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Keyhole laser welding is a joining technology characterised by the high focussed power 
density applied to the workpiece, facilitating deep penetration at high processing speeds. 
High aspect-ratio welds produced using this process invariably have narrow heat-affected-
zones and minimal thermal distortion compared with traditional arc welding processes. 
Furthermore, the ability to process out of vacuum and the easy robotic manipulation of fibre 
optically delivered 1µm wavelength laser beams, allow keyhole laser welding to process 
geometrically complex components. The widespread uptake of keyhole laser welding for the 
production of titanium alloy components in the aerospace industry has been limited by the 
stringent weld quality requirements. Producing welds with levels of subsurface weld metal 
porosity content meeting the required weld quality criteria has been the primary obstacle. 
 Here, three techniques for controlling the levels of weld metal porosity when welding 
titanium alloys with Nd:YAG rod lasers have been developed. Characterisation of the welding 
processes using high speed photography and optical spectroscopy, have allowed an original 
scientific understanding of the effects these methods have on the keyhole, melt pool and 
vapour plume behaviour. Combining this with a thorough assessment of the weld qualities 
produced, has enabled the effects of these process behaviours on the formation of weld metal 
porosity to be determined. 
 It was found that with the correct process parameters a directed gas jet and a dual 
focus laser welding condition can both be used to reduce the occurrence of keyhole collapse 
during Nd:YAG laser welding. The directed gas jet prevents the formation of a beam 
attenuating vapour plume and interacts with the molten metal to produce a stable welding 
condition, whereas the dual focus laser welding condition reduces fluctuations in the process 
due to an enlarged keyhole. When applied, both techniques reduced the occurrence of 
porosity in the weld metal of full penetration butt welds produced in titanium alloys. A 
modulated Nd:YAG laser output, with the correct waveform and modulation frequency, also 
reduced the occurrence of porosity in the weld metal compared with welds produced with a 
continuous-wave output. This was a result of an oscillating wave being set-up in the melt pool 
which manipulated the keyhole geometry and prevented instabilities in the process being 
established.  
 In addition, the potential for welding titanium alloys to the required weld quality 
criteria with state-of-the-art Yb-fibre lasers has been assessed. It was found that the high 
power densities of suitably focussed laser beams with excellent beam quality, were capable of 
producing low-porosity full penetration butt welds in titanium alloys without the techniques 
required for laser beams with a lower beam quality.  
 These new techniques for keyhole laser welding of titanium alloys will encourage the 
uptake of keyhole laser welding for producing near-net-shape high-performance aerospace 
components. The advantages offered by this joining technology include high productivity, low 
heat input and easy robotic automation. 
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Chapter 1  

Introduction 

1.1 Growth of the Laser Materials Processing Industry 

The term ‘laser’ is an acronym for ‘Light Amplification by Stimulated Emission of Radiation’ 

and refers to the method for producing electromagnetic radiation by the stimulated emission 

process. Ordinarily, the emitted light has a wavelength between the infra-red and ultraviolet 

frequencies of the electromagnetic spectrum. The term was formulated by Gordon Gould and 

first published in 1959 [Gould, 1959] in a paper at the Ann Arbor conference of Optical 

Pumping. Subsequently, Maiman [1960] reported the first successful stimulated emission of 

electromagnetic radiation in the journal Nature. Maiman [1960] utilised a flash-lamp to pump 

a ruby crystal, and observed stimulated emissions at wavelengths of 692.9 and 694.3 nm. 

Previous research performed by Einstein [1916], Ladenburg [1928], Schawlow and Townes 

[1958], Javan [1959], and several others formed the basis for the theoretical and practical 

knowledge required to produce these stimulated emissions. In the same decade as the first 

successful demonstration of stimulated emission, numerous other laser sources were 

developed which utilised active mediums other than the ruby crystal. These included the 

gallium-arsenic (GaAs) semiconductor laser [Hall et al, 1962], the neodymium:yttrium-

aluminium-garnet (Nd:YAG) laser [Geusic et al, 1964] and the carbon dioxide (CO2) laser 

[Patel, 1964]. 

In contrast with the light emitted from all other light sources, the electromagnetic radiation 

emitted from laser sources (commonly known as a laser beam or laser light) is; highly 

monochromatic - the spectrum of emitted light has a narrow spectral linewidth, which is 

determined by the bandwidth of the gain medium and the number of longitudinal modes 

available in the resonator; highly coherent; and, of very low divergence. Published works by 

researchers such as Schwarz and DeMaria [1962], and Bahun and Eng-Quist [1962] quickly 
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reported the potential for utilising the laser beam for materials processing applications, 

including; cutting, drilling, surfacing and welding processes. The characteristics of laser light 

allow it to be narrowly focussed, resulting in a power density suitable for the aforementioned 

materials processing applications. Focussed beams of light from modern laser sources have 

sufficient power density to initiate melting and vaporisation of metallic workpieces, thereby 

enabling conduction limited and keyhole laser welding to be performed.  

During the fifty years that have elapsed since the demonstration of the first laser source, the 

laser materials processing industry has been firmly established through the adoption of laser 

technology to improve quality and/or productivity in numerous industry sectors. Market 

figures for 2008 [Belforte, 2010] show that $6.1 Billion of revenue was generated by the sale 

of laser systems for materials processing world-wide. Approximately 12%, by units, of the 

laser systems sold were for macro welding applications [Belforte, 2009].  

1.2 Titanium Usage in Aerospace Applications 

Among the commonly utilised metallic materials in the aerospace industry are titanium and 

its alloys, as their mechanical properties are particularly suitable for the service 

requirements of both airframe and aeroengine applications. Titanium alloys are already 

employed in applications which require corrosion resistance, weight or space savings, fatigue 

resistance, or when the capability to operate within a large temperature differential is 

required. The production of many of these titanium alloy components by traditional 

manufacturing methods, i.e. casting or forging and/or machining, is ordinarily the preferred 

method. High quality titanium alloy components can be produced with these manufacturing 

techniques, although the finished components may have buy-to-fly ratios (the mass of 

material prior to machining compared with the mass of the finished component) which are 

economically unattractive, in comparison with aluminium alloys and structural steels. It has 

been reported that for structural aerospace components the ratio may be 10:1 [Threadgill et 

al, 2008]. Welding processes offer the potential to manufacture near-net-shape components, 

which may require post weld machining, that will have significantly lower buy-to-fly ratios 

and hence reduce material wastage and overall component cost.  

1.3 Keyhole Laser Welding 

Keyhole laser welding is a non-contact joining process characterised by its high focussed 

energy density, which is capable of producing high aspect ratio welds (weld width:weld 

depth) in many metallic materials. It can be performed at atmospheric pressure and with a 
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relatively low heat input, compared with inert gas arc welding processes. The current 

generation of solid-state laser sources (Nd:YAG, Yb-fibre, and Yb:YAG disc lasers) emit laser 

light with a wavelength of ~1 µm, which can be delivered through optical fibres up to 50 m in 

length (depending upon the required beam quality). Consequently, the process may be easily 

automated using robotic manipulators, providing extensive flexibility in terms of part size 

and shape when compared with 10 µm wavelength laser, electron beam and friction welding 

systems. Table 1-1 details the key characteristics of keyhole laser welding, the reasons the 

characteristic occurs, and the industrial advantage this gives to the process adopter. 

Table 1-1. Characteristics of the keyhole laser welding process [Duley 1999, p.7; Steen 1998, 

p.151]. 

Charact-
eristic 

Reasons why characteristic occurs Industrial 
significance/advantage 
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- laser beam can be narrowly focussed 

- very high power laser sources available 

- efficient coupling of energy into 
workpiece 

- high productivity, potential for    
cost savings 

- possibility for longer weld seams, 
  increasing component stiffness 
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t - laser beam can be narrowly focussed 

- high intensity heat source making high 
  processing speeds possible. 
 

- high aspect ratio (width:depth) 
welds 

- narrow heat-affected-zone (HAZ) 

- minimal thermal distortion 

- possibility for simpler clamping 
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- can operate at atmospheric pressure 

- non-contact process 

- autogeneous process or with filler   
material 

- fibre optic delivery of laser beam 
  (wavelength dependent) 
- easy robotic automation 

- few/no component size 
limitations 

- complex welding geometries 
possible 

- variety of joint configurations 
possible  (butt, lap, t-butt etc) 
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- easy robotic automation 

- excellent equipment reliability 

- laser beam is not affected by magnetic 
  fields 

- accurate reliable welding process 

 

Despite the potential advantages for utilising keyhole laser welding as a manufacturing 

technique for near-net-shape welding of titanium alloy components, if the welding process is 
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to be adopted the produced welds must be of an acceptable quality. Of particular concern 

when laser welding with 1 µm wavelength laser beams is the formation of porosity in the 

weld metal, which would reduce the fatigue resistance of the welded joint [Lindh and Peshak, 

1969]. Relatively little research has been published concerning porosity formation and 

prevention in laser welded titanium alloys, when compared with aluminium alloys and 

stainless steels. As a result, this project was established to bridge this knowledge gap. 

1.4 Aim and Objectives 

The research presented in this thesis represents a joint project undertaken by The University 

of Manchester and TWI Ltd, the operating arm of The Welding Institute (TWI). The research 

has been funded by the Engineering and Physical Sciences Research Council (EPSRC) by grant 

number C537750 and the Industrial Member companies of TWI. The research has been 

supervised by Paul Hilton, Technology Fellow for Laser Materials Processing at TWI Ltd, and 

Lin Li, Head of the Laser Processing Research Centre at The University of Manchester. 

The aim of this research project was to establish an understanding of the formation of weld 

metal porosity when keyhole laser welding titanium alloys with 1 µm wavelength laser sources 

and develop techniques which could prevent its formation.  

Five specific objectives were identified from studies of the background literature to achieve 

this aim. For completeness, the objectives are detailed below, but the reasons why these 

objectives were chosen are discussed at the end of the Literature Review (where the 

objectives are repeated). 

a. To determine whether an accurately positioned jet of inert gas directed at the laser-

material interaction point can be used for reducing weld metal porosity when welding 

titanium alloys relevant to the aerospace industry with an Nd:YAG laser. Furthermore, 

determine the influence of key process parameters on the resultant weld quality and the 

dynamic behaviour of the welding process. 

b. To determine whether a modulated laser power can be used for reducing weld metal 

porosity when welding titanium alloys relevant to the aerospace industry with an 

Nd:YAG laser. Furthermore, determine the influence of key process parameters on the 

resultant weld quality and the dynamic behaviour of the welding process. 

c. To determine whether a dual focus laser beam can be used for reducing weld metal 

porosity when welding titanium alloys relevant to the aerospace industry with an 

Nd:YAG laser. Furthermore, determine the influence of key process parameters on the 

resultant weld quality and the dynamic behaviour of the welding process. 
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d. Establish the weld qualities possible when keyhole laser welding titanium alloys 

relevant to the aerospace industry with excellent beam quality 1 µm wavelength laser 

sources. 

e. Compare the potential benefits for adopting keyhole laser welding as a production 

process for titanium aerospace components with the competing manufacturing 

processes. 

1.5 The Engineering Doctorate Degree 

The Engineering Doctorate (EngD) is a postgraduate degree that is more industrially focussed 

than a traditional PhD. It is offered by numerous universities in the United Kingdom, with 

each university establishing one, or more, EngD Academic Centres with a particular research 

theme. The research theme for the EngD centre at The University of Manchester connected 

with this research is “Engineering for Manufacture”. Research projects are devised in 

collaboration with sponsor organisations and a Research Engineer is recruited for each 

project. The EngD programme at The University of Manchester is a four year full-time 

programme which, in addition to a doctoral level research project of the same standard as a 

PhD, incorporates taught courses and professional development.  

1.5.1 The Research Project 

The research project is of the same scientific and technological standard as a traditional PhD, 

with the chosen topic of research related to an area of strategic importance to the sponsoring 

company. Three quarters of the four year programme is devoted to the research project, with 

the Research Engineer taking at least two technical courses to support the research. Similarly 

to a PhD, the EngD requires the submission of a thesis which is examined by viva voce. In 

addition to examination of the original scientific and technical contributions, the thesis is also 

examined on its commercial implications. 

1.5.2 The Taught Element 

For the EngD at The University of Manchester the taught courses constituted a Postgraduate 

Diploma in Management Science, administered by Manchester Business School. Eight 

examined modules were taken in the first two years of the degree, which equated to 120 

credits or 1200 hr of study. The eight modules covered Production Systems; Industrial 

Relations; Managerial Economics; Individuals, Groups and Organisations; Total Quality 

Management; Logistics and Supply; Management Accounting; and, Marketing Management. 

The topics are pertinent to the EngD, enabling the Research Engineer to understand 
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connections between the research project; its commercial drivers and factors which may 

impede the successful commercial deployment of the project’s outcome; and, the commercial 

environment in which their industrial sponsors operate.  

1.5.3 Professional Development 

The EngD is a professional doctorate and, as a consequence, it incorporates courses and 

workshops to aid the professional development of the Research Engineer. Courses and 

workshops cover communication skills; negotiation skills; understanding the management 

role; effective project management techniques; time management techniques; industrial law; 

presentation skills and writing skills. Together with the research project and the taught 

courses, the EngD programme at The University of Manchester is accredited by the Institute 

of Mechanical Engineers and the Institute of Engineering and Technology, allowing 

progression of the Research Engineer to Chartered status by the end of the degree. 

1.6 Thesis Structure 

This thesis differs from traditional doctoral theses in that it has been submitted in an 

alternative format. The body of research performed is presented in four parts, each in the 

style of a peer reviewed journal paper. These papers have been prepared for, submitted to, 

accepted for publication, or published in a peer reviewed journal. Preceding each journal 

paper the information regarding the stage of publication is given. The primary author of each 

paper is the author of this thesis. However, to avoid uncertainty, the specific contribution of 

the co-authors is also detailed before each paper. In addition, portions of the literature review 

have been accepted for publication in the academic textbook ‘Welding and Joining of 

Aerospace Materials’ (Ed. Professor Mahesh Chatevurdi).  

The primary rationale for submitting the thesis in this format is related to the commercial 

aspects of the Engineering Doctorate programme. As stated above, the research performed 

has been performed in collaboration with TWI. It has been decided that the publication of the 

results from this thesis will strengthen the reputation of TWI in the laser welding industry. 

The motives related to increasing the reputation of the authors of these papers in the laser 

materials processing industry are also noted.   

Nevertheless, the structure of this thesis bears a resemblance to that of a traditional doctoral 

thesis. Proceeding this introductory chapter, the Literature Review is given, which is 

presented in two parts. The first part, Chapter 2, gives a brief overview of laser welding, 

highlights the potential defects which may arise when keyhole laser welding titanium alloys, 
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and details the weld quality criteria which must be met if keyhole laser welding is to be 

utilised by the aerospace industry. It is established in Chapter 2 that the formation of porosity 

in the weld metal as a result of keyhole instabilities is of primary concern. The second part of 

the Literature Review, Chapter 3, therefore concentrates on the forces which determine the 

stability of the keyhole and the mechanisms by which these can be perturbed. Potential 

solutions for reducing weld metal porosity as a result of controlling the process dynamics are 

discussed. The majority of the published experimental research has focussed on metals other 

than titanium alloys, but it is nevertheless valuable and is included. Concluding the Literature 

Review are the specific objectives of this project, which were determined from the knowledge 

gaps identified in the Literature Review and the aspirations of TWI Ltd. 

Following the Literature Review are six chapters detailing the experimental work performed 

and the analysis and discussion of the results; four of these being peer reviewed journal 

papers. Chapter 4 describes the materials, equipment and experimental procedures used 

during this project. Chapter 5 details the results of research performed using a directed jet of 

argon to control the keyhole laser welding process. Chapter 6 covers the results of research 

performed with a modulated laser power output. In Chapter 7, the results of research 

performed with a dual focus laser beam configuration are presented, analysed and discussed. 

The details of research performed with excellent beam quality 1 µm wavelength laser sources 

are presented in Chapter 8. Chapters 5-8 contain individual discussions of results. Chapter 9 

presents and discusses a small number of further results used to analyse the origin of 

porosity when keyhole laser welding titanium alloys with 1 µm wavelength laser beams. 

The commercial aspects and implications of this research are detailed in Chapter 10 and 

Chapter 11. Finally, the Conclusions of this research and Recommendations for the Future are 

given in Chapter 12. 
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Part I 

Literature Review 

Chapter 2: Literature Review; Part I: An Overview of Laser 

Welding Titanium Alloys for Aerospace Applications 

Chapter 3: Literature Review; Part II: Keyhole Behaviour, 

and the Formation and Prevention of Porosity 
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Chapter 2  

Literature Review; Part I: An 
Overview of Laser Welding 
Titanium Alloys for Aerospace 
Applications 

2.1 Introduction  

Potentially, this thesis may be accessed by persons unfamiliar with laser materials processing 

but who have a specific interest in the joining of titanium and its alloys. Consequently, this 

Literature Review initially provides a brief overview of the interaction between light and 

metallic materials and how the absorption of the electromagnetic radiation may be used for 

conduction limited laser welding and keyhole laser welding. Significantly more attention is 

paid to the keyhole laser welding process, since the process offers certain key advantages 

pertinent to the aerospace industry compared with conduction limited laser welding. The 

weldability of titanium alloys by the keyhole laser welding process is discussed, in terms of 

the weld microstructure and potential weld defects. Of particular concern when keyhole laser 

welding is the formation of porosity in the weld metal, which decreases the fatigue life of the 

welded joint. The potential sources of weld metal porosity when keyhole laser welding are 

then detailed. 

Uptake of the keyhole laser welding process in the aerospace industry is dependent upon the 

process being able to produce welds of a quality suitable for their intended application. 

Therefore, the international welding standards relevant to laser welding are compared with a 



Chapter 2 Literature Review; Part I: An Overview of Laser Welding Titanium Alloys for Aerospace Applications 

 
 

33 
 

company specific standard in order to give an overview of the weld quality criteria that must 

be adhered to for certain aerospace applications. Finally, the potential weld performance 

when utilising the current generation of solid-state lasers is reviewed. 

The majority of literature for this review was identified by performing regular Boolean logic 

searches across the following scientific and engineering academic databases; Compendex, 

Inspec, Scopus, NTIS and Weldasearch. Literature was also identified through citations in 

published research. 

2.2 Laser Light and its Interaction with Metallic Materials 

2.2.1 Key Characteristics of Laser Light 

Laser light has a number of key characteristics, it is highly monochromatic, has a low beam 

divergence and is highly coherent, which are conducive to utilising it as a materials 

processing tool. The design, manufacture and integration of the gain medium, population 

inversion pump and optical resonator will all determine the properties of the emitted 

electromagnetic radiation (laser light). When deciding on a laser source for a particular 

materials processing application the emission wavelength, temporal and spatial operating 

modes, available output power and beam quality are among the key factors that should be 

considered. In addition, the chosen optics used to guide the laser light to the workpiece will 

determine critical parameters such as the beam waist and the depth of focus. 

The light emitted from the majority of laser sources is highly monochromatic, in that the total 

spectrum of the light has a very narrow spectral linewidth. The exact spectrum is dependent 

upon the bandwidth available in the gain medium and the longitudinal modes present in the 

optical resonator. Laser sources which operate in the continuous-wave mode are capable of 

generating a constant power to the workpiece, although this may be modulated and/or 

ramped up/down if required so long as it does not exceed the maximum rated output power 

of the laser source. Conversely, pulsed laser sources are capable of generating very high peak 

powers for a short duration, either through Q-switching or pulsed pumping. 

The standing longitudinal electromagnetic waves established in the optical resonator may be 

separated by varying angles - related to the design of the resonator. Constructive and 

destructive interference between these longitudinal standing waves give rise to the formation 

of an electromagnetic radiation field pattern transverse to the longitudinal waves. This is 

referred to as the transverse electromagnetic mode (TEMmn, where the integers m and n 

indicate the number of zero fields in a particular direction) structure of the laser beam, which 
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determines the intensity distributions perpendicular to the direction of the laser beam 

propagation. A complete description of the potential TEM modes is outside the scope of this 

chapter. Nevertheless, it can be summarised that laser beams with a higher TEM mode are 

more difficult to focus than a laser beam with a lower TEM mode [Steen 1998, p. 82]. The 

TEM00 mode, or fundamental mode, is the simplest mode, and its intensity distribution, 𝐼, as a 

function of radius, 𝑟, from the central axis can be theoretically described by a Gaussian 

function [Ready 1997, p. 41]. 

   𝐼 𝑟 = 𝐼0𝑒𝑥𝑝
−2𝑟2

𝑤 0
2      (2-1) 

where 𝐼0  is the axial intensity of the laser beam, and w0 is radius of the beam waist.  

A Gaussian beam radius is usually defined as the radius where its intensity is 1/e2 of the axial 

irradiance. The beam waist is the point in the propagation direction where the laser beam 

diameter converges to a minimum, and the radius at this point is referred to as 𝑤0 . For a 

Gaussian laser beam propagating in free space the beam radius will converge to a minimum, 

the beam waist, before diverging. The angle at which the laser beam diverges is termed the 

beam divergence angle, 2𝜃. The half-angle divergence, 𝜃, is shown in Figure 2-1. Knowing the 

half-angle divergence, the beam waist of a Gaussian laser beam can be calculated according to 

Equation 2-2 [Ready 1997, p. 38].  

𝜃 =
𝜆

𝜋𝑤0
     (2-2) 

 

Figure 2-1. Two dimensional profiles of three different laser beams of ~1 µm wavelength (a) 

BPP = 12 mm.mrad, 300 mm focal length focussing lens (b) BPP = 6 mm.mrad, 300 mm focal 

length focussing lens (c) BPP = 6 mm.mrad, 640 mm focal length focussing lens. 
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The product of the beam waist and the half-angle divergence is a constant and known as the 

beam parameter product (BPP), stated in mm.mrad. Therefore, the BPP of a Gaussian laser 

beam will be 𝜆/𝜋, which is the theoretical optimum. However, the emitted outputs of actual 

laser sources are not truly Gaussian, although single-mode Yb-fibre and Yb:YAG disc lasers 

are very near, and are characterised by measures of their beam quality. Perhaps the most 

commonly used measure of beam quality is the 𝑀2 value of the laser beam, which compares 

the BPP of an actual laser beam to that of a Gaussian laser beam of identical wavelength. The 

𝑀2 value of a laser beam is its BPP divided by 𝜆/𝜋 [International Standards Organisation, 

2005]. For laser sources emitting beams of approximately 1 µm wavelength, the BPP is often 

utilised as a measure of beam quality. Nonetheless, both these beam quality values can be 

utilised to approximate the propagation of actual laser beams with an expansion of Gaussian 

beam analysis. Equation 2-3 [Steen 1998, p.85] can be utilised to calculate the beam waist 

radius, w, of a real laser beam. 

𝑤 =
4𝑀2𝜆𝐹

𝜋𝑅
                                                              (2-3) 

where F is the focussing lens focal length, and 𝑅 is radius of the beam at the focussing lens.  

The above equation indicates that laser beams with a smaller value of 𝑀2, or BPP, can be 

focussed into smaller diameter spots than those with higher 𝑀2 or BPP values. Another 

important factor when determining the characteristics of a laser beam used for a particular 

materials processing application is its depth of focus, 𝑍𝑓 . The depth of focus is equal to the 

distance travelled in either direction from the beam waist over which the intensity remains 

about the same, which corresponds to approximately a 5% increase in the beam diameter. 

Materials processing applications that utilise laser beams with a long depth of focus are less 

susceptible to shifts in the focal plane position. Equation 2-4 [Havrilla 2002, p.16] details the 

calculation of the depth of focus for a 5% increase in beam diameter. 

𝑍𝑓 =
𝑤 2

𝜆𝑀2                                                                          (2-4) 

Figure 2-1 details the profiles of three different laser beams, all of ~1 µm wavelength. It 

illustrates that laser beams with lower BPPs may be focussed into smaller beam waists using 

the same optical system, thereby maintaining an acceptable stand-off distance. Conversely, a 

laser beam with a lower BPP may be focussed into a similar beam waist to that produced with 

a laser beam of higher BPP but have a greater depth of focus and an increased stand-off 

distance. 
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2.2.2 Absorption by the Solid Phase 

Light incident on the surface of a thick opaque metal, may be absorbed provided that the 

metal has a quantised energy level (electronic, atomic or molecular), e.g. 𝐸3 − 𝐸2, which 

matches that of the incident electromagnetic radiation, according to Equation 2-5 [Ready 

1997, p.2].  

𝐸3 −  𝐸2 = 𝑣 =
𝑐

𝜆
                                                                 (2-5) 

where 𝜆 is the wavelength of the incident electromagnetic radiation, 𝑣 is its corresponding 

frequency,  is Planck’s constant, and 𝑐 is the speed of light. 

Absorption of the laser light is therefore dependent upon the substrate properties as well as 

the characteristics of the incident laser light. Figure 2-2 details the reflectivity of aluminium, 

iron, nickel and titanium for a normal angle of incidence (at normal angles of incidence 

absorption is independent of polarisation) and at room temperature, over a range of 

wavelengths. For the metals shown in Figure 2-2, there is a considerable difference in their 

reflectivity between wavelengths of ~1 µm (as produced by Nd:YAG rod, Yb:YAG disc and Yb-

fibre laser sources) and ~10 µm (as produced by CO2 laser sources). 

 

 

 

Figure 2-2. Reflectivity of aluminium, iron, nickel and titanium for a normal angle of incidence 

and at room temperature, over a range of wavelengths. Values from Lide [1997]. 

The value of reflectivity, 𝑅𝑓 , used in this chapter may fall within a range of 0 to 1, where 1 

indicates that all the incident electromagnetic radiation is reflected. For opaque materials 
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with a smooth surface Equation 2-6 [Steen 1998, p.67] can be used to calculate the 

reflectivity. 

𝑅𝑓 = 1 − 𝐴                                                                     (2-6) 

 where 𝐴 is the absorptivity or absorption coefficient. 

The absorption of the incident laser radiation is also dependent upon its angle of incidence 

with the metal’s surface and the light’s polarisation. Figure 2-3 details the effect of the angle 

of incidence, 𝜙, on the absorption of the substrate for aluminium and titanium at wavelengths 

of 1 and 10 µm. The maximum absorption of parallel polarised light by a metal occurs at the 

Brewster angle, which is wavelength and material dependent. This may be significant in 

terms of weld penetration [Sato et al, 1996] and weld quality [Gräf et al, 2010] when welding 

with laser sources whose output is polarised in a certain direction, such as CO2 lasers. The 

laser light emitted from the majority of modern multi-mode solid-state laser sources, such as 

Yb-fibre and Yb:YAG disc lasers, is randomly polarized. 

 

   (a)           (b)   

Figure 2-3. Absorption coefficients of aluminium and titanium at room temperature for 

parallel (p) and perpendicular (s) polarisation as a function of the angle of incidence, Ø and 

for (a) 10 µm wavelength, and (b) 1 µm wavelength. Note different y-axis scales. Values from 

Lide [1997]. 

The proportion of electromagnetic radiation absorbed by the substrate will change during the 

interaction time since the absorption is also dependent upon the temperature, as shown for a 

laser of 10.6 µm wavelength in Figure 2-4 for aluminium, copper and tin. As the temperature 

of the solid metal rises there is a steady increase in absorptivity. Subsequently, the 

absorptivity rises appreciably at the materials melting point. In keyhole laser welding, the 

absorption of the incident electromagnetic radiation will increase extensively either through 

0

0.1

0.2

0.3

0 15 30 45 60 75 90

A
b

so
rp

ti
o

n

Angle of incidence, Ø

Al, p polarisation

Al, s polarisation

Ti, p polarisation

Ti, s polarisation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 15 30 45 60 75 90

A
b

so
rp

ti
o

n

Angle of incidence, Ø



Chapter 2 Literature Review; Part I: An Overview of Laser Welding Titanium Alloys for Aerospace Applications 

 
 

38 
 

multiple Fresnel absorptions at the keyhole walls, or through inverse Bremsstrahlung 

absorption. 

 

 

Figure 2-4. Change in reflectivity of aluminium, copper and tin during interaction with a 10.6 

µm laser at a normal angle of incidence as a function of temperature. Values from Brückner et 

al [1989, 1991]. 

Equation 2-7 indicates the depth of absorption, 𝑑𝛼 , over which the absorbed intensity 

reduces by 1/e2. The absorption depth of metals is typically less than the wavelength of the 

incident electromagnetic radiation, since the 𝑘 value of the refractive index is greater than 1, 

and therefore the laser beam can be initially treated as a surface heat source for metallic 

substrates [Duley 1999, p.68]. 

𝑑𝛼 =  
𝜆

4𝜋𝑘
                                                                        (2-7) 

2.2.3 Conduction and Melting 

At very low values of applied laser intensity, there will be insufficient energy deposited at the 

surface of the substrate for a phase transition from solid to liquid to take place. The rate at 

which this thermal energy diffuses through the substrate is characterised by the material’s 

thermal diffusivity, 𝑘𝑑 ; a property which is related to the thermal conductivity, 𝑘𝑐 , the specific 

heat, 𝑐𝑝 , and the density, 𝜌, of the material. If the intensity of the laser radiation incident on 

the substrate is increased sufficiently (~102 Wmm-2 for most metals), surface melting will 

begin to occur, and a pool of molten material will form. The depth of the melt pool, 𝑋, can be 
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approximated by Equation 2-8 [Cohen, 1967] under the assumption that the thermal 

conductivity and diffusivity in the solid and liquid phases are nominally identical. 

𝑋 𝑡 ≈
0.16𝑃(𝑡−𝑡𝑚 )

𝜌𝐿
                                                           (2-8) 

where 𝑡 is the time the laser radiation is applied for, 𝑡𝑚  is the time required to reach the 

melting temperature, 𝑇𝑚 , at the surface of the workpiece, 𝑃 is the absorbed laser power 

density, and 𝐿 is the latent heat of fusion. 

The time taken to for the surface of the substrate to reach its melting temperature can be 

approximated by Equation 2-9 [Cohen, 1967]. 

𝑡𝑚 =
𝜋𝑘𝑐𝑠

2𝑇𝑚
2

4𝐾𝑑𝑠 𝐼2                                    (2-9) 

where 𝑘𝑐𝑠  and 𝑘𝑑𝑠  are the thermal conductivity and thermal diffusivity of the solid phase.  

2.2.4 Vaporisation 

Vaporisation of metallic substrates can occur at applied intensities as low as 102 Wmm-2 if the 

interaction time is sufficient. However, applied laser intensities exceeding 104 Wmm-2 are 

often used to achieve vaporisation of the surface for materials processing applications such as 

keyhole laser welding, laser cutting and laser drilling. Equation 2-10 [Ready 1997, p.322] can 

be utilised to estimate the time taken, 𝑡𝑣 , to reach the vaporisation temperature, 𝑇𝑣 , of the 

substrate. 

𝑡𝑣 =
𝜋𝑘𝑐𝜌𝑐𝑝(𝑇𝑣− 𝑇0)2

4𝑃2              (2-10) 

where 𝑇0  is the ambient temperature.  

This initial vaporisation of the substrate creates a depression in the molten pool, through the 

recoil pressure exerted by the vapour, thereby forcing the molten metal to the peripheries of 

the interaction area. It is a critical stage in the formation of a vapour cavity in the substrate, 

as it leads to a significant reduction in reflectivity. Efficient coupling of the laser beam into the 

substrate is then achieved either through multiple Fresnel absorptions by the molten 

material (for 1 µm wavelength laser sources). For wavelengths of the order of 10 µm, the 

absorption method is more complex. Absorption of the incident laser energy by free-free 

electrons (inverse Bremsstrahlung absorption) is possible at this wavelength, as is Fresnel 

absorption. The proportion absorbed by each mechanism is a function of the welding 
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parameters [Solana and Negro, 1997]. Inverse Bremsstrahlung absorption can be neglected 

for 1 µm wavelength. Figure 2-5 details the formation of a vapour cavity through a series of 

co-axial high speed images taken when a laser beam emitted from an Nd:YAG rod laser was 

incident on a plate of Ti-6Al-4V. 

 

  
                                          (a)           (b)     (c)             (d)        (e) 

Figure 2-5. Formation of a vapour cavity in Ti-6Al-4V using an Nd:YAG rod laser, (a) surface 

melting, (b) - (c) vaporisation of the substrate occurs, molten metal is pushed to the 

peripheries and absorption of the laser beam significantly increases, and (d) – (e) this leads 

to the formation of a high aspect ratio vapour cavity. 

2.2.5 Plasma Formation 

Above, it was discussed that the formation of a keyhole in a substrate with a laser beam is 

dependent on the vaporisation of the substrate. For laser beams of ~10 µm wavelength the 

metallic vapour may become ionised and the radiation is efficiently absorbed via the inverse 

Bremsstrahlung absorption process. The proportion of incident radiation absorbed by the 

plasma, a gas which is constituted of both electrons and ions, depends upon the ratio of the 

electron, ne, and ion density, ni, to the density of the vapour atoms, no. This can be calculated 

by Equation 2-11 [Mitchener and Kruger 1973, p.43], if the gas is assumed to be in local 

thermodynamic equilibrium (LTE).  

𝑛𝑒𝑛𝑖

𝑛0
= (

𝑔𝑖𝑔𝑒

𝑔0
)

 2𝜋𝑚𝑒𝑘𝑏𝑇𝑒 
3
2

3 exp
 

E i
kb T e

 
                                                 (2-11) 

where, 𝑘𝑏  is the Boltzmann constant, 𝑚𝑒  is the electron mass, 𝐸𝑖  is the ionisation energy of 

the gas, 𝑔𝑒 ,𝑖 ,0 are the degeneracy factors of the electrons, ions and neutral atoms respectively, 

and 𝑇𝑒  is the electron temperature. 

It is possible that a plasma may form above the keyhole and attenuate the incident laser 

radiation, either through inverse Bremsstrahlung absorption or defocussing as a result of a 

gradient electron density, and lead to a reduction in depth of the keyhole [Poueyo-Verwaerde 

et a, 1993]. For laser beams of ~1 µm wavelength, inverse Bremsstrahlung absorption of the 

laser beam is not a concern. However, it has been shown that when welding with an Nd:YAG 
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rod laser the beam can be attenuated and defocussed by a vapour plume of nano-scale 

particles [Greses, 2003], causing a reduction in penetration depth or keyhole instabilities. 

2.3 Laser Welding Fundamentals 

The absorption of laser light by a metallic substrate and the conduction of the resultant 

thermal energy leading to possible phase changes in the substrate were detailed in the 

previous Section. These potential phase changes can be utilised to distinguish between the 

two fundamental modes of laser welding; (i) conduction limited, and (ii) keyhole. Only solid-

liquid and liquid-solid phase changes occur when laser welding in the conduction limited 

mode, whereas during keyhole laser welding a portion of the substrate is vaporised and 

hence the gaseous phase is also present. Furthermore, as discussed above, there is the 

potential for plasma to be present when keyhole laser welding. Laser welding can be utilised 

to weld a number of metallic materials, including; carbon steels, stainless steels, nickel alloys, 

aluminium alloys, magnesium alloys, titanium alloys and copper. Certain combinations of 

dissimilar metals may also be joined by keyhole laser welding, with the rapid cooling rates 

allowing segregation and grain growth to be reduced.  

This chapter is primarily concerned with keyhole laser welding, since, if the process is 

optimised, it is more advantageous to laser weld typical grades and thicknesses of metallic 

aerospace materials in the keyhole mode than in the conduction limited mode. Principally, 

this is a result of the lower heat-input and increased processing speeds possible when 

keyhole laser welding. 

2.3.1 Conduction Limited Laser Welding 

Conduction limited laser welding involves only the solid and liquid phases of the substrate 

and consequently the energy from the incident laser radiation is only absorbed by the surface 

of the substrate. Subsequently, this thermal energy is transferred from the surface into the 

bulk of the substrate via thermal conduction. Melting occurs when the applied intensity is 

sufficient and a weld is made when the molten material solidifies. When conduction limited 

laser welding, the resultant penetration depth is heavily influenced by the Marangoni forces, 

or forces due to a surface tension gradient. Conduction limited laser welding can be used to 

produce spot or seam (either through overlapping spots or a continuous process) welds. 

Since the process relies solely on conduction, the weld depths possible are limited by the 

thermal conductivity of the substrate. A power density of approximately 102 – 104 Wmm-2 is 

ordinarily sufficient for conduction limited welding to be performed. The resulting fusion 
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zone has a hemispherical weld profile, with a width exceeding the depth by a factor of ~2, 

shown in Figure 2-6. A significantly larger HAZ (shown in Figure 2-6) compared with welds 

made using keyhole laser welding also occurs. 

 

Figure 2-6. Conduction limited laser autogeneous melt run in 8 mm thickness 2024 

aluminium alloy, produced with the laser beam emitted from an Nd:YAG rod laser source 

(scale in mm). Courtesy of TWI Ltd. 

Table 1-1 summarises the characteristics and subsequent advantages of utilising keyhole 

laser welding in an industrial environment. The advantages associated with the flexibility and 

repeatability of the process are also valid for conduction limited laser welding. However, the 

heat inputted to the workpiece when operating in the conduction regime, is significantly 

higher than when operating in the keyhole regime. Furthermore, processing speeds are 

significantly lower for a given material and thickness. In comparison with keyhole laser 

welding, conduction limited laser welding is an inherently stable process. As will be discussed 

in the subsequent Section, defects arising from instabilities in the vapour cavity, such as 

porosity, are not formed in conduction limited laser welds. High integrity welds with few, or 

no, defects can therefore be more easily produced when conduction limited laser welding. 

For conduction limited spot welds, Equation 2-8 can be utilised to approximate the depth of 

penetration. This equation is subject to certain boundary conditions so that only parameters 

which cause melting are chosen. It has been reported [Williams et al, 2001] that fully 

penetrating welds in aluminium alloy (2000 series) at least 6.35 mm in thickness can be 

produced by conduction limited laser welding if the focussed intensity is optimised such that 

the surface temperature of the melt pool is just below the vaporisation temperature.  

Accurate control of the melt pool temperature, and hence the heat input, is required to ensure 

the penetration depth remains constant and no penetration spiking occurs. Figure 2-2 and 
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Figure 2-3 show that the absorption of the laser beam by a particular substrate is dependent 

upon the wavelength of the beam and its angle of incidence with the workpiece. A result of 

this is that laser beams of wavelengths ≤ 1 µm are more suited to conduction limited welding 

of metallic substrates, since they are more readily absorbed, than longer wavelength laser 

beams. Operation at an angle of incidence equal to the Brewster angle of a particular laser-

beam material combination will further increase absorption of the beam by the substrate. It is 

also known that the proportion of the incident laser light absorbed is a function of the 

temperature of the substrate (see Figure 2-4). An accurate knowledge of the temperature-

absorptivity relationship, as well as the temperature dependent values of thermal 

conductivity and effective viscosity would allow an approximate heat input to be calculated 

[De and Debroy, 2006]. Furthermore, it is critical that the temperature of the substrate does 

not exceed its vaporisation temperature, as this would result in a significant increase in 

absorption of incident laser light and the formation of a vapour cavity. However, in practice, 

temperature-absorptivity relationships are not known and it is not feasible to determine 

them. Real time monitoring and feedback of the melt pool temperature is a possible approach 

to controlling penetration depth when conduction limited laser welding [Bardin et al, 2005]. 

2.3.2 Keyhole Laser Welding 

Keyhole laser welding (also referred to as deep penetration laser welding) is similar in 

concept to electron beam welding, in that a vapour cavity is formed in the substrate and 

subsequently traversed across it. A liquid sheath surrounds the vapour cavity, or keyhole, 

which is in turn surrounded by the solid substrate. The keyhole is primarily maintained by 

the ablation pressure and the pressure of the vapour within it. A portion of this vapour is 

ejected from the keyhole and therefore, a steady-state cannot be achieved with a stationary 

keyhole as ultimately it will fully penetrate the substrate and the vaporised material that is 

ejected cannot be replenished to sustain the vapour pressure. However, a quasi steady-state 

can be considered for a moving keyhole. As the keyhole is traversed through the substrate, 

the sheath of molten material surrounding it is continuously transported from the region in 

front of the keyhole to the trailing melt pool.  

The dominant transportation process is the flow of molten material around the keyhole, 

although a proportion of the molten material is vaporised and transported across the keyhole 

maintaining the vapour pressure and potentially producing a quasi steady-state. Thermal 

conduction in the direction of travel ensures the continuous replenishment of the molten 

material. Figure 2-7 shows the formation of the keyhole laser welding process in C-Mn steel, 

and a schematic of the keyhole and molten pool geometries. 
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            (a)                 (b)                         (c)                                                 (d)     

(e) 

Figure 2-7. Formation of keyhole laser welding process in C-Mn steel, (a) surface melting, (b) 

vaporisation of substrates occurs, (c) keyhole traverses across the workpiece and melt pool 

begins to form, and (d) the melt pool length increases and stabilises; (e) schematic of the side 

view of a keyhole. 

The keyhole is not cylindrical in shape and has a characteristic curve to it which is 

determined by the absorption mechanism, travel speed and thermal conductivity of the 

substrate. Analogous to conduction limited laser welding, keyhole laser welding can be 

utilised for either spot or seam welding. Typically, a continuous process is employed to 

maximise the potential advantages of the process, although pulsed laser sources are 

particularly suited to spot welding applications. Characteristic profiles of keyhole laser welds 

produced in Ti-6Al-4V with a 1 µm wavelength laser source are shown in Figure 2-8. 

 

(a)        (b) 

Figure 2-8. Profiles of keyhole laser welds produced in Ti-6Al-4V, (a) 9.3 mm thickness, and 

(b) 3.2 mm thickness. Note: different scales. Courtesy TWI Ltd. 

Table 1-1 summarises the characteristics and subsequent advantages of utilising keyhole 

laser welding in an industrial environment. Disadvantages associated with keyhole laser 

welding include: 

molten pool
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1. Equipment cost – the initial cost of high power laser sources can be high compared 

with arc welding equipment. This is ordinarily offset by an increase in productivity. 

Recent advances in solid-state laser technology are driving down initial costs, as well 

as increasing wall plug efficiency. 

2. Safety – absorption of laser radiation by the skin, and in particular the retinal hazard 

region, is of great concern. The exact safety measures are dependent on wavelength 

and power. BS EN 60825-1:2007 or ANSI Z136.1-2007 should be referred to for exact 

safety requirements. 

3. Joint fit-up requirements – narrowly focussed laser beams may stray from the 

required joint line through workpiece misalignment or thermal distortion. This 

tolerance can be increased by using hybrid laser-arc welding, or a seam tracking 

system. 

Power intensities of ~104 Wmm-2 and above are ordinarily sufficient for a keyhole to be 

initiated in the substrate, although vaporisation is possible at lower power densities if the 

values of welding speed and thermal conductivity of the substrate are conducive. Equation 2-

12 [Qin et al, 2007] can be utilised to approximate the critical power required for keyhole 

laser welding with a Gaussian beam, as a function of welding speed, 𝑉.  

𝑃 = 𝜌𝜋(2𝑘𝑑𝑉)
1

2𝑤0

3

2𝐸𝑣                                                               (2-12) 

where 𝐸𝑣  is the energy required to vaporise the material.  

This relationship should be treated as an approximation only, since it is known from 

empirical evidence that oscillations in the keyhole behaviour may occur even with a constant 

set of parameters [Arata et al, 1984] making a quasi steady-state particularly difficult to 

achieve. Variations in the keyhole and melt pool behaviour may lead to certain weld defects, 

such as intermittent penetration and weld metal porosity. Consequently, the formation and 

subsequent dynamic behaviour of a keyhole has been the subject of intense theoretical and 

practical investigations (e.g. Arata et al, 1984; Kaplan, 1994; Dowden et al, 1995; Matsunawa 

et al, 1998; and Fabbro and Chouf, 2000). Thorough details of the keyhole and melt pool 

dynamics is particularly extensive and challenging, and the published investigations of the 

aforementioned researchers should be referred to for an excellent understanding of this area. 

Fundamentally, the transient behaviour of the keyhole is dependent upon the forces acting to 

maintain it, and those tending to close it. Duley [1999, p.83] summarised that, the forces 

maintaining the keyhole are the evaporative and radiative pressures, whilst those acting to 
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close it are the hydrostatic and hydrodynamic pressures of the surrounding molten material 

and its surface tension. 

Optimisation of the process parameters is critical if high quality welds are to be produced 

with the keyhole laser welding process. Table 2-1 specifies the critical process parameters 

that should be considered when keyhole laser welding, either autogenously or with filler 

material. A significantly more extensive list can be found in BS EN ISO 15609-4:2009 

‘Specification and qualification of welding procedures for metallic materials, Welding procedure 

specification, Laser beam welding’. Further process parameters will emerge if more 

complicated processes are chosen, such as hybrid laser-arc welding and dual focus keyhole 

laser welding. 

Table 2-1. Potential process parameters for keyhole laser welding [Duley 1999, p.28; Steen 

1998, p.156] 

Type Parameters 
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 wavelength                                                              polarisation 

power                                                                        welding speed 

focussed spot size                                                  focal plane position  

beam quality                                                           depth of focus 

stand-off distance                                                  pulse energy (pulsed laser)                                                               

pulse time (pulsed laser)                                    pulse shape (pulsed laser) 

pulse frequency (pulsed laser)                          waveform (modulated output) 

frequency (modulated output)                          duty cycle (modulated output) 
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surface preparation                                             shielding gas type 

joint geometry                                                      shielding gas arrangements  

jigging/fixturing 

 

F
il
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at

er
ia
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chemical composition                                        feed rate 

type (wire or powder) 

gauge/diameter 

position with respect to welding process 

 

2.4 Laser Weldability of Titanium Alloys 

Titanium weld metallurgy is controlled by the transformation from the close-packed-

hexagonal structure (α phase) into the body-centred-cubic crystalline structure (β phase) 
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which occurs at the β transus temperature (882°C). The allotropic transformation is 

reversible, and the transus temperature can be manipulated with the alloying of α (e.g. 

aluminum, carbon, nitrogen and oxygen) and/or β (e.g. chromium, copper, iron and 

molybdenum) phase stabilisers, whereby; 

 the addition of β phase stabilisers decrease the β transus temperature such that the β 

phase can be retained as the weld cools to ambient temperature; and, 

 the addition of α phase stabilisers increases the β transus temperature, promoting the 

formation of the α phase. 

The majority of titanium alloys are considered readily weldable, often determined by the 

ductility and toughness of the as-welded zone, by fusion welding processes. Ordinarily, the 

higher strength alloys are more difficult to weld as a result of [Lütjering and Williams 2007, 

p.105]; 

 the alloys forming microstructures of poor toughness and low ductility; and, 

 containing eutectoid alloying elements, e.g. chromium and iron, which may cause 

liquation cracking. 

During fusion welding, the temperature of the fusion zone, and also a portion of the heat 

affected zone, is above the β transus temperature and consequently may exhibit β 

transformed microstructures and properties. The microstructure of fusion welds in titanium 

alloys is ordinarily martensitic, which, in comparison with martensite formed in stainless 

steels, has a higher toughness and a decreased susceptibility to cracking [Yunlian et al, 2000]. 

Cooling rates above 410°Cs-1 are necessary to achieve a completely martensitic structure in 

Ti-6Al-4V [Ahmed and Rack, 1998]. These cooling rates are easily obtainable when keyhole 

laser welding and the weld metal will undergo a particularly fast thermal cycle compared 

with inert gas arc welding, consequently producing a finer martensitic microstructure which 

will have a smaller content of alloying elements [Costa et al, 2007; Yunlian et al, 2000]. The 

required cooling rates to obtain a martensitic structure will be different for all grades of 

titanium. For commercially pure titanium a similar trend to the above Ti-6Al-4V 

microstructure has been reported [Li et al, 2009] – increased cooling rates lead to an 

increased content of fine-grained acicular α’ present in the fusion zone. 

Despite the high cooling rates promoting a fine grained martensitic structure in keyhole laser 

welding of titanium alloys, the potential still exists for a number of defects to occur, including; 

weld bead embrittlement, cracking, geometrical defects in the profile, and weld metal 

porosity.  
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2.4.1 Embrittlement 

Titanium has an elevated affinity for light elements (such as hydrogen, nitrogen and oxygen) 

at temperatures exceeding 500°C, which may result in embrittlement of the weld metal if 

they are absorbed. The discoloration of the weld metal can be utilised as an indicator of the 

shielding adequacy, whereby the weld metal follows the colour sequence [American Welding 

Society, 2001]; silver (indicating no discoloration), light straw, dark straw, bronze, brown, 

violet, green, blue, gray and white (indicating heavy discoloration and embrittlement). This 

discoloration is directly related to the degree of weld metal embrittlement and hardness of 

the weld metal.  

The effects of oxygen contamination (0.001 to 10%) in argon shielding gas was studied by Li 

et al [2005] when laser welding commercially pure titanium. At increased oxygen contents 

the weld bead discoloration followed the sequence outlined in AWS D17.1, and which also 

corresponded to a change in the surface hardness. Table 2-2 details the hardness data 

reported by Li et al [2005]. However, it is imperative that the weld bead discoloration not be 

utilised as an inspection tool for shielding adequacy, as the discoloration sequence will repeat 

as the oxidation thickness increases [Talkington et al, 2000].  

