has to increase as a linear function of

time. For this test case, the initial mesh of the DGCL case is used and a constant and uniform

vertical mesh velocity is set at the face centres of the upper side. The physical

time for the computation is 1s.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

30

In the figures hereafter, the mesh velocity values at the face centres (Figure 3.2.4-4) and the

nodes displacement (Figure 3.2.4-5) of the 3D hexahedron can be seen:

FIGURE 3.2.4-4: MESH VELOCITY VALUES FOR THE 3D GEOMETRY

FIGURE 3.2.4-5: NODES DISPLACEMENT FOR THE 3D GEOMETRY

In this 3D case, the mesh velocities values are good but an edge effect can be noticed: the

nodes displacement is not uniform on the moving side.

To understand the edge effect, it is interesting to run the same case but with a 2D

computational domain (there is one single mesh in the third direction y). In the following

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

31

figures, the mesh velocity values at the face centres (Figure 3.2.4-6) and the nodes

displacement (Figure 3.2.4-7) for the 2D hexahedron are displayed:

FIGURE 3.2.4-6: MESH VELOCITY VALUES FOR THE 2D GEOMETRY

FIGURE 3.2.4-7: NODES DISPLACEMENT FOR THE 2D GEOMETRY

As we can see here, because of the edge effect, all the mesh velocities are strictly less than

 and the nodes displacement is not uniform on the moving side.

As a consequence, when imposing the mesh velocity at the face centres of the moving side

(constant RCODCL(IFAC,.,1)), the global volume does not increase as expected; whereas

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

32

when calculating and imposing the displacement for each of the free surface nodes

(DEPALE(INOD,.), the value of the global volume is correct. And that is particularly true for

2D test cases.

Therefore, to avoid mesh crossovers and interpolation errors, it will be necessary to control

precisely the nodes displacement. This will be discussed further in Chapter 4.

In the following paragraph, the ALE module already embedded in Code_Saturne will be

adapted to the free surface flows case.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

33

Chapter 4

Free Surface module

4.1. Method

The handling of free surface flows using the ALE method has already been done by Souli and

Zolesio in a finite element formulation [18]; a similar approach with a finite volume

formulation was applied by Demirdzic and Peric in [19]. Given the existing ALE module

within Code_Saturne, a free surface module is going to be implemented. With that aim, we

can start considering the special boundary conditions for the free surface.

For the dynamic boundary condition (8) (on the free surface), we only need to set a

Dirichlet condition for the pressure.

The kinematic boundary condition (9) is more complicated: we need to move each face of the

free surface in order to maintain a zero net mass flux through this face. In section 2.2, it was

written that for incompressible flows with a one-dimensional mesh velocity (we consider that

the mesh only moves in the vertical direction), the kinematic boundary condition

can be reduced to:

 (18)

For each face of the free surface, three elements are needed to compute the face velocity :

- the mass flow values through the free surface ,

- the vertical component of the surface vector ,

- and the density .

The last one is easy to know: is a constant for an incompressible flow.

For the mass flow and the surface vector, they vary with time and space position: their values

change, time step after time step, and depend on the position on the free surface.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

34

First, to prevent the mass flow values through the free surface from being affected by the free

surface boundary conditions, a free outlet has to be set, with a Neumann condition for the

velocities.

4.1.1. Convergence loop

In David Apsley's paper [20], two strategies are presented to enforce the kinematic boundary

condition numerically. For simplicity, both strategies assume that the displacement of the cell

vertices or control points is only vertical.

One of these strategies consists in moving the free-surface (by moving either cell vertices or

face-centre control points) according to:

(19)

where is the average height increment over the free-surface cell face for the whole time

step . This equation (19) is equivalent to the kinematic boundary condition (18) because we

can express the free-surface face velocity as .

Given that the free-surface displacement depends on the fluid velocity (whose value

varies during the solving of the Navier-Stokes equations), the free-surface face velocity is

then performed incrementally within each time step.

So, following this strategy, a convergence loop on the mass flow values through the free-

surface faces has been implemented. This loop is clearly visible in the representation of the

free surface algorithm hereafter (Figure 4.1.1-1):

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

35

FIGURE 4.1.1-1: PRESENTATION OF THE FREE SURFACE ALGORITHM

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

36

Within tridim.F, there is already an optional loop for the fluid/structure coupling (strpre.F and

strdep.F); a similar structure is used for the free surface convergence loop.

For this purpose, we need:

- Two new routines:

o fssave.F to save the boundary conditions values for the velocities and the

pressure at the beginning of the time step,

o fsload.F to load these initial boundary conditions values for the velocities and

the pressure between two iterations in the convergence loop. To avoid endless

iterations, a convergence test has to be added here.

- Three new parameters:

o ACTIFS to enable the convergence loop on the mass flow values through the

free surface faces,

o NBITFS to limit the maximum number of iterations within the loop,

o EPALFS to test the convergence criterion and end the loop prematurely.

- One variable: ITERFS to know the number of the current iteration within the

convergence loop, and possibly stop the loop.

- Several modifications in other routines:

o tridim.F to create the structure of the free surface loop,

o navsto.F to save the mass flow values through the free surface faces. These are

the values of the mass flows which will be used to compute the free surface

mesh velocities; the convergence test will also compare these values between

two consecutive iterations.

Some of these modifications can be seen in the Figure 4.1.1-1.

4.1.2. Free-surface cell-vertices displacement

We saw in the section 3.2.4.B that it is better to impose the cell-vertices displacement on the

free surface. Indeed the interpolation done by Code_Saturne between the free-surface cell-face

centre velocities and the free-surface cell-vertices displacement is not accurate enough;

therefore, it seems wiser, for now, to compute directly the displacement of these cell-vertices,

without using Code_Saturne solver. For this purpose, there are two main possibilities:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

37

- computing straight away an explicit free-surface cell-vertices displacement thanks to

the free-surface cell-face centre velocities ; this scheme does not meet the local

volume conservation, but does meet the global one.

- or, to compute an implicit free-surface cell-vertices displacement by solving a system

of equations between free-surface cell-vertices displacement and free-surface cell-face

centre velocities; this scheme does verify the local volume conservation and thus the

global one.

Figure 4.1.2-1 is a diagram showing the interpolation between free-surface cell-face centre

velocities and free-surface cell-vertices displacement:

FIGURE 4.1.2-1: CELL-CENTRES, CELL-FACE CENTRES AND CELL-VERTICES LOCATION

In this figure, red and green points represent cell-vertices (i.e. the “corners” of cells, defining

the mesh and its displacement; red point for a free-surface cell-vertex, green point for an

internal cell-vertex), black crosses locate free-surface cell-face centres and blue crosses point

to cell-centres (where all discrete values of variables are computed).

In the following table, index represents a free-surface cell-vertex, index

 represents a free-surface cell-face centre; therefore is the velocity of the free-

surface cell-vertex 1 and is the velocity of the free-surface cell-face centre A.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

38

Explicit scheme Implicit scheme

On a corner: e.g.

On a side:

 e.g.

Otherwise:

 e.g.

 e.g.

That gives us (n-1)*(N-1) equations (one

equation for each free-surface face centre);

but there are n*N free-surface vertices.

 We need to add n+N-1 conditions in

order to solve the system (e.g.).

4.1.3. Internal cell-vertices displacement

For the internal cell-vertices, as seen in the section 3.2.4.B, in order to avoid mesh crossovers,

it is better to impose the displacement of each cell-vertex. To do that, each internal cell-vertex

i below a free-surface cell-vertex imax can be displaced according to the initial ratio between

their two heights:

 (e.g.

). This way, crossovers should be avoided.

4.2. Features

In this section, the main features of the free surface module are presented:

- Embedded module in the Code_Saturne 1.3.3 version.

- Activation variable for the free surface module ACTIFS: when enabled, Code_Saturne

is able to compute free surface flows, otherwise it’s just the “classic” Code_Saturne

(there is no side effects due to the new module implementation).

- Control of the free surface convergence loop thanks to the convergence accuracy

EPALFS and the max iteration number NBITFS parameters.

- Time scheme selection (second-order Crank-Nicolson method or first-order implicit

Euler method) is available.

- Parallel computation available (at least partially).

- 3D computation available with the explicit prediction of the free-surface cell-vertices

displacement.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

39

4.3. Implementation of the new module

To implement the free surface module, new routines were created and some routines of

Code_Saturne were modified. The main modifications (
*
) within the routines are listed in

Appendix 2: Implementation of the new module.

