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ABSTRACT 
 

This research is concerned with the development of a mathematical approach for 

energy and mass transport in solidification modelling involving a control volume 

(CV) technique and finite element method (FEM) and incorporating non-physical 

variables in its solution.  The former technique is used to determine an equivalent 

capacitance to describe energy transport whilst the latter technique provides 

temperatures over the material domain. 

The numerical solution of the transport equations is achieved by the introduction of 

two concepts, i.e. weighted transport equations and non-physical variables.  The 

main aim is to establish equivalent transport equations that allow exact temporal 

integration and describe the behaviour of non-physical variables to replace the 

original governing transport equations. 

The variables defined are non-physical in the sense that they are dependent on 

the velocity of the moving CV.  This dependence is a consequence of constructing 

transport equations that do not include flux integrals.  The form of the transport 

equations facilitate the construction of a FEM formulation that is applicable to heat 

and mass transport problems and caters for singularities arising from phase-

change, which can prove difficult to model.  However, applying the non-physical 

enthalpy method (NEM) any singularity involved in the solidification process is 

precisely identified and annihilated 
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NOMENCLATURE 
 

 

ABBREVIATIONS 

CRS Computational reference system 

CV Control Volume 

CVCM Control Volume Capacitance Method 

MRS Material reference system 

NEM Non-physical Enthalpy Method 

n  Variable at time nt  

1n +  Variable at time 1nt +  

 

 

OPERATORS 

kΓ∇  Gradient operator on the tangential plane of the discontinuity front 

⋅⋅,  Inner product 

] [L  Outward brackets denoting jump condition or subtraction 

( ) ( ) xt,Xxt,xx ≡=≡ ∗∗ χ  e.g. diffeomorphisms 

∅ Null set 

 

 

SYMBOLS 

c  Heat capacitance 

c)  Non-physical capacitance 

ec)  Capacitance element 
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e
sc  Source capacitance element 

∗dx  Infinitesimal change on ∗x  

( ) mDv l
+  Directional derivative 

i
divΓ  Divergence defined locally at iΓ  

idV  Measure of the element volume sweep by the movement of phase 
boundary 

f  Element volume fraction 

g  Mass fraction 

Γ  Boundary for the domain Ω  

iΓ  Discontinuity or interface front 

h  Specific enthalpy 

h
)

 Non-physical enthalpy 

'h
)

 Source-like term 

p
kh
)

 Specific enthalpy for phase materials 

k  Thermal conductivity 

κ  Diffusivity 

L  Latent heat release 

n  Outward unit normal vector 

iΓΩ  Domain without source terms present 

∗Ω  CV transported by a velocity ∗v  

+Ω  CV transported by a velocity +v  

q  Heat flux 

ρ  Density 

ρ)  Non-physical density and part of the particular solution for h
)

 tied to 
∗v  

eS  Source term element 
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i∑  Boundary for the domain iΓ  that is on the tangential plane of the 
moving front 

T  Temperature 

t  Time 

eV  Element volume 

swept
kV  Swept volume resulting when kΓ  sweeps through the element  

VΔ  Sweep volume by the boundary kΓ  

v  Velocity field for MRS 

∗v  Velocity field for control volume or CRS  

x  Co-ordinate in the spatial reference system 

X  Co-ordinate in the material reference system 

∗χ  Co-ordinate in the computational reference system 

 

 

SUPERSCRIPTS 

e  Element 

i  Discontinuity front 

l  Liquid domain 

k  k-th front phase 

K  Interfaces 

eK  Subset of { }K:1k:k =  

liq Liquidus 

m Mass fraction approximation 

N Normal component 

s Solid domain 

sol solidus 

T Tangential component 
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SUBSCRIPTS 

* Related to the reference system or CV 

+ Related to a discontinuity in a moving CV 

×  Related to a discontinuity in a moving element 

C Material phase combination 
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1 CASTING 

  

 

 

1.1 Introduction 

A brief timeline of metal casting and its impact on the development and advancement of 

human cultures and civilization [1, 2, 3, 4], can be tracked over 6000 years of 

technological advances where metal casting has played an important role in our everyday 

lives. 

The oldest preserved cast parts, weapons and cult objects made of copper originate from 

the Middle East and India.  They date back to the period around 3000 BC.  It is possible 

that metal casting technology using moulds, originated in the Middle East.  However, there 

are suggestions that this process may have been developed in India and China. 

The oldest known casting in existence is a copper frog, 3200 B.C., casted in Mesopotamia, 

see Figure 1-1; after this Chinese cast iron was produced around 800 – 700 B.C., which has 

been confirmed with the earliest sand moulding found in China around 645 B.C. 

The melting ovens of the early Iron Age can partly be traced back to ceramic burning 

ovens.  The techniques involved in model and mould building were mastered very well 

from the outset.  Lost moulds made of loam and clay, wax models, single piece-work as 
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well as permanent moulds made of stone and metal for the serial production of casting 

parts were already being used.  Hollow casting parts discovered have similarly proved that 

their production by using cores was also in use during this era. 

Cast iron piping to transport water was first used in Dillenburg Castle, in 1455, in 

Germany; however the first man to describe the foundry process in writing was Vannoccio 

Biringuccio (1480 – 1539), in Italy, who is known as the father of the foundry industry.  A 

major step forward to the production of iron as a raw material for the industrial revolution 

was taken when Abraham Darby (1678 – 1717), in England, developed a method of 

producing pig iron in a blast furnace fuelled by coke rather than charcoal.  The first 

malleable iron, known as whiteheart, was developed in a cupola furnace, in 1720, in 

France, by Rene Antoine de Reaumur.  Steel production changed when Benjamin 

Huntsman, in 1750, in England, reintroduced the cast crucible process in which steel for 

the first time is completely melted producing a uniform composition within the melt.  A.G. 

Eckhardt revealed centrifugal casting basic principles, in 1809, in Soho, England.  Finally, 

in 1825, Aluminium, the most common metal on earth’s surface was isolated.  The first 

mass production process to produce steel from molten pig iron was achieved, in 1851, in 

England, by Sir Henry Bessemer and William Kelly, the process uses blasts of air to 

eliminated impurities, silicon, manganese and excess of carbon.  Metallography was 

developed in 1863, in Sheffield, England, by Henry C. Sarby; this was the first process to 

physically examine the surface of castings for quality analysis. 

At the beginning of the last century, the first true stainless steel was achieved, in 1913, in 

Sheffield, England, by Harry Brearley.  The spectroscopy for metal analysis was pioneered 

in 1930 at the University of Michigan.  Ductile iron was invented in 1943 by adding 

magnesium to the widely used grey iron.  The shell moulding process was invented during 

WWII, in 1947, in Germany, by J. Croning.  The hot-box process of making and curing 

cores in one operation was developed in 1953, eliminating the use of dielectric drying 

ovens.  The lost-foam casting process was invented in 1964 by M.C. Fleming, which in the 

1980’s had an impact on the automobile industry in the production of engine blocks, 

cylinder heads, crankshafts and transmissions.  The scanning electron microscope was 

invented in 1965 by the Cambridge University Engineering Department in England.  The 

first metal matrix composite casting was poured in 1965, in New York, USA.  The cold-

box process was developed in 1968.  This used sand mixed with a catalyst that cured at 

room temperature.  The semi-solid metalworking (SSM) process was conceived in the 

early 1970’s at the Massachusetts Institute of Technology.  This combines casting and 

forging features.  The V-process moulding was developed in 1971, in Japan.  This uses 
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unbonded sand and a vacuum.  The first cast metal matrix composite automobile part, a 

brake rotor, was used in production in 1996 by Lotus.  The electromagnetic casting process 

was developed in 1997; this reduces the cost and energy expenditure in steel production. 

In casting’s long journey, this began over 6000 years ago between the Tigris and Euphrates 

Rivers, in a land known as Mesopotamia.  Ancient artisans produced idols and ornaments 

using natural beeswax for patterns, clay for moulds and manually operated bellows for 

stoking furnaces.  Today’s precision components for spacecraft and jet engines are 

produced by investment castings using the latest advances in computer technology, 

robotics and counter-gravity casting techniques. 

Computer aided engineering in the metal forming industry has been an area of intense 

research activity for the last three decades.  In order to remain competitive in today’s 

market, a modern metal forming industry has to take full advantage of the benefits offered 

by such techniques.  Thus, process problems can be analysed in detail, faster and at an 

earlier stage in the design cycle [5].  The modelling of liquid-solid phase-change 

phenomena is extremely important in many areas of science and engineering for example 

in the automotive and aerospace industries this has become increasingly intense.  As 

suppliers and manufacturers of components strive to maintain profit margins whilst 

reducing cost, it is evident that the manufacturing process involved should be more 

productive and of higher quality. 

1.2 Solidification Process 

Solidification involves a wide range of physical phenomena but the most challenging to 

model is the complexity of interaction among physical phenomena occurring on different 

length scales ranging from atomic rearrangements over single crystal-melt interaction, to 

heat release at the system level.  Dendritic solidification and physical scales are shown in 

Figure 1-2 and classified as [6]: 

(a) Macroscopic scale: mass, momentum, heat and species transport phenomena, 

cooling rate, latent heat evolution, grain patterns, macrosegregation, porosity, 

volume change 

(b) Grain scale: columnar and equiaxed crystals, local heat and species transfer, 

interfacial drag, spacing, coarsing 

(c) Interfacial scale: interface instabilities, capillarity, local equilibrium, dendrite tip 

under cooling and movement 

(d) Atomic scale: nucleation and multiplication of crystals, atomic attachment kinetics 

and interface structure (faceted, non-faceted) 
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Solidification during the phase-change involves rearrangements of atoms to form a new 

crystal structure.  Therefore, in terms of energy levels it requires heat flux from the system 

to the surroundings which changes the free energies and also the relative thermodynamic 

stability of the phase present.  Small grains having random orientations are nucleated in the 

melt and rapidly progress developing dendritic arms, which is shown in Figure 1-3.  An 

equiaxed zone is formed close to the mould surface and competitive growth is experienced 

by the random oriented outer equiaxed grains, see Figure 1-4, which have a preferred 

growth direction (parallel and opposite to the direction of the heat flow) to eliminate the 

others [7].  Columnar grains (planar interface) are the case for pure materials and equiaxed 

dendrites (constitutional) are  the case for alloys. 

The essential feature of solidification is the existence of a moving interface between the 

liquid and the solid phases at the macroscopic scale as defined in Figure 1-2, where the 

moving front has to be determined.  Heat is released/absorbed within the moving front and 

thermal properties of the liquid and the solid phases are thus different, which makes this 

problem complex and highly non-linear. 

1.3 Conventional solidification processes 

Recent research has demonstrated that if the liquid velocity exceeds a critical velocity there 

will be a danger that the surface of the liquid metal may fold over by surface turbulence 

[8].  Therefore, a surface oxide film may fold into the bulk of the liquid if the speed of 

advance of the liquid front exceeds this critical velocity.  The folded films constitute 

initiation sites for gas entrapment, shrinkage cavities and hot tears.  After being frozen into 

the casting the folded films become effective cracks, lowering strength and fatigue 

resistance.  Castings, for which velocities throughout the mould never exceed the critical 

velocity, are consistently strong with a high fatigue resistance.  Hence, a formation of 

defects can occur if the critical velocity is exceeded at the gate entrance.  However, the 

following essential terminology used in the casting process is listed, which facilitates the 

understanding of casting processes [5] 

Terminology 

• Pattern: An approximate duplicate of the final casting used to form the mould 

cavity. 

• Moulding material: The material that is packed around the pattern and then the 

pattern is removed to leave the cavity where the casting material will be poured. 

• Flask: The rigid wood or metal frame that holds the moulding material. 
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• Cope: The top half of the pattern, flask, mould or core. 

• Drag: The bottom half of the pattern, flask, mould or core. 

• Core: An insert in the mould that produces internal features in the casting, such as 

holes. 

• Core print: The region added to the pattern, core or mould used to locate and 

support the core. 

• Mould cavity: The combined open area of the moulding material and core where 

the metal is poured to produce the casting. 

• Riser: An extra space in the mould that fills with molten material to compensate for 

shrinkage during solidification. 

• Gating system: The connected channels that deliver molten material into the mould 

cavities. 

• Pouring cup or pouring basin: The part of the gating system that receives the 

molten material from the pouring vessel. 

• Sprue: The pouring cup attaches to the sprue, which is the vertical part of the gating 

system.  The other end of the sprue attaches to the runners. 

• Runners: The horizontal portion of the gating system that connects the sprues to the 

gates. 

• Gates: The controlled entrances from the runners into the mould cavities. 

• Vents: Additional channels that provide an escape for gases generated during the 

pour. 

• Parting line or parting surface: The interface between the cope and drag halves of 

the mould, flask or pattern. 

• Draft: The taper on the casting or pattern that allow it to be withdrawn from the 

mould 

• Core box: The mould or die used to produce the cores. 

Although many conventional processes suffer from defects, they still form an important 

part of the casting industry.  The following general classification is based on the re-

usability of the mould for the solidification process. 

1.3.1 Expendable mould casting 

Expendable mould casting is a generic classification that includes plaster, sand, shell, 

investment (lost-wax technique) and lost-foam mouldings.  This method of mould casting 

involves the use of temporary, non-reusable moulds. 
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1.3.1.1 Waste moulding of plaster 

A durable plaster intermediate is often used as a stage toward the production of a bronze 

sculpture or as a pointing guide for the creation of a carved stone.  A plaster reproduction 

of the clay original work is more durable and resistant to cracking due to the fact that it 

does not need be constantly moist, hence it can be storage.  In waste moulding a simple 

and thin plaster mould, reinforced by sisal or burlap, is cast over the original clay mixture.  

After, the plaster reproduction is cured and removed from the original clay during which 

incidentally some fine details can be destroyed in the undercuts present in the clay.  

However any details have been captured in the plaster mould [2].  The mould may then at 

any later time be used to cast a plaster positive image, identical to the original clay.  The 

surface of this plaster may be further refined and may be painted and waxed to resemble a 

finished bronze casting [5]. 

1.3.1.2 Sand casting 

Sand casting is one of the most popular and simplest types of casting that has been used for 

centuries.  Sand casting is ideal for small batches to be produced in comparison to 

permanent mould casting [9].  A green (moist) sand casting has almost no part weight 

limit, whereas dry sand has a practical part mass limit of 2300–2700 kg.  Minimum part 

weight ranges from 0.075–0.1 kg.  The sand is bonded together using clays, chemical 

binders or polymerized oils (such as motor oil).  Sand can be recycled many times in most 

operations and requires little maintenance. 

The mould is formed in a mould box with two halves that helps in removing the pattern, 

shown in Figure 1-5.  Sand moulds are temporary in nature; a new mould has to be formed 

each time for an individual casting. 

Drag, the bottom half of the mould, is made on a moulding board.  Cores require greater 

strength to hold their form during pouring.  Dimensional precision also needs to be greater 

because interior surfaces are more difficult to machine, hence errors are costly to fix.  One 

of the chemical binding systems is used in forming the cores.  Once the core is inserted, the 

top half of the mould or the cope, is placed on top.  The interface between the two mould 

halves is called a parting line.  Sometimes, weights are placed on the cope, which helps in 

securing the two halves together [10]. 

1.3.1.3 Plaster mould casting 

Plaster casting is similar to sand casting except that plaster of paris is substituted for sand 

as a mould material. 
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Generally the form takes less than a week to prepare after which a production rate of 1–10 

units/hr-mould can be achieved with items as massive as 45 kg (99 lb) and as small as 30 g 

(1 oz) with very good surface finish and close tolerances [10].  Plaster casting is an 

inexpensive alternative to other moulding processes for complex parts due to the low cost 

of the plaster and its ability to produce near net shape castings.  The biggest disadvantage 

is that it can only be used with low melting point non-ferrous materials such as aluminium, 

copper, magnesium and zinc [5] 

1.3.1.4 Shell moulding 

Shell moulding is similar to sand casting but the moulding cavity is formed by a hardened 

"shell" of sand instead of flask filled with sand.  The sand used in this process is finer than 

normal casting sand and is mixed with a resin so that it can be heated by the pattern and 

harden into a shell around the pattern.  Because of the resin it gives a much finer surface 

finish, see Figure 1-6.  The process is easily automated and more precise than sand casting 

[2].  Common metals that are cast include cast iron, aluminium, magnesium and copper 

alloys.  This process is ideal for complex items that are small to medium sized. 

1.3.1.5 Investment casting 

Investment casting (known as lost-wax casting) is a process that has been practised for 

thousands of years with the lost-wax process being one of the oldest known metal forming 

techniques.  From 6000 years ago when beeswax formed the pattern, to today’s high 

technology waxes, refractory materials and specialist alloys, the castings ensure that high-

quality components are produced with key benefits of accuracy, repeatability, versatility 

and integrity [2]. 

Investment casting derives its name from the fact that the pattern is invested or surrounded 

with a refractory material.  The wax patterns require extreme care for they are not strong 

enough to withstand forces encountered during the mould making.  One advantage of 

investment casting is that the wax can be re-used [10] 

The process is suitable for repeatable production of net shape components from a variety of 

different metals and high performance alloys.  Although generally used for small castings, 

this process has been used to produce complete aircraft door frames with steel castings of 

up to 300 kg and aluminium castings of up to 30 kg.  Compared to other casting processes 

such as die casting or sand casting it can be an expensive process.  However the 

components that can be produced using investment casting can incorporate intricate 
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contours and in most cases the components are cast near net shape thus requiring little or 

no rework once cast. 

1.3.1.6 Lost-foam casting 

Lost-foam casting is a type of evaporative-pattern casting process that is similar to 

investment casting except that foam is used for the pattern instead of wax, see Figure 1-7.  

This process takes advantage of the low boiling point of foam to simplify the investment 

casting process by removing the need to melt the wax out of the mould [5, 10]. 

1.3.1.7 Full-mould casting 

Full-mould casting is an evaporative-pattern casting process which is a combination of 

sand casting and lost-foam casting.  It uses an expanded polystyrene foam pattern which is 

then surrounded by sand much like sand casting.  The metal is then poured directly into the 

mould, which vaporizes the foam upon contact [10]. 

1.3.1.8 Vacuum casting 

In this process a thin preheated sheet of plastic film is placed over a pattern and a vacuum 

is applied to draw the sheet to the pattern contours.  The flask containing the mould is 

filled with dry unbonded silica sand which is compacted by vibration.  A second plastic 

sheet is placed at the back of the flask and the mould is further compacted under vacuum.  

Whilst the vacuum process is maintained, the pattern is then removed and the two halves of 

the mould are joined and secured for pouring, see Figure 1-8.  After the metal has 

solidified, the vacuum is removed and the casting is released [2].  The vacuum process can 

produce castings of all sizes and shapes which range from thin-sectioned curtain walls in 

aluminium to cast iron pressure pipe fittings and stainless steel valve bodies to massive 8-

tonne ship anchors [9]. 

1.3.2 Non-expendable mould casting 

Non-expendable mould casting differs from expendable processes in that the mould will 

have a considerably longer production life.  This technique includes at least four different 

methods: permanent, die-casting, semi-solid casting, centrifugal and continuous casting. 

1.3.2.1 Permanent mould casting 

Permanent mould casting is a metal casting process that employs reusable moulds 

("permanent moulds"), usually made from metal.  The most common process uses gravity 

to fill the mould however gas pressure or a vacuum are also used.  Common casting metals 
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are aluminium, magnesium and copper alloys.  Other materials include tin, zinc, lead 

alloys, iron and steel are also cast in graphite moulds [11, 12].  Permanent moulds while 

lasting more than one casting still have a limited life before wearing out.  

1.3.2.2 Die casting 

The die-casting process forces molten metal under high pressure into mould cavities which 

are later machined into the desirable form.  Most die-castings are made from nonferrous 

metals, specifically zinc, copper and aluminium based alloys but ferrous metal die-castings 

are possible [5, 12]. 

High pressure die-casting is the most common process used, where molten non-ferrous 

metals are injected at high pressure into a metal mould by a hydraulically powered piston, 

see Figure 1-9.  The equipment for the process can be very costly, hence high pressure die-

casting is only economically viable when used for high volume production [5]. 

Low pressure die-casting uses a die that is filled from a pressurised crucible underneath, 

see Figure 1-10.  The process is particularly suited to the production of rotationally 

symmetrical products such as automobile wheels. 

The die-casting method is especially suited for applications where many small to medium 

sized parts are needed with good detail, a fine surface quality and dimensional consistency. 

1.3.2.3 Semi-solid metal casting 

Semi-solid metal (SSM) casting is a modified die casting process that reduces or eliminates 

the residual porosity present in most die castings.  Rather than using liquid metal as the 

feed material, SSM casting uses a higher viscosity feed material that is partially solid and 

partially liquid.  A modified die casting machine is used to inject the semi-solid slurry into 

re-usable hardened steel dies.  The high viscosity of the semi-solid metal, along with the 

use of controlled die filling conditions, ensures that the semi-solid metal fills the die in a 

non-turbulent manner so that harmful porosity can be essentially eliminated [13]. 

The combination of heat treatment, fast cooling rates (from using un-coated steel dies) and 

minimal porosity provides excellent combinations of strength and ductility.  Other 

advantages of SSM casting include the ability to produce complex shaped parts net shape, 

pressure tightness, tight dimensional tolerances and the ability to cast thin walls [13].  This 

process is further explained in section 1.4 

1.3.2.4 Centrifugal casting 

Centrifugal casting is both gravity and pressure independent which enables the generation 

of its own force feed, up to 900 N, using a temporary sand mould held in a spinning 
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chamber.  Semi- and true-centrifugal processing permits 30-50 pieces/hr-mould to be 

produced, with a practical limit for batch processing of approximately 9000 kg total mass 

with a typical per-item limit of 2.3-4.5 kg. 

Small art pieces such as jewellery are often cast by this method using the lost wax process 

as the forces enable the rather viscous liquid metals to flow through very small passages 

and into fine details such as leaves and petals [2].  This effect is similar to the benefits 

from vacuum casting, also applied to jewellery casting. 

1.3.2.5 Continuous casting 

Continuous casting is a refinement of the casting process for the continuous, high-volume 

production of metal sections with a constant cross-section.  Molten metal is poured into an 

open-ended, water-cooled copper mould, which allows a 'skin' of solid metal to form over 

the still-liquid centre.  The strand, as it is now called, is withdrawn from the mould and 

passed into a chamber of rollers and water sprays; the rollers support the thin skin of the 

strand while the sprays remove heat from the strand, gradually solidifying the strand from 

the outside in, see Figure 1-11.  After solidification, predetermined lengths of the strand 

are cut off by either mechanical shears or travelling oxyacetylene torches and transferred to 

further forming processes or to a stockpile [3, 4].  Cast sizes can range from strip (a few 

millimetres thick by about five metres wide) to billets (90 to 160 mm square) to slabs (1.25 

m wide by 230 mm thick).  Sometimes the strand may undergo an initial hot rolling 

process before being cut [5]. 

Continuous casting is used due to the lower costs associated with continuous production of 

a standard product and also increases the quality of the final product.  Metals such as steel, 

copper and aluminium are continuously cast, with steel being the metal with the greatest 

production cast using this method. 

1.4 Special solidification processes 

The reduction in processing involved by casting parts rather than using forging or other 

techniques, has encouraged the use of cast parts in applications where previously other 

techniques were the only way of obtaining the required mechanical properties.  In order to 

achieve the required mechanical specification the casting process should be controlled to 

ensure that the parts produced are reliably free from defects, rather than use steel or iron-

cast parts which are made to fulfil the specific properties and quality by conventional 

processes.  Industries such as automotive and aerospace have shown an interest in the 

advantages offered from the die-casting process [14, 15, 16].  The process has been 
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constantly developed over the years and now presents an option, which increases the 

quality and decreases the cost of the cast products.  It is now common to simulate the 

filling and basic aluminium solidification, allowing the prediction of macro-structural 

defects such as incomplete filling [14] or hotspots due to restricted flow [15]. 

Advances in new casting technology have been used in pressure die-casting in particular to 

obtain mould filling at low speed.  This can be achieved by using innovative filling 

processes with aluminium alloys in the liquid or semisolid state.  Different techniques such 

as high-pressure die-casting (HPDC), low-pressure systems, squeeze casting, indirect 

squeeze casting, metal compression forming (MCF) and semisolid metal (SSM) processing 

have been developed.  Semisolid forming includes thixoforming and rheoforming.  During 

the semisolid casting process preheating by induction is needed to obtain the same 

temperature and the same liquid fraction through the billet in a short time.  Thixocasting in 

the semisolid state helps to avoid turbulence during mould filling. 

Globular microstructure is required to perform a successful forming of metals in the two-

phase stage.  This type of morphology is commonly obtained by vigorous agitation during 

solidification but can also achieved by sufficiently grain refinement [17, 18], long ripening 

time [19], continuous rheocasting and vigorous electromagnetic stirring of continuous 

castings [20]. 

The physics of primary particle morphology during solidification with vigorous agitation is 

shown in Figure 1-12.  Two methods can be applied to achieve a globular microstructure 

and these are rheocasting or as-rheocast [20, 21], which are best suited for a forming 

process.  The former utilizes the slurry from vigorous agitation during early stages of 

solidification whilst the latter uses the slurry that is fully solidified and later partially re-

melted without agitation.  Thixocasting and thixoforming process heated the metal up 

between the solidus and liquidus temperature, which allowed the use of less energy on the 

forming process [22].  Thus working conditions have to be controlled to achieve the 

required properties, see Figure 1-13 and Figure 1-14. 

1.4.1 Squeeze casting 

In this process the metal is poured initially into the mould in a liquid state which after 

solidification initiate the molten metal alloy is under pressure in order to reduce porosity 

and form a sound part, see Figure 1-15.  The pressure reduces the porosity but mould wear 

and manufacturing costs are higher [10]. 



Chapter 1 33 
 

Ricardo Mondragon The University of Manchester 
 

1.4.2 Indirect squeeze casting 

In this process the pressure is applied on the gate area via a plunger and uses pressure 

during solidification to eliminate porosity, see Figure 1-16(a).  However, parts made by the 

indirect squeeze casting process may be sound near the gate where pressure is applied but 

may exhibit higher levels of porosity away from the gate making certain areas of the 

casting weaker.  The metal is forced from the injection chamber into the mould cavity 

which promotes turbulence during filling, trapping gas pockets and oxide films that 

weaken the casting.  In the indirect squeeze-casting process an expected non-uniform 

pressure distribution during solidification is shown in Figure 1-16(b). 

1.4.3 Metal compression forming (MCF) 

In this process the pressure is applied on the entire mould face which produces a uniformly 

sound part with forging properties.  The MCF process and the expected uniform pressure 

distribution during solidification are shown in Figure 1-17.  Due to the uniform pressure 

over the entire casting, the MCF process is capable of producing parts with uniformly 

superior mechanical properties while retaining the near net shape, complexity in geometry, 

high productivity and relatively low cost of the die-casting process [5]. 

1.4.4 Different processes to produce a billets in a semisolid state 

Metals have been processed either in the liquid state (casting) or in the solid state (forging).  

Processing aluminium alloys in the semisolid state is an intermediate route between 

forging and casting [21].  The basic semisolid process involves vigorous agitation of the 

molten metal during earlier stages of solidification so as to break up the solid dendrites into 

small spherolities, see Figure 1-18. 

Two main processes, shown in Figure 1-19, are available to industry for the exploitation of 

the original concept.  The first method is the ‘‘rheocasting’’ process that consists of the 

preparation of a gel, constant mechanical churn and of its moulding at the same 

temperature of the preparation.  The second method is the thixoforming process where 

ingots are prepared in the first stage from structured gels which will be reheated to a plastic 

state in order to permit their moulding by pressure die-casting or by forging as shown in 

Figure 1-18 and Figure 1-19. 

There are many different processes based on the behaviour of an alloy in a thixotropic 

semisolid state but all are based on solid globular dendrites dispersed in a liquid eutectic 

phase.  In this state the material looks like a solid but shows a pseudoplastic (viscosity 

decreases with the increasing shear rate) and thixotropic behaviour (viscosity decreases 
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with the shear stress application time) [23].  Some billets in the reheating state have the 

consistency of butter-like and it is possible to cut the billet with a blade Figure 1-18 or to 

move it mechanically, placing it in a die like a solid and then injecting it by a piston (like a 

liquid).  This is due to the reduced viscosity due to the shear forces applied during the 

forming operations.  The different steps for the thixoforming process are shown in Figure 

1-19.  The material has to be subjected to a preliminary procedure for obtaining thixotropic 

feedstock billets, which has a structure suitable for injection in the semisolid state, see 

Figure 1-20.  Many routes are available for aluminium alloys in order to reach the specific 

billet structure, which the more common methods are presented. 

1.4.4.1 Mechanical stirring casting 

A gel produced by agitation in a crucible between the liquidus and the solidus temperature 

is shown in Figure 1-19(a) and Figure 1-20.  This thixotropic gel is then moulded directly 

to castings with the lost-wax process by centrifugal casting.  The advantage of this 

technology consists of the elimination of plastic billet handling as in the case of 

thixoforming.  The rheocaster eliminates the need for transfer of the gel because the 

bascule crucible is used also as a mould for producing billets Figure 1-19.  The advantage 

of this technology is the precision of the permissible controls and the capability to obtain 

any type of gel with different solid fractions [21], see Figure 1-20(a). 

1.4.4.2 Electromagnetic or magneto-hydrodynamic (MHD) agitation 

In this process the solidifying material is agitated by electromagnetic forces induced in the 

metal shown in Figure 1-20(c) and Figure 1-20(d) and a certain shear rate to solidification 

rate ratio is maintained.  A globular structure non-dendritic material can be obtained via 

this process and it is by far the most commonly used process presently in the aluminium 

industry to continuously cast semisolid metal (SSM) billets [13, 21]. 

1.4.4.3 Stir casting by ultrasonic-waves 

The melt metal is held in a ceramic crucible and a waveguide that is linked to ultrasonic 

transducer which is dipped in the melt as shown in Figure 1-21.  During the fabrication of 

metal matrix with embedded nano-sized particles, the close environment was covered by 

an inert gas and the temperature was above the melting point [24]. 
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1.4.4.4 Passive stir casting 

In this case the liquid metal is forced to flow through fixed obstacles or static mixers as 

shown in Figure 1-20 (b).  Reference is made to the melted injection into dies as semisolid 

(MIDAS) process [21]. 

1.4.4.5 Extrusion 

The process relies on a metal re-crystallizing at elevated temperature after it has been 

sufficiently cold worked.  The cold-worked metal is brought to a temperature in the 

semisolid state where first re-crystallization and then partial melting occur [13, 21].  The 

newly re-crystallized grains tend to be spheroidal in shape and the state of thixotropy can 

be achieve Figure 1-20 (e) 

1.4.4.6 Grain refinement by continuous casting 

Continuous casting with additions of grain refining elements is an option to obtain 

thixotropic structures Figure 1-20(f). 

1.4.4.7 Pressure die-casting (PID) 

In this process a billet is moulded under pressure from the liquid state at the desired size.  

Flow and thermal condition are controlled in which a fine dendritic structure without 

porosity will be the outcome.  At the same time a component (conventional with porosity) 

can be cast [21].  The role of this component is to act as an overflow in order to obtain a 

porosity-free billet and to reduce the production cost of feedstock as shown in Figure 1-22. 

 

1.5 Mathematical modelling 

1.5.1 Introduction 

A computational model is a mathematical model that requires extensive resources to study 

the behaviour of a complex system by simulation.  The system under study is often a 

complex nonlinear system for which simple, intuitive analytical solutions are not readily 

available. Rather than deriving an analytical solution to the problem, experimentation with 

the mathematical model is done by changing the parameters of the system in the computer 

and studying the differences in the outcome of the experiments. Theories of operation of 

the model can be derived/deduced from these computational experiments [25]. 

Computer simulations vary from computer programs that run a few minutes to network-

based groups of computers running for hours, to ongoing simulations that run for days. The 
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scale of events being simulated has exceeded anything using the traditional mathematical 

modelling [26, 27]. 

1.5.2 Simulation or modelling 

Traditionally, forming large models of systems has been via a mathematical model which 

attempts to find analytical solutions to problems and thereby enable the prediction of the 

behaviour of the system from a set of parameters and initial conditions [28]. 

While computer simulations might use some algorithms from purely mathematical models, 

computers can combine simulations with reality or actual events such as generating input 

responses to simulate test subjects who are no longer present. 

Note that the term computer simulation is broader than computer modelling which implies 

that all aspects are being modelled in the computer representation.  However, computer 

simulation also includes generating inputs from simulated users to run actual computer 

software or equipment with only part of the system being modelled.  An example would be 

flight simulators which can run machines as well as actual flight software. 

1.5.3 Modelling types 

Computer models can be classified according to several independent pairs of attributes [25, 

28, 29], including: 

• Stochastic or deterministic (and as a special case of deterministic, chaotic) 

• Steady-state or dynamic 

• Continuous or discrete (and as an important special case of discrete, discrete event 

or DE models) 

• Local or distributed. 

Equations define the relationships between elements of the modelled system and attempt to 

find a state in which the system is in equilibrium. Such models are often used in simulating 

physical systems as a simpler modelling case before dynamic simulation is attempted. 

• Dynamic simulations model changes in a system in response to (usually changing) 

input signals. 