 

Table 2-2. Surface colour and hardness of Nd:YAG laser welds made in 0.5 mm thickness 

commercially pure titanium sheets with varied oxygen content in the argon shielding gas [Li 

et al, 2005]. 

Oxygen content, % Surface colour Hardness, Hv 

0 Silver 242±11 

0.15 Straw 246±16 

0.5 Dark straw 247±13 

1.5 Dark straw/purple 254±20 

2.0 Dark 
straw/purple/blue 

282±18 

3.0 Purple/blue 295±16 

5.0 Blue 323±15 

10.0 Blue 373±20 

 

To avoid embrittlement titanium alloys are ordinarily shielded with a high-purity inert gas 

when they are keyhole laser welded. For reasons related to its ionisation energy and the 

formation of a beam attenuating plasma (see Section 3.5), helium is utilised when welding 

with a 10 µm wavelength focussed laser beam, whereas argon is used when welding with a 1 
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µm wavelength focussed laser beam. The shielding gas is often delivered through a trailing 

shield which covers the weld face, and through an efflux channel covering the weld root. At 

sufficiently slow welding speeds, the shielding gas may be delivered through a co-axial or 

lateral nozzle. This approach is often employed when laser welding titanium alloys with a 

pulsed laser source. 

2.4.2 Cracking 

Titanium alloys are, in general, not considered susceptible to solidification cracking since 

they contain low concentrations of impurities. However, research has suggested [Inoue and 

Ogawa, 1995] that titanium alloys may be vulnerable to solidification cracking if they are 

incorrectly restrained during welding. It is likely that the degree of vulnerability is related to 

the amount of back diffusion of solute-elements in the solid [Inoue and Ogawa, 1995]. Of 

more concern when welding titanium alloys is contamination cracking, which may occur if 

the weld metal is exposed to light elements at temperatures exceeding 500°C or iron particles 

during welding. When absorbed, the light elements, such as hydrogen, nitrogen and oxygen, 

will migrate to interstitial sites and may cause cracking as a result of the welding stresses. 

Particularly high levels of these elements are required in the welding atmosphere, for 

example; 3000 ppm oxygen in the weld metal may cause transverse cracking [Donachie 2000, 

p.88]. As previously, the presence of light elements in the vicinity of the welding process and 

cooling weld bead may be reduced by utilising an effective trailing shield and a high-purity 

inert shielding gas with a low dew point. Particles of iron on the workpiece may be dissolved 

into the melt pool and, potentially, cause embrittlement of the weld metal [Donachie 2000, 

p.88]. An appropriate materials preparation and handling procedure will minimise the risk of 

iron particle contamination. 

2.4.3 Geometrical Weld Profile Defects 

Geometrical defects in the weld profile, such as undercut and concavity at the weld face or 

root, are particularly undesirable for components subject to dynamic loading. The defects 

may act as stress concentrators and subsequently be initiation sites for fatigue cracks. 

Fundamentally, the defects can either be attributed to the laser welding process or to the 

joint configuration/restraint. For instance, joint misalignment, where the laser beam wanders 

from the joint line resulting in a portion of the weld seam not being welded, is an example of a 

defect which is not related to the welding process. It may occur when the laser beam is not 

correctly aligned with the joint line or when the component is not correctly clamped allowing 

movement of the joint during welding. Consequently, this defect is more commonly observed 
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in keyhole laser welding as the finely focussed beams are more susceptible to missing the 

joint line than in conduction limited laser welding. Incorrect joint configuration/restraint, 

errors in gap fit up, or inadequate machining of the abutting edges may lead to other 

geometrical defects in the weld profile, specifically [Duley 1999, p.202]; burn through, drop 

out, or a loss of penetration.  

The above defects can be eliminated through the adoption of adequate weld clamping and 

workpiece preparation. Geometrical weld profile defects associated with the laser welding 

process, such as humping, undercut and concavity, may occur as a consequence of incorrect 

welding parameters. Often, a balance of process parameters is found to achieve the required 

weld penetration and minimise weld profile defects. Figure 2-9 [Hilton et al, 2007] details the 

terminology adopted in this project for defining the weld profile’s geometry and defects.  

 

Figure 2-9. Potential weld profile defects and terminology [Hilton et al, 2007]. 

Humping, which is not shown in Figure 2-9, refers to the formation of ellipsoidal swellings in 

the top bead of a weld. The swellings are severely undercut and are separated by an 

elongated concavity along the weld face. Humping is ordinarily observed when particularly 

high welding speeds and laser powers are adopted. For example, humping was observed at 

speeds above 20 mmin-1, when using a 4 kW laser power focussed into a 600 µm beam 

diameter, for welding of 3 mm thickness 304L stainless steel [Fabbro et al, 2007]. 

Defects in the weld profile which cannot be eliminated through alteration of process 

parameters may be removed by further processing and/or machining. Filler material, either 

powder or wire, may be added during the process, or a low-power cosmetic pass utilised to 

re-shape the top bead. Workpieces which are thicker at the joint could be used, which would 

allow post-weld machining to eliminate the defects without having an undersized weld. 

Ca = Face undercut 

ca = Root undercut 

Cr = Face concavity 

cr = Root concavity 

r = Excess penetration 

R = Excess weld metal 

L = Face weld width 

I = Root weld width 

I0 = Minimum weld width 
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2.4.4 Weld Metal Porosity 

It has been reported [Matsunawa et al, 2001] that weld metal porosity can easily form when 

keyhole laser welding. This is a concern for high-performance components that are in cyclic 

loading, as the pores will reduce its fatigue resistance. Figure 2-10, reproduced from Lindh 

and Peshak [1969], indicates the significant decrease in fatigue life of Ti-6Al-4V welds 

containing weld metal porosity compared with defect free welds. Porosity is of primary 

concern for components whose weld profiles are dressed (to remove geometrical defects in 

the weld profile, etc), as pores will break the surface, act as stress concentrators and further 

reduce the fatigue resistance of the weld, as indicated in Figure 2-10. 

 

Figure 2-10. Fatigue behaviour of welds in Ti-6Al-4V, showing the effect of surface and 

subsurface weld metal porosity in comparison with defect free welds. Reproduced from 

Lindh and Peshak [1969]. 

A significant amount of research has been performed into the causes of porosity when laser 

welding metallic materials, although only a small proportion of this concerns the formation of 

porosity when processing titanium alloys. The majority of the reported fundamental 

investigations have been performed on aluminium alloys and ferrous metals. Potential 

sources of porosity when laser welding titanium alloys are from: 

 The presence of excessive hydrogen in the melt pool, which is rejected upon 

solidification and subsequently trapped in the solidifying melt pool. 

 Instabilities in the welding process, leading to the entrapment of shielding gases 

and/or metal vapour. 
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2.4.4.1 Hydrogen Porosity 

Figure 2-11 details the solubility of hydrogen in titanium as a function of temperature, 

reproduced from Lakomski and Kalinyuk [1963]. The overall trend of this relationship is an 

increasing solubility with a decreasing temperature. Ordinarily, this would not result in the 

rejection of hydrogen from the solidifying melt pool and the formation of porosity. However, 

at the solidification temperature there is a significant drop in hydrogen solubility, which may 

lead to weld metal porosity.  

 

Figure 2-11. The solubility of hydrogen in titanium as a function of temperature. Reproduced 

from Lakomski and Kalinyuk [1963]. 

Figure 2-11 indicates that hydrogen will be rejected if the content is greater than ~210 

ml/100g (280 ppm), which may result in the formation of hydrogen bubbles and 

subsequently porosity. The hydrogen content of modern titanium alloys is generally <280 

ppm and therefore will not pose a problem on its own. However, other potential sources of 

hydrogen exist when laser welding titanium, which will, if not properly addressed, contribute 

towards the total amount of hydrogen in the melt pool. Specifically, these other potential 

sources of hydrogen may be from; 

 the hygroscopic titanium oxide layer present on the workpiece surfaces; 

 shielding gas(es); 

 welding consumable(s); and, 

 workpiece preparation. 
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Titanium oxide will form on the surface of titanium alloys if sufficient levels of oxygen are 

present in the media surrounding it. This self-healing oxide layer gives titanium its excellent 

corrosion resistance to different types of aggressive media. However, the oxide layer has a 

hygroscopic behaviour and will consequently adsorb moisture from the atmosphere under 

ambient conditions. Removal of the hydrated layers prior to welding is critical in minimising 

the potential hydrogen content of the melt pool. Consequently, the effectiveness of the 

method used to remove the hydrated layer and other surface contaminants (for example, oil, 

dirt, and grease) may have a large influence on the formation of weld metal porosity. 

Mechanical cleaning methods, such as scratch brushing and abrasive cleaning, are often 

utilised because they are relatively straight forward processes compared with chemical 

pickling. Mueller et al [2006] produced welds with small amounts of weld metal porosity 

when laser welding 6.35 mm thickness Ti-6Al-4V if the joint was cleaned with a stainless 

steel brush prior to welding. It should be noted there is a slight risk of iron pick up with 

stainless steel brushes, and titanium brushes should be used for critical applications [Smith et 

al, 1999]. Autogeneous melt runs and butt welds with very low levels of porosity were also 

produced in titanium alloys up to 9.3 mm in thickness by Hilton et al [2007]. In this work the 

surfaces were cleaned with an abrasive pad and acetone degreased prior to welding, and 

abutting joint edges of butt were also dry machined. However, it should be noted that, in both 

of the above publications [Mueller et al, 2006; Hilton et al, 2007], a directed gas jet was also 

used to achieve the low levels of weld metal porosity (see Sub-section 3.6.2).  

Chemical pickling of titanium alloys prior to welding is usually performed with an aqueous 

solution of hydrofluoric and nitric acid [Smith et al, 1999]. In comparison with mechanical 

cleaning methods, a more uniform surface finish is possible and there is less dependency on 

the operator. A comparison of different pickling solutions was performed by Gong et al 

[2003], who concluded that 10%HF-30%HNO3-60%H20 was the most suitable formula for 

removing the oxide layer of the titanium alloy BT20. The other formulas tested were 3%HF-

30%HNO2-67%H20 and 5%HF-30%HNO3-65%H20. 

Welding should be performed as soon as possible after removal of the hydrated layers since 

the oxide layer will continue to adsorb moisture. No critical time period for significant 

hydration has been established, and will depend on the local temperature and humidity. For 

practical purposes, welding within the same 24 hr period as the workpiece preparation 

should minimise porosity [Mitchel, 1965; Hughes, 1989]. Gong et al [2003] reported that the 

timing of material preparation had an effect on the porosity levels observed.  
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It is difficult to directly compare the effectiveness of the different surface preparation 

techniques from the above, since there are a number of other process variables that must be 

accounted for. Furthermore, in most of the work, other techniques have been utilised to 

control the laser welding process and reduce other sources of weld metal porosity. 

Nevertheless, it can be concluded that the type of material preparation utilised may have an 

effect on the weld metal porosity that is caused as a result of hydrogen rejection by the melt 

pool upon solidification. It appears from the published research summarised above that 

mechanical cleaning with an abrasive pad, scratch brushing with a stainless steel or titanium 

brush, and chemical pickling with an appropriate aqueous solution of hydrofluoric and nitric 

acid are all appropriate methods of removing hydrated layers. The time between welding and 

workpiece preparation should be minimised. Pre-weld degreasing should also be performed 

with an appropriate vapour or liquid degreasing method, and the time between workpiece 

preparation and welding should be kept to a minimum.  

As mentioned previously, titanium has a high affinity for light elements at temperatures of 

~500°C and above. Consequently, rigorous inert gas shielding is used when welding titanium 

alloys to prevent discoloration and possible embrittlement of the weld metal. The choice of 

inert gas (either helium or argon) is likely to be determined by the wavelength of the incident 

laser radiation. However, the inert shielding gases are a potential source of hydrogen, which, 

according to the hydrogen solubility diagram produced by Lakomski and Kalinyuk [1963], 

may be absorbed by the melt pool as it cools prior to solidification. Therefore, an increased 

amount of hydrogen present in the shielding gases may increase the possibility of hydrogen 

porosity present in the solidified weld metal. 

In certain instances, wire addition may be required to correct geometric defects present in 

the weld profile, such as undercut at the weld face and/or root. Investigations performed by 

Gorshkov and Tret’Yakov [1963] when arc welding titanium alloys have shown that 

increased hydrogen content in the filler metals tended to increase weld metal porosity. Many 

welding consumables are now extra-low-interstitial grade with nominal hydrogen contents. 

As a result, the hydrogen content of welding consumables should not be of concern provided 

that a suitable grade is chosen. However, as with the parent material, a hydrated layer can 

form on the surface of titanium welding wires which may increase the content of hydrogen in 

the melt pool.  
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2.4.4.2 Processing Porosity 

Despite taking care in workpiece preparation and shielding gas purity, porosity can still form 

in weld metal. Furthermore, larger pores may also form in the weld metal when laser 

welding, which cannot be attributed to hydrogen precipitation as the cooling rate is too high 

[Pastor et al, 1999]. It has been reported [Matsunawa, 2001] that keyhole instability can lead 

to metal vapour and/or inert shielding gases being trapped in the weld metal. This occurs 

when the forces trying to hold the keyhole open are not in equilibrium with those trying to 

close it. Keyhole observation techniques using micro-focussed X-rays and a high speed video 

camera have shown that the dimensions of the keyhole fluctuate, both parallel and 

perpendicular to the laser beam [Katayama et al, 2003]. The proceeding chapter provides 

extensive details on the reported causes of keyhole stability and on potential methods for 

eliminating or reducing them.  

2.5 Weld Quality Criteria for Titanium Alloys in Aerospace 

Applications 

Several published welding standards exist relating to the laser welding of metallic materials. 

For instance, BS EN ISO 15609-4:2009 ‘Specification and qualification of welding procedures 

for metallic materials, Welding procedure specification, Laser beam welding’ provides details 

for the content of welding procedure specification for laser welding.  

In terms of acceptable levels of weld defects when laser welding titanium alloys, BS EN ISO 

5817:2007 ‘Welding. Fusion-welded joints in steel, nickel, titanium and their alloys (beam 

welding excluded). Quality levels for imperfections’ gives guidance on the quality levels of 

welded joints in titanium alloys, but excludes beam welding processes. BS EN ISO 13919-

1:1997 and BS EN ISO 13919-2:2001 give guidance on the quality levels of welded joints in 

steel and aluminium alloys respectively. The stated weld imperfection limits in these two 

standards are detailed for three different quality levels; B, C and D. There are no standards 

published by the International Standards Organisation which relate to acceptable limits of 

imperfections in laser welded titanium alloys. However, AWS D17.1:2001, ‘Specification for 

Fusion Welding for Aerospace Applications’, by the American Welding Society, details the 

requirements for welding aircraft and space hardware in titanium alloys and other metallic 

materials. The AWS D17.1 standard incorporates electric arc, plasma arc, oxyfuel, laser beam 

and electron beam welding processes. Furthermore, the stated quality criteria in AWS D17.1 

are more stringent than those found in BS EN ISO 13919-1, which contains more stringent 

criteria than BS EN ISO 13919-2. 
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It is known [Hilton et al, 2007] that the quality acceptance criteria for aeroengine 

applications are more stringent than those prescribed for aircraft and space hardware in 

AWS D17.1. The criteria are company specific and have not been formally published by an 

international standards body. An example of such typical acceptance criteria, in terms of weld 

profile and weld metal porosity, has been detailed by Hilton et al [2007]. A summary of the 

typical quality criteria detailed in AWS D17.1 and a company specific standard is given in the 

subsequent Sections. Attention is given to the potential weld defects which may occur when 

keyhole laser welding titanium alloys, as summarised previously, specifically; embrittlement, 

profile defects and weld metal porosity.  

Figure 2-9 details the terminology that has been adopted here to allow a comparison of the 

stated weld profile criteria in AWS D17.1 and the company specific standard. For comparison 

of weld metal porosity criteria, the term ‘accumulated length’ has been adopted, which can be 

calculated by summing the diameter’s of all the pores in a nominated weld length. For this 

project, the nominated weld length is 76 mm and is taken around the lowest quality portion 

of the entire weld length. 

2.5.1.1 AWS D17.1: 2001 

AWS D17.1:2001, ‘Specification for Fusion Welding for Aerospace Applications’ by the 

American Welding Society, is an American National Standard  which specifies, among other 

things, the weld quality criteria for fusion welded aerospace hardware. The weld quality 

requirements are detailed for three different quality classes; Class A, Class B and Class C. 

Table 2-3, Table 2-4 and Table 2-5 detail acceptance limits, for all three classes, relating to 

discoloration, weld profile and weld metal porosity respectively. Lack of fusion or cracks in 

the weld metal are not permitted for any class. For undercut and concavity at the weld face or 

root, the defect listed is the maximum size of an individual defect allowed. Allowable limits 

for defects running the full length of the weld are 0.05 mm for undercut and 0.13 mm for 

concavity (both to Class A). Also stated in AWS D17.1, but not in Table 2-4, are criteria 

relating to the weld profile for certain joint geometries, such as fillet and butt joint 

configurations. The porosity requirements in Table 2-5 indicate the minimum spacing 

between individual pores. If this limit is exceeded, the diameters of the pores are summed. 
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Table 2-3. Acceptance limits relating to discoloration for Class A, Class B and Class C weld 

qualities, as specified in AWS D17.1:2001. 

Class Level of discoloration 
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A Accept 
Accept, remove 

discoloration before 
further welding 

Reject 
Reject unless proven 

embrittlement has not 
occurred 

B Accept 
Accept, remove discoloration 

before further welding 

Reject if further 
welding 
required 

Reject unless proven 
embrittlement has not 

occurred 

C Accept 
Accept, remove discoloration 

before further welding 

Reject if further 
welding 
required 

Reject unless proven 
embrittlement has not 

occurred 

Table 2-4. Acceptance limits relating to weld profile for Class A, Class B and Class C weld 

qualities, as specified in AWS D17.1:2001. 

Imperfection Acceptance limit 

 Class A Class B Class C 

Face undercut (Ca)† 0.07 T or 0.76 mm, 
whichever is less 

0.10 T or 1.27 mm, 
whichever is less 

0.20 T or 1.78 mm, 
whichever is less 

Root undercut (ca)† 0.07 T or 0.76 mm, 
whichever is less 

0.10 T or 1.27 mm, 
whichever is less 

0.20 T or 1.78 mm, 
whichever is less 

Face concavity (Cr)†† 0.07 T or 0.76 mm, 
whichever is less 

0.07 T or 0.76 mm, 
whichever is less 

0.07 T or 0.76 mm, 
whichever is less 

Root concavity (cr)†† 0.07 T or 0.76 mm, 
whichever is less 

0.07 T or 0.76 mm, 
whichever is less 

0.07 T or 0.76 mm, 
whichever is less 

Excess weld metal (R) 0.33 T or 0.76 mm, 
whichever is greater 

No stated 
requirement 

No stated 
requirement 

Excess penetration (r) 0.33 T or 0.76 mm, 
whichever is greater 

No stated 
requirement 

No stated 
requirement 

Face weld width (L) No stated 
requirement 

No stated 
requirement 

No stated 
requirement 

Root weld width (l) No stated 
requirement 

No stated 
requirement 

No stated 
requirement 

Minimum weld width 
(I0) 

No stated 
requirement 

No stated 
requirement 

No stated 
requirement 

†individual defect, maximum for a defect running the entire weld length is 0.05mm (Class A) 
†† individual defect, maximum for a defect running the entire weld length is 0.13mm (Class A) 
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Table 2-5. Acceptance limits relating to subsurface weld metal porosity for Class A, Class B 

and Class C weld qualities, as specified in AWS D17.1:2001. 

 

2.5.1.2 Company Specific Standards 

An example of a typical company specific standard, which has been adapted from Hilton et al 

[2007], is detailed in Table 2-6 and Table 2-7. In comparison with Class A of AWS D17.1, the 

acceptance limits relating to defects in the weld profile are similar. However, additional 

criteria relating to the width of the weld at the face, root and its minimum dimension, are also 

stated in the company specific criteria. This is most likely a consequence of the standard 

being derived from experience with electron beam welding [Hilton et al, 2007]. No criteria 

regarding the discoloration of the weld metal was reported, although it is expected that only 

bright silver welds (i.e. no discoloration) would be acceptable [Hilton, 2007].  

In terms of weld metal porosity, the company specific criteria is several times more stringent 

than AWS D17.1. This is true for the maximum pore dimension, the maximum accumulated 

length, and the minimum spacing between adjacent pores. Although no criteria have been 

listed regarding cracks or lack of fusion in the welded joint, neither are believed permitted in 

the company specific standards [Hilton, 2007]. 

 

 

 

 

Imperfection Acceptance limit 

 Class A Class B Class C 

Maximum dimension or 
diameter of an isolated 
pore 

0.33 T or 1.5 mm, 
whichever is less 

0.50 T or 2.3 mm, 
whichever is less 

No stated 
requirement 

Cumulative length of 
porosity per 76 mm weld 
length 

1.33 T or 6.0 mm, 
whichever is less 

2.0 T or 9.0 mm, 
whichever is less 

No stated 
requirement 

Minimum spacing 
between two pores 

4 x size of larger 
adjacent pore 

2 x size of larger 
adjacent pore 

No stated 
requirement 
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Table 2-6. Acceptance limits relating to weld profile for a typical company specific 

aeroengine. Adapted from Hilton et al [2007]. 

Defect type Acceptance limit 

Face undercut (Ca), mm ≤0.05 T 

Root undercut (ca), mm ≤0.05 T 

Face concavity (Cr), mm ≤0.1 T, Max. 0.5 

Root concavity (cr), mm ≤0.1T, Max. 0.5 

Excess weld metal (R), mm ≤0.2+0.15 T 

Excess penetration (r), mm ≤0.2+0.15 T 

Face weld width (L), mm ≤2.2+0.7 T 

Root weld width (l), mm 0.3 T, Max. 2.0 ≤ I ≤ 2.2 + 0.7 T 

Minimum weld width (I0), mm 0.3 T, Max. 2.0 ≤ I ≤ 2+0.1 T 

 

Table 2-7. Acceptance limits relating to weld metal porosity for a typical company specific 

aeroengine. Adapted from Hilton et al [2007]. 

Defect type Acceptance limit 

Maximum dimension or 
diameter of an isolated pore 

0.3 T, Max 1.5 

Cumulative length of pores per 
76mm weld length 

0.2 + 0.5 T 

Minimum spacing between 
two pores 

10 times the dimension of the largest 
imperfection 

 

2.6 Advances in Solid-State Laser Technology 

In recent years significant development has taken place in solid-state laser sources. This is a 

result of the poor beam quality available from diode or lamp pumped Nd:YAG rod lasers, 

when compared with CO2 laser sources. It was initially thought that the pumping of the 

Nd:YAG rods would be homogeneous and the rods would have no temperature dependent 

properties [Koechner, 1970]. However, in reality the pumping is parabolic and the thermal 

conductivity variation with temperature in the rod led to a temperature dependence on the 

rod radius [Xiang, 2009]. Primarily, the beam quality is limited by the poor cooling in the rods 

which results in thermal lensing and birefringence [Vollertsen, 2009]. This led to the 

development of the fibre and the thin disc laser, both making use of large aspect ratios to 

increase surface area and reduce thermal effects in the active medium. 
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High power disc laser sources ordinarily utilise a thin disc, of approximately 100-200 µm in 

thickness and several millimetres in diameter, of ytterbium doped yttrium-aluminium-garnet 

(Yb:YAG). Hosts doped with ytterbium, thulium and neodymium can also be utilised as active 

mediums [Hügel and Bohn, 1998]. A highly reflective coating (for the lasing wavelength and 

the wavelength of the diode pumps) is applied to the rear of the disc to act as a mirror in the 

laser cavity. An antireflective coating (for the lasing wavelength and the wavelength of the 

diode pumps) is applied to the front of the thin disc. The rear of the disc is soldered, with an 

indium-based or gold-tin solder, to a water impingement cooled heat sink [Giesen, 2005]. 

Despite the thinness of the disc laser source, which limits absorption of the light from the 

pump diodes, overall efficiency is much higher than Nd:YAG rod laser sources [Vollertsen, 

2009]. This is, in part, achieved by a set of mirrors parabolically orientated around the thin 

disc to achieve ~90% absorption of the pump power by the disc. The high surface area cooled 

by the heat sink when compared with the disc’s volume, results in temperature gradients 

which are only co-axial with to the central axis of the disc. Giesen [2005] reported that the 

radial temperature gradients are only very slight. As a result, the thermal lensing and 

birefringence effects observed in Nd:YAG rod laser sources are significantly reduced, and the 

beam quality from disc laser sources can be less than 8 mm.mrad for 16 kW laser sources 

[Trumpf, 2010a]. 

The first fibre laser was proposed by Snitzer [1961a], who subsequently demonstrated the 

lasing action of a neodymium-doped glass fibre [Snitzer, 1961b]. However, it was not until 

the development of the erbium-doped fibre amplifier [Mears et al, 1987] that the foundations 

for the high-power fibre lasers now used for materials processing were laid. A detailed 

review of the current state of fibre laser technology is out of the scope of this literature 

review. However, Canning [2005] gives a good review of this area and should be referred to 

as a source of further information. Briefly, modern high-power fibre laser sources, utilise an 

optical fibre, typically 10-50 µm in diameter and several metres long, doped with ytterbium 

as the active medium. Similarly to thin disc laser sources, they are pumped with 

semiconductor laser diodes, which provide the high pump powers required. The light emitted 

from the diodes is focussed into the active medium using a double-clad fibre to achieve high 

absorption. Consequently, only a small proportion of the pump energy supplied is converted 

into heat, which limits thermal degradation of beam quality [Platonov et al, 2002]. The fibres 

are coiled to: (i) reduce the footprint of the laser source, and (ii) maintain beam quality 

[Clarkson et al, 2003]. 

State-of-the-art solid state lasers utilising either thin disc or fibre technology are now 

available with output powers of multiple kilowatts; 50 kW average power Yb-fibre laser 
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sources [IPG Photonics, 2010] and 16 kW average power Yb:YAG disc laser sources [Trumpf, 

2010a] are now available. Optical fibre core diameters used for the delivery of the laser beam 

are ordinarily greater than 50 µm in diameter, although core diameters of ~15 µm are used 

for single mode laser sources. The beam qualities of these laser sources are typically around 

0.33 – 10 mm.mrad, depending on the output power.  As a result, the light emitted from 

Yb:YAG disc and Yb-fibre laser sources can be focussed into smaller focal spot sizes, and 

hence higher power densities, than Nd:YAG rod lasers, whilst maintaining an acceptable 

stand-off distance and depth-of-focus (as detailed in Sub-section 2.2.1). 

In comparison with Nd:YAG rod laser sources, the welding performance (in terms of depth of 

penetration and melting efficiency) possible with these multi-kilowatt, high beam-quality, 

Yb:YAG disc and Yb-fibre laser sources has been studied by numerous researchers (for 

example; Verhaeghe and Hilton, 2005; Weberpals et al, 2005; Verhaeghe and Dance, 2008). 

Verhaeghe and Hilton [2005] compared the welding performance of laser beams with 

different beam qualities, whilst maintaining a constant laser power and focal spot diameter of 

4.0 kW and 400 µm respectively. It was noted that the welding performance, when 

performing melt runs on a 5000 series aluminium alloy and C-Mn steel, could be increased by 

utilising a higher beam quality laser beam. However, at laser powers exceeding 4 kW both 

Verhaeghe and Hilton [2005] and Weberpals et al [2005] reported that there exists an 

optimum spot diameter, below which the increase in penetration depth resulting from a 

smaller spot diameter is negligible.  

Verhaeghe and Hilton [2005] introduced the concept of beam brightness. This term is defined 

as the power density in the focussed spot per solid angle in the cone of the focussed beam, as 

detailed in Equation 2-13.  

𝐵𝑟𝑖𝑔𝑡𝑛𝑒𝑠𝑠 =  
4𝑃𝐹2

𝜋2𝑤 2(2𝑅)2                                                         (2-13) 

where 𝑃 is the power density at the workpiece, 𝐹 is the focal length of the focussing lens, and 

𝑅 is the radius of the laser beam at the focussing lens  

According to the above equation, a large focussing length in combination with a small beam 

width and small laser beam aperture (i.e. small angle of convergence) results in a high 

brightness laser beam. In the research performed by Verhaeghe and Hilton [2005] laser 

beams within the brightness range 0.3-5.5 MWmm-1.sr-1 were evaluated at a constant power 

and focussed spot diameters from 0.14 to 0.61 mm. It was demonstrated that when welding 

either aluminium or steel there existed an optimum laser beam brightness for maximising the 

depth of penetration. Nevertheless, the advances made in solid-state laser technology have 
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led to welds which can be produced with an exceptionally high aspect ratio. Verhaeghe and 

Dance [2008] reported that the high quality beams from Yb-fibre and Yb:YAG laser sources 

are now capable of producing welds with an aspect ratio which only previously could have 

been produced with in-vacuum electron beam welding. 

2.7 Summary 

Two Sections in this chapter reviewed the laser weldability of titanium alloys and the weld 

quality criteria relating to laser welded titanium alloys for aerospace applications. As stated 

earlier, of particular concern when utilising titanium alloys for high performance aerospace 

applications is embrittlement of the weld bead, and the formation of cracks, porosity and 

geometrical defects in the weld. This is evidenced by the low tolerance to these defects in the 

two weld quality standards compared previously, particularly in the company specific 

standard. However, contamination cracks in the weld metal may be prevented if stringent 

workpiece preparation and inert gas shielding procedures are adopted. Furthermore, other 

crack formation mechanisms are not of particular concern when welding titanium alloys. 

Correct workpiece preparation and inert gas shielding procedures should also prevent 

embrittlement of the weld metal, another criterion stipulated in both AWS D17.1 and the 

company specific weld quality criteria. The severity of geometrical defects in the weld profile 

can be reduced by adjusting process parameters, whilst not compromising other joint 

characteristics (for example, penetration and heat input). Nevertheless, if the process 

parameters cannot be adjusted to produce an acceptable weld profile, filler material, an over-

sized joint thickness (followed by subsequent machining), or a cosmetic pass can be utilised 

to eliminate remaining geometrical defects in the weld profile. 

The formation of porosity in the weld metal as a result of hydrogen rejection during 

solidification may also be reduced by adopting stringent workpiece preparation and inert gas 

shielding procedures. However, porosity in the weld metal is still known to occur when 

keyhole laser welding, from what was referred to in Section 2.4 as processing porosity. As 

will be discussed in the proceeding chapter, this is a consequence of keyhole instabilities (i.e. 

the forces maintaining the vapour cavity are not in equilibrium with those trying to close it).  
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Chapter 3  

Literature Review; Part II: Keyhole 
Behaviour, and the Formation and 
Prevention of Porosity 

3.1 Introduction 

The second part of the literature review intends to establish the mechanisms by which 

porosity forms in the weld metal. This can only be achieved by first discussing the forces 

which act on the keyhole and determine its stability. Section 3.2 details the forces for a 

simplified keyhole geometry, and Section 3.3 for realistic keyhole geometries. The potential 

origins of the porosity are then detailed, in terms of its gas content and the observed 

formation mechanisms of pores using an X-ray transmission high speed observation system. 

The attenuation of the incident laser radiation by a plasma or a plume is then detailed. 

Finally, methods of controlling the keyhole behaviour and reducing weld metal porosity are 

discussed, and the aim and objectives of this project are specified. 
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3.2 Keyhole Behaviour - Low Péclet Number 

The Péclet number, Pe, is a ratio which compares the advection rate of a physical quantity to 

the diffusion rate of the quantity driven by an appropriate gradient. When utilising the Péclet 

number, 𝑃𝑒 , in keyhole laser welding, the physical quantity examined is ordinarily heat and 

can be defined by the product of the Reynolds number, 𝑅𝑒 , and the Prandtl number, 𝑃𝑟 , as 

detailed in Equation 3-1 [Steen 1998, p.191]. 

  𝑃𝑒 =  
𝑉𝑅𝑘

2𝑘𝑑
       (3-1) 

where 𝑉 is the welding speed, 𝑅𝑘  is the keyhole radius, and 𝑘𝑑  is the thermal diffusivity. 

For stationary keyholes, or keyholes with a small Péclet number (i.e. moving through a 

substrate with a very low translational speed) the keyhole shape can be approximated to a 

simple cylinder or truncated cone which is rotationally symmetric around the propagation 

direction of the incident laser beam. This is a result of heat conduction being the dominant 

method of heat transfer and consequently the isotherms are considered to have rotational 

symmetry around the central axis of the laser radiation, as indicated in Figure 3-1 [Dowden et 

al, 1987]. 

 

Figure 3-1. Keyhole with rotational symmetry and concentric to the central axis of the 

incident laser radiation [Dowden et al, 1987]. 

As discussed in Section 2.2, a high intensity focussed laser beam (~104 Wmm-2) impinged on 

the surface of a metallic substrate will result in melting and vaporisation of the substrate, 
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and, subsequently, the formation of a vapour cavity. The vapour cavity will be surrounded by 

a sheath of molten metal. It is the forces which act on the molten sheath which will determine 

the stability of the vapour cavity, or keyhole. Equation 3-2 [Kroos et al, 1993; Klein et al, 

1994] details the forces acting on the keyhole wall. 

                  𝑝𝑎𝑏𝑙 + 𝑝𝑣 = 𝑝𝑔 + 𝑝 + 𝑝𝛾                                                     (3-2) 

where 𝑝𝑎𝑏𝑙  is the ablation pressure, 𝑝𝑣  is the vapour pressure, 𝑝𝑔  is the hydrostatic pressure, 

𝑝  is the hydrodynamic pressure, and 𝑝𝛾  is the surface tension. 

The keyhole is maintained by the ablation pressure, which is generated as molten material is 

vaporised from the inner surface of the keyhole, and the vapour pressure filling the keyhole. 

Restoring forces acting to close the keyhole are the surface tension of the molten material, the 

hydrostatic pressure, and the hydrodynamic pressure acting to transport molten material 

around the keyhole. Numerous theoretical models of the keyhole have been produced to 

determine the magnitude of the forces acting upon the keyhole using the geometry detailed in 

Figure 3-1 (for example; Dowden et al, 1987; Kroos et al, 1993; Klein et al, 1994). The 

ablation pressure, 𝑝𝑎𝑏𝑙 , caused by the vaporisation of molten metal on the inner surface of the 

keyhole wall due to absorption of the incident laser radiation, can be calculated from 

Equation 3-3 [Kroos et al, 1993]. 

𝑝𝑎𝑏𝑙 =𝑚𝑔𝑛𝑔𝑢𝑔
2             (3-3) 

where 𝑚𝑔  is the mass of the particles, 𝑛𝑔  is the density of the particles, and 𝑢𝑔  is the velocity 

of the particles.  

The values of density and velocity of the particles should be taken from where the Knudsen 

layer; a layer, several free mean path lengths (average length moved by a particle in between 

successive collisions which would change its direction or energy) thick, where the matter is 

between the liquidus and gaseous phases. The other force maintaining the keyhole is the 

vapour pressure, 𝑝𝑣 , which is due to the flow of vaporised metal exiting the keyhole and can 

be calculated from Equation 3-4 [Klein et al, 1994]. A typical value of the ablation pressure 

generated when keyhole laser welding iron is ~104 Nm-2, whereas the vapour pressure in the 

keyhole is ~50 Nm-2 [Duley, 1999, p.84] 

       𝑝𝑣 =  
1

3
 𝑚𝑔𝑛𝑔𝑢𝑔

2(
𝑑

𝑅𝑘
)2                                                         (3-4) 

where 𝑑 is the thickness of the workpiece. 
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Expressions for the forces acting to close the keyhole, specifically the surface tension, the 

hydrostatic pressure and the hydrodynamic pressure, have also been determined. The 

hydrodynamic pressure due to the flow of molten metal around the keyhole was determined 

by Kroos et al [1993], based on earlier work by Dowden et al [1983], to be particularly small 

(10 Nm-2) when dealing with keyholes which have a low Péclet number. It can be calculated 

from Equation 3-5 [Kroos et al. 1993]. 

𝑝𝑣 − 𝑝𝑏 =  −  
𝜌𝑚

2
 𝑉2[ 

8

𝑅𝑒
 𝑅𝑘𝑚 𝑐𝑜𝑠Θ]                                             (3-5) 

where 𝑝𝑏  is a constant dependent upon the boundary condition between the melt-pool and 

the solid substrate, 𝑝𝑚  is the density of the molten metal, 𝑅𝑘𝑚  is a function of the keyhole 

radius and the surrounding melt pool radius, and Θ is the polar angle defined from the 

direction of the welding speed.  

The hydrostatic pressure, at a depth 𝑧, can be determined from Equation 3-6 [Kroos et al, 

1993]. 

𝑝𝑔 =  𝜌𝑚 𝑔𝑧                          (3-6) 

where 𝑔 is the gravitational acceleration constant. 

Similarly to the hydrodynamic pressure, the maximum force acting to close the keyhole due 

to hydrostatic forces is very low compared with the ablation pressure. However, it is a 

function of the workpiece thickness and hence will become more important for thicker 

section workpieces. Conversely, the force acting to close the keyhole as a result of the surface 

tension is particularly large (~104 Nm-2) in comparison with the other restoring forces, and 

can be calculated from Equation 3-7 [Klein et al, 1994]. 

𝑝𝛾 =  𝛾[ 
1

𝑅1
 +  

1

𝑅2
 ]              (3-7) 

where 𝛾 is the surface tension coefficient of the molten material and 𝑅1  and 𝑅2  are the Radii 

of curvature of the keyhole (where 𝑅1 = 𝑅 and 𝑅2 = 0 for a cylinder).  

From comparison of the forces acting upon the keyhole, for keyholes with a low Péclet 

number the forces of most interest are the ablation pressure and the surface tension. If these 

forces are not in equilibrium the keyhole will either be expanding (i.e. 𝑃𝑎𝑏𝑙 ≫ 𝑝𝛾) or shrinking 

(i.e. 𝑝𝛾 ≫ 𝑝𝑎𝑏𝑙 ).  
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3.3 Keyhole Behaviour - High Péclet Number 

The assumptions made in Section 3.2 only allow simplistic keyhole geometries to be 

considered (as shown graphically in Figure 3-1). However, these assumptions cannot be 

made for keyholes with higher translational speeds, such as those commonly utilised in 

industrial environments. Specifically, these assumptions relate to the geometry of the 

keyhole, the absorption mechanisms of the incident laser radiation, and the hydrodynamic 

forces present in the melt pool. 

3.3.1 Keyhole Geometry 

In Section 3.2, the keyhole was simplified to the geometry of a truncated cone. For keyholes 

with a low Péclet number this is an acceptable approximation, since the dominant transfer 

mechanism of thermal energy is conduction. Consequently the isotherms were assumed to 

have rotational symmetry in the direction of the laser beam propagation into the workpiece 

(as indicated in Figure 2-1). However, for keyholes with a high Péclet number, thermal energy 

will also be convected from the front keyhole wall (FKW) to the rear keyhole wall (RKW) by 

the transportation of vaporised metal, which would be expected to produce asymmetric 

isotherms. Arata et al [1985] utilised a CO2 laser to produce a moving keyhole in soda-lime 

glass, allowing the behaviour of the vapour cavity to be easily observed from the side with a 

high speed camera. The observations have shown that the keyhole does not have rotational 

symmetry around the direction of laser beam propagation into the workpiece. As graphically 

detailed in Figure 3-2 [Arata et al, 1985], the FKW is inclined away from its translation 

direction and the variation in the keyhole width dimension (as viewed from the side) from 

the upper portion to the lower portion of the keyhole is not a simple linear relationship.  

 

Figure 3-2. Side view of keyhole laser welding of soda-lime glass, with a 15 kW CO2 laser 

[Arata et al, 1985]. 
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It was observed that this inclination angle has a strong relationship with the translation 

speed, and at increasing translation speeds the inclination of the FKW will increase [Arata et 

al, 1985]. Experimental research [Semak et al, 1995] has shown that for translation speeds 

exceeding 50 mms-1 and laser powers above several kilowatts, the rear portion of the keyhole 

may not be exposed to the incident laser radiation (at least not before any reflections as a 

result of Fresnel absorption), which further contravenes the assumptions made at low Péclet 

numbers. The inclination of the FKW is likely a consequence of two possible reasons, 

specifically [Matsunawa and Semak, 1997]: 

1. Deformation of the isotherms as a result of the incident laser radiation’s movement 

across the workpiece. 

2. The keyhole formation time exceeding the interaction time (incident beam 

diameter/translation speed), causing the keyhole to be in a state of permanent 

growth. 

The keyhole formation time is the duration for a stationary keyhole to become fully 

penetrating (or partially penetrating at a desired depth). If this time is greater than the 

incident laser beam diameter divided by the translation velocity, then the keyhole will remain 

in a state of permanent growth [Matsunawa and Semak, 1997]. Effectively, it will have a 

drilling velocity perpendicular to the FKW.  

As a result of the FKW inclination, no direct optical path may exist between the incident 

electromagnetic radiation and the lower portions of the keyhole. However, absorption may 

still occur in the lower portion as a result of multiple reflections, which is discussed in Sub-

section 3.3.2.1. It is therefore reasonable to assume that the mechanism by which the 

electromagnetic radiation is absorbed may have an effect on the keyhole geometry. 

Furthermore, it was assumed that the forces relating to the hydrodynamic behaviour of the 

melt flow would be small in comparison with the ablation pressure and the surface tension 

forces. However, this restricts the melt flow velocities to below the beam translation velocity. 

For keyholes with a high Péclet number the hydrodynamic behaviour of the melt pool and the 

resultant forces on the keyhole need to be considered. 

3.3.2  Absorption Mechanism(s) 

In Section 3.2 the absorption mechanism of the incident laser radiation was not considered. It 

was assumed that the incident radiation was approximately absorbed through the depth of 

the keyhole in a uniform manner, producing an almost constant ablation pressure in the 

keyhole. However, when keyhole laser welding with high translation speeds, it has been 
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demonstrated [Arata et al, 1985] that the keyhole shape is not rotationally symmetric. 

Furthermore, the centre line is not straight, since the keyhole is inclined in a direction 

opposite the translation direction. Consequently, the uniform absorption assumed previously 

is invalid since the walls of the keyhole cannot all be directly irradiated by the incident laser 

beam.  

The mechanism(s) by which the incident laser radiation is absorbed should be considered, 

since the subsequent heat transfer and keyhole geometry will be influenced by these physical 

processes. The specific absorption mechanisms occurring are dependent upon the 

wavelength of the incident radiation and the chemical composition of the substrate. For 

metallic substrates, Fresnel absorption (i.e. absorption at the keyhole walls) and/or inverse 

Bremsstrahlung absorption (i.e. absorption by free-free electrons in the metal vapour) will be 

the dominating mechanism(s). 

3.3.2.1 Fresnel Absorption 

Fresnel absorption refers to the partial absorption and partial reflection of light incident on 

an opaque surface. The energy absorbed at the keyhole walls results in ablation of the molten 

material. Portions of the absorbed energy are also conducted away to maintain the molten 

sheath and trailing melt pool, with a small amount subsequently diffusing into the solid 

workpiece. Equation 3-8 can be utilised to calculate the absorption coefficient for parallel 

polarised light incident on metals, if it is assumed that the light beam couples to the metal 

electron gas which will absorb a portion of the beam as a result of Joule heating [Stratton 

1941, p.125]. 

 𝐴 = 1 −  
2𝑐𝑜𝑠 2∅−2𝜀𝑐𝑜𝑠 ∅+ 𝜀2

2𝑐𝑜𝑠 2∅+2𝜀𝑐𝑜𝑠 ∅+𝜀2                             (3-8) 

where ∅ is the angle of incidence and 𝜀 is a value relating to the material properties and the 

wavelength of the incident laser radiation. 

The above equation is highly dependent upon the angle of incidence, whereby the absorption 

at a glancing angle of incidence is an order of magnitude larger than at a normal angle of 

incidence for a CO2 laser and a typical metal [Schulz et al, 1986]. The energy which is not 

absorbed is reflected and may consequently be [Kaplan 2009, p. 71];  

 (i) partly absorbed and reflected at another point in the keyhole;  

 (ii) reflected from out the top of the keyhole; or,  

 (iii) transmitted through the keyhole (applicable for full penetration welding only).  



Chapter 3   Literature Review; Part II: Keyhole Behaviour, and the Formation and Prevention of Porosity 
   

 

 

70 
 

From the above, it is apparent that Fresnel absorption of the incident laser light may lead to 

multiple reflections inside the keyhole with small changes in the angle of incidence leading to 

non-uniform absorption at the front of the keyhole. The portion of energy absorbed is highly 

dependent upon the angle of incidence the radiation makes with the opaque surface. 

Consequently, a detailed knowledge of the keyhole wall geometry is required so that 

theoretical models can be established to determine the initial absorption and all subsequent 

absorptions as a result of multiple reflections. Knowing these, an understanding of keyhole 

geometry and behaviour can be established.  

3.3.2.2 Inverse Bremsstrahlung Absorption  

Inverse Bremsstrahlung absorption, or free-free absorption, is the absorption of a photon by 

a free electron in the proximity of an ion (i.e. the ionised gas inside the keyhole either absorbs 

the incident laser radiation directly, or as it is reflected through the keyhole). A portion of the 

energy absorbed by the vapour will then be thermally conducted to the keyhole walls 

providing energy for melting and vaporisation of the metallic workpiece, with the remaining 

portion being re-radiated in the vapour [Dowden 2009, p. 97]. 

Inverse Bremsstrahlung absorption can only occur if the vapour inside the keyhole is ionised, 

thereby having a mechanism for the presence of free electrons. Numerous spectroscopic 

studies have been performed to determine the species present in the keyhole vapour and its 

temperature (for example; Tu et al, 2003). The majority of these have been performed for CO2 

laser welding of ferrous metals, for reasons which will be discussed later.  

If the following assumptions are made: 

1. The metallic vapour observed is optically thin (i.e. no self absorption occurs within 

the plasma, allowing the analysis to be simplified). 

2. Local thermodynamic equilibrium (LTE) is assumed (i.e. all particles have a 

Maxwellian velocity distribution, and that collisional processes dominate the rate 

equations such that Boltzmann Statistics apply). 

The electron temperature in the metallic vapour can be determined by comparing the relative 

intensities of two or more emission lines from the same state by utilising the ‘Boltzmann plot’ 

method.  
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The spectral intensity, 𝐼𝑛𝑚 , of individual optical emission lines associated with a transition 

from the upper state, 𝑛, to the lower state, 𝑚, can be calculated by (Griem, 1997), 

𝑰𝒏𝒎 = 𝑵𝒏𝑨𝒏𝒎𝒉𝒗𝒏𝒎            (3-9) 

where 𝑁𝑛  is the population density in the 𝑛 state, 𝐴𝑛𝑚  is the atomic transition probability 

between the states 𝑛 and 𝑚, and 𝑣𝑛𝑚  is the energy of the emitted photon.  

The population of the excited state, 𝑁𝑛 , can be found from the Boltzmann distribution, 

𝑁𝑛 = 𝑁  
𝑔𝑛

𝑍(𝑇𝑒)
 𝑒𝑥𝑝 −𝑒𝐸𝑛  𝑘𝑏𝑇𝑒                  (3-10) 

where 𝑍(𝑇𝑒) is the partition function, 𝑁 the total density of the state, 𝑘𝑏  the Boltzmann 

constant, 𝑔𝑛  the degeneracy of state 𝑛, and 𝐸𝑛  the energy level of state 𝑛.  

Combining the two previous equations yields, 

𝑙𝑛  
𝐼𝑛𝑚 𝜆𝑛𝑚

𝐴𝑛𝑚 𝑔𝑛
 = 𝑙𝑛  

𝑁𝑐

𝑍(𝑇𝑒 )
 −  

𝑒𝐸𝑛

𝑘𝑏𝑇𝑒
                   (3-11) 

where 𝜆𝑛𝑚  is the wavelength of the studied spectral line,  is Planck’s constant, and 𝑐 is the 

speed of light (~3x108 ms-1).  

The Boltzmann plot technique can then be utilised, plot 𝑙𝑛  
𝐼𝑛𝑚 𝜆𝑛𝑚

𝐴𝑛𝑚 𝑔𝑛
  against 𝐸𝑛 , for at least 

two emission lines. The gradient of the resultant line is equal to −1
𝑘𝑏𝑇𝑒

  and thus the 

electron temperature can be determined. The difference between the upper state energy 

levels of the chosen spectral emission lines (i.e. 𝐸𝑛  and 𝐸𝑙  for wavelengths 𝜆𝑙𝑘  and 𝜆𝑛𝑚 ) must 

be greater than the sum of the Boltzmann constant and the calculated electron temperature. 

This ensures that lines belonging to the same multiplet are not chosen. The Saha equation can 

be utilised to determine the relationship between the electron, ion and neutral number 

densities in the gas. If the gas is assumed to be quasi-neutral (i.e. 𝑁𝑒 = 𝑁𝑖) and the perfect gas 

law is utilised (i.e. 𝑃0 = 𝑁0𝑘𝑏𝑇) then the ionisation fraction, 𝛼, of the gas can be calculated 

using the equation below [Choudhuri, 1998].  