* All the modifications in non-user routines can be found, by searching for “C MOD OLIVIER” in the body of

the file.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

40

Chapter 5

Application of the new module to

different test cases

5.1. Standing wave

The first test problem considered in the present study is a standing wave in a water tank; this is

a common test case for the development of free surface codes because, for low-amplitude

waves, an analytic solution for the wave shape exists. Indeed, this case was previously run in

1999 with the “Solveur Commun”, a prototype of Code_Saturne developed by EDF (see the

EDF report [21]).

5.1.1. Presentation

The test case deals with the standing wave motion in a tank of length . The shape is two-

dimensional and initially set to:

(20)

where:

- is the tank depth,

- represents the tank length,

- is the wave amplitude,

- is the wave length.

Figure 5.1.1-1 shows the initial shape set for the free surface in this test case:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

41

FIGURE 5.1.1-1: INITIAL SHAPE FOR THE STANDING WAVE TEST CASE

Thus a standing wave is created, and considering the inviscid theory, the Chabert d'Hières’

formula presented in [22] gives a second order approximation in A of the wave shape:

(21)

where

 is the time period and is the wave celerity, given by the Airy’s formula:

 (22)

In this case, the numerical application gives .

5.1.2. Physical characteristics

The test case is run with the following physical characteristics:

- fluid density: (water value),

- fluid viscosity: (small enough to consider an inviscid fluid),

- gravity: ,

- Reynolds number: for an inviscid fluid.

5.1.3. Mesh characteristics

The mesh is structured and composed by hexahedra; the mesh spacing is constant in the

horizontal direction, variable in the vertical direction and has only one cell in the third

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

42

direction (). Three meshes were used: 106*1*20, 212*1*40 and 424*1*80 for the x, y

and z directions respectively.

5.1.4. Boundary conditions

The boundary conditions for the fluid velocity are:

- free surface: homogeneous Neumann condition,

- tank bottom: homogeneous Dirichlet condition,

- walls: slip condition.

The boundary conditions for the mesh velocity are:

- free surface: Dirichlet condition according to the formula (9) page 18,

- tank bottom: homogeneous Dirichlet condition,

- walls: slip condition.

The boundary conditions for the pressure are:

- free surface: homogeneous Dirichlet condition according to the formula (8) page 18,

- tank bottom: Neumann condition,

- walls: Neumann condition.

5.1.5. Main computations

All the computations here were run with Code_Saturne version 1.3.3 using only one core of a

quad-core processor (Intel Xeon processor at 2.80 GHz with 4 GB of system RAM available);

the laminar turbulence model and a second order time scheme were adopted. The most

significant ones are listed hereafter and will be presented in the following paragraph of results.

Computation

name

Time step

(constant)

Horizontal

discretization

Vertical

discretization

Physical

time

Maximum

Courant

number

Dt=200ms - 106*20 200 ms 106 20 1000 s

Dt=100ms - 106*20 100 ms 106 20 1000 s

Dt=50ms - 106*20 50 ms 106 20 1000 s

Dt=20ms - 106*20 20 ms 106 20 1000 s

Dt=50ms - 212*40 50 ms 212 40 200 s

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

43

Dt=25ms - 424*80 25 ms 424 80 200 s

Theoretical height These are the analytical results of the Chabert d'Hières’ formula

The maximum Courant number

 is done by Code_Saturne using the

computed values of the fluid velocities. When the maximum Courant number is larger than 1

(for example with the 106*20 mesh), the computation tends to crash quickly.

5.1.6. Results

The Figure 5.1.6-1 and Figure 5.1.6-2 show the free surface shape, pressure and velocity fields

at the physical times and respectively (for the computation: Dt=100ms

- 106*20), after 90 time periods approximately. In both figures, the pressure and velocity

fields seem to be physically right while the free surface shapes are in good agreement with the

second order approximation in amplitude solution given by the formula (21) of Chabert

d'Hières.

FIGURE 5.1.6-1: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T1 = 875 S

FIGURE 5.1.6-2: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T2 = 950 S

The L2 error between the free surface height and its theoretical value (given by the

Chabert d'Hières’ formula) is computed on the whole free surface:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

44

where the two heights are compared at each free surface vertex.

The Figure 5.1.6-3 presents, for a fixed mesh and different time steps, this L2 error as a

function of time. The results are quite good: the worst value is a L2 error of 0.6% after

of physical time, i.e. more than 100 time periods. That means:

- that the time period observed in the results is really close to the theoretical value of the

Airy’s formula (22),

- and that the free surface shape is very similar to the theoretical shape given by the

Chabert d'Hières’ formula (21).

This figure also shows that the L2 error tends to decrease when the time step gets smaller:

after of physical time, the L2 error ranges from 0.6% for a time step to

0.04% for a time step . When the time step decreases, the L2 error seems to reduce

to a non-zero value which increases with elapsed time; maybe this is caused by the fact that

the Chabert d'Hières’ formula is a second order approximation in amplitude of the free surface

shape and not an exact solution. Further analysis is then required to confirm convergence.

FIGURE 5.1.6-3: L2 ERROR OF THE FREE SURFACE SHAPE AS A FUNCTION OF TIME

Figure 5.1.6-4 is the log-log plot of Figure 5.1.6-3. The equation for a line of slope on a

log-log scale is , thus on a linear scale.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

45

In the log-log scale, the L2 error tends to increase linearly with time: for the fixed mesh

106*20 and the different time steps, the slope is quite constant: . That means that the L2

error increases with time squared: .

FIGURE 5.1.6-4: L2 ERROR OF THE FREE SURFACE SHAPE (LOG-LOG SCALE)

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

46

The relative error of global volume is given by:

where is the initial volume of water in the tank.

The Figure 5.1.6-5 presents, for a fixed mesh and different time steps, this relative error of

global volume as a function of time. The worst value is a relative increase in volume of 5e-7

after 1000 s of physical time: this is a really small value, close to the numerical error of the

code given by the relative precision for the solution of the linear system (the default value is

1e-8). We can therefore conclude that, in this test case, the free surface module is volume

conservative (and then mass conservative given that an incompressible flow is considered).

This figure also shows that the variations of the relative error of global volume as a function of

the time step value are complex: with a small time step , the volume tends to

decrease slightly whereas for a time step , the volume increases.

FIGURE 5.1.6-5: RELATIVE ERROR OF GLOBAL VOLUME AS A FUNCTION OF TIME

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

47

The relative error of global energy is given by:

where:

- is the initial energy of the water in the tank:
,

- is the energy of the water in the tank at the physical time t:

 ,

The Figure 5.1.6-6 presents, for a fixed mesh and different time steps, this relative error of

global energy as a function of time. The worst value is a relative increase in energy of 0.3%

after 1000 s of physical time. Because this value is quite important, we can conclude that the

free surface module is not strictly conservative for the energy. This is logical considering that,

in Code_Saturne, no equation for the energy conservation is solved (even the momentum

conservation equation is solved in a way that is not strictly conservative).

This figure also shows that the variations of the relative error of global energy as a function of

the time step value are complex: with a big time step , the energy tends to

increase whereas for a time step , some energy is lost.

FIGURE 5.1.6-6: RELATIVE ERROR OF GLOBAL ENERGY AS A FUNCTION OF TIME

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

48

In the Figure 5.1.6-7, we can see that, at the physical time , the computed free

surface shapes for the different simulations are really close to the theoretical height given by

the Chabert d'Hières’ formula (21).

At the physical time , that is to say 69 wave periods after , Figure 5.1.6-8

shows that the difference between the computed free surface shapes and the theoretical height

tends to get smaller when the time step decreases. However, for the four different time steps,

this difference increased from . Indeed, as presented in the following table, the wave

periods of the simulations are slightly different from the theoretical value of the Airy’s

formula (22):

Mesh 106*20 Dt=200ms Dt=100ms Dt=50ms Dt=20ms Theory

Wave period 9.772 s 9.778 s 9.779 s 9.780 s 9.783 s

This explains why the difference between the computed and theoretical free surface shapes

tends to increase with elapsed time.