• Stochastic models use random number generators to model chance or random 

events; 

• A discrete event simulation (DES) manages events in time.  Most computer, logic-

test and fault-tree simulations are of this type. In this type of simulation the 

simulator maintains a queue of events sorted by the simulated time they should 

occur. The simulator reads the queue and triggers new events as each event is 
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processed. It is not important to execute the simulation in real time. It is often more 

important to be able to access the data produced by the simulation to discover logic 

defects in the design or the sequence of events. 

• A continuous dynamic simulation performs numerical solution of differential-

algebraic equations or differential equations (either partial or ordinary). 

Periodically, the simulation program solves all the equations and uses the numbers 

to change the state and output of the simulation.  Applications include macro-micro 

solidification, astrophysics (galaxies movement), chemical process, climate 

predictions and electrical circuits. 

1.5.4 Brief history for solidification modelling 

The evolution in the solidification field has been achieved with the combined development 

of two main areas; numerical solutions and the increased power for computers to handle 

large calculations.  Therefore, the actual sophistication provided for the possible solutions 

available. 

Analytical solutions were first employed in the solidification field in the early 20th century 

for 1-D problems for relatively simple boundary conditions [30, 31], which have been 

setting the standards for a group of specific problems that numerical methods have being 

compared against.  Mathematical modelling for 2-D using finite-difference has been 

developed and their results match with the solutions available [32, 33, 34].  The foundation 

for semi-solid metal research was developed in the early 1970’s where the state of the 

matter is neither solid nor liquid entirely [13, 21].  Finite element methods are applied to 

different solidification problems involving Lagrangian or Eulerian system for transient heat 

and phase-change process [35, 36, 37, 38] 

The enthalpy method approach using finite element techniques is used to obtain an 

approximation for phase-change problems for the complex and non-linear heat transfer 

analysis [39, 40].  However, finite elements methods have been divided fundamentally into 

two categories, front tracking (adaptive) methods and fixed domain methods.  The former 

provides for an accurate account for the phase-change but involving complex meshing and 

re-meshing techniques which have to cater for stretching/collapsing of the phase-change 

[41, 42, 43].  Although fixed domain methods have been favoured due to their versatility 

and ease of implemention, their drawback has been the inaccuracy when a discontinuity is 

present [44, 45, 46, 47, 48, 49] 
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Stochastic models follow the nucleation and growth of each individual grain whereas 

deterministic models rely on averaged quantities and equations that are solved on a 

macroscopic scale. 

Some stochastic models also incorporate dendrite tip growth models [50].  However other 

stochastic models which simulate solidification at a microscopic scale and allow the 

solution of solute diffusion equations during solidification and the application of 

solid/liquid interface front tracking methods to the surfaces of the individual dendritic 

grains, have no need to include dendrite tip growth models [50, 51, 52, 53] 

Deterministic models incorporating equiaxed grains most often consider that the grains are 

static, although models are now attempting to take into account equiaxed grain movement 

during solidification [53]. 

Phase-field technique used the same concept as the adaptive method, tracking the phase-

change.  However, it is applied for a numerical simulation of microstructure evolution in 

solidification processes involving convection in the liquid phase [54, 55, 56, 57] and a 

similar approach is found in the cellular automata method [7] 

Deterministic models permit modelling at the scale of actual castings, directionally 

solidified alloys, etc.  However they do not permit the accurate modelling of those 

microstructural factors that are likely to contribute to the columnar to equiaxed transition 

(CET) such as solute diffusion, interdendritic convection, evolution of equiaxed grain 

morphology, etc.  Stochastic models offer the opportunity to examine the effects of 

microstructural factors but are severely limited by the sizes of the domains that can be 

modelled.  It is evident that the CET is governed by a complex set of interacting 

phenomena including the local thermal and solute fields and the number/size of the 

equiaxed grains. 

Analytical and numerical approaches have been developed to increase and involve a close 

approximation to the solidification problem both macroscopic and microscopic.  Chapter 2 

presents a brief review for the most influential methods applied to the field.  The 

introduction for the non-physical enthalpy method (NEM) is presented in chapter 3, 

highlighting the accurate identification of the source term and its complete annihilation.  

This is shown in the non-physical capacitance results; however the temperature results 

indicate an improvement in some cases but in the vast majority are very close with the 

results compared against to the control volume capacitance method.  A further 

investigation on the capability of non-physical enthalpy method to handle more than one 

discontinuity with mushy zone in the solidification process is presented in chapter 4.  

Chapters 3 and 4 respectively, involve the non-physical enthalpy method with single 
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discontinuity and more than one discontinuity with mushy zone.  In chapter 5 results are 

presented covering more than one point, tracking the discontinuity passing throughout the 

models and analysing the potentiality of the method to annihilate them. 
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Figure 1-1  The oldest existing copper casting [58] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-2  Dendritic solidification at different physical scales [59] 
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Figure 1-3  Equiaxed solidification process 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-4  Columnar and equiaxed solidification 
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Figure 1-5  Typical two part sand mould [9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-6  Shell moulding process [10] 
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Figure 1-7  Lost foam casting process [10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-8  Vacuum process [5] 
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Figure 1-9  High pressure die-casting process (cold chamber) [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-10  Low pressure die-casting process (hot chamber) [5] 
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Figure 1-11  Continuous casting process typical scheme [60] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-12  Particle evolution during solidification in combination with agitation 

 



Chapter 1 46 
 

Ricardo Mondragon The University of Manchester 
 

(a) (b) (c) (d) 

(a) 

(b) 

(c) (d) 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-13  Thixocasting process; (a) heating the billet into the semisolid state, (b) charge 

in the casting machine, (c) die-casting process and (d) finished model [21] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-14  Thixoforging process; (a) heating the billet into the semisolid state, (b) charge 

in the forging machine, (c) forging process and (d) finished model [21] 
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Figure 1-15  Squeeze casting [23] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-16  Indirect squeeze casting; (a) Metal poured into shot sleeve; (b) resulting non-

uniform pressure profile in the die cavity [23] 
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Figure 1-17  Metal compression forming; (a) Shut-off pin is withdrawn for filling; (b) shut-off 

pin is engaged and the male die pressurizes the cavity; (c) resulting uniform pressure 
profile in the cavity [23] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-18  Thixoforming process [23] 
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Figure 1-19  Thixoforming and rheocasting [23] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-20  Different elaboration processes of billets for thixocasting [23] 
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Figure 1-21  Casting stir ultra-sonic process [24] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-22  PID process [23] 
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2 SOLIDIFICATION MODELLING 
METHODS 

  

 

 

 

2.1 Introduction 

The solidification/melting of metals during various casting methods in the foundry 

provides a source of important practical problems which may be resolved economically 

with the aid of computational models of the heat transfer processes involved.  

Experimental design analysis is often prohibitively expensive and the geometries and the 

complex boundary conditions encountered preclude any analytical solution to the problems 

posed.  Thus, the motivation for numerical simulation and the use of a computational 

design system is clear, where several mathematical/computational modelling techniques 

have been brought to bear in this area. 

The growing use of computational modelling techniques in recent years reflects the 

potential economic benefits they offer to many industrial processes including casting 

methods in the foundry.  Numerical simulation of the thermal and mechanical behaviour of 
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both castings and moulds permit designers to create robust effective products whilst 

simultaneously minimising process costs and waste.  The desired mechanical properties of 

the finished casting can be controlled by predicting, via numerical experimentation, the 

effects of using different mould materials and the placement of various chill and/or cooling 

lines.  Waste associated with raisers can be significantly reduced by optimising their 

magnitude and location. 

The representation of latent effects is an important feature in the modelling of 

solidification problems, which is involved when the matter is subject to a phase-change.  

Consequently, a boundary separating two different phases develops and moves in the 

matter during the process.  Transport properties vary considerably between phases which 

result in totally different rates of energy, mass and momentum transport from one phase to 

another.  In these problems the position of the moving boundary cannot be identified in 

advance but has to be determined as an important constituent of the solution.  Moving 

boundary problems are associated with time-dependent boundary problems, where the 

position of the moving boundary must be determined as a function of time and space.  

Although these were studied as early as 1831 by Lame and Clapeyron [61], a sequence of 

articles [62, 63] written by Stefan has given his name to this family of problems which 

resulted from his study of the melting of the polar ice cap around 1890. 

Solidification/melting is accompanied by the release/absorption of latent heat at the solid–

liquid discontinuity.  When a conventional alloy or an impure metal is cooled from a liquid 

state it begins to solidify at a liquidus temperature (Tliq) and solidifies completely at the 

solidus temperature (Tsol).  There is no sharp demarcation between the solid and liquid 

phases.  A two-phase mixture region, termed as the mushy zone, separates the two phases.  

Pure metals and eutectic alloys undergo phase-change isothermally, i.e. solidification 

occurs at a constant temperature 

In the early days of modelling solidification/melting problems, analytical methods were the 

only means available to provide an understanding of physical processes involving the 

moving boundary.  Although analytical methods offer an exact solution and are 

mathematically elegant, analytical solutions are predominantly applicable to one-

dimensional cases of an infinite or semi-infinite region with simple initial and boundary 

conditions and constant thermal properties [30, 31].  Practical solidification/melting 

problems are rarely one dimensional, initial and boundary conditions are always complex, 

thermophysical properties can vary with phases, temperatures and concentration and 

various transport mechanisms (for example, convection, conduction, diffusion and 

radiation) can happen simultaneously.  Mathematical modelling and computer simulation 
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often become the most economical and fast approaches to provide a broad understanding 

of the practical processes involving the moving boundary problems.  Nowadays in most 

engineering applications, recourse for solving the moving boundary problems has been 

made to numerical analyses that utilize finite difference, finite element or boundary 

element methods.  The success of finite element and boundary element methods lies in 

their ability to handle complex geometries but they are acknowledged to be more time 

consuming in terms of computing and programming. 

One-dimensional diffusion-controlled problems were initially the focus for early 

researchers using very simple geometries due to constraints in the tools available at that 

time.  The analytical solutions developed during this period have served as a foundation of 

this discipline and are still used today as standard references to validate the numerical 

models.  The advent of computers has enabled the consideration of multidimensional 

problems with more complex geometries.  New progress for the analysis in the 

solidification/melting problems commenced with the birth of numerical methods.  Perhaps 

owing to the limited power of the earlier computers, the numerical models during this 

second period of progress were developed and based on one equation (e.g., energy or 

diffusion equation) and omitted convection.  More sophisticated numerical models have 

been developed to handle multidimensional phenomena involving convection as well as 

the presence of the moving boundary in complex geometries. 

The succeeding sections will summarize the major developments in mathematical analyses 

of the phase-change problems involved in melting and solidification phenomena.  Due to 

the vast research field, only some of the well known and novel numerical methods 

available will be presented and compared for the phase-change problem. 

2.2 Analytical methods 

2.2.1 Neumann’s method 

The simplest phase-change problem is the one-phase problem first solved analytically [62].  

One-phase designates only one of the phases (liquid) being active, the other phase staying 

at its solidification temperature.  Stefan’s solution with constant thermo-physical properties 

shows that the rate of solidification/melting in a semi-infinite region is governed by a 

dimensionless number.  This is known as the Stefan number (St) 

 

( )
L

TTc
St liqi −

= l  (2.1)



Chapter 2 54 
 

Ricardo Mondragon The University of Manchester 
 

 

where lc  is the heat capacity of the liquid, L  is the latent heat release, iT  and solliq TT =  

are the temperatures of the surrounding and phase changing point respectively for 

isothermal solidification. 

On a more realistic scenario Neumann [31] extended Stefan’s solution to the two-phase 

problem, the initial state of the phase-change material is assumed to be liquid, for a 

solidification process but its initial temperature is not equal to the phase-change 

temperature and its temperature during the solidification is not maintained at a constant 

value.  When solidification on a semi-infinite slab ( )∞<< x0  is considered initially liquid 

with a uniform temperature lTTliq ≤  and a constant temperature is imposed on the surface 

0x =  whilst assuming constant thermo-physical properties, the governing equations for 

the heat conduction in the liquid and solid domain on 1-D problem are respectively 
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where lκ  and sκ  are the thermal diffusivity in the liquid and solid domain respectively.  

However the interface temperature at the moving front is defined by equation (2.4) for the 

isothermal case 

 

( )( ) solliq TTt,tXT ==              0t >  (2.4)

 

where X(t) is the position of the solidification interface (moving boundary).  Figure 2-1 

illustrates this problem more clearly 

The thermal energy equation at the moving front, which is known as the Stefan condition is 

defined by equation (2.5) 
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where sk  and lk  are the solid and liquid thermal conductivity respectively.  An initial 

condition, Dirichlet’s condition, is defined in equation (2.6) that states the initial 

temperature for the entire domain which is higher than the phase-change temperature.  

Boundary conditions provide the temperature at the beginning of the domain in equation 

(2.7) and in equation (2.8) which defines the temperature for the rest of the domain 

 

( ) liq0 TT0,xT >=       for ( ) 00X,0x =>  (2.6)

 

( ) liqw TTt,0T <=        for 0t >  (2.7)

( ) 0Tt,xT =           for 0t,x >∞→  (2.8)

 

The moving front position at any particular time in equation (2.9) is defined by sκ  and λ , 

which are the thermal diffusivity and the solution of the transcendental equation (2.12) 

 

( ) t2tX sκλ=  (2.9)

 

Temperature in the liquid phase and solid phase are defined in equations (2.10) and (2.11) 

respectively, which each domain is treated as completely separate domain 
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Therefore the transcendental equation for the moving front is defined in equation (2.12) 

which is the result of substitution of equations (2.9) to (2.11) into equation (2.5) 
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Although, the Neumann’s solution shown in equation (2.12) is only for moving boundary 

problems in the rectangular coordinate system, solutions in other coordinate systems are 

available, i.e. solution for the cylindrical coordinate system can be found in [64] . 

2.2.2 Heat balance integral method 

Exact analytical solutions exist only for semi-infinite problems with parameters constant in 

each phase and constant initial and imposed temperatures.  They are not applicable to 

problems with constant imposed flux as previously shown, therefore for most realistic 

cases, approximations have been applied.  An integral equation [65] has been developed 

that expresses the overall heat balance of the system by integrating the one-dimensional 

heat conduction equation with respect to the spatial variable and inserting boundary 

conditions which can be described as follow: 

(a) assume that the temperature distribution depends on the spatial variable in a 

particular form which is consistent with the boundary conditions, e.g.  a 

polynomial relationship; 

(b) integrate the heat conduction equation with respect to the spatial variable over the 

appropriate interval and substitute the assumed form of the temperature distribution 

to attain the heat balance integral; 

(c) solve the integral equation to obtain the time dependence of the temperature 

distribution and of moving boundaries. 

The heat balance integral method has been extensively applied to different problems and 

has often been modified with the intention of improving and easing the mathematical 

analysis.  Selecting a satisfactory approximation to the temperature distribution is a major 

difficulty with this method.  The mathematical manipulations required for the heat balance 

integral method, even for the relatively simple problems, can be very complicated and 

cumbersome.  For instance, the use of a high-order polynomial makes this approach highly 

complicated whilst the accuracy of the solution is not necessarily improved. 

2.3 Numerical methods 

A number of techniques have been used to solve the problem of the heat transfer in 

melting/solidification.  These include the finite difference methods (FDM) and finite 

element methods (FEM).  Other related processes such as welding, crystal growth, latent 

heat storage and ground freezing in addition to metal casting have benefited from these 

methods. 
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Two types of numerical formulation have been used to solve the phase–change or Stefan 

problems which generally are known as strong and weak numerical methods.  The 

fundamental difference between them is related to the moving front or discontinuity 

treatment in the problem. 

2.3.1 Strong numerical methods for solving a phase-change problem 

Locating moving boundaries and finding temperature profiles at each time step using a 

strong formulation, are the main focus for these methods with numerical solutions that are 

applicable to problems involving one or two phases in one space dimension.  For two-

dimensional cases rather complicated schemes must be used.  Hence, with the strong 

solution much more computational time is required.  It is very difficult to apply a strong 

solution to a problem with fluid flow involved on a three-dimensional case. 

2.3.1.1 Fixed grid methods 

Various schemes have been proposed for approximating both the Stefan condition on the 

moving boundary and the partial differential equation at the adjacent grid points.  From the 

1-D solidification problem equations (2.2), (2.4) to (2.8), the heat flow equation is 

approximated by finite difference replacements for the derivatives in order to calculate 

values of temperature n,iT , at xix i Δ=  and time tnt n Δ=  on a fixed grid in the ( )t,x  

plane.  At any time tnt n Δ= , the moving boundary will be located between two adjacent 

grid points; for instance, between ( ) xi Δ  and ( ) x1i Δ+ , as shown in Figure 2-2. 
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The new temperature 1n,iT +  is calculated using the previous temperature at the previous 

step; hence the variation of the location of the moving boundary is known by applying an 

interpolation, which involved the temperature in the adjacent grid points.  Similarly, the 

new position 1np +  is calculated in equation (2.14) 

If a moving boundary is found between two grid points at any time two fictitious 

temperatures are introduced both obtained by a quadratic extrapolation from the 
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temperatures in the solid and liquid regions.  Then the solidification temperature and the 

current position of the moving boundary are incorporated in the fictitious temperatures 

formulation and the temperature near of the moving boundary is calculated by a standard 

approximation, this technique on a solidification problem with superheated liquid in a 

semi-infinite domain can be found in [66].  For the movement of the interface an 

approximation is used according to the Taylor extrapolation formula.  A variant for this 

method has been developed using a spatial mesh refinement on both sides of the moving 

boundary [67].  Another application for this method involved explicit finite difference 

approximations to solve two-phase solidification problems in both two and three space 

dimensions [33].  Some numerical schemes have been developed based on an auxiliary set 

of differential equations which express the fact that the moving boundary is an isotherm.  

Close to the boundary, formulae for unequal intervals were incorporated into the auxiliary 

equations.  Standard finite difference approximations to the heat flow equation were used 

at grid points far enough from the moving boundary.  To avoid loss of accuracy associated 

with singularities, which can arise when the moving boundary is too near a grid point, 

localized quadratic temperature profiles were applied.  The mathematical manipulations 

are very lengthy and complex indeed. 

The major advantage of fixed grid methods is that these methods can handle 

multidimensional problems efficiently without much difficulty.  Thus, the numerical 

treatment of the moving boundary can be achieved through simple modifications of 

existing heat transfer codes.  As such they have come into common use for modelling a 

variety of complex moving boundary problems.  Two excellent surveys of the fixed grid 

methods can be found in [68] and [46]. 

A setback for the fixed grid methods is when the moving front moves a distance larger than 

a space increment in a time step.  This constraint that depends on the velocity of the 

moving boundary may largely increase the array size (i.e. memory) and the CPU-time if 

computations are to be performed for extended times.  The problems associated with the 

fixed grid method can be avoided by using variable grid methods.  In variable grid methods 

the exact location of the moving boundary is evaluated on a grid at each step.  The grid can 

be either interface fitting or dynamic. 

2.3.1.2 Variable grid methods 

Moving front is tracked continuously with variable grid methods.  The solid and liquid 

domains are treated as two separated domains, hence are also known as two–domain 

methods.  Moving meshes are involved therefore the mesh is updated, which conforms to 
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the moving front or discontinuity.  The energy equation is solved separately in each phase 

with the temperature prescribed to be the melting temperature on the moving front.  The 

latent heat release is treated as a special boundary condition relating the solid and liquid 

domains [69]. 

The simplest option for front tracking is iteratively to adjust the position of the nodes close 

to the solid-liquid discontinuity.  For a planar solid-liquid discontinuity it is possible to 

adjust the time step forcing the moving front to be on a node at every time step. 

For two-dimensional problems, front tracking requires some special approaches such as co-

ordinate transformation, continuously deformed grid re-meshing and then use of space-

time finite elements. 

Variable time step methods where a uniform spatial grid but a non-uniform time steps are 

used, have been repeatedly employed to solve two-phase and one-dimensional problems.  

It has been attempted to determine a variable time step, as part of the solution, such that the 

moving boundary coincides with a grid line in space [69, 70].  Fully implicit finite 

difference equations are used as well as the Stephan condition for updating the time step 

which improves the stability that develops as the depth of the moving boundary increases. 

Other variable methods are based on variable space grids, also known as dynamic grids, 

where the number of spatial intervals is kept constant and the spatial intervals are adjusted 

in such a manner so that the moving boundary lies on a particular grid point.  Thus, in 

these methods, the spatial intervals are a function of time.  The substantial temperature 

derivative of each grid point is defined by equation (2.15). 

 

xiti t
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+
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where the grid point, specific time and position for the evaluation of each derivative are i, t 

and x respectively, the moving rate of each grid point is related to the moving front by 

 

( ) dt
dX

tX
x

dt
dx

i
=  (2.16)

 

The governing equation for one-dimensional problems is obtained by substituting 

equations (2.16) and (2.2) into (2.15), 
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The position of the moving boundary ( )tX  is updated at each step by using a finite 

difference form of the Stefan condition on the moving front. 

Although multidimensional problems are more complex with this method, solutions have 

been obtained for several two-dimensional problems [32, 71].  The complications due to 

the non-uniform grid size around the moving boundary can be avoided by methods where 

the entire uniform grid system moves with the velocity of the moving boundary.  Two 

schemes presented in [34] obtain the interpolated values of temperatures at the new grid 

points to be used for the next step in terms of polynomials. 

2.3.2 Weak numerical methods for solving a phase-change problem 

Weak numerical methods are based on reformulating the Stefan condition implicitly and 

incorporate a new governing equation which applies over the entire region of a fixed 

domain.  These methods are referred to as weak numerical solutions in which explicit 

attention to the nature of the moving boundary is avoided.  They are the apparent capacity 

method, the effective capacity method, the heat integration method, the source based 

method, the enthalpy method and so on.  These methods treat both the solid and liquid 

regions as one continuous region and the phase boundary is never explicitly determined.  

Hence, they are also identified as single – domain methods.  Enthalpy methods account for 

the latent heat released/absorbed at the moving front, discontinuity, which avoids the 

explicit enforcement of the temperature at the discontinuity.  Since the energy equation is 

the same for both phases, the position of the discontinuity need not be tracked explicitly.  

A large number of papers in this area have been published therefore only several prevalent 

methods will be discussed 

2.3.2.1 Apparent heat capacity methods 

The heat capacity of the material in the phase-change temperature range is increased in 

order to account for the latent heat release/absorbed during this phase.  Hence, the apparent 

heat capacity can be defined for the latent heat released/absorbed uniformly in the phase-

change temperature range as 
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where the capacity in the interface phase is defined by (2.19) and cvΩ  is the domain 

control volume 
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Therefore, the energy equation in terms of the apparent heat capacity becomes 

 

( )Tkdiv
t
Tcapp ∇=

∂
∂

ρ  (2.20)

 

A new governing equation is represented in equation (2.20), which can easily be 

discretised and solved numerically.  The procedure for calculating the apparent heat 

capacity is as follows. 

1) For the explicit finite difference formulation, appc  is determined using the 

temperatures at the grid points from the previous time step; 

2) For the implicit formulation, two ways are available, the first is to evaluate appc  

based on the previous time step temperatures and the second is according to the 

present time step temperatures by an iterative scheme. 

This method has been applied using the finite element formulation in a generally 

applicable approach to one- and two-dimensional problems with both moving boundary 

and temperature-dependent physical properties [72]. 

Although the apparent heat capacity method is conceptually simple, it is apparent that the 

method does not perform well as compared with other methods [73].  The reason for such a 

drawback is that if, for a melting case, the temperature of a control volume rises from 

below the solidus to above the liquidus temperature in one time step, the absorption of the 

latent heat for that control volume is not accounted for.  A similar flaw exists as the 

method is applied to solidification problems.  As a result, very small time steps have to be 

used in this method in order to overcome its shortcoming.  The consequence is poor 
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computational efficiency.  Moreover, for pure materials, an artificial phase-change 

temperature range must be used to avoid making equation (2.19) undefined.  Over this 

artificial phase-change temperature range, the latent heat is assumed to be released or 

absorbed.  The introduction of an artificial phase-change temperature range can result in 

computational errors and simulation distortion of the real problem. 

2.3.2.2 Effective capacity method 

The effective capacity method performs an integration over the element domain rather than 

determining an apparent capacity in terms of the nodal temperature.  This method 

introduced an effort to improve the apparent capacity method [73].  Therefore the effective 

capacitance is defined as 
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where effc , appc  and cvV  are effective heat capacity, apparent heat capacity and volume of 

the control volume cvΩ  respectively. 

The effective capacity method performs significantly better than the apparent heat capacity 

method.  It has been applied from 1-D to 3-D using implicit and explicit finite difference 

and implicit finite element formulations. 

The effective capacity method ensures that correct account is made for the latent heat 

release/absorption by evaluating equation (2.21) at each step and its solution is 

independent of the artificial phase-change temperature range.  An assumption of a large 

artificial phase-change temperature range is not required.  The results produced are 

relatively insensitive to the time step and generally precise both on the entire domain and 

near the moving boundary [74]. 

Although the effective capacity method is accurate, it is also troublesome to implement.  

The numerical integration is substantially expensive, especially if thermal gradients are 

steep in the phase-change temperature range. 

2.3.2.3 Heat integration method 

For the solidification case, if the temperature of any control volume drops below the 

solidification temperature, the material in that control volume is assumed to undergo a 

phase-change.  Even though the temperature of that control volume is set back to the 
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solidification temperature, an equivalent amount of heat due to setting the temperature 

back is added to the enthalpy that only accounts for that control volume.  Once the 

enthalpy in the account is equal to the latent heat, the temperature is allowed to drop based 

on the energy equation.  The procedure can be expressed mathematically 

 

( ) LcTT iniliq =−  (2.22)

 

where the fictitious temperature drop ( )iliq TT −  is the algebraic sum of temperature 

differences between the temperature calculated by the energy equation at each time step 

and the solidification temperature.  The capacitance at the interface phase is inc where the 

latent heat is released/absorbed. 

The heat integration method has been applied, using the finite element method, for 

transient thermal problems including a moving boundary in both a pure substance and an 

alloy [75].  The heat integration method can be easily applied for multidimensional 

problems with isothermal or non-isothermal phase-change involved.  The method is 

computationally economical.  However, the accuracy of the solution strongly depends on 

the time step and the prediction in the region of the moving boundary is often inaccurate 

[73]. 

2.3.2.4 Source based method 

The source based method introduces an extra term into the governing heat equation and 

represents any additional heat from either a heat source (e.g. latent heat release during 

solidification) or heat sink (e.g. latent heat absorption during the melting) which is 

introduced into the general form of the energy equation [76].  The source method is 

derived from a standard enthalpy formulation which separates sensible heat and latent heat 

in the transient term of the energy equation 

 

( ) ( )Tkdiv
t

LcT
∇=

∂
+∂

ρ  (2.23)

 

where is made use of the rather simplistic approach LcTh += , which the term cT  and L  

are related with sensible and latent heat respectively.  Therefore from equation (2.23) the 

energy equation using the source formulation becomes 
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( ) STkdiv
t
Tc +∇=

∂
∂

ρ  (2.24)

 

where the latent heat is now included in the source term S as 

 

t
LS

∂
∂

ρ−=  (2.25)

 

The source based method has become popular over the years [46, 73, 76] as one of the 

important factors for its success is that the algorithms can handle the heat source or heat 

sink easily and can be adapted to the existing numerical codes which have been widely 

used in the public domain.  The overall accuracy of this method is fairly good, especially 

for non-isothermal phase-change problems since the latent heat content is directly related 

to the temperature of the grid point which is computationally efficient.  Although the 

method may introduce unreasonable predictions around the moving boundary for 

isothermal phase-change problems without using excessive underrelaxation for 

convergence, the solution oscillation can be eliminated by the linearization of the 

discretised source term [76]. 

2.3.2.5 Enthalpy method 

The evolution of the latent heat can be accounted by using the enthalpy definition and its 

relationship with the temperature, which represents the basic feature for the enthalpy 

method.  The heat conduction-controlled phase equation can be expressed as 

 

( )Tkdiv
t
h

∇=
∂
∂

ρ  (2.26)

 

where h  is the enthalpy in the system and the relationship between the enthalpy and 

temperature can be defined in terms of the latent heat released during the phase-change.  

This relationship is usually assumed to be a step function for isothermal phase-change and 

a linear function for non-isothermal phase-change, mushy, cases.  Enthalpy–temperature 

curves for both cases are shown in Figure 2-3.  The enthalpy as a function of temperature 

for both cases is given by 
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where lcandc,c ins are the heat capacity for solid, interface and liquid phase.  For the 

isothermal case, equation (2.27), the temperature at the interface is liqsol TT = .  However 

for the non-isothermal case, equation (2.28), liqsol TT <  and L  represents the latent heat 

released for solidification.  The enthalpy method has been found more complex and 

expensive than other methods [73].  The computational cost increases with mesh 

refinement.  An oscillation appears in the phase-change case with large ratio of latent heat 

to sensible heat.  However, the enthalpy method gives accurate solutions especially for 

solidification of metal in which a phase-change temperature range exists.  Furthermore, the 

solution is independent of the time step and phase-change temperature range 

Discussion of the enthalpy method has also been comprehensively covered by Voller and 

co-workers [39, 46, 76, 77, 78, 79].  Although the basic enthalpy method does not perform 

well for modelling isothermal phase-change problems, Voller proposed and assumed that 

when the moving boundary is in the control volume, the enthalpy change rate is 

proportional to the state change rate of the control volume which improves the accuracy of 

the prediction. .This is represented by the relationship 

 

dt
dV

L
dt

dh
l±=  (2.29)

 

where lV  is the liquid fraction in the control volume; the negative sign in equation (2.29) 

is for melting and the positive sign is for solidification.  While the material in the control 

volume undergoes phase-change, the enthalpy of the control volume must follow 

 

LTchTc liqliq +≤≤ ll  (2.30)
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Based on equation (2.29), the following equations can be obtained: 

 

L
Tch

V liql

l

−
=     for solidification (2.31)

 

L
hTcL

V liq −+
= l

l     for melting (2.32)

 

The accuracy of the predictions is greatly improved by this efficient algorithm technique 

[76, 77, 78].  As a result, the enthalpy method has been generalized so that more general 

forms of the enthalpy–temperature function can be handled.  For example, cases in which 

an explicit enthalpy–temperature relationship cannot be found.  The method has been 

extended to three-dimensional cases and its effectiveness has also been demonstrated. 

2.3.3 Numerical methods for solving convection/diffusion phase-
change problems 

Convection flow in the liquid phase has received less attention than conduction due to 

computer limitations in the past and considerable complexities entailed in the mathematical 

treatment.  Although energy transport in phase-change processes is important since the 

evolution and efficiency of the processes are affected by the heat transfer.  However 

convection is increased by the buoyancy forces as a consequence of the temperature field 

changes and/or concentration gradients in the liquid phase which are involved in the phase-

change processes.  The convection affects not only the rate of solidification/melting but 

also the resulting structure and distribution of the solutes in the liquid phase of a multi-

component system, which has been reported by number of researchers [80, 81, 82] 

The Navier–Stokes mass and momentum conservation equations on a Newtonian fluid to 

determine quantitatively the convection can be written as equations (2.33) and (2.34), 

respectively. 

 

( ) 0v
t

=ρ⋅∇+
∂
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where v  is the velocity field of the fluid with the density ρ  under the action of the 

pressure, viscosity and body forces, which are p∇ , v2∇μ  and gρ  respectively. 

Because of the nonlinearity of the Navier–Stokes equations, their analytical solutions 

relevant to phase-change problems are available only for a few simple cases, e.g. the 

analytical solution for the 1-D momentum equation [83].  Development of numerical 

methods linked closely with the availability of more powerful computers has made the 

Navier–Stokes equations solvable.  Two widely used numerical approaches, the stream-

function–vorticity and the primitive variable formulations, will be discussed in the next 

sections. 

2.3.3.1 Stream function-vorticity formulation 

The stream-function–vorticity formulation is quite often applied in computational fluid 

dynamics for solving two-dimensional problems.  For two-dimensional incompressible 

flow where the density variations are neglected, the stream function (Ψ) and vorticity (ω) 

are represented in the equations 
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Therefore, the continuity equation is automatically satisfied since 
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An important drawback in the primitive variable formulation is that the Navier-Stokes and 

the continuity equations have to be solved separately.  However, the stream-function-

vorticity formulation can be transformed into the Navier-Stokes equations form by using 

the vorticity transport equation which gives 

 

ω−=Ψ∇⇒ω∇=
ω 22v

Dt
D  (2.38)

 



Chapter 2 68 
 

Ricardo Mondragon The University of Manchester 
 

Therefore, rather than use the primitive variable formulations from equations (2.33) and 

(2.34) it is convenient to use the stream-function-vorticity formulation which is defined in 

the equation system (2.38) 

Thermal and fluid flow simulation of solidification in a rectangular enclosure with 

adiabatic boundaries have been obtained via the stream-function–vorticity formulation and 

the alternating directional implicit (ADI) method by [84].  The density variation causing 

the natural convection was handled by the Boussinesq approximation.  The velocity 

distribution, stream lines and isotherm patterns, which were obtained along with the 

interface movement with time, indicated that natural convection has a significant effect on 

the shape of the interface.  The coupled, nonlinear, simultaneous equations were solved 

using the ADI finite difference scheme.  The agreement between predicted results and the 

existing experimental data appeared to be reasonably good. 