𝛼2 =  
2𝑔𝑖

𝑔0
    2𝜋𝑚𝑒 

3
2  𝑃03  𝑘𝑏𝑇𝑒 

5
2 𝑒𝑥𝑝

 
−𝑒𝐸𝑖

𝑘𝑏𝑇𝑒
  

             (3-12) 

The electron temperature can then be utilised to calculate the ionisation fraction of the 

metallic vapour and, with knowledge of the electron density, the inverse Bremsstrahlung 

absorption coefficient of the ionised vapour can be determined. The inverse Bremsstrahlung 
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absorption, 𝛼𝑖𝑏 , coefficient is the sum of the electron-neutral atom, 𝛼𝑒𝑎 , and the electron-ion, 

𝛼𝑒𝑖 , absorption coefficients [Mitchener and Kruger 1973, p. 241]. 

 𝛼𝑖𝑏 ≈ 𝛼𝑒𝑎 +  𝛼𝑒𝑖 =
𝑣𝑝

2𝑣𝑐𝑓

𝑐𝑣2                                (3-13)  

where 𝑣𝑝  is the plasma frequency, 𝑣𝑐𝑓  is the collision frequency between the different species, 

𝑐 is the speed of light, and 𝑣 is the frequency of the incident light. 

Sokolowski et al [1998] estimated that the vapour temperature in the keyhole when CO2 

keyhole laser welding steel would be in the range 9500 to 12000K, whereas the electron 

densities were in the range 1x1017 to 3.1x1018 cm-3. For this range of temperatures the 

electron-neutral atom absorption coefficient is negligible compared to the electron-ion 

absorption coefficient and can therefore be neglected [Greses, 2003]. Consequently, the 

inverse Bremsstrahlung absorption coefficient can be calculated from Equation 3-10 if LTE is 

assumed. 

𝛼𝑒𝑖 =
4

3
 

2𝜋

3𝑘𝑏𝑇𝑒
 

1

2
 

𝑛𝑒𝑛𝑖𝑍
2𝑒6

𝑐𝑚𝑒

3
2𝑣3

 (1 − 𝑒𝑥𝑝
(

−𝑣

𝑘𝑏𝑇𝑒
)
)   (3-14) 

3.3.2.3 Absorption of 1 and 10 µm Wavelength Laser Beams 

Industrial laser sources utilised for thick section welding applications will almost certainly 

have a wavelength of either ~1 µm (such as Nd:YAG rod, Yb-fibre, Yb:YAG disc and diode 

laser sources) or ~10 µm (CO2 laser sources). As discussed above, both the Fresnel and 

inverse Bremsstrahlung absorption coefficients are dependent upon the wavelength, and 

consequently 1 and 10 µm wavelength electromagnetic radiation will be absorbed differently. 

For laser sources emitting light with a wavelength of ~1 µm the radiation is almost entirely 

absorbed by the Fresnel absorption mechanism. Some ionisation of the metallic vapour may 

occur, although the rise in temperature is not sufficient for large electron densities to be 

present [Dowden 2009, p. 97]. Hence, any inverse Bremsstrahlung absorption can be 

considered negligible. However, particularly high power densities are now available from 

modern solid-state lasers, single mode lasers delivered through a ~15 µm core diameter fibre 

optic cable are now available at powers exceeding 1 kW [IPG Photonics, 2010], and it remains 

unclear whether or not these laser sources are capable of producing a highly ionised plasma 

in the keyhole and what absorption effects this will have on the incident electromagnetic 

radiation.  
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For CO2 laser sources the absorption of the incident electromagnetic radiation by the inverse 

Bremsstrahlung effect is greater, as evidenced in research by Tu et al [2003], and cannot be 

ignored. Tu et al [2003] determined the electron temperature and density at different heights 

in the keyhole when welding C-Mn steel with a CO2 laser source. Higher temperatures and 

increased electron densities were found to be present at the top of the keyhole compared to 

the bottom, which led to an increased absorption of the laser beam in the top portion of the 

keyhole and, consequently, a nail shaped weld profile was observed indicating the non-

uniform absorption. A typical inverse Bremsstrahlung absorption coefficient for 20 kW CO2 

keyhole laser welding of C-Mn steel at 45 mms-1 was calculated to be 6 - 7.5% at the top (0-3 

mm) of the keyhole and 1.5 – 2% at the bottom (3-9 mm) of the keyhole [Tu et al, 2003]. 

Numerous models (for example; Kaplan, 1994; Solana and Negro, 1997; Fabbro and Chouf, 

2000; Ki et al, 2002) have been developed to simulate the absorption of electromagnetic 

radiation by a keyhole and determine its influence on the keyhole geometry. Kaplan [1994] 

calculated the keyhole geometry by determining the energy balance at the keyhole, whilst 

considering both Fresnel and inverse Bremsstrahlung absorption of the laser beam. The 

calculated geometry of the keyhole, as shown in Figure 3-3 [Kaplan, 1994], resembles the 

geometry observed by Arata et al [1985] more closely than previous models. 

 

Figure 3-3. Geometry of beam, keyhole and melt pool for 4 kW CO2 laser welding of steel at 50 

mms-1 (a), magnified keyhole profile (b), and inverse Bremsstrahlung absorption coefficients 

in the keyhole [Kaplan, 1994]. 
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Solana and Negro [1997] developed an axisymmetrical model of a keyhole which 

incorporated the potential for multiple reflections inside the keyhole, using a ray-tracing 

technique and assuming an initial conical shaped keyhole. The results allow the effects of 

utilising different beam profiles and different absorption mechanisms to be compared. A 

Gaussian beam profile was found to result in a deeper (~6%) and narrower keyhole than a 

uniform top-hat profile for a constant laser power. Perhaps more significantly, the inverse 

Bremsstrahlung absorption coefficient was adjusted from 0 – 300 m-1 (where 100 m-1 and 

300 m-1 correspond to temperatures of approximately 9000 and 19000K respectively) and its 

effect on penetration modelled. The introduction of an inverse Bremsstrahlung absorption 

coefficient led to a decrease in penetration and increase in upper keyhole width, since a 

higher proportion of the energy was accumulated in the upper region of the keyhole. 

Increasing the coefficient further increased the width, agreeing with the later work 

performed by Tu et al [2003], of the upper keyhole and decreased the penetration depth.  

A similar ray tracing method to that used by Solana and Negro [1997] was adopted by Fabbro 

and Chouf [2000] to study the keyhole geometry as a function of translation speed, incident 

intensity and sample material. The initial FKW inclination angle was calculated as a function 

of the beam translation velocity and a drilling velocity perpendicular to the inclination angle, 

based on previous work by Poueyo-Verwaerde et al [1994] and Fabbro et al [1997]. The ray 

tracing method was then utilised to determine the effect of multiple reflections on the 

keyhole geometry. It was determined that the FKW can be particularly stable, but it is 

perturbed by reflections from the RKW, whereas the RKW will be inherently unstable unless 

the incident laser intensity is adequate [Fabbro and Chouf, 2000]. The importance of 

correctly assuming the initial geometry of the keyhole was highlighted in theoretical research 

by Ki et al [2002], who determined that the multiple reflections are highly geometry 

dependent and that an incorrect preassumed keyhole geometry would lead to inadequate 

results. 

Jin et al [2002] experimentally observed the keyhole produced when CO2 laser welding of 

GG17 glass (a glass with a SiO2 content of 80% and a softening point of 820°C), with a 

mathematical keyhole profile subsequently calculated by polynomial fitting. This calculated 

geometry allowed a model to be constructed which determined the laser intensities absorbed 

in different regions of the keyhole. Since GG17 glass is primarily constituted of SiO2, which 

has very high ionisation energy, inverse Bremsstrahlung absorption was deemed negligible 

and only Fresnel absorption was considered [Jin et al, 2002]. It was established that the 

majority of energy was absorbed at the FKW by direct incidence. The RKW was found to have 
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no direct absorption of the incident laser beam and was maintained by the multiple 

reflections and convection of thermal energy by transported metal vapour. 

Equation 3-8 indicated that the Fresnel absorption of light incident on an opaque surface 

could be calculated if the optical properties of the material, the angle of incidence and the 

wavelength of the incident laser radiation are known. However, Equation 3-8 is only valid for 

parallel polarised light and different equations must be utilised for other polarisations. Cho 

and Na [2007] indicated that the keyhole will consequently take on different geometries 

depending upon the light’s polarisation. For laser sources which emit laser light with a 

random polarisation (such as multi-mode Yb-fibre lasers), calculation of the absorption 

coefficients for specific angles of incidence is further complicated, although Cho and Na 

[2007] suggested the keyhole would be similar in shape to one produced with a circularly 

polarised laser beam. 

3.3.3 Melt pool Behaviour and Hydrodynamic Forces 

In Section 3.2 it was assumed that the forces relating to the hydrodynamic behaviour of the 

melt flow around the keyhole would be small in comparison with the ablation pressure and 

the surface tension forces. For keyholes with a low Péclet number this assumption is 

reasonable since; (i) the laser energy is absorbed uniformly in the keyhole; and, (ii) the 

dominant heat transfer mechanism is conduction and the isotherms will be axisymmetric. 

Consequently, the flow of molten material around the keyhole has a low velocity and the 

trailing melt pool is similar, or identical, in size to the leading melt front. However, for 

keyholes with a high Péclet number the isotherms become elongated, as indicated in Figure 

3-4 [Wang et al, 2006], and a trailing melt pool forms behind the keyhole. 
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Figure 3-4. Numerical model, using the control volume method, of the induced isotherms at 

the top surface when welding Ti-6Al-4V with a Gaussian heat source [Wang et al, 2006]. 

The geometry of the melt pool, which is defined by the solid-liquid and liquid-vapour phase-

change boundaries in the workpiece, is a result of the properties of the incident laser 

radiation, the conduction and convection of the absorbed thermal energy, and the motion of 

the workpiece relative to the incident laser beam. Observations of the melt pool behaviour 

(for example; Fabbro et al, 2006) have indicated that the fluid flow in the melt pool is 

particularly complex and it is driven by numerous mechanisms.  

 

Figure 3-5. Fluid flow in melt pool, observed by the trajectory of a tungsten particle, when 

keyhole laser welding a 5000 series aluminium alloy with a CO2 laser [Matsunawa et al, 

1998]. 
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Matsunawa et al [1998] observed the fluid flows during continuous-wave CO2 keyhole laser 

welding of A5083 aluminium alloy, by sandwiching a tungsten particle between two sheets 

which were subsequently welded together. A high speed X-ray transmission observation 

method allowed the behaviour of the particle to be observed. The observed trajectory of the 

tungsten particles, shown in Figure 3-5 [Matsunawa et al, 1998], has revealed that eddy 

currents are established in the melt pool. Speeds of up to 350 mms-1 were observed in the 

eddy currents, which was considerably faster than the welding speed. Similar fluid flows 

were modelled in the melt pool by Geiger et al [2009], using a three dimensional, transient 

finite volume model of the keyhole laser welding process.  

 

Figure 3-6. Modelled eddy currents in melt pool when welding 1 mm thickness steel with a 

3.8 kW laser source, with a focussed spot diameter of 200 µm, and a welding speed of 100 

mms-1 [Geiger et al, 2009]. 

As summarised by Fabbro et al [2004] and Kaplan [2009, p. 85] the specific mechanisms 

influencing the fluid flow are: 

 Molten material driven around the keyhole by the ablation pressure at the front of the 

keyhole. 

 Frictional fluid flow induced by the metal vapour ejected from the keyhole. 

 Flow of molten material in the melt pool due to Marangoni convection 

(thermocapilliary flow). 

It can be reasonably assumed that combination of a few of these forces will have a significant 

effect on the hydrodynamic behaviour of the melt pool, causing effects such as the eddy 

currents discussed above. In turn, these hydrodynamic behaviours may lead to; (i) the 

formation of geometrical defects in the weld seam; and/or (ii) a force on the keyhole which 



Chapter 3   Literature Review; Part II: Keyhole Behaviour, and the Formation and Prevention of Porosity 
   

 

 

78 
 

introduces keyhole instabilities, and potentially keyhole collapse, leading to the inclusion of 

bubbles in the melt pool – which may not have sufficient time/buoyancy to escape and will 

become entrapped as porosity. Therefore, a comprehensive understanding of the melt pool 

hydrodynamics is necessary to produce defect free welds [Fabbro et al, 2004]. 

3.3.3.1 Keyhole Ablation Pressure Effects 

It was discussed in Sub-section 3.3.2 that the majority of the incident laser radiation is 

absorbed at the FKW and the molten material is subsequently ablated which induces an 

ablative pressure, also referred to as a recoil pressure, on the molten material. Thermal 

conduction determines the rate at which this molten material is thrust towards the front of 

the keyhole. However, only a small proportion of the processed material is transported across 

the keyhole in the vapour phase, and the majority remaining is moved sideways around the 

keyhole in the liquid phase [Klemens, 1976]. This displacement of molten material is driven 

by the ablation pressure at the front of the keyhole. 

Depending upon the thermal conductivity and the welding speed, the thickness of molten 

material on either side of the keyhole (transverse to the welding direction) may be small 

compared with the diameter of the keyhole. As a result, the velocity of the melt flow around 

the keyhole must be sufficiently high to ensure the conservation of mass law is not 

contravened [Semak et al, 1995]. For lower welding speeds the thickness of molten material 

on either side of the keyhole (transverse to the welding direction) increases and the velocity 

of the molten material decreases. A similar situation is found when welding materials with 

very high thermal conductivity and/or with a large temperature differential between their 

melting and boiling points [Kaplan 2009, p. 86]. 

Geiger et al [2009] modelled the keyhole and melt pool behaviour produced when welding 1 

mm thickness steel with a 3.8 kW laser source, with a beam width of 200 µm, and a welding 

speed of 100 mms-1. As is detailed in Figure 3-7 [Geiger et al, 2009], the velocity of the melt 

flowing around the keyhole (~200 mms-1) was approximately twice that of the welding speed 

– even at this low welding speed. For higher welding speeds the velocity of the melt flow 

around the keyhole has been determined to be much greater [Lampa et al, 1998]. Kaplan 

[2009, p. 88] reported that accelerated molten metal flow towards the solidification front 

may result in undercut at the side of the weld and a peak in the centre. 
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Figure 3-7. Surface melt pool velocities produced when welding 1 mm thickness steel with a 

3.8 kW laser source, with a focussed spot diameter of 200 µm, and a welding speed of 100 

mms-1 [Geiger et al, 2009]. 

3.3.3.2 Metallic Vapour Ejection Effects 

In addition to driving the flow of molten material around the keyhole, the ablation of the front 

of the keyhole by the incident laser beam generates vapour inside the keyhole. Studies by 

Fabbro et al [2004; 2006] have reported that the ejection of the vapour from the keyhole can 

have a significant effect on the fluid dynamics in the melt pool.  

Observation of the melt pool behaviour when Nd:YAG laser welding of C-Mn steel with a dual 

or treble focussed laser beam (i.e. two or three focussed spots) allowed the effects of the 

vapour friction effects to be observed at a welding speeds of ~ 10-80 mms-1 [Fabbro et al, 

2004]. Swellings around the top of the keyhole were inferred to be a direct consequence of 

the vapour friction effects, which induced an upward melt flow. According to Semak and 

Matsunawa [1997] the friction of the gas flowing out of the keyhole may cause an upward 

force on the keyhole walls. The calculated induced upward melt flow velocity, which was 

contained in a boundary layer a few hundred microns thick, was similar to that from the 

induced from the sideways melt flow around the keyhole, and consequently cannot be 

ignored [Fabbro et al, 2004]. At these low welding speeds it was further reported by Fabbro 

et al [2006] that a bump was generated at the RKW (as indicated in Figure 3-8) which led to 

oscillations in the melt pool.   

At increased welding velocities (100-150 mms-1) the inclination of the FKW increases away 

from the beam translation direction and the absorbed energy at the front of the keyhole is 

expected to increase (as a result of the mechanisms discussed in Sub-sections 3.3.1 and 

3.3.2). This leads to a significant increase in the amount of ablated material which impinges 
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on the keyhole wall, which has the effect of widening the top portion of the keyhole [Fabbro 

et al, 2006]. In further studies performed by Fabbro et al [2007] using identical equipment, it 

was noticed that in this range of speeds a periodic oscillation was induced in the melt pool by 

the vapour which led to spatter ejection from the rear of the keyhole. This vapour ejection 

induced effects on the keyhole and melt pool geometries at slow (15mms-1) and moderate 

(85mms-1) welding speeds are shown schematically in Figure 3-8 [Fabbro et al, 2006].  

 

 

Figure 3-8. Schematic of the effect of the vapour ejection on the keyhole and melt pool 

geometries at welding speeds of (left) 15 mms-1 and (right) 100 mms-1 [Fabbro et al, 2006]. 

At moderate welding speeds the pressure exerted by the metallic vapour on the rear of the 

keyhole is sufficient to cause geometric defects in the weld profile, such as undercut [Kaplan 

2009, p. 90]. Furthermore, If the welding speed is sufficiently high, it has been observed 

[Fabbro et al, 2007] that the pressure exerted on the rear of the keyhole is sufficient to cause 

humping of the weld bead [Fabbro et al, 2007].  

3.3.3.3 Marangoni Convection Effects 

Marangoni convection, which is also referred to as thermocapilliary flow, in the melt pool is 

generated by the presence of surface tension gradients. These surface tension gradients arise 

as a result of the surface tensions dependence on temperature and the large temperature 

differentials present in the melt pool; the melt temperature is near the solidification point at 

the liquid-solid phase boundaries, whereas the melt temperature is near the vaporisation 

temperature at the liquid-gas phase boundaries. For most metals the surface tension 

decreases as a function of temperature. As a result, surface tension gradients will exist from; 

(i) the melt surrounding the keyhole towards the solid-liquid interface; and, (ii) from the 

centre of the melt pool outwards to either the face or root of the weld [Fan et al, 2001]. The 
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molten metal flow will then be driven towards the areas of high surface tension at the 

solidification boundaries and at the face and root of the weld. 

The presence of excessive concentrations of surface active elements, such as phosphorous 

and oxygen, can lead to lower surface tensions at the solidification boundaries and reverse 

the flow of molten material towards the centre of the weld. However, for titanium alloys 

which are rigorously cleaned before welding to remove surface contaminants and hydroxide 

layers, and shielded with inert gases during welding to prevent absorption of light elements, 

this is unlikely to be the case. 

3.4 Origins of Weld Metal Porosity 

3.4.1 Pore Gas Analysis 

No research has been reported on the gas content of pores produced when keyhole laser 

welding titanium alloys. A small amount of research has been published on the specific gas 

content of the weld metal porosity formed when keyhole laser welding aluminum and 

magnesium alloys. A study [Kutsuna and Kurokawa, 2004] of the gas contents of pores from 

CO2 keyhole laser welding of AZ361 and AZ61 magnesium alloys indicated that hydrogen was 

the major contributor, with a small fraction of argon (the shielding gas). A similar result was 

also reported by Kutsuna and Yan [1998] for pores produced in 5000 series aluminium alloys 

with a CO2 laser. Hydrogen was the major constituent (77-87%) and the remaining gas was 

the shielding gas [Kutsuna and Yan, 1998]. 

The above research is perhaps confusing given the statements in the previous chapter 

regarding the formation of porosity due to hydrogen rejection during melt pool solidification. 

However, it would be expected that the formation of porosity in aluminium-magnesium 

alloys is significantly different from that in titanium alloys as a result of the large difference in 

melting and vaporisation temperatures between the aluminium and magnesium. 

Furthermore, the solubility of hydrogen in aluminium is significantly more conducive to the 

formation of hydrogen porosity than in titanium alloys [Kutsuna and Yan, 1998]. It is known 

from previous experience at TWI that with identical work preparation and inert gas shielding 

procedures, the porosity content in the weld metal can vary significantly depending upon the 

process parameters [Hilton, 2006]. Du et al [2003] came to a similar conclusion whilst 

investigating CO2 keyhole laser welding of TC-1 titanium alloy. 

Nevertheless, it can be inferred from the results presented by Kutsuna and Yan [1998] and 

Kutsuna and Kurokawa [2004] that it is possible for shielding gas to be entrapped in the weld 
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metal. Given the velocity of the metal vapour exiting the keyhole, at first consideration it is 

surprising that shielding gas may enter this particularly high pressure area. However, if the 

keyhole were to collapse, either as a combined result of the mechanisms discussed in Section 

3.3 or as a result of the laser beam attenuation [which is discussed in Section 3.5) 

preventing/reducing ablation in the keyhole, then shielding gas may be drawn in. 

3.4.2 Transient Behaviour of the Keyhole Laser Welding Process 

It is apparent from the preceding Sections that the forces acting on the keyhole and the melt 

pool are particularly complex. Furthermore, the discussions in Sub-sections 3.3.1, 3.3.2 and 

3.3.3 have only been considered for incident electromagnetic radiation with a constant power 

output. The introduction of a modulated power or a pulsed laser output would significantly 

alter the interaction between the keyhole and the melt pool, as would introducing other 

process parameters detailed in Table 2-1.  

The mechanisms which induce the forces on the keyhole and melt pool are sufficiently 

intertwined that their interactions are very complex and it is hard to envisage a quasi steady-

state process. Observations of the transient behaviour of the keyhole laser welding process 

using X-ray transmission methods have been performed by Matsunawa et al [1998], during 

CO2 laser welding of A5083 in helium shielding. Figure 3-9 [Matsunawa et al, 1998] details 

one of the observations over a period of 90 ms. Despite the constant welding parameters the 

process exhibits particularly unsteady behaviour with fluctuations in penetration depth and 

the formation of porosity in the weld metal. 
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Figure 3-9. On-line X-ray measurements of porosity formation resulting from an unstable 

keyhole produced with a CO2 laser in A5083 [Matsunawa et al, 1998] 

The formation of porosity in Figure 3-9 [Matsunawa et al, 1998] is primarily observed in the 

lower half of the keyhole as a result of a non-steady keyhole geometry. In particular the depth 

of the keyhole and the geometry of the RKW are particularly dynamic. A change in the front 

keyhole wall inclination angle can be seen and a corresponding depression can be noted in 

the rear keyhole wall. These results have shown that the evaporation of the front keyhole 

wall occurs locally and not uniformly, as the rear keyhole wall depression is caused by the 

dynamic pressure exerted by the evaporated vapour jet [Matsunawa, 2001]. As the region of 

the front keyhole wall moves progressively down towards the keyhole tip because of the 

evaporation, the depression on the rear keyhole wall follows, until a bubble is formed at the 

keyhole tip, as can be seen in Figure 3-10 [Matsunawa et al, 2003] below.   
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Figure 3-10. Porosity formation from the localised evaporation at the front keyhole wall 

[Matsunawa et al, 2003]. 

However, the behaviour observed in Figure 3-9 and graphically detailed in Figure 3-10 has 

been for partial penetration welds. For fully penetrating welds it would be expected that the 

hump would be ejected from the rear of the keyhole and not result in a bubble entering the 

molten pool. Du et al [2003] reported that a large reduction in porosity occurred when 

moving from a partially to a fully penetrating welding condition.  

Theoretical models, based on relatively simplistic keyhole geometry, analysing the effects of a 

non-equilibrium state between the forces in the keyhole indicates that fluctuations in 

absorbed beam power may introduce fluctuations which may be amplified by the keyhole 

[Kroos et al, 1993]. Development of this theoretical research by Klein et al [1994] found that 

a simplified cylindrical keyhole can perform radial, axial and azimuthal oscillations. At 

absorbed laser powers which are significantly above a certain threshold value the amplitude 

of these oscillations is particularly small. However, if the absorbed laser power is near, or at, 

the threshold value then the keyhole is more prone to oscillations which are intimated to 

cause welding defects [Klein et al, 1994]. Further research [Klein et al, 1996] on keyhole 

oscillations induced by a fluctuation in the incident laser power has shown that fluctuations ≥ 

1% are able to generate oscillations in the keyhole with sufficient amplitude to cause keyhole 

collapse if they occur at the resonant frequencies of the keyhole. This collapse would most 

likely result in the shielding gas entering the keyhole and becoming trapped as porosity. 

The forces acting on the keyhole and the melt pool during laser welding are primarily 

determined by the properties of the incident laser radiation (i.e. wavelength, power density 
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etc), the material properties (i.e. thickness, chemical composition etc), the welding speed and 

the surrounding environment (i.e. the gas utilised to shield the welding process). It would be 

expected that the material properties, the welding speed and the shielding of the welding 

process would not be subject to change. However, the properties of the incident laser 

radiation, in terms of total power and power density, can be perturbed by the metallic vapour 

exiting the keyhole which provides a mechanism for the fluctuation in laser power and, as a 

result, the keyhole instabilities.  

3.5 Plasma and Plume Attenuation Effects 

3.5.1 Introduction 

It has been discussed previously that the formation of a keyhole is dependent on the 

vaporisation of the workpiece, and the subsequent metal vapour pressure acts to maintain 

the keyhole. If the incident electromagnetic radiation is from a CO2 laser source (~10 µm 

wavelength), the metal vapour may be partially ionised and will absorb a portion of the 

incident laser beam. The interaction of the metallic vapour, whether it be ionised or not, with 

the keyhole walls and the trailing melt pool can significantly influence the process dynamics, 

as a result of vapour friction effects (discussed in Sub-section 3.3.3.2). In addition to the 

forces exerted on the keyhole walls, the metal vapour exiting the keyhole will also interact 

with the incident laser radiation. Potentially, the laser beam can be absorbed, defocussed or 

reflected by the metal vapour, depending upon the attenuation mechanisms. 

It is important at this stage to establish the terminology used to describe the thermally 

excited metal vapour exiting the keyhole, since ambiguity is observed when comparing the 

relevant literature. In this report, the term ‘plasma’ refers to the ionised metal vapour 

emitted from the keyhole during laser welding with a 10 µm wavelength laser source, since 

the wavelength of this electromagnetic radiation is conducive to plasma formation. 

Ordinarily, plasma cannot be present when welding with 1 µm wavelength laser radiation. 

Some ionisation of the metallic vapour may occur although the rise in temperature is not 

sufficient for large electron densities to be present [Dowden 2009, p. 97]. As a result, in this 

report the term ‘plume’ refers to the thermally excited metal vapour emitted when laser 

welding with a 1 µm wavelength laser source. 

The exact attenuation mechanism(s) are primarily dependent upon the wavelength of the 

incident laser radiation. Numerous spectroscopic studies (for example; Poueyo-Verwaerde et 

al, 1993; Szymański and Kurzyna, 1994; Lacroix et al, 1997; Greses, 2003) have been 
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performed to determine the specific content of metal vapours produced by ~1 µm and ~10 

μm wavelength lasers during keyhole laser welding of metallic materials. Determining critical 

parameters such as the electron temperature and density has allowed the attenuation 

mechanisms for the different wavelength laser sources to be determined. For instance, it has 

been reported [Greses 2003] for Nd:YAG laser welding of C-Mn steel that the dominant beam 

attenuation mechanism is through absorption of the beam by a population of metallic spheres 

~20-40 nm in diameter. However, when CO2 laser welding C-Mn steel, the dominant beam 

attenuation mechanism is through defocussing of the incident laser radiation by the gradient 

refractive index (produced by a gradient electron density) of the ionised metallic vapour 

[Greses 2003]. 

Xie [1999] observed the behaviour of the ionised metal vapour exiting the keyhole with a 

high speed camera at an imaging frequency of 9000 Hz, when welding steel with a CO2 laser 

source. Significant fluctuations were observed in the size and position of the plasma and it 

was identified that this behaviour was related to the keyhole instability. A similar link 

between the keyhole and plasma behaviours was also identified by Seto et al [2000] when 

simultaneously observing their behaviours during CO2 laser welding of either a 5000 series 

aluminium alloy or 304 stainless steel. As has been reported by several researchers (e.g. 

Matsunawa and Ohnawa, 1991), understanding the interaction between the incident laser 

light and the plasma or plume above the laser-workpiece interaction point is critical to 

achieving a stable keyhole. 

3.5.2 Plasma Attenuation Mechanisms 

Plasma formation was briefly discussed in Sub-section 2.2.5, where it was stated that the 

ratio of the electron and ion density to the density of the vapour atoms can be established 

calculated using the Saha equation. Knowing this ratio the proportion of inverse 

Bremsstrahlung absorption coefficient, as discussed in Sub-section 3.3.2.2, can be calculated 

using Equation 3-10. Beer’s law, Equation 3-11, can then be utilised to determine the 

intensity of the incident radiation travelling through the plasma as a function of the plasma 

height (z), assuming that the inverse Bremsstrahlung coefficient is constant throughout the 

plasma. 

𝐼 𝑧 =  𝐼0𝑒−𝛼𝑒𝑖 𝑧        (3-15) 

Szymański et al [1997] studied the plasma that was emitted when CO2 laser welding Ti-1.5Al-

1.3Mn, and reported that temperatures up to ~11500K were calculated for the plasma. This 

corresponds to a transmittance of at least 94% when argon shielding gas was utilised. 
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According to the results presented by Klein et al [1996], this absorption is sufficient to cause 

keyhole instabilities, provided there is some transient variation in the plasma’s intensity. 

Several other studies have been performed (e.g. Poueyo-Verwaerde et al, 1993), although 

predominantly on ferrous metals, that have reported similar findings. It should be noted that 

a portion of the energy absorbed in the plasma may be radiated back to the keyhole, thereby 

returning a portion of the energy lost by the inverse Bremsstrahlung absorption.  

It is assumed in Equation 3-11 that the inverse Bremsstrahlung absorption coefficient is 

constant through the depth of the plasma. The spectroscopic results reported by Poueyo-

Verwaerde et al [1993] show that the electron density and temperature in the plume 

decreases as a function of height above the surface of the workpiece. As a result, the 

absorption of the incident laser radiation is strongest immediately above the keyhole which 

will influence the total absorption of the laser beam. These temperature and electron density 

gradients present in the plasma will result in the plasma behaving like a lens as a result of the 

gradient refractive index. This gradient refractive index can act to defocus and deflect the 

laser beam, which will further influence the power density and its position on the surface of 

the workpiece affecting the absorption of the radiation and the keyhole. Research by Poueyo-

Verwaerde et al [1992] and numerous others indicated that these effects were present by 

modelling the incident laser radiations propagation through the plasma. 

Further modelling of the laser beam propagation through the plasma by Beck et al [1995] 

allowed the effects on the intensity distribution and the focal plane position to be calculated. 

The propagation of a CO2 laser beam through a non-uniform plasma was found to be both 

absorbed and refracted. Comparison of the two effects by Beck et al [1995] indicated that the 

dominant mechanism for perturbing the incident laser radiation was the defocussing of the 

beam and not the absorption. A highly fluctuating temperature in the plasma was calculated 

which would result in a constantly changing focal plane position and, consequently, power 

density at the surface of the workpiece. Szymański et al [1997] did not calculate what 

defocussing may occur due to a gradient in the electron density. 

The absorption of the incident laser radiation by the inverse Bremsstrahlung effect in the 

plasma, its deflection by a gradient refractive index in the plasma, and the potential for a 

portion of the incident laser radiation to be reflected by the plasma, can be significantly 

influenced by the choice of shielding gas utilised. Beck et al [1995] modelled the attenuation 

effects of a CO2 laser beam in a number of different gas environments. The attenuation could 

be reduced by utilising helium shielding gas as a result of its high thermal conductivity and 

ionisation potential, compared with those of argon and nitrogen (as detailed in Table 3-1).  
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Table 3-1. Thermal conductivity, at room temperature, and ionisation potential of common 

shielding gases used when laser welding [Lide, 1997]. 

 

 

 

Glowacki [1995] compared the relationship between plasma temperature and the electron 

density as a function of different shielding gases (argon, helium and nitrogen were 

considered). The refractive index and inverse Bremsstrahlung absorption coefficient could 

then be calculated for single shielding gases or two-component mixtures. An argon-helium 

mixture with a minimum of 50% helium (by volume) was found to be the most satisfactory 

solution since less defocussing of the incident laser light was calculated. Mixtures containing 

less than 50% helium resulted in a large defocussing of the incident laser beam, as indicated 

in Figure 3-11 [Glowacki, 1995]. 

(a)

(b) 

Figure 3-11. The refractive index of the plasma (a) and the inverse Bremsstrahlung 

absorption coefficient (b) as a function of temperature (K) for various helium-argon volume 

ratios: ‘a’ 100% - 0%, ‘b’ 90% - 10%, ‘c’ 70% - 30%, ‘d’ 50% - 50%, ‘e’ 30% - 70%, ‘f’ 10% - 

90%, and ‘g’ 0% - 100% [Glowacki, 1995]. 

Gas Thermal Conductivity 
(W/cmK) 

1st Ionisation Potential 
(eV) 

Ar 0.0001772 15.759 

He 0.00152 24.587 

N 0.0002598 14.534 
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3.5.3 Plume Attenuation Mechanisms 

The temperature of the plume emitted during welding with 1 µm wavelength laser sources 

has also been investigated using optical spectroscopy by several researchers (for example; 

Lacroix et al, 1997; Greses, 2003). In general, the temperatures of the metal vapour exiting 

the keyhole are significantly less than those calculated during CO2 laser welding. For instance, 

Lacroix et al [1997] calculated a maximum electron density and plume temperature of 

6.5x1016 and 7100K respectively, when pulsed Nd:YAG laser welding steel. A much lower 

average temperature was calculated by Greses [2003] of between 1800 and 2600K when 

continuous-wave Nd:YAG laser welding C-Mn steel, and these are more representative of the 

calculated temperature in other reported literature for continuous-wave laser sources.  

It has been reported [Lacroix et al, 1997; Greses, 2003], at least for C-Mn steel, that 

absorption (by inverse Bremsstrahlung) and defocussing (by the gradient electron density) 

effects of the laser beam are very weak, if applicable at all, in the case of Nd:YAG laser 

welding. Scattering and absorption of the laser beam by ultrafine particles is the dominant 

effect in Nd:YAG laser attenuation when welding C-Mn steel. Scattering of light is a result of 

the electromagnetic wave interacting with a particle whose refractive index is different from 

the surrounding medium. The Mie solution to the Maxwell equations can be applied to 

determine the extinction (combination of scattering and absorption) of the laser light through 

the vapour plume. According to Mie theory the extinction coefficient can be calculated using 

Equations 3-12, 3-13 and 3-14 [van de Hulst 1957, p. 290]. 

𝑄𝐸𝑋𝑇 = 𝑄𝐴𝐵𝑆 + 𝑄𝑆𝐶𝐴                (3-16) 

  QABS=
-8π𝑟𝑝

λ
Im  

m2-1

m2+2
+

4

15
 

π𝑟𝑝

λ
 

3
 

m2-1

m2+2
 

2
m4+27m2+38

2m2+3
              (3-17) 

  QSCA=
8

3
 

2π𝑟𝑝

λ
 

4
 

m2-1

m2+2
 
2

 1+
6

5
 

2π𝑟𝑝

λ
 

2 m2-1

m2+2
+…    (3-18) 

Where 𝑄𝐸𝑋𝑇 , 𝑄𝐴𝐵𝑆 , and 𝑄𝑆𝐶𝐴  are the extinction, absorption and scattering efficiencies, 𝑚 is the 

complex index of refraction for the sphere, 𝑟𝑝  is the radius of the particles and 𝜆 is the 

wavelength of the incident light. 

In order to apply the above equations, the particles are considered to be identical in size and 

composition, and that they are isotropic and optically linear. These equations can be 

simplified if the second part of the scattering efficiency term is less than 0.2 [van de Hulst 

1957, p. 312]. For a titanium sphere (i.e. complex index of refraction of 3.8 + 4.0i) this equates 
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to the radius of the sphere being less than 70 nm. Observed particle sizes [Greses, 2003; 

Lacroix et al, 1997], at least for steels are typically smaller than this size. The equations can 

then be simplified. 
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The attenuation of the Nd:YAG laser beam can then be determined using Beer’s Law 

    I z = Ie-(QABS+QSCA)π𝑟𝑝
2𝑁𝑝 z      (3-21) 

Where 𝐼(𝑧) is the proportion of incident laser radiation transmitted through the plume along 

the propagation direction 𝑧, 𝐼 is the incident laser intensity, and 𝑁𝑝  is the density of the 

particles in the plume.  

This attenuation may be somewhat pessimistic as it does not take into account the direction 

of the scattered radiation (i.e. some of the scattered radiation may be parallel with the 

incident beam). Nevertheless, calculations of the beam attenuation by Greses [2003] have 

shown that up to ~30% of the beam intensity may be attenuated for particles with a diameter 

10-30 nm when Nd:YAG laser welding C-Mn steel. 

3.5.4 Laser Beam Brightness Effects 

The commercial availability of 1 µm wavelength solid-state lasers with particularly high 

powers and excellent beam qualities (see Section 2.6) allows power densities of ~ MWmm-2 

levels to be produced on the surface of the workpiece. These power densities are significantly 

greater than with traditional Nd:YAG rod laser sources, which were capable of being focussed 

into power densities of kWmm-2 levels whilst still maintaining an acceptable working 

distance.  

Hilton and Verhaeghe [2009] compared the welding performance of focussed laser beams 

with power densities ranging from 15 – 500 kWmm-2 and brightness levels (see Section 2.6) 

from 0.3 – 20 MWmm-1.sr-1, when welding C-Mn steel. The optimum performance in terms of 

melt run penetration in steel was found for the focussed laser beam with the highest 

brightness and not the smallest spot size. However, this could only be achieved if; (i) a side jet 

of argon was directed at the laser-workpiece interaction point opposite to the direction of 

travel, and (ii) additional cross jets of argon (directed perpendicular to the direction of 
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travel) were used to disturb the air flow in the region between the beam focussing lens and 

the workpiece. It was noted that this was a solution that was not appropriate for all the 

focussed beams examined. In particular, when welding with a Yb:YAG disc laser focussed into 

a 0.1 mm diameter spot with a 200 mm focussing lens, the performance curves  were 

nominally identical. Nevertheless, the results reported by Hilton and Verhaeghe [2009] 

indicate that both the side and cross jets were required to maximise performance of the 

brightest laser (20 MWmm-1.sr-1). It was postulated that the effects seen could involve 

changes to the refractive index of the gas column between the focussing lens and the 

workpiece. 

 

Figure 3-12. Arrangement of side jets and cross jets utilised by Hilton and Verhaeghe [2009]. 

Courtesy of TWI Ltd. 

In terms of the characteristics of the plume present when welding with high-brightness Yb-

fibre laser sources, Kawahito et al [2007] performed spectroscopic analysis of the metal 

vapour emitted from the keyhole during welding of 304 stainless steel with a 10 kW Yb-fibre 

laser. High speed observation of the plume behaviour above the keyhole when welding at a 

speed of 50 mms-1 with a power density of ~0.9 MWmm-2 indicated that the plume reached a 

minimum height of 12 mm above the keyhole.  During the same experiment, the vapour 

plume temperature was calculated to be approximately 6000K using the Boltzmann plot 

method. This corresponded to an ionisation fraction of 0.02 according to the Saha equation, 

which classifies the plume as a weakly ionised metal vapour. High speed observation of the 

plume behaviour above the keyhole during the same experiment indicated that the plume 

reached a minimum height of 12 mm above the keyhole. Therefore any attenuation which is 
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prevented by eliminating the plume immediately above the keyhole is most likely related to 

preventing absorption and scattering of the incident laser beam by ultrafine particles, as 

specified for Nd:YAG laser welding by Lacroix et al [1997].  

The requirement for the cross jets when welding with a high brightness laser source can be 

explained by examining the work reported by Oiwa et al [2009], who investigated the optical 

properties of a gas column between the workpiece and the focussing lens when welding zinc-

coated steel sheets with a 10 kW Yb-fibre laser. A Michelson interferometer was utilised to 

observe the refractive index distributions in the gas column between the workpiece and the 

focussing lens. It was observed that low refractive index distributions were present in the 

column up to a maximum height of 400 mm (stand-off distance was 1250 mm). When 

present, these regions of varying refractive index were sufficient to cause a loss of 

penetration in the workpiece such that the welding process moved from a fully penetrating to 

partially penetrating. These refractive index gradients could be eliminated by utilising a fan, 

positioned perpendicular to the laser beam, to create a movement of air between the 

focussing lens and the workpiece. Consequently, a fully penetrating welding condition 

occurred despite the presence of a plume, circa 20 mm in height, still present directly above 

the keyhole. 

A similar investigation performed by Hilton and Blackburn [2010] investigated the optical 

properties of the plume produced when welding C-Mn steel with a 4 kW Yb-fibre laser (beam 

parameter product of 1.6 mm.mrad) with two different focussing lenses (300 and 500 mm). 

Schlieren imaging was utilised to confirm the presence of regions with different refractive 

index present between the workpiece and the focussing lens, and optical spectroscopy was 

utilised to characterise the properties of the plume immediately above the keyhole (up to a 

height of 22.5 mm). The results from the laser Schlieren provided evidence that the column of 

gas in the path of the laser beam has a different refractive index to the surroundings. 

However, a gradient refractive index was not detected when cross-jets were utilised, agreeing 

with the results presented by Oiwa et al [2009]. The calculated values of the plume 

temperature were ~6900K, using the Boltzmann plot method (see Page 71). This 

corresponds to an ionisation fraction of 0.074 for the metallic component of this vapour and 

~0.0001 for the argon portion. 

An interesting result noted by Hilton and Blackburn [2010] is that at the two different stand-

off distances examined, the cross jets and side jet had no effect on the welding performance 

when the 300mm focussing lens was utilised. This is significant since the effective brightness 

of both focussed beams is nominally identical, as per Equation 2-13, indicating that the beam 
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attenuation mechanisms observed are more prevalent when using focussing lenses with a 

longer focal length. Referring to the results presented by Hilton and Verhaeghe [2009], the 

jets were found ineffective when used with lower brightness laser beams. For all the lower 

brightness beams examined, the longest stand-off distance utilised was 280 mm. 

 

Figure 3-13. Penetration depth observed by Hilton and Blackburn [2010] when welding C-Mn 

steel with a 4 kW Yb-fibre laser, with a 500 mm focussing lens and 0.2 mm diameter beam 

width. Courtesy of TWI Ltd. 

In summary, for high-brightness laser beams, it appears that two mechanisms contribute to 

the beam attenuation; (i) the presence of a plume immediately above the laser-material 

interaction point, and (ii) the establishment of regions of low refractive index in the region 

between the top of the plume and the focussing lens. The first of these mechanisms is present 

in all situations, whereas the second appears to be much more of a concern when processing 

with a stand-off distance exceeding 500 mm. Although this is a relatively newly observed 

phenomenon, which requires further investigation, it is evident that there is sufficient 

attenuation to cause a lack of penetration so certainly there would be enough attenuation to 

cause keyhole instability and possible porosity formation. 

3.6 Potential Porosity Prevention Methods 

Despite the reported mechanisms for introducing keyhole instability resulting in weld metal 

porosity, several techniques have been developed to suppress keyhole instabilities which 
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cannot be controlled through optimisation of the basic process parameter set (i.e. welding 

speed, focussed beam diameter, power density etc). Specifically, these methods are: 

1. Manipulation of the shielding atmosphere in which the welding is performed (e.g. 

Arata et al, 1985). 

2. The utilisation of a jet of inert gas directed towards the keyhole (e.g. Kamimuki et al, 

2002). 

3. Dual focus laser welding (e.g. Xie, 2002). 

The above methods all intend to prevent the initiation of keyhole instabilities either by 

interacting with the plasma or plume above the keyhole or by modifying the geometry of the 

keyhole such that it is more resistant to variations in the forces maintaining and restoring it. 

Furthermore, modulating the output of the laser beam has also been reported as a method of 

producing keyhole laser welds with very low levels of porosity. These four potential methods 

for producing high quality laser welds in titanium alloys when utilising 1µm wavelength laser 

sources are reviewed below. Additionally, the potential for stirring the melt pool with 

magnetic fields for porosity prevention is also discussed. 

It is worth noting that the vast majority of the published data on porosity prevention when 

keyhole laser welding refers to ferrous metals and aluminium alloys. A small amount of 

research has been published which concerns titanium alloys, however the results are 

generally not quantified and are therefore particularly difficult to compare. Even if the results 

have been quantified, the method utilised to assess the porosity of the content varies 

significantly. Conventional radiography and sectioning are the two methods most commonly 

utilised, with the former providing the most reliable results. However, the size of 

imperfections visible on radiographs is subject to variation in the radiography process (as a 

result of film sensitivity, radiation source etc), and the subsequent analysis will only amplify 

this (i.e. human error).  

3.6.1 Shielding Atmosphere 

It was previously discussed (Section 3.5) that a portion of the incident laser radiation may be 

attenuated by a plasma or a vapour plume, therefore providing one possible mechanism for 

keyhole instability and the formation of weld defects. Keyhole laser welding performed under 

vacuum has shown [Arata et al, 1985] that plasma formation can be easily suppressed. 

Katayama et al [2001] also studied the effect of processing in a vacuum when CO2 and Nd:YAG 

keyhole laser welding aluminium alloys and austenitic stainless steel. Welds were produced 

with no porosity at lower pressures, whereas those made under identical conditions but at 
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atmospheric pressure contained porosity. Observation of the keyhole and melt pool 

behaviour indicated that both the keyhole and melt pool exhibited different behaviours when 

welding at lower pressures which were beneficial for preventing porosity formation; this is a 

result of the plasma or plume formation above the keyhole being dispersed before having 

time to attenuate the incident laser beam. Unfortunately, welding at lower pressures limits 

the inherent flexibility of laser welding and would require the utilisation of a moving vacuum 

chamber. 

It has been reported [Caiazzo et al, 2004] that shielding of the melt pool with helium when 

CO2 laser welding Ti-6Al-4V results in a higher weld quality than when using argon as a 

shielding gas. When keyhole laser welding with a CO2 laser beam, helium gas (>99.995% 

purity) is ordinarily used to shield the welding process since its ionisation potential and 

thermal conductivity are higher than other shielding gases, such as argon, which will inhibit 

the formation of plasma outside the keyhole. The use of helium shielding gas can therefore 

reduce the variation in the vaporisation pressure and increase keyhole stability/internal 

weld quality. However, this would not be applicable when welding with 1µm wavelength 

laser sources since the inverse Bremsstrahlung absorption is negligible.  

Katayama et al [1998] assessed the influence of using nitrogen as a shielding gas when CO2 

laser welding 5000 and 6000 series aluminium alloys. Under the correct combination of 

welding speed and focussed power density the output power of the laser could effectively be 

modulated, as a result of the cyclic formation of an attenuating plasma above the keyhole. 

Significantly, Katayama et al [1998] observed a reduction in porosity when utilising nitrogen 

shielding gas instead of helium under certain welding conditions, which was attributed to the 

keyhole being controllably collapsed before instabilities occurred. Nevertheless, a similar 

behaviour would not be expected when welding with 1 µm wavelength solid-state laser 

sources for the reason discussed above. Furthermore, titanium cannot be welded in a 

nitrogen atmosphere due to its affinity for light elements at temperatures exceeding 500°C. 

3.6.2 Directed Gas Jet 

Despite the reduction of porosity that can be achieved when utilising helium as a shielding 

gas during CO2 keyhole laser welding (for example; Caiazzo et al, 2004), keyhole fluctuations 

may still occur, resulting in weld defects [Seto, 1999]. Miyamoto et al [1985] reported that a 

jet of inert gas, directed towards the laser-material interaction point, could be utilised to 

further prevent the plasma formation above the keyhole when CO2 laser welding and produce 

weld beads with few defects. This approach has also been reported [Denney and Metzbower, 
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1989; Li et al, 1997] to be successful for reducing porosity when keyhole laser welding 

titanium alloys with a CO2 laser. 

The mechanisms for beam attenuation when welding with 1µm wavelength lasers are not 

related to ionisation and therefore shielding gases with particularly high ionisation potentials 

are not required. Nevertheless, a directed jet of gas has also been reported to reduce keyhole 

fluctuations and improve weld quality when welding with 1µm laser beams [Kamimuki et al, 

2002; Fabbro et al, 2006]. Typically, the jet of gas is directed towards the keyhole using a 

delivery tube which is in-line with and parallel to the welding direction. 

 

Figure 3-14. Schematic illustration of the position of the directed gas jet [Kamimuki et al, 

2002]. 

Kamimuki et al [2002] studied the effects of utilising a jet of argon directed towards the 

keyhole when Nd:YAG laser welding 10 mm thickness 304 stainless steel plates. Figure 3-14 

[Kamimuki et al, 2002] details the general position of the directed gas jet with respect to the 

keyhole laser welding process. Porosity and weld spatter could be significantly reduced by 

utilising the directed gas jet. This effect was attributed to the interaction with the gas jet and 

the melt pool which induced a flow of molten material conducive to the escape of porosity 

from the melt pool. This proposal was supported by high speed video observations which 

detailed an elongated opening at the top of the keyhole. Results were presented by Kamimuki 

et al [2002] assessing the influence of the positional parameters associated with the directed 

gas jet, and it was found there was an optimum position of the directed gas jet for reducing 

weld metal porosity, as indicated in Figure 3-15 [Kamimuki et al, 2002]. Monitoring of the 

optical signals emitted from the plume during welding process using a photodiode indicated 



Chapter 3   Literature Review; Part II: Keyhole Behaviour, and the Formation and Prevention of Porosity 
   

 

 

97 
 

that the plume exhibited a much more constant behaviour when the directed gas jet was 

applied. It is worth noting that these results were reported for partial penetration welds only. 