FIGURE 5.1.6-7: FREE SURFACE SHAPE AT THE TIME T = 200 S

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

49

FIGURE 5.1.6-8: FREE SURFACE SHAPE AT THE TIME T = 875 S

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

50

The Figure 5.1.6-9 presents, for three different meshes and time step values (chosen in order to

have a constant maximum Courant number), the L2 error for the free surface height

as a function of time. after of physical time, the L2 error ranges from 0.02% for the

424*80 mesh to 0.01% for the 106*20 mesh, i.e. the L2 error tends to increase when the mesh

gets finer. This conclusion is interesting because, as a general rule, the opposite occurs.

However this is true for classical steady-state CFD test case (such as the lid driven cavity), but

here we are dealing with an initial value problem where the error will grow with physical time.

When we compare different meshes for the same physical time, the smaller meshes and time

steps will have involved more iterations and interpolations.

FIGURE 5.1.6-9: L2 ERROR OF THE FREE SURFACE HEIGHT AS A FUNCTION OF TIME

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

51

The Figure 5.1.6-10 presents, for the same three different meshes and time step values, the

relative error of global volume as a function of time. The relative error of global volume

ranges from something really close to zero after 200 s of physical time for the 424*80 mesh to

1e-7 for the 106*20 mesh, that is to say that the finer the mesh, the more the mass

conservation is met.

FIGURE 5.1.6-10: RELATIVE ERROR OF GLOBAL VOLUME AS A FUNCTION OF TIME

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

52

For the three different meshes and time step values, the Figure 5.1.6-11 shows the relative

error of global energy as a function of time. The relative error of global energy ranges from

0.01% after 200 s of physical time for the 424*80 mesh to 0.04% for the 106*20 mesh, that is

to say that the finer the mesh, the more the energy conservation is met.

FIGURE 5.1.6-11: RELATIVE ERROR OF GLOBAL ENERGY AS A FUNCTION OF TIME

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

53

In the Figure 5.1.6-12, we can see that, at the physical time , the computed free

surface shapes for the different simulations are quite close to the theoretical height given by

the Chabert d'Hières’ formula (21).

At the physical time , Figure 5.1.6-13 shows that the difference between the

computed free surface shapes and the theoretical height tends to get smaller when the mesh is

coarser. Indeed, as presented in the following table, the difference between the wave periods

of the simulations and the theoretical value of the Airy’s formula (22) increases when the

mesh gets finer:

Dt=100ms –

106*20

Dt=50ms –

212*40

Dt=25ms –

424*80
Theory

Wave period 9.776 s 9.769 s 9.766 s 9.783 s

These results show that the convergence in space of the method is not met. A possible

explanation is that we are dealing here with an unsteady test case which is an initial value

problem. The free surface shape is initially set according to the Chabert d'Hières’ theory which

is only a second order approximation in amplitude A of the wave shape; the initial error due to

the second order approximation will grow with physical time and, for the same physical time,

the smaller meshes and time steps need more iterations and interpolations, which can increase

the final error.

FIGURE 5.1.6-12: FREE SURFACE SHAPE AT THE TIME T = 25 S

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

54

FIGURE 5.1.6-13: FREE SURFACE SHAPE AT THE TIME T = 200 S

To sum up, results are quite encouraging for this test case: the mass conservation is met and

the time period of the standing wave oscillations is really close to the theoretical value given

by the Airy’s formula (22). The free surface shape is also in good agreement with the results

given by the Chabert d'Hières’ formula (21). Convergence in time shows encouraging results

but convergence in space is unexpected and need a further analysis: for this nonlinear case, the

simulations should be initially set and compared to a theory more accurate than the second

order theory of Chabert d'Hières.

5.1.7. Computing resources used

All the computations presented before were run on a single core of a quad-core processor

(Intel Xeon processor at 2.80 GHz with 4 GB of system RAM available) with a constant

relative precision for the computation of the free surface mesh velocities (i.e. EPALFS criteria

as explained in Appendix 2: Implementation of the new module); for each of them, the table

hereafter shows the average number of sub-iterations required to converge within the free-

surface loop and also the average computation time spent per time step.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

55

Computation name

(time step – mesh)

Average sub-

iteration number

Average

computation time

Maximum

Courant number

Dt=200ms - 106*20 6.2 1.05 s

Dt=100ms - 106*20 5.6 811 ms

Dt=50ms - 106*20 4.8 616 ms

Dt=20ms - 106*20 4.0 452 ms

Dt=50ms - 212*40 6.0 11.4 s

Dt=25ms - 424*80 4.6 30.0 s

The mesh 106*20 being fixed, the average sub-iteration number and the average computation

time tend to decrease when the time step gets smaller. For a constant maximum Courant

number , when the mesh gets finer, the average sub-iteration number tends to

decrease whereas the average computation time tends to increase.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

56

5.2. Solitary wave

The second test problem considered in the present study is another common test case for the

development of free surface codes: a solitary wave in a water tank; this case is interesting

because an analytic solution for the wave shape exists. As the standing wave, this case was

already run in 1999 with Solveur Commun (see the EDF report [21]).

5.2.1. Presentation

The test case deals with the solitary wave motion in a tank of length and depth

 . The solitary wave amplitude is . The mesh used in this test case is

composed by hexahedra and is structured; its mesh spacing is constant in both the horizontal

direction with 500 cells (), and the vertical direction with 20 cells () and has only

one cell in the third direction (). The original mesh is presented below in Figure 5.2.1-1:

FIGURE 5.2.1-1: ORIGINAL MESH AND INITIAL SHAPE FOR THE SOLITARY WAVE TEST CASE

The shape is two-dimensional and the solitary wave is created by a velocity profile set on the

inlet and coded in the routine usclim.F (the velocity profile was coded by Dr Yacine Addad,

University of Manchester):

C Compute inlet velocity

 D = 10.D0 ! still water depth

 WAVEHT = 2.D0 ! wave height or amplitude

 GRAVITY = 9.81D0

 TWAVE = 10.0D0

C Wave quantities

 AK = SQRT(0.75*WAVEHT/D**3)

 C = SQRT(GRAVITY*(D+WAVEHT))

 DDX = C*TWAVE

C --- We set for the color "INLET" an inlet

 CALL GETFBR('INLET',NLELT,LSTELT)

C ===========

 DO ILELT = 1, NLELT

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

57

 IFAC = LSTELT(ILELT)

 DO IPHAS = 1, NPHAS

C the solitary wave is created by a velocity profile set on the inlet

 ITYPFB(IFAC,IPHAS) = IENTRE

C the velocities are computed hereafter

C========================

 ARG = AK *((CDGFBO(1,IFAC)+DDX)-C*TTCABS)

 ARG = MIN (MAX (ARG, -100.0D0),100.0D0)

 ETA = WAVEHT / COSH(ARG)**2

 UIN = C *ETA/ (D+ETA)

 DWDZ = 2.0D0*AK*D*UIN*TANH (ARG) / (D+ETA)

C

 ICODCL(IFAC,IU(IPHAS)) = 1

 RCODCL(IFAC,IU(IPHAS),1) = UIN

 RCODCL(IFAC,IU(IPHAS),2) = RINFIN

 RCODCL(IFAC,IU(IPHAS),3) = 0.D0

C

 ICODCL(IFAC,IV(IPHAS)) = 1

 RCODCL(IFAC,IV(IPHAS),1) = 0.0D0

 RCODCL(IFAC,IV(IPHAS),2) = RINFIN

 RCODCL(IFAC,IV(IPHAS),3) = 0.D0

C

 ICODCL(IFAC,IW(IPHAS)) = 1

 RCODCL(IFAC,IW(IPHAS),1) = DWDZ * CDGFBO(3,IFAC)

 RCODCL(IFAC,IW(IPHAS),2) = RINFIN

 RCODCL(IFAC,IW(IPHAS),3) = 0.D0

C

 ICODCL(IFAC,IPR(IPHAS)) = 3

 RCODCL(IFAC,IPR(IPHAS),1) = 0

 RCODCL(IFAC,IPR(IPHAS),2) = RINFIN

 RCODCL(IFAC,IPR(IPHAS),3) = 0.D0

 ENDDO

 ENDDO

Thus a solitary wave of amplitude is created. Considering the inviscid theory, the

wave should move with a constant crest velocity and amplitude. The analytic solution for the

wave shape is given by Archambeau et al. in [21]:

 (23)

where the function is defined hereafter:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

58

(24)

In this case, the numerical application gives a crest velocity .