Even though the stream-function-vorticity formulation has shown important positive 

features for the solution of the Navier-Stokes equations, it has also shown some 

disadvantages such as cumbersome implementation of boundary conditions, the effort of 

extracting the pressure from the vorticity which affects the computational efficiency and a 

required outcome to determine the thermo-physical properties.  However, the major 

drawback is that it cannot be easily extended to 3-D. 

2.3.3.2 Primitive variable formulation 

This section is concerned with the substitution of Navier–Stokes equations where account 

is taken of the velocities and pressure as dependant variables, which is the primitive 

variable form.  Two techniques are discussed. 

For the first technique the nonlinear governing equations are discretised by finite 

difference methods based on a term by term Taylor series approximation which is known 

as the marker and cell (MAC) method [85, 86, 87].  The pressure is located at the cell 

centre and the velocities at the walls on a staggered mesh.  Massless marker particles are 

used to move in the local fluid velocity on every cell in the computational domain.  A layer 

of fictitious cells adjacent to the computational domain is used to impose the boundary 

conditions.  At each time step, new velocities in terms of an estimated pressure are 

obtained from the discretised momentum equations.  Thus, each cell is iteratively adjusted 

and velocity changes are induced.  The process is repeated until the continuity equation is 

satisfied, then the marker particles are moved to their new position ready for the next time 

step. 
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This method has been applied on cases which have showed reasonable agreement with 

experimental results, e.g. flow patterns during the filling of a cylindrical vessel from the 

top free surface and the fluid flow during the filling of a rectangular mould from the side. 

Although the MAC method is easily implemented on existing codes due to its explicit 

nature, time-step limitations impose a major drawback to the method.  Time step 

restrictions are implemented in order to eliminate the possibility that material movement 

and momentum transport passes through more than one cell at a time.  It has been observed 

that refinement meshing worsens its performance [85]. 

The control volume method represents an alternative to solve Navier-Stokes equation in 

the category of the primitive variable formulation.  The well known SIMPLE and 

SIMPLER algorithms, which are acronym for Semi-Implicit Method for Pressure Linked 

Equations and Revised respectively, are the basis for any commercial computational fluid 

dynamic software using this approach today [88].  In this technique, the equations of the 

mass, momentum, energy and species conservation are expressed in a general differential 

equation of the form 

 

( ) ( ) ( ) φφ +φ∇Γ⋅∇=φρ⋅∇+ρφ
∂
∂ Su
t

 (2.39)

 

where φ  is a general variable, φΓ  is the diffusion coefficient and φS  is a source term.  The 

four terms in equation (2.39) represent the unsteady term, the convection term, the 

diffusion term and the source term.  The dependent variable φ  can denote a variety of 

different quantities such as the mass fraction of a chemical species, the enthalpy or the 

temperature, or a velocity component.  Accordingly, for each of these variables, an 

appropriate meaning must be given to the diffusion coefficient and the source term, φ , φΓ  

and φS  for the different equations shown in (2.40) to (2.43). 
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∂
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( ) ( ) ( ) pSvuvv
t
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( ) ( ) ( ) hShkcuhh
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∂
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( ) ( ) ( ) CAAA SCDuCC
t

+∇⋅∇=ρ⋅∇+ρ
∂
∂  (2.43)

 

where conservation equations (2.40) to (2.43) represent mass, momentum, energy and 

species and the source term for the momentum, energy and species are represented by 

Ch
v SandS,S  respectively.  However, the species equation requires to define DandCA , 

which are concentration and diffusion coefficients 

This technique has been applied to a number of cases, e.g. the melting process where heat 

convection in the liquid phase is non-negligible, melting pure gallium and its numerical 

solution was validated by comparison with precise experimental results [77].  The 

simulation of a melting process where a heat source, heat sink and natural convection are 

coupled has been solved by integrating the enthalpy method in to the SIMPLER algorithm 

[89, 90, 91]. 

2.4 Methods for microstructure simulation 

Microstructure prediction from macro-transport models that solve the mass, momentum, 

energy and species macroscopic conservation differential equations is very limited.  

Solidification models that can integrate the transformation kinetics into the macro-transport 

models are being developed [59, 91].  Various techniques which include the continuum 

(deterministic) approach [92] and the stochastic (probabilistic) approach [50, 51, 93] have 

been applied in order to model and generate information on microstructure evolution.  

These techniques have been used to predict various features of solidifying materials such 

as dendritic structure, fraction of phases, structural transition, microsegregation and even 

mechanical properties. 

Although this research is focused on the macro-modelling it is of interest to briefly 

examined the advances in microstructure solidification [7].  Discussed here are: modelling 

of microstructure formation using phase-field or front-tracking-type methods; modelling of 

solidification processes and microstructural features using averaging methods; modelling 

of grain structure formation using physically based Cellular Automata or ``Granular 

Dynamics'' methods.  All three are important since the macroscopic scale of a solidification 

process (typically cm-m), the grain size (typically mm-cm) and the characteristic length of 

the microstructure (µm) encompass six orders of magnitude and cannot be taken into 

account simultaneously.  It should be emphasized that the smallest size of the 

microstructure (µm) is still three to four orders of magnitude larger than the size of the 

atoms or molecules or the thickness of the solid-liquid interface. 
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2.4.1 Modelling of microstructure 

Simulation at this level normally requires following the interface separating the solid and 

liquid phases (front tracking).  This has been achieved successfully in simple two-

dimensional geometry using either the boundary element method (BEM) or the finite 

element method (FEM).  In the first technique only the interface is meshed and Greens 

functions are used to solve the diffusion problem.  In the second method, dynamic re-

meshing of the domain is necessary.  These methods are accurate but difficult to 

implement even in two dimensions [94]. 

In pseudo-front-tracking techniques [56], the solid-liquid interface is spread over only one 

mesh of the finite difference (FDM) or finite volume (FVM) mesh and re-meshes.  Here 

the concept of the volume fraction of solid (or liquid) is introduced, which is equal to unity 

in the solid, zero in the liquid and intermediate for the ``interface meshes''. 

2.4.2 Modelling of processes and average microstructural features 

Modelling of solidification processes and microstructural features has benefited from two 

main contributions.  Firstly, the introduction of averaged conservation equations previously 

developed for two phase media [80, 95].  Secondly, the couplings of these equations with 

microscopic models of solidification describing grain structure formation and other 

microstructural features (e.g. secondary arm spacing, microsegregation model, etc.) 

2.4.3 Modelling of grain structures using stochastic methods 

The prediction of morphology transitions (from outer equiaxed to columnar and from 

columnar to equiaxed) [96, 97] is also quite difficult with averaging methods.  In order to 

overcome these shortcomings, stochastic methods have been developed over the past two 

decades [51, 52].  It should be pointed out that the stochastic aspect is only related to 

nucleation (random location and orientation of nuclei) whereas growth is usually treated in 

a deterministic way.  Two types of models can be distinguished: 

Cellular Automata (CA) have been developed for dendritic grain structures and can treat 

arbitrary shapes and grain competition [51, 94, 98].  In this technique, the solidification 

domain is mapped with a regular arrangement of cells and each grain is described by a set 

of cells, those located at the boundary (i.e. in contact with liquid cells) being active for the 

calculation of the growth process. 

In ``Granular Dynamics'' (GD) techniques, the surface of each grain is subdivided into an 

ensemble of small facets [55, 99].  The growth stage of each grain is then described by a 

set of parameters, e.g.  the position of its centre, the radial positions of its facets and their 
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status (contact with the liquid or with another grain), etc.  This latter technique is more 

appropriate for nearly spherical morphologies (e.g.  equiaxed eutectics or globulitic grains) 

and can handle the transport of equiaxed grains fairly well. 

2.5 Conclusion 

Experience has been accumulated in the numerical simulation of convection/diffusion 

processes coupled with phase-change.  Numerical techniques for such complex phenomena 

are being developed by scientists and engineers in different disciplines.  The popularity of 

some methods is based on experience gained.  Numerical methods based on the weak 

solution in conjunction with the control volume scheme in the fixed domain can be highly 

recommended for multidimensional melting and solidification problems.  However, with 

increasing interest in modelling of microstructure evolution occurring during solidification, 

new solidification models are constantly under development, improving accuracy and 

predicting the peculiar characteristics of microstructure. 

With the advent of very powerful computers, advanced numerical methods and better 

understanding of the physical phenomena involved in solidification, it is not surprising that 

computer simulations are becoming increasingly used for the modelling of macro-

microstructure formation and associated characteristics or defects which provides an 

important incentive for public-private institutions or individuals to continue this type of 

research. 
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Figure 2-1  Representation for two-phase Stefan problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2  1-D fixed grid with a moving front 
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Figure 2-3  Latent heat release for isothermal and mushy solidification 
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3 A NON-PHYSICAL ENTHALPY 
METHOD FOR THE NUMERICAL 
SOLUTION OF ISOTHERMAL 
SOLIDIFICATION  

  

 

 

 

3.1 Introduction 

Sophisticated computational approaches exist for the accurate and efficient modelling of 

solidification processes.  Models and methods have been developed to account for complex 

boundary conditions, moving boundaries, varying thermo-physical properties, macro and 

micro transport processes used in the prediction of defects such as segregation and porosity 

[31, 39, 40, 69, 73, 100, 101, 102, 103, 104].  Fundamental to the many approaches, in the 

absence of convection, is the efficient solution to the diffusion equation.  Many of the 

numerical methods for the solution of the diffusion equation can be viewed as classical and 

are commonly employed in commercial software.  The methods can be classified into two 
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groups; front tracking (adaptive) and fixed domain methods [100].  Front tracking 

(adaptive) methods provide for an accurate description of isothermal solidification but at 

the cost of complex meshing and re-meshing strategies, generally needed to cater for 

phase-front distortion, birth and collapse [45, 46, 70].  The solidification of a pure or 

eutectic substance is of particular interest here as it gives rise to a material discontinuity.  

Although adaptive methods provide for high accuracy in the presence of a material 

discontinuity their complexity has resulted in the favouring of fixed-domain approaches 

[36, 40, 105].  As an aside, it of interest to note that much research is ongoing into finite 

element methods for the incorporation of discontinuities; these include the extended and 

discontinuous Galerkin finite element methods [106, 107, 108].  For these methods 

however, the focus is on geometric (strong) discontinuities and are not readily applicable to 

isothermal solidification.  Fixed domain methods tend to be more versatile and easier to 

implement but it is evident from the literature they can suffer inaccuracy particularly when 

material discontinuities are present.  Four fixed domain methods are commonly employed 

to solve solidification problems; these are the so-called enthalpy [39, 105, 109, 110], 

capacitance [101, 111, 112], fictitious heat flow [40, 75] and temperature recovery (or heat 

integration) techniques [113].  Good reviews of the existing traditional techniques are 

given by Voller et al. [46] and Dalhuijsen et al. [68].  Each of the fixed domain methods 

attempts to incorporate the latent heat release on solidification either by artificially 

increasing the enthalpy, thermal capacitance or by inclusion of a source term.  Capacitance 

methods for example involve the specification of artificial element or nodal capacitances in 

an attempt to cater for the release of latent energy.  The apparent heat capacitance method 

is particularly prone to error in the presence of a material discontinuity [114].  It is 

demonstrated with the introduction of control volume capacitance methods (CVCM) in 

references [114] and [115] that large energy fluctuations are presented in the established 

capacitance methods.  Source-based methods similar to the fictitious heat flow method are 

particularly attractive as existing heat transfer codes can be easily modified to include 

source terms.  A particular feature of the method is the arbitrariness of the source term as 

the totality or part of the latent heat can be incorporated.  In the method proposed here, the 

source term is determined to remove completely the discontinuity.  High accuracy does not 

necessarily accompany source-term approaches although it is important to be clear what 

the term 'high accuracy' means.  Temperature predictions are often used as the sole 

criterion for assessing the success of these techniques.  This does not necessarily provide 

an adequate measure of the success, which is particularly the case for the capacitance 

techniques for example.  Differing approaches for the determination of capacitance and 
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sources are presented in the literature [46] each typically and ultimately justified by 

comparison with analytical temperatures but suffering large energy fluctuations 

nonetheless [115]. 

In this chapter, the focus is on isothermal solidification where the source term is selected to 

remove the discontinuity from the governing transport equations.  In so doing, 

mathematical credence is given to the use of continuous shape function across a 

discontinuity.  Any other choice for the source term, whilst not invalid, has the effect of 

amortising the discontinuity over an element but manifesting at the element edges. The 

approach presented here allows for the simultaneous specification of both capacitance and 

source whilst at the same time ensuring total discontinuity annihilation unlike any existing 

method.  Established in the chapter is a completely novel procedure for the removal of 

weak discontinuities from the governing FE equations; this is the principal and important 

contribution.  The work extends the ideas developed in references [116, 117], which are 

restricted to capacitance formulations for phase-change problems described via transport 

equations.  The approach adopted here is founded on transport equations for an arbitrary 

control volume (CV) moving relative to the transporting material.  The movement of the 

CV is achieved by transport via an arbitrarily stipulated regular velocity field *v .  A non-

physical enthalpy h
)

, dependent on *v , is defined on the CV via transport equations.  This 

gives rise to the peculiar concept that h
)

 is dependent on the type of analysis selected, i.e. is 

not moving-frame invariant, in the sense that different results are obtained with different 

moving frame, for example, Eulerian (which is the focus of this chapter) and Lagrangian 

approaches produce different results.  Likewise, tracking a discontinuity provides yet 

another answer.  However, it is demonstrated in this chapter how h
)

 obtained for a 

particular CV transported by *v  (say) can be determined at a discontinuity moving within 

the CV.  This involves developing transport equations that impart relative moving-frame 

invariance on h
)

, which is central to the analysis of the discontinuous physics with non-

physical variables.  Introduced in this chapter is the concept of weighted-transport 

equations.  This is utilised to establish a finite element method that is applicable to 

discontinuous problems without approximation.  Each element takes the form of a control 

volume so relatively sophisticated approaches are required to cater for discontinuities 

and/or traversing boundaries. 

The concept of a moving CV is presented in Section 3.2 along with governing transport 

and partial differential equations.  Non-physical variables are introduced in Section 3.3 
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along with equivalent governing partial differential equations.  Discontinuous non-physical 

variables are discussed in Sections 3.4 and 3.5.  In Section 3.6, finite element systems are 

developed for the solution of the transport equations developed.  Of concern in Section 3.7 

and 3.8 are the theories required to annihilate discontinuities from the transport finite 

element equations.  Various forms of the discontinuity annihilated FE transport equations 

are presented in Section 3.9.  In the sections that follow the details relating to the 

implementation and testing of the non-physical enthalpy method (NEM) in an Eulerian 

frame are described. 

 

3.2  Conservation law for a moving CV 

The formulation proposed here can be related in a restricted sense to the arbitrary 

Lagrangian Eulerian (ALE) formulation [35] .  The ALE formulation permits independent 

control volume (CV) movement in a computational reference system (CRS).  The Material 

reference system (MRS), spatial and CRS co-ordinates are denoted by X, x and *χ , 

respectively [118].  The material derivative 
X

tDtD ∂∂=  and CV derivative 

*ttDD **
χ

∂∂=  are related to the spatial derivative by the following expressions 

 

∇⋅+
∂
∂

= v
tDt

D

x

 (3.1)

∇⋅+
∂
∂

= *
*

*

v
ttD

D

x

 (3.2)

 

where DtDv x= and tDDv *** x= . 

Two other velocity fields are utilised in this chapter, i.e. +v  and ×v , for the purpose of 

tracking discontinuities.  The velocity field +v  is selected to match the velocity of a 

discontinuity iΓ  passing through domain Ω .  The velocity field ×v  selected in a similar 

fashion but restricted to an element domain eΩ .  Similar identities to those found in 

equations (3.1) and (3.2) apply to these velocity fields also, i.e. ∇⋅+∂∂= +++ vttDD
x

 

and ∇⋅+∂∂= ××× vttDD
x

. 
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In the theory that follows the transport of Ω  is governed by one of the diffeomorphisms 

(differentiable one-to-one mappings) ( )t,x ∗χ , ( )t,x +χ  and ( )t,x ×χ  which are obtainable 

on solution of the differential equations ( ) *vt,tx =∂∂ ∗χ , ( ) ++ =∂∂ vt,tx χ  and 

( ) ×× =∂∂ vt,tx χ , respectively, where *v , +v  and ×v are specified regular velocity fields.  

Moreover, not only is the velocity field *v  used in the transport of the computational 

frame (mesh movement) but also it is used generally to describe movement of the system 

domain under consideration. 

Although in this chapter attention is generally restricted to mappings between points from 

the MRS and CRS to the spatial system (physical domain) it is evident that mapping 

between the MRS and CRS can also exist.  This latter map is useful when seeking an 

analytical solution or for a numerical approach that updates the geometry subsequent to 

any analysis (e.g. updated Lagrangian). 

 

3.2.1 Relationships between temporal derivatives 

Consider the situation where ( ) ( ) xt,Xxt,xx ≡=≡ ∗∗ χ , thus providing a relationship 

between ∗χ  and X .  Equating the differential of each gives 

iijij
*
ij

*
ij

*
i dxdtvdXJdtvdJdx =+=+χ= , where the Jacobian matrices are j

*
i

*
ij xJ χ∂∂=  and 

jiij XxJ ∂∂= .  If a material point X  is fixed, then *
iij

*
ij vvVJ −= , where DtDV jj χ=  

and similarly if ∗χ  is fixed, then ( )*
ii

*
jij vvVJ −−= , where tDXDV *

j
**

j = .  The 

velocities in small case ( v and ∗v ) are measurable (because they reside in the physical 

domain) whilst the velocities in upper case ( V  and *V ) relate to reference domains so are 

not directly measurable (see Figure 3-1).  Note that temporal derivatives DtD  and 

tDD **  can be related in three ways, i.e. ( ) ii
*
i

** xvvDtDtDD ∂∂−+=  ( ∗χ  and X  

fixed) obtained on subtraction of (3.1) from (3.2), i
*
i

** XVDtDtDD ∂∂+=  ( ∗χ  fixed) 

and ii
** VtDDDtD χ∂∂+=  ( X  fixed), where summation is performed over repeating 

suffices.  Note also that ( ) ( )[ ] i
T

j
*
jij

1** vvJDtDtDD χ∂∂−+= −  and 

( ) ( )[ ] i

T
*
jjij

1*** XvvJtDDDtD ∂∂−+=
−  in the case of ∗χ  and X  fixed.  It is assumed here 

that the inverse Jacobian exists, which is assured for diffeomorphisms ( )t,∗χx  and ( )t,Xx .  
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Although most researchers [117] adopt the map ( )t,X∗χ  in place of the map ( )t,x ∗χ , it is 

evident from the analysis above that there is little discernable difference between the two 

approaches.  Saying that, the latter approach focuses directly on the physical domain and 

the velocities v  and *v  are directly measurable in that domain.  Moreover, the transport 

equations tend to be simpler in form in the physical domain.  It is a simple matter to show 

that the following proposition holds: 

 

3.2.2 Proposition 

An energy conservation law for a moving domain Ω  defined by the diffeomorphism 

( )t,∗χx , is 

 

( ) ∫∫∫∫
ΩΓΓΩ

ρ+Γ⋅−=Γ⋅−ρ+ρ QdVdnqdnvvhhdV
tD

D *
*

*
 (3.3)

 

where h is the specific enthalpy, ρ  is the density, v  is the material velocity, nq ⋅  is the 

heat flux and Q is the heat source term. 

Note the use of tDD **  rather than the ordinary derivative dtd  in equation (3.3) even 

though these are identical when applied to a function of t.  Thus, even though ∫Ω
ρhdV  is 

a function of t the use of the derivative tDD **  in (3.3) is intended to immediately relay 

the notion that Ω  is a control volume transported through *v .  Although *v  is present in 

equation (3.3) it cannot influence the value of h as this would be physically meaningless.  

It is demonstrated in [116] that with the transport of Ω  through *v , the appearance of the 

integral ∫Γ
Γ⋅ρ− dnvh *  ensures that h  is independent of *v .  This is also clear from a 

physical perspective since the term ∫Γ
Γ⋅ρ dnvh *  accounts for the gain in hρ  with the 

movement of the boundary Γ .  Another transport equation of interest here is 

 

( ) 0dnvvdV
tD

D *
*

*
=Γ⋅−ρ+ρ ∫∫

ΓΩ

 (3.4)
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for transport of mass. 

The governing partial differential equation can be obtained from (3.3) by application of a 

Reynold-type transport Theorem and the Divergence Theorem, i.e. substitution of 

 

∫∫
ΩΩ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ρ+

ρ
=ρ dVvhdiv

tD
hDhdV

tD
D *

*

*

*

*
 (3.5)

( ) ( )( )∫∫
ΩΓ

−ρ=Γ⋅−ρ dVvvhdivdnvvh **  (3.6)

( )∫∫
ΩΓ

=Γ⋅ dVqdivdnq  (3.7)

 

into (3.3) gives 

 

( ) ( ) Qqdivhvv
tD
hD *

*

*
ρ+−=∇⋅−ρ+ρ  (3.8)

 

where use is made of the continuity equation ( )[ ] 0vvdivvdivtDD **** =−ρ+ρ+ρ  in the 

derivation of (3.8), which is obtainable from equation (3.4). 

It is important to appreciate that equation (3.8), although unusual in appearance, is 

identical to ( ) QqdivDtDh ρ+−=ρ , which is the governing partial differential heat 

equation expected for the transport problem under consideration.  Use of the identity 

( ) DtDvvtDD *** =∇⋅−+  in (3.8) gives this result, which reinforces the maxim that 

physical laws are unaffected by the choice and transport of the control volume on which 

the analysis is to be performed. 

The derivation of equation (3.8) from the transport equation (3.4) requires, amongst other 

things, that both ρ  and h  possess a degree of smoothness on Ω .  At points of 

discontinuity the continuity equation and equation (3.8) will not be applicable despite the 

validity of equations (3.3) and (3.4).  Prior to examining the behaviour at a material 

discontinuity it convenient at this stage to introduce an alternative transport equation that 

can be more readily solved using numerical techniques but also to define a non-physical 

enthalpy h
)

 that behaves like a source rather than a jump at a material discontinuity. 
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3.3 Equivalent governing equations 

A transport equation is constructed so that its solution is precisely that which satisfies 

equations (3.3) and (3.8).  Consider then the identity  

 

( ) ∫∫∫∫∫
ΩΓΓΩΩ

ρ+Γ⋅−=Γ⋅−ρ+ρ= QdVdnqdnvvhhdV
tD

DdVh
tD

D *
*

*

*

* )
 (3.9)

 

which defines the non-physical enthalpy h
)

 and in the absence of discontinuities the 

corresponding governing partial differential equation is 

 

( ) ( ) Qqdivhvv
tD
hDvdivh

tD
hD *

*

*
*

*

*
ρ+−=∇⋅−ρ+ρ=+

)
)

 (3.10)

 

where it is evident equation (3.8) is contained within equation (3.10). 

Both equations (3.9) and (3.10) provide definitions for h
)

 although it is expected (after 

certain issues are resolved) that equation (3.9) will facilitate the analysis of h
)

 in the 

presence of discontinuities.  It is evident by the manner in which h
)

 is defined (i.e. 

satisfying a differential equation) that it is not unique, which as will be shown in 

subsequent sections is a property that can be used to good advantage.  Similarly, non-

physical density ρ)  is defined via 

 

( ) 0dnvvdV
tD

DdV
tD

D *
*

*

*

*
=Γ⋅−ρ+ρ=ρ ∫∫∫

ΓΩΩ

)  (3.11)

 

with an accompanying partial differential equation 

 

( )[ ] 0vvdivvdiv
tD

Dvdiv
tD

D **
*

*
*

*

*
=−ρ+ρ+

ρ
=ρ+

ρ )
)

 (3.12)

 

This equation is readily solved for ρ) , since 0vdivtDD *** =ρ+ρ ))  gives 

 



Chapter 3 83 
 

Ricardo Mondragon The University of Manchester 
 

[ ] ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

ρ
ρ

⇒−=
ρ

⇒−=
ρ

ρ ∫
t

t
0

**

0

*
*

*
*

*

*

0

dss,s,vdivexpvdiv
tD

lnDvdiv
tD

D1 xx)

)))

)  (3.13)

 

which for 0v* ≠  can be succinctly written as  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−ρ=ρ ∫
C

*
2*

*
*

0 dx
v

vvdivexp))  (3.14)

 

where 0ρ)  is ρ)  at 0t  and C refers to a contour obtained on the integration of dsvdx ** = , 

i.e. ( ) ( )( )∫+=
t

t 0
**

00
*

0

dss,s,vt, xxxxx . 

With knowledge of ρ)  a solution for h
)

 can be constructed in the form *hh
)))

ρ= , since the 

left hand side (LHS) of equation (3.10) gives 

 

( )
Dt
Dhhvv

tD
hD

tD
hDvdiv

tD
Dh

tD
hD *

*

*

*

**
*

*

*
*

*

**
ρ=∇⋅−ρ+ρ=ρ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ρ+

ρ
+ρ

)
))

))
)

)  (3.15)

 

which for 0v* ≠  on integration gives 

 

⎟
⎟
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⎜
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⎝
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⋅
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ρ

ρ= ∫
C

*
2*

*

0

0 dx
v

v
Dt
Dhhh ))

)
))

 (3.16)

 

It is apparent on inspection of equation (3.16) that h
)

 is not independent of *v  and in the 

absence of discontinuities is defined (although not uniquely).  Understanding the behaviour 

of h
)

 in the presence of a discontinuity is of particular importance.  

 

3.4 Discontinuities for non-physical equations 

Consider a discontinuity present in Ω  in the form of an interface iΓ  between lΩ  and sΩ  

(see Figure 3-2).  To ascertain the behaviour of the non-physical enthalpy h
)

 at the 
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discontinuity requires careful treatment.  One approach might be to consider an arbitrary 

small volume enclosing iΓ  moving at velocity iv .  The transport of the control volume is 

assumed to be governed by the regular velocity field velocity +v  where nvnv i ⋅=⋅+  at 

iΓ  and n  is a unit normal on iΓ .  Integrating equation (3.3) with respect to time gives 

 

( )
( ) ( )

∫ ∫∫ ∫∫∫∫∫ ′Γ⋅−=′Γ⋅−ρ+ρ−ρ=−
′Γ′Γ

+

ΩΩΩΩ

t

t t

t

t t 000*0*

tddnqtddnvvhhdVhdVdVhdVh
))

 (3.17)

 

where for convenience the source term Q is neglected. 

In the limit ( ) 0vol 0 →Ω , with the restriction that *i Ω⊂Γ , equation (3.17) reduces to 

 

( ) ( ) =′Γ⋅−ρ−′Γ⋅−ρ−=Γ−Γ ∫ ∫∫ ∫∫∫
Γ

+

Γ

+

ΓΓ

t

t
sss

t

t

'
0

'

0
s
i0 i

0
ii

tddnvvhtddnvvhdhdh
l

lll

))
 

∫ ∫∫ ∫
ΓΓ

′Γ⋅+′Γ⋅=
t

t
s

t

t 0
s
i0 i

tddnqtddnq
l

l (3.18)

 

where 'h
)

 and '
0h
)

 are source terms at iΓ  and 0
iΓ , respectively. 

It follows, from equation (3.18), that h
)

 is a distribution, so is only quantifiable in an 

integral sense at iΓ .  It is important to appreciate however, that (3.18) is only valid for the 

particular +v  chosen, i.e. +v  is a regular velocity field, where nvnv i ⋅=⋅+  on iΓ .  This 

highlights a particular difficulty in that the behaviour of h
)

 depends on the analysis type.  It 

is clear that the equation on the right hand side (RHS) of (3.18) gives rise to the jump 

condition ( )] [ ] [nqnvvh ⋅−=⋅−ρ +  at iΓ , where ] [ ll
nqnqnq ss

⋅+⋅=⋅−  and similarly for 

( )] [ ( ) ( ) ( ) ( )llll nvvhnvvhnvvh ssss −⋅−ρ+−⋅−ρ=⋅−ρ +++ .  An alternative form of 

equation (3.18) is obtained on letting 0tt → , i.e. 

 

( )] [ ] [∫∫∫
ΓΓ

+

Γ
+

+

Γ⋅−=Γ⋅−ρ=Γ
iii

dnqdnvvhdh
tD

D ')  (3.19)

 

where interchange of differentiation and integration for the left hand side (LHS) term is 

achieved using 
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∫∫∫
Γ

+
Γ

Γ
+

+

Γ
+

+

Γ+Γ=Γ
i

i

ii

dvdivhd
tD
hDdh

tD
D '

'
' )

)
)

 (3.20)

 

where ss n,nDvvdivvdiv
i

+++
Γ −=  [119] with +v  defined local to iΓ  and where 

( ) mm xvDv ∂∂= ++
ll  and ⋅⋅,  stands for inner product.  The derivative on the LHS of (3.20) 

is defined in the sense of (3.18).  Thus 

 

( )] [ ] [nqnvvhvdivh
tD
hD

i

'
'

⋅−=⋅−ρ=+ ++
Γ+

+ )
)

 (3.21)

 

A solution to this equation is obtained on setting +ρ= ''' hh
)))

 with 'ρ)  satisfying 

0vdivtDD
i

i

'' =ρ+ρ
Γ

+
Γ

++ )) .  It is worth re-emphasising that 'h
)

 is the particular solution 

tied to the choice of +v  and restricted by the requirement that nvnv i ⋅=⋅+  on iΓ .  This 

can be contrasted against the solution *hh
)))

ρ=  provided in Section 3.3, which is 

applicable for arbitrary *v  on a continuum.  A solution for the case +≠ vv*  is needed and 

this requires the concept of relative moving frame invariance to be considered. 

 

3.5 Moving CV in a moving CV 

Consider the situation where *v  and the CV are specified.  In this case, the function h
)

 is 

defined via the transport equation (3.9) or at points in a continuum by the partial 

differential equation (3.10).  It is evident that equations (3.9) and (3.10) cannot be readily 

used to ascertain how h
)

 behaves at a discontinuity.  If a distribution like behaviour is 

present at the discontinuity, then equation (3.10) cannot be applied and at best can only be 

used to ascertain if h
)

 jumps by approaching a point on iΓ  from either side.  Equation (3.9) 

is of little use as Ω  is prescribed and not generally following iΓ , i.e. nvnv i
* ⋅≠⋅ .  This 

particular difficulty can be overcome by defining an additional transport equation for a CV 

transported by a velocity +v  in the usual way.  In this case it is important that h
)

 is not 

dependent on +v .  This is achieved with the transport equation 
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( ) ( ) =Γ⋅−ρ+ρ=Γ⋅−+ ∫∫∫∫
++++ Γ

+

Ω
+

+

Γ

+

Ω
+

+
dnvvhhdV

tD
DdnvvhdVh

tD
D *))

 

∫∫
++ ΩΓ

ρ+Γ⋅−= QdVdnq (3.22)

 

where +v  governs the transport of +Ω  in this equation. 

 

3.5.1 Proposition 

At points in a continuum equations (3.22) and (3.9) are satisfied by the same function h
)

. 

 

Proof 

It is sufficient to demonstrate that the LHS of (3.22) generates the LHS of equation (3.10). 

 

( ) ( ) ( )( )∫∫∫
+++ Ω

++
+

+

Γ

+

Ω
+

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++=Γ⋅−+ dVvvhdivvdivh

tD
hDdnvvhdVh

tD
D ** ))

)
))

 

 

This implies that ( ) ( )( )=−++ ++++ vvhdivvdivhtDhD *)))
RHS (Eq. (3.10)), as +Ω  is 

arbitrary. Substitution of the identity ( ) ∇⋅−+= +++ *** vvtDDtDD  yields the LHS of 

equation (3.10) and the proof is complete. 

 

Application of equation (3.22) to a CV following a boundary iΓ  with nvnv i ⋅=⋅+  on iΓ  

gives 

 

( ) ( )] [ =Γ⋅−+⋅−+ ∫∫∫
Γ

+

∑

+

Γ
+

+
∑

iii

dnvvhdtnvvhdVh
tD

D **'' )))
 

( )] [ ] [∫∫
ΓΓ

+ Γ⋅−=Γ⋅−ρ=
ii

dnqdnvvh (3.23)
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where, as in Section 3.4, the outward square bracket signifies a jump and tn  is an outward 

pointing unit normal on ii Γ∩Γ=∑  ( i∑  is the boundary for iΓ ) that is in a tangent plane 

of iΓ . 

The term ( )∫ ∑
+ ∑⋅−

i
dtnvvh *')  is a consequence of ( )∫ +Γ

+ Γ⋅− dnvvh *)
 in equation 

(3.22), which does not vanish as the CV shrinks to iΓ  because of source-like behaviour of 

'h
)

. Equation (3.23) gives rise to the equation 

 

( )( ) ( )( ) =⋅−−+−++
Γ

++
Γ

+
Γ+

+

i
ii s

*
sT

*
T

''
'

nvvhhvvhdivvdivh
tD

hD ))))
)

l  

( )] [ ] [nqnvvh ⋅−=⋅−ρ= + (3.24)

 

where subscript T denotes tangent and use is made of the fact that ( ) s
* nvv ⋅− +  is 

continuous at iΓ . 