 

                     (a)                       (b)                       (c) 

Figure 3-15. Schematic illustration of the influence of the interaction between the directed 

gas jet and the welding process for different nozzle positions from; (a) central gas jet axis 

behind the keyhole, (b) central gas jet axis centred on the keyhole, (c) central gas jet axis in 

front of the keyhole [Kamimuki et al, 2002]. 

The influence of the directed gas jet on the keyhole and melt pool during continuous-wave 

Nd:YAG laser welding was modelled by Amara and Fabbro [2008]. Although the gas jet was 

pointing opposite the direction of travel, the results presented by Amara and Fabbro [2008] 

indicate that the gas jet produces a slightly wider keyhole opening but also creates a much 

more laminar flow in the melt pool which would encourage the escape of bubbles trapped in 

the melt pool.  

Recent publications [Hilton et al, 2007; Mueller et al, 2008] have shown that welds in 

titanium alloys with a high internal quality and good weld profile can be produced using 1 µm 

wavelength laser beams if a directed gas jet is utilised. Hilton et al [2007] used a 7 kW Yb-

fibre laser to produce butt welds in Ti-6Al-4V, in thicknesses up to 9.3 mm, with internal 

porosity contents lower than specified in internal aeroengine weld criteria and significantly 

lower than AWS D17.1 Class A. Mueller et al [2008] utilised a 5 kW Yb-fibre laser to weld two 

titanium alloys, up to 6.5 mm in thickness, to within the weld quality criteria specified by 

AWS D17.1 Class A. In both cases [Hilton et al, 2007; Mueller et al, 2008] an inert assist gas 

still had to be utilised to stabilise the welding process and produce high quality welds. 

However, in both cases, no details were given regarding the parameters of the directed gas 

jet. 
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3.6.3 Dual Focus Keyhole Laser Welding 

Dual focus forming optics allow manipulation of the foci separation, the foci orientation (i.e. 

in-line with the joint direction, transverse to it, and any angle in between), and the relative 

intensity distribution between the two focussed spots. Consequently, there is the potential for 

a wide variety of possible power density combinations, which allow the keyhole and melt 

pool shape to be manipulated. Researchers have reported (for example; Xie, 2002; Haboudou 

et al 2003; Hayashi et al, 2003) that keyhole laser welding with a dual focus laser beam can 

reduce weld metal porosity compared with a single spot arrangement for metallic materials 

other than titanium alloys.  

Gref et al [2003] used a 4 kW Nd:YAG laser to keyhole weld a 6000 series aluminium alloy 

and found that the distance between the two focal spots has an effect on the keyhole 

geometry and thus the stability of the keyhole and porosity formation in the weld metal. If the 

two focal spots were not far enough apart the process was unstable and much porosity was 

produced. By increasing the distance between the two focal spots (0.6 mm was found to be 

ideal), pores with diameters above 0.3 mm could be reduced, although the depth of 

penetration was also reduced. An equal split of the laser power between the two focal spots 

was found to be the most advantageous power ratio with respect to porosity formation. 

Haboudou et al [2003] also used a 4 kW Nd:YAG laser to weld aluminium allots with a dual 

focus configuration (aligned both parallel to the welding direction and perpendicular to the 

welding direction). It was noted that the use of the dual beam method could suppress 

porosity to a level of 2% volume fraction in AA5083 and 1% for A356. Analysis of the melt 

pool via a high speed camera by Haboudou et al [2003] confirmed that, the use of the dual 

spot welding technique stabilises the melt pool. Xie [2002] used a 6 kW dual beam CO2 laser 

split into two equal laser beams using a simple wedge mirror. It was reported that, porosity 

was substantially decreased using the dual-beam laser welding technique. Xie [2002] gave no 

quantitative data regarding porosity formation. 

In terms of utilising a dual focus keyhole laser welding technique for the prevention of 

porosity when joining titanium alloys, Coste et al [1999] investigated its effect on 4mm 

thickness Ti-6Al-4V for Nd:YAG laser welding (two 600µm diameter focal spots). No 

quantitative data was given regarding the amount of porosity in the weld, although it was 

commented that the dual focus technique can give an improved weld quality compared to a 

single focussed spot. 
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Hayashi et al [2002] also researched the effect of an in-line dual focus configuration for CO2 

laser welding of austenitic stainless steel SUS 304. Observation of the keyhole by an in situ X-

ray transmission method showed that the keyholes coalesced to form one large keyhole. It 

was suggested that this prevents the generation of bubbles and hence the formation of 

porosity; as a result of the larger keyhole being more resistant to process instabilities. High 

speed observation of the plasma behaviour above the keyhole during CO2 keyhole laser 

welding [Xie, 2002] suggested that there was less variation for the dual focus method 

compared to the single spot set-up. 

3.6.4 Modulated Keyhole Laser Welding 

Modulating the output power of a laser beam has previously been reported as a successful 

method of reducing weld metal porosity when welding ferrous materials and aluminium 

alloys (for example; Eberle and Richter, 1994; Matsunawa et al, 2003). Matsunawa et al 

[2003] used a modulated Nd:YAG laser to weld a 5000 series aluminium alloy. Powers 

ranging from 2.5 to 5.0 kW were utilised with a laser duty cycle of between 50 and 100%. It 

was shown that, at the same welding speed a modulated output (rectangular pulse) was 

capable of reducing weld metal porosity compared with a continuous wave CO2 laser. 

Kuo and Jeng [2005] reported that modulating the output power of an Nd:YAG laser reduced 

the resultant porosity levels when welding 3 mm thickness SUS 304L and Inconel 690 

compared with a continuous wave output power. The same effect has also been reported 

when CO2 laser welding aluminium alloy A5083 [Katayama et al, 2003]. A comparison of 

modulation amplitudes by Kawaguchi et al [2006] indicated that larger modulation 

amplitudes were more effective in reducing the occurrence of porosity when CO2 laser 

welding SM490C steel. A similar trend relating modulation amplitude to porosity content was 

also established when welding SUS 304L and Inconel 690 with a 1 µm laser beam [Kuo and 

Jeng, 2005]. 

Eberle and Richter [1994] carried out modulated-power Nd:YAG laser welding of Al-alloys, 

reporting that welds made with a 50 Hz square wave modulation were improved, but did not 

quantify their results or advance an improvement mechanism. Matsunawa and Katayama 

[2002] performed power modulated CO2 laser welding of AA5182 Al-alloy at 100 Hz. They 

observed a significant decrease in porosity when using a beam duty of 80% per cycle. They 

attributed the reduction in porosity as being due to pores entrapped in the melt pool 

generated by one laser pulse having a second chance to escape, when a part of the weld was 

re-melted by the subsequent pulse.  
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3.6.5 Magnetic Fields 

The application of magnetic fields during conventional arc welding has been studied by 

several researchers (for example; Willgoss, 1981), with the intention of inducing an 

electromagnetic force to modify the melt flow and influence the quality of the weld. The 

effects observed during arc welding are most likely a result of the magnetic field’s interaction 

with the arc current. However, the magneto-hydrodynamic forces should also be considered. 

Magneto-hydrodynamic forces are present in an electrically conducting fluid when it passes 

through a magnetic field. Ordinarily, the fluid is either a liquid (for example, the melt pool 

during arc welding metallic materials) or a plasma. An electric field is induced in the 

conductor as it moves through the magnetic field, according to Lenz’s law, which causes a 

Lorentz force to act on the fluid, affecting its motion. 

Recently, the effects of applying magnetic fields during Keyhole laser welding has been 

examined (for example; Kern et al, 2000; Vollertsen and Thomy, 2006). Kern et al [2000] first 

studied the effects on weld quality of applying magnetic fields during CO2 laser welding of C-

Mn steel StE 600 and AA6110. When applying transverse electromagnetic fields during 

welding of StE 600 they observed that the maximum welding speed before humping occurs 

could be significantly extended. The electromagnetic fields also provided beneficial effects on 

the process stability and the top bead appearance in both StE 600 and AA6110 [Kern et al, 

2000].  

Considering the potential mechanisms causing the observed effect on the weld quality, the 

magneto-hydrodynamic forces induced in the melt pool should not be neglected. However, 

the results presented by Kern et al [2000] indicate that the polarity of the magnetic field was 

found to be critical in positively affecting the welding process, which indicates that a net 

electric current must always flow in the same direction. Consequently, it would be expected 

that the forces were not solely magneto-hydrodynamic forces. Further experiments [Kern et 

al, 2000] revealed that an electric current, of the order of ~10 A, was present in the welding 

process without the aid of the magnetic field, a result of a thermoelectric voltage between the 

solidified metal and the melt pool. It is this current combined with the applied transverse 

magnetic field, which is thought influenced the melt flow in the experiments performed by 

Kern et al [2000] and improved process stability. 

Vollertsen and Thomy [2006] also performed studies on the influence on magnetic stirring 

during CO2 laser welding of aluminium alloys. Welding over a Al- Cu foil – Al sandwich 

allowed the effect of magnetic stirring to be assessed by performing EDX analysis on the 

resultant weld section and comparing the dilution of copper through the weld. It was 
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reported that the applied alternating magnetic field has a considerable effect on the dilution 

area and the homogeneity within this area [Vollertsen and Thomy, 2006]. 

Whilst no experiments have been performed assessing the influence of magnetic stirring of 

the melt pool on the formation of porosity in the weld metal, the results presented above 

indicate that magnetic fields can be utilised to influence the melt flow. Most likely, inducing a 

laminar flow in the melt pool using the methods reported by Kern et al [2000] would be more 

favourable than stirring of the melt pool [Vollertsen and Thomy, 2006] in preventing the 

formation of porosity. 

3.7 Summary, Project Aim and Project Objectives 

It is apparent from Section 2.4 that in order to achieve a weld quality that is suitable for 

aerospace applications then criteria relating to the visual appearance of the face and root of 

the weld, the geometry of the weld profile, and the occurrence of cracks and weld metal 

porosity must be met. Of these potential defects, the formation of porosity is of primary 

concern, since the remaining defects can be avoided through the adoption of rigorous 

workpiece preparation and inert gas shielding, and the utilisation of filler material. 

Hydrogen porosity in the weld will also be influenced by the workpiece preparation and inert 

gas shielding procedures. Nevertheless, the formation of porosity in the weld may still occur, 

as a result of keyhole instability. Critically, the stability of the keyhole is determined by the 

forces acting to maintain it and those acting to close it. For keyholes with a high Péclet 

number the forces generated from the absorption of the incident laser radiation and those 

present in the melt pool are heavily interdependent, and it is particularly difficult to achieve a 

quasi steady-state condition. 

The absorption of the incident laser radiation may be perturbed by the formation of a plasma 

or a plume exiting the keyhole. In the case of welding with a beam of adequate brightness and 

stand-off distance, the incident radiation may also be defocussed by a column of gas, situated 

between the workpiece and the focussing lens, which has regions of gradient refractive index. 

These perturbations may negatively influence the stability of the keyhole. Analysis of the gas 

contents, by mass spectroscopy, of pores formed when keyhole laser welding has indicated 

that it is constituted primarily of the shielding gas. The pressure inside the keyhole is such 

that the entrance of shielding gas into the vapour cavity is only possible if the ablation of the 

keyhole walls is perturbed, which will lead to the collapse of the keyhole, leading to keyhole 

collapse and the entrapment of shielding gas in the melt pool which becomes porosity on 

solidification.  
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Numerous potential methods for preventing the formation of weld metal porosity have been 

discussed, including; the shielding atmosphere, a directed gas jet, magnetic fields, dual focus 

laser welding and modulated laser welding. Despite the fact that the majority of the reported 

literature concerning ferrous metals and aluminium alloys, results can be inferred from these. 

A small number of papers have also been published regarding the prevention of porosity 

when keyhole laser welding titanium alloys. Quantitative comparison of these has not been 

possible since most results are stated qualitatively and not compared to a stated international 

standard. Nevertheless, porosity prevention methods have been developed for ferrous-metals 

and aluminium alloys and there is a significant knowledge gap relating to whether or not 

these can be transferred to titanium alloys. It has also been noted that there is little published 

data concerning the weld quality possible with the new generation of high brightness laser 

sources. 

As stated previously, the aim of this research project was to establish an understanding of the 

formation of weld metal porosity when keyhole laser welding titanium alloys with 1 µm 

wavelength laser sources and develop techniques which could prevent its formation. This aim is 

driven by the commercial reasons discussed in Chapter 11. 

Three potential methods for preventing the formation of porosity when welding titanium 

alloys with 1 µm wavelength laser beams have been identified from this chapter; specifically: 

an accurately positioned jet of inert gas directed at the laser-material interaction point; a 

modulated laser power; and, a dual focus laser beam. The primary advantage of these 

methods over others discussed in Section 3.6 is that they maintain the inherent flexibility of 

fibre delivered laser beams. Operating in a reduced pressure environment would give little 

advantage over electron beam welding techniques, whereas inducing an electromagnetic 

force in the melt pool could potentially limit the component geometries which could be 

processed. The first three objectives of this project were therefore: 

a. To determine whether an accurately positioned jet of inert gas directed at the laser-

material interaction point can be used for reducing weld metal porosity when welding 

titanium alloys relevant to the aerospace industry with an Nd:YAG laser. Furthermore, 

determine the influence of key process parameters on the resultant weld quality and the 

welding process. 

b. To determine whether a modulated laser power can be used for reducing weld metal 

porosity when welding titanium alloys relevant to the aerospace industry with an 

Nd:YAG laser. Furthermore, determine the influence of key process parameters on the 

resultant weld quality and the welding process. 
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c. To determine whether a dual focus laser beam can be used for reducing weld metal 

porosity when welding titanium alloys relevant to the aerospace industry with an 

Nd:YAG laser. Furthermore, determine the influence of key process parameters on the 

resultant weld quality and the welding process. 

Meeting these objectives would enable critical knowledge of the effects of these methods on 

the resulting weld quality to be gained. Relating the weld qualities to changes in welding 

process would develop a fundamental understanding of the porosity formation and 

prevention mechanisms.  

It was previously stated that a new generation of solid-state 1 µm wavelength laser sources, 

with excellent beam qualities, are emerging. The potential weld qualities available with these 

laser sources have not yet been established. Consequently, the fourth objective of this project 

was to: 

d. Establish the weld qualities possible when keyhole laser welding titanium alloys 

relevant to the aerospace industry with excellent beam quality 1 µm wavelength laser 

sources. 

In order to benchmark laser welding as a technique for producing near-net-shape titanium 

alloy components for the aerospace industry, the process, including the potential 

advancements resulting from this project, should be compared against competing processes. 

Therefore, the final objective of this was to: 

e. Compare the potential benefits for adopting keyhole laser welding as a production 

process for titanium aerospace components with the competing manufacturing 

processes. 
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Chapter 4  

Research Methodology 

4.1 Introduction 

In the previous chapter, the formation and subsequent behaviour of the keyhole were 

discussed in detail. The potential mechanisms which may act to close the keyhole, and 

thereby lead to the formation of porosity were highlighted. Potential porosity prevention 

techniques were identified by reviewing the literature concerning porosity formation during 

keyhole laser welding. Knowledge gaps relating to the use of these techniques when welding 

titanium alloys were identified. The objectives of this project, which are detailed in Section 

3.7, were borne from the identified knowledge gaps. Following on from the project’s 

objectives, it is the purpose of this chapter to: 

1. Outline the approach taken to achieve the objectives of this project. 

2. Provide sufficient details concerning equipment, experimental procedures and data 

analysis techniques so that the experiments may be repeated by another researcher. 

3. Justify why certain techniques were used and others were not. 

4. Detail the scope of research performed - to act as a precursor to the proceeding 

results chapters. 

Initially, the research approach is discussed. Details are then provided of the titanium sheets 

sourced for this investigation and an overview of the laser sources utilised to process these 

sheets is given. The calculated properties, including depth of focus and the focussing cone half 

angle etc, of all the focussed beams used during experimentation are given. The procedures 

relating to focal plane positioning, test piece clamping, shielding gas configuration and 

material preparation are then specified. Details of the analytical techniques employed, such 

as high speed video observations and optical emission spectroscopy, are given along with 
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information regarding the processing of the data with MATLAB® programs. Techniques used 

to evaluate the weld quality, in terms of discoloration, porosity content, and profile are 

stated, as well as those relating to characterisation of individual pores. Finally, the scope of 

research performed is clarified.  

4.2 Research Approach 

For achieving the project’s objectives, stated in Section 3.7, different research approaches 

existed. Three possible research approaches are ordinarily considered for materials 

processing research. 

1. The research could be focussed around the development of a model, numerical or 

analytical, which describes the process in sufficient detail that the process 

mechanisms and key process parameters can be understood. 

2. The research could be driven by experimental research. Using statistical techniques 

to identify key process parameters, and analytical techniques to develop a 

fundamental understanding of the process mechanisms and the effects of key process 

parameters. 

3. A considered combination of the above two techniques. 

The research approach taken in this project is one driven by experimental research. 

Experiments have been performed in a systematic manner to identify the effects of process 

parameters on the resultant formation of porosity in the weld metal. Where necessary, 

statistical techniques have been used to design and/or analyse experiments. The analysis of 

results has focussed around a quantitative assessment of weld metal porosity, although weld 

quality has also been assessed in terms of discoloration and geometric profile. After 

identification of the key process parameters, their effects on the process behaviour have been 

studied using analytical techniques. High speed video has enabled the dynamic behaviour of 

the keyhole, weldpool and vapour plume to be studied. The data was quantitatively analysed 

using specifically designed MATLAB programs. The physical and chemical properties of the 

vapour plume have also been studied using optical emission spectroscopy and scanning 

electron microscopy.  

The development of a model, capable of predicting the formation of porosity in the weld 

metal would also have allowed the objectives of this project to be met. The most feasible 

approach would have been numerical modelling of the laser welding process using an 

appropriate multiphysics software package, such as COMSOL, that enables the interactions 

between the four states of matter (solid, liquid, gas and plasma) to be determined. However, 
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the efforts required to develop such a model are not easily understood, and it is likely such 

efforts would be far outside the duration of this project (see for example the development of 

the laser cutting software, CALcut, by Dirk Petring). Furthermore, the validation of such a 

model would require development of the quantitative experimental techniques, such as those 

utilised in this project. For these reasons, a model driven research approach was not adopted 

for this project.  

A research approach driven by experimental research but supported with an analytical model 

was also considered for this project. However, an analytical model would be very unlikely to 

have the capability to predict the formation of porosity in the weld metal, due to the 

simplifications that must be made. 

Presented in the remainder of this chapter are the materials, equipment, experimental 

procedures and analytical techniques used throughout the experimental research performed 

in this project. As a result of the project’s objectives, defined in Section 3.7, the scope of 

experimental research performed in this project is best described as four separate work 

packages. The first three of these work packages relate to the research performed with 

Nd:YAG laser sources (i.e. using a directed jet of inert gas, a modulated laser power output, 

and a dual focus laser beam). The final work package is the assessment of using  excellent 

beam quality 1 µm wavelength laser beams for welding titanium alloys. 

4.3 Materials  

4.3.1 Titanium Sheets 

A variety of different titanium alloy grades are utilised in the aerospace industry, with the 

specific choice depending upon the component’s service requirements. It would be practically 

and economically unfeasible to perform experiments on numerous grades and thicknesses of 

titanium alloys within this project. Ti-6Al-4V is an α/β alloy which accounts for 60% of the 

total production of titanium alloys and is used in aeroengine components at temperatures 

below 315°C and throughout most airframe sections. Consequently, sheets of Ti-6Al-4V in 

thicknesses of 2.0, 3.25 and 7.0 mm were sourced in order to broaden the industrial 

relevance of this research. The majority of sheets were 3.25 mm thick. Sheets of 3.25 mm 

thickness Ti-2.5Cu, which is a near-α alloy and is utilised in airframe structures, were also 

obtained to provide an indication of the transferability of developed welding procedures 

between different grades of titanium alloys. The chemical compositions of the Ti-6Al-4V 
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sheets are detailed in Table 4-1. The chemical composition of the Ti-2.5Cu (also referred to as 

TA-21, MSRR8603 or IMI 230) is detailed in Table 4-2.  

Table 4-1. Chemical compositions of the Ti-6Al-4V sheets. 

Thickness 

Element, wt% (except where stated ppm) 

C Al Cu Fe H(ppm) N O V Ti 

2.0mm 0.008 6.34 <0.01 0.19 56 0.009 0.18 3.98 Bal. 

3.25mm 0.011 6.33 <0.01 0.20 61 0.007 0.16 3.83 Bal. 

7.0mm 0.012 6.33 <0.01 0.20 51 0.009 0.16 3.91 Bal. 

Table 4-2. Chemical composition of the Ti-2.5Cu sheets. 

Thickness 

Element, wt% (except where stated ppm) 

C Al Cu Fe H(ppm) N O V Ti 

3.25mm 0.006 <0.01 2.34 0.07 17 0.006 0.16 <0.01 Bal. 
 

Test pieces, of at least 100 mm in the welding direction (width), were guillotined from the 

sheets. Typically, the test pieces were 200-300 mm in length allowing numerous autogeneous 

melt runs to be performed on the same test piece. Test pieces of 7.0 mm thickness Ti-6Al-4V 

plate were cut to size with a band saw. Machining of the 7.0 mm test pieces allowed 4.0, 5.0 

and 6.0 mm thickness test pieces to also be utilised in certain experiments. 

4.3.2 Material Preparation 

The titanium plates were received in a chemically pickled condition after rolling. However, 

the elapsed time between pickling and welding was not controlled. No further chemical 

pickling was applied to any of the test pieces. Immediately prior to performing each melt run, 

the surfaces of individual test pieces were acetone degreased, cleaned with an abrasive paper 

and then degreased again with acetone. An identical procedure was performed when 

producing butt welds, except that the abutting edges of the test pieces were dry machined 

prior to welding. Butt welds were performed within 8 hours after machining. 

4.3.3 Filler Material 

Certain experiments were performed using wire as a filler material in order to correct 

geometrical defects in the weld profile. Ti-6Al-4V wire, manufactured by Daido Steel Co. Ltd., 

of 0.8 mm diameter was chosen. This wire was applied with a proprietary coating by Daido 

Steel Co. Ltd. which has been previously shown to aid the liquid-metal transfer when inert gas 
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arc welding [Pike, 2009]. Consequently, this filler material was preferred to an uncoated wire. 

Although not metallurgically matched to the Ti-2.5Cu titanium alloy, a small number of trials 

were performed with this combination.  

4.4 Laser Processing Equipment 

Five different solid-state laser sources were utilised for the laser processing of the titanium 

test pieces, all emitting electromagnetic radiation of approximately 1 µm wavelength, 

specifically: 

 GSI-Lumonics JK1002 Nd:YAG laser 

 Trumpf HL 4006 Nd:YAG laser 

 IPG YLS-1000 SM Yb-fibre laser 

 IPG YLR-4000 Yb-fibre laser 

 IPG YLS-5000 Yb-fibre laser 

The choice of laser sources was influenced by the thickness of titanium sheets sourced and 

the availability of high power solid-state lasers for experimental trials. The Sub-sections 4.4.1 

and 4.4.2 provide details of the Nd:YAG and Yb-fibre laser sources, and the properties of the 

focussed beams utilised in this research. It was deemed that the above selection of laser 

sources, combined with the available focussing optics, offered the potential for a wide 

variation in focussed beam properties suitable for processing the range of titanium sheets 

acquired. 

All the laser sources incorporated beam delivery through a flexible optical fibre to a process 

head containing the collimating and focussing optics. In all experiments, except those 

performed with the YLR-4000 Yb-fibre laser, the process head was mounted to a Kawasaki 6-

axis robot. The 6-axis robot was used to manipulate the incident angle of the focussed beam 

and accurately position the beam waist relative to the top surface of the workpiece. An 

Aerotech x-y manipulation table provided motion of the workpiece relative to the stationary 

processing head. In experimental work using the YLR-4000 Yb-fibre laser, the focussing head 

was manipulated with a Cartesian ‘z’ axis traversed over a stationary welding jig. 

4.4.1 Nd:YAG Laser Sources 

Table 4-3 details the characteristics of the JK1002 and HL4006 Nd:YAG laser sources utilised, 

and their focussed beam properties. A Trumpf processing head with a collimating optic of 

200 mm focal length was utilised for trials with both Nd:YAG laser sources. Focussing optics 
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of focal length 100 and 150 mm, and 150 and 200 mm were chosen for experimental work 

performed with the JK1002 and HL4006 Nd:YAG laser sources respectively. Additionally, a 

HIGHYAG process head with 200 mm focal length collimating optic, and 150 mm focal length 

focussing optic was used in combination with the HL4006 Nd:YAG laser source. The HIGHYAG 

process head incorporated a beam splitting module which allowed two focussed beams, of 

450 µm beam waists, to be produced from one collimated beam. 

Table 4-3. Characteristics of the GSI-Lumonics JK1002 and Trumpf HL 4006 Nd:YAG laser 

sources , and their focussed beam properties. 

Parameters Laser Source 

JK1002 HL4006 

Maximum output power, W 2000 4000 

Maximum Average power, W 1000 4000 

Modulation waveforms sine, square square 

Modulation frequency, Hz ≤1000 ≤500 

Delivery fibre diameter, µm 600 600 

Beam parameter product, mm.mrad 25.0 23.0 

Collimating optic focal length, mm 200 200 

Focussing optic focal length, mm 100 200 150 200 

Raw beam diameter, mm 33.3
2 

33.3
2 

30.6
6 

30.6
6 

Nominal beam waist, µm 300 600 450 600 

Focussing cone half angle, degrees 9.46 4.76 5.84 4.38 

Rayleigh length, mm 0.90 3.60 2.20 3.91 

Depth of Focus (5%), mm 0.57 2.29 1.40 2.49 

 

4.4.2 Yb-fibre Laser Sources 

Table 4-4 details the characteristics of the YLS-1000 SM, YLR-4000 and YLS-5000 Yb-fibre 

laser sources, and their focussed beam properties. An Optoskand process head with a 

collimating optic of 160 mm focal length was utilised for the experimental trials with the YLS-

1000SM and YLS-5000 Yb-fibre lasers. Three different focal length focussing optics (160, 250 

and 500 mm) allowed a number of different focussed beams to be employed. Research with 

the YLR-4000 Yb-fibre laser was performed at the Fraunhofer IWS, Dresden, Germany, with a 

process head assembled by Fraunhofer IWS. 
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Table 4-4. Characteristics of the IPG YLS-1000 SM, IPG YLR-4000 and IPG YLS-5000 Yb-fibre 

laser sources, and their focussed beam properties. 

Parameters Laser Source 

YLS-1000 SM YLR-4000 YLS-5000 

Maximum output power, W 1000 4000 5000 

Delivery fibre diameter, µm 17 50 150 

Beam parameter product, 
mm.mrad 

0.39 1.6 6.0 

Collimating optic focal length, 
mm 

160 120 160 

Focussing optic focal length, 
mm 

160 250 500 300 500 160 250 500 

Raw beam diameter, mm 14.68 14.68 14.68 15.35 15.35 25.59 25.59 25.59 

Nominal beam waist, µm 17 27 53 125 208 150 234 469 

Focussing cone half angle, 
degrees 

2.63 1.68 0.84 1.47 0.88 4.57 2.93 1.47 

Rayleigh length, mm 0.19 0.45 1.81 2.44 6.78 0.94 2.29 9.16 

Depth of Focus (5%), mm 0.12 0.29 1.15 1.56 4.32 0.60 1.46 5.83 

 

4.5 Procedures 

4.5.1 Beam Waist Position and Power Measurements 

The position of the beam waist with respect to the top surface of the test piece was measured 

by performing a series of low-power constant-energy laser beam releases on anodised 

aluminium sheet with the height of the process head increased/decreased between 

successive releases. The distance adjusted between successive releases was dependent upon 

the calculated Rayleigh length of the focussed beam. Measurement of the spot sizes 

(measured based on the removal of the black anodised layer) was performed with an optical 

microscope, allowing the beam waist position to be determined. A piece of processed 

anodised aluminium plate that had been used for determining the position of one of the beam 

waists used in this research is shown in Figure 4-1.  

 

Figure 4-1. Anodised aluminium plate which had been subjected to constant energy beam 

releases, with the beam waist positioned at different distances from the top surface of the 

plate. 
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Power measurements were performed before and after a series of experiments utilising the 

same laser source and optical set-up. The requested power was correlated with the measured 

power using a water-cooled power meter, manufactured by Ophir Optronics Ltd. An average 

of three readings was taken provided the values were in close agreement. Unless stated 

otherwise, the power reported in all subsequent experiments is the power measured at the 

workpiece (i.e. after all optical elements in the beam delivery system). 

4.5.2 Test Piece Clamping 

The same steel clamping jig, incorporating a copper efflux channel, was utilised for all 

experiments. Top-down clamps were utilised in all melt runs and butt welds, allowing the 

clamping pressure applied to the test piece to be adjusted in order to ensure it remained 

horizontal along its entire length. Additionally, transverse clamps were employed for butt 

welds to ensure the gap between the abutting edges remained tight and constant. Figure 4-2 

details the typical experimental set-up. 
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Figure 4-2. Typical experimental set-up, showing: the clamping jig; the shielding shoe; the 

process head; the air-knife; and, the bracket used for positioning of the directed gas jet. 

4.5.3 Shielding Gas 

As stated previously, titanium has a high affinity for light elements (such as H, N and O) at 

temperatures exceeding 500°C, and consequently the melt pool and cooling weld metal must 

be shielded with an inert gas to prevent discoloration and embrittlement of the weld bead. 

The weld face and root were shielded with argon gas, of 99.998% purity (BS EN ISO 14175), 

delivered through a trailing shield and a 10 mm2 section copper efflux channel respectively. 

The shielding gas was delivered through three 4.0 mm diameter orifices at different locations 

Clamping jig 

Trailing shield 

Air-knife 

Process head 

Directed gas 

jet 
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along the top of the trailing shield; 15 mm in front of the laser impingement point, and 83 and 

171 mm behind the laser impingement point. A flexible ‘skirting’ material attached to the 

trailing shield ensured a smooth interface with the workpiece and reduced the potential of air 

entering the shield. For the experiments performed with the JK1002, HL4006, YLS-1000SM 

and YLS-5000 laser sources, the trailing shield was supplied with 30 ℓmin-1 of argon gas 

(measured using Platon flow meters), directed to the three entry locations simultaneously, 

and 5 ℓmin-1 argon was supplied to the efflux channel. The shielding gas was not controlled in 

the same way when welding with the YLR-4000 Yb-fibre laser and, consequently, the flow 

rates were adjusted until bright silver weld face and root beads were achieved. The focussing 

optic was protected with a cover slide and a high pressure transverse air knife positioned 

between the lower surface of the focussing lens and the workpiece in all the experiments 

performed.  

4.5.4 Directed Gas Jet Positioning 

A directed jet of inert gas, aligned towards the laser beam/material interaction point, was 

utilised in one phase of experiments (detailed in Section 4.9). A dedicated bracket was 

manufactured to allow the positional parameters associated with the gas jet to be set to the 

accuracy required. A CMOS camera/monitor system, arranged co-axially with the laser beam 

allowed the impingement point of the gas jet with the workpiece to be positioned with an 

accuracy of <0.25 mm. A Platon flow meter allowed the flow rate of gas to be set with an 

accuracy of ±0.5 ℓmin-1. The generic set-up of the bracket is shown in Figure 4-2. Figure 4-3 

shows the co-axial camera system used to position the directed gas jet.  

 

Figure 4-3. Experimental set-up showing the positions of the robot, Aerotech table and 

controller, and the co-axial camera system used to position the directed gas jet. 
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4.5.5 Modulated Waveform Programming 

The JK1002 Nd:YAG laser is a super-modulated laser source and is specifically designed to 

deliver a modulated power output. The required output was achieved by selecting the 

frequency, peak power and one of two waveforms available (sine or square wave). Utilisation 

of a pulse-shape editor allowed a modulated power output to be emitted from the HL4006 

Nd:YAG laser. A minimum segment time of 1 ms was viable with the HL4006 Nd:YAG laser 

which allowed a maximum modulation frequency of 500 Hz. Example modulated waveforms 

are shown in Figure 4-4. 

 

Figure 4-4. Square and sine waveforms with average powers (Pavg) of 2.0 and 1kW 

respectively 

4.5.6 Dual Focus Configurations 

The HIGHYAG processing head utilised in this research incorporated a transmissive glass 

prism, which may intercept and refract a proportion of the collimated laser beam. 

Consequently, two foci can be produced on the surface of the workpiece. The orientation of 

the two foci with respect to the welding direction can be adjusted through turning the dual 

focus module through 0-90°, the separation between the two foci (0-1.45 mm), and the 

relative energy distribution between can be altered through adjustment of two micrometers. 
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Figure 4-5. Transverse and in-line foci geometry used in the dual focus research. 

4.5.7 Wire Feed 

For welding trials which utilised wire feed, either a Lincoln Electric Powerfeed or Planetics 

501 Saturn wire feeding unit was used. A camera/monitor system, arranged co-axially with 

the laser beam, allowed the wire tip to be accurately positioned (±0.25 mm) with respect to 

the laser impingement point. An identical bracket to that utilised for positioning of the 

directed gas jet allowed the positional parameters of the wire feeding unit to be accurately 

set. 

4.6 High Speed Video Observations 

In order to understand the effects of key process parameters on the keyhole laser welding 

process, high speed video observation (at up to 10 kHz imaging frequency) of the keyhole, 

melt pool and/or plume behaviour as performed during selected melt run trials. Observation 

of the process using a micro-focussed X-ray transmission system, such as that utilised by the 

Joining and Welding Research Institute (JWRI) in Osaka, Japan, could provide important 

information regarding the dynamic behaviour of the keyhole and melt pool through the 

thickness of the workpiece which cannot be obtained by high speed video observations. 

However, the design, manufacture and operation of such a system were not feasible within 

the timescales of this project. If necessary, the data generated from high speed video 

observations could then be related back to published findings of the JWRI to gain an 

understanding of the through thickness behaviour of the keyhole and melt pool. 

The typical high speed video equipment configuration is shown in Figure 4-6. In general, a 

high speed camera observed the vapour plume behaviour (camera with a horizontal 

inclination of ~5°) and a secondary high speed camera observed the keyhole/melt pool 

behaviour (camera with a horizontal inclination of 45°). Co-axial observation of the welding 

process was difficult to achieve at an acceptable frame rate and image quality. Alignment of 

welding direction

Transverse

In-line
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the camera through an optics branch on the processing heads was possible although the 

images were always defocussed and/or obscured as a result of the vapour plume emitted 

from the keyhole laser welding process. For this reason, only high speed observation with the 

cameras orientated in lateral positions was performed. Fused-silica glass windows were 

fitted to either side of the shielding shoe to ensure sufficient shielding of the process when 

performing high speed observations.  

Conventional high speed imaging can be utilised to observe the vapour plume behaviour 

process emissions with temporal filtering (i.e. shortened exposure times) ensuring that the 

images were not over exposed. However, conventional high speed imaging techniques cannot 

be used to image the keyhole/melt pool behaviour because of the high intensity broadband 

process emissions. Temporal filtering combined with spatial/wavelength filtering (i.e. a 

narrow bandpass interference filter) were used to effectively eliminate the process 

emissions. Low power laser sources, such as those detailed in Sub-section 4.6.2, synchronised 

with the high speed camera provided monochromatic illumination of the keyhole laser 

welding process. 

 

Figure 4-6. Typical configuration of the high speed video equipment. 

4.6.1 High Speed Cameras 

Achieving an acceptable image quality, such that the pictures could be both post-processed 

with the techniques detailed in Sub-section 4.6.3 and observed by eye, required a balance 

Plume 
observation 
camera 

Keyhole/ 
melt pool 
observation 
camera 

Illumination 
laser head 



Chapter 4 Research Methodology 

   
 

 

118 
 

between the imaging frequency and the image resolution. For the high speed cameras 

available during this project, this equilibrium occurred at an imaging frequency of 

approximately 10 kHz, which correlated well with the operational limits of the illumination 

laser sources. Observation of the vapour plume behaviour was performed in all cases with a 

MotionPro X4 camera (colour), which provided a resolution of 256 by 512 pixels at an 

imaging frequency of 10 kHz. A 150 mm focal length lens with 50 mm of extension tubes 

resulted in a field of view of approximately 3 mm by 5 mm. For the majority of keyhole/melt 

pool observations, a Photron SA-3 camera (monochrome) was utilised, which provided a 

resolution of 512 by 512 pixels at an imaging frequency of 10 kHz. A 150 mm focal length lens 

with ~400 mm of extension tubes gave a field of view of 2 mm by 2 mm. On a small number of 

occasions, observation of the keyhole/melt pool behaviour was performed with a Photron 

Fastcam MC-1 (monochrome) camera which offered a resolution of 512 by 512 pixels at an 

imaging frequency of 2 kHz. As before, a 150 mm focal length lens, but with no extension 

tubes, was used with this camera resulting in a field of view of 13 mm by 13 mm. 

4.6.2 Illumination Laser Sources 

To provide illumination of the keyhole/melt pool, three different pulsed laser sources were 

utilised at various points in this project; a LS20-50 copper vapour laser, a Cavilux® Smart 

diode laser, and a Cavilux® HF diode laser. For each laser source, the keyhole/melt pool 

observation camera was synchronised with the laser source by employing the camera as the 

master and the laser as the slave. A delayed signal sent from the master camera to the plume 

observation camera ensured the plume observation was not obscured by the illumination 

laser. 

The LS20-50 copper vapour laser, manufactured by Oxford Lasers Ltd., emitted laser light at a 

dominant frequency of 511 nm (secondary wavelength of 578nm), with an average power of 

20 W and pulse durations of ~25 ns. The laser light was delivered to a simple collimating 

head through a 10 m length optical fibre, allowing the light to be easily focussed and 

positioned. 

Both the Cavliux Smart and HF diode lasers, manufactured by Cavitar Ltd., emitted laser light 

at a wavelength of 810 nm and are therefore only compatible with monochrome high speed 

cameras (the spectral response of colour high speed cameras is much lower in the infra-red 

wavelength range than monochrome high speed cameras). The Cavilux HF diode laser 

provided a maximum output power of 500 W with a maximum duty cycle of 2%, whereas the 

Cavilux Smart gave an output power of 200 W and a maximum duty cycle of 1%. As with the 
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copper vapour laser, the laser light was delivered to a simple collimating head through an 

optical fibre, allowing the laser beam to be easily focussed and positioned. 

Table 4-5. Characteristics of the LS20-50 copper vapour laser (CVL), and the CAVITAR HF and 

CAVILUX Smart diode lasers. 

Characteristic 
Laser type 

LS20-50 CVL CAVITAR HF CAVILUX Smart 

Emission wavelength (nm) 511 and 578 810 810 

Average power (W) 20 500 200 

Pulse duration (ns) ~25 100-10,000 100-10,000 

Maximum frequency (kHz) 50 100 2 

Fibre delivered Yes Yes Yes 

 

4.6.3 Post Processing 

The observation of the vapour plume and keyhole/melt pool behaviour at a sampling rate of 

up to 10 kHz, generated a significant quantity of data. Observation of the videos provides 

qualitative information regarding the effect of parameters on key process mechanisms, such 

as spatter generation. However, the direct comparison of numerous image sequences by this 

method would be particularly time-consuming and would not provide a quantitative result. 

Previous research has reported that fluctuations in the vapour plume are directly related to 

keyhole instability which can cause weld metal porosity. In order to attain quantitative data, 

allowing numerous different welding conditions to be directly compared, two MATLAB 

programs were written to extract and subsequently analyse pixel intensity data from the 

images. 

Images of the vapour plume behaviour were acquired with the MotionPro X4 colour high 

camera, and consequently each pixel had an associated red, green and blue (RGB) value. A 

MATLAB program was written to extract the RGB values of individual pixels and convert 

them into a single value of intensity for each pixel. The resulting set of data, for each welding 

condition, contains α functions (i.e. number of pixels analysed per frame) with β discrete 

values (i.e. number of frames analysed). As detailed in Figure 4-7, at heights of 1.0, 2.0, 3.0, 

4.0 and 5.0 mm above the laser interaction point, an average intensity value was calculated 

from three pixels situated in the anticipated path of the incident laser radiation (one at each 

extreme of the beam, and one in the centre). This allows variations in the vapour plume 

intensity over the analysed height to be determined.   
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Figure 4-7. Pixel extraction points for vapour plume behaviour. Note: position of points in x-

axis is dependent upon the size of the focussed spot and the incident laser beams cone angle. 

Statistical analysis of this data provides only static information, such as the mean and 

standard deviation. For dynamic information, Fourier analysis can be utilised to ascertain the 

presence of periodic behaviours in the vapour plume behaviour. The discrete Fourier 

transform of the average values calculated at each height were computed using a fast Fourier 

transform. 212 (4096) frames were processed for each welding condition, corresponding to a 

welding time of 0.41 s and resulting in a resolution frequency of ~2.4 Hz. These values could 

then be correlated with the corresponding weld quality.  

If trends were not identified using this method, the mean pixel intensity (MPI) for each frame 

was calculated, using a MATLAB program, for a region of interest which approximated the 

position of the vapour plume. The resulting data set contains, for each welding condition, β 

discrete values (i.e. number of frames analysed) with each value being the MPI for a 

particular frame. Subsequently, the data could be analysed using statistical techniques or 

using a fast Fourier transform to calculate the discrete Fourier transform of the data and 

transform it into the frequency domain. These values could then be correlated with the 

corresponding weld quality and vapour plume analysis results. 

The methods utilised to analyse the keyhole behaviour from the generated keyhole/melt pool 

observations are analogous to those utilised for the vapour plume behaviour analysis 

described above.  

4.6.4 Optical Spectroscopy 

For measurement of metallic vapour spectra emitted during keyhole laser welding of 

titanium alloys with different process parameters, an Ocean Optics HR4000 spectrometer 
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was utilised. The spectrometer was calibrated such that it recorded in the range 410-950 nm 

with a resolution of 0.25 nm. A fibre optic cable, with a core diameter of 400 μm, was utilised 

to deliver the optical signal to the spectrometer. The Numerical Aperture (NA) of the optical 

fibre was 0.22±0.02 which corresponds to an acceptance angle of 12.7° (half-angle of the 

acceptance cone). The optical fibre was positioned such that a plume of 22.5 mm height (from 

the surface of the workpiece) could be sampled as detailed in Figure 4-8. A bandpass filter 

was utilised to protect the spectrometer from reflected Yb-fibre laser light (N.B. constant 

transmission through 410 to 950 nm range).  

 

Figure 4-8. Typical configuration/position of the spectrometer’s optical fibre end. 

The spectrometer was controlled using the OOIBase32 software package, whereby numerous 

sampling parameters could be controlled. In order to minimise experimental noise, each data 

set stored to hard disk is an average of three spectra. The dark spectrum (i.e. ambient light) 

was recorded and subtracted from the recorded spectra, and all spectra were corrected for 

electrical darkness. Spectra were recorded through a fused-silica glass window, which has the 

transmission spectrum detailed in Figure 4-9. A small correction factor was applied to each 

spectrum in order to account for the slight variation in transmission at different wavelengths. 

Spectrometer’s fibre end 



Chapter 4 Research Methodology 

   
 

 

122 
 

A spectrum was recorded to the hard disk approximately every 70 ms. The recorded spectra 

were analysed using a MATLAB program to determine the intensity of individual peaks. 

 

Figure 4-9. Transmission spectrum of the fused-silica glass window. 

4.6.5 Particle Sampling 

The condensed vapour plume particles, which were typically present on the weld face and/or 

root in varying quantities (dependent upon the process parameters) were collected from the 

surface of selected welded samples using a carbon impregnated double sided adhesive tape 

(to prevent the accumulation of an electrostatic charge), with the tape subsequently adhered 

to a metal stub. Typical particle sizes were determined using field emission gun (FEG) 

scanning electron microscopy (SEM). The elements contained in the vapour plume were 

determined using SEM with energy dispersive X-ray (EDX) analysis.  

4.7 Weld Quality Evaluation 

4.7.1 Discoloration 

All melt runs and butt welds were inspected visually on both the weld face and root for 

discoloration and are subsequently described according to the discoloration scale outlined in 

AWS D17.1:2001 and the guide shown in Figure 4-10 [Smith et al, 1999]. 
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Figure 4-10. TIG welds in commercially pure titanium sheet made with successively greater 

air contamination of the shielding gas [Smith et al, 1999]. 

4.7.2 Weld Metal Porosity 

Radiographic examination of all melt runs and butt welds was performed according to the 

standards outlined in BS EN 1435:1997, always using the same equipment and X-ray films of 

the highest resolution available. A minimum indication size of approximately 0.05 mm was 

visible on the radiographs, although any indications down at this detection limit had their 

sizes rounded up to 0.1 mm. Henceforth, all references to 0.1 mm diameter pores therefore 

include pores in the diameter range from the detection limit up to and including 0.1 mm. Pore 

counts were always carried out by the same individual on radiographs, over a 76 mm analysis 

length, as prescribed in AWS D17.1. The pore count is expressed as an accumulated length, 

defined by AWS D17.1 as the summation of all the pore diameters counted in the 76 mm 

analysis length. As surface breaking porosity was not detected in any of the melt runs or butt 

welds examined, all pore counts refer to subsurface, or internal, porosity.  

It is acknowledged that a radiographic examination of bead-on-plate melt runs and butt 

welds is not ideal as the pores are assumed to be spherical. Transverse weld sections have 

indicated that all the pores observed in the weld metal were spherical. However, in certain 

instances several pores were found ‘stacked’ on top of each other, with the smaller diameter 

pores in the stack not visible by conventional two dimensional radiography. For this reason, a 

small number of samples were analysed using a computed tomography instrument. A Metris 

X-tek 320 kV Custom Bay fitted with a 225 kV X-ray source and tungsten target, operating at 

115 kV and 95 µA was utilised. The resultant three dimensional radiographs had a resolution 

of 13.2 µm. 
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4.7.3 Profile 

For selected melt runs and butt welds, profile sections were taken transverse to the welding 

direction. Samples were cut out at positions which were representative of the entire weld 

length, mounted, ground, polished and etched using an aqueous solution of 10% HF, 25% 

HNO3 and 15% HCl. Macrographs of the section allowed accurate measurements of any weld 

defects at the weld face and/or root to be determined, as well information relating to the 

weld width at the face, root and centre of the weld. The three dimensional radiographs 

produced with the computed tomography instrument outlined above were utilised to confirm 

the consistency of the defects in the weld profile.  

4.8 Pore Characterisation 

Characterisation of the gas contents of specific pores would provide invaluable data in 

determining the source and, subsequently, the mechanisms of pore formation. It was detailed 

in Chapter 2 that the most likely sources of porosity when keyhole laser welding titanium 

alloys are from the rejection of hydrogen upon weld solidification and/or the entrapment of 

shielding gases. An ONH-2000 oxygen/nitrogen/hydrogen determinator, manufactured by 

ELTRA GMBH, was utilised to determine (by hot extraction) the difference in hydrogen 

content between a small number of welded samples containing porosity and their relevant 

parent materials. A small number of sectioned weld samples were also viewed using SEM to 

observe the internal structure of the pores. EDX analysis of the chemical composition of the 

pores internal walls was also performed to determine if any elements were present in a 

higher concentration than the parent material.  

4.9  Scope of Work 

From the previous Section it can be seen that a broad range of solid-state laser sources have 

been utilised during this research. Different process heads and process head configurations 

have also enabled focussed laser beams with different characteristics to be utilised.  

Furthermore, keyhole laser welding techniques such as welding with a directed gas jet, 

modulating the output of the laser power, and using a dual focus technique have been 

examined when welding with the Nd:YAG laser sources. For clarity, and as a pre-cursor to the 

following results chapters, it is therefore worth outlining the scope of work that has been 

performed. The experimental research can be efficiently segregated into four distinct phases, 

as previously indicated. 
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 Nd:YAG laser welding with a directed gas jet 

 Modulated Nd:YAG laser welding 

 Dual focus Nd:YAG laser welding 

 Welding with excellent beam quality 1 µm wavelength laser sources 

Table 4-6 provides details of the laser sources, optical configurations and titanium test pieces 

utilised for each of the phases of work. Also detailed in Table 4-7 are the weld quality 

evaluation and process characterisation techniques employed during the individual phases of 

work.
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 Table 4-6. Detailed scope of work performed, segregated into four distinct phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

† Fc is the focal length of the collimating lens, ‡ Ff is the focal length of the focussing lens. 

Laser source, optical configurations and techniques utilised 

 
JK1002 (600µm 

dia. optical fibre) 
HL 4006 (600µm 
dia. optical fibre) 

YLS-1000 SM (17µm 
dia. optical fibre) 

YLR-4000 (50µm 
dia. optical fibre) 

YLS-5000 (150µm 
dia. optical fibre) 

Titanium grades 
and thicknesses 

Nd:YAG laser 
welding with 
a directed gas 
jet 

- 

Trumpf process 
head with 200mm 
Fc† and 200mm Ff‡. 