As presented in Appendix 3: Solitary test case – paddle movement, an attempt to create the

solitary wave by a paddle movement set on the inlet was made and coded in the routine

usalcl.F (the paddle motion was coded by Rui Xu, University of Manchester, according to the

wavemaker theory of Dean and Dalrymple [23]); first results were interesting and needed

further development.

5.2.2. Physical characteristics

The test case is run with the following physical characteristics:

- fluid density: (water value),

- fluid viscosity: (small enough to consider an inviscid fluid),

- gravity: ,

- Reynolds number: for an inviscid fluid.

5.2.3. Boundary conditions

The boundary conditions for the fluid velocity are:

- free surface and outlet: homogeneous Neumann condition,

- inlet: imposed velocity profile,

- tank bottom: homogeneous Dirichlet condition,

- symmetric walls: slip condition.

The boundary conditions for the mesh velocity are:

- free surface: Dirichlet condition according to the formula (9) page 18,

- tank bottom: homogeneous Dirichlet condition,

- symmetric walls, inlet and outlet: slip condition.

The boundary conditions for the pressure are:

- free surface: homogeneous Dirichlet condition according to the formula (8) page 18,

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

59

- tank bottom: Neumann condition,

- symmetric walls, inlet and outlet: Neumann condition.

5.2.4. Main computation

All the computations were run on two cores of an Intel Xeon quad-core processor (clock

speed: 2.80 GHz, 4 GB of system RAM available) with Code_Saturne version 1.3.3 (the

geometry allowed this given that all the internal nodes under a free surface node stayed in the

same parallelised domain); the laminar turbulence model and a second order time scheme

were adopted. The most significant computation was a 50s simulation run with a constant time

step ; its results are presented hereafter.

5.2.5. Results

The Figure 5.2.5-1, Figure 5.2.5-2 and Figure 5.2.5-3 show the free surface shape, pressure

and velocity fields at the physical times , and respectively. In

these figures, the pressure and velocity fields seem to be physically right while the free surface

shapes are in good agreement with the inviscid theory: the wave crest appears to have a

constant amplitude and velocity.

FIGURE 5.2.5-1: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T1 = 8.75 S

FIGURE 5.2.5-2: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T2 = 25 S

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

60

FIGURE 5.2.5-3: FREE SURFACE SHAPE, PRESSURE AND VELOCITY FIELDS AT T3 = 50 S

In the following two figures (Figure 5.2.5-4 and Figure 5.2.5-5), the computed free surface

shape and its analytical solution are plotted at twelve different physical times (from

to). For all of them, the free surface shape is in good agreement with the analytic

solution (23): the computed solitary wave and the analytical one are very similar, they both

have the same crest velocity.

Nevertheless the computed amplitude decreases; this is maybe caused by the fact that

perturbations are created when the solitary wave enters the computational domain: parasitic

oscillations appear and cannot be damped (the water is considered here as an inviscid fluid). It

seems that these parasitic oscillations do not occur when both the free surface elevation and

the inlet velocity profile are specified, thus they appear to be due to the calculation of the free

surface elevation as a function of the mass flow entering the domain.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

61

FIGURE 5.2.5-4: FREE SURFACE SHAPES AT 8 DIFFERENT PHYSICAL TIMES

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

62

FIGURE 5.2.5-5: FREE SURFACE SHAPES AT 4 DIFFERENT PHYSICAL TIMES

Figure 5.2.5-6 and Figure 5.2.5-7 illustrate the solitary wave shape at two consecutive physical

times, and . For the Code_Saturne predictions, two methods are considered:

- Saturne (method-1) in which the mesh velocity is imposed at the free-surface cell-face

centres,

- Saturne (method-2) in which the displacement of the free-surface cell-vertices is

interpolated as presented in 4.1.2.

The Code_Saturne results are compared with the analytical solution (23) and the numerical

predictions of the in-house code STREAM (
*
).

The results confirm what we saw in the section 3.2.4.B: it is better to impose the displacement

of the free-surface cell-vertices. Indeed, using method-1 in Code_Saturne is causing a small

* As presented by Apsley in [20], STREAM is a finite-volume solver which uses the SIMPLE pressure-correction

algorithm to solve the Reynolds-Averaged Navier–Stokes (RANS) equations. For free surface predictions, the

ALE method is used and, within each time step, several free-surface updates are realised; each free surface

update leads to a mesh adjustment for which several cycles of the SIMPLE algorithm are needed to update the

pressure and velocity fields. The solution proceed to the next time step when mass, momentum and free-surface

kinematic equations are simultaneously satisfied.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

63

phase lag of the wave displacement, whereas method-2 and STREAM are in good agreement

with the analytical solution. From the figures, it is also observed that all three numerical

methods appear to underpredict the free surface elevation after the crest.

FIGURE 5.2.5-6: WAVE PROFILE AT PHYSICAL TIME T=20S

FIGURE 5.2.5-7: WAVE PROFILE AT PHYSICAL TIME T=40S

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

64

To sum up, the results of this test case confirmed the validation base on the standing wave in

section 5.1: the motion of the computed solitary wave (created here by an imposed velocity

profile on the inlet) within the tank is in good agreement with the analytic solution and

STREAM predictions.

It could be interesting to study how the parasitic oscillations are created by the inlet and why

the free surface elevation after the crest is underpredicted.

5.2.6. Effectiveness of parallel computing

In order to evaluate the effectiveness of the free surface module for parallel computing, the

main computation presented in 5.2.4 was also run on a single processor core. For each

computation, the table hereafter shows the average computation time spent per time step and

the average number of sub-iterations required to converge within the free-surface loop.

Number of cores Average sub-iteration number Average computation time

1 4.8 4.20 s

2 4.8 2.32 s

The average sub-iteration number is exactly the same for the two computations: that is the

proof that, in this case, the parallelisation of the code works properly given that the results of

the two computations are not influenced by the parallelisation. In addition, the parallelisation

seems to be quite effective: from 4.20 s required for the computation on a single core, the

average computation time decreases to 2.32 s for the computation on two cores, it is almost

two times faster.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

65

5.3. Duncan’s hydrofoil

This test case considers the flow over a hydrofoil under a free surface. This flow was studied

experimentally by J.H. Duncan [24] and numerically by S. Muzaferija et al. [25]. It is an

interesting case because it eventually converges to a steady state solution. Two codes are

considered: Code_Saturne with its ALE technique and the commercial code STAR-CD with its

VOF approach.

5.3.1. Presentation

The hydrofoil of length has a NACA 0012 profile, a fluid

velocity, and 5° angle of attack; the undisturbed water above the profile is , and the

Froude Number is .

The numerical domain is shown in Figure 5.3.1-1 (the dimensions are normalized according to

the hydrofoil length):

FIGURE 5.3.1-1: SCHEMATIC OF NACA FOIL WITH NORMALIZED DIMENSIONS

The free surface is initially undisturbed and the resistance of the hydrofoil creates

progressively a wave downstream; this wave should converge towards a steady solution,

according to Duncan’s experimental results [24].

5.3.2. Mesh characteristics

Figure 5.3.2-1 is the original mesh used in this test case for the computation with

Code_Saturne:

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

66

FIGURE 5.3.2-1: ORIGINAL MESH (CODE_SATURNE VERSION – LONG DOMAIN)

This mesh is particularly refined near the hydrofoil, as the Figure 5.3.2-2 shows:

FIGURE 5.3.2-2: MESH NEAR THE NACA 0012 HYDROFOIL (CODE_SATURNE VERSION)

5.3.3. Physical characteristics

The test case is run with the following physical parameters:

- fluid density: (water value),

- fluid viscosity: (water value),

- gravity: ,

- NACA length: ,

- inlet fluid velocity: ,

- Froude number:

 ,

- Reynolds number:

 .

5.3.4. Boundary conditions

The boundary conditions for the fluid velocity are:

- free surface: homogeneous Neumann condition,

- inlet: constant inlet velocity,

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

67

- outlet: convective boundary condition for Code_Saturne (
*
) and standard outlet for the

commercial code STAR-CD,

- tank bottom and hydrofoil: homogeneous Dirichlet condition,

- symmetric walls: slip condition.

The boundary conditions for the mesh velocity are:

- free surface: Dirichlet condition according to the formula (9) page 18,

- tank bottom and hydrofoil: homogeneous Dirichlet condition,

- symmetric walls, inlet and outlet: slip condition.