It can be demonstrated that 'h
)

 obtained from equation (3.24) is independent of +v  

however it is convenient to leave the proof to a latter section.  It is evident (arising from 

non-uniqueness) that the source term can be specified, so that  

 

( )( ) ( )] [ ] [nqnvvhvvhdivvdivh
tD

hD
T

*
T

''
'

ii
⋅−=⋅−ρ=−++ ++

Γ
+

Γ+

+ ))
)

 (3.25)

 

ensuring that limiting values of l

)
h  and sh

)
 are equal at iΓ .  This equation can be 

contrasted against equation (3.21) in Section 3.4, where it is apparent that the additional 

term is ( )( )+
Γ − T

*
T

' vvhdiv
i

)
 arising because +≠ vv* .  The property that limiting values of 

l

)
h  and sh

)
 are equal at iΓ  is particularly appealing as it gives rise to the possibility that h

)
 

can be reasonably approximated by continuous functions.  This is despite the fact that h
)

 is 

not defined at iΓ .  A continuous approximation for h
)

 is applied over an element in the 

finite element method and the details are considered in the section that follows. 
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3.6 Finite elements equations 

Finite element equations are typically derived using a variational principle (e.g. Hamilton, 

Virtual work, etc.) or, more generally by applying the method of weighted residuals to the 

governing partial differential equations.  The latter approach is preferred here but the 

presence of discontinuities prevents its direct application in the usual way.  Introduced here 

is the idea of a weighted transport equation facilitating immediately the incorporation of 

discontinuities.  Consider then the following weighted-transport equation, 

 

( ) ( ) =Γ⋅−ρ+∇⋅−ρ−ρ= ∫∫∫∫
ΓΩΩΩ

dnvvhWWdVvvhhdVW
tD

DdVhW
tD

D **
*

*

*

* )
 

∫∫∫
ΩΓΩ

ρ+Γ⋅−⋅∇= WQdVdnqWdVqW (3.26)

 

where W is transported invariantly with Ω , i.e. 0tDWD ** = . 

Note that spatial and temporal derivatives of h
)

 and h  are avoided, making (3.26) 

applicable when a discontinuity is in Ω .  Note also that on setting 1W = , equation (3.3) is 

returned.  Applying (3.26) to an element domain eΩ  and adopting a standard Galerkin 

weighting gives 

 

( ) ( ) =Γ⋅−ρ+∇⋅−ρ−ρ= ∫∫∫∫
ΓΩΩΩ eeee

dnvvhNdVNvvhhdVN
tD

DdVhN
tD

D *
ii

*
i*

*

i*

* )
 

∫∫∫
ΩΓΩ

ρ+Γ⋅−⋅∇=
eee

bdVNdnqNdVqN iii (3.27)

 

where iN  is a shape function and eΩ  is an element domain and eΓ  is its boundary. 

Note that continuity of W and h  (in the absence of discontinuities) is required to ensure 

( )∫Γ
Γ⋅−ρ

e
dnvvhW *  is uniquely defined at element boundaries.  No such restriction is 

imposed on the function h
)

, which can be discontinuous at element boundaries.  It should 

be appreciated that like Ω  the movement of eΩ  is dictated by the specified velocity *v .  

Integration of the LHS and RHS of (3.27) over a time interval [ ]1nn t,t +  gives 
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( ) ( ) ( )
∫ ∫∫ ∫∫ ∫∫∫
+++

+ ΩΓΩΩΩ

+ ρ+Γ⋅−⋅∇=−
1n

n e

1n

n e

1n

n e
n
e

1n
e

t

t t
i

t

t t
i

t

t t
i

n
i

1n
i dtQdVNdtdnqNdtdVqNdVhNdVhN

))

 

(3.28)

 

The significance of this equation is that no advection terms are present, raising the 

expectation that any difference equations formed can be stabilised.  Similarly, equating the 

left and middle of equation (3.27) gives 

 

−ρ−ρ=− ∫∫∫∫
ΩΩ

++

ΩΩ

+

++ n
e

1n
e

n
e

1n
e

dVhNdVhNdVhNdVhN nn
i

1n1n
i

n
i

1n
i

))
 

( ) ( )∫ ∫∫ ∫
++

ΓΩ

Γ⋅−ρ+∇⋅−ρ−
1n

n e

1n

n e

t

t

*
i

t

t
i

* dtdnvvhNdtdVNvvh (3.29)

 

This equation establishes the link between h
)

 and h ; a simplified form can be obtained by 

summing over i to give 

 

( )∫ ∫∫∫∫∫
+

++ ΓΩ

+

Ω

++

ΩΩ

+ Γ⋅−ρ+ρ−ρ=−
1n

n e
n
e

1n
e

n
e

1n
e

t

t

*n1n1n1nn1n dtdnvvhdVhdVhdVhdVh
))

 (3.30)

 

Consider further a linear approximation of h
)

 over eΩ , i.e. ∑ =
= em

1j jjhNh
))

.  This 

approximation may appear inappropriate at first sight bearing in mind the distribution like 

behaviour of h
)

 on iΓ .  If continuity is desirable at element interfaces then the analysis of 

Section 3.5 showed that a source term 'h
)

 satisfying a form of equation (3.23) or 

equivalently the differential equation (3.25) must be incorporated in some manner for any 

element containing a discontinuity.  It is desirable to isolate the source terms embedded in 

equations (3.28) and (3.29) to firstly legitimize the element continuous approximations for 

W and h
)

 but secondly to benefit any numerical solution algorithm.   

An alternative strategy is to neglect the source term but allow for step discontinuities to 

appear at element interfaces.  In this case the effect of the distribution is felt through 

increases and decreases in h
)

.  One advantage arising from discontinuities at the element 

boundaries is that h
)

 can be determined without recourse to information about h
)

 in 

adjoining elements.  It is apparent from solution (3.16) that h
)

 is not uniquely determined 
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by h since 0h
)

 is completely arbitrary.  Thus it is permissible to have discontinuities in h
)

 at 

element interface whilst at the same time ensure continuity for h  on an element domain.  

The various approaches are depicted in Figure 3-3 but focus in this chapter on the source 

approach depicted in Figure 3-3(c), where the source term 'h
)

 is provided by an analytical 

treatment on an element.  To remove the discontinuities from equation (3.28) and (3.29) 

require establishing relationships between different transport derivatives and matching 

these on an element domain. 

 

3.7 Matching transport derivatives 

The velocity +v  field is typically selected to track a discontinuity and facilitates the 

establishment of analytical results.  Similarly, the velocity field *v  is specified to be used 

in a computational frame and is used to describe the motion of elements in the FE 

formulation outlined in Section 3.6.  It is advantageous to perform analytical type analysis 

in a computational frame on the governing transport equations without recourse to the 

governing partial differential equations.  To do this it is necessary to establish the 

relationship between the derivative ( )∫∫ ++ Γ

++

Ω

+ Γ⋅−+⎟
⎠
⎞⎜

⎝
⎛ dnvvhtDdVhD *))

 and 

tDdVhD **
* ⎟

⎠
⎞⎜

⎝
⎛ ∫Ω

)
 found in equations (3.22) and (3.9), respectively. 

 

3.7.1 Proposition 

The smooth orientable boundaries +Γ and *Γ  of +Ω  and *Ω  respectively, are equal (i.e. 
*Γ=Γ + ) if and only if nvnv* ⋅=⋅ +  and *Γ=Γ +  at time 0tt = . 

 

Proof 

Consider a point +Γ∈x  and note that ++++++ +=+== NTNT dxdxdtvdtvdtvdx  and 

similarly for *dx , where subscripts T and N denote tangent and normal.  Thus, if 

nvnv* ⋅=⋅ +  then *
NN dxdx =+  and it follows (with *Γ=Γ +  at time 0tt = ) that 

*Γ=Γ + , t∀ .  Conversely, if *Γ=Γ + , t∀ , then *
NN dxdx =+  and thus nvnv* ⋅=⋅ + . 
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Although Proposition 7.1 was restricted to a set with a smooth boundary it can be applied 

to a Lipschitz continuous boundary, where at a point of discontinuity in normal curvature, 

a necessary and sufficient requirement for limiting values of nv* ⋅  and nv ⋅+  to match is 

that += vv* .  This essentially infers that points of discontinuity are mapped to points of 

discontinuity in the transport process.  It follows immediately from Proposition 7.1 that the 

derivatives ( )∫∫ ++ Γ

++
Ω

+ Γ⋅−+⎟
⎠
⎞

⎜
⎝
⎛ dnvvhtDdVhD *))

 and tDdVhD **
* ⎟

⎠
⎞

⎜
⎝
⎛ ∫ Ω

)
 are equal 

when *Γ=Γ +  although it is not necessary for += vv*  but only that nvnv* ⋅=⋅ +  at the 

boundary.  Consider then a discontinuity moving through the domain Ω , where 

nvnv* ⋅=⋅ +  on Γ  but +≠ vv*  and nv ⋅+  equals nvi ⋅ , the normal velocity of the 

discontinuity iΓ .  In this case 

 

( ) =Γ⋅−+= ∫∫∫
Γ

+

Ω
+

+

Ω

dnvvhdVh
tD

DdVh
tD

D *
*

* )))
 

( )∫∫∫
Σ

+

Γ
+

+

ΓΩ
+

+
Σ⋅−+Γ+=

iii

dtnvvhdh
tD

DdVh
tD

D *''

/

)))
(3.31)

 

where { }ii xandx:x/ Γ∉Ω∈=ΓΩ  and ii Γ∩Γ=Σ . 

Rearranging equation (3.31) gives 

 

( )∫∫∫∫
Σ

+

Γ
+

+

ΩΓΩ
+

+
Σ⋅−−Γ−=

iii

dtnvvhdh
tD

DdVh
tD

DdVh
tD

D *''
*

*

/

))))
 (3.32)

 

which illustrates how source terms can be removed from tDdVhD **
* ⎟

⎠
⎞

⎜
⎝
⎛ ∫ Ω

)
, since both 

sides of this equation are absent of source terms. 

 

3.8 Matching on an element domain 

It has been shown in the previous section that in order to relate two transport derivatives 

involving two velocities *v  and +v  on a domain Ω  the condition nvnv* ⋅=⋅ +  must be 

invoked.  This condition ensures that the transport of the boundary Γ  of Ω  is identical for 
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both velocities.  Here +v  matches the normal velocity of the discontinuity iΓ  and *v  is 

the velocity dictating the movement of the mesh.  However, there is little expectation that 

the condition nvnv* ⋅=⋅ +  applies on an element boundary eΓ .  In a situation where a 

front passes through an element it is convenient to follow this with a control volume that 

matches the proportion of the front in the element.  This can be achieved with an 

appropriate velocity ×v  that has the property iii nvnv ⋅=⋅ ×  on iΓ  and ee
* nvnv ⋅=⋅ ×  

on eΓ , where in  and en  are unit normals on iΓ  and eΓ , respectively.  In a 2-D space, for 

point iex Γ∩Γ∈ , where ei nn ≠ , the two conditions iii nvnv ⋅=⋅ ×  and 

ee
* nvnv ⋅=⋅ ×  define ×v  at x .  A problem can occur if ei nn = , which can happen 

when a front leaves or enters a domain with normals aligned.  It is evident, although not 

problematic, that for a 3-D space that ×v  is not defined uniquely at iex Γ∩Γ∈  by the two 

conditions iii nvnv ⋅=⋅ ×  and ee
* nvnv ⋅=⋅ × .  With +v  defined appropriately it is now 

possible to match derivatives and in particular consider the term appearing on the LHS in 

the FE transport equation (3.27), i.e. 

 

( ) ++=Γ⋅−+= ∫∫∫∫∫
Γ

×

×

ΓΩ
×

×

Γ

×

Ω
×

×

Ω e
i

e
ieeee

dVhN
tD

DdVhN
tD

DdnvvhdVhN
tD

DdVhN
tD

D '
ii

*
ii*

* )))))
 

( ) ( )∫∫
Γ

×

Σ

× Γ∇⋅−+Σ⋅−+
e
i

e
i

dNvvhdtnvvhN iN
*
N

'*'
i

))

(3.33)

 

where e
iΓ  is that portion of iΓ  contained in eΩ . 

 

3.8.1 Proposition 

The transport equation for the portion of iΓ  passing through an element is described 

 

( ) ( )] [ ] [∫∫∫∫
ΓΓ

×

∑

×

Γ
×

×
Γ⋅−=Γ⋅−ρ=Σ⋅−+Γ

e
i

e
i

e
i

e
i

dnqdnvvhdtnvvhdh
tD

D *'' ))
 (3.34)
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where tn  is an outward pointing unit normal on e
iΣ  (the boundary for e

iΓ ) that is in a 

tangent plane of e
iΓ . 

 

Proof 

Application of Reynold’s and Stoke’s Theorems to the first two terms in equation (3.34) 

generates 

 

( )( ) ( )] [ ] [nqnvvhvvhdivvdivh
tD

hD
T

*
T

''
'

ii
⋅−=⋅−ρ=−++ ××

Γ
×

Γ×

× ))
)

 (3.35)

 

which can be contrasted against that provided by equation (3.25). 

Consider the regular velocity field Nv  such that for t
iΓ∈x , ++ += TN vvv  and 

×× += TN vvv .  Define the mapping Nx  such that N
NNN vtDD =x  and note that the 

points )tt,(N Δ+xx , )tt,( Δ++ xx  and )tt,( Δ+× xx  all belong to tt
i

Δ+Γ .  Consider further 

 

( ) ( ) ( ) ( )
t

t,htt,h
lim

t
t,htt,h

lim
tD

hD
tD

hD 'N
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'

0t

'
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'

0tN

'N'

Δ
−Δ+

−
Δ

−Δ+
=− Δ+

→Δ

×
Δ+

→Δ×

× xxxx
))))))

 

( ) ( ) ( ) '
T

'
N

N
tt

'
tt

'

0t
hvhvv

t
tt,htt,h

lim
ii

))
))

Γ
×

Γ
×Δ+

×
Δ+

→Δ
∇⋅=∇⋅−=

Δ
Δ+−Δ+

=
xx (3.36)

 

where ( )tt,tt Δ+= ××
Δ+ xxx  and similarly for N

tt Δ+x . 

Substitution of identity (3.36) in to equation (3.35) gives: 

 

( ) ( )] [ ] [nqnvvhvhdivvdivh
tD

hD *
T

'
N

'
N

'N

ii
⋅−=⋅−ρ=++ ×

ΓΓ

))
)

 (3.37)

 

which confirms that the tangential component of the ×v  is not involved in the governing 

equation for 'h
)

.  Substitution of identity 

 

'
TN

'N'

hv
tD
hD

tD
hD

i

)
))

Γ
+

+

+

∇⋅+=  (3.38)
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into equation (3.25) gives identically equation (3.37), confirming the validity of transport 

equation (3.34). 

 

Corollary 3.8.1 

An immediate corollary to this proposition is that 'h
)

 is independent of the choice of 

velocity field tracking the discontinuity. 

Established thus far is the necessary theory required to remove sources from an element 

domain and consequently it is possible to remove discontinuities from the governing FE 

transport equations. 

 

3.9 Details of FEM for transport 

The full system of FE transport equations that require solution are: 

 

∫∫∫∫
ΩΓΩΓΩ

ρ+Γ⋅−⋅∇=
eeeie

QdVNdnqNdVqNdVhN
tD

D
iiii*

* )
 

( ) ] [∫∫
ΓΓ

× Γ⋅+Γ∇⋅−+
e
i

e
i

dnqNdNvvh iiN
*
N
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(3.39)

( ) ( )∫∫∫∫
ΓΩΩΓΩ

Γ⋅−ρ+∇⋅−ρ−ρ=
eeeie

dnvvhNdVNvvhhdVN
tD

DdVhN
tD

D *
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*
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Γ

×

Γ

× Γ⋅−ρ−Γ∇⋅−+
e
i

e
i

dnvvhNdNvvh iiN
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N
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(3.40)

( ) ( ) =Γ∇⋅−+Σ⋅−+Γ ∫∫∫
Γ

×
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×
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e
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e
i

e
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N
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i

'
i

)))
 

( )] [ ] [∫∫
ΓΓ

× Γ⋅−=Γ⋅−ρ=
e
i

e
i

dnqNdnvvhN ii (3.41)

 

where equations (3.39) and (3.40) are obtained on application of equation (3.33) to 

equation (3.27) and the validity of equation (3.41) is proven on application of Stoke’s and 

Reynolds transport theorems to LHS equation of (3.41) to give 
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] [∫
Γ

Γ⋅−=
e
i

dnqNi (3.42)

 

After cancellation of terms using equation (3.35) and dividing by 'h
)

, equation (3.42) in 

differential form reduces to (see Appendix for details). 

 

( ) 0
tD

NDNvv
tD

ND
*

i
*

i
*i ==∇⋅−+ ×

×

×

 (3.43)

 

since by definition iN  is invariant with respect to the derivative tDD ** .   

It is important to appreciate that no discontinuity is present on the LHS of equations (3.39) 

and (3.40).  In addition the integrals on the LHS of equations (3.39) and (3.40) are 

evaluated in the sense of Lebesgue.  Thus, the source term makes no contribution, the set 

ie / ΓΩ  is not partitioned into two separate domains and iΓ  is null in eΩ , having zero 

Lebesgue measure.  Consequently the RHS of these equations is also absent of 

discontinuities, achieved primarily as a consequence of isolating the source term.  The real 

power of the non-physical approach is revealed here by its ability to isolate and annihilate 

discontinuities in transport equations.  The annihilation theory provides for the exact 

annihilation of discontinuities as no approximations are involved.  The concepts are 

therefore widely applicable to problems involving discontinuities although the efficient 

application of the theory might be restricted by the solution methodology, which may 

involve approximations. 

Many options are available for the simplification and solution of these equations and one 

approach involves the direct substitution of (3.41) in (3.39) and (3.40) and the replacement 

of (3.40) and (3.41) with an element and discontinuity transport equations, i.e. 

 

−ρ+Γ⋅−⋅∇= ∫∫∫∫
ΩΓΩΓΩ eeeie

QVNdnqNdVqNdVhN
tD

D
iiii*
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dNvvhdnvvhN iN
*
N

'
ii

)

(3.44)

( ) ( )] [∫∫∫∫
Γ

×

ΓΩΓΩ

Γ⋅−ρ−Γ⋅−ρ+ρ=
e
ieeie

dnvvhdnvvhhdV
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* )
 (3.45)
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A further simplification is achieved with the removal of the term ( )∫ Γ

× Γ∇⋅−e
i

dNvvh iN
*
N

')  

in equation (3.44).  This can be postulated by the realisation that the principal purpose of 

this term is to annihilate the discontinuity in the integral ∫ Ω
⋅∇

e
dVqNi .  Thus, with 

Tkq ∇−=  and temperature approximated by ∑ =
= em

1j jjTNT  (i.e. the discontinuity is 

ignored), then ( )∫ Γ

× Γ∇⋅−e
i

dNvvh iN
*
N

')  should also be ignored.  The validity of this 

postulation is demonstrated explicitly in the next section.  The solution of (3.44) and (3.45) 

using a hybrid source-capacitance approach forms the focus of the results section.  Each 

non-physical variable h
)

 is to be approximated by ∑ =
= em

1j jjhNh
))

 on an element.  The 

integrals involving jump terms in (3.44) and (3.45) are considered as source terms in this 

formulation.  Integration of the two equations gives 

 

( ) ( )
+Γ⋅−∇⋅∇−=− ∫ ∫∫ ∫∫∫

++

++ ΓΩΓΩΓΩ

+
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n e

1n

n e
n
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n
e

1n
i

1n
e

t

t t
i

t

t t
i

/

n
i

/

1n
i dtdnqNdtTdVNkdVhNdVhN
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( )
( )] [

( )
∫ ∫∫ ∫
++

Γ

×

Ω

Γ⋅−ρ−ρ+
1n

n
e
i

1n

n e

t

t t
i

t

t t
i dtdnvvhNdtQdVN (3.46)

( )
( )

−Γ⋅−ρ+ρ−ρ=− ∫ ∫∫∫∫∫
+

++ ΓΩ

+

Ω

++

ΓΩΓΩ

+
1n

n e
n
e

1n
ei

n
ei

1n
e

t

t t

*n1n1n1n

/

n

/

1n dtdnvvhdVhdVhdVhdVh
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( )] [
( )

∫ ∫
+

Γ

× Γ⋅−ρ−
1n

n
e
i

t

t t

dtdnvvh (3.47)

 

The nodal values of jh
)

 are to be determined by an assembled form of equation (3.46).  

Special treatment is required for discontinuous elements with element types depicted in 

Figure 3-3(c) considered.  Equation (3.47) provides the linkage between physical and non-

physical variables and is not assembled but considered here as a constraint on system 

(3.46). 
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3.10 Isothermal solidification in an Eulerian frame 

The general theory simplifies substantially on a stationary mesh ( 0v* = ) in situations 

where material movement is sufficiently small to be negligible ( 0v = ) as depicted on 

Figure 3-4.  In this case equations (3.46) and (3.47) reduce to 

 

] [∫∫∫∫∫
Γ

×

ΩΓΩΓΩ

Γ⋅ρ+ρ+Γ⋅−∇⋅∇−=
∂
∂

e
ieeeie

dnvhNQdVNdnqNTdVNkdVhN
t iiiii

)
 (3.48)

] [∫∫∫
Γ

×

ΩΓΩ

Γ⋅ρ+ρ
∂
∂

=
∂
∂

e
ieie

dnvhhdV
t

dVh
t

)
 (3.49)

 

It is of interest to examine the form of the non-physical enthalpy h
)

, which is obtainable 

from equation (3.10), which for this case reduces to tTcthth ∂∂ρ=∂∂ρ=∂∂
)

.  It is 

important to appreciate that h
)

 is only needed at points of continuity.  In the case of 

temperature independent material parameters, integration gives 

( ) ( )nt

t
n TTcdssTchh

n
−ρ=∂∂ρ=− ∫

))
.  In principal, direct substitution for h

)
 in equation 

(3.48) is possible, so avoiding the use of (3.49).  In practice however, accurate evaluation 

of the integrals involved is a source of difficulty.  Moreover, the relationship does suggest 

the existence of an identity of the form Tch ))
= , where c)  is a non-physical variable.  It is 

important to appreciate that because h
)

 is not unique, so there is little requirement to 

include constants suggested by the relationship ( )nn TTchh −ρ=−
))

.  In addition, c)  is also 

non-unique and non-physical and should not be confused with material volumetric specific 

capacitance cρ . 

It is of interest also to examine the nature of the source term 'h
)

, where 'h
)

 and ×v  are 

assumed spatially invariant on e
iΓ  the portion of iΓ  in the element.  Then equation (3.35) 

reduces to 

 

( )] [ [ ] ( )sisssis

'

nvLhhnvnvvh
tD

hD
i

⋅ρ−=−⋅ρ−=⋅−ρ= Γ
×

×

×

l

)

 (3.50)
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which on integration gives ( ) ∫ ⋅ρ−=−
t

t sis
'
n

'

n

dsnvLhth
))

( )( )n
s XtXL −ρ−= , where 

( ) nt

t si XtXdsnv
n

−=⋅∫ , with X denoting the position of the discontinuity measured in the 

direction of ×
Nv .  This suggests a relationship of the form LXh s

' ρ−=
)

, where again non-

uniqueness facilitates the neglect of constant terms.  This relationship is approximate, so 

not recommended for use in the full system of FE equations.  Consider further the 

postulation in Section 3.9 that ∫ ∫
+

Γ Γ
× Γ∇⋅− 1n

n
e
i

i

t

t i
' dtdNvh
)

 annihilates the discontinuity in 

∫ ∫
+

Ω
⋅∇1n

n e

t

t i dtdVqN .  On a small volume VΔ  swept by the discontinuity over time tΔ  

the relationship tnvAVX si Δ⋅=Δ=Δ ×  applies.  At time interval tΔα , where [ ]1,0∈α  

the following measure relationship holds 

 

( ) =ΔΔ−⋅∇α+ΔΔ⋅∇=⋅∇∫ ∫
Δ Δ

tVqqNtVqNdVdtqN
sii

t V
i ll

 

( ) tVnvnNLtVqN sisisi ΔΔ⋅⋅∇αρ−ΔΔ⋅∇= ×

l
(3.51)

 

where use is made of jump condition ( )] [ ] [ ( ) sssis nqqnqnvLnvvh ⋅−=⋅−=⋅ρ−=⋅−ρ ×

l
 

and recognition that ( ) sss
nqqqq ll

−−=− .  Similarly, with XLhh s0
'' Δαρ−=−α
))

 the 

measure relationship 

 

( ) =ΔΔ⋅⋅∇αρ+Δ∇⋅−=∇⋅− ΓΓ
Δ

Γ
×

α∫ tXAnvnNLtANvhAdtNvh sisisii0
'

t
i

'
iii

))
 

( ) tVnvnNLtANvh sisisii0
'

ii
ΔΔ⋅⋅∇αρ+Δ∇⋅−= ΓΓ

)
(3.52)

 

It is evident on comparison that the terms on the far RHS of equations (3.51) and (3.52) are 

identical and of opposite sign and will be eliminated on addition.  Thus the postulation in 

Section 3.9 is valid and illustrated here is an example how the source term h ′
)

 removes a 

discontinuity.  It is worth emphasising here the importance of this result which provides 

the first analytical justification for the neglect of the discontinuity that appears the integral 

∫ ∫
+

Ω
⋅∇1n

n e

t

t i dtdVqN . 
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3.11 System assembly and solution 

Defined in Section 3.10 via the relationship Tch ))
=  is the concept of non-physical 

capacitance.  Substitution of this identity into equations (3.48) and (3.49) gives on 

integration 
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t
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dVTdVT
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c)  (3.54)

 

where for simplicity ec)  it is assumed both spatially and temporally invariant on element 

eΩ  and over time interval [ ]1nn t,t + . 

The non-physical capacitance obtained from equation (3.54) can be reasonably 

approximated (although not applied here) by the expression lll cfcf sss ρ+ρ , where 

element volume fractions ess VVf =  and eVVf ll =  and where eV  is the volume of the 

element.  Although at first sight a somewhat surprising approximation it arises because 

equation (3.54) is absent of any discontinuity, i.e. latent heat affects are annihilated. 

It is convenient to represent the term ] [
( )∫ ∫

+

Γ

× Γ⋅ρ= 1n

n
e
i

t

t t ie dtdnvhNS  on the far RHS of 

equation (3.53) in two parts, i.e. n
e

1n
ee SSS += + , where dVTNcS

e

1n
i

e
s

1n
e ∫Ω

++ = )  and 

∫Ω−=
e

dVTNcS n
i

e
s

n
e

) , where the source capacitance e
sc  is evaluated from 
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Approximation of the temperature field in the usual way ∑ =
=

m

1j jjTNT  gives an 

assembled system of the form 

 

( )( ) ( )( ) ( )( )n1nnn1nnn1n
s 1t1t QQTTKTTCC θ−+θΔ=θ−+θΔ+−− +++

))
 (3.56)

 

where an implicit method ( )1=θ  is utilised for the predictions and the capacitance 

matrices C
)

 and sC
)

 are diagonal, i.e. a lumped approximation is adopted.  The solution of 

(3.56) is coupled to the solution of (3.54) and (3.55) which provides a non-linear system of 

equations.  A simple bisection technique is applied to converge on sc)  and the linear 

systems of equations for each iterate are solved using a SOR [120] method.  The bisection 

technique is a simple method and is utilised to provide a just comparison in numerical 

experiments between the proposed method and the method outlined in reference [115], 

which uses the same approach. 

 

3.12 Integral evaluation 

The evaluation of the integrals in (3.54) and (3.55) is achieved using the relationships 

 

( ) ( ) liq

T

T
ssols TTTdTchTh

sol

<′′+= ∫  (3.57)

( ) ( ) sol

T

T
liq TTTdTchTh

liq

>′′+= ∫ ll  (3.58)

 

where Lhh solliq +=  and liqsol TT = , where L  is the latent heat released per unit mass.  

A single expression for specific enthalpy, valid in the liquid and solid phases is 

 

( ) ( )∫∫ ′′+′′++=+=
T

T

T

T
sssolssm

liqsol

TdTcgTdTcgLghhghgh lllll  (3.59)

 

where is made of expressions (3.57) and (3.58), where sg  and lg  are the solid and liquid 

mass fractions, respectively. 
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The enthalpy for an element is obtained on multiplication of equation (3.59) with density 

and integration over the element domain.  It is reasonable to restrict attention to linear 

elements as these are usually satisfactory for temperature predictions. Moreover, 

identification of isotherms within the element is relatively straightforward and integration 

can generally be performed analytically. Typical linear elements are presented in Figure 

3-5.  The enthalpy of an element at time nt  is simply, 

 

( ) ( ) +=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′′+′′++ρ=ρ ∫ ∫∫∫

ΩΩ

sole

T

T

T

T
sssol

nnn hMdVTdTcgTdTcgLghdVh
e liqsole

lll  

( ) ( )∫∫∫∫ ′′ρ+′′ρ++
ΩΩ

n

liq

n

sols

T

T

T

T
ss

n dVTdTcdVTdTcLM lll

l

(3.60)

 

where sΩ  and lΩ  are the spatial domains occupied by the solid and liquid, respectively. 

Moreover, n
eM  represent the mass of the element and nM l  is the mass of the liquid phase 

within the element. For isothermal solidification (3.60) reduces to, 

 

( ) ( )∫∫∫
ΩΩΩ

−ρ+−ρ++=ρ
nn

se

dVTTcdVTTcLMhMdVh liq
n

sol
n

ss
n

sol
n
e

nn

l

lll  (3.61)

 

for constant densities and capacitances 

A similar expression can be obtained for time 1nt +  and on subtracting one from the other 

the change in enthalpy for the element can easily be obtained.  Additionally, the accurate 

evaluation of the integral ] [
( )∫ ∫

+

Γ

× Γ⋅ρ1n

n
e
i

t

t t
dtdnvh  is required.  Recall that the term 

] [nvh ⋅ρ ×  is obtained on setting 0v =  in the expression ( )] [nvvh ⋅−ρ− × .  Note however, 

that continuity ( )] [ 0nvv =⋅−ρ− ×  gives ( ) ( ) 0nvvnvv isiss =⋅−ρ+⋅−ρ lll , which 

reduces to ( ) sisis nvvnv ⋅−ρ=⋅ρ− ll , where it is assumed that 0vs =  but for lρ≠ρs  

this infers that 0v ≠l .  It follows that 

( )] [ ( ) ( ) sissisiss nvLnvvhnv0hnvvh ⋅ρ=⋅−ρ−⋅−ρ=⋅−ρ− ×
lll .  If on the other hand 

0v =l , then for lρ≠ρs , 0vs ≠  and the jump condition ( )] [nvvh ⋅−ρ− ×  gives 

si nvL ⋅ρ l .  The assumption 0vs =  provides a variable mass element, whilst 0v =l  gives 
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a constant mass element and the corresponding choices for ] [nvh ⋅ρ ×  are sis nvL ⋅ρ  and 

si nvL ⋅ρ l , respectively.  Note, in addition that dtdnvdV sii Γ⋅= , where idV  is a 

measure of the volume of the element sweep by the movement of the phase boundary.  

Thus for a constant mass element the integral is determined using 

 

] [
( ) ( )

( ) ( )LMMVVLLVdtdnvLdtdnvh 1nn1nn
i

t

t t
i

t

t t

1n

n
e
i

1n

n
e
i

++

ΓΓ

× −=−ρ=ρ=Γ⋅ρ=Γ⋅ρ ∫ ∫∫ ∫
++

lllllll (3.62)

 

where nVl  is the volume of liquid in the element at time nt . 

It is of interest to note that the numerator in equation (3.54) gives 

 

] [
( )

=Γ⋅ρ+ρ−ρ ∫ ∫∫∫
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Γ

×
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++
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e
iee
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nn1n1n dtdnvhdVhdVh  

( ) ( ) ( ) Kllll +−−−+−= +++ LMMLMMhMM n1nn1n
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n
e

1n
e (3.63)

 

where the 3-dot ellipsis refers to sensible heats that follow; it is apparent that all latent heat 

terms are removed as predicted by the theory.  Similarly, if the variable mass assumption is 

invoked then the RHS of equation (3.62) is ( )LMM n
s

1n
s −+  and equation (3.63) becomes 
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( )( ) ( ) KK +−=++−= ++
liq

n
e

1n
esol

n
e

1n
e hMMLhMM (3.64)

 

where it is apparent that latent heat effects are not completely annihilated. 

The problem here is that energy transported into the element is neglected but remedied by 

adding the flux integral ∫ ∫
+

Γ
Γ⋅ρ− 1n

n
e

t

t
dtdnvh  to equation (3.64).  It is demonstrated in 

reference [115] that a lower-bound approximation for this integral is ( ) liq
n
e

1n
e hMM −− + .  

Adding this to equation (3.64) ensures the complete annihilation of the discontinuity as 

predicted by the theory.  A constant mass element is assumed for the results presented in 

the following section. 
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3.13 Numerical experiments 

In this section the Non-physical Enthalpy Method (NEM) is compared against Analytical 

and/or Control Volume Capacitance Method (CVCM) solutions for some typical problems.  

Both the NEM and CVCM ensure that the energy loss/gain from an element is consistent 

with temperature change unlike effective and temporal capacitance approaches.  It should 

be recognised that the representation ] [
( )∫ ∫

+

Γ

×+ Γ⋅ρ=+= 1n

n
e
i

t

t t i
n
e

1n
ee dtdnvhNSSS  with 

dVTNcS
e

1n
i

e
s

1n
e ∫Ω

++ = )  and ∫Ω
−=

e

dVTNcS n
i

e
s

n
e

)  yields a CVCM with e
s

ee
cvcm ccc ))) −= .  