Inert gas jet utilised. 

- - - 
3.25mm Ti-6Al-
4V, 3.25mm Ti-

2.5Cu. 

Modulated 
Nd:YAG laser 
welding 

GSI process head 
with 200mm Fc and 
100 and 200mm Ff. 

Sine and square 
waveforms. 

Trumpf process 
head with 200mm Fc 
and 200m Ff. Square 

waveforms. 

- - - 

2.0 and 3.25mm 
Ti-6Al-4V, 

3.25mm Ti-
2.5Cu. 

Dual focus 
Nd:YAG laser 
welding 

- 

HIGHYAG process 
head with 200mm Fc 
and 150mm Ff. Dual 
focussing module. 

- - - 
3.25mm Ti-6Al-
4V, 3.25mm Ti-

2.5Cu. 

Welding with 
excellent 
beam quality 
1 µm 
wavelength 
laser sources 

- - 

Optoskand process 
head with 160mm Fc 

and 160, 250 and 
500mm Ff. 

Custom process 
head with 

120mm Fc and 
300 and 500mm 

Ff. 

Optoskand process 
head with 160mm 

Fc and 160, 250 
and 500mm Ff. 

2.0, 3.25, 4.0, 
5.0, 6.0 and 

7.0mm Ti-6Al-
4V 

1
2

6
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Table 4-7. Process characterisation and weld quality evaluation techniques utilised for the four distinct phases of work. 

Process characterisation techniques Weld quality evaluation techniques 

 
Keyhole/melt 

pool 
observation 

Vapour plume 
observation 

Optical 
spectroscopy 

Particle 
sampling 

Discoloration 
Porosity 

Sectioning 
2D X-ray CT 

Nd:YAG laser 
welding with 
a directed 
gas jet 

YES - YES YES YES YES YES YES 

Modulated 
Nd:YAG laser 
welding 

YES YES - - YES YES YES YES 

Dual focus 
Nd:YAG laser 
welding 

YES YES - - YES YES YES YES 

Welding 
with 
excellent 
beam quality 
1 µm 
wavelength 
laser sources 

- - - - YES YES - YES 

1
2

7
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Chapter 5  

Nd:YAG Laser Welding with a 
Directed Gas Jet 

5.1 Introduction 

This journal paper was submitted to the Journal of Laser Applications on the 21st December 

2009 and accepted for publication on the 23rd May 2010. The paper was published on the 23rd 

July 2010 in the May 2010 edition, volume 22(2), of the Journal of Laser Applications. The 

research for the paper was performed with Dr Chris Allen, Dr Paul Hilton and Professor Lin 

Li. 

In terms of the co-author’s involvement, Dr Chris Allen assisted with specifying the range of 

variables that were considered for the initial welding trials. All the experimental works, 

including the statistical design and analysis of the experiments was performed by the author 

of this thesis. Dr Paul Hilton provided guidance and suggested utilisation of high speed video 

observation techniques to observe the effects of the directed gas jet on the melt pool. Optical 

spectroscopic analysis of the vapour plume behaviour was performed by the primary author 

of the thesis. Professor Lin Li gave guidance on the interpretation of the high speed video and 

spectroscopy results. 
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The increasing utilization of titanium alloys in the aerospace industry, a direct result of
socioeconomic pressures, has created the need for a production process which can produce high
quality near-net-shape titanium alloy components. Keyhole laser welding is a joining technology
which could be utilized for this requirement. In general, when laser welding titanium alloys, a jet of
inert gas, directed at the region of the laser beam/material interaction point is utilized to achieve the
weld quality required. A statistical study has been performed in order to determine the optimum
position and flow rate of this directed gas jet, with respect to reducing the weld metal porosity and
optimizing the weld profile, for autogeneous Nd:YAG laser welding of 3.25 mm thickness Ti-2.5Cu
and Ti-6Al-4V. As a result, butt welds have been reproducibly made with a quality that exceeds the
most stringent aerospace weld quality criteria. High speed imaging and spectroscopic analysis of the
welding process have revealed that, when correctly set-up, the directed inert gas jet disperses the
formation of excited metal vapor above the keyhole and also significantly changes the
hydrodynamic behavior of the weld pool. © 2010 Laser Institute of America.

Key words: laser, weld, titanium, Nd:YAG, porosity, aerospace

I. INTRODUCTION

The increasing utilization of titanium alloys in the aero-
space industry, a direct result of socioeconomic pressures,
has created the need for a production process which can pro-
duce high quality near-net-shape titanium alloy components.
Keyhole laser welding is a joining technology which could
be utilized, after appropriate classification of the resultant
weld qualities, for this requirement. As a result of their high
specific strength, corrosion resistance, fatigue resistance, and
their ability to operate at elevated temperatures, titanium al-
loys are already exploited throughout the aerospace industry.
The specific alloy employed depends upon the exact service
requirements of the component, but �, � /�, and � alloys are
all exploited.1 Current demand for titanium products in the
aerospace industry is primarily being driven by the commer-
cial sector, which is utilizing an increasing amount of tita-
nium alloys to achieve weight savings.2 The adoption of
large volumes of carbon fiber reinforced polymers �CFRPs�
into the fuselages of modern airframes is adding further to
the use of titanium alloys because of their galvanic compat-
ibility with graphite.

High quality components can be produced by forging
and subsequent machining. However, this process is labor
intensive and finished components can have uneconomical
buy-to-fly ratios. The production of near-net shape compo-
nents with a high integrity joining process could significantly

reduce material wastage and increase production rates. Key-
hole laser welding is a high energy density joining technol-
ogy that produces deep penetration welds with a relatively
low heat input when compared to inert gas arc welding. Fur-
thermore, it can be performed at atmospheric pressure and
the fiber optic delivery of near infrared laser beams, provides
increased flexibility when compared to CO2 laser systems
and other joining technologies. However, the formation of
porosity in the weld metal is of particular concern when laser
welding titanium alloys with a 1 �m wavelength laser
source. For high-performance, fatigue-sensitive components
whose weld profiles are dressed, pores can break the surface
of the dressed weld and reduce its fatigue resistance.3 A di-
rect result of this is the stringent weld quality criteria that are
applied to welded components in the aerospace industry.4

During fusion welding, the formation of porosity in the
weld metal can occur as a result of soluble gases dissolved in
the weldpool, such as hydrogen, being rejected upon solidi-
fication of the molten material. The presence of hydrogen in
the joint zone can be significantly reduced by shielding the
process with low moisture content shielding gas and a suit-
able preweld purge time. The hydrogen content in modern
titanium alloys is typically �150 ppm and is not of concern.
However, since TiO2 is hygroscopic it will adsorb moisture
from the atmosphere and a hydrated layer will form on the
surface of the parent material. Removal of this layer prior to
welding has been reported to reduce weld metal porosity in
laser welded titanium alloys.5a�Electronic mail: jon.blackburn@affiliate.twi.co.uk
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It has been reported that keyhole instability can lead to
metal vapor and/or inert shielding gases being trapped in the
weld metal.6 This occurs when the forces trying to hold the
keyhole open �i.e., vaporization pressure and radiation pres-
sure� are not in equilibrium with those trying to close it �i.e.,
surface tension, hydrostatic pressure, and hydrodynamic
pressure�.7 The vaporization pressure can be affected by a
vapor plume exiting the keyhole that attenuates the incident
laser radiation. The specific attenuation mechanism�s� de-
pends upon the wavelength and power density of the laser
beam, as well as the chemical properties of the workpiece.8

As the dynamic behavior of the vapor plume is not constant
the power density delivered to the workpiece can fluctuate.9

Consequently, changes in vaporization pressure can lead to
an unstable keyhole, periodic collapses of the keyhole, and
the generation of porosity in the weld metal.

When welding C-Mn steel with a CO2 laser it has been
demonstrated that the primary mechanisms responsible for
beam attenuation are absorption and defocusing of the laser
radiation through a partially ionized plasma with a gradient
refractive index.8 For CO2 laser welding of titanium alloys, it
has been reported that shielding of the weld pool with helium
gives a higher weld quality than when using argon shielding
gas.10 This is a result of the lower ionization potential of
argon, which promotes inverse Bremsstrahlung absorption of
the incident 10.6 �m laser radiation at lower irradiances
than when helium shielding is used. The use of helium
shielding gas can therefore reduce the variation in the vapor-
ization pressure and increase keyhole stability/internal weld
quality. Conversely, for Nd:YAG laser welding, of C-Mn
steels at least, beam attenuation takes place by absorption
and scattering of the laser light by a population of Fe nano-
particles ��50 nm in diameter�.8,11

Previous studies have shown that an inert gas jet, di-
rected toward the laser beam material interaction point, can
reduce the occurrence of weld metal porosity when CO2 or
Nd:YAG laser welding of 304 stainless steel.12–14 Further-
more, recent publications have reported that butt welds in
titanium alloys with a low level of weld metal porosity can
be produced using a near-infrared laser beam.4,15 In order to
achieve a low level of weld metal porosity, both Hilton et al.4

and Mueller et al.15 reported the use of an inert assist gas. No
information regarding the parameters associated with this as-
sist gas jet were disclosed by the authors. It is not known
whether these parameters have been optimized and what the
set-up tolerances are if a consistently low level of weld metal
porosity is to be achieved.

In this paper, the directed gas jet parameters for Nd:YAG
laser welding of 3.25-mm-thick titanium alloys have been
optimized, with respect to minimizing weld metal porosity
and achieving a favorable weld profile, using a parametric
approach. Furthermore, the interaction between the directed
gas jet and the welding process has been observed with a
high speed camera, and the vapor plume has been character-
ized.

II. EXPERIMENTAL PROCEDURES

A. Laser welding procedures

Experimental trials were performed on 3.25-mm-thick
Ti-2.5Cu and Ti-6Al-4V �Table I�. The materials had been
chemically pickled after rolling, although the time between
pickling and welding was not controlled. Immediately prior
to performing bead-on-plate �BOP� tests, the surfaces of test
pieces were cleaned with an abrasive paper and acetone
degreased. An identical procedure was followed when
performing butt welding trials, except that the abutting edges
of the test pieces were dry machined prior to abrading and
degreasing.

A Trumpf HL4006D Nd:YAG laser source was utilized
for all welding trials. Relevant information for the laser
source and its focused beam is shown in Table II. The
process head was attached to a Kawasaki JS30 robot, which
allowed accurate control of the focal plane position. The
average laser powers at the workpiece were measured using
a water cooled Ophir power meter. A measured power of 4.1
kW �at workpiece� was used in all trials. The focusing optic
was protected with a high pressure air-knife and a cover

TABLE II. Trumpf HL4006D Nd:YAG laser source information and fo-
cused beam properties.

Delivery fiber diameter, �m 600
Nominal beam parameter product, mm.mrad 23.2
Collimating lens focal length, mm 200
Focusing beam focal length, mm 200
Nominal beam diameter at waist position, �m 600
Calculated beam focusing angle, ° 4.42
Nominal power density �at beam waist for 1 kW�,
kW /mm2 3.54
Calculated Rayleigh length, mm �3.88
Calculated depth of focus �5%�, mm �2.47

TABLE I. Chemical compositions of the titanium alloys investigated.

Material

Element, wt% �except where stated ppm�

C Al Cu Fe H �ppm� N O V Ti

3.25 mm Ti-2.5Cu 0.006 �0.01 2.34 0.07 17 0.006 0.16 �0.01 Bal
3.25 mm Ti-6Al-4V 0.011 6.33 �0.01 0.20 61 0.007 0.16 3.83 Bal
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slide positioned between the lower surface of the focusing
lens and the workpiece. All BOP tests and butt welds were
performed in the 1 G position.

Since titanium reacts with oxygen and nitrogen at
relatively low temperatures ��500 °C�, a stainless steel
trailing shoe was used to prevent oxidation and
embrittlement of the weld metal. The trailing shield and a
10 mm2 cross-section copper efflux channel were both
supplied with a regulated supply of pureshield argon �gas
type I1 to BS EN 14175�.16 A directed jet of pureshield
argon was used in the majority of experiments. The
positional parameters of the argon jet could be manipulated

by the use of a dedicated bracket, and the flow rate of gas
was measured using a Platon flow meter. Figure 1 details the
experimental setup.

B. Parametric study

A three stage parametric study, consisting of preliminary
screening trials and two separate design of experiments
�DOE�, was carried out in order to determine the significant
processing variables and their optimum values with respect
to minimizing weld metal porosity �the response variable
investigated�. Initially, the effects of seven processing
variables on the weld metal porosity were evaluated. The
variables investigated are given in Table III. Evaluation of
the weld metal porosity and profile results from these
experiments allowed the range of variables examined in the
first DOE to be defined. A two-level factorial experiment
was created, using DESIGN-EXPERT software, for four process
variables �i.e., 24� associated with the directed gas jet. The
results from this DOE were subsequently used to define the
range of variables investigated in the second DOE—a
general factorial experiment used to determine the optimum
position of the directed gas jet and its operating windows if a
consistently low-level of weld metal porosity is to be
achieved.

C. Weld quality assessment

All BOP tests and butt welds were assessed visually for
oxidation. Radiographic examination was performed,
according to BS EN 1435:1997,17 to determine the weld
metal porosity content, which allowed indications
�0.05 mm in diameter to be detected. Selected samples
were also sectioned, transverse to the welding direction, at
representative positions, to assess their weld profile. Weld
profile and weld metal porosity results were compared to
typical aeroengine quality criteria, as reported previously by
the authors.4 Table IV details the weld quality criteria.

D. Process characterization

High speed video observations and optical spectroscopy
were performed during selected welding experiments. A
Photron Fastcam MC1 high speed video camera was utilized
to observe the behavior of the keyhole and the weld pool

Welding direction

Directed gas jet angle

Pipe internal
diameter

Nd:YAG laser beam

Y-axis Impingement distance (b)

(a)

FIG. 1. �a� Experimental setup and �b� schematic of the directed gas jet
configuration.

TABLE III. Process variables investigated.

Variables

Fixed value or range investigated

Initial trials First DOE Second DOE

Welding speed �mm/s� 10 to 100 67 67
Laser focal plane position �mm� +3 to �3 0 0
Directed gas type Argon, helium Argon Argon
Directed gas jet pipe internal diameter �mm� 1.4, 2.0, 4.0 4.0 4.0
Measured gas flow rate �l/min� 5 to 26 16, 20 16, 18, 19
Directed gas jet angle off plate surface �deg� 30 to 55 35, 55 35, 45, 55
Y-axis impingement point of gas jet axis �mm� 0 to 3.0 1.5, 2.5 1.5, 1.75, 2.0, 2.25
X-axis impingement point of gas jet axis �mm� 0 �0.5, 0.5 0
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during selected welding experiments. Temporal and spatial
filtering effectively eliminated the inherently bright process
emissions and a CAVILUX® Smart fiber-delivered diode
laser �808 nm� provided illumination. An Ocean Optics
HR4000 spectrometer was utilized to record the spectrum of
the vapor plume. The spectrometer was calibrated such that
it recorded in the range 400–1000 nm with a spatial
resolution of 0.3 nm and a sampling frequency of �30 Hz.
The spectrometer was controlled using the OOIBASE32

software package and the recorded data analyzed using
MATLAB. Furthermore, typical condensed vapor plume
particle sizes were determined using field emission gun
�FEG� scanning electron microscopy �SEM�. The elements
contained in the vapor plume were determined using
conventional SEM with energy dispersive x-ray �EDX�
analysis.

III. RESULTS AND DISCUSSIONS

A. Parametric study

1. Initial BOP tests

Autogeneous BOP tests were produced at welding
speeds between 10 and 100 mm/s, and at different focal
plane positions without using a directed gas jet. The weld
face and root of all the BOP tests were bright silver in color,
indicating that they had been adequately shielded. A welding
speed of 67 mm/s was the fastest welding speed that gave a
consistent fully penetrating weld, with a root wide enough
for practical application.

Numerous BOP tests were performed at a welding speed
of 67 mm/s with different combinations of parameters
shown in Table III. Not all permutations of the parameters
were performed. With certain parameter combinations, the
weld quality criteria stipulated in Table IV could be
achieved. In general, lower weld metal porosity results were
achieved with the laser beam focal plane positioned on the
surface of the workpiece, when using argon rather than
helium, and with a 4.0 mm internal diameter pipe.
Henceforth, these parameters were fixed to the above values.
A large variation in the weld metal porosity, both in terms of
the number and size of pores, was observed with relatively
small adjustments in the remaining parameters.

2. First design of experiments

In order to determine the significance of single factors as
well as two and three level factor interactions, on the weld
metal porosity, a two-level factorial experiment for four
variables �shown in Table III� was designed using the
DESIGN-EXPERT software. The variables examined were the
measured gas flow rate �variable A�, the jet angle off the
plate surface �variable B�, the impingement point of the jet
axis ahead of laser impingement point �variable C�, and the
impingement point of the jet axis with respect to either side
of the joint line �variable D�. The values of the variables
examined in this DOE were chosen based on the results of
the earlier trials. Experimental noise was reduced by
choosing parameter values that were expected to produce
fully penetrating BOP tests, performing three replications of
each parameter set, and randomization of the run order.

Radiographic evaluation of the weld metal porosity
revealed a range of contents depending on the gas jet
condition used, with 25 of the 48 BOP tests meeting the
internal weld quality criteria stipulated in Table IV. Using
the DESIGN-EXPERT software, statistically significant factors
were selected, including those supporting hierarchical terms.
An analysis of variance �ANOVA� model including these
terms was fitted to the natural logarithm of the response
variable. A single BOP test did not fit this model and was
excluded from further analysis. The t values of the factors,
and their interactions, are shown in Table V. The t values
suggest that variable C is several times more significant in
its effect on internal porosity content than the next most
significant factors, B and A. However, it should be noted that
these values are only relevant to the high-low range of
values used in the study, as chosen from initial screening
trials, whereby some parameters may have been closer to
their optimum settings than others.

All but one of the BOP tests made with a flow rate of
16� /min were silver colored in appearance, indicating
adequate shielding. Conversely, most of the BOP tests
produced with a flow rate of 20� /min were oxidized,
ranging from light straw to blue colored. This is a result of
turbulence in the shielding shoe and air being drawn in,
allowing the weld metal to oxidize. Fine spatter was

TABLE IV. Typical aeroengine weld quality criteria for 3.25-mm-thick titanium alloys. Derived from Hilton et al. �Ref. 4�.

Weld profile Subsurface porosity

Undercut �Ca� �mm� 0.16 Maximum dimension for a single pore, mm 1
Excess weld metal �R� �mm� 0.69 Accumulated length in 76 mm of weld, mm 1.7
Excess penetration �r� �mm� 0.69
Incompletely filled groove �Cr� �mm� 0.33
Root concavity �cr� �mm� 0.33
Shrinkage groove �ca� �mm� 0.33
Face weld width �L� �mm� �4.2
Minimum weld width �I0� �mm� 1.1� I0�2.1
Root weld width �I� �mm� 1.1� I�4.2
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invariably present on the underside of all the BOP tests but
could be much reduced on the top side if certain gas jet
conditions were used.

3. Second design of experiments

A general factorial parametric study was designed in
order to determine the optimum position of the gas jet and
the flow rate through it, with respect to minimizing weld
metal porosity content. The values used for these three
factors were chosen based on the results of the first DOE and
are given in Table III. The directed gas jet was pointed
directly at the joint line, to conserve symmetry. All other
parameters were fixed at the same values as used in the first
DOE. A total of 36 individual BOP tests were made. The
order in which these were made was again randomized. The
first DOE had indicated that results were sufficiently
reproducible to forgo repeats, particularly when a given
combination of parameters led to a low internal porosity
content weld. All BOP tests produced were fully penetrating
and bright silver in color.

Statistical analysis of the porosity formation data was
performed using the DESIGN-EXPERT software package. An
appropriate power transformation �in this case a natural log
transformation� was determined using a Box-Cox plot.
Factors to be included in the polynomial model were
selected using a backward selection with an Alpha out value
of 0.100. Further diagnostic graphical plots �e.g., normal plot
of studentized residuals, externally studentized results, and
the studentized residuals versus predicted values� were
utilized to check for any time-related variables unaccounted
for and any data points having an excessive influence and/or
leverage on the model. None of the data points were found
to be problematic. An ANOVA analysis was performed and a
calculated Model F-Value of 16.56 implied that the model
was significant. This analysis confirms that the statistically
significant terms in this model are; the jet angle off the plate
surface �B�, the impingement point of the jet axis ahead of
the laser impingement point �C�, and the measured gas flow
rate �A�. Additionally the factor BC was found to be

significant suggesting that the height above the keyhole at
which the gas jet passes is important. The terms AB, AC,
and any high order terms were determined to be statistically
insignificant. A cube plot of the three factor interactions is
shown in Fig. 2. The final equation in terms of the natural
log of the accumulated length of porosity and for the actual
factors is shown below;

Ln�Porosity� = + 3.68 − �0.126A� − �0.081B� − �2.064C�

+ �0.071BC� . �1�

It should be remembered that this equation is only valid
within the range of parameters investigated in the second
DOE. Comparison of the relative significances of factors
determined from the first and second DOEs revealed some
differences. In the first DOE, factor C was the most
significant. In the second DOE, factor C was only the second
most significant. However, in the second DOE a smaller
range for factor C had been chosen deliberately, this being
perceived as a parameter requiring tight control for
achievement of low internal porosity content. Therefore,

TABLE V. ANOVA table of weld metal porosity model from the first DOE.

Source � squares Df Mean square F value Prob 	F Significance

Model 27.21 11 2.47 63.43 �0.0001 Significant
A-flow rate 0.79 1 0.79 20.21 �0.0001 Significant
B-angle 1.38 1 1.38 35.49 �0.0001 Significant
C-Y offset 23.04 1 23.04 590.80 �0.0001 Significant
D-X offset 0.094 1 0.094 2.41 0.1299 Not significant
AB 0.031 1 0.031 0.79 0.3793 Not significant
AC 0.29 1 0.29 7.44 0.0099 Significant
BC 0.064 1 0.064 1.64 0.2088 Not significant
BD 0.40 1 0.40 10.15 0.0030 Significant
CD 0.018 1 0.018 0.45 0.5049 Not significant
ABC 0.46 1 0.46 11.91 0.0015 Significant
BCD 0.36 1 0.36 9.15 0.0046 Significant
Lack of fit 0.14 4 0.034 1.14 0.3553 Not significant
Pure error 0.92 31 0.030
Cor total 30.41 46

FIG. 2. Cube plot of the three factor interactions from the second DOE.
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using such a small range, the second DOE determined C to
be of less absolute significance than it actually was. A
similar situation also held true for factor A, in that both
DOEs determined this to be a less significant factor.
Nevertheless, the range of factor A was tightly controlled
deliberately in both DOEs, as the earlier screening trials had
indicated this was necessary.

B. Optimized weld quality

Butt welds in 3.25 mm thickness Ti-2.5Cu and Ti-6Al-
4V were made with the optimized directed gas jet conditions
determined from the second DOE. For comparison, butt
welds were also made under the same conditions without
using a directed gas jet. All welds were fully penetrating and
bright silver in color. Any spatter on the weld face was
avoided when using the directed gas jet. The porosity
content of the weld metal is shown in Fig. 3. The maximum
pore diameter of 0.4 mm was reduced to 0.1 mm by using
the optimized directed gas jet. The accumulated length of
porosity was reproducibly reduced in all cases to within
internal aeroengine standards. These results suggest that
these gas jet conditions can be used successfully when butt
welding both Ti-2.5Cu and Ti-6Al-4V, producing welds that
easily meet all the subsurface porosity criteria stipulated in
stringent aeroengine standards. Figure 4 details the cross
sections of butt welds made with and without a directed gas
jet in both Ti-2.5Cu and Ti-6Al-4V. The welds made with a
directed gas jet are free of top bead undercut, but both have
a small amount of root undercut, to a maximum defect depth
of 0.06 mm. Conversely, in the welds made without a
directed gas jet, an unacceptable level of both top bead and

root undercut is observed. Those BOP tests or butt welds
produced with an optimized directed gas jet met all of the
weld quality criteria stipulated in Table IV.

C. High speed video observation

Selected images from high speed observations of BOP
melt runs made in Ti-2.5Cu without and with an optimized
directed gas jet are shown in Fig. 5. Without the gas jet the
keyhole frequently collapses and much spatter is ejected
from the front of the keyhole. This is most likely the result
of the keyhole momentarily being covered over by molten
metal �keyhole collapse�, vapor pressure in the keyhole then
leading to the ejection of this overlying molten material.
This also explains the presence of top surface weld spatter,
undercut and underfill observed in welds made without the
argon gas jet. Conversely, when welding with a gas jet, the
keyhole is markedly more constant in size and quiescent,
and the keyhole does not collapse. Consequently, no top
bead weld spatter is observed, either in the high-speed video
or in the resulting welds. In addition to considerations of
spatter and weld profile, a more stable keyhole process will
reduce the tendency of the process itself to generate pores,
from collapses of the keyhole.

Differences in the length and width of the weldpool
when using a directed jet of gas can be seen by comparing
the images in Fig. 5. When using the gas jet the weld pool is
narrower ��0.9 mm� immediately behind where the laser
beam impinges on the material surface and is also longer
��10 mm with the gas jet and �8 mm without�. After
some lag, related to the low thermal conductivity of
titanium, the pool then widens out to a width similar to that
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FIG. 6. Emission spectra of the vapor plume when Nd:YAG laser welding
Ti-2.5Cu within the range 450–520 nm.
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FIG. 3. Weld metal porosity in Ti-2.5Cu BOP tests and butt welds and
Ti-6Al-4V butt welds—for optimized directed gas jet conditions and no
directed gas jet.
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FIG. 4. Weld profiles of Ti-6Al-4V and Ti-2.5Cu butt welds produced—for
optimized directed gas jet conditions and no directed gas jet.

FIG. 5. High speed images of Nd:YAG laser welding of Ti-2.5Cu without
�left� and with �right� an optimized a directed gas jet, 0.5 ms intervals.
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of the pool formed without using an Ar gas jet ��1.9 mm
with the gas jet and �2.2 mm without�. Weld pool
lengthening would prolong solidification time, in turn
allowing more time for any gas bubbles trapped in the
weldpool to escape prior to freezing of the weldpool.

D. Vapor plume analysis

An example of the emission spectrum taken when
Nd:YAG laser welding of Ti-2.5Cu is shown in Fig. 6. Only
TiI or ArI emission lines were detected in the data. The
atomic lines shown in Table VI were used to calculate the
TiI electron temperature, Te, using the equation below and
the Boltzmann plot method;18,19

ln�Imn
mn/gmAmn� = ln�Nhc/Z� − Em/kTe, �2�

where Imn is the spectral line intensity, 
mn is the wavelength
of the transition, gm is the statistical weight at level m, Amn is
the transition probability, N is the atomic number density, h
is Planck’s constant, c is the velocity of light, Em is the
energy at level m, and k is the Boltzmann constant. An
average vapor plume temperature of �3100 K was
calculated from the gradient of the Boltzmann plot.
According to the Saha equation, and assuming a quasi-
neutral vapor plume at atmospheric pressure, the
ionization fraction of a titanium vapor plume at this
temperature is �1% and the vapor plume can be
categorized as a negligibly ionized vapor. Therefore any
attenuation of the laser beam by inverse Bremsstrahlung
absorption and/or defocusing by a gradient of electron
density can be considered negligible.

Particle diameters collected from the condensated Ti-
2.5Cu vapor plume ranged from 30–60 nm, with the
majority being in the 40–50 nm range. The EDX analysis
indicates that both alloying elements from the parent
material �titanium and copper� were present in the vapor
plume. A degree of oxidation of one or both of these
elements may have also have taken place. Carbon was also

detected, which most likely originated from inadvertent
sampling of the adhesive film beneath the particles.

The Mie solution to Maxwell’s equations has been
applied to determine the extinction coefficient �combination
of scattering and absorption� of the laser radiation through
the vapor plume. The simplified solutions can be applied in
this case as the diameter of the spheres is less than 140 nm.20

For calculation purposes it is assumed that the particles are
all identical in size �either 40 or 50 nm� and composition and
that they are isotropic and optically linear. Additionally, the
particles have been assumed to be pure titanium. The
complex index of refraction for titanium at 1 �m is 3.8
+4.0i �Ref. 21�;

QABS = �− 8�r/
�Im�m2 − 1/m2 + 1� , �3�

QSCA = �8/3��2�r/
�4�m2 − 1/m2 + 2�2, �4�

where QABS and QSCA are the absorption and scattering
terms, r is the radius of the particles, and m is the
complex refractive index. The calculated absorption and
scattering efficiencies for vapor plumes containing either
40 or 50 nm particles are shown in Table VII.

It can be seen that the absorption efficiency is the
dominant beam attenuation mechanism at these particle sizes
and compositions. The effect of preventing this attenuation
by using the directed gas jet has been revealed through high
speed video observation. However, it should be noted that
these are only the efficiency values and in order to calculate
the actual attenuation values the particle density needs to be
calculated. These could be empirically determined through
observation of the vapor plume and measurement of the
vaporization mass loss.

IV. CONCLUSIONS

A three stage study was performed in order to minimize
weld metal porosity content, using a directed gas jet, in
Nd:YAG welding of 3.25-mm-thick Ti-2.5Cu and Ti-6Al-4V

TABLE VI. TiI emission lines used to calculate electron temperature �Ref. 18�.

Transition wavelength 
mn

�nm�
Transition probability Amn

�108 s−1� Statistical weight gm

Upper energy level Em

�eV�

453.324 8.83�10−1 11 3.5826549
468.192 2.35�10−2 11 2.6953807
498.173 6.60�10−1 13 3.336502
517.375 3.80�10−2 5 2.395745
521.039 3.57�10−2 9 2.4268626

TABLE VII. Calculated QABS and QSCA efficiencies.

Particle diameter
�nm� QABS QSCA QEXT

40 0.0486 5.2�10−4 0.049
50 0.061 1.3�10−3 0.062
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titanium alloys. Initial trials determined a suitable welding
speed for full penetration and outlined the influence of a
number of gas jet parameters on weld porosity content. Sub-
sequently, two DOEs were performed to optimize the di-
rected gas jet parameters with respect to minimizing internal
porosity content, as well as weld face and root undercut. The
working tolerances of parameters have been determined
which allow a weld quality to within internal aerospace stan-
dards to be reproducibly achieved.

Additionally, the vapor plume above the keyhole when
Nd:YAG laser welding Ti-2.5Cu has been characterized us-
ing optical spectroscopy and vapor plume sampling. The
plume temperature was calculated to be �3100 K. The main
mechanisms of Nd:YAG laser beam attenuation by the vapor
plume have been found to be primarily absorption but also
scattering of the incident laser light by a population of 30–60
nm titanium particles. High speed observation of the welding
process with and without an optimized directed gas jet has
revealed that it disperses the formation of the vapor plume
above the keyhole. This prevents fluctuations in the key-
hole’s vaporization pressure and hence increases keyhole sta-
bility thus reducing weld metal porosity.
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Chapter 6  

Modulated Nd:YAG Laser Welding 

6.1 Introduction 

This journal paper was submitted to Science and Technology of Welding and Joining on the 

14th April 2010 and accepted for publication on the 8th May 2010. The paper was published in 

July 2010 edition, volume 15(5) of the Science and Technology of Welding and Joining. The 

research for the paper was performed with Dr Chris Allen, Dr Paul Hilton, Professor Lin Li, Mr 

Mohammed Hoque and Dr Ali Khan. 

In terms of the co-author involvement Dr Chris Allen, Dr Paul Hilton and Professor Lin Li 

assisted with defining the scope of the laser parameters that were to be considered for this 

experiment, based on a literature review performed by the author of this thesis and the 

performance capabilities of the available laser sources. The experimental work, including the 

high speed video observations of the keyhole and the melt pool, were performed by the 

author of this thesis. Relating the porosity to the behaviour of the keyhole, melt pool and the 

vapour plume, using the high speed video observations, was the idea of the author of this 

thesis. Mr Mohammed Hoque aided with the MATLAB programming, and Dr Ali Khan with the 

Fast Fourier Analysis. 
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Modulated Nd : YAG laser welding of Ti–6Al–
4V

J. E. Blackburn*1, C. M. Allen2, P. A. Hilton2, L. Li1, M. I. Hoque1 and A. H. Khan2

Modulating the output of Nd : YAG laser sources has been evaluated as a technique for producing

high quality welds in titanium alloys. Welds with high internal quality were produced when a

square wave form was used with a modulation frequency >125 Hz and a duty cycle of 50%.

Undercut present in the weld profile can be reduced if the correct combination of modulation

amplitude and laser beam focal plane position are used. High speed observation and subsequent

Fourier analysis of the vapour plume and keyhole behaviour have shown that they both exhibit the

same periodic tendencies. With the correct parameters, an oscillating wave can be set up in the

weld pool, which appears to manipulate the vapour plume behaviour and hence reduce porosity

formation.

Keywords: Laser, Weld, Nd : YAG, Modulated, Titanium, Porosity

Introduction
There is an increasing utilisation of titanium alloys for high
performance aerospace applications, which has created the
need for a joining process capable of fabricating high
quality, near net shape titanium alloy components.
Replacing current manufacturing techniques, which are
machining and labour intensive, would reduce component
cost and increase productivity. Keyhole laser welding is a
fusion welding process, which produces high aspect ratio
welds (deep penetration and a relatively narrow weld bead)
with a relatively low heat input compared with arc welding
processes. Furthermore, laser welding can be performed
out of vacuum, and the fibre optic delivery of near infrared
solid state laser beams provides increased flexibility,
compared with other joining technologies. Consequently,
keyhole laser welding can be considered as a primary
candidate for the production of titanium alloy components
for aerospace applications.

The service requirements of high performance aero-
space components include high fatigue resistance, and
therefore, stringent quality standards exist.1 These
standards include criteria relating to weld profile and
internal quality, such as porosity and cracks. It has been
reported that weld metal porosity can easily form when
keyhole laser welding.2 This is of primary concern for
components whose weld profiles are dressed (machined
to remove geometric defects present in the weld profile),
as pores may then break the surface, act as stress
concentrators and reduce the fatigue resistance of the
weld.3

Weld metal porosity can be caused by soluble gases
dissolved in the weld pool, such as hydrogen, which are
rejected during weld pool solidification.4 Removal of the
TiO2 layer, which is hygroscopic and will adsorb
moisture from the atmosphere, from the parent material
before welding, has been reported to reduce weld metal
porosity when CO2 laser welding.5 Keyhole instability
has also been reported as a cause of weld metal porosity,
as it can lead to metal vapour and/or inert shielding
gases being trapped in the weld metal.2 Vaporisation
irregularities at the front keyhole wall2 and attenuation
of the incident laser radiation by a vapour plume6 are
two reported causes of keyhole instability.

Modulation of the output power is a reported method
of reducing weld metal porosity when laser welding
metallic materials other than titanium alloys.7–9 Kuo and
Jeng7 reported that modulating the output power of an
Nd : YAG laser reduced the resultant porosity levels when
welding 3?0 mm thick SUS 304L and Inconel 690,
compared with a continuous wave output power. The
same effect has also been reported when CO2 laser
welding A5083.8 A comparison of modulation amplitudes
by Kawaguchi et al.9 indicated that larger modulation
amplitudes were more effective in reducing the occurrence
of porosity when CO2 laser welding SM490C.

Modulating the output of 1 mm wavelength laser
sources has been evaluated here as a technique for
producing high quality welds in Ti–6Al–4V up to
3?25 mm in thickness. High speed observation of the
keyhole and vapour plume has been performed to
understand the effects of the modulated waveform on
the dynamic behaviour of the welding process.

Methodology

Materials
Trials were performed on 2?0 and 3?25 mm thick Ti–
6Al–4V. Immediately before performing bead on plate
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(BOP) tests, the surfaces of testpieces were cleaned with
an abrasive paper and acetone degreased. An identical
procedure was followed when performing butt welding
trials, except that the abutting edges of the testpieces
were dry machined before abrading and degreasing.
Welding was performed within 8 h of machining.

Equipment and experimental procedure
Two Nd : YAG laser sources were used in this investiga-
tion: a GSI Lumonics JK1002 Nd : YAG laser (GSI
Lumonics, GSI Group, Rugby, UK) and a TRUM-
PF HL4006D Nd : YAG laser (TRUMPF Laser,
Schramberg, Germany). Average laser powers at the
workpiece were measured using a watercooled Ophir
power meter. The incident laser radiation was always
delivered at an angle normal to the top surface of the
workpiece. A trailing gas shield (above the weld) and a
10 mm2 cross-section copper efflux channel (below the
weld) were supplied with 30 and 5 L min21 of argon gas
(99?998% purity) respectively to prevent oxidation of the
weld metal. Table 1 details the variables investigated.
Processing with the JK1002 laser was performed on
2?0 mm thick Ti–6Al–4V only, whereas processing with
the HL4006D laser was performed on 2?0 and 3?25 mm
thick Ti–6Al–4V. A laser duty cycle of 50% was utilised
in all experiments. To assess a large number of variables,
the majority of the trials were linear BOP tests. Selected
welding conditions were transferred to linear butt joints.
This approach has been utilised successfully in previous
research.1

High speed observations (10 kHz frequency) of the
keyhole and vapour plume were performed during

selected BOP tests in 3?25 mm thick Ti–6Al–4V. The
keyhole behaviour was observed using a Photron SA-3
monochrome camera. Illumination of the keyhole was
provided by a copper vapour laser. A MotionPro X4
colour camera was used to observe the behaviour of the
vapour plume exiting the keyhole.

The face and root of all BOP tests and butt welds were
visually assessed for discoloration. Samples were radio-
graphed, in accordance with BS EN 1435:1997, to
determine weld metal porosity content. Indications
>0?05 mm in diameter could be detected in the radio-
graphs. Pore counts were performed over a 76 mm weld
length, and the diameters of the pores in this length were
summed to determine the accumulated length of
porosity (presented in units of mm in the subsequent
graphs). Selected samples were sectioned transverse to
the welding direction at representative positions.

Results

Waveform and frequency
Figure 1a details the weld metal porosity contents of
BOP tests produced with different waveforms and
frequencies, in 2?0 mm thick Ti–6Al–4V using the
focused beam of the JK1002 laser. It can be seen that a
square waveform at frequencies >250 Hz reduced the
weld metal porosity considerably when compared with
BOP tests produced with a continuous wave output. In
contrast, the sinusoidal waveform increased the for-
mation of porosity in the weld metal compared with
continuous wave BOP tests. Weld metal porosity data

Table 1 Variables investigated in this project

Variable

Laser source

GSI JK1002 TRUMPF HL4006D

Average power Pavg, kW 1?0 2?0
Peak power Ppeak, kW 2?0 4, 3?5, 3?0, 2?5
Minimum power Pmin, kW 0 0, 0?5, 1?0, 1?5
Modulation amplitude Pamp5Ppeak2Pmin, kW 2?0 1?0, 2?0, 3?0, 4?0
Modulation waveform Sinusoidal, square square
Frequency Pfreq, Hz 100, 250, 500 10, 25, 50, 125, 250, 500
Focal plane position, mm 0 23, 0, z3
Beam waists, mm 300, 600 600

1 Porosity content of BOP tests made in a 2?0 mm thick Ti–6Al–4V with JK1002 laser (Pavg51?0 kW, Pamp52?0 kW and

Ppeak52?0 kW) and b 2?0 and 3?25 mm thick Ti–6Al–4V with square waveform from HL4006D laser (Pavg52?0 kW,

Pamp54?0 kW and Ppeak54?0 kW)
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of BOP tests produced in 2?0 and 3?25 mm thick Ti–
6Al–4V using the HL4006D laser is shown in Fig. 1b.
Fully penetrating and stable welding speeds of 33 and
20 mm s21 were determined, through continuous wave
experiments, for the 2?0 and 3?25 mm thick Ti–6Al–4V
respectively. A square waveform with a modulation
frequency >125 Hz was a successful method of
reducing porosity in titanium alloys up to 3?25 mm
thickness. The majority of the pores observed in the
radiographs of those BOP tests produced with a
square waveform and a modulation frequency
>125 Hz were (0?1 mm in diameter and evenly
distributed throughout the weld length. Transverse
cross-sections of BOP tests produced in 3?25 mm thick
Ti–6Al–4V at square wave modulation frequencies of
125, 250 and 500 Hz are shown in Fig. 2. Varying
amounts of continuous undercut were present at the
weld face and/or root on the BOP tests produced with
a modulated output.

Butt welds were produced in 2?0 and 3?25 mm thick
Ti–6Al–4V, with parameters developed from BOP tests.
The results in Fig. 3 suggest that the conditions
developed through BOP tests are transferable to the
butt joint configuration. Porosity is significantly reduced
when compared with continuous wave butt welds
produced with the same energy input. However, as was
observed in the BOP tests, the welds produced with a
modulated waveform are unacceptably undercut at the
weld face and/or root.

Modulation amplitude and focal plane position
All further experiments were performed on 3?25 mm
thick Ti–6Al–4V using the HL4006D laser. Modulation
amplitudes in the range of 1?0–4?0 kW were considered,
for a constant average power and welding speed of
2?0 kW and 20 mm s21 respectively. Figure 4a shows
the effect of using different modulation amplitudes on
the weld metal porosity content. In general, BOP tests

a b

c d

a continuous wave (face undercut50?10 mm; root undercut5none); b 125 Hz (face undercut50?20 mm; root under-
cut50?09 mm); c 250 Hz (face undercut50?08 mm;; root undercut50?26 mm); d 500 Hz (face undercut50?11 mm;; root
undercut50?12 mm)

2 Weld profiles of BOP tests made in 3?25 mm thick Ti–6Al–4V with HL4006D laser (Pavg52?0 kW and Pamp54?0 kW) at

different frequencies

3 Weld metal porosity and weld profile results for butt welds produced in a 2?0 mm Ti–6Al–4V with JK1002 laser, b

2?0 mm Ti–6Al–4V with HL4006D laser and c 3?25 mm Ti–6Al–4V with HL4006D laser
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produced with a modulation amplitude of either 3?0 or
4?0 kW had particularly low levels of weld metal
porosity (,1?0 mm accumulated length). Modulating
the output of the Nd : YAG laser with amplitudes of
either 1?0 or 2?0 kW reduced the weld metal porosity
content compared with BOP tests produced with a
continuous wave output but not as significantly as the
higher modulation amplitudes. Corresponding weld
profiles are shown in Fig. 5. At higher modulation
amplitudes, the amount of continuous undercut at the
weld face and root increased.

The effect of defocusing the laser beam on internal
weld metal porosity is shown in Fig. 4b for square
waveform modulation frequencies in the range of 125–
500 Hz with a 2?0 kW average power. A ¡3?0 mm focal
plane shift was examined, which corresponds to a beam
width of ,750 mm at the workpiece surface. In contrast
with the other parameters investigated, a ¡3?0 mm shift

in the focal plane position had a relatively small effect
on the weld metal porosity content and the weld profile.
However, it can be seen from Fig. 6 that when
combining a ¡3?0 mm shift in the focal plane position
with a modulation amplitude of 3?0 kW, at a modula-
tion frequency of 125 Hz, the undercut at the weld root
can be eliminated while still achieving low levels of weld
metal porosity. Approximately 0?1 mm of continuous
undercut at the weld face is still present.

Vapour plume behaviour
A significantly large amount of data was generated from
the high speed observations of the vapour plume, which
complicated a straightforward comparison of the
vapour plume behaviours during different welding
conditions. A MATLAB program was used to extract
the red, green and blue values of individual pixels and

4 Weld metal porosity of BOP tests produced with Pavg52?0 kW and a Pfreq5500 Hz, focal plane position of 0 mm and

Pamp51?0–4?0 kW, b Pamp54?0 kW, Pfreq5125–500 Hz and focal plane positions of 23?0, 0 and z3?0 mm

a cb d

e gf h

5 Profiles of BOP tests produced in 3?25 mm thick Ti–6Al–4V with Pfreq5500 Hz, Pavg52?0 kW and Pamp of a 1?0 kW (face

undercut50?06 mm; root undercut5none), b 2?0 kW (face undercut50?13 mm; root undercut50?09 mm), c 3?0 kW (face

undercut50?11 mm; root undercut50?12 mm) and d 4?0 kW (face undercut50?11 mm; root undercut50?14 mm). BOP

tests produced with Pfreq5125 Hz, Pamp54?0 kW and focal plane positions of e 23?0 mm (face undercut50?14 mm; root

undercut50?16 mm) and f z3?0 mm (face undercut50?13 mm; root undercut50?09 mm). BOP tests produced with

Pfreq5500 Hz, Pamp54?0 kW and focal plane positions of g 23?0 mm (face undercut50?18 mm; root undercut50?15 mm)

and h z3?0 mm (face undercut50?18 mm; root undercut50?18 mm)
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convert them into a single value of intensity for each
pixel in every frame. Statistical analysis of these data
provides only static information, such as the standard
deviation. Previous studies have reported that dynamic
fluctuations in the vapour plume are directly related to
keyhole instability, which can cause weld metal poros-
ity.10,11 Therefore, Fourier analysis of these data sets
was performed to ascertain the presence of periodic
fluctuations in the vapour plume behaviours and
determine if this correlates with weld metal porosity.
At heights of 1?0–5?0 mm above the laser interaction
point, an average intensity value was calculated from
three pixels situated in the anticipated path of the laser
radiation. The discrete Fourier transform of the average
values was calculated using a fast Fourier transform. A
total of 212 (4096) frames were processed for each
welding condition, resulting in a resolution frequency of
,2?4 Hz. Comparing the frequency spectra from
different heights for a given welding condition revealed
that nominally identical frequency spectrums were
produced at all the heights. Therefore, only the
Fourier analyses performed at a height of 2?0 mm are
detailed here.

Figure 7 details the frequency spectra calculated from
five different modulated welding conditions, their weld
metal porosity contents being shown in Fig. 1b or 4a.
The frequency spectrum calculated from a 2?0 kW
continuous wave welding condition (Fig. 7a) contains
no dominant frequencies, indicating a noisy signal with
no periodic behaviour. In contrast, when welding with a
250 Hz modulation frequency and 4?0 kW amplitude,
numerous peaks are observed in the frequency spectrum
(Fig. 7b). A fundamental frequency of 241?7 Hz (near
the modulation frequency) was calculated, and the
second, third and fifth harmonics also have amplitudes
similar to this fundamental frequency. Up to the 11th
harmonic frequency are visible in the frequency spec-
trum but with decreasing amplitudes. Figure 7c details
the frequency spectrum produced when the output
power is modulated at 50 Hz and 4 kW amplitude. A
fundamental frequency of 48?8 Hz is present, again
approximately matching the laser beam modulation
frequency. Also present in the frequency spectrum are
relatively small peaks at frequencies of 97?7 and
144?0 Hz, indicating little periodic behaviour present
in the vapour plume that does not match the modulation
frequency.

Figure 7d and e shows the calculated frequency
spectrums of two modulated welding conditions
(500 Hz modulation frequency), differing only by the
modulation amplitudes of 1?0 and 3?0 kW respectively.

The frequency spectrum calculated for a modulation
amplitude of 1?0 kW is very similar to that produced
with a continuous wave output. However, numerous
peaks are found in the spectrum if the modulation
amplitude is increased to 3?0 kW: a fundamental
frequency (478?5 Hz) and second to sixth harmonics.
The spectrum displays similar trends to that produced
with a 250 Hz modulated output power and a modula-
tion amplitude of 4?0 kW. Both of these welding
conditions gave very low weld metal porosity contents.

Several of the periodic behaviours indicated from the
Fourier analysis can be observed in the high speed
videos. Figure 8 details the typical behaviour of the
vapour plume when welding with a modulation fre-
quency of 250 Hz and 4 kW amplitude. A 2 ms duration
(the laser on time) is shown. Initially, a relatively intense

a b

6 Weld profiles of BOP tests produced in 3?25 mm thick Ti–6Al–4V with Pamp of 3?0 kW, Pfreq of 125 Hz and focal plane

positions of a z3?0 mm (face undercut50?08 mm; root undercut5none; porosity51?3 mm) and b 23?0 mm (face under-

cut50?13 mm; root undercut5none; porosity50?8 mm)

7 Frequency spectra of vapour plume behaviour for a

2?0 kW continuous wave, b Pfreq5250 Hz, Pamp54?0 kW

and Pavg52?0 kW, c Pfreq550 Hz, Pamp54?0 kW and

Pavg52?0 kW, d Pfreq5500 Hz, Pamp51?0 kW and Pavg5

2?0 kW and e Pfreq5500 Hz, Pamp53?0 kW and Pavg5

2?0 kW. Note different y-axis scales
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vapour plume is emitted in a direction normal to the
laser beam, for ,0?2 ms. This vapour plume then
disperses over ,0?2 ms, before a relatively weak vapour
plume is emitted towards the weld pool for ,1?0 ms. A
sudden change in direction of the vapour plume is then
observed, as the vapour plume is briefly emitted for
,0?3 ms towards the leading edge of the process, before
dispersing. No vapour plume is then observed until the
laser power is turned back on and this cyclic process is
repeated, frames 2?0–4?0 ms (not shown). Similar
vapour plume behaviour is observed when welding with
a modulation frequency of 500 Hz and amplitude of 3?0
or 4?0 kW. In contrast, the behaviour of the vapour
plume during the laser on time of a 10 ms pulse (i.e.
50 Hz modulation frequency) appears random and is
similar to that of one produced with a continuous wave
output power or with modulation amplitude of
(1?0 kW.