The boundary conditions for the pressure are:

- free surface: homogeneous Dirichlet condition according to the formula (8) page 18,

- outlet: convective boundary condition for Code_Saturne (
*
) and standard outlet for the

commercial code STAR-CD,

- tank bottom, hydrofoil, symmetric walls and inlet: Neumann condition.

5.3.5. Main computations

To predict the free-surface shape, two codes are considered: Code_Saturne (version 1.3.3)

with the ALE technique and the commercial code STAR-CD (version 4.02) with the VOF

approach.

The simulations reported in section 5.3.6 were completed in collaboration with Dr Yacine

Addad and a report presenting the wave profile and pressure coefficients around the NACA

hydrofoil was co-authored [26]:

- First, numerical tests were conducted with the code STAR-CD using the VOF

technique in order to examine the effects of a turbulence model on the flow predictions

at such a low Reynolds number. ().

- Then, an extended domain (canal length behind the hydrofoil instead

of) was used in the comparative runs to avoid boundary effects on the zone

of interest.

* The convective boundary condition was implemented in Code_Saturne by Dr Yacine Addad (University of

Manchester); it consists in satisfying an equation of the form

 for all the variables Φ including the

pressure. A detailed description can be found in [26].

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

68

5.3.6. Results

Figure 5.3.6-1 shows the free surface shape and the velocity field for the global domain while

Figure 5.3.6-2 focuses on the velocity and pressure fields near the hydrofoil, both at the

physical time for the Code_Saturne computation in the extended domain. In both

figures, we can see that the fluid flow is disturbed by the hydrofoil in its proximity, which

creates a wave downstream.

FIGURE 5.3.6-1: FREE SURFACE SHAPE AND VELOCITY FIELD AT T = 25 S

FIGURE 5.3.6-2: PRESSURE AND VELOCITY FIELDS NEAR THE HYDROFOIL AT T = 25 S

The results of wave profile, presented in Figure 5.3.6-3, reveal that the activation of a

turbulence model with the VOF method in the short domain (“k-ε” and “no model”

computations) has only small effects on the flow predictions, thus justifying the validity of the

computations carried out with no turbulence model (i.e. assuming a laminar regime).

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

69

As illustrated in Figure 5.3.6-3, both ALE (in Code_Saturne) and VOF (in STAR-CD) methods

under-predict the wave amplitude for the same “long domain” mesh resolution but are well in

phase with the experimental measurements.

The first wave is better predicted with the VOF method, while further downstream, the waves

predicted with the VOF method dissipate much faster than those obtained with the ALE

method which remain at the same amplitude. This is maybe due to the fact that computations

run with Code_Saturne were performed using the second-order centred difference scheme

(CD) for convection while a first order Upwind scheme was selected for the STAR-CD code in

order to enhance stability (as recommended in the code documentation).

FIGURE 5.3.6-3: WAVE PROFILE FOR A DEPTH OF SUBMERGENCE OF 21.0 CM

To sum up, the Code_Saturne ALE results are in a fairly reasonable agreement with the STAR-

CD VOF approach predictions. Discrepancies between flow-solvers predictions and

experimental values, particularly for the wave amplitude, prove that the case is more

challenging in the sense that many factors need to be taken into account such as grid

resolution, numerical schemes, boundary conditions, turbulence models. Identifying the main

reasons of these discrepancies is an interesting topic for further research.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

70

Chapter 6

Limits of existing module and

proposal for a new version

6.1. Local volume conservation

We saw that, because of the inaccurate Code_Saturne interpolation between the free-surface

cell-vertices displacement and the free-surface cell-face centres velocities, we have to compute

“by hand” the cell-vertices displacement. The easiest way to do that is to consider an explicit

formulation, but it has the disadvantage of not satisfying the local mass conservation.

As seen in section 3.2.4.B, the interpolation inaccuracy occurs as an edge effect and is

probably caused by the way the boundary conditions for the mesh velocity are treated within

Code_Saturne. If this problem is solved, the local volume conservation will then be met and

that will improve the code accuracy in predicting free surface flows.

6.2. Parallel computation

The last version of the free surface module does support parallel computation considering

some conditions:

- The global domain cannot be divided anyhow: in the global mesh, all the internal cell-

vertices under a free-surface cell-vertex (considering the gravity vector) must stay in

the same parallelised domain.

- The moving boundary conditions have to match the parallelised domain.

- The post processing outputs need to be implemented considering the parallel

constraints.

It will be useful to smooth over these constraints; this way the range of available test-cases

will be larger.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

71

6.3. Convergence loop

Sometimes, the convergence loop does not converge towards one unique value, but towards

two different values. Even the increase of the maximum iteration number of the convergence

loop does not solve the problem; however, by reducing the time step, the convergence loop

seems to converge eventually towards one unique value.

Therefore, the implementation of a variable time step method based on both the Courant

number and the convergence loop accuracy seems necessary.

6.4. Energy conservation

In the standing wave test-case, the global energy (that is to say the gravitational potential

energy plus the kinetic energy) tends to vary slightly sometimes. No energy conservation law

is solved, so the global energy conservation is not inherent, but it would be interesting to

understand the causes of this phenomenon and its possible solutions.

6.5. Support of irregular mesh with different

types of cell

In the free surface module, the actual cell-vertices displacement method consists in an explicit

formulation which works only with regular meshes (ordered rectangular grid on the free

surface, similar to a chessboard as presented in Figure 4.1.2-1). This limits the range of test

cases compatible with Code_Saturne. Actually, if the mesh velocity interpolation within

Code_Saturne is made reliable, unstructured and non-conform meshes will then be supported.

6.6. CFL condition

The Courant number must stay less than one:

 . Otherwise the free surface loop

has difficulties to converge, and that can lead to a computation crash.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

72

Conclusion

The feasibility of the implementation within Code_Saturne of a free surface module based on

the ALE method was demonstrated. Indeed, the original ALE module within Code_Saturne

has been adapted to free-surface flows by adding a convergence loop to perform the free

surface movement incrementally within each time step. The geometry was then updated at the

end of the time step, thanks to the implemented method, which explicitly computes the

displacement of each cell-vertex within the global domain; this allows the module to be

globally volume conservative.

Several computations on free surface configurations were run. The first test case is a standing

wave in a tank; results are quite good: the time period of the standing wave oscillations and

the free surface shape are close to the theoretical values, the mass conservation is met.

Convergence in time shows a good behaviour; on the contrary, convergence in space is odd: a

lack of convergence is observed with decreasing spatial resolution. This would need a further

analysis to be complete: the case should be initially set and compared to a theory more

accurate than the second order theory of Chabert d'Hières.

The second configuration deals with a solitary wave in a water tank; the results are in good

agreement with the analytic solution – in terms of crest amplitude, crest velocity and solitary

wave shape. Parasitic oscillations are created when the solitary wave enters the computational

domain and, to get rid of them, it would be interesting to understand how they are created.

Further research is needed to understand why the free surface elevation after the crest is

underpredicted for both Code_Saturne and STREAM code.

For the third test case, the flow over a hydrofoil under a free surface, Code_Saturne is in fairly

good agreement with the STAR-CD VOF approach predictions and the experimental

measurements of J.H. Duncan, but this case proves to be more challenging: discrepancies

between flow-solvers predictions and experimental values, particularly for the wave

amplitude, show that many factors would need to be further analyzed – such as grid resolution,

numerical schemes, turbulence models and boundary conditions – in order to get better

predictions.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

73

To sum up, these first results are encouraging even if, for now, the method shows some

important limitations: the local volume conservation law is not met, parallel computations are

only available for few configurations and irregular meshes are not supported anymore. Most of

these limitations could already be overcome if the Code_Saturne interpolation between the

free-surface cell-vertices displacement and the free-surface cell-face centres velocities is made

reliable; this is definitely the first improvement to do in the next stages of the project. Indeed,

Code_Saturne will then be able to run complex 3D applications, such as the flow around a

marine turbine with the presence of free-surface effects, a simulation required for the ReDAPT

project.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

74

Appendices

Appendix 1: Successive stages within a time step

Calculation of the physical properties

Boundary Conditions

 condli

 clptur “turbulent” conditions at the wall
 clsyvt symmetry conditions for the vectors and the tensors

Navier-Stokes solution

 navsto

 Velocity prediction
 preduv

 vissec momentum source terms related to the transposed gradient

 of the velocity
 viscfa calculation of the viscosity at the faces

 codits iterative solution of the system using an incremental method

 Pressure correction
 resolp

 viscfa calculation of the time step at the faces...