The performance of the NEM matches that of the CVCM with differing results arising 

from the convergence on the source capacitance e
sc)  rather than the CVCM capacitance 

e
cvcmc) . 

Four problems are considered, which are: 

 

1. Prescribed temperature verification on an element to highlight the differences 

between ec)  and e
cvcmc) . 

2. Isothermal solidification of a 1-D semi-infinite slab for an initial liquid state to a 

solid state. 

3. Isothermal solidification at a 2-D semi-infinite corner, which is assessed by 

predictions along a diagonal ray. 

4. Isothermal solidification of a 3-D cube solidification. 

 

The analysis of more complicated/practical problems is not deemed necessary here as the 

approach is shown to give near identical performance to the CVCM, which has been 

thoroughly tested in pressure die casting for a range of complex component geometries 

[115, 116]. 

 

3.13.1 Isothermal solidification for 1-D element 

Consider the 1-D linear element depicted in Figure 3-5 subjected to a decreasing 

temperature field diff
1n

1
1n

2 TTT += ++ , where diffT  is the temperature difference between 

the nodes of the element.  The temperature difference between the nodes is set to: 5, 10 and 

20°C and 1TT liq
n

1 +=  with 1TT21T liq
1n

1liq +<≤− + .  The temperature range is selected 
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to ensure the material is initially liquid and ends up completely solid.  The material 

properties are given in the first column of Table 3.1, under the heading of material 1 and 

are approximately those for Zinc. 

Depicted in Figure 3-6 and Figure 3-7 are the non-physical capacitances e
cvcmc)  and ec)  for 

the CVCM and the NEM respectively.  It is evident on comparison of Figure 3-6 and 

Figure 3-7 that the variation of e
cvcmc)  is an order of magnitude greater than that of ec)  

obtained from equation (3.54).  This illustrates that the discontinuous latent heat effect has 

been effectively removed with the inclusion of the term ] [
( )∫ ∫

+

Γ

× Γ⋅ρ1n

n
e
i

t

t t
dtdnvh  in 

equation (3.54).  This is demonstrated analytically in equations (3.62) and (3.63) but also 

demonstrated numerically in Figure 3-6.  As mentioned in Section 3.12, lll cfcf sss ρ+ρ  

provides a reasonable approximation for ec) , where in this case Cm/MJ76.2c 03
ss =ρ  

and Cm/MJ30.3c 03=ρ ll , which can be compared against the numerical values 

provided in Figure 3-7. 

 

3.13.2 1-D semi-infinite domain with phase-change. 

Isothermal solidification of a semi-infinite slab with a fixed temperature boundary 

condition has a known analytical solution [31].  The mesh used for the test is depicted in 

Figure 3-8 along with boundary and initial conditions.  The material properties are given in 

the first column of the Table 3.1, which are those for zinc.  Temperature histories and, 

profiles and information on the non-physical capacitances are provided in Figure 3-9 to 

Figure 3-11, for different locations along the slab.  Excellent accuracy for temperature 

histories and profiles for both the NEM and CVCM is obtained as illustrated in Figure 3-9 

and Figure 3-10.  The behaviour of the non-physical capacitances e
cvcmc)  and ec)  is shown 

in Figure 3-11 and mirrors that shown in Figure 3-6 and Figure 3-7.  The spikes in value of 
e
cvcmc)  correspond with the phase front passing through the elements at the stipulated 

spatial locations.  The behaviour of ec)  appears near invariant on the scale adopted in the 

plots and illustrates the effectiveness of procedure for discontinuity annihilation. 
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3.13.3 2-D semi-infinite domain with phase-change. 

The isothermal solidification semi-infinite corner problem is considered where mesh 

boundary and initial conditions are depicted in Figure 3-12.  The authors are unaware of an 

analytical solution for this case although a solution with solidification absent does exist 

[31].  A modified form of the solution given in reference [31] with solid and liquid phases 

identified is 
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where ssss ck ρ=κ  and llll ck ρ=κ  are the thermal diffusivities for the solid and 

liquid phases respectively and attention is restricted here to a problem where lκ=κs . 

The condition lκ=κs  ensures that if liqs TTT == l  a unique representation for the phase 

front is obtained from both equations (3.65) and (3.66).  The parameter λ  is selected to 

ensure that the jump condition ( ) sssi nqqnvL ⋅−=⋅ρ−
ll  is matched precisely along the 

diagonal where jin2 s += .  If 0L ≠  the jump condition is not matched at all points on 

the phase front but is matched at all points for 0L = .  Accuracy of the analytical result 

improves as 0L → , which is compared against the results obtained from the CVCM and 

the NEM.  The material properties are those from the second column in the Table 3.1, 

where it is apparent that a relatively small value of latent heat is chosen.  The temperature 

history for selected points along the diagonal is displayed in Figure 3-13, where good 

agreement is obtained.  Temperature profiles along the diagonal at different time are 

displayed in Figure 3-14, where again reasonable accuracy is evident.  The position of the 

phase front with time measured along the diagonal is shown in Figure 3-15.  Excellent 

accuracy is apparent from both the CVCM and the NEM. 
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3.13.4 3-D cube domain with phase-change. 

The isothermal solidification of a cube is considered where mesh boundary and initial 

conditions are depicted in Figure 3-16.  Although an analytical solution is unavailable, 

different time steps and mesh densities are tested to ascertain the relative sensitivities of 

the CVCM and the NEM.  Given in Table 3.2 and Table 3.3 are the approximate program 

execution times for each of the methods along with results pertaining to the three error 

norms 
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where i and n represents the nodal position along the cube diagonal and time step, 

respectively.  Moreover, Xs and E are the position of the solidus front and the energy loss 

from the cube surface, respectively.  The subscript b indicates benchmark values, which 

since no analytical solution is available, are taken as the results obtained using NEM with 

50.0x =Δ mm (6000 elements) and 005.0t =Δ s.  The tests were performed using an 

implicit Euler time-stepping algorithm and the non-linear equations were solved using a 

bisection method.  The material properties are taken from column 1 in Table 3.1, which 

corresponds to Zinc.  However, in order to provide a sterner test for the methods the latent 

heat is increased from 130 kJ/kg (test case 1) to 260 kJ/kg (test case 2). 

It is evident on comparison of Table 3.2 and Table 3.3 that comparable results are obtained 

for both methods with a slightly improved performance delivered by the NEM.  The 

temperature histories for various time-steps are presented in Figure 3-17 for the two test 

cases.  Comparable performance is delivered by the two methods with the NEM 

outperforming the CVCM for test case 2 for time steps 5.0t =Δ s and 1.0t =Δ s in 

particular.  The behaviour of the non-physical capacitances e
cvcmc)  and ec)  is shown in 

Figure 3-18 for an element for various time steps for the two test cases.  The behaviour of 
ec)  is reasonably invariant as consequence of the ability of the NEM to annihilate the 

discontinuity in the heat flux at the phase front.  Also highlighted is the non-physical 

nature of e
cvcmc) , whose behaviour varies in a non-physical manner changing demonstrably 

with time-step.  A particular feature of both methods is their extraordinary accuracy for 

relatively large time-steps.  This results because both methods maintain consistency 

between temperature and energy change, i.e. the energy lost from an element corresponds 
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exactly with the temperature change unlike traditional capacitance and source-based 

methods. 

The results shown in Table 3.3 and Figure 3-19 demonstrate the relative insensitivity of 

both methods to mesh density.  Moreover, the energy loss norm errors presented in Table 

3.3 shows only a small discrepancy between fine and coarse meshes, which is further 

evidence of the benefits of a control volume transport equation methodology.  The 

behaviour of the non-physical capacitances e
cvcmc)  and ec)  is shown in Figure 3-20 and 

Figure 3-22 for an element at a specified location varying with mesh density for the two 

test cases.  The behaviour of ec)  is reasonably invariant as anticipated but again the non-

physical nature of e
cvcmc)  is highlighted.  Temperature histories at specified points along the 

diagonal of the cube on a fine mesh ( 50.0x =Δ mm) and relatively small time-step 

( 005.0t =Δ s) are presented in Figure 3-21. Near identical results are obtained from both 

methods. 

 

3.14 Conclusions 

Presented in the chapter 3 is the concept of non-physical enthalpy for the precise removal 

discontinuities arising in phase-change problems.  The following conclusions can be drawn 

for the work presented: 

1. Non-physical enthalpy h
)

 is well defined and possesses the property of limiting 

continuity at a discontinuity in physical enthalpy h. 

2. Non-physical enthalpy h
)

 behaves as a source (denoted 'h
)

) on a discontinuity, 

where 'h
)

 is well defined. 

3. Non-physical enthalpy h
)

 is non-physical in the sense that its numerical values are 

not moving-frame invariant; depending on 
*v  the velocity of the computational 

frame. 

4. Transport FE element equations are established in the chapter. 

5. The source-like behaviour of h
)

 facilitates the precise removal of discontinuities 

from the governing system of transport FE equations. 

6. Numerical solution of the governing system of transport FE equations provides 

excellent accuracy and is computationally competitive. 
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Table 3.1  Material properties for numerical test 
 

Material Properties units Material 1 
(pure zinc) 

Material 2 
(water-like) 

Thermal conductivity ─ solid 100 1 

Thermal conductivity ─ liquid Cm
W

o  
50 1 

Heat capacitance – solid 400 1 

Heat capacitance – liquid Ckg
J
o  

500 1 

Density – solid 6900 1 

Density – liquid 3m
kg

 
6600 1 

Latent heat 
kg
kJ

 130 0.1923 

Solidus temperature 
Liquidus temperature Co  400 0 
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Table 3.2  Performance data for various time-steps using a constant mesh density of 

mm00.1zyx =Δ=Δ=Δ  equivalent to 750 elements 

 
 Δt = 0.005 s Δt = 0.025 s Δt = 0.1 s Δt = 0.5 s 

Method Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 
 Program execution time (s) 

CVCM 16.60 30.60 3.91 6.36 0.86 2.05 0.375 0.656 
NEM 16.70 31.50 3.94 6.28 0.80 3.5 0.406 0.734 

         
 Temperature error norm (°C) 

CVCM 4.02 3.84 2.49 4.43 11.07 14.18 7.64 4.74 
NEM 3.90 3.79 2.41 4.42 11.07 5.89 7.64 4.72 

         
 Solidus front error norm (per cent) 

CVCM 0.0825 0.62 1.32 1.66 9.5 9.18 14.80 5.48 
NEM 0.0536 0.62 0.49 1.66 9.5 5.32 14.80 5.48 

         
 Energy loss error norm (per cent) 

CVCM 1.208 0.511 1.7568 0.511 2.77 2.046 6.9462 2.353 
NEM 1.188 0.511 1.7568 0.460 2.77 1.023 6.9462 2.353 
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Table 3.3  Performance data for various mesh densities using time-step s005.0t =Δ  

 
 Δx = 0.5 mm Δx = 1.0 mm Δx = 1.67 mm 

Method Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 
 Program execution time (s) 

CVCM 131.09 248.59 16.60 30.60 3.625 7.187 
NEM 135.07 251.28 16.70 31.50 3.797 6.828 

       
 Temperature error norm (°C) 

CVCM 0.08 0.34 3.96 3.84 5.29 5.92 
NEM 0.0 0.0 3.90 3.79 5.29 5.81 

       
 Solidus front error norm (per cent) 

CVCM 0.064 0.1107 0.0825 0.62 8.42 8.74 
NEM 0.0 0.0 0.0536 0.62 8.42 8.00 

       
 Energy loss error norm (per cent) 

CVCM 0.0 0.0 1.2084 0.511 2.26 1.64 
NEM 0.0 0.0 1.1882 0.511 2.26 1.64 
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Figure 3-1  Velocities in reference domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-2  Liquid and solid domains in a solidifying body 
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Figure 3-3  Non-physical behaviour on 1-D elements 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-4  1-D solidification problem on an Eulerian frame 
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Figure 3-5  Isothermal solidification and linear elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-6  Non-physical variable profile for phase-change 1-D element - CVCM 
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Figure 3-7  Non-physical variable profile for phase-change 1-D element - NEM 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-8  Mesh for 1-D semi-infinite slab problem 
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Figure 3-9  Temperature history for phase-change 1-D semi-infinite slab 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-10  Temperature profile comparison for phase-change 1-D semi-infinite slab 
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Figure 3-11  Non-physical variable history for phase-change 1-D semi-infinite slab 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-12 Mesh for 2-D semi-infinite corner 
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Figure 3-13  Temperature history for phase-change 2-D semi-infinite corner 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-14  Temperature profile comparison for 2-D semi-infinite corner 
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Figure 3-15  Solidification Front moving over 2-D semi-infinite corner diagonal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-16  Mesh for 3-D cube problem 
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Figure 3-17  Temperature history CVCM - NEM comparison on a 3-D Cube using same mesh 

density at specific point over diagonal x=y=z= 2 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-18  CVCM - NEM non-physical variable comparison on a 3-D Cube using same 

mesh density at specific point over diagonal x=y=z= 2 mm 
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Figure 3-19  Temperature history CVCM - NEM comparison on a 3-D Cube using different 

mesh density at a specific point over the diagonal x=y=z=2 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-20  CVCM - NEM non-physical variable comparison on a 3-D Cube using different 

mesh density at a specific point over the diagonal x=y=z=2 mm 
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Figure 3-21   Temperature history for Isothermal solidification at different points over the 

cube diagonal using same mesh density 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-22  Non-physical variable comparison for Isothermal solidification at different 

points over the cube diagonal using same mesh density 
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4 WEAK DISCONTINUITY 
ANNIHILATION IN SOLIDIFICATION 
MODELLING 

 

 

 

 

4.1 Introduction 

The development of efficient mesh-based methods for modelling moving boundary 

problems continues to be of interest to the research community [31, 39, 40] .  Moving 

boundary problems offer substantial challenges and many numerical approaches have been 

proposed.  In the area of solidification modelling some of the numerical approaches can 

now be viewed as classical and are commonly employed in commercial codes.  The 

methods can be classified into two groups; front tracking (adaptive) and fixed domain 

methods [100].  Front tracking (adaptive) methods provide for an accurate description of 

isothermal solidification but at the cost of complex meshing and re-meshing strategies, 

generally needed to cater for phase-front distortion, element birth and collapse [45, 70].  
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Although adaptive methods provide for high accuracy in the presence of a material 

discontinuity their complexity has resulted in the favouring of fixed-domain approaches 

[36, 40, 46, 105, 106].  Fixed domain methods tend to be more versatile and easier to 

implement but it is evident from the literature they can suffer inaccuracy particularly when 

material discontinuities are present.  Four fixed domain methods are commonly employed 

to solve solidification problems; these are the so-called enthalpy [39, 46, 105, 110], 

capacitance [101, 111, 112], fictitious heat flow [40, 75] and temperature recovery (or heat 

integration) techniques [113].  Good reviews of the existing traditional techniques are 

given by Voller et al. [46] and Dalhuijsen et al. [68]. 

In order to account for the poor performance displayed by fixed-domain methods in the 

presence of discontinuities an alternative approach has recently been proposed involving 

the use of non-physical variables for the precise removal of discontinuities [121].  The 

method itself can be categorised as a fixed-domain method as no mesh modification is 

required although a material discontinuity must be tracked.  The method is founded on the 

solution of weighted transport equations, introduced for the first time in reference [121] 

and unlike differential equations, directly incorporate material discontinuities. 

In this chapter the method presented in reference [121] is further investigated and extended 

to cater for the presence of multiple discontinuities which are present in the solidification 

of complex metallic alloys.  This can result in elements having more than one discontinuity 

present which can be problematic and cannot be accounted for using existing element 

enrichment approaches.  In references [122, 123] the extended finite element (XFEM) and 

level-set methods are applied to a single-discontinuity isothermal solidification.  Features 

of the methods are: a level-set description of the front; Galerkin least-squares stabilization 

and shock capture for the level set equation; local temperature enrichment and; penalty 

method enforcement of the temperature interface condition.  The method presented in this 

chapter does not require temperature enrichment, penalty enforcement nor a level-set 

description of a front since intrinsic to solidification is an implicit description of the 

interface.  The ability to annihilate multiple discontinuities without element enrichment is a 

particular highlight of the proposed procedure. 

The basic concepts underpinning the use of transport equations on a moving control 

volume are presented in Section 4.2, where transport derivatives associated with the 

moving control volume are established.  In Section 4.3 non-physical enthalpy and density 

are defined and are shown to be non-Galilean in nature and hence require careful treatment 

especially when discontinuities are present.  The difficulty is that analysis of a 

discontinuity requires a particular choice of moving control volume, i.e. one that tracks the 
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discontinuity.  Because non-physical variables are non-Galilean in nature a change in 

control volume results in a change in the value of the non-physical variable.  This problem 

is overcome with the concept of relative invariance, which is achieved with the appropriate 

transport equation introduced in Section 4.3 and applied to a single discontinuity in Section 

4.4.  It is shown in Section 4.4 that non-physical enthalpy has a source-like behaviour on a 

discontinuity but also possesses limiting continuity, i.e. if the discontinuity is approached 

in the limit the non-physical variable appears continuous.  Multiple discontinuities are 

introduced in Section 4.5, where the source-like behaviour of the non-physical variable is 

used to great effect to eliminate the discontinuities from the governing transport equations.  

Introduced in Section 4.6 is the concept of weighted transport equations which is an 

alternative route for the derivation of the governing finite element equations.  Although 

absent from the literature it is an appropriate approach when discontinuities are present in 

the solution domain.  It is demonstrated how the method presented in Section 4.5 can be 

used to extract all the discontinuities rendering the governing equation continuous.  A 

particular drawback with the formulation is that the governing system of equations is more 

complicated and new variables are introduced.  In order to make the approach practicable 

simplifications are considered in Section 4.7 and continued into Section 4.8 with a focus on 

solidification in an Eulerian frame.  Discretised equations along with the integral 

evaluation methods are presented in Section 4.9 and Section 4.10.  Finally results are 

presented for some relatively simply geometries in Section 4.11 to demonstrate the 

numerical efficacy of the approach. 

4.2 Basic concepts 

The transport equations for non-physical variables are non-Galilean in nature, which is a 

feature that requires some explanation.  Consider first transport equations for enthalpy and 

density, which are 

 

( ) ∫∫∫∫
ΩΓΓΩ

ρ+Γ⋅−=Γ⋅−ρ+ρ QdVdnqdnvvhhdV
tD

D *
*

*

 (4.1)

 

and  

 

( ) 0dnvvdV
tD

D *
*

*

=Γ⋅−ρ+ρ ∫∫
ΓΩ

 (4.2)
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where h is specific enthalpy, ρ  is density, v  is material velocity, nq ⋅  is heat flux and Q is 

a heat source term and where Ω  is a control volume which is transported at velocity 

tDDv *** x= , i.e. Ω  is time dependent and is a portion of the physical space and moves 

relative to the physical material. 

It is possible to consider a reference control volume *Ω  and define a mapping between 

points ** Ω∈χ  and points Ω∈x , i.e. for ( )t,** χxχ a , so that ( ) tt,tDDv *** ∂∂== *χxx , 

where the time partial derivative is partial in the sense that *χ  is held constant when 

performing the derivative, see Figure 4-1.  This concept is essentially identical to that used 

when defining the material derivative DtD  and material velocity ( ) tt,DtDv ∂∂== Xxx  

but material points are not necessarily tracked in the case of the mapping ( )t,** χxχ a .  

Note the use of tDD **  rather than the ordinary derivative dtd  in equations (4.1) and 

(4.2) even though these are identical when applied to a function of t.  Although the 

integrals ∫Ω
ρhdV  and ∫Ω

ρdV  are functions of t the derivative tDD **  is used to 

immediately to relay the notion that Ω  is a control volume transported through *v .  

Although *v  is present in equations (4.1) and (4.2) it cannot influence the value of h  and 

ρ  as this would be physically meaningless. 

One of the principal advantages of using equation (4.1) rather than the governing partial 

differential equation is that it naturally accounts for discontinuities in h  and ρ .  This 

property is as a consequence of integration being performed prior to temporal 

differentiation.  Standard Theorems can be applied to equations (4.1) and (4.2) in the 

absence of any discontinuity to arrive at the governing partial differential equations.  

Application of a Reynold-type transport Theorem and the Divergence Theorem to equation 

(4.2) gives 

 

∫∫
ΩΩ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ+

ρ
=ρ dVvdiv

tD
DdV

tD
D *

*

*

*

*

 (4.3)

( ) ( )( )∫∫
ΩΓ

−ρ=Γ⋅−ρ dVvvdivdnvv **  (4.4)

 

which provides the equation 

 



Chapter 4 126 
 

Ricardo Mondragon The University of Manchester 
 

( )( ) 0vvdivvdiv
tD

D **
*

*

=−ρ+ρ+
ρ  (4.5)

 

which is a generalised form of the continuity equation. 

Note that the standard Lagrangian and Eulerian forms of the continuity equation are 

obtained on setting vv* =  (since DtDtDD ** ≡ ) and 0v* =  (since ttDD ** ∂∂≡ ), i.e. 

0vdivDtD =ρ+ρ  and ( ) 0vdivt =ρ+∂ρ∂  are obtained.  Note also the direct substitution 

of the identity ( ) ∇⋅−+≡ vvDtDtDD ***  into equation (4.5) gives 0vdivDtD =ρ+ρ  

and similarly substitution of ∇⋅+∂∂≡ *** vttDD  gives ( ) 0vdivt =ρ+∂ρ∂ .  This 

analysis confirms that density transport is governed by a single unique partial differential 

equation and is not dependent on the control volume velocity *v .  A similar analysis can 

also be applied to equation (4.1) to give  

 

( ) ( ) Qqdivhvv
tD
hD *

*

*

ρ+−=∇⋅−ρ+ρ  (4.6)

 

where it is appreciated that although *v  appears in equation (4.6) the value of h  is 

independent of *v . 

The governing partial differential equations for density and enthalpy are essentially unique 

although their appearance can alter as a consequence of the temporal derivatives employed.  

Thus under the restrictive assumption that velocity *v  is a constant and on consideration of 

a non-rotating frame moving relative to the reference frame with velocity *v , then it is 

evident that equations (4.5) and (4.6) are invariant under a Galilean transformation. 

4.3 Definition of non-physical enthalpy and density 

Transport equations are utilised to define non-physical enthalpy h
)

 and density ρ) .  The 

prime motivation for the definition of these variables is source-like behaviour that can 

result at a discontinuity in the associated physical variable [121].  The transport equation 

definitions are: 

 

( ) 0dnvvdV
tD

DdV
tD

D *
*

*

*

*

=Γ⋅−ρ+ρ=ρ ∫∫∫
ΓΩΩ

)  (4.7)
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and 

 

( ) ∫∫∫∫∫
ΩΓΓΩΩ

ρ+Γ⋅−=Γ⋅−ρ+ρ= QdVdnqdnvvhhdV
tD

DdVh
tD

D *
*

*

*

* )
 (4.8)

 

where in the absence of discontinuities the corresponding governing partial differential 

equations are 

 

( )[ ] 0vvdivvdiv
tD

Dvdiv
tD

D **
*

*
*

*

*

=−ρ+ρ+
ρ

=ρ+
ρ )
)

 (4.9)

 

and 

 

( ) ( ) Qqdivhvv
tD
hDvdivh

tD
hD *

*

*
*

*

*

ρ+−=∇⋅−ρ+ρ=+
)

)

 (4.10)

 

where it is evident equations (4.5) and (4.6) are contained within equations (4.9) and 

(4.10), respectively. 

The non-physical density ρ)  and enthalpy h
)

 are shown to be well defined although non-

unique in reference [121].  Equation (4.9) is readily solved for ρ) , since 

0vdivtDD *** =ρ+ρ ))  gives *** vdivtDlnD −=ρ)  with the requirement that 0>ρ)  and if 

0v* ≠  this equation can be integrated to give ⎥⎦
⎤

⎢⎣
⎡ ⋅ρ=ρ ∫

−

C

**2**
0 dxvvvdivexp)) , where 0ρ)  

is ρ)  at 0t  and C refers to a contour obtained on the integration of dtvdx ** = .  With 

knowledge of ρ)  a solution for h
)

 can be constructed in the form *hh
)))

ρ= , since equation 

(4.10) reduces to DtDhtDhD *** ρ=ρ
))  and integration gives 

⎟
⎠
⎞⎜

⎝
⎛ ⋅ρρ+ρρ= ∫

−−−

C

**2*1
0

1
0 dxvvDtDhhh )))))

.  It is apparent of this relationship that h
)

 is not 

independent of *v .  It is evident on inspection that equations (4.9) and (4.10) are not 

invariant under a Galilean transformation as confirmed by the dependence of ρ)  and h
)

 on 
*v . 
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Because of the dependence of non-physical variables on the velocity of the control volume 

careful consideration must be given to their determination.  Standard control volume 

methods for the description of a discontinuity travelling through Ω  do not apply as the 

solutions obtained can depend of the front velocity.  The problem is that the control 

volume tracking a discontinuity will in general not be moving with velocity *v  and 

consequently the nature of the non-physical variable is changed.  Techniques for the 

analysis and determination of physical variables on a different moving control volume are 

required.  Consider then a control volume transported by a velocity +v  in the usual way, 

where ∇⋅+∂∂= +++ vttDD
x

 and ( ) ++ =∂∂ vt,t χx .  In this case it is important that h
)

 is 

not dependent on +v  which is achieved with the transport equations 

 

( ) ( ) 0dnvvdV
tD

DdnvvdV
tD

D * =Γ⋅−ρ+ρ=Γ⋅−ρ+ρ ∫∫∫∫
++++ Γ

+

Ω
+

+

Γ

+

Ω
+

+ ))  (4.11)

 

and 

 

( ) ( ) ∫∫∫∫∫∫
++++++ ΩΓΓ

+

Ω
+

+

Γ

+

Ω
+

+

ρ+Γ⋅−=Γ⋅−ρ+ρ=Γ⋅−+ QdVdnqdnvvhhdV
tD

DdnvvhdVh
tD

D *))
 

 (4.12)

 

where +v  governs the transport of +Ω  in these equations and where in the absence of 

discontinuities the corresponding governing partial differential equations are 

 

( )[ ] ( )[ ] 0vvdivvdiv
tD

Dvvdivvdiv
tD

D ** =−ρ+ρ+
ρ

=−ρ+ρ+
ρ +

+

+
++

+

+ ))
)

 (4.13)

 

and 

 

( )[ ] ( ) ( ) Qqdivhvv
tD
hDvvhdivvdivh

tD
hD * ρ+−=∇⋅−ρ+ρ=−++ +

+

+
++

+

+ ))
)

 (4.14)
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Substitution of ( ) ∇⋅−+≡ +++ *** vvtDDtDD  into equations (4.13) and (4.14) yields 

equations (4.9) and (4.10) respectively and thus confirming that ρ)  and h
)

 as defined by 

transport equations (4.11) and (4.12) are independent of +v . 

Prior to analysing the behaviour of non-physical variables at discontinuities it is necessary 

to be able to apply transport equations without recourse to the underlying partial 

differential equations.  It is evident that the derivative tDdVhD **
* ⎟

⎠
⎞⎜

⎝
⎛ ∫Ω

)
 on the left hand 

side (LHS) of equation (4.8) equals ( )∫∫ ++ Γ

++

Ω

+ Γ⋅−+⎟
⎠
⎞⎜

⎝
⎛ dnvvhtDdVhD *))

 on the LHS 

of equation (4.12) if and only if nvnv* ⋅=⋅ +  and *Γ=Γ+  at time 0tt = .  The condition 

ensures that the boundaries match (i.e. *Γ=Γ+ ) and that ( ) 0dnvvh * =Γ⋅−∫ +Γ

+)
. 

4.4 A single discontinuity in the domain 

Consider a discontinuity present in Ω  in the form of an interface iΓ  between lΩ  and sΩ  

as depicted in Figure 4-2(a).  Consider an arbitrary small volume iΩ  enclosing iΓ  whose 

transport is assumed to be governed by the regular velocity field velocity +v  which 

matches the normal velocity of iΓ  and n  is a unit normal on iΓ .  It is assumed also that at 

the boundary of Ω  that nvnv* ⋅=⋅ + .  Consider then the application of equation (4.11) to 

Ω , lΩ , sΩ  and iΩ , i.e. 

 

( ) ( ) 0dnvvdV
tD

DdV
tD

DdnvvdV
tD

D * =Γ⋅−ρ+ρ=ρ=Γ⋅−ρ+ρ ∫∫∫∫∫
Γ

+

Ω
+

+

Ω
∗

∗

Γ

+

Ω
+

+ )))  (4.15)

( ) ( ) ( ) 0dnvvdnvvdV
tD

DdnvvdV
tD

D

ii

* =Γ⋅−ρ+Γ⋅−ρ+ρ=Γ⋅−ρ+ρ ∫∫∫∫∫
Γ

+

Γ

+

Ω
+

+

Γ

+

Ω
+

+

l
ll

l
l

ll

))  (4.15b)

( ) ( ) ( ) 0dnvvdnvvdV
tD

DdnvvdV
tD

D
s
iss

s
is

ss
* =Γ⋅−ρ+Γ⋅−ρ+ρ=Γ⋅−ρ+ρ ∫∫∫∫∫

Γ

+

Γ

+

Ω
+

+

Γ

+

Ω
+

+ ))  (4.15c)

( ) ( ) ( ) ( ) ( ) =Γ−⋅−ρ+Γ−⋅−ρ+Γ⋅−ρ+ρ ∫∫∫∫
Γ

+

Γ

+

Γ−Γ−Γ

+

Ω
+

+

s
ii

s
ii

t
ii

dnvvdnvvdnvvdV
tD

D
s

*** ))))

ll

l  

( ) ( ) ( ) ( ) ( ) 0dnvvdnvvdnvvdV
tD

D
s
ii

s
ii

t
ii

s =Γ−⋅−ρ+Γ−⋅−ρ+Γ⋅−ρ+ρ= ∫∫∫∫
Γ

+

Γ

+

Γ−Γ−Γ

+

Ω
+

+

ll

l
 (4.15d)
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where t
iΓ  is the boundary for iΩ . 

Observe that the addition of equations (4.15b) and (4.15c) results in (4.15) confirming that 

equation (4.15) embodies the physics of a discontinuity.  In addition, in the limit 

( ) 0vol i →Ω  with i
s
ii , Γ→ΓΓl , so that lnns −= , equation (4.15d) reduces to 

 

( ) ( )] [ ( )] [ 0dnvvdnvvdtnvvd
tD

D

iiii

**'' =Γ⋅−ρ=Γ⋅−ρ+Σ⋅−ρ+Γρ ∫∫∫∫
Γ

+

Γ

+

Σ

+

Γ
+

+ )))  (4.16)

 

where tn  is a outward pointing unit normal on ii Γ∩Γ=∑  ( i∑  is the boundary for iΓ ) 

that is in a tangent plane of iΓ  and where the outward pointing brackets signify a jump, i.e.  

 

( )] [ ( ) ( ) ( ) ( ) 0nvvnvvnvv
ii sss =−⋅−ρ+−⋅−ρ=⋅−ρ +

Γ
+
Γ

+
lll  (4.17)

 

and 

 

( )] [ ( ) ( ) ( ) ( ) ( ) ( )( ) 0nvvnvvnvvnvv s
**

s
*

s
* =ρ−ρ−⋅−=−⋅−ρ+−⋅−ρ=⋅−ρ ++++ )))))

llll  (4.18)

 

and where it is assumed that ρ)  is continuous at iΓ , i.e. sρ=ρ ))
l . 

Note that with the assumed continuity of ρ)  at iΓ  equation (4.16) reduces to 

 

( ) ( )] [ 0dnvvdtnvvd
tD

D

iii

*'' =Γ⋅−ρ=Σ⋅−ρ+Γρ ∫∫∫
Γ

+

Σ

+

Γ
+

+ ))  (4.19)

 

which is the governing transport equation for the source 'ρ) . 

It should be recognised that continuity of ρ)  at iΓ  is assured if 'ρ)  satisfies equation (4.19) 

or the corresponding partial differential equation 

 

( )( ) ( )] [ 0nvvvvdivvdiv
tD

D
T

*
T

''
'

ii
=⋅−ρ=−ρ+ρ+

ρ ++
Γ

+
Γ+

+ ))
)

 (4.20)

 

where ss n,nDvvdivvdiv
i

+++
Γ −=  [119] and where ( ) mm xvDv ∂∂= ++

ll  and ⋅⋅,  stands 

for inner product. 
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It is evident that 0' =ρ)  is a solution to equations (4.19) and (4.20) which arises because no 

jump is present in the mass flux at iΓ .  Thus, non-physical density ρ)  has no source term 

associated with it unlike non-physical enthalpy h
)

 whose source term is described by the 

transport equation 

 

( ) ( )] [ ] [∫∫∫∫
ΓΓ

+

∑

+

Γ
+

+

Γ⋅−=Γ⋅−ρ=⋅−+ ∑
iiii

dnqdnvvhdtnvvhdVh
tD

D *'' ))
 (4.21)

 

and corresponding partial differential equation 

 

( )( ) ( )] [ ] [nqnvvhvvhdivvdivh
tD

hD
T

*
T

''
'

ii
⋅−=⋅−ρ=−++ ++

Γ
+

Γ+

+ ))
)

 (4.22)

 

where as with density it is assumed that at iΓ , shh
))

l = , i.e. continuity of h
)

 is invoked by 

'h
)

 satisfying equations (4.21) and (4.22). 