Keyhole and weld pool behaviour
Fourier analysis of pixels in the keyhole region was
performed with methods analogous to those described
previously. The resulting frequency spectrum produced
for a 2?0 kW continuous wave welding condition
consisted of noise, as found when analysing the vapour
plume behaviour. This suggests that there was no
periodic behaviour present in the keyhole observations.
However, what is apparent from high speed observa-
tions is that the process is particularly unstable, and the
keyhole frequently collapses. A particularly unstable
keyhole was also observed when welding with those
parameters used for Fig. 7c and d (i.e. resulting in high
levels of weld metal porosity).

The keyhole frequency spectra of those welding
conditions, which resulted in low levels of weld metal
porosity, had harmonic trends very similar to those
shown in Fig. 7b and e. However, only the first four
harmonic frequencies had significant amplitudes.
When welding with modulation frequencies >125 Hz
and amplitudes >3?0 kW, no uncontrolled keyhole
collapses were observed. Keyhole collapses were
observed, but this was due to the fact that minimum
power in the waveform had insufficient energy to
maintain the keyhole open. A minimum of 1?0 kW was
required to maintain a keyhole at the welding speed
used. It was noted from the high speed video that,
under these same combinations of process parameters,
a periodic oscillation was introduced into the weld
pool. Weld pool oscillations were observed in the high

speed videos of those welds produced with a modula-
tion frequency >125 Hz and modulation amplitude
>3?0 kW.

Discussion
The weld quality results shown above indicate that full
penetration welds with low levels of weld metal porosity
can be produced in Ti–6Al–4V up to 3?25 mm in
thickness with the modulated output of an Nd : YAG
laser. These levels of weld metal porosity meet the
stringent porosity criteria stipulated in typical aero-
engine weld quality standards.1 A key to achieving an
excellent internal weld quality is the appropriate choice
of waveform, modulation frequency and modulation
amplitude.

In the experimental results shown in Fig. 2a, the
weld metal porosity contents of BOP tests made using
a square waveform were substantially less than those
produced with a sinusoidal waveform. Eberle and
Richter12 established a similar result when welding
1?0–3?0 mm thick aluminium alloys with a 2?0 kW
Nd : YAG laser. They reported that welds made using
square waveforms contained less weld metal poro-
sity than those made with triangular or sinusoidal
waveforms with a 50 Hz modulation frequency. Further
studies are required to understand the importance
of waveform since there are a large number of
permutations.

At modulation frequencies >125 Hz, BOP melt runs
and butt welds can be produced with excellent internal
qualities (,1?0 mm accumulated length) when using a
square waveform. However, when utilising lower mod-
ulation frequencies, such as 50 Hz, relatively large
amounts of porosity (.20 mm accumulated length) are
found in the weld metal. The laser duty cycle was fixed at
50%, and hence, a decrease in modulation frequency
resulted in a proportionate increase in the pulse width.
As seen from Fig. 7, pulse widths (4 ms (i.e. modula-
tion frequencies >125 Hz) combined with modulation
amplitudes >3?0 kW resulted in a periodic vapour
plume behaviour, which was observed to have relatively
little activity in the path of the incident laser radiation
(Fig. 8). A relatively stable keyhole is also observed if
these welding conditions were adopted, with the same
periodic tendencies as those observed in the vapour
plume being detected in the keyhole behaviour by
Fourier analysis (see section ‘Keyhole and weld pool
behaviour’). However, at pulse widths .4 ms or at

8 Behaviour of vapour plume during 2?0 ms laser on time as observed when welding with Pfreq5250 Hz, Pavg52?0 kW

and Pamp54?0 kW: positions of front keyhole wall (FKW) and weld pool are indicated in diagram on right hand side
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modulation amplitudes ,3?0 kW, the vapour plume
behaviour did not appear to be periodic in nature, and
significant plume activity in the path of the incident laser
radiation was observed. The random keyhole instabil-
ities that occur in these cases are indicated by the
calculated frequency spectrums of the vapour plume and
keyhole behaviour, which consisted primarily of noise.
In terms of the importance of pulse width, Shimoksu et
al.13 reported a similar plume behaviour when Nd : YAG
laser welding of SUS 304L and stated that, after laser
pulses with a beam on time in excess of 5 ms, the plume
began to re-emerge from the top of the keyhole, the
keyhole began to destabilise and gas bubbles were
introduced into the weld pool.

The principal difference, as observed from the high
speed video observations of the keyhole between the two
groups of conditions discussed above, is the presence of
a keyhole that opens and closes on a regular basis, such
that an oscillating wave is created in the weld pool.
From the high speed video evidence, it appears that this
wave acts to manipulate the ejection angle of the vapour
plume. This is supported by the correlating periodic
behaviours calculated from the Fourier analysis of the
vapour plume and keyhole observations. The shifting
ejection angle will reduce the attenuation of the incident
laser radiation by the vapour plume and ensure that a
constant power is delivered to the workpiece (during the
laser on time). It is thought that the wave motion will
also aid the escape of the gas bubbles in the weld pool.
Kuo and Jeng7 suggested that the laser pulse agitated the
molten metal and caused bubbles to float to the surface
of the weld pool, decreasing the porosity.

When a modulation amplitude of ,3?0 kW is utilised,
the minimum power is sufficient to maintain a keyhole
of some depth, and as a result, an oscillating wave is not
established in the weld pool. At increased pulse
durations, the repetition rate of the keyhole opening/
closing is not sufficient enough to establish a standing
wave. Furthermore, instabilities similar to those
observed when welding with a continuous wave output
power are observed. Kuo and Jeng7 utilised a 2?5 kW
Nd : YAG laser to weld SUS 304L and Inconel 690 at an
average power of 1700 W, a duty cycle of 50% and a
frequency of 100 Hz. High modulation amplitude values
resulted in low levels of weld metal porosity compared
with lower modulation amplitudes or continuous wave
results.

The production of butt welds with very low levels of
weld metal porosity is likely to be insignificant if stress
concentrating defects, such as undercut, are present in
the weld profile. In the work reported here, it has been
shown that undercut at the weld root can be eliminated
through the adoption of smaller modulation amplitudes
and a defocused beam. However, continuous undercut is
still present at the weld face, which is of concern for
fatigue sensitive components. Two possible approaches
for eliminating the undercut at the weld face exist: wire
feed addition and an oversized weld section, with
subsequent machining.

Conclusions
The work reported here has evaluated modulating the
output of 1 mm laser source as a technique for producing

high quality welds in Ti–6Al–4V up to 3?25 mm in
thickness. The key conclusions are the following.

1. With the appropriate choice of modulation para-
meters, butt welds can be produced in Ti–6Al–4V, up to
3?25 mm in thickness, which have very low levels of weld
metal porosity.

2. Undercut present at the weld root can be reduced
through the adoption of a defocused laser beam and a
decreased modulation amplitude.

3. High speed observation and subsequent Fourier
analysis has shown the presence of common periodic
behaviours in the vapour plume and keyhole when low
porosity welding conditions are utilised.

4. An oscillating wave was created in the weld pool
when low porosity welding conditions were used, which
is thought to act in manipulating the ejection angle of
the vapour plume and aiding the escape of the gas
bubbles in the weld pool.
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Chapter 7  

Dual Focus Nd:YAG Laser Welding 

7.1 Introduction 

This paper has been accepted for publication in Lasers in Engineering. The paper is an 

extended version of a peer reviewed conference paper, which was published in the 

proceedings of the 36th International MATADOR Conference in July 2010. After presentation 

of the research on the 14th July, the paper was selected to be considered for publication in 

Lasers in Engineering. This research is presented in the format it was submitted to Lasers in 

Engineering, but retains the pagination sequence of this thesis. The research was performed 

with Dr Chris Allen, Dr Paul Hilton and Professor Lin Li. 

In terms of the co-author involvement Dr Chris Allen and Dr Paul Hilton assisted with 

defining the scope of the laser parameters that were to be considered for this experiment, 

based on a literature review performed by the author of this thesis and the performance 

capabilities of the available laser sources and dual focus forming process head. All the 

experimental trials, including the high speed video observations, weld quality evaluation and 

statistical analysis was performed by the author of this thesis. Dr Paul Hilton and Professor 

Lin Li provided guidance on the statistical analysis. 
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ABSTRACT 

The dual focus technique has been considered as a method for reducing porosity formation 

when Nd:YAG laser welding titanium alloys. Response surface methodology has been 

used to examine the effects four process variables - foci orientation, foci separation, 

welding speed and power ratio – have on the formation of porosity. The statistical results 

and high speed imaging have shown that both transverse and in-line foci orientations, with 

controlled foci separations and welding speeds, can be used to establish a stable elongated 

keyhole, promoting low porosity welds. 

 

1 INTRODUCTION 

Keyhole laser welding is a non-contact joining technology characterised by the high power 

densities (>10
4
Wmm

-2
) applied to the surface of the substrate, which produces a high 

aspect ratio (depth:width) keyhole, in most metallic materials. Fusion welds produced by 

this technology have minimal thermal distortion compared with arc welding processes. 

Moreover, keyhole laser welding has advantages compared with electron beam and friction 

welding processes, including; the ability to operate out of vacuum, and the flexibility 

provided by fibre delivered 1µm wavelength laser sources allowing easy robotic 

manipulation. However, observations of the keyhole laser welding process, first by Arata 

et al [1] and later by Matsunawa et al [2], have shown that dynamic instabilities in the 

keyhole geometry may occur even with a constant set of process parameters. These 

instabilities may lead to the formation of weld defects, such as undercut and porosity [2], 

and are as a result of an imbalance between the forces acting to open the keyhole and those 

acting to close it. 

 

Forces acting to close the keyhole are the surface tension and metallostatic forces of the 

surrounding molten material, and the hydrodynamic forces generated during the transfer of 

molten material from the front of the keyhole to the trailing melt pool [3]. In addition, the 

forces generated in the trailing melt pool as a result of Marangoni convection and vapour 

friction effects may lead to further forces acting to close the keyhole [4]. The keyhole is 

held open by the recoil pressure, generated as the laser beam is absorbed and ablates a 

portion of the molten material sheath, and the vapour pressure in the keyhole [5]. The 

physical mechanisms causing these forces are so intertwined that it is hard to envisage a 

quasi steady-state keyhole even with constant process parameters. Theoretical research [6] 

has shown that keyhole instabilities can be induced by a ≥ 1% fluctuation in the incident 
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laser power, which have sufficient amplitude to cause keyhole collapse if they occur at the 

resonant frequencies of the keyhole. 

 

For high-performance components, particularly those subjected to fatigue loads, stringent 

weld quality criteria exist [7] which define maximum allowable defect levels. The 

occurrence of porosity in the weld metal is of primary concern (particularly if the weld is 

dressed) as a result of its negative effects on the fatigue life [8]. Reducing the severity 

and/or occurrence of porosity would enable the keyhole laser welding process to be utilised 

in the construction of high-performance components. For titanium alloy aerospace 

components there are considerable cost savings to be made, in terms of reduced material 

consumption and increased productivity, by replacing conventional machining techniques 

with a near-net-shape welding process [9]. 

 

Several different techniques have been considered for manipulating the keyhole behaviour 

and consequently preventing weld metal porosity when keyhole laser welding, including; a 

gas jet directed towards the keyhole [10], modulation of the laser output [11], and dual 

focus laser welding [12]. Dual focus forming optics can be utilised with a single laser beam 

input to produce two focused spots on the surface of the workpiece. The optics allow 

manipulation of the foci separation, the foci orientation and the relative power ratio 

between the two focused spots. It was reported [12] that weld metal porosity could be 

reduced when welding aluminium alloys with a Nd:YAG laser if a dual focus 

configuration was utilised, compared with a single spot configuration. Similar results have 

also been reported [13] when welding type 304 stainless steel with a CO2 laser. 

 

In this study, the dual focus technique has been considered as a method for reducing 

porosity formation when Nd:YAG laser welding of titanium alloys. The effects of foci 

orientation, foci separation, welding speed and the power ratio between the two foci on the 

resulting penetration, profile and, primarily, the porosity content have been assessed. High 

speed (10kHz) imaging has been performed to determine the effects of these parameters on 

the keyhole and vapour plume behaviour. 

 

2 METHODOLOGY 

2.1 Materials and material preparation 

Experimental trials were performed on 3.25mm thickness Ti-2.5Cu plates, of a length up to 

150mm in the welding direction. The plates had been chemically pickled after rolling, 

although the time between pickling and welding was not controlled. Plate surfaces were 

cleaned with an abrasive paper and acetone degreased prior to processing. 

 

2.2 Equipment and experimental procedure 

Figure 1 details the typical equipment configuration. Welding was performed with a 

Trumpf HL4006D Nd:YAG laser, of 23mm.mrad beam parameter product. A 600µm core 

diameter optical fibre transmitted the laser light to a HIGHYAG dual focus process head. 
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The calculated diameters of the beam waist were 450µm. The beam waists were kept 

coincident with the top surface of the workpiece; since operating out of focus when using a 

dual focus forming module does not give a simple beam profile. A laser power of 4.1kW at 

the workpiece, measured with a water-cooled Ophir power meter, was used for all 

experiments. The downhand (1G) position was adopted throughout all tests. A stainless 

steel trailing shield and a square-section copper efflux channel were supplied with a 

regulated supply of argon (99.998% purity) in all experiments. 

 

Vapour 

plume 

observation 

camera 

 

Process 

head 

Copper 

vapour 

laser 

focusing 

unit 

Keyhole 

observation 

camera 

Workpiece 
Shielding 

shoe 

FIGURE 1 Typical equipment configuration. 

2.3 Process variables 

The dual focus forming module allowed manipulation of the foci orientation (with respect 

to the welding direction), the foci separation, and the power ratio between the two focused 

spots. The ranges of the four process parameters investigated are detailed in Table 1 [14]. 

The relative intensity between the foci was only varied in the in-line configuration. In 

order to assess a large number of parameter combinations, autogeneous melt run trials on 

plate were performed. This method also prevents other, potentially uncontrolled, variables 

(i.e. joint-gap and edge cleanliness) from interfering with the interpretation of results. It is 

known from previous research by the authors [15, 16] that welding conditions developed 

through melt runs can successfully be transferred to close fitting butt joints. 

 

TABLE 1 Process variables investigated [14]. 

Parameter Range 
Foci orientation transverse or in-line to welding 

direction 

A: Welding speed (mm/s) 33.33 – 116.67 
B: Foci separation (mm) 0

†
 , 0.15, 0.30, 0.45, 0.54, 0.90, 

1.45 

C: Power ratio
‡
 

(leading:trailing) 

50:50, 60:40, 78:22 
†
i.e. a single 450µm diameter spot, 

‡
Only varied in the in-line spot configuration 

2.4 Weld quality evaluation 

All melt runs were assessed visually for discoloration, and radiographed to determine their 

weld metal porosity content. Radiography was performed in accordance with BS EN 

1435:1997, allowing indications ≥0.05mm in size to be detected. The weld metal porosity 

was determined by summing the diameters of all the pores in a 76mm weld length, giving 
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an accumulated length of porosity (presented in units of mm in the subsequent figures) for 

each melt run; as specified in AWS D17.1:2001 ‘Specification for Fusion Welding for 

Aerospace Applications’ by the American Welding Society. Selected melt runs were also 

sectioned, transverse to the welding direction, at representative positions, to assess their 

weld profile. 

 

2.5 High speed imaging 

High speed imaging (10kHz) of the keyhole and vapour plume behaviours were performed 

during selected melt runs. Temporal and spatial filtering techniques were used to reduce 

the inherently bright broadband process emissions for the keyhole observations. 

Illumination of the keyhole was then provided by an Oxford Lasers LS20-50 copper 

vapour laser (CVL). Quartz glass windows in the shielding shoe ensured the weld pool 

remained shielded. 

 

Observation of the images provides qualitative information regarding the effect of 

parameters on key process mechanisms. In order to attain quantitative data, allowing 

numerous different welding conditions to be compared directly, a MATLAB® program 

was used to extract and subsequently analyse pixel intensity data from the images. The 

mean pixel intensity (MPI) for each frame was calculated for a region of interest which 

approximated either the position of the keyhole or the path of the laser beam. The resulting 

MPI data sets were then analysed to determine their behaviour and correlated with the 

corresponding weld quality and statistical results. 

 

3 RESULTS 

3.1 Welding performance 

Figure 2 [14] details the maximum welding speeds which resulted in consistent full 

penetration for the range of parameters investigated. Four separate data sets are shown, 

corresponding to the transverse orientation and the in-line orientations with power ratios of 

50:50, 60:40 and 78:22. In terms of welding performance, operation in the in-line 

orientation has advantages compared with the transverse orientation. For the in-line 

orientation and at foci separations exceeding 0.45mm, the penetration is determined by the 

power ratio – a larger difference between the two relative intensities tending to increase the 

penetration depth for a given welding speed. 
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FIGURE 2 Limits of full penetration for transverse and in-line spot orientations [14]. 

3.2 Statistical analysis 

Design of Experiment techniques were not used for experimental design, although the 

scope of parameter permutations executed is similar to two fractional high-order factorial 

experiments. The accumulated length of porosity data obtained from the analysis of the 

radiographs provides a historical quantitative response which can be statistically analysed. 

Furthermore, a large number of parameter combinations were repeated, allowing prediction 

variances to be minimised. The statistical software package, Design-Expert 8.0.1 was used 

to historically analyse the weld metal porosity data using response surface methodology 

(RSM); which determines a suitable approximation for the true functional relationship 

between a quantitative response and a set of input variables (process variables). 

Constraints, established from Figure 2 [14], were positioned on the design space to ensure 

that only parameter combinations which resulted in consistent full penetration were 

permitted. Analysis of the transverse foci and in-line foci orientations was performed 

separately to simplify the analysis. 

 

For both analyses, a response transformation was necessary in order to reduce the 

residuals; a square root and a log10 transformation were applied to the transverse (62 melt 

runs) and in-line (92 melt runs) data sets respectively. A cubic model provided the most 

complete description of the response for both data sets. To minimise the prediction 

variances, those melt runs produced in the transverse foci orientation with a foci separation 

>0.54mm (10 melt runs) were removed from the analysis. A single melt run was also 

excluded from the analysis of the in-line orientation data. Linear regression analysis, and a 

backward elimination technique was utilised to remove non-significant terms from the 

cubic model. The p-values, or statistical significance, of individual terms were determined 

using analysis of variance (ANOVA). Those terms with p-values >0.10 were deemed 

statistically insignificant and removed from the model unless they were required to support 

hierarchical terms. Table 2 and 3 detail the terms, and their p-values, included in the 

transverse and in-line models. 
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TABLE 2 ANOVA for transverse foci orientation model. 
Source Sum of Squares df Mean square F value Prob > F Effect 

Model 34.20 7 4.89 24.07 < 0.0001 significant 

A 3.68 1 3.68 18.12 0.0001 significant 

B 2.20 1 2.20 10.83 0.0019 significant 

AB 3.15 1 3.15 15.51 0.0003 significant 

A2 4.40 1 4.40 21.69 < 0.0001 significant 

B2 5.42 1 5.42 26.72 < 0.0001 significant 

A2B 1.63 1 1.63 8.05 0.0068 significant 

AB2 2.09 1 2.09 10.28 0.0025 significant 

Residual 9.13 45 0.20 

   Lack of Fit 2.88 16 0.18 0.83 0.6416 not significant 

Pure Error 6.26 29 0.22 

   Cor Total 43.33 52 

     

TABLE 3 ANOVA for in-line foci orientation model. 
Source Sum of Squares df Mean square F 

value 

Prob > F Effect 

Model 9.73 11 0.88 17.66 < 0.0001 significant 

  A 0.28 1 0.28 5.59 0.0205 significant 

  B 0.41 1 0.41 8.26 0.0052 significant 

  C 0.05 1 0.05 0.96 0.3295 not significant 

  AB 0.00 1 0.00 0.02 0.8923 not significant 

  AC 0.50 1 0.50 10.07 0.0021 significant 

  BC 0.35 1 0.35 6.98 0.0099 significant 

  A2 0.01 1 0.01 0.11 0.74 not significant 

  B2 0.19 1 0.19 3.77 0.0557 not significant 

ABC 0.20 1 0.20 3.90 0.0516 not significant 

A2B 0.79 1 0.79 15.71 0.0002 significant 

B2C 0.41 1 0.41 8.26 0.0052 significant 

Residual 4.01 80 0.050 
   

Lack of Fit 1.33 45 0.030 0.39 0.9985 not significant 

Pure Error 2.67 35 0.076 
   

Cor Total 13.74 91 
    

 

Diagnostic graphical checks were performed on the residuals of both models to ensure that 

the factors were fixed and not random, thereby meeting the ANOVA assumptions. 

Studentised forms of the residuals were used in all the checks. No abnormalities were 

found in the normal plot of residuals. The plots of residuals against the predicted values 

and the run order (Figure 3a and 3b) indicated that no assumptions were contravened. The 

random scatter of results about the centre line in the residuals versus run order plots signify 

that there are no time-related variables that have not been accounted for in the analysis. 

Additional graphical tests (not shown in this paper) were carried out to provide a measure 

of the influence, potential or actual, that individual melt runs may have. No melt runs were 

found to have a high degree of influence or leverage over either model. The final β 

coefficient values for both models, in terms of actual factors, are detailed in Table 4 [14]. 
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    (a)                                                               (b) 

FIGURE 3 Plots of the externally studentised residuals for the transverse (a) and the in-line 

(b) data. 

 

TABLE 4 β coefficient values, in terms of actual factors, for the transverse and in-line 

models [14]. 
Coefficient Transverse In-line 

ϐ0 9.76E+0 7.58E+0 

ϐA -1.74E-1 -1.78E-1 

ϐB 4.11E+1 -8.84E+0 

ϐC n/a not significant 

ϐAB -1.29E+0 not significant 

ϐAC n/a 8.31E-5 

ϐBC n/a -1.91E-2 

ϐABC n/a 5.15E-4 

ϐA2 9.15E-4 not significant 

ϐB2 4.76E+1 not significant 

ϐA2B 8.07E-3 -1.62E-3 

ϐAB2 1.03E+0 not significant 

ϐB2C n/a -2.22E-2 

 

3.3 Transverse foci orientation 

3.3.1 Porosity formation 

There were significant differences in the amount of porosity observed in the melt runs 

produced in the transverse foci orientation. Foci separations of 0.54mm and above had an 

accumulated length of porosity >40mm, and were not included in the statistical analysis 

since they exerted too much influence on the model. The remaining 52 melt runs had 

accumulated lengths of porosity in the range 0.7 to 27.6mm. Pore diameters were in the 

range 0.1 - 0.4mm, with predominantly smaller diameter pores (0.1 – 0.2mm) present at 

speeds >70mm/s.  

 

Figure 4 details the perturbation curves (Figure 4a) and response surface (Figure 4b) for 

the transverse foci orientation model detailed in Table 4 [14]. The perturbation curves 

indicate that at welding speeds between 33 and 60mm/s the porosity content in the weld 

metal is primarily determined by the welding speed and negligibly influenced by the foci 

separation. According to the response surface in Figure 4b, those melt runs produced with 
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a welding speed <60mm/s will have an accumulated length of porosity >4.0mm. 

Conversely, at welding speeds above 60mm/s the foci separation and welding speed have 

similar influences on the porosity content of the melt run (Figure 4a). 

 

         (a)                                                                   (b) 

FIGURE 4 Perturbation curves (a) and a contour graph (b) detailing the effects of the 

welding speed and the foci separation on the formation of porosity in the weld metal. 

 

Parameter combinations in the response surface indicate that melt runs can be readily 

produced which contain relatively low levels of weld metal porosity. For instance, melt 

runs with <1.7mm accumulated length porosity can be produced if a welding speed of 70-

100mm/s is adopted with an appropriate foci separation. Within this range of welding 

speeds, an increase in the heat input (i.e. decrease in welding speed) necessitated an 

increase in the foci separation in order to minimise the resultant porosity content. Very 

small accumulated lengths of porosity (≤1.0 mm) are predicted by the model to occur at a 

welding speed of ~80mm/s and a foci separation of ~0.15mm. Two separate melt runs 

produced with parameters very close to these parameters had accumulated lengths of 

porosity of 0.8 and 1.4mm. In comparison, two melt runs produced with a 0mm spot 

separation had accumulated lengths of porosity of 2.0 and 4.2mm. 

 

3.3.2 Profile 

Transverse cross-sections of melt runs produced at a welding speed of 66.7mm/s (the 

fastest welding speed giving full penetration at foci separations of up to 0.54mm) with 

increasing spot separations are detailed in Figure 5. Face and root undercut are present on 

the melt run produced with a single spot to a maximum depth of 0.14mm (both on face and 

root). At spot separations ≥0.30mm the weld profile improves, as the undercut at the weld 

root is eliminated. 
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    (a)           (b)        (c)             (d)         (e) 

FIGURE 5 Transverse cross-sections of melt runs produced in 3.25mm thickness Ti-2.5Cu 

with a transverse foci orientation, a welding speed of 66.7m/s, and foci separations of 0 (a), 

0.15 (b), 0.30 (c), 0.45 (d) and 0.54mm (e).  

 

3.4 In-line foci orientation 

3.4.1 Porosity formation 

Similar to the porosity formation observed in the transverse foci orientation, a wide range 

of porosity contents (between 0.8 and 37.6mm accumulated length) and pore diameters 

(between 0.1 and 0.5mm) were observed using an in-line foci orientation. Pore diameters 

of up to 0.5mm were produced, although the majority of pores were ≤0.2mm diameter. All 

91 melt runs produced were included in the model. Perturbation curves and response 

surfaces, calculated from the β coefficients, for the three different focus power ratios 

examined, are detailed in Figure 6. In the response surface graphs, the design space has 

been limited in order to ensure only fully penetrating welds are considered.  
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     (e)               (f) 

 

      (c)               (d) 

  

     (a)             (b) 

FIGURE 6 Perturbation curves and response surfaces showing the effect of welding speed 

and foci separation on porosity formation, for power ratios of 50:50 (a, b), 60:40 (c, d), and 

78:22 (e, f). 

 

Figures 6a and 6b are the response and perturbation curves produced with a power ratio of 

50:50. As observed in the transverse foci orientation model, the porosity content increases 

significantly at welding speeds below ~67mm/s. However, with a foci separation of 

~0.70mm this increase is limited. At increased welding speeds, the level of subsurface 
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porosity formed in the weld metal is significantly less for all foci separations giving full 

penetration. Positioning the foci with a separation of ~0.15mm leads to a reduction in 

porosity compared with a single spot condition. The modeled response and perturbation 

curves when operating with an in-line configuration with a power ratio of 60:40 are 

detailed in Figures 6c and 6d. The range of conditions giving full penetration is increased 

compared with that shown in Figure 6a; as a result of the higher leading power density. As 

with a 50:50 power ratio, the porosity formation can be limited at slower welding speeds 

by adopting an appropriate foci separation. The modelled response surface indicates the 

best results possible with a 60:40 power ratio are at higher welding speeds and with a slight 

foci separation. Figures 6e and 6f are the response and perturbation curves produced with a 

power ratio of 78:22. Apart from the significant increase in porosity formation when 

operating with a foci separation of 0mm and low welding speeds, the response surface is 

particularly flat. From Figure 6e it can be seen that using a foci separation of 1.45mm is 

conducive to producing a comparatively low porosity melt run at all welding speeds. A 

similar behaviour, although not as beneficial, is also noticed in Figure 6c (60:40 power 

ratio).  

 

The response surfaces produced for the three different focus power ratios indicate that an 

increased power density in the leading focus will reduce considerably the occurrence of 

porosity at lower welding speeds when welding with foci separations of 0.45mm and 

above. Nevertheless, the lowest levels of weld metal porosity when using an in-line foci 

orientation are modeled to occur when using a 50:50 power ratio with a welding speed 

>75.0mm/s and a foci separation of between 0.15 and 0.30mm. The model predicts that a 

single melt run produced with a foci separation of 0.30mm and a welding speed of 

83.3mm/s will have an accumulated length of porosity of 1.4mm. Three melt runs 

produced with an identical combination of parameters, which were included in the 

analysis, contained 0.8, 1.0 and 1.1mm accumulated length of porosity; indicating very 

little experimental noise. 

 

3.4.2 Profile 

Transverse cross-sections, representative of the entire weld length, of melt runs produced 

at welding speeds of 66.7 and 83.3mm/s, and with different foci separations, are detailed in 

Figure 7. Figures 7a – 7e detail the melt runs produced at a welding speed of 66.7mm/s. 

All the melt runs produced at this welding speed have varying amounts of undercut at the 

weld face. Undercut at the weld root can be significantly reduced by using a foci separation 

≥0.30mm. The melt runs produced at a welding speed of 83.3mm/s had a more inconsistent 

weld bead appearance compared with those produced at 66.7mm/s. The profiles detailed in 

Figures 7f-7j indicate varying amounts of face and root undercut, and no benefit to the 

weld profile by operating with increased spot separations. 
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     (f)             (g)        (h)    (i)        (j) 

 
      (a)             (b)         (c)                (d)         (e)  

FIGURE 7 Transverse cross-sections of melt runs produced in 3.25mm thickness Ti-2.5Cu 

with an in-line foci orientation, a 50:50 power ratio, a welding speed of either 66.7 (a - e) 

or 83.3mm/s (f – j), and foci separations of 0 (a, f), 0.15 (b, g), 0.30 (c, h), 0.45 (d, i) and 

0.54mm (e, j).  

 

3.5 Wire feed 

Wire feed was considered as a means of reducing undercut. The wire was fed into the front 

of the weld pool. An angle of 45° and a position 1mm ahead of the laser impingement 

point were adopted from previous experience, and wire feed rates of 2- 5m/min were 

examined for two parameter combinations: (i) in-line foci orientation, 0.30mm foci 

separation, 83.3mm/s welding speed and a 50:50 power ratio; and, (ii) transverse foci 

orientation, 0.30mm foci separation and a 66.7mm/s welding speed. 

 

The introduction of wire necessitated a reduction in welding speed in order to maintain full 

penetration for both foci orientations; although this effect was more pronounced with the 

in-line foci orientation. Wire feed rates of 66.7-83.3mm/s eliminated undercut entirely but 

necessitated a decrease in welding speed, which significantly increased porosity content. 

The most favourable result was produced with the transverse foci orientation, particularly 

with a wire feed rate of 50mm/s and a welding speed of 58mm/s; giving a 1.8mm 

accumulated length of porosity and a melt run free of undercut. 

 

3.6 High speed imaging 

3.6.1 Keyhole behaviour 

The images produced were analysed with a MATLAB program to determine their MPI in 

the keyhole area. It was envisaged that quantitative trends in keyhole closure could have 

been detected by this method. A similar method has been used previously by the authors 

during modulated Nd:YAG laser welding of titanium alloys [15]. The contrast in the 

images was insufficient for the MATLAB program, and the pictures have been analysed 

qualitatively. In the in-line foci orientation, high speed videos were taken with a 50:50 

power ratio between the spots. Three different welding regimes were noted: 

1. Single keyhole: this regime occurred when the foci separation was ≤0.30mm, 

irrespective of welding speed. As detailed in Figure 8a. 



143 
 

2. Dual keyhole: this regime occurred with foci separations ≥0.90mm, irrespective of 

welding speed. As detailed in Figure 8b. 

3. Transitional: in this regime periodic transitions between the single and dual keyhole 

regimes occurred, as detailed in Figure 8c-8f. This regime occurred at foci 

separations of 0.45-0.54mm. 

The same welding regimes were present in images of the keyhole(s) behaviour with a 

transverse foci orientation. In both foci orientations, foci separations ≥0.90mm led to 

particularly complex melt flow interactions between the two keyholes and frequent 

keyhole collapses resulted. Similarly, in the transitional regime, frequent keyhole collapses 

were observed. With the single spot regime, much fewer keyhole collapses occurred, 

particularly at high welding speeds. 

 

 
  (a)                     (b)                                   (c) 

 
(d)                      (e)            (f) 

FIGURE 8 Images of the in-line foci orientation, a 50:50 power ratio, and: (a) a 0.15mm 

foci separation and a 83mm/s welding speed; (b) a 1.45mm foci separation and a 50mm/s 

welding speed; and (c)-(f) a 0.54mm foci separation and a welding speed of 66.7mm/s, 

intervals of 100µs. 

 

3.6.2 Vapour plume behaviour 

The images of the vapour plume produced with the in-line foci orientation indicated that at 

foci separations of 0.15 and 0.30mm the vapour plume had a more constant behaviour and 

did not fluctuate as frequently compared with a single focused beam, as detailed in Figure 

9 [14]. The MPI technique was used to analyse the vapour plume behaviour of melt runs 

produced with the foci orientated in-line with the welding direction, a power ratio of 50:50, 

foci separations of 0-1.45mm and welding speeds of 41.7-83.3mm/s. The MPI of the 

vapour plume in the path of the laser beam, up to 3mm above the keyhole, was individually 

calculated for 5000 images (0.5s of real time) per welding condition. The resulting data set 

for each welding condition therefore contained 5000 data points each having a value 

between 0 and 255 (average of RGB intensities). The standard deviation of the individual 

data sets was then calculated to determine the variation of pixel intensities from the 

average; and thereby infer the variation in vapour plume behaviour in the path of the laser 

beam. 
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FIGURE 9 Images of the vapour plume when welding with a single focus (top) and an 

optimised dual focus (below), at 100µs intervals [14]. 

 

Table 5 details the results for six different welding conditions, and their observed 

accumulated lengths of porosity. There is a correlation between the standard deviation of 

the MPI and the resultant internal quality of the weld. Melt runs produced with the 

transverse foci orientation were not analysed as imaging of the vapour plume could not be 

performed in-line with the welding direction. 

 

TABLE 5 Standard deviation of the vapour plume mean pixel intensity (MPI) for melt runs 

produced with an in-line foci orientation and a power ratio of 50:50. 
Foci Separation 

(mm) 

Welding Speed 

(mm/s) 

Standard Deviation 

of MPI 

Porosity - Accumulated 

Length (mm) 

0 83.3 33.5 2.0, 4.2 

0.15 83.3 23.7 0.8, 1.4 

0.30 83.3 26.9 2.3 

0.45 83.3 33.1 5.6 

0.90 41.7 44.7 43.9, 50.5, 46.7 

1.45 41.7 50.1 59.3, 50.5 

 

 

4 DISCUSSION 

The welding performance data shows that if the foci separation is increased, the welding 

speed must be reduced in order to maintain full penetration. This is a result of the 

interaction between the two focused laser beams decreasing, leading to a significantly 

reduced power density at the workpiece. This decrease in welding performance at 

increasing foci separations is more noticeable in the transverse configuration; as an 

additional volume of material must be processed with each increment in foci separation. 

The statistical analysis of porosity formation in melt runs, produced in 3.25mm thickness 

Ti-2.5Cu using the dual focus Nd:YAG laser welding technique, has enabled the influence 

of foci separation, welding speed and power ratio to be determined. The statistical models 

produced for both foci orientations indicate that a foci separation of 0.15-0.30mm can 

reduce porosity formation at higher welding speeds (~80mm/s). Qualitative analysis of the 

keyhole behaviour, in both foci orientations, has shown a single keyhole is still present 

with these spot separations and welding speeds, which appeared more stable than the dual 

keyhole or transitional regimes. The quantitative vapour plume behaviour analysis has 

shown less variation occurs in vapour plumes produced from the single keyhole regime 

than the transitional and dual keyhole regimes. High variations in the vapour plume 

behaviour are indicative of an unstable keyhole, since: 
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1. The ejection angle of the vapour plume is directly related to the absorption angle of 

the incident laser radiation at the front keyhole wall. 

2. No vapour plume is ejected from the keyhole immediately after keyhole collapse. 

 

Previous observations of the plasma behaviour when welding a 5000 series aluminium 

alloy with a CO2 laser beam also suggested that, there was less variation in its behaviour if 

a dual focus technique was utilised [17]. A dual focused CO2 laser has also been reported 

to reduce weld metal porosity when welding type 304 stainless steel with the focused spots 

arranged in-line with the welding direction [13]. The keyhole behaviour was observed 

using an in-situ X-ray transmission method, which revealed that the two keyholes 

coalesced to form one larger keyhole. It was argued that this prevents the generation of 

bubbles and hence weld metal porosity [13]. The results presented here agree with this 

argument; certainly closely separated foci resulted in keyholes which coalesced at the top 

surface in the single keyhole regime. 

 

The levels of weld metal porosity reported in this research easily meet the criteria 

demanded by AWS D17.1 Class A (limit of 4.3mm accumulated length for 3.25mm 

thickness plate) and are very near to the criteria required for aeroengine applications 

(0.9mm accumulated length [7]). However, the levels of undercut are unacceptable and 

have necessitated the use of wire feed addition into the melt pool. The welding process was 

particularly sensitive to the wire feed rate, since the welding speed needed to be dropped 

considerably in order to maintain full penetration. In the in-line configuration the wire 

tended to choke the keyhole, destabilising the process and significantly increasing porosity 

content. In the transverse configuration the wider keyhole accommodated wire feed more 

easily, and at the correct wire feed rate the undercut on the weld face could be removed. 

This approach resulted in a level of porosity which would be suitable for applications 

requiring AWS D17.1 Class A criteria, but not suitable for aeroengine applications. In this 

situation, a different approach to eliminating undercut at the weld face and root, whilst 

minimising porosity formation with the optimum choice of dual focus parameters, would 

be to use an oversized joint thickness followed by subsequent machining of the weld bead.  

 

5 CONCLUSIONS 

This work has investigated the feasibility of reducing the formation of porosity in the weld 

metal when Nd:YAG laser welding titanium by using a dual focus technique. The results 

have been analysed by RSM and the models indicate that the weld metal porosity can be 

reduced to within levels stipulated by stringent aerospace criteria, if a relatively small foci 

separation and a suitable welding speed are utilised. Observation and subsequent analysis 

of the welding process using two high speed cameras has shown that small foci separations 

(0.15-0.30mm) increase keyhole stability; and hence reduce the occurrence of keyhole 

collapse and the formation of weld metal porosity. 
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Chapter 8  

Welding with Excellent Beam 
Quality 1µm Wavelength Laser 
Sources 

8.1 Introduction 

This paper has been prepared for publication in a suitable peer reviewed Journal. The paper 

combines the results of research reported at the 4th Pacific International Conference on 

Applications of Lasers and Optics (PICALO) in Wuhan, China [Blackburn et al, 2010] and more 

recent results. The unpublished research is currently under embargo by TWI, and 

consequently the paper will be submitted for publication on the expiration of this embargo. 

This paper is presented in a format suitable for submission to a relevant peer reviewed 

Journal. The research was performed with Dr Paul Hilton, Dr Chris Allen, Dr Ali Khan and 

Professor Lin Li. 

In terms of the co-author involvement Dr Paul Hilton, Dr Chris Allen and Dr Ali Khan assisted 

with defining the scope of the laser parameters that were to be considered for this 

experiment, based on a literature review performed by the author of this thesis and the 

availability of excellent beam quality laser sources. Professor Lin Li provided input on the 

presentation of results. 
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Abstract 

Excellent beam quality 1µm wavelength laser sources have been considered here for 

producing high quality welds in titanium alloys. Three different Yb-fibre laser sources, 

with beam parameter products in the range 0.33-6.0mm.mrad, focused with different 

optical combinations, have been used to process 2.0-7.0mm thickness Ti-6Al-4V. The 

results indicate that butt welds which meet the AWS D17.1:2001 Class A criteria can be 

produced with very different focused beams in the beam parameter product range 1.6-

6.0mm.mrad. No special techniques, such as a directed jet of inert gas, were required to 

produce these high quality welds, as is the case with poorer beam quality Nd:YAG rod 

laser sources. 

Keywords 

Laser welding, titanium alloys, Yb-fibre, Yb:YAG disc, porosity 

1. Introduction 

Keyhole laser welding is already an established technique for the joining of metallic 

components in a number of industry sectors; for instance, in the automotive sector to join 

body panels [1,2]. The technique is characterised by its ability to produce high aspect ratio 

welds in a wide range of metallic materials at atmospheric pressure. In comparison with 

electric arc based welding processes, the heat inputs for a similar depth of penetration are 

significantly lower when keyhole laser welding. Furthermore, the delivery of 1µm 

wavelength laser beams through fibre optic cables, allows straightforward integration with 

robotic manipulators and consequently, the capability to process components of high 

geometric complexity.  

Modern solid-state fibre delivered laser sources, such as Yb-fibre and Yb:YAG disc lasers, 

are commercially available with rated output powers exceeding 10kW and near diffraction 

limited beam quality [3,4]. High power fibre and disc laser technologies were developed as 

a result of the poor beam quality available from Nd:YAG rod laser sources, when 

compared with CO2 laser sources; CO2 laser sources offer good beam quality at high 

powers but their output cannot be delivered through an optical fibre. Studies of welding 

performance as a function of beam quality [5,6] have enabled the potential benefits, in 

terms of welding performance, of replacing Nd:YAG rod lasers with Yb-fibre or Yb:YAG 

disc lasers, to be highlighted. Verhaeghe and Dance [7] reported that the high quality 

beams emitted from Yb-fibre and Yb:YAG disc laser sources are now capable of 
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producing welds with an aspect ratio which only previously could have been produced by 

in-vacuum electron beam welding. However, for high-performance welded components 

detailed knowledge of the resulting weld quality is required.  

A potential application for keyhole laser welding is in the production of near-net-shape 

titanium alloy components for aerospace applications. Defect free components can be 

manufactured by machining billets or forgings, although these techniques can have buy-to-

fly ratios (the mass of material prior to machining compared with the mass of the finished 

component) exceeding 10:1 [8]. The production of neat-net-shape components by keyhole 

laser welding, or another welding process, would significantly reduce component cost and 

increase productivity. Nevertheless, it must be determined if welds of the required quality 

can be reproducibly produced by keyhole laser welding prior to it being considered as a 

manufacturing technique for this application. Potential weld defects when fusion welding 

titanium alloys are [9]: (i) embrittlement of the weld bead; (ii) solidification and/or 

contamination cracks in the weld metal; (iii) geometrical weld profile defects; and, (iv) 

subsurface porosity.  

 

Embrittlement of the weld bead and the formation of cracks in the weld metal can be 

avoided by adopting stringent inert gas shielding and joint preparation techniques. As 

reported by Hilton et al [10], stringent weld quality criteria exist for primary airframe 

structures and aeroengine components, as a result of their service environments. The most 

difficult to meet of these criteria, for keyhole laser welding, relate to the formation of 

geometrical defects in the weld profile and subsurface porosity in the weld metal. 

Geometrical defects in the weld profile (eg undercut or concavity at the weld face/root) can 

be attributed to the complex interaction of forces in the melt pool [11]. The severity of 

geometrical defects can be influenced through an appropriate choice of process parameters, 

whilst not trying to compromise other joint characteristics (eg penetration and heat input). 

Nevertheless, if the process parameters cannot be adequately adjusted, filler material, an 

over-sized joint thickness (followed by subsequent machining), or a cosmetic pass, may 

potentially eliminate remaining geometrical defects. 

 

The formation of porosity as a result of fine scale hydrogen rejection during weld pool 

solidification [12] is not of particular concern if stringent joint preparation techniques are 

implemented; particularly given the low hydrogen content of titanium alloys and high 

purity shielding gases. Nevertheless, subsurface porosity may form during keyhole laser 

welding as a result of dynamic instabilities in the keyhole [13]. It has been reported that for 

solid-state laser sources with a beam parameter product of 18.0-24.0mm.mrad, subsurface 

porosity requirements cannot be achieved unless techniques such as a directed gas jet [10], 

power modulation [14] or a dual focus configuration [15] are used.  

 

The research presented in this paper has examined the potential to weld titanium alloys, up 

to 7mm in thickness, with excellent beam quality 1µm wavelength laser sources, for 

aerospace applications. Three different Yb-fibre lasers, with beam parameter products in 

the range 0.33-6.0mm.mrad, have been used in this investigation. Weld qualities have been 
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assessed in terms of their subsurface porosity content and weld profile, and compared 

against a relevant aerospace welding standard. 

2. Research Methodology 

2.1 Laser Sources 

Three different solid-state laser sources all emitting electromagnetic radiation of ~1µm 

wavelength were used in this investigation; specifically, a YLS-1000-SM Yb-fibre laser, a 

YLR-4000 Yb-fibre laser, and a YLS-5000 Yb-fibre laser. All three laser sources 

incorporated beam delivery through a flexible optical fibre to a process head containing the 

collimating and focusing optics. The collimating and focusing optic combinations used in 

this investigation, along with the calculated properties of the resulting focused laser beams, 

are specified in Table 1.  

Table 1 Details of the laser sources and calculated properties of the focused beams used in 

this investigation. 

Property YLS-1000-SM YLR-4000 YLS-5000 

Maximum rated output power, W 1000 4000 5000 

Beam parameter product, mm.mrad 0.33 1.6 6.0 

Delivery fibre diameter, μm 17 50 150 

Collimating optic focal length, mm 120 120 160 

Raw beam diameter, mm 10.6 15.3 25.6 

Focusing optic focal length, mm 250 500 300 500 160 250 500 

Nominal beam waist (w0) diameter, μm 30 60 125 210 150 230 470 

Power density per kW, kW/mm
2
 1300 330 82 29 57 23 5.8 

Focusing cone half angle (θ), deg 1.2 0.6 1.46 0.88 4.6 2.9 1.5 

Rayleigh length, mm 1.5 3.0 4.9 13.6 1.9 4.6 18.3 

5% Depth of focus (Zf), mm 0.9 1.9 3.1 8.6 1.2 2.9 11.7 
 

2.2 Materials 

Ti-6Al-4V is a readily fusion weldable α/β alloy [9] used in aeroengine components at 

temperatures below 315°C and throughout airframes [16]. Sheets of Ti-6Al-4V in 

thicknesses of 2.0, 3.25 and 7.0mm were sourced to broaden the industrial relevance of this 

research. The sheets of 2.0 and 3.25mm thickness Ti-6Al-4V were guillotine sheered to 

size, with a minimum dimension of 150mm in the welding direction. Test pieces of the 

7.0mm thickness Ti-6Al-4V plate were cut into 300mm lengths, with subsequent dry 

machining of the plate giving four 75mm (length) steps of 4.0, 5.0, 6.0 and 7.0mm 

thickness. Immediately prior to performing each melt run, the surfaces of individual test 

pieces were acetone degreased, cleaned with an abrasive paper and then degreased with 

acetone. The same procedure was followed for butt welds, apart from the abutting edges 

were dry machined immediately prior to welding. 

2.3 Experimental Scope and Procedures 

Table 2 details the parameters, and their ranges, investigated for the three different laser 

sources, although not all permutations of parameters were performed. The majority of 

experimental trials performed were autogeneous melt runs. Based on previous results by 
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the same authors [14,15], the transfer of single spot conditions from a melt run 

configuration to a well fitting butt joint requires no alteration of parameters. Nevertheless, 

a small number of butt welds were also produced to determine the transferability of 

conditions developed through melt run trials. 

Table 2 Parameters investigated in the experimental trials on 2–7mm thickness Ti-6Al-4V. 
Parameters YLS-1000-SM YLR-4000 YLS-5000 

Power, W 1000 1000-4000 4000 

Nominal beam waist (w0), μm 30, 60 125, 210 150, 230, 470 

Welding speeds, mm/s 8.3-150 16.7-233.3 33.3-133.3 

Focal plane position
†
, mm -5 to +5 -5 to +5 -8 to +4 

Material thickness, mm 2.0 3.25 4, 5, 6, 7 
†A focal plane position of 0mm indicates the beam waist was positioned on the top surface of the workpiece, 

whereas a negative and a positive focal plane position indicate the beam waist was positioned below or above 

the top surface of the workpiece respectively. 

Figure 1 details the typical equipment configuration, although the process head was 

controlled with an XYZ gantry system when processing with the YLR-4000 Yb-fibre laser. 

Laser powers were measured with a water-cooled Ophir power meter; the powers reported 

subsequently are those measured at the workpiece (i.e. after all optical elements). The 

focusing optic was protected with a cover slide and a high pressure air-knife, as detailed in 

Figure 1. Welding was performed in the downhand (1G) position; a 3° inclination angle 

was included to avoid back reflection when processing with the YLS-1000-SM. The same 

steel clamping jig, incorporating a copper efflux channel, was used for all experiments. 

The efflux channel and a shielding shoe, detailed in Figure 1, were supplied with 99.998% 

purity argon shielding gas in order to prevent discoloration and embrittlement of the weld 

root and face respectively. 