 visort ...according to the selected options

 matrix calculation of the Poisson equation matrix
 inimas initialisation of the mass flow rate

 itrmas update of the mass flow rate

 Velocity correction
 standard method or ...

 recvmc ... least square method

k − epsilon model
 turbke

 viscfa preliminary steps before...

 bilsc2 ...source terms coupling

 viscfa calculation of the viscosity at the faces
 codits iterative solution of the systems using an incremental method

Reynolds stress model

 turrij
 visort calculation of the viscosity at the faces

 codits iterative solution of the systems using an incremental method

Equations for the scalars
 covofi

 viscfa calculation of the viscosity at the faces

 codits iterative solution of the systems using an incremental method

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

75

Appendix 2: Implementation of the new module

Structure of the convergence loop (routines independent of

the test case)

The following routines manage the convergence loop: they are independent of the test case

simulated, and a basic new user would not need to modify them.

cs_ale.h (header file to declare parallelisation functions – modified file):

The new parallelisation function ALEFRS is declared here: this function computes the free

surface nodes displacement for the parallelised border nodes.

cs_ale.c (C file to define parallelisation functions – modified file):

The new parallelisation function ALEFRS is defined here: this function computes the free

surface nodes displacement for the parallelised border nodes by creating a table of

connectivity between the border nodes and the parallelised domains they belong to.

albase.h (include file to declare global variables – modified file):

Three new global variables are created:

- ACTIFS (integer): use of an iterative scheme to compute the free surface mesh

velocities (equal to 0 when disabled, equal to 1 when enabled),

- NBITFS (integer): maximum iterations number for the computation of the free surface

mesh velocities (i.e. when ACTIFS = 1),

- EPALFS (real): relative precision for the computation of the free surface mesh

velocities.

usalin.F (user's routine for ALE's settings – modified routine):

The three new global variables required to settle the convergence loop are initialized here.

C Activation of the iterative scheme for the computation of the free surface mesh velocities

 ACTIFS = 1

C Maximum iterations number for the computation of the free surface mesh velocities when ACTIFS = 1

 NBITFS = 10

C Relative precision for the computation of free surface mesh velocities

 EPALFS = 1.D-6

ustbus.F (user's routine to define the dimensions of the user's and developer's tables –

modified routine):

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

76

The dimensions of the user's and developer's tables are required: the developer's table is used

to store the boundary conditions and mass flows values, whereas the user's table stores data is

needed for post processing.

 NITUSE = NNOD

 NIDEVE = 5*NFABOR

 NRTUSE = 4*NFABOR+5+2*NNOD

 NRDEVE = NFAC+9*NFABOR+1+NNOD

tridim.F (solving of Navier-Stokes and scalar equations for one time step – modified routine):

This routine sets the structure of the free surface convergence loop.

If the iterative scheme to compute the free surface mesh velocities is enabled and the ALE

initialisation iteration already occurred, then the convergence loop can start.

 IF (ACTIFS.EQ.1 .AND. ITRALE.NE.0) THEN

 ITERFS = 1

 ELSE

 ITERFS = -1

 ENDIF

Next, the initial boundary conditions values for the variables are saved at the first iteration.

 IF (ACTIFS.EQ.1 .AND. ITERFS.EQ.1) THEN

 CALL FSSAVE

C ===========

 & (IFINIA , IFINRA , ITRALE , ITALIM , INEEFL ,

 & NDIM , NCELET , NCEL , NFAC , NFABOR , NFML , NPRFML ,

 & NNOD , LNDFAC , LNDFBR , NCELBR ,

 & NIDEVE , NRDEVE , NITUSE , NRTUSE ,

 & IFACEL , IFABOR , IFMFBR , IFMCEL , IPRFML,

 & IPNFAC , NODFAC , IPNFBR , NODFBR ,

 & IA(IIMPAL) ,

 & IDEVEL , ITUSER , IA ,

 & XYZCEN , SURFAC , SURFBO , CDGFAC , CDGFBO ,

 & XYZNOD , VOLUME ,

 & RTP , RTPA , PROPCE , PROPFA , PROPFB ,

 & COEFA , COEFB ,

 & RDEVEL , RTUSER , RA)

C

 ENDIF

And lastly, if the convergence criterion is not met, the initial boundary conditions and

variables values are reloaded and the convergence loop starts a new iteration.

 IF (ACTIFS.EQ.1) THEN

 CALL FSLOAD

C ===========

 & (IFNIA1 , IFINRA ,

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

77

 & ITRALE , ITERFS ,

 & NDIM , NCELET , NCEL , NFAC , NFABOR , NFML , NPRFML ,

 & NNOD , LNDFAC , LNDFBR , NCELBR , NVAR ,

 & NIDEVE , NRDEVE , NITUSE , NRTUSE ,

 & IFACEL , IFABOR , IFMFBR , IFMCEL , IPRFML ,

 & MAXELT , IA(ILS),

 & IPNFAC , NODFAC , IPNFBR , NODFBR ,

 & IDEVEL , ITUSER , IA ,

 & XYZCEN , SURFAC , SURFBO , CDGFAC , CDGFBO , XYZNOD , VOLUME ,

 & DT , RTP , RTPA , PROPCE , PROPFA , PROPFB ,

 & COEFA , COEFB ,

 & RDEVEL , RTUSER ,

 & RA)

C

 IF (ITERFS.NE.-1) THEN

 ITERFS = ITERFS + 1

 GOTO 300

 ENDIF

 ENDIF

fssave.F (save of the mass flows and boundary conditions values when the free surface

module is enabled – new routine):

The values of the mass flows and fluid velocity and pressure boundary conditions are saved in

the developer’s real table RDEVEL.

navsto.F (solving of the Navier-Stokes equations for one time step – modified routine):

During the solving of the Navier-Stokes equations, in the correction step, the values of the

mass flows through the free surface are saved just before the addition of the mesh velocity to

the convective flux; these mass flows actually count the fluid supposed to go through the free

surface if the free surface is considered as fixed. These values are stored in the user’s real table

RTUSER.

 IF (ACTIFS.EQ.1) THEN

 CALL GETFBR('FREE_SURF',NLELT,LSTELT)

C ===========

 DO ILELT = 1, NLELT

 IFAC = LSTELT(ILELT)

 RTUSER(4*IFAC) = RTUSER(4*IFAC+1)

 RTUSER(4*IFAC+1) = PROPFB(IFAC,IPPROB(IFLUMA(IU(1))))

 ENDDO

 ENDIF

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

78

fsload.F (possible back to the saved values of the variables and boundary conditions

(fssave.F) when the free surface with iterative prediction of the free surface mesh velocities is

enabled – new routine):

The difference between the new mass flows RTUSER(4*IFAC+1) on the free surface and the

ones of the previous iteration of the convergence loop RTUSER(4*IFAC) is calculated:

 DELTA = 0.D0

 CALL GETFBR('FREE_SURF',NLELT,LSTELT)

C ===========

 DO ILELT = 1, NLELT

 IFAC = LSTELT(ILELT)

 IF(DELTA.LT.(SQRT((RTUSER(4*IFAC+1)-RTUSER(4*IFAC))**2)/ABS(RTUSER(4*IFAC+1))))
THEN

 DELTA=(SQRT((RTUSER(4*IFAC+1)-RTUSER(4*IFAC))**2)/ABS(RTUSER(4*IFAC+1)))

 ENDIF

 ENDDO

That gives us a value DELTA which can be compared with EPALFS:

 IF (DELTA.LE.EPALFS) THEN

 ITERFS = -1

 WRITE(NFECRA,*) 'Convergence', DELTA

 ELSEIF (ITERFS.EQ.NBITFS) THEN

 CALL GETFBR('FREE_SURF',NLELT,LSTELT)

C ===========

 DO ILELT = 1, NLELT

 IFAC = LSTELT(ILELT)

 RTUSER(4*IFAC+1) = (RTUSER(4*IFAC+1)+RTUSER(4*IFAC))/2

 ENDDO

 WRITE(NFECRA,*) 'Non Convergence', DELTA

 ELSEIF (ITERFS.GT.NBITFS) THEN

 ITERFS = -1

 ENDIF

If the convergence criterion is met (i.e. DELTA < EPALFS), the convergence loop can be

ended directly by putting ITERFS = -1.