The jump terms are ] [ ( ) ( )ll
nqnqnq ss

−⋅+−⋅=⋅  and similarly for enthalpy 

( )] [ ( ) ( ) ( ) ( )llll nvvhnvvhnvvh ssss −⋅−ρ+−⋅−ρ=⋅−ρ +++ .   

4.5 Multiple discontinuities 

Consider the partition of domain Ω  into 1K +  non-overlapping open domains kΩ  such 

that U
1K

1k k
+

=
Ω=Ω  as depicted in Figure 4-2(b).  The interface boundaries kΓ  are obtained 

on intersection of the closed domains kΩ  and 1k+Ω , i.e. 1kkk +Ω∩Ω=Γ  and it is 

recognised that K can change with time.  Consider further the assumed existence of 

velocity fields +
kv , K,,2,1k K= , where on the boundary of Ω , nvnv *

k ⋅=⋅+  and where 

+
kv  matches the normal velocity of the boundary kΓ  although there is no requirement for 
+
kv  to match the normal velocity of iΓ  for ki ≠ . 

Consider then the extraction of a discontinuity from equation (4.8) which is achieved by 

 

( ) ( )∫∫∫∫∫∫
Σ

+

Γ
+

+

ΓΩ
+

+

Γ

+

Ω
+

+

Ω

Σ⋅−++=Γ⋅−+=
kkk

dtnvvhdVh
tD

DdVh
tD

DdnvvhdVh
tD

DdVh
tD

D *
k

''

/k

k*
k

k

k
*

* ))))))
 

 (4.23)
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which reveals the power of a non-physical approach with the isolation of a discontinuity 

using the source-like property, where tDD kk
++  is the temporal derivative associated with 

+
kv  in the usual way and k/ ΓΩ  signifies that integration is performed on Ω  but does not 

include source behaviour on kΓ , i.e. essentially Lebesgue integration. 

Rearrangement of equation (4.23) provides 

 

( )∫∫∫∫
Σ

+

Γ
+

+

ΩΓΩ

Σ⋅−−−=
kkk

dtnvvhdVh
tD

DdVh
tD

DdVh
tD

D *
k

''

k

k
*

*

/
*

* ))))
 (4.24)

 

where the LHS of equation (4.24) is absent one source term. 

It is possible to deduce that more generally the removal of multiple sources is achieved 

through 

 

{ }
( )∑ ∫∑ ∫∫∫

= Σ

+

= Γ
+

+

Ω=ΓΩ

Σ⋅−−−=
K

1k

*
k

'
K

1k

'

k

k
*

*

K:1k:
*

*

kkk

dtnvvhdVh
tD

DdVh
tD

DdVh
tD

D ))))
 (4.25)

 

where { }K:1k:/ k =ΓΩ  signifies that source terms are excluded from the integration 

domain. 

Application of equation (4.25) to transport equation (4.8) and on utilisation of equation 

(4.21) yields 

 

{ }
( ) +ρ=Σ⋅−−−= ∫∑ ∫∑ ∫∫∫

Ω= Σ

+

= Γ
+

+

Ω=ΓΩ

hdV
tD

DdtnvvhdVh
tD

D
dVh

tD
DdVh

tD
D

*

*K

1k

*
k

'
K

1k

'

k

k
*

*

K:1k:
*

*

kkk

))))
 

( ) ( )] [ ] [∑ ∫∫∫∑ ∫∫
= ΓΩΓ= Γ

+

Γ

Γ⋅+ρ+Γ⋅−=Γ⋅−ρ−Γ⋅−ρ+
K

1k

K

1k
k

*

kk

dnqQdVdnqdnvvhdnvvh  (4.26)

 

which is an equation absent of jump terms and consequently discontinuities. 

In some respects the use of the jump terms to remove discontinuities is expected although 

it is not transparently obvious that the result is continuous however this is confirmed by the 

LHS of equation (4.26).  Things are a little more involved on application of the finite 

element method which is applied here in transport form.  
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4.6 Finite Element Equations 

A finite element system can be derived by adopting a weighted transport equation of the 

form 

 

( ) ( ) =Γ⋅−ρ+∇⋅−ρ−ρ= ∫∫∫∫
ΓΩΩΩ

dnvvhWWdVvvhhdVW
tD

DdVhW
tD

D **
*

*

*

* )
 

∫∫∫
ΩΓΩ

ρ+Γ⋅−⋅∇= WQdVdnqWdVqW (4.27)

 

where W is transported invariantly with Ω , i.e. 0tDWD ** = . 

Note that with an equation of this form both spatial and temporal derivatives of h
)

 and h  

are avoided, making (4.27) applicable when a discontinuity is in Ω .  This approach is 

unseen in the literature although is identical to the weighted residual method if 

discontinuities are not involved. Note also that on setting 1W = , the governing transport 

equation (4.8) is returned.  Applying (4.27) to an element domain eΩ  and adopting a 

standard Galerkin weighting gives 

 

( ) ( ) =Γ⋅−ρ+∇⋅−ρ−ρ= ∫∫∫∫
ΓΩΩΩ eeee

dnvvhNdVNvvhhdVN
tD

DdVhN
tD

D *
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*
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* )
 

∫∫∫
ΩΓΩ

ρ+Γ⋅−⋅∇=
eee

bdVNdnqNdVqN iii (4.28)

 

where iN  is a shape function and eΩ  is an element domain and eΓ  is its boundary. 

It is recognised that discontinuities and source terms are present in equation (4.28) and the 

removal of these is required.  It has been shown in the previous section that in order to 

relate two transport derivatives involving two velocities *v  and +
kv  on a domain Ω  the 

condition nvnv k
* ⋅=⋅ +  must be invoked on the boundary.  This condition ensures that the 

transport of the boundary Γ  of Ω  is identical for both velocities.  Here +
kv  matches the 

normal velocity of the discontinuity kΓ  and *v  is the velocity dictating the movement of 

the mesh.  However, there is little expectation that the condition nvnv k
* ⋅=⋅ +  applies on 

an element boundary eΓ .  In a situation where a front passes through an element it is 

convenient to follow this with a control volume that matches the proportion of the front in 
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the element.  This can be achieved with an appropriate velocity ×
kv  matches the normal 

velocity of kΓ  and eke
* nvnv ⋅=⋅ ×  on eΓ , where en  is the unit normal on eΓ .  With +v  

defined appropriately it is now possible to match derivatives and in particular consider the 

term appearing on the LHS in the FE transport equation (4.28), i.e. 
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(4.29)

 

where e
kΓ  is that portion of kΓ  contained in eΩ . 

Rearrangement of this equation gives 

 

( )∫∫∫∫
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 (4.30)

 

and as with equation (4.24) a source term is removed from the first integral on the right 

hand side (RHS) of equation (4.30). 

The full system of FE transport equations with multiple discontinuities removed are: 
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( )] [ ] [∫∫
ΓΓ

× Γ⋅−=Γ⋅−ρ=
e
k

e
k

dnqNdnvvhN iki (4.33)

 

where *
T

**
N vvv −= , ××× −= kTkkN vvv  and { }eke Kk:/ ∈ΓΩ  signifies that integration is in 

the sense of Lebesgue and where { }∅≠Γ∩Ω= kee :kK  which is a subset of 

{ }K:1k:k = . 

Note that that LHS of equations (4.31) and (4.32) are continuous and consequently so is 

the RHS, so discontinuities have been annihilated. 

Transport equation (4.33) is of a form that requires some justification.  Application of 

Reynolds Transport equation and Stokes Theorem to equation (4.33) gives 
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( )] [ ] [∫∫
ΓΓ

× Γ⋅−=Γ⋅−ρ=
e
k

e
k

dnqNdnvvhN ii (4.34)

 

where subscripts T and N refer to tangential and normal components, respectively. 

Since equation (4.34) applies equally to any portion of e
iΓ  the equivalent partial 

differential equation can be deduced and is of the form 
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( )] [ ] [nqNnvvhN iki ⋅−=⋅−ρ= × (4.35)

 

Application of Leibniz law to the derivatives and on rearrangement, equation (4.35) 

reduces to 
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which in turn implies 
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and 
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where equations (4.37) and (4.38) confirm the validity of equation (4.33) 

It is important to appreciate that no discontinuity is present on the LHS of equations (4.31) 

and (4.32).  In addition the integrals on the LHS of equations (4.31) and (4.32) are 

evaluated in the sense of Lebesgue.  Thus, the source term makes no contribution, the set 

{ }eke Kk:/ ∈ΓΩ , where { }∅≠Γ∩Ω= kee :kK  and ∅  is the null set, is not partitioned 

into separate domains and kΓ  is null in eΩ , having zero Lebesgue measure.  Consequently 

the right-hand side of these equations is also absent of discontinuities, achieved primarily 

as a consequence of isolating the source term.  The real power of the non-physical 

approach is revealed here by its ability to isolate and annihilate discontinuities in transport 

equations. 

4.7 Simplified finite element equations 

Although equations (4.31) and (4.32) are absent of discontinuities they are evidently more 

complicated than the original system as new variables have been introduced.  It is 

anticipated that solving equation (4.31) to (4.33) is unlikely to be computationally 

competitive without some form of simplification and efficient resolution of the 

discontinuity property.  Equation (4.31) can be viewed as the continuous system that 

replaces the original discontinuous system of finite element equations whilst equations 

(4.32) and (4.33) can be viewed as constraints on this system and are required to be 

reduced in some manner.  Many options are available for the simplification and solution of 

equations (4.32) and (4.33) and one possible approach is the direct use of the expressions: 

⎥⎦
⎤

⎢⎣
⎡ ⋅ρ=ρ ∫

−

C

**2**
0 dxvvvdivexp)) , ∫ ⋅ρρ+ρ=

−−−

C

**2*1
0

1
0

* dxvvDtDhhh ))))
 and *hh ρ= ))

, 

to link physical and non-physical variables and remove equation (4.32).  The disadvantage 

of this approach is that contour integrals are required to be evaluated and or course these 

expressions are limited to areas away for any discontinuity.  A similar strategy is 
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applicable to '
kh
)

 for the removal of equation (4.33), i.e. consider setting '*
k

'
k

'
k hh

)))
ρ=  and 

substituting in equation (4.37) to give 
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where it is assumed that '
kh
)

 is spatially invariant on kΓ  a property arising from the 

invariance of jump condition ( )] [ ] [nqnvvh k ⋅−=⋅−ρ ×  along an isotherm. 

The solution to equation (4.39) for 0v k ≠× is  
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and 
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where '
0kρ)  and '

0kh
)

 are '
kρ)  and '

kh
)

 at 0tt =  and dtvdx kk
×× = . 

Unfortunately whilst this approach provides insight into the behaviour of the source term 
'
kh
)

, a contour integral is required to be evaluated.  Although in principal analytical 

expressions for '
kh
)

 and h
)

 can be used, in practice direct numerical approaches are 

preferred.  Consider first the substitution of equation (4.33) into equation (4.31) and 

summation of equations (4.32) and (4.33) with respect to i to give 
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{ }
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which is a simplified form of equations (4.31) to (4.32). 

A further simplification is achieved with the removal of equation (4.44) and the removal of 

the term ( )∑ ∫∈ Γ

× ∇⋅−
e

e
kKk ikN

*
N

' Nvvh
)

 in equation (4.42).  This can be postulated by the 

realisation that the principal purpose of this term is to annihilate the discontinuities in the 

integral ∫
Ω

⋅∇
e

dVqNi .  Thus, with Tkq ∇−=  and temperature approximated by 

∑ =
= em

1j jjTNT  (i.e. the discontinuities are ignored in q ), then ( )∑ ∫∈ Γ

× ∇⋅−
e

e
kKk ikN

*
N

' Nvvh
)

 

should also be ignored.  The governing equation (4.42) then reduces to 
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and is constrained by equation (4.43). 

A particular difficulty associated with the solution of equations (4.45) and (4.43) is the lack 

of uniqueness of h
)

.  This property although advantageous in some respects means that h
)

 

cannot be used directly to predict h .  Moreover, since h  is discontinuous and h
)

 is not a 

simple direct relationship is not immediately apparent.  However, both h
)

 and h  are related 

to temperature and a convenient approach is to set Tch ))
= , where c)  is a non-physical 

capacitance term.  It should be appreciated that c)  is not a physical parameter.  Since the 

focus of the paper is on multiple discontinuity annihilation it is revealing to explore 

solidification involving negligible mass movement and zero mesh movement to provide 

further simplification. 
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4.8 Solidification in an Eulerian frame 

The general theory simplifies substantially on a stationary mesh ( 0v* = ) in situations 

where material movement is sufficiently small to be negligible ( 0v ≈ ).  Note however that 

setting 0v =  has certain implications associated with density change without mass 

movement.  Recall that the term ] [nvh k ⋅ρ ×  is obtained on setting 0v =  in the expression 

( )] [nvvh k ⋅−ρ− × .  Note however, that continuity ( )] [ 0nvv k =⋅−ρ− ×  gives 

( ) ( ) 0nvvnvv 1kk1k1kkkkk =⋅−ρ+⋅−ρ +
×

++
× , where it is understood that the expression applies 

at interface kΓ .  This expression reduces to ( ) kk1k1kkkk nvvnv ⋅−ρ=⋅ρ− ×
++

×  with 0vk = .  

Observe that for 1kk +ρ≠ρ  the expression infers that 0v 1k ≠+ .  Moreover, it follows that 

( )] [ ( ) ( ) kkkkkk1k1k1kkkkkk nvLnvvhnv0hnvvh ⋅ρ=⋅−ρ−⋅−ρ=⋅−ρ− ××
+++

×× , where kL  is 

the latent energy release associated with kΓ .  If on the other hand it is assumed that 

0v 1k =+ , then for 1kk +ρ≠ρ , 0vk ≠  and the jump condition ( )] [nvvh k ⋅−ρ− ×  gives 

kkk1k nvL ⋅ρ + .  The assumption 1v  equals the velocity of the solid which is stationary, i.e. 

0vv s1 ==  provides a variable mass element, whilst 0vv 1K ==+ l  gives a constant mass 

element and the corresponding choices for ] [nvh ⋅ρ ×  are kkkk nvL ⋅ρ  and kkk1k nvL ⋅ρ + , 

respectively.  The constant mass element is assumed here (i.e. 0vv 1K ==+ l ) to avoid the 

need to account for mass movement into the element. 

In this case equations (4.45) and (4.43) reduce to 
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It is of interest to give further justification for some of the simplifications suggested in 

Section 4.7.  Note that n

C

**2**n dxvvvdivexp ρ=⎥⎦
⎤

⎢⎣
⎡ ⋅ρ=ρ ∫

− )))  for 0v* =  and it follows 

also that ∫ ∂∂ρ=−
t

t

n

n

dsshhh
))

, which reduces to ( )nn TTchh −ρ=−
))

 for invariant 

material properties.  This relationship provides justification for the identity Tch ))
= , since 
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nh
)

 is totally arbitrary and can simply be set to ncTρ .  Although the relationship suggests 

that cc ρ=) , this will only occur under restricted circumstances. 

It is interest also to examine the nature of the source term 'h
)

, where 'h
)

 and ×v  are 

assumed spatially invariant on e
kΓ  the portion of kΓ  in the element, for 1-D element on an 

Eulerian frame with two discontinuities is shown in Figure 4-6.  Then equation (4.43) 

reduces to 
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 (4.48)

 

where kL  is latent heat released at boundary kΓ . 

Integration of equation (4.48) gives 

( ) ∫ ⋅ρ−=− ×
+

t

t kkk1k
'
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dsnvLhth
))

( )( )n
kkk1k XtXL −ρ−= + ,where ( ) n

kk

t

t kk XtXdsnv
n

−=⋅∫ × , 

with kX  denoting the position of the kth discontinuity measured in the direction of ×
kNv .  

This suggests a relationship of the form kk1k
' XLh +ρ−=
)

, where again non-uniqueness 

facilitates the neglect of constant terms.  This relationship is approximate, so not 

recommended for use in the full system of FE equations although does provide insight into 

the behaviour of 'h
)

, for linear elements and temperature-enthalpy relationship is shown in 

Figure 4-3.  Consider further the postulation in the previous section that 

∑ ∫∈ Γ

× ∇⋅−
e

e
kKk ikN

' Nvh
)

 annihilates the discontinuities in ∫ ∫
+

Ω
⋅∇1n

n e

t

t i dtdVqN .  On a small 

volume VΔ  swept by the boundary kΓ  over time tΔ  the relationship 

tnvAVX kkkk Δ⋅=Δ=Δ ×  applies.  At time interval tΔα , where [ ]1,0∈α  the following 

measure relationship holds 
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Δ Δ
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t V
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(4.49)

 

where use is made of  jump condition 

( )] [ ] [ ( ) k1kkkkk1kk nqqnqnvLnvvh ⋅−=⋅−=⋅ρ−=⋅−ρ
+

×
+

×  and recognition that 
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( ) k1kk1kk
nqqqq ++

−−=− .  Similarly, with kk1k0
'' XLhh Δαρ−=− +α
))

 the measure 

relationship is 
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(4.50)

 

It is evident on comparison that the terms on the far RHS of equations (4.49) and (4.50) are 

identical and of opposite sign and will be eliminated on addition.  Thus the postulation in 

the previous section is valid and illustrated here is an example how the source term h′
)

 

removes a discontinuity.  It is worth emphasising here the importance of this result which 

provides the first analytical justification for the neglect of the discontinuities that appears 

the integral ∫ ∫
+

Ω
⋅∇1n

n e

t

t i dtdVqN .   

4.9 System assembly and solution 

Defined in Section 4.8 via the relationship Tch ))
=  is the concept of non-physical 

capacitance.  Substitution of this identity into equations (4.46) and (4.47) gives on 

integration 
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where for simplicity ec)  it is assumed both spatially and temporally invariant on element 

eΩ  and over time interval [ ]1nn t,t +  and where it is recognised that the set 

{ }∅≠Γ∩Ω= kee :kK  can change over the time interval. 

It is convenient to represent the term ] [
( )∫ ∑ ∫

+
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n e
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t Kk t kie dtdnvhNS  on the far RHS 

of equation (4.52) in two parts, i.e. n
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) , where the source capacitance e
sc  is evaluated from 
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Approximation of the temperature field in the usual way ∑ =
=

m

1j jjTNT  gives a familiar 

looking assembled system of equations of the form 

 

( )( ) ( )( ) ( )( )n1nnn1nnn1n
s Q1QtT1TKtTTCC θ−+θΔ=θ−+θΔ+−− +++
))

 (4.54)

 

where an implicit method ( )1=θ  is utilised for the predictions and the capacitance 

matrices C
)

 and sC
)

 are diagonal, i.e. a lumped approximation is adopted.  The solution of 

(4.54) is coupled to the solution of (4.52) and (4.53) which provides a non-linear system of 

equations.  A simple bisection technique is applied to converge on sc)  and the linear 

systems of equations for each iterate are solved using a SOR [120] method. 

4.10 Integral evaluation 

The evaluation of the integrals in equations (4.51) and (4.52) requires the establishment of 

relationship between specific enthalpy and temperature.  One approach is to assume the 

existence of specific enthalpy relationships for each material phase that occurs during the 

solidification process.  For the formulation presented above it is convenient to assume that 

as a new material phase is formed latent energy is released.  This approach also captures 

the possibility that no latent energy is released with the specification of zero latent heat for 

that particular transition, i.e. 0L k =  for the particular k.  This approach provides for 1K +  
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phases and K  transition boundaries releasing latent heat kL  for K,,1k K= .  The specific 

enthalpy expression that applies to the material irrespective of the material phase 

combinations is 

 

∑
+

=

=
1K

1k

p
kkhgh  (4.55)

 

where kg  and p
kh  are the mass fractions and specific enthalpies associated with materials 

phases, respectively. 

An alternative and slightly simpler approach for computational purposes is to assume the 

existence of specific enthalpies for the material combinations in kΩ  existing during 

solidification.  These can in fact be obtained from equation (4.55) and are denoted here as 
c
kh  for 1K,,1k += K .  Assume further the existence of specific heat capacitances for each 

material phase combination such that dTdhc c
k

c
k =  then it follows for each region that 

 

( ) ( )∫
−Γ

+
−

′′+=
Γ

T

T

c
k

cc
k

1k

1k
TdTchTh  (4.56)

 

for 1K,,2k += K  with 
k1k

TTT ΓΓ ≤≤
−

 and +
−Γ 1k  signifies that the boundary 1k−Γ  is 

approached from within kΩ , which is necessary as 1k
cc Lhh

1k1k
−ΓΓ

=− −
−

+
−

. 

In the case 1k =  the terms c

1k
h +

−Γ
 and 

1k
T

−Γ  are replaced by c
refh  and refT , respectively to 

indicate reference enthalpy and temperature with ( )ref
c
1

c
ref Thh = .  A further simplification 

applied here is the assumption that c
kc  in e

kΩ  are spatially and temporally invariant, which 

gives rise to linear specific enthalpy c
kh  and for K,,2k K=  the following relationship 

applies 
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with 
k1k

TTT ΓΓ ≤≤
−

 with similar expressions for 1k =  and 1Kk += . 

Consider the integral  
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where n
f

n
s kk ≤  and { }1K,2,1k,k n

f
n
s +∈ K  and it is assumed here that density kρ  is spatially 

invariant in e
kΩ . 

Recall also that c
1k

c

1k1k
hLh −

−
+
− Γ−Γ

+= , which on substitution in equation (4.58) gives 

 

( )∑ ∫∑∑∫
= Ω

Γ
=

Γ
=

−
Ω

−
−
−

−ρ++=ρ
n
f

n
s

ne
k

1k

n
f

n
s

1k

n
f

n
se

k

kk

c
kk

k

kk

cn
k

k

kk
1k

n
k

nn dVTTchMLMdVh  (4.59)

 

where if 1kk n
s == , then 1kL − , which is undefined for this case is set to zero making 

equation (4.59) applicable for any { }1K,2,1k,k n
f

n
s +∈ K  with n

f
n
s kk ≤ . 

A similar expression to equation (4.59) can be obtained for time 1nt + , i.e. 
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where { }1K,2,1k,k 1n
f

1n
s +∈++ K  reflect the number of discontinuities in eΩ  at time 1nt + . 

4.10.1 Jump term evaluation 

Consider the accurate evaluation of the integral ] [
( )∫ ∑ ∫

+

∈ Γ

× Γ⋅ρ1n

n e
e
k

t

t Kk t k dtdnvh  and to 

facilitate this define { }1n
s

n
ss k,kmink +=  and { }1n

f
n
ff k,kmaxk +=  and observe that 

{ }fse kkk:kK ≤≤⊂ .  It is convenient to replace the expression 

] [
( )∫ ∑ ∫

+

∈ Γ

× Γ⋅ρ1n

n e
e
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t

t Kk t k dtdnvh  with ] [
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t t ki
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s

1n

n
e
k

dtdnvhN , where account is 

taken of discontinuities entering and leaving an element.  As discussed in Section 4.8 a 

constant mass element is considered here for where ] [nvh k ⋅ρ ×  is replaced by 

kkk1k nvL ⋅ρ− ×
+ .  Consider then the integral 
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where swept
kV  is the swept volume resulting when kΓ  sweeps through the element eΩ  and 

where n
1k

1n
1k

swept
k1k MMV +

+
++ −=ρ  is recognised to readily account for a discontinuity leaving 

or entering an element and requires no special provision. 

Combining equations (4.59), (4.60) and (4.61) gives 
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which reduces to 
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where it is apparent that latent energy terms are annihilated in equation (4.62) to give 

equation (4.63) as predicted by the annihilation theory. 

4.11 Numerical experiments 

In this section the Non-physical Enthalpy Method (NEM) is compared against Analytical 

and/or Control Volume Capacitance Method (CVCM) solutions for some typical problems.  

Both the NEM and CVCM ensure that the energy loss/gain from an element is consistent 

with temperature change unlike effective and temporal capacitance approaches.  It should 
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be recognised that the representation ] [
( )∫ ∑ ∫

+

∈ Γ

× Γ⋅ρ= 1n

n e
e
k

t

t Kk t kie dtdnvhNS  with 

dVTNcS
e

1n
i

e
s

1n
e ∫Ω

++ = )  and ∫Ω−=
e

dVTNcS n
i

e
s

n
e

)  yields a CVCM with e
s

ee
cvcm ccc ))) −= .  The 

performance of the NEM matches that of the CVCM with differing results arising from the 

convergence on the source capacitance e
sc)  rather than the CVCM capacitance e

cvcmc) . 

Three problems are consider, which are: 

 

1. Prescribed temperature verification on an element to highlight the differences 

between ec)  and e
cvcmc)  dealing with multi-discontinuities. 

2. Solidification of a 1-D semi-infinite slab for an initial liquid state to a range of 

different states involving discontinuous transitions. 

3. Solidification of a 3-D cube with multiple discontinuities, mushy and isothermal 

solidification processes. 

 

The analysis presented is applied to relatively simple problems as it is not deemed 

necessary to analyse more complex/practical problems here as the approach is shown to 

give near identical performance to the CVCM, which has been thoroughly tested in 

pressure die casting for a range of complex component geometries [115, 116]. 

As part of the investigation into the performance of the NEM the concept of using a single 

discontinuity in place of a multiple discontinuities or processes involving no 

discontinuities is examined.  The use of discontinuities in this way is common with 

analytical approaches but seldom adopted for numerical treatments because of the 

associated numerical convergence and instability problems posed.  The NEM however is 

formulated to cater if not embrace discontinuities, so it is of interest to ascertain some 

results on the merits of this approach.  

4.11.1 Isothermal solidification for 1-D element 

Consider the 1-D linear element depicted in Figure 4-3 subjected to a decreasing 

temperature field where diff
1n

1
1n

2 TTT += ++  and where diffT  is the temperature difference 

between the nodes of the element.  The temperature difference between the nodes is set to: 

10, 15 and 20°C and 5TT liq
n

1 +=  with 5TT120T liq
1n

1liq +<≤− + .  The temperature 

range is selected to ensure the material is initially liquid and ends up completely solid.  The 

material properties are given in the first column of Table 4.1, under the heading of material 
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1 and are approximately those for Al-4.5%Cu.  However, in order to highlight the 

annihilation of source terms latent heat release is assumed to occur at the two transition 

boundaries.  The magnitudes of the latent heat release in terms of the total latent heat 

release are set to L15.0L1 =  and L35.0L 2 =  for demonstration purposes. 

Depicted in Figure 4-4 and Figure 4-5 are the non-physical capacitances e
cvcmc)  and ec)  for 

the CVCM and the NEM respectively.  It is evident on comparison of Figure 4-4 and 

Figure 4-5 that the variation of e
cvcmc)  is significantly greater than that of ec)  obtained from 

equation (4.52).  This illustrates that the two discontinuities have been effectively removed 

with the presence of the term ] [
( )∫ ∑ ∫

+

∈ Γ

× Γ⋅ρ1n

n e
e
k

t

t Kk t ki dtdnvhN  in equation (4.52).  This is 

demonstrated analytically in equations (4.62) and (4.63) but also demonstrated numerically 

in Figure 4-5.  Note that the values Cm/MJ52.2c o3
ss =ρ  and Cm/MJ75.2c o3=ρ ll  can 

be contrasted against the numerical values provided in Figure 4-5 to illustrate the 

effectiveness of the discontinuity annihilation. 

4.11.2 1-D semi-infinite domain with phase-change. 

Solidification of a semi-infinite slab with a fixed temperature boundary condition and two 

discontinuities (see Figure 4-6) with the latent heat release distribution as in the previous 

example has no known analytical solution, hence the NEM is contrasted against the CVCM 

which has been extensively tested [115, 116].  A comparison with the analytical solution 

for a single discontinuity is performed in section 3.13.2 so not repeated here.  The mesh 

used for the test is depicted in Figure 4-7 along with boundary and initial conditions.  The 

material properties are given in the first column of the Table 4.1, which are those for Al-

4.5%Cu.  Temperature histories, profiles and information on the non-physical capacitances 

are provided in Figure 4-8 to Figure 4-10, for different locations along the slab.  Excellent 

accuracy for temperature histories and profiles for both the NEM and CVCM is obtained as 

illustrated in Figure 4-8 and Figure 4-9.  The behaviour of the non-physical capacitances 
e
cvcmc)  and ec)  is shown in Figure 4-10 and mirrors that shown in Figure 4-4 and Figure 

4-5.  The two spikes (one spike per discontinuity) in the value of e
cvcmc)  for each point 

chosen correspond with the discontinuities passing through the elements at the stipulated 

spatial locations.  The behaviour of ec)  appears to match only in the section of the plots 

where the enthalpy distribution is continuous and illustrates the effectiveness of procedure 

for discontinuity annihilation. 
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4.11.3 3-D cube domain with various type of solidification. 

The solidification of a cube is considered where mesh boundary, initial conditions and 

latent heat release are depicted in Figure 4-11 and Figure 4-12, respectively.  Although an 

analytical solution is unavailable, different time steps and mesh densities are tested to 

ascertain the relative sensitivities of the CVCM and the NEM. Although, annihilation of 

multiple-discontinuities is the main concern of this paper, a series of tests were chosen in 

order to realise the feasibility of representing a complicated solidification process 

involving mushy or multiple discontinuities with a single discontinuity.  It is expected that 

this approach is adequate for rapid solidification where the transition zone appears narrow 

on the spatial scale considered.   

Given in Table 4.2 and Table 4.3 are the approximate program execution times for each of 

the methods along with results pertaining to the two error norms 

 

100
E

EEmax,TTmax nb
total

nbn

n,i
nb
i

n
i

n,i
×

−
−  

 

where i and n represents the nodal position along the cube diagonal and time step, 

respectively.  Moreover, Ti and E are the nodal temperature and the energy loss from the 

cube surface, respectively.  The subscript b indicates benchmark values, which since no 

analytical solution are available, are taken as the results obtained using NEM with 

50.0x =Δ mm (6000 elements) and 005.0t =Δ s.  The tests were performed using an 

implicit Euler time-stepping algorithm and the non-linear equations were solved using a 

bisection method.  The material properties are taken from column 2 in Table 4.1, which 

corresponds to Zamak-5. 

It is evident on comparison of Table 4.2 that comparable results are obtained for both 

methods with a slightly improved performance delivered by the NEM.  The results shown 

in Table 4.2, Figure 4-13 and Figure 4-15 demonstrate the relative insensitivity of both 

methods to mesh density.  Moreover, the energy loss and temperature errors norms 

presented in Table 4.2 shows only a small discrepancy between fine and coarse meshes, 

which is further evidence of the benefits of a control volume transport equation 

methodology.  It is of interest to note that in terms of program execution time, consistently 

the solidification processes modelled with NEM are faster than their counterpart modelled 

with CVCM.  The behaviour of the non-physical capacitances ec)  and e
cvcmc)  is shown in 

Figure 4-14 and Figure 4-16 for an element at a specified location varying with mesh 
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density for the three different solidification cases.  The behaviour of ec)  is showing the 

anticipated smoothness continuity for mushy and multi-discontinuities process and 

reasonable invariant for the isothermal but again the non-physical nature of e
cvcmc)  is 

highlighted.  Since two discontinuities are involved, each of the three points tested 

generates to rapid changes in e
cvcmc)  to capture the latent energy release.  This is not the 

case for NEM because discontinuity annihilation means latent heat effects are not present 

to any significance degree in ec) . 

The temperature histories for various time-steps are presented in Figure 4-17 and Figure 

4-19 for the three different test cases, which includes the single discontinuity 

approximation (i.e. isothermal solidification).  Comparable performance is delivered by the 

two methods with the NEM outperforming the CVCM in terms of the program execution 

time; however in particular, both methods achieved relatively high accuracy for a relatively 

large time set 1.0t =Δ s.  The behaviour of the non-physical capacitances e
cvcmc)  and ec)  is 

shown in Figure 4-18 and Figure 4-20 for an element for various time steps for the three 

test cases.  The behaviour of ec)  is reasonably invariant as consequence of the ability of the 

NEM to annihilate the discontinuity in the heat flux at the phase front for the isothermal 

solidification.  Also highlighted is the non-physical nature of e
cvcmc) , whose behaviour 

varies in a non-physical manner changing demonstrably with time-step.  A particular 

feature of both methods is their extraordinary accuracy for relatively large time-steps.  This 

results because both methods maintain consistency between temperature and energy 

change, i.e. the energy lost from an element corresponds exactly with the temperature 

change unlike traditional capacitance and source-based methods.  Furthermore, in terms of 

energy loss and temperature error norms NEM achieved better results as shown in Table 

4.3. 

4.12 Conclusions 

Presented in chapter 4 is the concept of non-physical enthalpy for the precise removal 

multiple discontinuities arising in phase-change problems.  The following conclusions can 

be drawn for the work presented: 
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1. Non-physical enthalpy h
)

 is well defined and possesses the property of limiting 

continuity at a discontinuity in physical enthalpy h but also behaves as a source 

(denoted 'h
)

) on a discontinuity, where 'h
)

 is well defined. 

2. Non-physical enthalpy h
)

 is non-physical in the sense that it is non-Galilean being 

dependent on the velocity *v  of the computational frame. 

3. A procedure for the removal of multiple discontinuities present in finite element 

equations in transport form has been established in the chapter. 