 

                           Welding direction 

Process head 

 
Air knife 

Shielding shoe 

 
Clamping jig 

Figure 1 Typical experimental set-up detailing position of the air-knife immediately below 

the cover slide holder. 
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2.4 Weld Quality Assessment 

All melt runs and butt welds were inspected visually on both the weld face and root for 

discoloration. They were classified according to the discoloration scale outlined in AWS 

D17.1:2001 Specification for Fusion Welding for Aerospace Applications. Radiographic 

examination of the melt runs and butt welds was performed according to the standards 

outlined in BS EN 1435:1997 Non-destructive examination of welds. Indication sizes 

>0.05mm were visible on the radiographs, although any indications of this size were 

rounded up to 0.1mm. Pore counts were performed by the same individual over a 76mm 

analysis length, as prescribed in AWS D17.1; although a 50mm analysis length was used 

for the 4-7mm thickness material, which was extrapolated to 76mm. Weld profile sections, 

transverse to the welding direction, were taken of selected melt runs and butt welds at 

positions representative of the entire weld length. 

Table 3 Acceptance limits relating to weld profile and subsurface porosity criteria for 

Class A, B, C weld qualities, as specified in AWS D17.1:2001. 

Imperfection Acceptance limit 

Class A Class B Class C 

Face undercut (Ca)
†
 0.07 T or 0.76 mm, 

whichever is less 

0.10 T or 1.27 mm, 

whichever is less 

0.20 T or 1.78 mm, 

whichever is less 

Root undercut (ca)
†
 0.07 T or 0.76 mm, 

whichever is less 

0.10 T or 1.27 mm, 

whichever is less 

0.20 T or 1.78 mm, 

whichever is less 

Face concavity (Cr)
††

 0.07 T or 0.76 mm, 

whichever is less 

0.07 T or 0.76 mm, 

whichever is less 

0.07 T or 0.76 mm, 

whichever is less 

Root concavity (cr)
††

 0.07 T or 0.76 mm, 

whichever is less 

0.07 T or 0.76 mm, 

whichever is less 

0.07 T or 0.76 mm, 

whichever is less 

Maximum dimension or 

diameter of an isolated pore 

0.33 T or 1.5 mm, 

whichever is less 

0.50 T or 2.3 mm, 

whichever is less 

No stated 

requirement 

Cumulative length of 

porosity per 76 mm weld 
length 

1.33 T or 6.0 mm, 

whichever is less 

2.0 T or 9.0 mm, 

whichever is less 

No stated 

requirement 

Minimum spacing between 

two pores 

4 x size of larger 

adjacent pore 

2 x size of larger 

adjacent pore 

No stated 

requirement 
†individual defect, maximum for a defect running the entire weld length is 0.05mm (Class A) 
†† individual defect, maximum for a defect running the entire weld length is 0.13mm (Class A) 
 

3. Results 

3.1 YLS-1000-SM Yb-fibre Laser 

The face and root of the majority of melt runs produced were bright silver in colour; 

indicating that they had been adequately shielded. When melt runs with a discoloured face 

or root were produced, the shielding shoe was adjusted and the condition repeated. 

 

Melt runs were produced with the range of parameters detailed in Table 2. In terms of 

welding performance, full penetration could be achieved at welding speeds up to 150 and 

66.7mm/s with the 250 and 500mm focusing lenses respectively. This was achieved with a 

0mm focal plane position, and could not be increased by moving the focal plane position 

beneath or above the top surface of the workpiece. 
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Accumulated lengths of subsurface porosity in the range 1.1-21.5mm were observed in the 

melt runs produced, although the majority of melt runs had accumulated lengths of 

porosity exceeding the Class B limit. The vast majority of pores observed were ≤0.1mm in 

diameter. A small number of melt runs were produced with the 250mm focusing lens 

which had accumulated lengths of porosity meeting the Class A criteria, but these were not 

reproducible. For instance, five melt runs made with the 250mm focusing lens, a welding 

speed of 66.7mm/s and a focal plane position of 0mm had accumulated lengths of porosity 

in the range 2.2-4.5mm. No melt runs were produced with the 500mm focusing lens which 

met the Class A criteria for accumulated length of subsurface porosity when the inert gas 

cross-jet was used. 

 

Figure 2 details the profiles of melt runs produced with the 250mm focusing lens, a 0mm 

focal plane position and with welding speeds of 66.7-133.3mm/s. The profiles are nail-

shaped, indicative of an increased absorption of the incident radiation at the top of the 

keyhole. All the cross-sectioned melt runs made with this optical configuration had profiles 

which met the Class A weld profile criteria. Undercut at the weld face and/or root 

concavity was present on the majority of melt runs cross-section, although these were 

within the levels specified by Class A. Figure 3 shows the profiles of melt runs produced 

with the 500mm focusing lens, a 0mm focal plane position and with welding speeds of 50-

83.3mm/s. All the fully penetrating melt runs sectioned were unacceptably undercut at the 

weld face, as indicated in Figure 3a and 3b, not meeting the Class A criteria.  

 

 
  (a)                    (b)                  (c) 

Figure 2 Melt runs produced with the YLS-1000-SM Yb-fibre laser in 2mm thickness Ti-

6Al-4V using a 250mm focusing lens, a 0mm focal plane position, and welding speeds of 

(a) 66.7mm/s, (b) 83.3mm/s, and (c) 133.3mm/s. 
 

 
  (a)        (b)        (c) 

Figure 3 Melt runs produced with the YLS-1000-SM Yb-fibre laser in 2mm thickness Ti-

6Al-4V using a 500mm focusing lens, a 0mm focal plane position, and welding speeds of 

(a) 50mm/s, (b) 66.7mm/s, and (c) 83.3mm/s. 
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3.2 YLR-4000 Yb-fibre Laser 

Melt runs were produced in 3.25mm thickness Ti-6Al-4V, with two different focusing 

optics (300 and 500mm) and at laser powers of 2.0, 3.0 and 4.0kW. Welding speeds of 

16.7-233.3mm/s were examined. For the results reported here, the beam waist position was 

coincident with the top surface of the workpiece when processing with the 300mm focal 

length lens. However, a beam waist positioned 4mm below the top surface of the 

workpiece was used when processing with the 500mm focal length lens; since this resulted 

in the most desirable visual appearance of the weld bead. All conditions reported here were 

fully penetrating. Spatter at the weld face was invariably observed on melt runs produced 

with a welding speed of 16.7-50mm/s. Above 50mm/s only occasional spatter was 

observed either side of the weld track. The roots of all melt runs were bright silver in 

colour – indicating that the flow rate of argon gas supplied through the efflux channel was 

adequate. However, several of the melt runs produced were oxidised on the top surface, but 

a chevron pattern was still observed on the top surface indicating that this oxidation most 

likely occurred after solidification. 

Table 4 details the accumulated length of subsurface porosity for selected melt runs 

produced with the YLR-4000 Yb-fibre laser. The maximum pore diameter observed was 

0.4mm, although the majority of pores were in the range 0.1 to 0.2mm in diameter. In 

general, melt runs with particularly low levels of subsurface porosity content could be 

produced with both focusing lenses, easily meeting all the Class A criteria relating to 

subsurface porosity.  

Table 4 Subsurface porosity content for selected melt runs produced in 3.25mm thickness 

Ti-6Al-4V with the YLR-4000 Yb-fibre laser. 

Beam width diameter, μm Power (kW) Welding Speed, mm/s Porosity, mm 

125 3.0 16.7 0.9 (Class A) 

125 3.0 33.3 0.9 (Class A) 

125 3.0 50.0 0.2 (Class A) 

125 4.0 41.7 0.2 (Class A) 

125 4.0 50.0 0.7 (Class A) 

125 4.0 58.3 0.4 (Class A) 

210 3.0 33.3 0.8 (Class A) 

210 3.0 41.7 1.9 (Class A) 

210 3.0 50.0 1.3(Class A) 

210 4.0 66.7 0.7 (Class A) 

210 4.0 83.3 0.9 (Class A) 

 

The melt runs produced at 4kW had a more desirable weld profile than those produced at 

lower powers and only these are detailed here. Figure 4 shows images of three transverse 

cross-sections of melt runs produced with the Yb-fibre laser, focused with a 300mm lens, 

at welding speeds of 41.7-133mm/s. With regards to defects at the weld face and root, 

concavity, to a maximum value of 0.17mm was invariably present at the root of the profile 

of those melt runs produced at welding speeds of 60mm/s and above. A small amount, 

~0.05mm, of non-continuous face undercut was also observed on those welds produced at 

relatively high welding speeds. Face undercut and root concavity was not observed in the 
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profile of those melt runs made at welding speeds of ~50mm/s or less. In fact, the Class A 

weld quality criteria relating to undercut and root concavity were consistently achieved on 

the melt runs produced with the YLR-4000 Yb-fibre laser. 

 

 
   (a)                 (b)       (c) 

Figure 4 Melt runs produced with the YLR-4000 Yb-fibre laser in 3.25mm thickness Ti-

6Al-4V using a 300mm focusing lens, a 0mm focal plane position and welding speeds of 

(a) 41.7mm/s, (b) 100mm/s, and (c) 133.3mm/s. 

 

3.3 YLS-5000 Yb-fibre Laser 

The face and root of the majority of melt runs produced with the YLS-5000 Yb-fibre laser 

were bright silver in colour; indicating that they had been adequately shielded. When melt 

runs with a discoloured face or root were produced, the shielding shoe was adjusted and 

the condition repeated. 

 

Using the 160mm focusing lens resulted in consistent full penetration in 4mm thickness Ti-

6Al-4V, for welding speeds of 50-100mm/s with a 0mm focal plane position. Consistent 

full penetration was not achieved at thicknesses >4mm at any of the welding speeds and 

focal plane position combinations examined. All the melt runs produced with the 160mm 

focusing lens and a 0mm focal plane position exhibited large amounts of spatter at the 

weld face. It was found that positioning the focal plane at least 2mm below the workpiece 

surface resulted in a condition free of heavy spatter. Furthermore, operating with a -2mm 

focal plane position increased the welding speed which resulted in consistent full 

penetration in 4mm thickness Ti-6Al-4V, to 116.7mm/s. 

 

With the 250mm focusing lens consistent full penetration in 4mm thickness Ti-6Al-4V 

could be achieved at welding speeds up to 100mm/s with a focal plane position of -2 to 

2mm. With the lowest welding speed examined (33mm/s), consistent full penetration could 

be achieved in thicknesses ≤ 6mm. Those melt runs which were fully penetrating were 

nearly free of weld spatter. The 500mm focusing lens enabled consistent full penetration in 

4mm thickness Ti-6Al-4V at welding speeds ≤66.7mm/s with a focal plane position of 

0mm. Consistent full penetration could also be achieved in 5mm thickness Ti-6Al-4V at 

welding speeds of 33.3mm/s. Melt runs produced with the 500mm focusing lens were 

typically free of heavy weld spatter. 

 

Accumulated lengths of subsurface porosity in the range 0.2 to 24.3mm were observed in 

the melt runs produced with the YLS-5000 Yb-fibre laser. The majority of pores counted 
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were ≤0.2mm in diameter, although diameters up to 0.5mm were present. The melt runs 

produced with the 160mm focusing lens in thicknesses ≥5mm all had accumulated lengths 

of porosity exceeding the Class B limit. Nevertheless, melt runs meeting the Class A 

subsurface porosity criteria were produced in the 4mm thickness Ti-6Al-4V. With a focal 

plane position of -2.0mm, an accumulated length of subsurface porosity ≤1.5mm was 

produced at all welding speeds between 50 and 116.7mm/s, as detailed in Table 5. 

 

Table 5 Subsurface porosity content of fully penetrating melt runs produced in 4mm 

thickness Ti-6Al-4V with the YLS-5000 Yb-fibre laser, a 160mm focusing lens, a -2mm 

focal plane position and at different welding speeds. 
Speed, mm/s Porosity, mm 

50 0.9 (Class A) 

66.7 0.6 (Class A) 

83.3 0.3 (Class A) 

100 1.1 (Class A) 

100 1.5 (Class A) 

116.7 1.2 (Class A) 

 

Similarly to the melt runs produced with the 160mm focusing lens, the consistent full 

penetration melt runs produced with the 250mm focusing lens had internal qualities 

meeting the criteria stipulated in Class A. As detailed in Table 6, accumulated lengths of 

porosity in the range 0.2-4.4mm were observed in the fully penetrating melt runs. Fully 

penetrating melt runs produced when using the 500mm focusing lens contained 

accumulated lengths of subsurface porosity exceeding the Class B limit for all welding 

speeds examined, except 50mm/s. Fully penetrating melt runs produced with a 50mm/s 

welding speed were just inside the Class A limit. In contrast to the other optical 

configurations, partially penetrating melt runs of excellent internal quality were produced 

at welding speeds of 66.7 and 83.3mm/s in all the workpiece thicknesses and for a wide 

range of focal plane positions. The Class A subsurface porosity contents of melt runs 

produced with a focal plane position of -2mm, giving the least weld spatter with this 

focusing optic, are detailed in Table 7. 
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Table 6 Subsurface porosity content of fully penetrating melt runs produced in 4-7mm 

thickness Ti-6Al-4V with the YLS-5000 Yb-fibre laser, a 250mm focusing lens, and at 

different welding speeds and focal plane positions. 

Focal plane position, mm Speed, mm/s Thickness, 

mm 
Porosity, mm 

-2 33.3 4 1.4 (Class A) 

-2 33.3 5 4.4 (Class A) 

-2 33.3 6 1.2 (Class A) 

0 33.3 4 0.5 (Class A) 

-2 50 4 2.1 (Class A) 

0 50 4 0.2 (Class A) 

2 66.7 4 1.1 (Class A) 

2 66.7 5 0.8 (Class A) 

0 83.3 4 1.5 (Class A) 

-1 100 4 1.8 (Class A) 

0 100 4 1.7 (Class A) 

1 100 4 0.9 (Class A) 

2 100 4 2.3 (Class A) 

 

Table 7 Subsurface porosity content of partially penetrating melt runs produced in 4-7mm 

thickness Ti-6Al-4V with the YLS-5000 Yb-fibre laser, a 500mm focusing lens, a welding 

speed of 66.7mm/s and different focal plane positions. 

Focus plane position, mm Thickness, mm Porosity, mm 

-6 7 0.3 (Class A) 

-6 6 0.2 (Class A) 

-6 5 0.5 (Class A) 

-6 4 1.3 (Class A) 

-2 7 0.8 (Class A) 

-2 6 1.2 (Class A) 

-2 5 1.8 (Class A) 

 

Figure 6 details the cross-sections of selected melt runs in 4mm thickness Ti-6Al-4V 

which also met the Class A subsurface porosity criteria. All the melt runs produced with a 

0mm focal plane position did not meet the weld profile criteria stipulated in Class A, B or 

C of AWS D17.1. However, manipulating the focal plane position to -2.0mm below 

resulted in profiles which were met the Class A criteria at welding speeds of 50, 66.7, and 

83.3mm/s. The cross-sections of further fully penetrating melt runs produced in 4 and 5mm 

thickness Ti-6Al-4V with the 230µm diameter beam waist are shown in Figure 7. In 

general, the severities of geometric defects occurring were greater than those produced 

with the smaller focused beam waist. Nevertheless, with the correct combination of 

welding speed and focal plane position (50mm/s and 0mm) a melt run in 4mm thickness 

Ti-6Al-4V was produced which met the Class A weld profile criteria (Figure 7b). This 

combination of process parameters also resulted in an accumulated length of subsurface 

porosity content of 0.2mm, easily meeting the Class A criteria. 
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              (a)          (b)     (c) 

Figure 6 Melt runs produced in 4mm thickness Ti-6Al-4V with the YLS-5000 Yb-fibre 

laser using a 160mm focusing lens, a -2.0mm focal plane position and welding speed of (a) 

83.3mm/s, (b) 66.7mm/s, and (c) 50mm/s. 

 

 
       (a)                    (b)                             (c) 

Figure 7 Melt runs produced in 4 (a,b) and 5mm (c) Ti-6Al-4V with the YLS-5000 Yb-

fibre laser using a 250mm focusing lens and welding speed of (a) 33.3mm/s, focal plane 

position of -2.0mm, (b) 50mm/s, focal plane position of 0mm, and (c) 33.3mm/s, focal 

plane position of -2.0mm. 

Figure 8 shows the cross-sections of melt runs produced in 5-7mm thickness Ti-6Al-4V 

with the 500mm focusing lens, a welding speed of 66.7mm/s and a focal plane position of -

2.0mm. Recalling from above, the partially penetrating melt runs in 6 and 7mm thickness 

Ti-6Al-4V detailed in Figure 8 resulted in an internal quality which easily met the Class A 

subsurface porosity criteria. All these melt runs exhibited undercut at the weld face, but 

this was within the Class A criteria. 

 

 
    (a)       (b)      (c) 

Figure 8 Melt runs produced in 5 (a), 6 (b), and 7mm (c) thickness Ti-6Al-4V with the 

YLS-5000 Yb-fibre laser, a 500mm focusing lens and welding speed of 66.7mm/s and 

focal plane position of -2.0mm. 
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3.4 Butt Welds 

Based on the results of the melt run trials, butt welds were produced with the YLS-5000 

Yb-fibre laser and the following conditions: 

1. 160mm focusing lens, a focal plane position of -2mm, a welding speed of 

66.7mm/s, and in 4mm thickness Ti-6Al-4V. 

2. 500mm focusing lens, a focal plane position of -2mm, a welding speed of 

66.7mm/s, and in 7, 6, 5 and 4mm thickness Ti-6Al-4V. 

 

All the butt welds produced were free of spatter and had a bright silver face and root. The 

quality of these butt welds, in terms of their subsurface porosity contents, is detailed in 

Table 8 and Figure 10 respectively. From these results it can be seen that the welding 

conditions developed as melt runs can be successfully transferred to close fitting butt 

joints, for the beam widths at least ≥150µm in diameter. 

 

Table 8 Subsurface porosity content of butt welds produced using 4-7mm thickness Ti-

6Al-4V with the YLS-5000 Yb-fibre laser; produced with a focal plane position of -2mm 

and a welding speed of 66.7mm/s. 
Beam width diameter, μm Thickness, mm Penetration Porosity, mm 

150 4 Full 1.0 (Class A) 

150 4 Full 0.5 (Class A) 

470 7 Partial 1.4 (Class A) 

470 6 Partial 0.6 (Class A) 

470 5 Partial 1.4 (Class A) 

470 4 Partial 1.1 (Class A) 

 

 
(a)    (b)    (c)    (d) 

Figure 9 Butt welds produced using 4 (a), 5 (b), 6 (c) and 7mm (d) thickness Ti-6Al-4V 

with the YLS-5000 Yb-fibre laser, a welding speed of 66.7mm/s, a focal plane position of -

2.0mm, and a focusing lens of 160mm (a) and 500mm (b,c,d). 

 

4. Discussion 

4.1 Aerospace Weld Quality Requirements 

The results indicate that excellent beam quality 1µm wavelength laser sources are capable 

of producing fully penetrating welds in Ti-6Al-4V which easily meet the criteria stipulated 

in Class A of AWS D17.1. Furthermore, partially penetrating welds may also be produced 

to a similar quality. These weld qualities have been achieved without the techniques 

required when welding with poorer beam quality 1µm wavelength laser sources. The 

excellent weld quality has been achieved with two different laser sources, the YLR-4000 

and the YLS-5000 Yb-fibre lasers, and a total of five different focused beams. Importantly, 
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this gives increased flexibility to the end-user when considering what focused beam 

properties are required for a particular application. 

 

However, it is known that company specific weld quality standards exist for particularly 

high-performance aerospace applications. An example of such a standard was reported by 

Hilton et al [10], who detailed the weld profile and subsurface porosity criteria which must 

be achieved if a particular welding process is to be adopted for the manufacture of 

aeroengine components. In comparison with the subsurface porosity criteria detailed in 

Class A of AWS D17.1, the company specific criteria are more stringent. In particular, the 

accumulated length of subsurface porosity is 1.7, 2.1 and 2.7mm for 3.25, 4.0 and 5.0mm 

thickness workpieces respectively. Nevertheless, the majority of melt runs reported in this 

research had accumulated lengths of porosity meeting this criterion. Furthermore, all the 

butt welds also met the accumulated length criterion. The company specific criterion 

relating to the maximum dimension of a single pore (1.0, 1.2 and 1.5mm for 3.25, 4.0 and 

≥5.0mm thickness workpieces respectively) was achieved with the YLR-4000 and YLS-

5000 Yb-fibre lasers. 

 

In terms of weld profile requirements, the company specific criteria are very similar in 

value to those required by Class A of AWS D17.1 [10]. Consequently, those melt runs and 

butt welds with profiles meeting the Class A requirements, also met the company specific 

criteria for these defects. However, further weld profile criteria exist in the company 

specific standard, relating to the dimensions of the fusion-zone at the weld face, waist and 

root. These Criteria are detailed in Table 9 [10]. 

 

Table 9 Company specific criteria relating to the dimensions of the fusion zone in welded 

titanium alloys [10]. 

Weld profile Material thickness (mm) 

9.3 5.0 3.0 

Face weld width, mm ≤9.0 ≤5.0 ≤4.0 

Minimum weld width, upper limit, mm 3.0 2.5 2.0 

Minimum weld width, lower limit, mm 2.0 1.5 1.0 

Root weld width, upper limit, mm 9.0 5.0 4.0 

Root weld width, lower limit, mm 2.0 1.5 1.0 

 

The face weld width was met on all melt runs and butt welds produced. However, the 

lower limits of the minimum weld width and the root weld width were not routinely 

achieved. The weld profile detailed in Figure 7a did meet the criteria, but this was 

produced with a relatively large beam waist (230µm) and a slow welding speed 

(33.3mm/s). All other fully penetrating melt runs and butt welds sectioned did not meet 

this requirement. To meet these weld width requirements with such finely focused laser 

beams, beam oscillation, with a suitable waveform, amplitude and frequency, may provide 

a potential solution. 

 

Potential weld qualities produced with the YLS-1000-SM Yb-fibre laser are not currently 

suitable for high-performance aerospace applications, at least with the optical 
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configuration examined, as indicated by their subsurface porosity contents being Class B 

or worse. Nevertheless, processing with these beam waists may be suitable for applications 

where the welded component is not under cyclic loads. One particular example is the 

welded assemblies of titanium pacemakers which are currently produced using pulsed laser 

sources necessitating lower speeds and higher heat inputs (although the components utilise 

sub 1mm wall thicknesses). Using beam waists of the order of ~50µm and a continuous-

wave process would increase productivity and potentially reduce distortion in the welded 

assembly. 

 

4.2 Beam Quality 

As can be seen from Sections 3.2 to 3.3, the focused outputs of the YLR-4000 and the 

YLS-5000 Yb-fibre lasers are both capable of producing fully penetrating welds in Ti-6Al-

4V with a relatively low subsurface porosity content. Such a result was not possible with 

the YLS-1000-SM Yb-fibre laser, with the optical configurations and material thickness 

considered, which was only capable of consistently producing melt runs to a Class B 

quality.  

From previous published works [10,14,15,17] it is known that special techniques are 

required to produce welds of similar quality when using 1µm wavelength laser beams with 

beam parameter products in the range 18-24mm.mrad. For instance, Hilton et al [10] used 

a 7kW Yb-fibre laser, of beam parameter product 18mm.mrad and focused into a 600µm 

diameter beam waist, to butt weld Ti-6Al-4V up to 9.3mm in thickness. Butt welds of a 

similar quality to those produced here were reported, but a jet of inert gas finely positioned 

so that it impinged on the laser-material interaction point was required. Similarly, 

Blackburn et al [14,15] required power modulation and dual focus techniques to produce 

high internal quality welds in titanium alloys up to 3.25mm in thickness with a 4kW 

Nd:YAG rod laser (beam parameter product of 24mm.mrad). 

The fundamental difference between the laser sources used in this investigation and those 

in previous research [10,14,15,17] is their beam quality; which is translated into different 

diameter beam waists, power densities, focusing cone half angles, and Rayleigh lengths 

depending upon the optical configuration used. The properties of the focused beam widths 

used in previous research are detailed in Table 10. 

Table 10 Properties of the focused laser beams used in previous research to weld titanium 

alloys. 

Property YLS-7000 HL4006D 

Beam parameter product, mm.mrad 18.0 24.0 

Collimating optic focal length, mm 120 200 

Raw beam diameter, mm 28.8 32 

Focusing optic focal length, mm 250 150 200 

Nominal beam waist (w0), μm 625 450 600 

Power density per kW, kW/mm
2
 3.3 6.3 3.5 

Focusing cone half angle (θ), deg 3.3 6.1 4.6 

Rayleigh length, mm 10.8 4.2 7.5 

5% Depth of focus (Zf), mm 6.9 2.7 4.8 
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As can be identified by comparing the properties of the focused beam widths in Table 10 to 

those detailed in Table 1, the primary difference is the change in power density for a given 

beam power. Excluding the results produced with the YLS-5000 Yb-fibre laser focused 

with a 500mm optic (since this only produced high quality partial penetration welds), melt 

runs and butt welds of very high internal quality were produced in the power density range 

23-82kW/mm
2
. This trend is likely to be related to the keyhole being more stable at higher 

power densities. Keyhole stability is dependent on the balance of the forces trying to keep 

the vapour cavity open (vaporisation pressure and radiation pressure) and the restoring 

pressures (surface tension, hydrostatic pressure and hydrodynamic pressure).  

The radiation pressure, ρl, tends to keep the keyhole open and can be described in its 

functional form as [18]: 

ρl = (I/c) [A + 2R]                 (Equation 1) 

Where I is the incident laser intensity, c is the speed of light, A the absorptivity and R the 

reflectivity.  

Therefore, a significant increase in the incident laser intensity will increase the radiation 

pressure inside the keyhole which will increase the resistive forces trying to keep the 

keyhole open, reduce keyhole instability, and decrease the formation of porosity in the 

weld. However, further research is required to understand the dynamic behaviour of the 

melt pool, keyhole and vapour plumes at different power densities, since a limit has been 

reached (~82kW/mm
2
) where power densities above this have a negative effect on the 

internal quality of the weld. 

4.3 Joint Configuration 

 

The bulk of trials performed in this study have been autogeneous melt runs on plate. This 

has primarily been performed to allow a large number of parameter combinations to be 

assessed without the influence of joint fit-up and edge preparation interfering with the 

interpretation of results. The butt welds in this study were made with beam widths of 

~150µm and ~470µm diameter, and the results indicate that conditions developed through 

melt run trials can successfully be transferred to close fitting butt joints.  

 

Nevertheless, operating with beam widths ~150µm diameter presents challenges in a 

production environment. This research has been performed in a research and development 

laboratory, enabling weld paths to be pre-programmed in onto a high accuracy XY table. 

Furthermore, high precision joint preparations have been used. Translating this into a 

production environment would significantly increase cost compared with using a beam 

widths >450µm diameter. The combined errors from robotic manipulators, joint 

preparation and in-process component distortion could lead to instances where the beam 

becomes misaligned with the joint, potentially leading to lack of fusion problems. Potential 

solutions to this problem include using a seam tracker to track the joint line, and/or using a 

process head incorporating a beam oscillator to produce an increased tolerance to joint gap 

variations. 
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5. Conclusions 

This research has evaluated the suitability of using excellent beam quality 1µm wavelength 

solid-state laser sources for producing near-net-shape titanium alloy aerospace 

components. Three Yb-fibre lasers, with beam parameter products in the range 0.33-

6.0mm.mrad, have been used to process Ti-6Al-4V using a continuous-wave power output. 

Analyses of subsurface porosity contents and weld profiles have allowed the following 

conclusions to be drawn: 

1. Fully penetrating autogeneous butt welds can be produced in up to 5.0mm 

thickness Ti-6Al-4V with a suitable focused YLS-5000 Yb-fibre laser, of beam 

parameter product 6.0mm.mrad, with a quality meeting the Class A criteria of 

AWS D17.1. In addition, partially penetrating welds can be produced to a similar 

quality. 

2. Fully penetrating melt runs in 3.25mm thickness Ti-6Al-4V can be produced with a 

suitably focussed YLR-4000 Yb-fibre laser, of beam parameter product 

1.6mm.mrad, with a quality meeting the Class A criteria of AWS D17.1. 

3. The subsurface porosity content of melt runs produced with the single mode Yb-

fibre laser in 2mm thickness Ti-6Al-4V are outside the criteria stipulated in Class A 

of AWS D17.1, although melt runs with acceptable profiles were produced. 

4. Melt runs and butt welds were also produced with an internal quality which met the 

most stringent company specific weld quality criteria. Profile defects at the weld 

face and root were within the allowable levels stipulated in these company specific 

weld quality criteria. However, the company specific weld quality criteria relating 

to minimum weld thickness and weld root thickness were not achieved at any of the 

welding conditions evaluated.  
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Chapter 9  

Porosity Formation 

9.1 Introduction 

Chapters 5-7 have presented the results and analysis of research performed using three 

different techniques to reduce weld metal porosity when welding titanium alloys with an 

Nd:YAG rod laser. In addition, Chapter 8 has presented the results of research performed 

using three different excellent beam quality 1 µm wavelength laser sources to weld titanium 

alloys from 2.0-7.0 mm thickness. Individual discussions of the results were presented in 

each of these four chapters. This Chapter builds on the results and discussions presented in 

Chapters 5-8, in order to develop an understanding of the origins of weld metal porosity 

when keyhole laser welding titanium alloys with 1 µm wavelength laser beams. A small 

number of further results, related to the analysis of pores in the weld metal, are included.  

9.2 Porosity Formation Mechanisms 

It was discussed in sub-Section 2.4.4 that weld metal porosity may occur during keyhole laser 

welding as a result of: 

1. Hydrogen rejection during solidification of the melt pool. 

2. Keyhole instability leading to the presence of metal vapour or shielding gases in the 

melt pool, which are then entrapped as pores on solidification of the melt pool. 

Based on the results of the literature review, it was decided that three different keyhole laser 

welding techniques (a jet of inert gas directed towards the laser-material interaction point, a 

modulated laser power output, and a dual focus technique) should be investigated to 

determine their ability to reduce porosity formation when keyhole laser welding titanium 

alloys with Nd:YAG rod laser sources. The results presented in Chapters 5-7 have shown that 
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the dynamic behaviour of the keyhole, melt pool and vapour plume are directly related to the 

formation of porosity in the weld metal.  

Both the directed gas jet and the dual focus (in either direction) techniques have shown that 

with the correct combination of parameters, the occurrences of keyhole collapse can be 

significantly reduced. High speed imaging and spectroscopic analysis of an optimised directed 

gas jet have shown that, when correctly set up, the jet disperses the formation of excited 

metal vapour above the keyhole and also significantly changes the hydrodynamic behaviour 

of the melt pool. Less instances of keyhole collapse were observed (although this was not 

quantified) and a particularly high internal quality melt run was produced. The high speed 

video analysis of the dual focus research indicated that, with the correct foci separation and 

welding speed, a slightly enlarged keyhole could be produced which resulted in fewer 

instances of keyhole collapse and a higher internal quality melt run. It is also thought that the 

increased power densities possible with the excellent beam quality 1 µm wavelength laser 

sources have a similar effect; increasing the radiation pressure within the keyhole, leading to 

reduced occurrences of keyhole collapse and a decreased content of weld metal porosity. 

Conversely, the modulated laser power output technique has relied upon the periodic closure 

of the keyhole to initiate an oscillating wave in the melt pool; which is thought to manipulate 

the angle of the vapour plume and aid the escape of any gas bubbles in the melt pool. 

The results of the research performed with the directed gas jet and the dual focus techniques 

indicate that the majority of porosity seen in the weld metal is as a result of keyhole 

instability and/or collapse; with the result being the entrapment of shielding gas in the weld 

metal. Nevertheless, a small number of further experiments and analysis were performed in 

an effort to confirm the origins of the porosity, specifically: 

 Analysis of the hydrogen content of welded and virgin parent material by vacuum hot 

extraction. 

 Analysis of the grain structure and chemical composition of the inner surface of pores. 

 Application of the Hadamard-Rybczynski equation to determine the necessary melt 

pool dimensions which would allow trapped gas bubbles to escape as a result of 

buoyancy forces. 
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9.3 Pore Gas Analysis 

9.3.1 Vacuum Hot Extraction 

Vacuum hot extraction was performed on virgin parent material and weld metals having both 

high and low accumulated lengths of weld metal porosity, to determine the hydrogen content 

of the samples. Details of the equipment used are given in Section 4.8. The samples chosen for 

analysis were: 

1. 2.0 mm thickness Ti-6Al-4V parent metal, un-welded but cleaned as per the method 

detailed in sub-Section 4.3.2. 

2. A butt weld (4W24) produced in 2.0 mm thickness Ti-6Al-4V with an accumulated 

length of subsurface porosity of ~20 mm per 76 mm weld length. 

3. A butt weld (4W26) produced in 2.0 mm thickness Ti-6Al-4V with an accumulated 

length of subsurface porosity of ~0.5 mm per 76 mm weld length.  

Table 9-1 summarises the results obtained, expressed as ppm of hydrogen evolved during 

sample heating and vacuum extraction. As Table 9-1 shows, a significant increase in hydrogen 

content in the weld metal when compared with the parent material was not detected, and, 

one sample of the high internal porosity content weld 4W24 had the lowest hydrogen content 

recorded. The potential explanations for this are: 

 The weld metal porosity observed is not associated with hydrogen. 

 The hot vacuum extraction technique is not sufficiently sensitive to detect changes in 

weld metal hydrogen associated with porosity. 

 Hydrogen effusion out of the pores is occurring during cooling after welding.  

Table 9-1. Hot vacuum extracted hydrogen contents for parent material and weld metals. 

Description Sample No. Hydrogen content, ppm 

2mm thickness Ti-6wt%Al-4wt%V parent metal, 
un-welded 

1 39 

2 48 

Weld metal 4W24 
1 25 

2 50 

Weld metal 4W26 
1 45 

2 50 
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9.3.2 Mass Spectroscopy 

Mass spectroscopy may be used to determine the chemical composition of the gas inside the 

pores, provided that it can be sampled. Research was undertaken in collaboration with a 

university to determine the gas contents of various size pores produced in keyhole laser 

welded titanium alloys, using a quadrupole gas analyser. The geometric positions of the 

porosity were determined using the three dimensional radiographs detailed in sub-Section 

4.7.2. Samples were machined to ensure the pore was no more than 500 μm below the 

machined surface. Prior to a sample manipulator ‘piercing’ the pore, a high vacuum (10-9 

Torr) needed to be made to ensure the safe (i.e. no leakage) transfer of the gas to the 

calibrated quadrupole. The quadrupole did not detect any gases inside the pore and further 

tests showed that the system was not capable of detecting the air in an 8 mm diameter 

purposely induced pore in an aluminium casting. This is unfortunate since such a result 

would have provided unquestionable results of whether the gas inside the pores was 

predominantly constituted of hydrogen or argon (the shielding gas). 

9.4 Scanning Electron Microscopy 

Cross-sections longitudinal to the welding direction were taken of the butt welds 4W24 and 

4W26. Their cross-sections are detailed in Figure 9-1. Scanning electron microscopy was 

used to investigate the chemical content of the inner surfaces of the pores found in 4W24. 

 
 
Figure 9-1. Longitudinal sections of a low porosity weld (4W26, left) and a high porosity weld 

(4W24, right), showing how the porosity is predominantly located in the bottom half-

thickness of the weld metal of weld 4W24. 

Secondary and backscattered electron images of typical pores found in the welded sampled 

4W24 are detailed in Figure 9-2. In general, secondary electron images provide information 

on surface topography, and orientation with respect to the location of the secondary electron 
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detector. Similarly, backscattered electron images provide information on local chemical 

composition (so called ‘atomic number contrast’, with lighter elements having lower contrast 

than heavier elements), as well as surface topography and orientation. Therefore, at first, it 

appeared that the darker pore shown in Figure 9-2 was of a different chemical composition 

than the others. Nevertheless, it was not possible to obtain an energy dispersive X-ray 

spectrum from this pore of sufficient signal strength, despite tilting the sample surface so that 

it was normal to the X-ray detector. This in itself suggests that the lack of contrast from this 

pore is due primarily to its depth below the surface, as shown schematically in Figure 9-3. 

 
Figure 9-2. Secondary (left) and back scattered (right) electron images of pores in weld 
4W24. 
 

 
 

Figure 9-3. Schematic explanation of contrast observed in electron images of pores. 

For shallower pores, energy dispersive X-ray spectra were obtained. These spectra only 

detected Ti, Al and V. Similarly, only Ti, Al and V were detected in spectra taken from the 

surrounding matrix. This suggests that whichever chemical species are present in the pores, 

they are not reacting with the matrix that encloses the pores, and are escaping on sectioning 

(e.g. inert or un-reactive gaseous elements), or are reacting with the matrix, but only forming 

a very thin reaction layer below the detection limit of SEM and EDX. Certainly, there was no 
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evidence of a thick reaction layer on the inner surfaces of the pores, as the solidification 

structure (e.g. dendrites and grain boundaries) of the Ti alloy was still clearly apparent, as 

shown in Figure 9-4. 

 
Figure 9-4. Internal structure of typical pores observed in keyhole laser welded titanium 

alloys. 

9.5 Bubble Rise Time 

As well as considering keyhole instability as a means of generating gas bubbles in the melt 

pool, consideration can also be given to bubble buoyancy forces, as at least some of the 

bubbles generated will escape from the melt pool before it solidifies. Shortly after forming, 

the bubbles will reach a terminal velocity, 𝑉𝑏 , which is determined by the buoyant rise and 

drag forces. The Hadamard-Rybczynski equation [Clift et al, 1978], derived from the Navier-

Stokes equation, can be used to calculate the rise velocity for bubbles in a fluid with a small 

Reynolds number (approximately <1.0): 

 

𝑉𝑏 =  
 2

9  𝑔𝑟2 𝜌𝑓−𝜌𝑔 

𝜇𝑓
  

𝜇𝑓 +𝜇𝑔

2𝜇𝑓 +3𝜇𝑔
     (9-1) 

 

where 𝑟 is the radius of the bubble, 𝜌𝑓  and 𝜌𝑔  the densities of the fluid and the gas 

respectively, and 𝜇𝑓  and 𝜇𝑔  the dynamic viscosity of the ambient fluid and the gas in the 

bubble respectively.  

 

The reduced version of the Hadamard-Rybczynski equation has been used to calculate the 

rise velocity and hence the rise time for bubbles of various sizes in 3.25 mm Ti-6Al-4V. The 

density and viscosity of the gas have been ignored (permissible given their relatively low 

Grain 

boundary 
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values compared with the molten titanium) and the results are detailed in Table 9-2. It can be 

seen that gas bubbles with a diameter of ~0.1 mm (the majority of those observed) had a rise 

velocity of 22.6 mms-1 which equates to a rise time of 0.144s to escape from the bottom of a 

titanium melt pool 3.25 mm deep. As would be expected, the larger diameter bubbles rise at a 

faster velocity. 

Table 9-2. Calculated rise speeds and times for gas bubbles in molten titanium over 3.25 mm. 

The viscosity and density values of molten titanium were taken at 2000 K (melting point 

1943 K). 

Gas bubble radius, mm Rise speed, mms-1 Rise time, s 

0.05 5.64 0.576 

0.1 22.6 0.144 

0.2 90.2 0.0360 

0.3 203 0.0160 

0.4 361 0.00901 

0.5 564 0.00577 

0.6 812 0.00400 

0.7 1110 0.00294 

 
 

Images from the high speed video observations have been used to determine the melt pool 

lengths and hence maximum times available for the gas bubbles to escape the molten 

material. The shortest melt pools were in the higher speed single spot continuous power melt 

runs. For example a 4.0 kW Nd:YAG laser beam focussed to a 0.45 mm diameter beam width 

produced a trailing melt pool of length ~5.1 mm at a welding speed of 5 mmin-1, which 

equates to a solidification time of 0.06 s. This would allow gas bubbles of up to ~0.2 mm in 

diameter to escape, which correlates well with the results achieved. However at slower 

welding speeds larger melt pools form and hence longer solidification times are observed. It 

would be expected this would facilitate the escape of gas bubbles in the melt pool, however, 

this is not the case. In Chapter 7 the subsurface weld metal porosity contents of melt runs 

produced with a 0.45 mm diameter beam width and a welding speed of ~50 mms-1 contained 

accumulated lengths of subsurface porosity of ~20 mm per 76 mm weld length. The melt pool 

length of such a welding condition observed from the high speed video was approximately 

10mm, resulting in a solidification time of 0.2 s.  

 

Nevertheless, this analysis ignores the complexity of molten metal flow in the melt pool. 

Matsunawa et al (1998) have revealed, using transmissive micro-focussed 
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X-ray techniques, that significant turbulence is present in the root of the melt pool, at least for 

partial penetration melt runs. Therefore, with certain combinations of welding parameters, 

the downward velocity component produced by the flow of molten metal flow in the melt 

pool must be comparable with or greater than the buoyancy velocity generated by the density 

differentials, such that gas bubbles are prevented from buoyant escape from the melt pool. 

9.6 Origin of Pore Gases 

The results of the above analyses combined with the results of the different keyhole laser 

welding techniques presented in Chapters 5-8, strongly suggest that the pores are formed as 

a result of keyhole instability (which is caused by the mechanisms discussed in Chapter 3) 

and closure which lead to the presence of shielding gases in the melt pool. These gas bubbles, 

as a result of the complex molten metal flows present in the melt pool are not able to escape 

prior to solidification and become entrapped as porosity. This statement can be made 

because of the following reasons: 

1. All the welded samples were prepared with nominally identical cleaning procedures, 

in order to remove any hydrated layers present on the surface of the workpiece. 

Furthermore, the samples were all shielded with identical flow rates of argon 

delivered through the same shielding shoe and efflux channel. However, large 

differences in the accumulated lengths of subsurface weld metal porosity were 

observed in all the melt runs and butt welds produced; on occasion with nominally 

identical parameters. However, little difference was found in the hydrogen content of 

welded samples produced with a very low or very high accumulated length of 

subsurface porosity. 

2. The grain structures present on the inner surface of typical pores indicated that an 

inert gas was present in the pores. The only inert gas the welding process was 

subjected to was argon. 

3. Calculation of the time required for bubbles to escape from the bottom of a melt pool 

prior to solidification has shown that a large number of melt runs produced at slower 

welding speeds should have had a sufficiently long melt pool that the vast majority of 

bubbles could escape. However, the majority of melt runs produced at slower speeds 

(with a continuous-wave output) had a significantly higher amount of subsurface 

porosity than those produced at higher speeds; suggesting more gas bubbles are 

produced at slower speeds and once these gas bubbles are present in melt pool it is 

particularly difficult for them to escape. Therefore, in order to achieve a low level of 

subsurface porosity a particularly stable keyhole is required which does not collapse 
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and lead to the presence of gas bubbles in the melt pool. Such stable keyholes have 

been shown to be produced with the directed gas jet and dual focus techniques, 

leading to welds of very high internal quality.  

It is acknowledged that the evidence provided for this argument is not conclusive. 

Nevertheless, all the evidence currently indicates that entrapment of inert shielding gas is the 

principal cause of weld metal porosity when keyhole laser welding adequately prepared and 

inert gas shielded titanium alloys with 1 µm wavelength laser beams. 
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Chapter 10  

The Sponsoring Company – TWI 

10.1  Introduction 

Part III of this thesis, which begins with this chapter, discusses the commercial implications 

of the project. In this chapter, the company who sponsored this research, TWI, is discussed; 

enabling the commercial implications of this project to be put into perspective. The chapter 

begins with a brief history and overview of TWI. TWI’s core business and key markets are 

then introduced. The structure of the organisation is then described, including details on how 

employees fit and work together within this structure. The history of innovation at TWI, how 

innovation is supported and developed into revenue streams are outlined. Finally, details 

concerning how this project aligned itself within the sponsoring company are given. 

10.2  History and Overview 

Officially, the company who provided sponsorship of this research project is TWI Ltd. 

However, TWI Ltd is a registered Trading Company in TWI Group, and TWI (The Welding 

Institute) is the ultimate holding company for all the trading companies in TWI Group. TWI 

Ltd was incorporated in 1999 [Companies House, 2010], although its origins date back to 

March 1946 when the British Welding Research Association (BWRA) was incorporated. The 

BWRA then became The Welding Institute (TWI) in 1968 [TWI, 2010a]. The TWI group 

includes TWI Ltd and other companies based in the United Kingdom and across the globe.  

TWI’s mission is to ‘deliver world class services in joining materials, engineering and allied 

technologies to meet the needs of a global membership and its associated community’ [TWI 
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2010b]. To perform this mission, TWI has specific expertise in the areas of welding and 

joining technologies, materials processing, non-destructive testing, structural integrity, 

corrosion management, materials testing and failure investigations. In addition, TWI provides 

training and examination services for the engineering community, and offers further services 

including software development and information services. 

The majority of services provided by TWI are at the corporate headquarters in Cambridge; 

although TWI has a growing presence throughout the United Kingdom and has established 

Technology Centres in Rotherham (incorporating laser based additive manufacture, friction 

stir, and surfacing research activities) and Middlesbrough (incorporating reduced pressure 

electron beam, arc welding, composites and coating research activities), a non-destructive 

testing Validation Centre in Port Talbot, and a training and examination services centre in 

Aberdeen. In order to maintain and develop their reputation world-wide, numerous offices 

have been set-up around the world in both established and developing economies (offices in 

China and the United States have recently been founded as a result of a growing number of 

Chinese and American Industrial Member companies). These offices provide a point of 

contact for potential customers and serve as a base to offer training and a certain amount of 

technical support. Agents also act as valuable points of contact in other areas of the world, 

including: Brazil, India, Japan, the Kingdom of Saudi Arabia, Korea, Kuwait and Taiwan. 

TWI Ltd currently trades as TWI Ltd, TWI Technology Centre (North East), TWI Technology 

Centre (Yorkshire), TWI Technology Centre (Wales), TWI Aberdeen and The NDT Validation 

Centre. The majority of other companies in TWI Group offer training services, although 

companies such as Plant Integrity Ltd and The Test House Ltd offer services and/or products 

complimentary to those offered by TWI Ltd. The TWI Group of companies currently employs 

approximately 650 people and had a turnover in excess of £45 million in 2009 [TWI, 2010c]. 

In contrast to the majority of other companies operating in the private sector, TWI is limited 

by guarantee and does not have a share capital. It is owned by its Industrial Member 

companies and is a non-profit distributing organisation. TWI currently has over 3000 

Industrial Member companies from 65 countries throughout the world. Industrial 

membership to TWI is based on an annual fee, which is determined by the Council [TWI, 

2010a]. The Council, led by the President and Chairman of the Council, is constituted of up to 

32 individuals who are either elected representatives of the Industrial Member companies or 

Professional Members of TWI. The Council is ultimately responsible for the running of TWI, 

although the majority of powers are delegated to the Executive Board (as indicated in Figure 
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10-1). The Executive Board, consisting Directors, Associate Directors and Non-executive 

Directors, is led by the Chief Executive. 

 

 

 

 

 

 

 

Figure 10-1. Structure of TWI from the Council to the Executive Board. 

 

10.3  Core Business and Key Markets 

TWI’s revenue is generated from a number of different streams, primarily: industrial 

membership fees; performing consultancy, and research and development work (detailed in 

Figure 10-2 as SCP & GSP, and Collaborative R&D); training and exams; licensing of 

innovative technologies and software programs; technology transfer programmes (detailed 

in Figure 10-2 as Collaborative TT); and, the sale of Teletest® Focus guided wave products 

and services. A small amount of revenue is also generated from other companies in TWI 

Group; such as The Test House. The revenue split between these products throughout the last 

eight years is detailed in Figure 10-2 [TWI, 2010c]. 

Council 

Executive Board 

Research Board 

Finance & General 
Purposes Committee 

Remuneration 
Committee 

Audit Committee 

Professional 
Board 

 Certification 
Management Board 

TWI Certification Ltd 



Chapter 10 The Sponsoring Company – TWI 

 
 

 

179 
 

 

Figure 10-2. TWI’s revenue by product [TWI, 2010c]. 

 

Over the past eight years an increasing proportion of TWI’s income has been generated by 

training and examination services, and the sale of Teletest products and services. However, 

the majority, approximately two thirds, of TWI’s revenue is currently generated from 

Industrial Membership fees, contract consultancy, and research and development. All the 

contract consultancy and research and development services are performed by TWI Ltd, and 

Industrial Membership of TWI is required to access these services. TWI has positioned itself 

as a market leader in welding and joining technologies, materials processing, non-destructive 

testing, structural integrity, failure investigations and training; enabling TWI to provide 

consultancy and research and development services to Industrial Member companies at any 

stage of a product’s life cycle. As a consequence, TWI regularly deals with technologies which 

are not fully mature. 

10.3.1 Technology Readiness Levels 

An accepted method for assessing the maturity of a developing technology is to use 

Technology Readiness Levels (TRLs); a graduated scale, ordinarily incorporating nine levels, 

which uses specific criteria to quantitatively measure the maturity of a technology. The TRLs 

are a metric conceived and first used by NASA [Saden et al, 1989] to aid planning during large 

projects that rely on the integration of numerous technologies into a system or sub-system. 