Otherwise, as long as the convergence criterion is not met, the convergence loop carries on

until the iteration number ITERFS raises the value of NBITFS. At this point, a final iteration is

added where the mass flow value is the average of the two previous ones.

If ITERFS is positive, the convergence loop is still active, which means that the code has to

come back to the previous values of the variables and boundary conditions saved in fssave.F

(except for the mass flows):

 IF (ITERFS.NE.-1) THEN

 DO II = 1, NVAR

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

79

 DO IEL = 1, NCELET

 RTP(IEL,II) = RTPA(IEL,II)

 ENDDO

 ENDDO

 DO IFAC = 1, NFABOR

 COEFA(IFAC,ICLP) = RDEVEL(NFAC+NFABOR+IFAC)

 COEFA(IFAC,ICLU) = RDEVEL(NFAC+2*NFABOR+IFAC)

 COEFA(IFAC,ICLV) = RDEVEL(NFAC+3*NFABOR+IFAC)

 COEFA(IFAC,ICLW) = RDEVEL(NFAC+4*NFABOR+IFAC)

 COEFB(IFAC,ICLP) = RDEVEL(NFAC+5*NFABOR+IFAC)

 COEFB(IFAC,ICLU) = RDEVEL(NFAC+6*NFABOR+IFAC)

 COEFB(IFAC,ICLV) = RDEVEL(NFAC+7*NFABOR+IFAC)

 COEFB(IFAC,ICLW) = RDEVEL(NFAC+8*NFABOR+IFAC)

 ENDDO

 ENDIF

Boundary conditions (routines dependent of the test case)

The following routines depend on the simulated test case; the code lines presented here

focuses on the implementation of the free surface boundary conditions – for the standing wave

test case.

usalcl.F (user's routine for the loading of the boundary conditions for the mesh velocity):

The displacement of the free surface nodes is imposed by using the DEPALE array. This way,

the problems caused by the use of the RCODCL are avoided (see the section 3.2.4.B).

First, for the colour “FREE_SURF”, that is to say the free surface, an imposed mesh velocity

is set.

 CALL GETFBR('FREE_SURF',NLELT,LSTELT)

C ===========

 DO ILELT = 1, NLELT

 IFAC = LSTELT(ILELT)

 IEL = IFABOR(IFAC)

 IPHAS = 1

 IALTYB(IFAC) = IVIMPO

 RCODCL(IFAC,IUMA,1) = 0.D0

 RCODCL(IFAC,IVMA,1) = 0.D0

The vertical free surface velocity is directly computed as the ratio between the mass flow

through the free surface face IFAC (value saved in the RTUSER user’s real table), and the

density and the vertical component of the face surface vector.

 RCODCL(IFAC,IWMA,1) =

 (RTUSER(4*IFAC+1)/(PROPFB(IFAC,IPPROB(IROM(IPHAS)))*SURFBO(3,IFAC)))

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

80

At this point, the code has to compute the free surface nodes displacements; there are two

ways of doing that:

- the first scheme is simple and works for all the test cases (2D and 3D): each free

surface nodes displacement is computed explicitly and is the average of the mesh

velocities at the closest free surface face centres, except for the side nodes. This

scheme does meet the global conservation of the mass, but not the local one.

 IF(NTCABS.GT.0) THEN

 DO II = IPNFBR(IFAC), IPNFBR(IFAC+1)-1

 INOD = NODFBR(II)

 IMPALE(INOD) = 1

 DEPALE(INOD,1) = 0.D0

 DEPALE(INOD,2) = 0.D0

 RTUSER(4*NFABOR+5+INOD) = RTUSER(4*NFABOR+5+INOD) +

 * RCODCL(IFAC,IWMA,1)*DTREF

 RTUSER(4*NFABOR+5+NNOD+INOD)=RTUSER(4*NFABOR+5+NNOD+INOD)+1

 DEPALE(INOD,3) = XYZNOD(3,INOD)-XYZNO0(3,INOD) +

 *RTUSER(4*NFABOR+5+INOD)/RTUSER(4*NFABOR+5+NNOD+INOD)

 ENDDO

 ENDIF

 ENDDO

- the second way consists in computing an implicit free surface node displacement by

solving a system of equations between nodes displacement and face centre velocities.

This scheme does satisfy its local mass conservation; it is only available for 2D test

cases with very simple meshes and is not parallelised (at least for the moment).

This scheme is activated when IUTILE = 1, then the creation of a free surface vertices/faces

linking table is necessary and created in the developer’s integer table IDEVEL during the

initialisation step.

 IF(NTCABS.GT.0 .AND. IUTILE.EQ.1) THEN

 DO IND = 0, NLELT

 IFAC = IDEVEL(3*IND)

 DO II = 1, 2

 INOD = IDEVEL(3*IND+II)

 IMPALE(INOD) = 1

 DEPALE(INOD,1) = 0.D0

 DEPALE(INOD,2) = 0.D0

 IF(IND.EQ.0) THEN

Actually there is one more unknown node displacement than the number of equations, so one

more arbitrary equation is necessary to be able to compute the free surface nodes displacement

(e.g. one can add an additional equation on a side node).

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

81

 IFAC = IDEVEL(3)

 DEPALE(INOD,3) = XYZNOD(3,INOD)-XYZNO0(3,INOD)+RCODCL(IFAC,IWMA,1)*DTREF

 RDEVEL(NFAC+9*NFABOR+1+INOD) = RCODCL(IFAC,IWMA,1)

 ELSE

 INOD2 = IDEVEL(3*IND+II-3)

 DEPALE(INOD,3) = XYZNOD(3,INOD)-XYZNO0(3,INOD)

 *+ (2*RCODCL(IFAC,IWMA,1)-RDEVEL(NFAC+9*NFABOR+1+INOD2))*DTREF

 RDEVEL(NFAC+9*NFABOR+1+INOD) = (2*RCODCL(IFAC,IWMA,1)

 *- RDEVEL(NFAC+9*NFABOR+1+INOD2))

 ENDIF

 ENDDO

 ENDDO

 ENDIF

Then the parallelisation of the code has to be ensured: the free surface border nodes

displacement must have exactly the same value on every parallelised domain.

 IF(IRANGP.GE.0) THEN

 CALL ALEFRS

C ===========

 & (IFACEL , IFABOR , IPNFAC , NODFAC , IPNFBR , NODFBR ,

 & RTP(1,IUMA), RTP(1,IVMA), RTP(1,IWMA),

 & COEFA(1,ICLUMA), COEFA(1,ICLVMA), COEFA(1,ICLWMA),

 & COEFB(1,ICLUMA), COEFB(1,ICLVMA), COEFB(1,ICLWMA),

 & DT, RTUSER(4*NFABOR+6+NNOD), RTUSER(4*NFABOR+6))

C

 DO INOD=1, NNOD

 DEPALE(INOD,3) = XYZNOD(3,INOD)-XYZNO0(3,INOD) +

 *RTUSER(4*NFABOR+5+INOD)/RTUSER(4*NFABOR+5+NNOD+INOD)

 ENDDO

 ENDIF

Given that the nodes just move in one direction and the mesh is regular, for all the internal

nodes, their displacement is directly linked to the free surface nodes displacement, according

to the ratio between heights.