4. Numerical solution of the governing system of transport FE equations provides 

excellent accuracy and is computationally competitive. 
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Table 4.1  Material properties for numerical test 

 

Material Properties units 
Material 1 

(Al-4.5%Cu) 

Material 2 

(Zamak-5) 

Thermal conductivity ─ solid 200 108 

Thermal conductivity ─ liquid Cm
W

o  
90 50 

Heat capacitance – solid 900 419 

Heat capacitance – liquid Ckg
J

o

 1100 505 

Density – solid 2800 6600 

Density – liquid 
3m

kg
 2500 6800 

Latent heat kg
kJ

 
390 126 

Solidus 548 380 

Liquidus 
Co  

646 386 
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Table 4.2  Performance data for various mesh densities  
MATERIAL PROPERTIES ZAMAK-5 

Time step Δt = 0.005s and N = 300 steps 

Cube modelled with tetrahedron  Δx = Δy= Δz = 0.50mm with 6000 elements 

CVCM NEM  

Mushy Multi-discontinuities Isothermal Multi-discontinuities Isothermal 

Nodes in solid 

phase 
1231 1225 1233 1215 1239 

Program execution 

time (s) 
36.86 36.67 39.16 34.33 37.86 

Temperature error 

norm (oC) 
7.64 6.50 0.59 5.94 Test Case 

Energy loss error 

norm (%) 
3.01 1.11 0.15 2.67 Test Case 

 

Cube modelled with tetrahedron  Δx = Δy= Δz = 1.00mm with 750 elements 

CVCM NEM  

Mushy Multi-discontinuities Isothermal Multi-discontinuities Isothermal 

Nodes in solid 

phase 
197 196 204 196 204 

Program execution 

time (s) 
6.719 5.031 5.266 4.875 4.672 

Temperature error 

norm (oC) 
3.41 3.42 0.45 3.38 Test Case 

Energy loss error 

norm (%) 
2.02 1.69 0.07 1.69 Test Case 

 

Cube modelled with tetrahedron  Δx = Δy= Δz = 1.67mm with 162 elements 

CVCM NEM  

Mushy Multi-discontinuities Isothermal Multi-discontinuities Isothermal 

Nodes in solid 

phase 
58 58 60 58 60 

Program execution 

time (s) 
2.328 2.219 2.469 2.031 2.188 

Temperature error 

norm (oC) 
2.81 2.74 0.1 2.70 Test Case 

Energy loss error 

norm (%) 
1.92 1.76 0 1.68 Test Case 

Test Case-specific approach other methods contrasted against 
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Table 4.3  Performance data for various time-steps  
MATERIAL PROPERTIES ZAMAK-5 

Cube modelled with tetrahedron  Δx = Δy = Δz = 0.50mm with 6000 elements  

time step Δt = 0.005s and N = 300 steps 

 Nodes in solid phase Program execution time (s) 

CVCM-Mushy-benchmark 1231 36.86 

CVCM-Multi-discontinuities-benchmark 1225 36.67 

NEM-Multi-discontinuities-benchmark 1215 34.33 

 

Cube modelled with tetrahedron  Δx = Δy = Δz = 1.00mm with 750 elements 

Isothermal – CVCM 

 Nodes in solid phase 
Program execution 

time (s) 

Temperature error 

norm (oC) 

Energy loss error 

norm (%) 

Δt = 0.005s 

 N = 300 steps 
204 5.266 

Mush-6.06 

Mdis-5.88 

Mush-2.76 

Mdis-0.88 

Δt = 0.25s 

N = 60 steps 
196 0.7031 

Mush-10.57 

Mdis-10.37 

Mush-3.91 

Mdis-1.99 

Δt = 0.1s 

N = 15 steps 
196 0.4219 

Mush-7.27 

Mdis-7.02 

Mush-1.14 

Mdis-0.72 

Δt = 0.5s 

N = 3 steps 
162 0.5156 

Mush-14.11 

Mdis-13.02 

Mush-0.49 

Mdis-2.32 

Isothermal – NEM 

Δt = 0.005s 

N = 300 steps 
204 4.672 

Mush-6.06 

Mdis-5.75 

Mush-2.68 

Mdis-2.35 

Δt = 0.25s 

N = 60 steps 
196 0.6562 

Mush-10.57 

Mdis-10.37 

Mush-3.91 

Mdis-3.57 

Δt = 0.1s 

N = 15 steps 
196 0.4062 

Mush-7.28 

Mdis-7.03 

Mush-1.14 

Mdis-0.81 

Δt = 0.5s 

N = 3 steps 
162 0.5312 

Mush-14.11 

Mdis-13.02 

Mush-0.49 

Mdis-0.81 
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Figure 4-1  Velocities in reference domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-2  Control volume domain containing discontinuities 
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Figure 4-3  Solidification with phase discontinuities and associated regions in a linear 

element 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-4  Non-physical (CVCM) variable profile for phase-change in a 1-D element 
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Figure 4-5  Non-physical variable (NEM) profile for phase-change 1-D element 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-6  1-D solidification problem with two fronts on an Eulerian frame 
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Figure 4-7  Mesh for 1-D semi-infinite slab problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-8  Temperature history for phase-change 1-D semi-infinite slab 
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Figure 4-9  Temperature profile comparison for phase-change 1-D semi-infinite slab 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-10  Non-physical variable history for phase-change 1-D semi-infinite slab 
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Figure 4-11  Mesh for 3-D cube problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-12  Latent heat release for different cases of solidification 
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Figure 4-13  Isothermal Mushy and Multi-discontinuous solidification at x=y=z=2 mm for 

different meshes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-14  Non-physical variable behaviour for Isothermal, Mushy and Multi-discontinuous 

solidification on a point x=y=z=2 mm  
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Figure 4-15  Temperature history for Isothermal, Mushy and Multi-discontinuous 

solidification on a point x=y=z=2 mm for different meshes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-16  Non-physical variable comparison for Isothermal, Mushy and Multi-

discontinuous solidification on a point x=y=z=2 mm for different meshes 
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Figure 4-17  Mushy and Multi-discontinuities solidification contrasted with single 

discontinuity NEM at x=y=z=2 mm for different time steps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-18  Non-physical variable comparison at x=y=z=2 mm for various time steps 
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Figure 4-19  Mushy and Multi-discontinuities solidification contrasted with single 

discontinuity CVCM at x=y=z=2 mm for different time steps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-20  Non-physical variable comparison at x=y=z=2 mm for different time steps 
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5 RESULTS 

  

 

 

 

5.1 Introduction 

Presented in chapter 3 and 4 is the theory underpinning the non-physical enthalpy method 

(NEM).  Chapter 3 focuses on isothermal solidification and demonstrated is the method’s 

ability to annihilate a single discontinuity.  Further developments are discussed in chapter 4 

where the annihilation of multiple discontinuities is demonstrated.  Although a range 

examples were presented in chapters 3 and 4 ranging from a 1-D element to a 3-D cube, it 

is of interest to perform additional tests.  Presented in this chapter is a comprehensive 

analysis of the mushy zone size effect on multi-discontinuous solidification in the form of 

results pertaining to the 3-D cube problem presented in chapter 3 and 4 
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5.2 Solidification with single discontinuity 

Results for a single moving front (discontinuity) moving along the principal diagonal on a 

3-D cube are being tracked for different size meshes with a fixed time step.  Primarily, 

confirming the consistency of the method to identify and annihilate a discontinuity at 

points along the principal diagonal regardless of mesh size used and secondly, assessing 

the NEM performance in terms of stability and convergence.  Material properties, initial 

and boundary conditions are shown in Table 3.1 and Figure 3-16, respectively. 

5.2.1 Results using a fine mesh density 

 

The mesh density used is mm5.0zyx =Δ=Δ=Δ , which in term of number of elements 

gives 6000 elements for a structure meshed domain.  Enthalpy distribution and boundary 

and initial condition during isothermal solidification are shown in Figure 3-5 and Figure 

3-16, respectively.  For test 1 (L1) with the latent heat kgkJ130L = , temperature field 

comparison between CVCM and NEM along the principal diagonal in the 3-D cube is 

shown in Figure 5-1; results show that they are very close to each other with the maximum 

temperature error being C12.0 o  at the point mm5.1zyx === .  In terms of time-step size 

and the number of time steps used are s005.0t =Δ  and 200N = , respectively.  However, 

the non-physical capacitance comparison between both methods, CVCM and NEM shown 

in Figure 5-2, has being consistence throughout all the points selected along the principal 

diagonal with the theory, which predicts the identification and annihilation of any 

discontinuity passing through an element.  In order to provide a sterner test the latent heat 

release is increased to test 2 (L2) kgkJ260L = , similar results to the previous test are 

obtained for both temperature fields and non-physical capacitance comparisons between 

CVCM and NEM shown in Figure 5-3 and Figure 5-4, respectively.  However, differences 

are apparent, i.e., the maximum temperature error is C24.0 o  at the point 

mm0.2zyx ===  and the maximum energy error norm is 143.0  located at the point 

mm5.0zyx === .  Although, the same mesh density has been kept for both test cases, 

the number of time steps was increased to 400N =  as consequence of the increase in latent 

energy, which provokes a longer solidification time.  Other results pertaining to the 

principal diagonal are shown in Table 5.1. 
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5.2.2 Results using a medium mesh density 

The mesh density used is mm0.1zyx =Δ=Δ=Δ , which in term of number of elements 

gives 750 elements for a structure meshed domain.  Initial and boundary conditions are 

kept constant for both test cases although, the time step size remain the same s005.0t =Δ , 

the number of time steps are 200N =  and 400N =  for the test 1 (L1) and test 2 (L2), 

respectively.  For the test case (L1), the temperature field comparison along the principal 

diagonal points is shown in Figure 5-5, where the maximum temperature error is C13.0 o  

at the point mm0.2zyx === .  The non-physical variable comparison is shown in Figure 

5-6, where the discontinuity has been tracked and annihilated along the principal diagonal 

and the maximum energy norm error is 44.0  located on the point mm0.2zyx === .  

Similar response is found for the case test 2 (L2), where the temperature field is shown in 

Figure 5-7 and the maximum temperature error is C51.0 o  at point mm0.1zyx ===  

however, for the non-physical capacitance shown in Figure 5-8 the maximum energy norm 

error is 32.1  located at the point mm0.1zyx === , for other results along the principal 

diagonal see Table 5.1 

5.2.3 Results using a coarse mesh density 

In this case the mesh density used is mm66.1zyx =Δ=Δ=Δ , which in term of number of 

elements gives 162 elements for a structure meshed domain.  Initial and boundary 

conditions are kept constant for both test cases although, the time step size remain the same 

s005.0t =Δ , the number of time steps are 200N =  and 400N =  for the test 1 (L1) and 

test 2 (L2), respectively.  For the test case (L1), the temperature field comparison along the 

principal diagonal points is shown in Figure 5-9, where the maximum temperature error is 

C13.0 o  at the point mm0.2zyx === .  The non-physical variable comparison is shown 

in Figure 5-10, where the discontinuity has been tracked and annihilated along the 

principal diagonal and the maximum energy norm error is 090.0  located on the point 

mm0.2zyx === .  Similar response is found for the case test 2 (L2), where the 

temperature field is shown in Figure 5-11 and the maximum temperature error is C87.0 o  

at point mm0.0zyx ===  however, for the non-physical capacitance shown in Figure 

5-12 the maximum energy norm error is 57.1  located at the point mm0.2zyx === , for 

other results along the principal diagonal see Table 5.1 
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5.3 Solidification with multiple-discontinuities 

Single and multiple discontinuous solidifications have been approximated using a narrow 

mushy solidification, which in chapter 4 has been analysed involving 1-D element, 1-D 

semi-infinite slab, 2-D semi-infinite corner and 3-D cube modelling.  In this chapter the 3-

D cube results are extended in order to provide a deeper understanding on the progression 

of the discontinuities along the principal diagonal in the single and multiple discontinuities 

cases.  The process is modelled using the NEM that has been developed to deal with 

discontinuity annihilation but in this case (i.e. narrow mushy solidification) no 

discontinuities are involved.  The results are contrasted against results obtained from the 

CVCM as no analytical solutions exist in this case. 

Initial, boundary and latent heat release conditions are shown in Figure 4-11 and Figure 

4-12, respectively.  Although, different time steps and mesh densities were analysed in 

chapter 4 in the following sections the results are focused on the internal points along the 

principal diagonal for the 3-D cube for fine, medium and coarse mesh densities using a 

time step s005.0t =Δ  over 300N =  time steps.  Material properties are shown in Table 

4.1 column 2 correspond to Zamak-5.  Although Zamak-5 is an alloy without 

discontinuities present, in order to compare both techniques, for the single discontinuity the 

temperature of transition is taken as C386T o
1

=Γ  and for the multi-discontinuous case the 

temperatures of transition are C380T o
1

=Γ  and C386T o
2

=Γ , where the latent heat release 

distribution are shown in Figure 4-12.  Identical values of latent heat release are used 

despite the slightly different transition temperatures. 

5.3.1 Results using a fine mesh 

The number of elements used is 6000 using a structured mesh with a mesh density of 

mm5.0zyx =Δ=Δ=Δ .  The temperature field comparison between the single 

discontinuity solidification modelled with NEM and the mushy solidification modelled 

with CVCM clearly indicates an increase in the temperature error norm, see Table 5.2, 

where performance data for Isothermal, Multi-discontinuous and Mushy solidification is 

provided.  This corresponds with the evaluation point along the principal diagonal in the 3-

D cube however, if the comparison is made between the multi-discontinuous solidification 

modelled with NEM and the mushy solidification the magnitude of the error decreases but 

follows the same tendency like on the previous comparison, these are shown in Figure 5-13 

and Table 5.2.  The non-physical capacitance comparison shows the consistency from the 
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NEM to identify and annihilate the discontinuity for both cases, single and multi-

discontinuous solidification, along the principal diagonal for the 3-D cube, see Figure 5-14. 

5.3.2 Results using a medium mesh 

The number of elements used is 750 using a structured mesh with a mesh density of 

mm0.1zyx =Δ=Δ=Δ .  The temperature field comparison between the single 

discontinuity solidification modelled with NEM and the mushy solidification modelled 

with CVCM indicates an increase in the temperature error norm (see Table 5.2).  This 

corresponds to the evaluation point along the principal diagonal in this case the magnitude 

of the error is not as high as in the previous case.  If the comparison is made between the 

multi-discontinuous solidification modelled with NEM and the mushy solidification the 

magnitude of the error decreases even more but still follows the same tendency, these are 

shown in Figure 5-15 and Table 5.2.  The non-physical capacitance comparison shows the 

consistency from the NEM to identify the discontinuity and annihilated for both cases, 

single and multi-discontinuous solidification, along the principal diagonal for the 3-D 

cube; see Figure 5-16. 

5.3.3 Results using a coarse mesh 

The number of elements used is 162 using a structured mesh with a mesh density of 

mm66.1zyx =Δ=Δ=Δ .  The temperature field comparison among the single 

discontinuity solidification modelled with NEM, the mushy solidification modelled with 

CVCM and the multi-discontinuous solidification modelled with NEM shows a definite 

close agreement although, the maximum temperature error is found between the single 

discontinuity and the mushy solidifications, which is C79.3 o  at point mm0.0zyx ===  

these are shown in Figure 5-17 and Table 5.2.  The non-physical capacitance comparison 

shows the consistency from the NEM to identify the discontinuity and annihilate it, which 

is expected from the theory; see Figure 5-18. 

5.4 Solidification involving two discontinuities with narrow and 

wide mushy zone 

Single discontinuity and multi-discontinuities have been analysed in chapter 3 and chapter 

4 with extended results on the previous two sections in this chapter.  However, it is of 

interest to explore the influence of the mushy zone size in combination with discontinuous 

solidification.  Three different cases are presented in order to provide further evidence to 

ascertain NEM capabilities to identify correctly any discontinuity present in the 



Chapter 5 169 
 

Ricardo Mondragon The University of Manchester 
 

solidification process regardless the transition zone size.  In Appendix B is presented 

further details for the specific application of the NEM to this section 

5.4.1 Two discontinuities with narrow and wide mushy solidification 
for 1-D element 

Consider the 1-D linear element depicted in Figure  B-3  Solidification with phase 

discontinuities and associated regions in a linear element subjected to a prescribed 

temperature field to highlight the differences between ec)  and e
cvcmc)  when dealing with two 

defined discontinuities with narrow and wide mushy zones and when subjected to a 

decreasing temperature field.  In this test diff
1n

1
1n

2 TTT += ++ , where 1T  and 2T  are nodal 

temperatures and diffT  is the temperature difference between the nodes of the element.  

The temperature difference between the nodes is set to: 10, 15 and 20°C and 5TT liq
n

1 +=  

with 5TT120T liq
1n

1liq +<≤− + .  The temperature range is selected to ensure the material 

is initially liquid and ends up completely solid.  The material properties are given in the 

first column of Table 5.3, under the heading of material 1 and are approximately those for 

Al-4.5%Cu.  However, in order to highlight the annihilation of source terms latent heat 

release is assumed to occur at the two transition boundaries, which define the mushy zone 

between the temperatures where latent heat is released and material phase is changed.  In 

the narrow case the transition temperatures are C646TandC621T oo
21

== ΓΓ  and for the 

wide case C646TandC548T oo
21

== ΓΓ .  The magnitudes of the latent heat release in 

terms of the total latent heat release are set to L15.0L1 =  and L35.0L 2 =  for 

demonstration purposes for both cases. 

Depicted in Figure 5-19 and Figure 5-20 are the non-physical capacitances e
cvcmc)  and ec)  

for the CVCM and the NEM respectively.  It is evident on comparison of Figure 5-19 and 

Figure 5-20 that the variation of e
cvcmc)  is significantly greater than that of ec)  obtained 

from equation (4.52).  This illustrates that the two discontinuities have been effectively 

removed with the presence of the term ] [
( )∫ ∑ ∫

+

∈ Γ

× Γ⋅ρ1n

n e
e
k

t

t Kk t ki dtdnvhN  in equation (4.52).  

This is demonstrated analytically in equations (B-3) and (B-4), see Appendix B but also 

demonstrated numerically in Figure 5-20. 

The mushy zone size effect is evident on e
cvcmc) and ec)  is greater for the narrow case as the 

latent heat release or transition of the material phases happens on a narrow temperature 
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interval as opposed to the wider case, see Figure 5-19 and Figure 5-20.  Note that the 

values Cm/MJ52.2c o3
ss =ρ  and Cm/MJ75.2c o3=ρ ll  can be contrasted against the 

numerical values provided in Figure 5-20 to illustrate the effectiveness of the discontinuity 

annihilation. 

5.4.2 1-D semi-infinite slab domain with two discontinuities and linear 
mushy solidification, narrow and wide 

Solidification of a semi-infinite slab with a fixed temperature boundary condition and two 

defined discontinuities with narrow and wide mushy zone, the latent heat release 

distribution as in the previous example has no known analytical solution, hence the NEM 

is contrasted against the CVCM which has been extensively tested [115, 116].  The mesh 

used for the test is depicted in Figure 5-21 along with boundary and initial conditions.  The 

material properties are given in the first column of the Table 5.3, which are those for Al-

4.5%Cu.  For the narrow case, temperature histories, profiles and information on the non-

physical capacitances are provided in Figure 5-22 to Figure 5-24 and for the wide case on 

Figure 5-25 to Figure 5-27, for different locations along the slab.  Excellent accuracy for 

temperature histories and profiles for both the NEM and CVCM is obtained, for the narrow 

case can be seen in Figure 5-22 and Figure 5-23 and for the wide case in Figure 5-25 and 

Figure 5-26.  The behaviour of the non-physical capacitances e
cvcmc)  and ec)  are shown in 

Figure 5-24 and Figure 5-27, which mirrors that shown in Figure 5-19 and Figure 5-20.  

The two spikes for each point chosen in value of e
cvcmc)  correspond with the discontinuities 

passing through the elements at the stipulated spatial locations, which in the narrow and 

wide cases are influenced and connected with the continuous mushy zone.  The behaviour 

of ec)  appears to match only in the section of the plots where the enthalpy distribution is 

continuous and illustrates the effectiveness of procedure for discontinuity annihilation. 

5.4.3 3-D cube domain with linear mushy solidification, narrow and 
wide, and two discontinuities present 

The solidification of a cube is considered where mesh boundary, initial conditions and 

latent heat release for the narrow and wide mushy zone are depicted in Figure 5-28 and 

Figure 5-29, respectively.  Although an analytical solution is unavailable, different time 

steps and mesh densities are tested to ascertain the relative sensitivities of the CVCM and 

the NEM. Although, annihilation of multiple-discontinuities is the main concern of this 
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research, a series of tests were chosen in order to realise the feasibility of representing a 

complicated solidification process involving narrow or wide mushy with multiple 

discontinuities.  It is expected that this approach is adequate for: a) rapid solidification 

where the transition zone appears narrow and b) slow solidification where the transition 

zone appears wide on the spatial scale. 

Given in Table 5.4 and Table 5.5are the approximate program execution times for each of 

the methods along with results pertaining to the two error norms 

100
E

EEmax,TTmax nb
total

nbn

n,i
nb
i

n
i

n,i
×

−
−  

where i and n represents the nodal position along the cube diagonal and time step, 

respectively.  Moreover, Ti and E are the nodal temperature and the energy loss from the 

cube surface, respectively.  The subscript b indicates benchmark values, which since no 

analytical solution are available, are taken as the results obtained using NEM with 

50.0x =Δ mm (6000 elements) and 005.0t =Δ s for both narrow and wide mushy 

solidification with the discontinuities involved.  The tests were performed using an implicit 

Euler time-stepping algorithm and the non-linear equations were solved using a bisection 

method.  The material properties are taken from column 2 in Table 5.3, which corresponds 

to Zamak-5. 

It is evident on comparison of Table 5.4 that comparable results are obtained for both 

methods with a slightly improved performance delivered by the NEM.  The results shown 

in Table 5.4, Figure 5-30 and Figure 5-32 demonstrate the relative insensitivity of both 

methods to mesh density; however it is clear that coarse mesh results for the narrow mushy 

zone have a greater temperature error norm using either NEM or CVCM technique.  

Moreover, the energy loss and temperature errors norms presented in Table 5.4 shows a 

small discrepancy between fine and coarse meshes, which is further evidence of the 

benefits of a control volume transport equation methodology.  It is of interest to note that 

in terms of program execution time; consistently the solidification processes modelled with 

NEM are faster than their counterpart modelled with CVCM.  The behaviour of the non-

physical capacitances ec)  and e
cvcmc)  is shown in Figure 5-31 and Figure 5-33 for an 

element at a specified location varying with mesh density for the three different 

solidification cases.  The behaviour of ec)  is showing the anticipated smoothness continuity 

for the two discontinuities with narrow and wide mushy solidification, Figure 5-31 and 

Figure 5-33 respectively but again the non-physical nature of e
cvcmc)  is highlighted.  
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Temperature history comparison between the two discontinuities with narrow and wide 

mushy solidification processes is depicted in Figure 5-34, where it is possible to identify 

that the narrow mushy solidification modelling provides the greatest temperature error.  

However, the non-physical variable comparison, Figure 5-35, shows clearly the appealing 

non-uniqueness feature for the non-physical variable technique. 

The temperature histories for the two discontinuities with narrow and wide mushy 

solidification using various time-steps are presented in Figure 5-36 and Figure 5-38 

respectively.  Comparable performance is delivered by the NEM and the CVCM methods 

in terms of similar results for temperature and energy error norms; however for the 

execution time, mixed results were obtained particularly when NEM outperforming 

CVCM for the smallest two time steps, s25.0tands005.0t =Δ=Δ .  However, this is not 

the case for the largest time steps, s5.0tands1.0t =Δ=Δ , for both cases of two 

discontinuities with narrow and wide mushy solidification (see Table 5.5).  The behaviour 

of the non-physical capacitances e
cvcmc)  and ec)  is shown in Figure 5-37 and Figure 5-39 for 

an element for various time steps for the two discontinuities with narrow and wide 

solidification. 

Although, a particular feature of both methods is their extraordinary accuracy for relatively 

large time-steps, modelling the wide mushy with the two discontinuities the temperature 

error norm is slightly improved over the narrow mushy shown in Figure 5-40 and Table 

5.5.  This results because both methods maintain consistency between temperature and 

energy change, i.e. the energy lost from an element corresponds exactly with the 

temperature change unlike traditional capacitance and source-based methods.  It is clear 

that the behaviour of ec)  is reasonably invariant as consequence of the ability of the NEM 

to annihilate both discontinuities in the heat flux at the phase front however is raised 

smoothly for the narrow or wide mushy solidification shown in the non-physical variable 

comparison Figure 5-41.  Also highlighted is the non-physical nature of e
cvcmc) , whose 

behaviour varies in a non-physical manner changing demonstrably with time-step. 

Temperature histories at specified points along the diagonal of the cube on a fine mesh 

( 50.0x =Δ mm) and relatively small time-step ( 005.0t =Δ s) are presented for the two 

discontinuities with narrow and wide mushy solidification in Figure 5-42 and Figure 5-44 

respectively.  A similar temperature profile is exhibited for the two cases, narrow and wide 

mushy, as time progresses.  It is evident from the numerical evidence and again 

demonstrated in Figure 5-43 and Figure 5-45 for various points along the diagonal of the 
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cube, that the NEM removes the discontinuous behaviour regardless the number of 

discontinuities or the type of the transition zone present in the solidification process. 

5.5 Conclusions 

From the extensive tests presented it is possible to conclude from the single-discontinuity 

results that despite the NEM and the CVCM reporting similar levels of accuracy for 

temperature and energy balance on a fine mesh, for medium and coarse meshes the NEM 

slightly outperforms the CVCM.  However, consistency is the important feature from the 

results, which confirms the ability of the NEM to isolate and annihilate the source term 

from the solidification process regardless of the magnitude of latent heat release involved. 

The comparison made between single-mushy and multidiscontinuous-mushy 

solidifications has provided information on the magnitude of errors involved.  Energy and 

temperature errors are greater in the case where mushy solidification is used to 

approximate single-discontinuity solidification rather than multidiscontinuous 

solidification.  Although, the temperature-error norm increases as the evaluation point 

moves along the principal diagonal, the maximum energy-error norm occurs at the start 

point when mesh is fine, however, this pattern is not repeated for the cases with medium 

and coarse meshes. 

Transition zone size, narrow and wide, combined with two discontinuities has proved a 

stern example for the NEM, which independently from the size of the transition (mushy) 

zone identify and annihilate the discontinuities present in the solidification process. 
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Table 5.1  Performance data for Isothermal solidification 
MATERIAL PROPERTIES ZINC 

Time step Δt = 0.005s  
3-D cube modelled with a fine mesh 
Points along the principal diagonal 

x = 0.0 mm x = 0.5 mm x = 1.0 mm x = 1.5 mm x = 2.0 mm 

 

Test (L1) with kgkJ130L =  and N = 200 steps 
Temperature 

error norm (oC) 0.07 0.08 0.09 0.12 0.04 

Energy loss error 
norm (%) 0.037 0.078 0.130 0.180 0.055 

 Test (L2) with kgkJ260L =  and N = 400 steps 
Temperature 

error norm (oC) 0.14 0.11 0.20 0.19 0.24 

Energy loss error 
norm (%) 0.023 0.143 0.001 0.137 0.005 

3-D cube modelled with a medium mesh 
Points along the principal diagonal 

x = 0.0 mm x = 1.0 mm x = 2.0 mm 

 

Test (L1) with kgkJ130L =  and N = 200 steps 
Temperature 

error norm (oC) 0.12 0.12 0.13 

Energy loss error 
norm (%) 0.05 0.33 0.44 

 Test (L2) with kgkJ260L =  and N = 400 steps 
Temperature 

error norm (oC) 0.23 0.51 0.18 

Energy loss error 
norm (%) 0.05 1.32 0.6 

3-D cube modelled with a coarse 
mesh 

Points along the principal diagonal 
x = 0.0 mm x = 2.0 mm 

 

Test (L1) with kgkJ130L =  and  
N = 200 steps 

Temperature 
error norm (oC) 0.07 0.13 

Energy loss error 
norm (%) 0.014 0.09 

 Test (L2) with kgkJ260L =  and  
N = 400 steps 

Temperature 
error norm (oC) 0.87 0.77 

Energy loss error 
norm (%) 0.17 1.57 

Note x means x = y= z for the co-ordinates along the principal diagonal on each cube 
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Figure 5-1  Temperature history for isothermal solidification at different points along the 

diagonal of the cube for a fine mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-2  Non-physical variable comparison for isothermal solidification along the 

diagonal of the cube for a fine mesh 
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Figure 5-3  Temperature history for isothermal solidification at different points along the 

diagonal of the cube for a fine mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-4  Non-physical variable comparison for isothermal solidification along the 

diagonal of the cube for a fine mesh 
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Figure 5-5  Temperature history for isothermal solidification at different points along the 

diagonal of the cube for a medium mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-6  Non-physical variable comparison for isothermal solidification along the 

diagonal of the cube for a medium mesh 
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Figure 5-7  Temperature history for isothermal solidification at different points along the 

diagonal of the cube for a medium mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-8  Non-physical variable comparison for isothermal solidification along the 

diagonal of the cube for a medium mesh 



Chapter 5 179 
 

Ricardo Mondragon The University of Manchester 
 

320

330

340

350

360

370

380

390

400

410

420

0 0.2 0.4 0.6 0.8 1

Time (s)

Te
m

pe
ra

tu
re

 ( 
o C

)

x=y=z=2 mm - NEM
x=y=z=2 mm - CVCM
x=y=z=0 mm - NEM
x=y=z=0 mm - CVCM

Test 1 (L1) 

Modelled with 162 elements 

Δt = 0.005 s and N = 200 steps 

Isothermal using NEM and CVCM 

0.00

0.01

0.10

1.00

0 0.2 0.4 0.6 0.8 1

Time (s)

N
on

-p
hy

si
ca

l v
ar

ia
bl

e 
(M

J/
m

3  o C
)

x=y=z=2 mm - NEM
x=y=z=2 mm - CVCM
x=y=z=0 mm - NEM
x=y=z=0 mm - CVCM

Test 1 (L1) 

Modelled with 162 elements 

Δt = 0.005 s and N = 200 steps 

Isothermal using NEM and CVCM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-9  Temperature history for isothermal solidification at different points along the 

diagonal of the cube for a coarse mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-10  Non-physical variable comparison for isothermal solidification along the 

diagonal of the cube for a coarse mesh 
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Figure 5-11  Temperature history for isothermal solidification at different points along the 

diagonal of the cube for a coarse mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-12  Non-physical variable comparison for isothermal solidification along the 

diagonal of the cube for a coarse mesh 
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Table 5.2  Performance data for Isothermal, Multi-discontinuous and Mushy solidification 
MATERIAL PROPERTIES ZAMAK-5 
Time step Δt = 0.005s and N = 300 steps 

3-D cube modelled with a fine mesh 
Points along the principal diagonal 

x = 0.0 mm x = 0.5 mm x = 1.0 mm x = 1.5 mm x = 2.0 mm 

 

Isothermal (NEM) against Mushy (CVCM) 
Temperature 

error norm (oC) 4.25 4.90 5.66 6.58 7.64 

Energy loss error 
norm (%) 23.29 11.67 11.51 14.49 8.03 

 Multi-discontinuities (NEM) against Mushy (CVCM) 
Temperature 

error norm (oC) 1.08 1.24 1.52 1.33 1.70 

Energy loss error 
norm (%) 24.12 8.47 9.92 7.11 0.98 

3-D cube modelled with a medium mesh 
Points along the principal diagonal 

x = 0.0 mm x = 1.0 mm x = 2.0 mm 

 

Isothermal (NEM) against Mushy (CVCM) 
Temperature 

error norm (oC) 3.72 3.08 3.41 

Energy loss error 
norm (%) 1.17 9.31 6.30 

 Multi-discontinuities (NEM) against Mushy (CVCM) 
Temperature 

error norm (oC) 0.98 1.07 1.18 

Energy loss error 
norm (%) 2.65 4.51 5.13 

3-D cube modelled with a coarse 
mesh 

Points along the principal diagonal 
x = 0.0 mm x = 2.0 mm 

 

Isothermal (NEM) against Mushy 
(CVCM) 

Temperature 
error norm (oC) 3.79 2.81 

Energy loss error 
norm (%) 0.0 5.08 

 Multi-discontinuities (NEM) against 
Mushy (CVCM) 

Temperature 
error norm (oC) 1.32 0.72 

Energy loss error 
norm (%) 2.86 4.01 

Note x means x = y= z for the co-ordinates along the principal diagonal on each cube 
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Figure 5-13  Temperature history for Isothermal, Pure Mushy and Multi-discontinuities 

solidification along the diagonal of the cube for a fine mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-14  Non-physical variable comparison for Isothermal, Pure Mushy and Multi-

discontinuities solidification along the diagonal of the cube for a fine mesh 
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Figure 5-15  Temperature history for Isothermal, Pure Mushy and Multi-discontinuities 

solidification along the diagonal of the cube for a medium mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-16  Non-physical variable comparison for Isothermal, Pure Mushy and Multi-

discontinuities solidification along the diagonal of the cube for a medium mesh 
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Figure 5-17  Temperature history for Isothermal, Pure Mushy and Multi-discontinuities 

solidification along the diagonal of the cube for a coarse mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-18  Non-physical variable comparison for Isothermal, Pure Mushy and Multi-

discontinuities solidification along the diagonal of the cube for a coarse mesh 
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Table 5.3  Material properties for numerical test 
 