Measuring the maturity of all the technologies being integrated, with a technology 

independent method, ensures that individual technologies are not responsible for the delay of 

the entire project and effort can be effectively allocated. Figure 10-3 [NASA, 2010] details a 

TRL scale that is currently being used by NASA to aid integrated technology planning. It 
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consists of nine levels, where TRL 1 represents Basic Technology Research (i.e. the goals have 

been identified but the path to reach them has not) and TRL 9 the System Test, Launch and 

Operations. 

 

Figure 10-3. Technology Readiness Level (TRL) scale, as used by NASA [NASA, 2010]. 

The expertise of TWI, as a research and development organisation typically lies within TRL 2 

to TRL 7. Competition at the lower end of the scale comes from universities, who ordinarily 

operate up to TRL 4 (although this is increasing due to the increasing number of spin-off 

companies from universities). Competition at the higher end of the scale comes from large 

enterprises which have the capabilities and resources to take a technology to market. 

10.3.2 Research and Development Project Types 

TWI delivers consultancy and research and development services to its Industrial Member 

companies through four different types of projects: 

 the Core Research Programme (CRP), funded by Industrial Membership fees; 

 Single Client Projects (SCPs); 

 Group Sponsored Projects (GSPs); and, 

 Collaborative Projects. 
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The CRP consists of research projects performed on behalf of Industrial Member companies. 

Funding for this programme is taken from the Industrial Membership fees of Industrial 

Member companies, and the programme is worth in excess of £3 million per year. The CRP is 

guided by the Research Board (see Figure 10-1); which is a committee of representatives 

from Industrial Member companies. Topics for research in the CRP may be suggested by TWI 

or Industrial Member companies, and are ordinarily discussed and chosen every three years 

by the Research Board; consequently the programme reflects the needs of Industrial Member 

companies. Funding for research projects is typically allocated for a two or three year period, 

and the project is managed by a Project Leader. The deliverables of the CRP projects are 

formal technical reports. The Research Board meets annually to discuss progress of CRP 

projects, guide the programme, and review technical reports. Once approved by the Research 

Board, to be of an acceptable standard, the reports are published as Industrial Members 

Reports and made available to all the Industrial Member companies of TWI. 

SCPs are performed for individual Industrial Member companies. These projects are the core 

service provided by TWI, allowing research and development, and/or consultancy activities 

to be performed with the upmost confidentiality and impartiality. They are typically 

performed over short-medium term time frames, although longer term research projects are 

not uncommon. SCPs are initiated following the acceptance of a formal written proposal, 

where the scope duration and price of work is detailed, made by TWI to an Industrial 

Member company.  

Where the needs of several Industrial Member companies overlap, a GSP or a joint industry 

project (JIP) may be a more suitable type of project. These projects are funded equally by a 

group of Industrial Member companies, with the results being shared by all the companies in 

the consortium. They are a mechanism for enabling individual companies to access the 

results of large projects with reduced financial risk. GSPs are typically performed over 

medium-long term time frames. 

Collaborative projects are a funding mechanism which enables TWI to seek funding for 

medium-long term research and development projects. This type of project is ordinarily 

initiated as a response to calls for proposals. The proposal calls are issued by public sector 

funding bodies (such as the Technology Strategy Board in the United Kingdom, and the 

Framework programme by the European Commission) to invest in technologies which will 

benefit the wider community to which the call is issued.  

TWI has operated for over 60 years and has established itself in a diverse range of industrial 

sectors, including: aerospace; construction, engineering and general fabrication; automotive, 
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electronics and sensors; equipment consumables and materials; medical; military vehicles 

and equipment; off-highway and mining; oil, gas and chemical; power; rail; and, shipbuilding. 

Industrial Member companies are typically grouped by sector, with each sector being 

managed by an Industrial Sector Manager; this structuring allows TWI to identify ideas for 

CRP, GSP and Collaborative projects which are industry sector specific. 

10.4  Organisational Structure 

TWI is a global organisation, with offices based in Australia, Bahrain, China, Malaysia (6 in 

total), Thailand, the United Arab Emirates, the United Kingdom, the United States and 

Vietnam. However, the majority of these offices act as training centres or points of contact for 

Industrial Member companies. The majority of services are offered from TWI’s UK offices. 

Figure 10-4 details the organisational structure of TWI, from the Chief Executive down. 

Business Functions, such as finance and business development, are divided and typically led 

by a Director or an Associate Director. This division of Business Functions is in-line with most 

other commercial organisations. 

The business functions in TWI are typically divided into Groups (led by Group Managers) and 

sub-divided into Sections (led by Section Managers). Sections are typically organised using a 

capabilities based structure, whereby employees with common expertise work together; and, 

for Technology-based Sections are likely to include Technical Project Leaders (highly 

qualified scientists and engineers who manage the projects and provide technical input), 

technicians and administrators. The line management structure is clear; Section Managers 

are responsible for the employees in their Section and report to Group Managers, and Group 

Managers report to the Director or Associate Director in charge of their particular Business 

Function. 

Despite the clear divisions between business functions, typical projects performed by TWI 

require the expertise of employees in different Sections, Groups and Functions. After a 

prospect has been identified, as a result of the Business Development Function’s efforts, the 

relevant technical Section is tasked with developing a proposal in communication with the 

Industrial Member company. The Section Manager will delegate this task to a Project Leader 

who has the relevant technical background and experience; although the proposal will 

require input from the Commercial Group (ensuring correct Terms and Conditions are used), 

and potentially other Sections if their expertise and/or resources are required. Successful 

proposals will then be managed by the Project Leader, who has the responsibility for co-

ordinating the resources, which may spread different Groups and Business Functions, 
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required. Throughout the duration of the project, other Business Functions (Information 

Technology, Site Services etc) will also indirectly contribute to the delivery of the project. On 

completion of the project, the Finance and Services Business Function process payments, and 

the Business Development Business Function work to identify other potential projects with 

the client. 
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Figure 10-4. The organisational structure of TWI from the Chief Executive down to Groups 

and Sections. 
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10.5  Communication Channels 

The internal Communication Channels at TWI are primarily used for three reasons:  

1. To facilitate the straightforward and timely communication of information from 

senior management down the structure of the organisation. 

2. To manage interactions with clients (i.e. proposals, visits etc). 

3. To enable the successful delivery of projects to clients. 

Various channels are used effectively in TWI by the senior management to ensure that 

important information can be communicated vertically down through the organisation. For 

instance, the monthly publication ‘Team Brief’ (accessed electronically or on noticeboards) 

provides regular updates for staff on financial performance, health and safety notices, and 

new starters, as well as information on less regular subjects such as ISO 9001 audits. 

Important notices can be placed on the homepage of the company’s Intranet system, and, 

when necessary, be reproduced in hardcopy and placed onto noticeboards (positioned 

adjacent to refreshment machines). The company’s Mission statement, Values and Vision are 

communicated through these methods. 

Regular meetings are used at all levels in the organisation to review performance and 

undertake strategic planning. The monthly Executive Board meeting enables the Chief 

Executive and/or other Directors to provide information on the performance of the company 

and potential difficulties that have arisen to Group Managers. In addition, the Technology 

Group Managers meet on a monthly basis to discuss current and future issues facing 

Technology Groups. The key points of these meetings are communicated to non-management 

personnel through Section Meetings (led by the Section Manager), where items specific to 

each Section are primarily discussed. Communication upwards can be done through the 

relevant Section or Group Manager, or anonymously through the Staff Consultancy 

Committee, which meets every quarter with the Chief Executive and other senior 

management personnel. 

To facilitate the quick communication of the company’s cumulative performance throughout 

the year, TWI operates a balanced scorecard system. The balanced scorecard is a concise 

report that consists of a mixture of financial and non-financial measures of the company’s 

performance, with each measure being compared against a target value for the year. Balanced 

scorecards are not intended to replace conventional financial/operational reports, but 

provide a summary that is easily accessed and understood by all employees. The results are 

presented on a monthly basis on noticeboards and in Section Meetings. 
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The Intranet system is TWI’s primary information system. It acts as an information portal for 

employees in all Business Functions, having the functionality and providing the information 

which enables employees to perform their day-to-day tasks effectively. Financial information 

on specific projects can be found and time booked to that project using the timesheet system. 

The Human Resources and Quality, Environment, and Health & Safety manuals can be 

accessed. Information on Industrial Member companies can be found (such as previous and 

present projects and proposals, visit reports, relevant contacts). Individual Sections have 

their own drives allowing procedures, information etc which are specific to that Section to be 

stored. 

As discussed in Section 10.4, projects being run at TWI, whether being CRP projects, SCPs, 

GSPs or collaborative projects, require a team effort by persons from different Sections, 

Groups and/or Business Functions within the company. Communication with others involved 

on specific projects is done through the usual channels; face-to-face meetings; e-mails; and 

phone calls.  

10.6  Technology Innovation 

TWI has a history of technology innovation dating back to the 1940s when the factors 

controlling hydrogen induced heat affected zone cracking were first identified [TWI, 2010c]. 

Numerous other technology innovations have followed, including: aluminium and copper ball 

joining; linear friction welding of metals; reduced pressure electron beam welding; friction 

stir welding; and, Vitolane®. Technology innovations by TWI which are specific to laser 

materials processing include gas assisted laser cutting, the Clearweld® process and laser 

Surfi-Sculpt®. 

In 1967 TWI reported the use of a 300W pulsed slow flow CO2 laser and an oxygen jet, 

delivered co-axially with the laser beam, to cut carbon and stainless steels up to 2.5mm in 

thickness at speeds of 1mmin-1 [Sullivan and Houldcroft, 1967]. In the forty-three years that 

have elapsed since, laser cutting has become the biggest industrial use of high-power laser 

sources and machine sales for this application have exceed $4 Billion for the past five years 

[Belforte, 2010]. 

The Clearweld process, which was invented by TWI and has been subsequently patented, is a 

method for joining plastics transmissive to infrared wavelengths with infra-red laser beams. 

A colourless infrared absorbing medium is applied to the interface of two plastic components, 

enabling a weld to be produced which does not affect the surface appearance of the 

components.  
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Surfi-Sculpt is an advanced surface texturing process invented and patented by TWI in the 

previous decade. The process can be used to generate complex features on the surface of 

materials by rapidly deflecting a focussed power beam over its surface. Material is moved 

from the bulk solid of the workpiece to points on its surface by a combination of vapour 

pressure and surface tension effects; repeating this process numerous times results in the 

formation of arrays of autogeneous surface features that are used to enhance the functional 

performance of the workpiece. Electron beams, controlled using electromagnetic coils, were 

first used to demonstrate this process, although more recently the process has been 

demonstrated using near infra-red laser beams [Hilton and Nguyen, 2008; Blackburn and 

Hilton, 2010]. 

The income generated from the licensing of innovative technologies was worth 

approximately £1.8 million to TWI in 2010 (see Figure 10-2); as a result of TWI holding the 

patents for these innovative technologies. However, patents have a finite duration for which 

they can be licensed. Consequently, TWI must ensure that potential future technology 

innovations are encouraged and financially supported in order to maintain this income 

stream. Figure 10-5 is a flow chart which outlines how technology innovations are 

progressed from the initial idea to an income stream. 

 

 

Figure 10-5. The progression of technology innovations at TWI. 
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Stage 1 - the idea. Innovative ideas may occur as a result of a variety of direct and indirect 

activities; such as brainstorming sessions, conference attendance, project work, peer 

discussions, a site visit. To encourage the generation of ideas, TWI have initiated systems 

such as The Hub (a website accessible by employees which (i) encourages the informal 

discussion of technology using visual and audio stimuli, and (ii) allows book groups to be 

established to encourage communication between staff in different Sections) and Food for 

Thought sessions (informal presentations and discussions of recent technology innovations 

at lunchtimes, open to all staff members). 

Stage 2 – initial funding. A small amount, typically up to a day of financial support, of initial 

funding can be sought for a technology innovation by informally discussing the idea with the 

fund manager. Funding can be used for performing initial experiments to test the validity of 

an idea, performing a background literature or patent search, or acquiring an overview of the 

commercial demand/applications. If successful, the initial funding is likely to result in the 

technology being at TRL 1-2. 

Stage 3 – exploratory funding. If the idea is proved viable, then a formal application can be 

made to the Internal Research Committee for up to 4 weeks funding. This may be to perform 

experimental trials or a more extensive survey of an industry sector’s requirements and/or 

demand for a certain technology. The output at this stage is a concise technical report, which 

is discussed by the Internal Research Committee and ordinarily presented at a Food for 

Thought lunchtime networking session. This typically raises the innovation to TRL 2-3. 

Stage 4 – further development or an income stream. Following a successful exploratory 

project, the technology innovation can either be further developed through the CRP (typically 

over a period of 2-3 years), and/or be exploited by generating income through SCPs, GSPs 

and/or Collaborative projects. The TRL attained will be dependent upon the level of funding 

brought in. 

10.7  This Project 

This project has taken place in the Lasers and Sheet Processes Section of the Electron Beam, 

Friction and Laser (EFL) processes Technology Group; the position of the Section in the 

organisational structure of TWI is indicated in Figure 10-4. The EFL Technology Group 

consists of six Sections based in Cambridge, Rotherham or Middlesbrough. The Lasers and 

Sheet Processes Section undertakes research and development work for Industrial Member 

companies in the field of high power laser processing. Research and development projects 

performed by the Lasers and Sheet Processes Section are ordinarily in the fields of welding, 
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hybrid laser-arc welding, cutting and surfacing. A different Section in the EFL Technology 

Group is tasked with performing Research and Development with laser-based additive 

manufacturing technologies (Laser Direct Metal Deposition, Selective Laser Melting). In 

addition, the Advanced Manufacturing Processes Technology Group has capabilities for lower 

power laser processing (i.e. welding of polymers and micro-joining). 

This project has been part funded by the EPSRC (Engineering and Physical Sciences Research 

Council) under Grant no. C537750. The remaining funding has come from four years of TWI’s 

CRP funding. In addition, a small amount of exploratory funding (see Section 10.6) was also 

obtained to develop the high speed imaging techniques necessary for this project. In both 

cases the funding has been assigned a project number which has been booked to by the 

Research Engineer, enabling TWI to determine how much effort the project has required. The 

project number also allows other employees to perform work related to the project; for 

instance, radiography of the workpieces and the machining of jigs and fixtures. 

Three technical reports summarising the research performed have been prepared for and 

accepted by the Research Board, and are now available to all Industrial Member companies. 

As will be discussed in Chapter 11, the commercial drivers behind this project are from the 

aerospace sector. Consequently, the results have also been presented at two Aerospace 

Panels (meetings held every six months at TWI for Industrial Member companies in the 

aerospace sector).  
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Chapter 11  

Commercial Implications  

11.1  Introduction  

In the previous chapter, details of the sponsoring company, TWI, and how this project fitted 

into their organisation were given. This chapter presents the commercial implications of the 

research performed, beginning with the commercial drivers of the project. Other near-net-

shape welding technologies are then introduced and discussed with reference to keyhole 

laser welding. Following these, details of the progress made in this project, in terms of TRLs, 

are discussed. An overview of the necessary steps to advance this technology to higher TRLs 

and, ultimately, a production environment, are discussed. Finally, the potential future 

outcomes of the project for TWI are discussed. 

11.2  Commercial Drivers 

11.2.1 Increasing use of Titanium in the Aerospace Industry 

Among the commonly used metallic materials in the aerospace industry are titanium and its 

alloys, since their mechanical properties are particularly suitable for the service 

requirements of both airframe and aeroengine applications. Titanium alloys are employed in 

applications which require corrosion resistance, weight or space savings, fatigue resistance, 

or when the capability to operate within a large temperature differential is required. Table 

11-1 [Lütjering and Williams 2007, p.15] details the properties of titanium compared with 

selected other non-ferrous metallic aerospace components.  
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Table 11-1. Titanium properties compared with other non-ferrous metallic aerospace 

materials [Lütjering and Williams 2007, p.15]. 

Property Ti Al Ni 

Density (gcm-3) 4.5 2.7 8.9 

Melting temperature, at 1 atm (K) 1943 933 1728 

Thermal conductivity, at 300 K (Wm-1K-1) 20 234.5 90 

Specific heat capacity (J kg-1K-1) 523 900 440 

Linear coefficient of thermal expansion, at 300 K (10-6K-1) 8.4 23.1 13.4 

Yield Stress Level (MPa) 1000 500 1000 

Modulus of elasticity (GPa), at 300 K 115 72 200 

 

Alpha (α), alpha/beta (α/β), and beta (β) titanium alloys are all used, with the specific alloy 

chosen dependent upon the component’s operating requirements, for example [Boyer, 1996]: 

 Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6-2-4-2S), an α alloy, is utilised for blades, discs and 

rotors in aeroengines; 

 Ti-6Al-4V, an α/β alloy, is used in both static and dynamic aeroengine components at 

temperatures below 315°C, and is also employed throughout most airframe sections; 

and, 

  Ti-15V-3Cr-3Al-3Sn (β) is used for environmental control system ducting in the 

Boeing 777 as well as support brackets in certain airframe structures. 

It is expected that the demand for titanium alloys in the aerospace industry will rise by 

~100% throughout the next five years [Hall, 2009]. This demand is being stimulated by the 

commercial aerospace industry whose aircrafts are incorporating an increasing proportion of 

high specific strength materials as a result of environmental and fiscal pressures concerning 

fuel efficiency in this sector. This statement is evidenced by a statistic [Hale, 2006] regarding 

the 787 ‘Dreamliner’, which will incorporate ~15% titanium alloys (by weight), whereas its 

predecessor, the 777, incorporated ~8% titanium alloys (by weight). The use of titanium 

alloys in the military aerospace sector is a secondary driving force behind the total demand 

for titanium alloy components in the aerospace sector, where increased functionality and 

performance can be achieved by using lightweight structural materials [Hill, 2007]. 
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11.2.2 Near-Net-Shape Welding 

The production of many of these titanium alloy components by traditional manufacturing 

methods, i.e. casting or forging and/or machining, is ordinarily the preferred current method. 

High quality titanium alloy components can be produced with these manufacturing 

techniques, although the finished components may have buy-to-fly ratios (the mass of 

material prior to machining compared with the mass of the finished component) which are 

economically unattractive, in comparison with aluminium alloys and structural steels. It has 

been reported that for structural aerospace components the ratio may exceed 10:1 

[Threadgill et al, 2008]. Welding processes offer the potential to manufacture near-net-shape 

components, which may require post weld machining, that will have significantly lower buy-

to-fly ratios and hence reduce material wastage and overall component cost. Furthermore, a 

competitive industrial advantage may be gained by a net increase in productivity. Welding 

technologies such as electron beam and inert gas arc are already utilised to manufacture 

certain titanium alloy aerospace components [Hilton et al, 2007]. The potential exists for 

laser based welding processes to be considered for replacing these welding technologies 

and/or being utilised in the manufacture of new components, because of the increase in 

productivity possible. 

11.2.3 Keyhole Laser Welding 

Keyhole laser welding is a non-contact joining process characterised by its high focussed 

energy density, which is capable of producing high aspect ratio (width : depth) welds in many 

metallic materials. In comparison with competing welding technologies, discussed in Section 

11.3, keyhole laser welding can be performed at atmospheric pressure and with a relatively 

low heat input. The current generation of solid-state laser sources (Nd:YAG, Yb-fibre, and 

Yb:YAG disc lasers) emit laser light with a wavelength of ~1 µm, which can be delivered 

through optical fibres up to 50 m in length (depending upon the required beam quality). 

Consequently, the process may be easily automated using robotic manipulators, providing 

extensive flexibility in terms of part size and shape when compared with 10 µm wavelength 

laser, electron beam and friction welding systems.  

The potential for utilising laser welding to manufacture structural components for the 

aerospace industry has been considered since the mid 1960s [Earvolino and Kennedy, 1966]. 

Recent advances in high-power, solid-state laser sources (e.g. Nd:YAG rod, Yb-fibre, and 

Yb:YAG disc lasers) have increased the flexibility of the process, allowing laser beams, of very 

high beam quality and particularly high power densities, to be fibre delivered to the 



Chapter 11 Commercial Implications 

 
 

 

193 
 

workpiece. Consequently, for the manufacture of metallic aerospace components laser 

welding has received significantly more interest in recent years [e.g. Folkes & Pashby, 2003; 

Iammi et al, 2008]. 

Despite the potential advantages for utilising keyhole laser welding as a manufacturing 

technique for near-net-shape welding of titanium alloy components, if the welding process is 

to be adopted the produced welds must be of an acceptable quality. Specifications such as EN 

ISO 13919-2:2001, Welding – Electron and laser beam welded joints – Guidance on quality 

levels for imperfections, detail general requirements for welds produced with a power beam. 

Criteria relating to the weld metal porosity, weld profile and weld discoloration are included 

in the specification. However, EN ISO 13919 is neither industry sector nor material specific, 

and the acceptance criteria are not as stringent as those detailed in AWS D17.1:2001,  

Specification for Fusion Welding for Aerospace Applications. AWS D17.1 details the quality 

levels for welded aerospace structures for several metallic materials, including titanium 

alloys, produced using electric arc, laser beam, electron beam or oxyfuel welding processes. 

The criteria stated in AWS D17.1 may be suitable for certain non-primary airframe 

applications, although for aeroengine and primary airframe applications the acceptance 

criteria are known to be company specific and are significantly more stringent than those 

detailed in AWS D17.1 and EN ISO 13919 [Hilton et al, 2007].  

This thesis has presented the research performed in a joint project undertaken by The 

University of Manchester and TWI Ltd (the operating arm of TWI). The aim of this research 

project was to establish an understanding of the formation of weld metal porosity when keyhole 

laser welding titanium alloys with 1 µm wavelength laser sources and develop techniques which 

could prevent its formation. 

11.3  Competing Technologies 

In addition to keyhole laser welding, there are several other joining technologies capable of 

producing near-net-shape titanium alloy components for the aerospace industry; specifically, 

electron beam welding, friction stir welding, tungsten inert gas arc welding, and diffusion 

bonding. If keyhole laser welding is to be chosen above these other manufacturing 

techniques, to replace traditional casting and forging methods, it must offer the end-user a 

competitive advantage. This competitive advantage may come in the form of:  

1. an overall decrease in total production costs; or, 

2. an increased manufacturing capability (e.g. the possibility of manufacturing 

components of increased geometrical complexity, enabling greater design freedom). 
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Ultimately, the choice of manufacturing technique will depend upon the specific component. 

Detailed in the remainder of this Section is a comparison of keyhole laser welding, in terms of 

advantages and disadvantages, with the competing manufacturing technologies mentioned 

above. 

11.3.1 Tungsten Inert Gas Arc Welding 

Arc based welding processes use a power supply to produce an electric arc between the 

electrode and the workpiece; welds between abutting components are produced by 

traversing this arc along the joint. Several different arc welding techniques exist, depending 

upon the use of a consumable or non-consumable electrode, and whether an alternating or 

direct current is chosen.  

The most common arc welding process for welding titanium based alloys is tungsten inert gas 

(TIG) welding [Donachie, 2000] also known as gas tungsten arc welding (GTAW). The TIG 

welding process uses a non-consumable tungsten electrode, and similarly to keyhole laser 

welding the process may be either autogeneous, if the joint-gap variation is sufficiently low, 

or make use of filler material (which is added separately to the weldpool) as a solution for 

poor joint preparations. Several variations to the TIG welding process exist; specifically 

activated TIG(ATIG), keyhole mode TIG (K-TIG) [Jarvis, 2001], and keyhole mode plasma arc 

(PAW). 

A high purity inert shielding gas is used when TIG welding titanium based alloys. This 

shielding gas is ordinarily supplied through a trailing shield, analogous to that shown in 

Figure 4-2, to ensure the process and the cooling weld metal is adequately shielded from light 

elements. Argon and/or helium can be used as a shielding gas, whereby the addition of 

helium increases the arc temperature promoting increased welding speeds or weld 

penetration. However, the use of high purity helium, a gas which is not necessary when 

welding titanium based alloys with 1 µm wavelength laser beams, will increase the cost of the 

process.  

For high production environments, TIG welding may be mechanised using, for instance, a 6-

axis robot; enabling relatively complex components to be welded together. However, due to 

the size of the torch and the limited arc length, joints which are difficult to access (e.g. in a 

narrow recess) are not easily weldable using TIG welding equipment. Such joints are more 

readily accessible using a narrowly focussed laser beam of low divergence. 
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The principal advantage offered by TIG welding of titanium alloys over keyhole laser welding 

is the cost of capital equipment; a welding power source is approximately one order of 

magnitude less than a laser source. Automation equipment for both processes will be of a 

similar cost. However, in comparison with laser beam welding, TIG welding has a relatively 

high heat input. Figure 11-1 [Short, 2009] details the specific heat input for TIG and ATIG 

welding of titanium. For the most common thickness used in this project (i.e. 3.25 mm) a 

specific heat input of approximately 600 Jmm-1 was required, whereas with keyhole laser 

beam welding a specific heat input of 30-60 Jmm-1 was necessary. 

 

Figure 11-1. A comparison of penetration depth versus specific heat input for multipass C-

GTAW and ATIG welding of titanium [Short, 2009]. 

11.3.2 Electron Beam Welding 

Electron beam welding is also a fusion welding process. The process uses a highly focussed 

beam of high-velocity electrons to vaporise the workpiece and produce a keyhole, similarly to 

keyhole laser welding, which enables an efficient transfer of energy between the beam and 

the workpiece. Welds are produced by traversing the keyhole along the joint, and the process 

mechanisms are similar to those described in Sub-section 2.3.2; except that the kinetic energy 

of electrons is instantly converted into heat upon impact, rather than the Fresnel or inverse 

Bremsstrahlung absorption of photons. Focussed beam widths are <0.5 mm and 

consequently joint gap preparation as precise as that in autogeneous keyhole welding are 

required. 

Potential single pass penetration depths for electron beam welding are significantly higher 

than possible with keyhole laser welding and TIG welding. High power machines (>100 kW 
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rated output power) are capable of producing single pass welds of at least 300 mm in low 

alloy steel [Sanderson, 2006]. Such high penetration depths have not yet been produced using 

keyhole laser welding, although penetration depths >14 mm are not often required by the 

aerospace industry. At lower powers and at workpiece thicknesses <10 mm, high beam 

quality 1 µm wavelength laser sources and electron beam welding machines are capable of 

similar welding performances [Verhaeghe and Dance, 2008].  

High-vacuum electron beam machines require pressures of the order 10-5 – 10-2 mbar to 

operate effectively, resulting in the need for vacuum chambers and high-performance 

vacuum pumps. The high vacuum requirement limits the size of the component which can be 

welded, and allowances must also be made for the manipulation equipment since the 

component is moved underneath a stationary beam. This is a key advantage for the laser-

based welding process, since it can operate out of vacuum and is capable of processing 

complex part geometries using a 6-axis robotic manipulator. The vacuum chamber and high-

performance vacuum pumps add significantly to the investment required in capital 

equipment, if the electron beam welding method were chosen; although they do allow for 

complex inert gas shielding shoes to be avoided. Investment costs are likely to exceed those 

required for a laser welding facility of similar welding performance. Furthermore, 

productivity would be lower for electron beam welding since time also needs to be allocated 

for pump down of the vacuum chamber. 

Advancements made in the design of the electron beam gun have allowed electron beam 

welding to be performed at pressures approaching 1 mbar [Sanderson, 2006]. Operating at 

these pressures enables local seals and/or vacuum arrangements to be used instead of a 

high-vacuum chamber; having knock-on effects in terms of decreased capital equipment costs 

and pump down times. Nevertheless, it is hard to envisage such an arrangement having the 

same degree of flexibility as laser welding head mounted on an articulated robot arm 

operating at atmospheric pressure.  

11.3.3 Friction Stir Welding 

Friction stir welding is a solid-state joining technique conceived by Wayne Thomas of TWI in 

1991 [Dawes, 1995]. The welding technique uses a cylindrical tool, with an integral shoulder, 

that is driven through the joint line of two abutting components. The tool is rotated as it is 

driven, generating heat as a result of the friction with the workpiece. The resulting heat 

enables the consumable tool to be driven through the workpiece, at temperatures below the 
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workpiece’s melting point, and the weld is made as plasticised material is transferred from 

the leading to the trailing edge of the tool.  

The technique has found considerable uptake in the production of aluminium assemblies 

[Threadgill et al, 2009]. However, a study on the application of traditional friction stir 

welding techniques (i.e. a rotating shoulder) to join high temperature materials, such as 

titanium based alloys, found the following problems [Russell and Freeman, 2007]: 

 high performance, high temperature and therefore expensive tool materials were 

required; 

 the tools have an undesirable short life due to high wear; 

 a narrow processing window; and, 

 a process which is particularly sensitive to temperature variations. 

 

The stationary shoulder friction stir welding (SSFSW) technique was developed to overcome 

these problems, and friction stir welding of 6mm thickness Ti-6Al-4V panels has now been 

performed [Russell and Freeman, 2007]. Temperatures exceeding 500°C occur during SSFSW 

of titanium alloys [Edwards and Ramulu, 2010] requiring the use of inert shielding gases 

during welding. 

Excellent weld qualities, potentially defect free [Zhang et al, 2010], are produced during 

friction stir welding. Traditionally, thick section components may be welded using large 

gantry friction stir welding machines that are similar in cost to an electron beam welding 

machine. However, for thin section components, a high-performance articulated arm is 

capable of applying the forces required to initiate friction stir welding. Nevertheless, tool 

wear is still high, and tool geometry (which will limit access to certain joints) is dependent 

upon the mechanical performance of the tool’s material properties (as a result of induced 

bending stresses etc). 

11.3.4 Diffusion Bonding 

Diffusion bonding is a solid-state joining process, sometimes referred to as diffusion welding, 

which uses elevated temperatures and pressures, applied over long durations, to join 

components. It is often used in combination with superplastic forming to produce complex 

assemblies. Weld qualities produced by diffusion bonding are superior to all other welding 

techniques, since the micro-structures are identical to the parent material (temperatures 

below the phase transition temperatures are used). Diffusion bonding is performed in an 
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inert gas, a reducing atmosphere or a vacuum and is therefore ideally suited to processing of 

titanium based alloys. The primary disadvantages of diffusion bonding are: 

 Cost – large custom designed and built chambers are required to house large 

components. 

 Time – a typical diffusion bonding process for Ti-6Al-4V components is generally 

performed at pressures of up to 13.8 MPa, temperatures of 900-950°C and for 

durations of 60 to 360 minutes [Donachie, 2000]. 

11.4  Technology Readiness Level of Current Work  

The use of TRLs to determine the maturity of individual technologies was discussed in 

Section 10.3. Although four different techniques (Chapters 5-8) have been researched in this 

project, the fundamental technology has been keyhole laser welding. Keyhole laser welding is 

already an established technology in a number of industry sectors; such as the automotive 

sector [Tang, 2010]. Therefore, in this project it is more appropriate to use the TRLs as a 

metric to evaluate the progress made in using keyhole laser welding as a process to produce 

near-net-shape titanium alloy components for the aerospace industry. Table 11-2 [MoD, 2010] 

details the definitions and descriptions of TRLs 1-7; since these are the TRLs that TWI will 

most likely be involved with. 

Prior to performing this project, the technology for this application was at TRL 2-3. TRL 1, 

which is defined as “Basic principles observed and reported” [MoD, 2010], may have been 

reached as early as 1966 [Earvolino and Kennedy, 1966] when the potential for using laser 

welding to manufacture structural components for the aerospace industry was first 

identified. It should be noted that this would not have been for keyhole laser welding, since 

the power densities available would only have been sufficient for conduction limited laser 

welding of structural components. 
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Table 11-2. Technology Readiness Level (TRL) definitions and descriptions up to TRL 7, the 

level reached in this project [MoD, 2010].  

TRL Definition Description 

1 

Basic principles 
observed and reported.  

Lowest level of technology readiness. Blue skies scientific 
research begins to be translated into applied research 
and development (R&D). Examples might include paper 
studies of a technology’s basic properties.  

2 

Technology concept 
and/or application 
formulated.  

Invention begins. Once basic principles are observed, 
practical applications can be invented. Applications are 
speculative, and there may be no proof or detailed 
analysis to support the assumptions. Examples are 
limited to analytic. 

3 

Analytical and 
experimental critical 
function and/or 
characteristic proof-of-
concept.  

Active R&D is initiated. This includes analytical studies 
and laboratory studies to physically validate the 
analytical predictions of separate elements of the 
technology. Examples include components that are not 
yet integrated or representative.  

4 

Technology component 
and/or basic technology 
subsystem validation in 
laboratory 
environment.  

Basic technological components are integrated as sub-
systems to establish that they will work together. This is 
relatively low fidelity compared with the eventual 
system. Examples include integration of ad-hoc hardware 
in the laboratory.  

5 

Technology component 
and/or basic technology 
subsystem validation in 
relevant environment.  

Fidelity of technology increases significantly. The basic 
technological components are integrated with reasonably 
realistic supporting elements so they can be tested in a 
simulated environment. Examples include high fidelity 
laboratory integration of components, and basic field 
trials to prove capability concepts.  

6 

Technology system / 
sub-system model or 
prototype 
demonstration in a 
relevant environment.  

Representative model or prototype system, which is well 
beyond that of TRL 5, is tested in a relevant environment. 
Represents a major step up in a technology’s 
demonstrated readiness. Examples include field testing a 
prototype in a high fidelity laboratory environment or in 
a simulated operational environment operating under 
proposed protocols.  

7 

Technology prototype 
demonstration in an 
operational 
environment.  

Prototype near or at planned operational system. 
Represents a major step up from TRL 6 by requiring 
demonstration of an actual system prototype in an 
operational environment (e.g., in an aircraft, in a vehicle, 
or platform in the field).  

 

The results of early experiments on laser welding of titanium alloys by Mazumder and Steen 

[1977, 1980, 1982] helped raise the TRL to 2-3. TRL 2 is defined as “Technology concept 

and/or application formulated” [MoD, 2010], and TRL 3 as “Analytical and experimental 

critical function and/or characteristic proof-of-concept” [MoD, 2010]. It should be noted that 

all the research performed by Mazumder and Steen [1977, 1980, 1982] was using 10 µm 

wavelength laser sources, which do not offer the same flexibility as fibre optically delivered 
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1µm wavelength laser sources. The first results of using 1 µm wavelength laser sources for 

welding of titanium alloys for aerospace applications were reported by Li et al [1997] and 

Coste et al [1999]. However, only relatively few studies [Hilton et al, 2007; Mueller et al, 

2008] have reported the capability of 1 µm wavelength laser sources to produce the required 

weld quality in titanium alloy parts for aerospace applications. Furthermore, these studies 

were limited to use of a directed gas jet, and not the other techniques which have been 

developed in this project.   

In this project, TRL 3 was reached for all the four keyhole laser welding processes examined 

by performing analytical and experimental studies to determine the effects of key process 

parameters on the process dynamics, and subsequently the formation of porosity in the weld 

metal. The production of autogeneous melt runs in relevant thicknesses of titanium alloys 

with optimised parameter combinations enabled the proof of concept to be performed. The 

results of these autogeneous melt runs showed that the required weld quality, in terms of 

subsurface porosity, weld profile and discoloration, could be achieved. The vast majority of 

work performed in this project was to develop the project up to and within TRL 3. 

In addition, TRL 4, defined as “Technology component and/or basic technology subsystem 

validation in laboratory environment” [MoD, 2010], has been reached but not necessarily 

completed. The production of butt welds in the laboratory using the techniques developed, 

incorporating established edge preparation and clamping procedures, have validated that a 

complete welding procedure gives the desired weld quality in a laboratory environment in a 

simplistic component, somewhat representative of the joints used in the aerospace industry. 

11.5  Advancing the Technology Readiness Level 

The TRL of keyhole laser welding as a process to produce titanium alloy components for the 

aerospace industry is currently 4. Since keyhole laser welding is already an established 

manufacturing process in a number of industry sectors, the actions required to advance this 

technology to TRL 7 and beyond can be inferred from different industry sectors. 

TRL 5 is defined as “Technology system / sub-system model or prototype demonstration in a 

relevant environment” [MoD, 2010]. In order to reach this level, process parameters would 

need to be transferred onto actual aerospace components in a laboratory environment, with 

the produced welds then being characterised using the destructive and non-destructive 

techniques employed in this research. Components produced using this technology would 

then need to be tested in a simulated environment. 
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TRL 6 is defined as “Technology system / sub-system model or prototype demonstration in a 

relevant environment” [MoD, 2010]. Developing the technology to this level may require 

substantial effort, depending upon the required level of integration with other sub-systems. 

For instance, seam tracking and adaptive control systems may be required, and although 

these are readily available some degree of integration with the existing technology is 

required. In addition, weld quality sensors and/or post production non-destructive testing 

procedures may also need to be integrated. This level could be reached in a laboratory 

operating under the proposed protocols. 

TRL 7 is defined as “Technology prototype demonstration in an operational environment” 

[MoD, 2010]. The system developed to reach TRL 6 would need to be advanced further by 

producing a prototype system (not necessarily an ad-hoc arrangement of equipment in a 

laboratory) to be operated in a production environment. Further TRLs could then be reached 

by validating this technology and leading to full scale production. 

11.6  Potential Commercial Benefits 

The majority of the potential commercial benefits resulting from this project are related to 

advancing the TRL of keyhole laser welding titanium alloys for aerospace applications. Since 

TWI is affectively owned by its Industrial Member companies, and this project has been 

performed as part of the CRP and the results published to Industrial Member companies, the 

advancement of the TRL may or may not involve TWI.  

For TWI the potential commercial outcome of this project is primarily future project income. 

This income will come either as a result of a SCP, a GSP or a collaborative project. 

 Income from a SCP will primarily be generated by co-ordinating the results of this 

project with the business development function of TWI, and by presenting the results 

at relevant conferences and in trade publications. Enquiries, either from member or 

non-member companies, resulting from these business development activities may 

then lead to SCP income following further technical discussions and project scope 

developments. The advancement of the TRL by this method is limited only by the 

available financial resources of the Industrial Member company. 

 The launch of a GSP involving several Industrial Member companies would enable a 

much larger scope of work to be undertaken; enabling the TRL to be increased for all 

parties at a price shared equally between the Industrial Member companies. 

 Collaborative initiatives, particularly the Seventh Framework Programme run by the 

European Commission, enable TWI, in conjunction with other companies, to seek 
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funding for certain technologies that will benefit the wider European Economic 

Community. The results of this project could be used as the basis for producing a 

response to a particular funding call, enabling the TRL to be considerably advanced in 

a medium-long term project. 

Furthermore, the results of this project are likely to strengthen TWI’s reputation in the field 

of laser materials processing, which may lead to new Industrial Member companies and 

project work, either related or unrelated to the aerospace industry. 
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Chapter 12  

Conclusions and Recommendations 
for the Future 

12.1  Technical Conclusions 

The aim of this research project was to establish an understanding of the formation of weld 

metal porosity when keyhole laser welding titanium alloys with 1 µm wavelength laser sources 

and develop techniques which could prevent its formation. A detailed review of the background 

literature revealed that, much of the published research concerning the formation and 

prevention of porosity when keyhole laser welding was performed using materials other than 

titanium alloys. Nevertheless, the literature indicated that the most likely sources of porosity 

when keyhole laser welding titanium alloys were: 

1. The entrapment of inert shielding gas as a result of keyhole instability and/or 

closure. 

2. Hydrogen rejection during solidification of the melt pool. 

 

It was anticipated that if appropriate inert gas shielding and material preparation procedures 

were followed, then the formation of weld metal porosity as a result of hydrogen rejection 

would only be a minor cause. Consequently, three different techniques for controlling the 

levels of weld metal porosity when welding titanium alloys with Nd:YAG rod laser have been 

investigated using systematic experimentation and/or statistical experimental design and 

analysis techniques. In addition, the potential for welding titanium alloys to the required 

weld quality criteria with excellent beam quality 1 µm wavelength laser sources has been 

assessed.  
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Characterisation of the welding processes using high speed photography and optical 

spectroscopy, have allowed an original scientific understanding of the effects these methods 

have on the keyhole, melt pool and vapour plume behaviour to be established. Combining this 

with a thorough assessment of the weld qualities produced, has enabled the effects of these 

process behaviours on the formation of weld metal porosity to be determined. 

 

Nd:YAG Laser Welding with a Directed Gas Jet 

A jet of inert gas directed towards the laser-material interaction point can be used during 

Nd:YAG laser welding of titanium alloys to reduce subsurface weld metal porosity. The 

quality of butt welds produced in 3.25 mm thickness Ti-2.5Cu and Ti-6Al-4V were within the 

requirements stipulated in company specific aerospace weld quality criteria. Two statistically 

designed and analysed experiments were used to determine the key process parameters and 

their working tolerances which allow a high quality weld to be reproducibly achieved. The 

vapour plume above the keyhole when Nd:YAG laser welding Ti-2.5Cu has been characterised 

using optical spectroscopy and vapour plume sampling. The plume temperature was 

calculated to be ~3100 K. The main mechanisms of Nd:YAG laser beam attenuation by the 

vapour plume have been found to be primarily absorption but also scattering of the incident 

laser light by a population of 30–60 nm titanium particles. High speed observation of the 

welding process with and without an optimised directed gas jet has revealed that it disperses 

the formation of the vapour plume above the keyhole and interacts with the hydrodynamic 

behaviour of the melt pool. This prevents fluctuations in the keyhole’s vaporisation pressure 

and hence increases keyhole stability, thus reducing weld metal porosity. 

Modulated Nd:YAG Laser Welding 

Nd:YAG laser welding with a modulated output can be used to produce butt welds in titanium 

alloys, up to at least 3.25mm in thickness, with an excellent internal quality; provided a 

square wave modulation, a modulation frequency of ≥125 Hz, a duty cycle of 50%, and a 

suitable modulation amplitude were used. Undercut present at the weld root can be reduced 

through the adoption of a defocused laser beam and a decreased modulation amplitude. High 

speed observation and subsequent Fourier analysis has shown the presence of common 

periodic behaviours in the vapour plume and keyhole when low porosity welding conditions 

are used. An oscillating wave was created in the melt pool when low porosity welding 

conditions were used, which is thought to act in manipulating the ejection angle of the vapour 

plume and aiding the escape of the gas bubbles in the melt pool. 
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Dual Focus Nd:YAG Laser Welding 

A dual focus configuration can be used to decrease the formation of porosity when welding 

3.25 mm thickness Ti-6Al-4V with an Nd:YAG laser. The response surfaces models produced 

indicate that the weld metal porosity can be reduced to within levels stipulated by stringent 

aerospace criteria, if a relatively small foci separation (~0.3 mm) and a suitable welding 

speed (~80 mms-1) are used. Observation and subsequent analysis of the welding process 

using two high speed cameras has shown that small foci separations (0.15-0.30 mm) increase 

keyhole stability; and hence reduce the occurrences of keyhole collapse and the formation of 

weld metal porosity. 

Welding with Excellent Beam Quality 1 µm Wavelength Laser Sources 

Excellent beam quality 1μm wavelength laser sources were considered for producing high 

quality welds in titanium alloys. Three different Yb-fibre laser sources, with beam parameter 

products in the range 0.33-6.0mm.mrad, focused with different optical combinations, have 

been used to process 2.0-7.0mm thickness Ti-6Al-4V. The results indicate that butt welds 

which meet the subsurface porosity criteria of company specific aerospace standards can be 

produced with very different focused beams in the beam parameter product range 1.6-

6.0mm.mrad. No special techniques, such as a directed jet of inert gas, were required to 

produce these high quality welds, as is the case with poorer beam quality Nd:YAG rod laser 

sources. It is thought that the increased power density available with these laser sources 

reduces keyhole instability by increasing the radiation pressure within the keyhole. 

Porosity Formation 

The results of the different keyhole laser welding techniques (concluded above) and a 

characterisation of weld metal porosity, strongly indicate that the pores are formed as a 

result of keyhole instability and closure which lead to the presence of shielding gases in the 

melt pool. These gas bubbles, as a result of the complex molten metal flows present in the 

melt pool are not able to escape prior to solidification and become entrapped as porosity. 

12.2  Commercial Conclusions 

This project has been performed as part of the organisational strategy of TWI to maintain and 

strengthen their reputation as a world leading independent research and development 

institution in the fields of joining materials, engineering and allied technologies. The research 

was performed as part of TWI’s CRP on behalf of its Industrial Member companies.  
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The progress made in this project can be quantitatively defined using the TRL metric 

discussed in Section 10.3, if the technology is considered to be using keyhole laser welding as 

a process to produce near-net-shape titanium alloy components for the aerospace industry. The 

research has taken the technology from TRL 2-3 and has advanced this to TRL 4, through 

understanding the formation of porosity and developing procedures to reduce its occurrence. 

The necessary steps to develop this technology to TRL 7 and above have been outlined and, 

briefly are: 

TRL 5: Transferring process parameters developed in this research onto actual 

components, which would be characterised and tested in a simulated environment.  

TRL 6: Integrating the current system with other sub-systems (e.g a vision system for 

seam tracking) and operate this in a laboratory operating under proposed protocols. 

TRL 7: Production of a prototype system to be operated in a production environment. 

TRL 8-9: Validation of the system leading to full scale production. 

Reaching the higher TRL levels will enable end-users to take advantage of a technology which 

has significant advantages over competing joining techniques, specifically in the areas of: 

automation flexibility, heat input, processing speeds and equipment cost.  

The potential commercial outcomes of this project for TWI are related to the advancement of 

the TRL with Industrial Member companies. This may either be as a confidential SCP, a GSP or 

a collaborative project. Furthermore, it should not be forgotten that TWI is after all owned by 

its Industrial Member companies, who may use this research to develop their operations 

independently of TWI.  

12.3  Recommendations for the Future 

The majority of this research has been performed using a Nd:YAG rod laser source, and whilst 

it is has been shown that excellent weld qualities are achievable, it is also acknowledged that 

this form of laser source has been replaced by other solid-state lasers for beam quality and 

wall plug efficiency reasons. Nevertheless, 1µm wavelength direct diode lasers with beam 

qualities approaching that available from Nd:YAG rod lasers and wall plug efficiencies 

approximately an order of magnitude higher are becoming available [Trumpf, 2010b]. It is 

envisaged that these laser sources could be utilised for high quality laser welding of titanium 

alloys using the techniques and nominally identical process parameters to those developed in 

this thesis. Consequently, the majority of practical research that is recommended for 
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continuation of this work involves laser sources emitting beams with an excellent quality, 

specifically; Yb-fibre and Yb:YAG disc lasers. However, the transferability of the welding 

techniques developed in this project to other high-performance engineering metals, such as 

nickel alloys, should also be investigated. 

In this investigation it has been shown that melt runs with very low levels of subsurface weld 

metal porosity can be produced using a highly focussed Yb-fibre laser. Transferability of 

these conditions to industrial joints poses some problems, since the potential for the focussed 

beam missing the joint line is amplified. Furthermore, in comparison with the company 

specific weld quality criteria, the thickness of the melt runs at their waist may not be 

acceptable. Further practical research should be performed to investigate beam oscillating 

and beam spinning techniques when using highly focussed Yb-fibre and/or Yb-YAG disc laser 

sources. These techniques have the potential to reduce the effects of poor fit-up and/or beam 

misalignment, and produce wider welds. Previous research performed using these 

techniques when welding with CO2 laser sources may provide pertinent information for the 

required beam oscillation/spinning frequencies and amplitudes. 

The effect of different power densities on the resultant level of weld metal porosity in the 

weld metal has been highlighted. In order to better understand this effect, further research is 

required to observe the dynamic behaviours of the melt pool, keyhole and vapour plume 

when processing with very different focussed beams. This could be performed with the high 

speed imaging techniques used in this project. 

Statistical data analysis techniques have been used in this to project to determine the key 

process parameters when keyhole laser welding titanium alloys with Nd:YAG rod lasers. 

Similar statistical techniques should be applied to future welding studies performed with 

excellent beam quality 1 µm wavelength laser sources. The analyses parameters should 

include power density, welding speed, focal plane position and Rayleigh length. 

It is clear from the results of this project that the high speed observation of the keyhole and 

the vapour plume can be utilised to predict the porosity content of the resultant weld. 

Further research should be performed to develop a real-time process control system using 

the output of the high speed cameras. Such a system could refer to a database of signals 

known to cause weld metal porosity and apply an appropriate correction factor to the 

process parameters. 
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Characterisation of the gases present inside the pores produced, using mass spectroscopy, 

should give a definitive answer as to whether or not they are caused as a result of hydrogen 

or shielding gas entrapment. 

It was the initial intention of this research project to include a modelling aspect. Specifically, 

this would have utilised computational fluid dynamics (CFD) to model the keyhole and melt 

pool behaviour, such as in the research described by Amara and Fabbro [2008] and Geiger et 

al [2009]. However, such a model would have required the entire attention of this research 

project, which was not feasible given the aim and objectives of this project. Nevertheless, a 

CFD model capable of predicting the occurrences of keyhole instability would be very 

beneficial. Various permutations of parameters could be examined from the outset, leading to 

a significantly reduced number of experimental trials that must be performed. Initial 

validation of a CFD model could be performed using the high speed video data generated 

during this project. Further validation would most likely require use of an X-ray transmission 

imaging system similar to that used by Matsunawa et al [1998], or the observation of keyhole 

laser welding of ice or transparent glass. 
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