 IF(NTCABS.GT.0) THEN

 DO ILELT = 1, NLELT

 IFAC = LSTELT(ILELT)

 DO II = IPNFBR(IFAC), IPNFBR(IFAC+1)-1

 INOD = NODFBR(II)

 DO INOD2 = 1, NNOD

 IF(ABS(XYZNO0(1,INOD2)-XYZNO0(1,INOD)).LT.PRECIS

 *.AND.ABS(XYZNO0(2,INOD2)-XYZNO0(2,INOD)).LT.PRECIS

 *.AND.ABS(XYZNO0(3,INOD2)-XYZNO0(3,INOD)).GT.PRECIS) THEN

 IMPALE(INOD2) = 1

 DEPALE(INOD2,1) = DEPALE(INOD,1)

 DEPALE(INOD2,2) = DEPALE(INOD,2)

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

82

 DEPALE(INOD2,3) = DEPALE(INOD,3)*XYZNO0(3,INOD2)

 */XYZNO0(3,INOD)

 ENDIF

 ENDDO

 ENDDO

 ENDDO

 ENDIF

usclim.F (user's routine for the loading of the boundary conditions for the unknown

variables):

For the colour "FREE_SURF" free surface, a free outlet is set, with a Neumann condition for

the velocities and a Dirichlet condition for the pressure:

 CALL GETFBR('FREE_SURF',NLELT,LSTELT)

C ===========

 DO ILELT = 1, NLELT

 IFAC = LSTELT(ILELT)

 DO IPHAS = 1, NPHAS

 ITYPFB(IFAC,IPHAS) = ISOLIB

 ICODCL(IFAC,IU(IPHAS)) = 3

 RCODCL(IFAC,IU(IPHAS),3) = 0.D0

 ICODCL(IFAC,IV(IPHAS)) = 3

 RCODCL(IFAC,IV(IPHAS),3) = 0.D0

 ICODCL(IFAC,IW(IPHAS)) = 3

 RCODCL(IFAC,IW(IPHAS),3) = 0.D0

 ICODCL(IFAC,IPR(IPHAS)) = 1

 RCODCL(IFAC,IPR(IPHAS),1) = P0(IPHAS)

 ENDDO

 ENDDO

usini1.F (user's routine to set computational parameters):

If we want to adopt a second order time scheme (Code_Saturne is first order accurate in time

by default, some turbulence models cannot work with the second order accuracy in time), we

have to add the following line:

 ISCHTP(1) = 2

In addition, the gravity field and the fluid's properties are set here.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

83

Appendix 3: Solitary test case – paddle movement

The solitary wave can be created by a paddle movement coded in the routine usalcl.F:

 g=sqrt(GX**2+GY**2+GZ**2)

 H_over_h0 = 0.2d0

 depth = 10.d0

 waveHeight = H_over_h0*depth

 kappa = sqrt(3.0d0*waveHeight/(4.0d0*(depth**3)))

 celerity = sqrt(g*(depth + waveHeight))

 x_paddle_initial = 0.0d0

 stroke = 2.0d0*H_over_h0/kappa

 t_0 = 3.8d0/(kappa*celerity) !3.8 = atanh(1.0)

 tau = 2.0d0*t_0 + stroke/celerity

 theta = tau*kappa*celerity*((TTCABS/tau)-0.5d0) + H_over_h0

 PD = x_paddle_initial + 0.5d0*stroke*(1.0d0 + tanh(theta))

 U_P = 0.5d0*stroke*kappa*celerity/((cosh(theta))**2)

 XINLET = PD

 VITINL = U_P

Thus the displacement of the free surface nodes is both in the vertical and horizontal directions

– it will be interesting to check that the Discrete Geometric Conservation Law (DGCL) is still

met here. The created solitary wave presents good characteristics even if the resulting wave

height is higher than its setting.

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

84

References

[1] N. Chini, et al., "The impact of sea level rise and climate change on inshore wave climate:

A case study for East Anglia (UK)," Coastal Engineering, vol. 57, pp. 973-984, 2010.

[2] M. S. Longuet-Higgins and E. D. Cokelet, "The deformation of steep surface waves on

water, I. A numerical method of computation," Proc. R. Soc. Lond. A, vol. 350, pp. 1-26,

1976.

[3] W. Tsai and D. K. P. Yue, "Computation of nonlinear free-surface flows," Annual Review

of Fluid Mechanics, vol. 28, pp. 249-278, 1996.

[4] J. M. Floryan and H. Rasmussen, "Numerical methods for viscous flows with moving

boundaries," Applied Mechanics Reviews, vol. 42, pp. 323-341, 1989.

[5] J. H. Ferziger and M. Peric, Computational methods for fluid dynamics, 3rd ed. Springer-

Verlag Berlin, 2002.

[6] C. W. Hirt and B. D. Nichols, "Volume of fluid (VOF) method for the dynamics of free

boundaries," Journal of Computational Physics, vol. 39, pp. 201-225, 1981.

[7] F. H. Harlow and J. E. Welch, "Numerical calculation of time-dependent viscous

incompressible flow of fluid with free surface," Physics of Fluids, vol. 8, pp. 2182-2189,

1965.

[8] S. Mayer, "A fractional step method for unsteady free-surface flow with applications to

non-linear wave dynamics," International Journal for Numerical Methods in Fluids, vol.

28.2, pp. 293-315, 1998.

[9] J. L. Thé, G. D. Raithby, and G. D. Stubley, "Surface-adaptative finite-volume method

for solving free surface flows," Numerical Heat Transfer, vol. Part B, Fundamentals 26.4,

pp. 367-380, 1994.

[10] D. Violeau and R. Issa, "Numerical modelling of complex turbulent free-surface flows

with the SPH method: an overview," International Journal for Numerical Methods in

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

85

Fluids, vol. 53, p. 277–304, 2007.

[11] F. Archambeau, N. Méchitoua, and M. Sakiz, "Code_Saturne: a finite volume method for

the computation of turbulent incompressible flows - industrial applications," International

Journal on Finite Volumes, vol. 1.1, p. 1–62, 2004.

[12] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics:

the finite volume method, 2nd ed. Pearson, 2007.

[13] P. J. Zwart, "The integrated space-time finite volume method," Ph.D. thesis, University of

Waterloo, 1999.

[14] C. M. Rhie and W. L. Chow, "Numerical study of the turbulent flow past an airfoil with

trailing edge separation," AIAA Journal, vol. 21, pp. 1525-1532, 1983.

[15] R. K. C. Chan, "A generalized arbitrary Lagrangian-Eulerian method for incompressible

flows with sharp interfaces," Journal of Computational Physics, vol. 17, pp. 311-331,

1975.

[16] F. Archambeau and V. Guimet, "Description et mise en œuvre d'un prototype de module

ALE dans le Solveur Commun," Rapport EDF HE-41/99/030/A, 1999.

[17] C. Farhat, "The Discrete Geometric Conservation Law and the Nonlinear Stability of

ALE Schemes for the Solution of Flow Problems on Moving Grids," Journal of

Computational Physics, vol. 174.2, pp. 669-694, 2001.

[18] M. Souli and J. P. Zolesio, "Arbitrary Lagrangian-Eulerian and free surface methods in

fluid mechanics," Computer Methods in Applied Mechanics and Engineering, vol.

191.31, pp. 451-466, 2002.

[19] I. Demirdzic and M. Peric, "Finite volume method for prediction of fluid flow in

arbitrarily shaped domains with moving boundaries," International Journal for Numerical

Methods in Fluids, vol. 10.7, pp. 771-790, 1990.

[20] D. Apsley and W. Hu, "CFD simulation of two- and three-dimensional free-surface

flow," International Journal for Numerical Methods in Fluids, vol. 42.5, pp. 465-491,

2003.

[21] F. Archambeau, V. Guimet, and G. Bastin, "Application du prototype de module ALE du

 Free surface flow simulation: correcting and benchmarking the ALE method in Code_Saturne

86

Solveur Commun à des cas de surface libre," Rapport EDF HE-41/99/054/A, 1999.

[22] G. Chabert D'Hières, "Calcul approché du troisième ordre d'un clapotis parfait

monochromatique," Compte rendus de l'Académie des Sciences, vol. 244, p. 2573, 1957.

[23] R. G. Dean and R. A. Dalrymple, "Water wave mechanics for engineers and scientists,"

World Scientific Pub Co Inc, 1991.

[24] J. H. Duncan, "The breaking and non-breaking wave resistance of a two-dimensional

hydrofoil," Journal of Fluid Mechanics, vol. 126, pp. 507-520, 1983.

[25] S. Muzaferija, M. Peric, and S. D. Yoo, "Computation of free-surface flows using moving

grids," 11th International Workshop on Water Waves and Floating Bodies, 1996.

[26] Y. Addad and O. Cozzi, "Progress report on the free surface validation with

Code_Saturne," University of Manchester ReDAPT Project, July 2010, 2010.

[27] F. Billard, "Near-wall turbulence RANS modeling and its applications to industrial

cases," M.Phil. thesis, University of Manchester, 2007.

[28] J. R. Chaplin, "Nonlinear forces on a horizontal cylinder beneath waves," Journal of

Fluid Mechanics, vol. 147, pp. 449-464, 1984.

[29] T. F. Ogilvie, "First- and second-order forces on a cylinder submerged under a free

surface," Journal of Fluid Mechanics, vol. 16, pp. 451-472, 1963.