Material Properties units Material 1 
(Al-4.5%Cu) 

Material 2 
(Zamak-5) 

Thermal conductivity ─ solid 200 108 

Thermal conductivity ─ liquid Cm
W

o  
90 50 

Heat capacitance – solid 900 419 

Heat capacitance – liquid Ckg
J
o  

1100 505 

Density – solid 2800 6600 

Density – liquid 3m
kg

 
2500 6800 

Latent heat 
kg
kJ

 390 126 

Solidus 548 380 
Liquidus Co  646 386 
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Table 5.4  Performance data for various mesh densities 
MATERIAL PROPERTIES ZAMAK-5 
Time step Δt = 0.005s and N = 300 steps 

Two discontinuities with narrow mushy solidification; for latent heat release 
L35.0LandL15.0L 21 ==  and for temperatures at the phase-change C386TandC380T oo

21
== ΓΓ

 

CVCM NEM 
 

Δx = 0.50mm Δx = 1.0mm Δx = 1.67mm Δx = 0.50mm Δx = 1.0mm Δx = 1.67mm 
Nodes in solid 

phase 1225 196 58 1225 196 58 

Program 
execution time 

(s) 
36.67 5.031 2.22 34.33 4.875 2.03 

Temperature 
error norm 

(oC) 
0.45 3.49 8.15 benchmark 3.48 8.13 

Energy loss 
error norm 

(%) 
0.408 1.063 2.535 benchmark 1.063 2.289 

 
Two discontinuities with wide mushy solidification; for latent heat release L35.0LandL15.0L 21 ==  

and for the temperatures at the phase-change C386TandC340T oo
21

== ΓΓ
 

CVCM NEM 
 

Δx = 0.50mm Δx = 1.0mm Δx = 1.67mm Δx = 0.50mm Δx = 1.0mm Δx = 1.67mm 
Nodes in solid 

phase 939 156 47 945 156 47 

Program 
execution time 

(s) 
39.37 5.141 1.984 36.81 4.922 2.0 

Temperature 
error norm 

(oC) 
0.35 2.86 6.25 benchmark 2.86 6.25 

Energy loss 
error norm 

(%) 
0.540 0 0.630 benchmark 0.09 0.630 

Note Δx means Δx = Δy= Δz for the mesh density on each cube 
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Table 5.5  Performance data for various time-steps  
MATERIAL PROPERTIES ZAMAK-5 

Benchmark cube modelled with tetrahedron  Δx = Δy = Δz = 0.50mm with 6000 elements  
using time step Δt = 0.005s and N = 300 steps for two discontinuities with narrow and wide mushy solidification 

Cube modelled with tetrahedron  Δx = Δy = Δz = 1.00mm with 750 elements 
Two discontinuities with narrow mushy solidification; for latent heat release 

L35.0LandL15.0L 21 ==  and for temperatures at the phase-change 

C386TandC380T oo
21

== ΓΓ
  

 Δt = 0.005s 
 N = 300 steps 

Δt = 0.25s 
N = 60 steps 

Δt = 0.1s 
N = 15 steps 

Δt = 0.5s 
N = 3 steps 

Nodes in solid 
phase 196 193 177 129 

Program 
execution time 

(s) 
5.031 0.625 0.3438 0.4531 

Temperature 
error norm (oC) 3.49 3.87 7.62 11.38 C

V
C

M
 

Energy loss error 
norm (%) 1.063 1.390 3.598 1.798 

Nodes in solid 
phase 196 193 177 129 

Program 
execution time 

(s) 
4.875 0.6175 0.4062 0.4688 

Temperature 
error norm (oC) 3.48 3.87 7.62 11.39 

N
E

M
 

Energy loss error 
norm (%) 1.063 1.390 3.598 1.798 

 
Cube modelled with tetrahedron  Δx = Δy = Δz = 1.00mm with 750 elements 

Two discontinuities with wide mushy solidification; for latent heat release 
L35.0LandL15.0L 21 ==  and for temperatures at the phase-

change C386TandC340T oo
21

== ΓΓ
  

 Δt = 0.005s 
 N = 300 steps 

Δt = 0.25s 
N = 60 steps 

Δt = 0.1s 
N = 15 steps 

Δt = 0.5s 
N = 3 steps 

Nodes in solid 
phase 156 150 129 38 

Program 
execution time 

(s) 
5.141 2.828 0.3906 0.3125 

Temperature 
error norm (oC) 2.86 2.64 3.99 8.11 C

V
C

M
 

Energy loss error 
norm (%) 0 0.180 2.160 4.95 

Nodes in solid 
phase 156 150 129 38 

Program 
execution time 

(s) 
4.922 2.438 0.4062 0.3594 

Temperature 
error norm (oC) 2.86 2.64 3.99 8.11 

N
E

M
 

Energy loss error 
norm (%) 0.09 0.180 2.160 4.95 
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Figure 5-19  Non-physical variable (CVCM) comparison for multi-discontinuous narrow and 

wide mushy solidification for 1-D element 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-20  Non-physical variable (NEM) comparison for multi-discontinuous narrow and 

wide mushy solidification for 1-D element 
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Figure 5-21  Mesh for 1-D semi-infinite slab problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-22  Temperature history for multi-discontinuous and narrow mushy solidification 

for 1-D semi-infinite slab 
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Figure 5-23  Temperature profile for multi-discontinuous and narrow mushy solidification 

for 1-D semi-infinite slab 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-24  Non-physical variable comparison for multi-discontinuous and narrow mushy 

solidification for 1-D semi-infinite slab 
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Figure 5-25  Temperature history for multi-discontinuous and wide mushy solidification for 

1-D semi-infinite slab 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-26  Temperature profile for multi-discontinuous and wide mushy solidification for 

1-D semi-infinite slab 
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Figure 5-27  Non-physical variable comparison for multi-discontinuous and wide mushy 

solidification for 1-D semi-infinite slab 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-28  Mesh for 3-D cube problem 
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Figure 5-29  Latent heat release involving multi-discontinuities with narrow and wide mushy 

solidification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-30  Multi-discontinuous and narrow mushy solidification on a point x=y=z=2 mm for 

different meshes 
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Figure 5-31  Non-physical variable behaviour for Multi-discontinuous and narrow mushy 

solidification on a point x=y=z=2 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-32  Multi-discontinuous and wide mushy solidification on a point x=y=z=2 mm for 

different meshes 
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Figure 5-33  Non-physical variable behaviour for Multi-discontinuous and wide mushy 

solidification on a point x=y=z=2 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-34  Temperature history comparison for Multi-discontinuous narrow and wide 

mushy solidification on a point x=y=z=2 mm for different meshes 
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Figure 5-35  Non-physical variable comparison for Multi-discontinuous narrow and mushy 

solidification on a point x=y=z=2 mm for different meshes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-36  Multi-discontinuous with narrow mushy solidification for different time steps on 

a coarse mesh contrasted to a fine mesh at a point x=y=z= 2 mm 
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Figure 5-37  Non-physical variable comparison for Multi-discontinuous and narrow mushy 

solidification for different time steps on a coarse and fine mesh at a point x=y=z= 2 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-38  Multi-discontinuous with wide mushy solidification for different time steps on a 

coarse mesh contrasted to a fine mesh at a point x=y=z= 2 mm 
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Figure 5-39  Non-physical variable comparison for Multi-discontinuous and wide mushy 
solidification for different time steps on a coarse and fine mesh at a point x=y=z= 2 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-40  Temperature history for Multi-discontinuous narrow and wide mushy 

solidification for different time steps at a point x=y=z= 2 mm 
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Figure 5-41  Non-physical variable comparison for Multi-discontinuous narrow and wide 

mushy solidification for different time steps at a point x=y=z= 2 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-42  Multi-discontinuous and narrow mushy solidification at different points along 

the diagonal of the cube for a fine mesh 
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Figure 5-43  Non-physical variable comparison for Multi-discontinuous and narrow mushy 

solidification along the diagonal of the cube for a fine mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-44  Multi-discontinuous and wide mushy solidification at different points along the 

diagonal of the cube for a fine mesh 
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Figure 5-45  Non-physical variable comparison for Multi-discontinuous and wide mushy 

solidification along the diagonal of the cube for a fine mesh 
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6 CONCLUSIONS 

 

 

 

 

The fundamental contribution of this thesis has evolved around the non-physical enthalpy 

method NEM for solidification with single discontinuity or multi-discontinuities.  The 

conventional heat differential parabolic governing equation has been replaced and solved 

using the governing enthalpy-transport equation, which accounts essentially for the 

discontinuous physics avoiding the approximation and the arbitrariness common to the 

classical approaches.  Understanding the remarkable source distribution like property at a 

discontinuity that the non-physical enthalpy method had, highlights an important feature 

for the precise removal of weak discontinuities, which is a common enthalpy-temperature 

response in solidification at the solidus and liquidus temperatures as a consequence of the 

phase-change and latent heat release. A range of simple problems have been used to 

provide an in-depth treatment and ease understanding of this novel methodology. 
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6.1 Solidification processes and modelling techniques 

Significant progress has been made in the solidification process although, conventional and 

special processes still depend on precise modelling starting from the liquid state to any 

phase transition during the solidification process.  In sand casting, the liquid metal is 

poured into a die made of sand.  Although, this process is relative easy to implement, the 

products have large dimensional tolerance, due to porosity caused by gas entrapment, 

which require machining.  In pressure die-casting, the main concern is due to the existence 

of porosity because two events occurring at the same time as the mould is filled.  The first 

is the formation of voids when the liquid solidifies; the second is the existence of whirl of 

liquid metal behind obstacles always present in industrial moulds, during pressure die-

casting filling. 

High pressure in the die-casting process decreases considerably the porosity, which allows 

both thinner and thicker parts, however ductility decreases and blistering appears as a 

consequence of entrapped gases in the final product.  The other limitation is that no 

thermal treatment is feasible after casting because blistering defects appear.  Recent die-

casting process technologies have been developed to reduce the porosity and improve the 

mechanical properties in the final product, which generally are based on the semi-solid 

state however; economical factors constrain the application of this technique. 

The selection of the numerical method to solve the phase-change problem depends not 

only on the nature of the problem but also on the priorities set by the user for accuracy, 

computational efficiency and ease of programming.  For pure substances, the variable grid 

methods often yield more accurate results than those based on the fixed grid method.  

However, the fixed grid method is an easier program to implement.  Moreover, the fixed 

grid method incorporated with the enthalpy technique can easily be extended to 

multidimensional problems for both pure and binary materials. 

Due to the importance of convection in a large number of phase-change problems, wide 

experience has been accumulated in the numerical simulation of convection/diffusion 

processes coupled with phase-change.  Numerical techniques for such complex phenomena 

are now being developed by scientists and engineers in different disciplines.  The 

popularity of formulations capable of tackling three-dimensional problems is increasing, 

which are common in the industrial field.  On the basis of experience gained so far, 

numerical methods based on the weak solution in conjunction with the control volume 

scheme in the fixed domain can be highly recommended for multidimensional melting and 

solidification problems. 
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With increasing interest in modelling of microstructure evolution occurring during 

solidification, a new generation of solidification models is rising.  However, their accuracy 

in predicting the peculiar characteristics of microstructure is constantly focused on 

improving their performance. 

6.2 Reflexions about NEM 

Discontinuities in the solidification process represented an important challenge for the 

numerical methods to cater for, although many numerical approaches have approximated a 

discontinuous solidification by using a continuous narrow temperature function.  Although 

existing methods in terms of temperature field, provide a good approximation but in terms 

of energy prediction can give rise to large errors particularly related when a rapid energy 

change is present in the process.  Scale level macro-micro solidification is considered 

another important constraint in terms of modelling, which has a direct influence in the 

selection of set of equations used to describe the physical phenomenon that correlated 

directly with the computer power capabilities to solve the equation system. 

Even though, discontinuities have always been present and identified in the solidification 

process it is only recently that different techniques have appeared to deal with them.  Non-

physical enthalpy method (NEM) is providing a novel technique, which primarily 

identifies, tracks and annihilates the discontinuity present in the solidification process.  

Despite its relative complexity the method is founded on well-founded mathematical 

theory concerned with moving control volumes and adapted to embrace the novelty of non-

physical variables to establish an alternative set of governing equations.  Fundamentally, 

these equations are the product of applying the transport equation concept over a control 

volume (CV), which enables to track implicitly the discontinuity in the element by defining 

the correct velocity field.  The governing FE transport equations have showed their real 

ability to isolating and accurately annihilating the discontinuity in the element furthermore, 

they have provided the linkage between the physical and non-physical variable, which 

acted as a constraint in the equation system. 

Single discontinuity, multi-discontinuities and multi-discontinuities with linear transition 

zone (narrow and wide) have been the solidification types analysed in this research.  

Although, the problem selection is based on simple geometries, 1-D element, 1-D semi-

infinite, 2-D semi-infinite corner and 3-D cube, the aim relies on the information available 

from the analytical and the CVCM cases, which represents the main method selected to 

compare against to NEM.  Therefore, results showed in chapters 3 to 5 that temperature 

field and program time execution have a slightly improvement, which is linked with the 
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proper identification of the source term used in the scheme as a convergence factor.  

However, the validation and proving of the theory that are represented in the results 

involving the non-physical capacitance were the principal objectives in this research. 

6.3 Future work 

The next stage for the non-physical enthalpy method (NEM) would include the momentum 

conservation equation, apart from the mass and energy conservation equations that have 

been successfully replaced and solved, which would definitely lead into two important 

fields for the solidification process.  Firstly, it would allow the introduction of advection 

terms on the macroscopic scale and secondly, microstructure solidification describing grain 

structure formation and other micro structural features (e.g. secondary arm spacing, micro 

segregation model, etc.).  The morphology, size, distribution, crystal orientation, 

correlation (texture) and number of phases define a microstructure. Phase and 

microstructure selection describes the variety of phases and microstructures that develop 

under given growth conditions and growth geometries, in which weak discontinuities are 

likely to appear 

The non-physical enthalpy method (NEM) has been developed to annihilate discontinuous 

solidification regardless of the number of phase-changes present or the size of the 

transition (mushy) zone in the process.  The NEM would be perfectly adaptable for other 

applications where physical phenomenon have discontinuities present, i.e. in the geological 

field, molten lava under the sea (constant pressure) or environmental change, melting ice in 

the North Pole, etc. 

 

 

 

 

 



Reference 206 
 

Ricardo Mondragon The University of Manchester 
 

 

REFERENCE 
 

1. J. M. Camp and C. B. Francis, The making, shaping and treating of steel, Carnegie 
Steel Company, Pittsburgh, 1920. 

2. R. F. Tylecote, A history of metallurgy, Institute of Materials, London, 1992. 
3. M. Blair and T. L. Stevens, Steel casting handbook, ASM International, 1995. 
4. D. M. Stefanescu, Science and engineering of casting solidification, Springer, New 

York, N. Y., 2008. 
5. E. P. Degarmo, J. T. Black and R. A. Kohser, Materials and processes in 

manufacturing, Wiley, 2003. 
6. J. Ni and C. Beckermann, A volume-averaged two-phase model for transport 

phenomena during solidification, Metallurgical Transactions B 22 (1991), no. 3, 
349-361. 

7. W. J. Boettinger, S. R. Coriell, A. L. Greer, A. Karma, W. Kurz, M. Rappaz and R. 
Trivedi, Solidification microstructures: Recent developments, future directions, 
Acta Materialia 48 (2000), no. 1, 43-70. 

8. L. Gaston, A. Kamara and M. Bellet, An arbitrary lagrangian-eulerian finite 
element approach to non-steady state turbulent fluid flow with application to mould 
filling in casting, International Journal for Numerical Methods in Fluids 34 (2000), 
no. 4, 341-369. 

9. F. P. Schleg, F. H. Kohloff and J. G. Sylvia, Technology of metalcasting, American 
Foundry Society, 2003. 

10. S. Kalpakjian and S. R. Schmid, Manufacturing engineering and technology, 
Prentice Hall, 2006. 

11. B. Cantor and K. O'Reilly, Solidifcation and casting, CRC press, 2003. 
12. W. Kurz and D. J. Fisher, Fundamentals of solidification, Trans-Tech, Switzerland, 

1986. 
13. M. C. Flemings, Solidification processing, Mc-Graw Hill, New York, N.Y., 1974. 
14. R. W. Lewis and K. Ravindran, Finite element simulation of metal casting, 

International Journal for Numerical Methods in Engineering 47 (2000), no. 1-3, 29-
59. 

15. R. W. Hamilton, D. See, S. Butler and P. D. Lee, Multiscale modeling for the 
prediction of casting defects in investment cast aluminum alloys, Materials Science 
and Engineering A 343 (2003), no. 1-2, 290-300. 

16. C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, Effects of 
solidification rate and ageing on the microstructure and mechanical properties of 
az91 alloy, Materials Science and Engineering A 325 (2002), no. 1-2, 344-355. 

17. R. Mehrabian, D. R. Geiger and M. C. Flemings, Refining by partial solidification, 
Metall Trans 5 (1974), no. 3, 785-787. 

18. R. Mehrabian, R. G. Riek and M. C. Flemings, Preparation and casting of metal-
particulate non-metal composites, Metall Trans 5 (1974), no. 8, 1899-1905. 

19. Y. M. Youssef, A. Chaijaruwanich, R. W. Hamilton, H. Nagaumi, R. J. Dashwood 
and P. D. Lee, X-ray microtomographic characterisation of pore evolution during 
homogenisation and rolling of al-6mg, Materials Science and Technology 22 
(2006), no. 9, 1087-1093. 

20. M. C. Flemings, Behavior of metal alloys in the semisolid state, Metallurgical 
Transactions A 22 (1991), no. 5, 957-981. 



Reference 207 
 

Ricardo Mondragon The University of Manchester 
 

21. M. C. Flemings, R. G. Riek and K. P. Young, Rheocasting, Materials Science and 
Engineering 25 (1976), no. C, 103-117. 

22. D. Brabazon, D. J. Browne and A. J. Carr, Mechanical stir casting of aluminium 
alloys from the mushy state: Process, microstructure and mechanical properties, 
Materials Science and Engineering A 326 (2002), no. 2, 370-381. 

23. J. Collot, Review of new process technologies in the aluminum die-casting industry, 
Materials and Manufacturing Processes 16 (2001), no. 5, 595-617. 

24. X. Li, Y. Yang and X. Cheng, Ultrasonic-assisted fabrication of metal matrix 
nanocomposites, Journal of Materials Science 39 (2004), no. 9, 3211-3212. 

25. F. R. Giordano, W. P. Fox, S. B. Horton and M. D. Weir, First course in 
mathematical modeling, Cengage Learning, Belmont, C. A., 2008. 

26. E. A. Bender, An introduction to mathematical modeling, Courier Dover 
Publications, New York, N. Y., 2000. 

27. R. McHaney, Computer simulation: A practical perspective, Elsevier Academic 
Press, San Diego, California, 1991. 

28. M. M. Meerschaert, Mathematical modeling, Elsevier Academic Press, San Diego, 
California, 2007. 

29. B. P. Zeigler, H. Praehofer and T. G. Kim, Theory of modeling and simulation: 
Integrating discrete event and continuous complex dynamic systems, Elsevier 
Academic Press, San Diego, California, 2000. 

30. N. M. H. Lightfoot, The solidification molten steel,  31 (1929), no. 1750, 97-116. 
31. H. Carslaw and J. C. Jaeger, Conduction of heat in solids, University of Oxford and 

Clarendon Press, London, 1959. 
32. L. M. Jiji, K. A. Rathjen and T. Drzewiecki, Two-dimensional solidification in a 

corner, International Journal of Heat and Mass Transfer 13 (1970), no. 1, 215-218. 
33. A. Lazaridis, A numerical solution of the multidimensional solidification (or 

melting) problem, International Journal of Heat and Mass Transfer 13 (1970), no. 9, 
1459-1477. 

34. J. Crank and R. S. Gupta, Isotherm migration method in two dimensions, 
International Journal of Heat and Mass Transfer 18 (1975), no. 9, 1101-1107. 

35. J. Donea, P. Fasoli Stella and S. Guiliani, "Lagrangian and eulerian finite element 
techniques for transient fluid structure interaction problems," Transactions Fourth 
SMIRT, vol. paper B 1/2, San Francisco, 1977, pp. 1-12. 

36. R. W. Lewis, K. Morgan and R. H. Gallagher, "Finite element analysis of 
solidification and welding processes.," Numerical Model of Manufacturing 
Processes, Winter Annual Meeting of ASME, ASME (PVP-PB-025), Atlanta Ga, 
1977, pp. 67-80. 

37. K. Morgan, R. W. Lewis and O. C. Zienkiewicz, An improved algorithm for heat 
conduction problems with phase change.,  12 (1978), no. 7, 1191-1195. 

38. K. Morgan, A numerical analysis of freezing and melting with convection, 
Computer Methods in Applied Mechanics and Engineering 28 (1981), no. 3, 275-
284. 

39. V. R. Voller and M. Cross, Accurate solutions of moving boundary problems using 
the enthalpy method, International Journal of Heat and Mass Transfer 24 (1981), 
545-556. 

40. W. D. Rolph III and K. J. Bathe, An efficient algorithm for analysis of nonlinear 
heat transfer with phase changes., International Journal for Numerical Methods in 
Engineering 18 (1982), no. 1, 119-134. 

41. L. Demkowicz, J. T. Oden and T. Strouboulis, Adaptive finite elements for flow 
problems with moving boundaries. Part i: Variational principles and a posteriori 
estimates, Computer Methods in Applied Mechanics and Engineering 46 (1984), 
no. 2, 217-251. 



Reference 208 
 

Ricardo Mondragon The University of Manchester 
 

42. R. W. Lewis, H. C. Huang, A. S. Usmani and J. T. Cross, Finite element analysis of 
heat transfer and flow problems using adaptive remeshing including application to 
solidification problems, International Journal for Numerical Methods in 
Engineering 32 (1991), no. 4, 767-781. 

43. J. Berntsen, R. Cools and T. O. Espelid, Algorithm 720: An algorithm for adaptive 
cubature over a collection of 3-dimensional simplices, ACM Transactions on 
Mathematical Software 19 (1993), no. 3, 320-332. 

44. V. R. Voller and C. Prakash, A fixed grid numerical modelling methodology for 
convection-diffusion mushy region phase-change problems, International Journal of 
Heat and Mass Transfer 30 (1987), no. 8, 1709-1719. 

45. E. Pardo and D. C. Weckman, Fixed grid finite element technique for modelling 
phase change in steady-state conduction-advection problems, International Journal 
for Numerical Methods in Engineering 29 (1990), no. 5, 969-984. 

46. V. R. Voller, C. R. Swaminathan and B. G. Thomas, Fixed grid techniques for 
phase change problems. A review, International Journal for Numerical Methods in 
Engineering 30 (1990), no. 4, 875-898. 

47. H. S. Udaykumar, R. Mittal and P. Rampunggoon, Interface tracking finite volume 
method for complex solid-fluid interactions on fixed meshes, Communications in 
Numerical Methods in Engineering 18 (2002), no. 2, 89-97. 

48. D. J. Browne and J. D. Hunt, A fixed grid front-tracking model of the growth of a 
columnar front and an equiaxed grain during solidification of an alloy, Numerical 
Heat Transfer, Part B: Fundamentals 45 (2004), no. 5, 395 - 419. 

49. P. Zhao, J. C. Heinrich and D. R. Poirier, Fixed mesh front-tracking methodology 
for finite element simulations, International Journal for Numerical Methods in 
Engineering 61 (2004), no. 6, 928-948. 

50. C. Charbon, A. Jacot and M. Rappaz, 3d stochastic modelling of equiaxed 
solidification in the presence of grain movement, Acta Metallurgica Et Materialia 
42 (1994), no. 12, 3953-3966. 

51. C.-A. Gandin, C. Charbon and M. Rappaz, Stochastic modelling of solidification 
grain structures, ISIJ International 35 (1995), no. 6, 651-657. 

52. M. K. Deb, I. M. Babuska and J. T. Oden, Solution of stochastic partial differential 
equations using galerkin finite element techniques, Computer Methods in Applied 
Mechanics and Engineering 190 (2001), no. 48, 6359-6372. 

53. I. Babuska, R. Temponet and G. E. Zouraris, Galerkin finite element 
approximations of stochastic elliptic partial differential equations, SIAM Journal 
on Numerical Analysis 42 (2004), no. 2, 800-825. 

54. C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma and X. Tong, Modeling melt 
convection in phase-field simulations of solidification, Journal of Computational 
Physics 154 (1999), no. 2, 468-496. 

55. W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma, Phase-field 
simulation of solidification, Annual Review of Materials Science 32 (2002), 163-
194. 

56. A. Jacot and M. Rappaz, A pseudo-front tracking technique for the modelling of 
solidification microstructures in multi-component alloys, Acta Materialia 50 
(2002), no. 8, 1909-1926. 

57. A. Badillo and C. Beckermann, Phase-field simulation of the columnar-to-equiaxed 
transition in alloy solidification, Acta Materialia 54 (2006), no. 8, 2015-2026. 

58. E. L. Kotzin, "Timeline of casting technology," Michael J. Lessiter, 2002. 
59. S. Sundarraj and V. R. Voller, Effect of macro scale phenomena on 

microsegregation, International Communications in Heat and Mass Transfer 21 
(1994), no. 2, 189-197. 



Reference 209 
 

Ricardo Mondragon The University of Manchester 
 

60. C. A. Santos, J. A. Spim Jr., M. C. F. Ierardi and A. Garcia, The use of artificial 
intelligence technique for the optimisation of process parameters used in the 
continuous casting of steel, Applied Mathematical Modelling 26 (2002), no. 10, 
1077-1092. 

61. G. Lame and C. B. P. E., Memoire sur la solidification par refroidissment d' un 
globe solid, Ann. Chem. Phys. 47 (1831), 250-260. 

62. J. Stefan, Uber einige probleme der theorie der warmeleitung, Sitzungsberichte der 
Osterreichischen Akademie der Wessenschaften Mathematisch-
Naturwissenschaftliche 98 (1889), 473-484. 

63. ---, Uber die theorie der eisbildung, insbesondere uber die eisbildung im 
polameere, Annalen der Physik und Chemie 42 (1891), 269-286. 

64. S. Paterson, Propagation of a boundary of fusion, Proc. Glasgow Math. Assoc. 1 
(1952-1953), 42-47. 

65. T. R. Goodman, The heat-balance integral and its application to problems 
involving a change of phase, Trans. ASME 80 (1958), 335-342. 

66. S. C. Gupta, Two-dimensional heat conduction with phase change in a semi-infinite 
mould, International Journal of Engineering Science 19 (1981), no. 1, 137-146. 

67. M. Ciment and R. A. Sweet, Mesh refinements for parabolic equations, Journal of 
Computational Physics 12 (1973), no. 4, 513-525. 

68. A. J. Dalhuijsen and A. Segal, Comparison of finite element techniques for 
solidification problems., International Journal for Numerical Methods in 
Engineering 23 (1986), no. 10, 1807-1829. 

69. S. C. Gupta, E. Laitinen and T. Valtteri, Moving grid scheme for multiple moving 
boundaries, Computer Methods in Applied Mechanics and Engineering 167 (1998), 
no. 3-4, 345-353. 

70. S. C. Gupta, A moving grid numerical scheme for multi-dimensional solidification 
with transition temperature range, Computer Methods in Applied Mechanics and 
Engineering 189 (2000), no. 2, 525-544. 

71. V. R. Voller and L. Shadabi, Enthalpy methods for tracking a phase change 
boundary in two dimensions, International Communications in Heat and Mass 
Transfer 11 (1984), no. 3, 239-249. 

72. G. Comini, S. Del Guidice, R. W. Lewis and O. C. Zienkiewicz, Finite element 
solution of non-linear heat conduction problems with special reference to phase 
change., International Journal for Numerical Methods in Engineering 8 (1974), no. 
3, 613-624. 

73. M. Salcudean and Z. Abdullah, On the numerical modelling of heat transfer during 
solidification processes, International Journal for Numerical Methods in 
Engineering 25 (1988), no. 2, 445-473. 

74. H. Hu and S. A. Argyropoulos, Mathematical modelling of solidification and 
melting: A review, Modelling and Simulation in Materials Science and Engineering 
4 (1996), no. 4, 371-396. 

75. J. Roose and O. Storrer, Modelization of phase changes by fictitious heat flow, 
International Journal for Numerical Methods in Engineering 20 (1984), 217-225. 

76. V. R. Voller and C. R. Swaminathan, General source-based method for 
solidification phase change, Numerical Heat Transfer, Part B: Fundamentals 19 
(1991), no. 2, 175-189. 

77. C. R. Swaminathan and V. R. Voller, A general enthalpy method for modeling 
solidification processes, Metallurgical Transactions B 23 (1992), no. 5, 651-664. 

78. ---, On the enthalpy method, International Journal of Numerical Methods for Heat 
and Fluid Flow 3 (1993), no. 3, 233-244. 

79. V. R. Voller, An enthalpy method for modeling dendritic growth in a binary alloy, 
International Journal of Heat and Mass Transfer 51 (2008), no. 3-4, 823-834. 



Reference 210 
 

Ricardo Mondragon The University of Manchester 
 

80. C. Beckermann and R. Viskanta, Double-diffusive convection due to melting, 
International Journal of Heat and Mass Transfer 31 (1988), no. 10, 2077-2089. 

81. A. D. Brent, V. R. Voller and K. J. Reid, Enthalpy-porosity technique for modeling 
convection-diffusion phase change: Application to the melting of a pure metal., 
Numerical heat transfer 13 (1988), no. 3, 297-318. 

82. D. T. Gethin, R. W. Lewis and M. R. Tadayon, Finite element approach for 
modelling metal flow and pressurized solidification in the squeeze casting process, 
International Journal for Numerical Methods in Engineering 35 (1992), no. 4, 939-
950. 

83. S. C. Huang, Analytical solution for the buoyancy flow during the melting of a 
vertical semi-infinite region, International Journal of Heat and Mass Transfer 28 
(1985), no. 6, 1231-1233. 

84. N. Ramachandran, J. P. Gupta and Y. Jaluria, Thermal and fluid flow effects during 
solidification in a rectangular enclosure, International Journal of Heat and Mass 
Transfer 25 (1982), no. 2, 187-194. 

85. C. R. Swaminathan and V. R. Voller, A time-implicit filling algorithm, Applied 
Mathematical Modelling 18 (1994), no. 2, 101-108. 

86. K. Ravindran and R. W. Lewis, Finite element modelling of solidification effects in 
mould filling, Finite Elements in Analysis and Design 31 (1998), no. 2, 99-116. 

87. S. M. H. Mirbagheri, N. Varahram and P. Davami, 3d computer simulation of melt 
flow and heat transfer in the lost foam casting process, International Journal for 
Numerical Methods in Engineering 58 (2003), no. 5, 723-748. 

88. C. Beckermann, R. Viskanta and S. Ramadhyani, Numerical study of non-darcian 
natural convection in a vertical enclosure filled with a porous medium., Numerical 
heat transfer 10 (1986), no. 6, 557-570. 

89. H. Hu and S. A. Argyropoulos, Modelling of stefan problems in complex 
configurations involving two different metals using the enthalpy method, Modelling 
and Simulation in Materials Science and Engineering 3 (1995), no. 1, 53-64. 

90. ---, Mathematical modeling and experimental measurements of moving boundary 
problems associated with exothermic heat of mixing, International Journal of Heat 
and Mass Transfer 39 (1996), no. 5, 1005-1021. 

91. M. C. Schneider and C. Beckermann, Simulation of micro-/macrosegregation 
during the solidification of a low-alloy steel, ISIJ International 35 (1995), no. 6, 
665-672. 

92. S. Chakraborty and P. Dutta, Effects of dendritic arm coarsening on macroscopic 
modelling of solidification of binary alloys, Materials Science and Technology 17 
(2001), no. 12, 1531-1538. 

93. C. Charbon, A. Jacot and M. Rappaz, Three-dimensional probabilistic modelling of 
equiaxed eutectic solidification in the presence of convection, Materials Science 
and Engineering A 173 (1993), no. 1-2, 143-148. 

94. M. Rappaz and C.-A. Gandin, Process modelling and microstructure, (The Royal 
Society) Philosophical Transactions: Physical Sciencies and Engineering 351 
(1995), 563-577. 

95. C. Y. Wang and C. Beckermann, Equiaxed dendritic solidification with convection: 
Part i. Multiscale/multiphase modeling, Metallurgical and Materials Transactions 
A: Physical Metallurgy and Materials Science 27 (1996), no. 9, 2754-2764. 

96. ---, A unified solute diffusion model for columnar and equiaxed dendritic alloy 
solidification, Materials Science and Engineering A 171 (1993), no. 1-2, 199-211. 

97. ---, Prediction of columnar to equiaxed transition during diffusion-controlled 
dendritic alloy solidification, Metallurgical and Materials Transactions A 25 
(1994), no. 5, 1081-1093. 



Reference 211 
 

Ricardo Mondragon The University of Manchester 
 

98. N. Ahmad, H. Combeau, J.-L. Desbiolles, T. Jalanti, G. Lesoult, J. Rappaz, M. 
Rappaz and C. Stomp, Numerical simulation of macrosegregation: A comparison 
between finite volume method and finite element method predictions and a 
confrontation with experiments, Metallurgical and Materials Transactions A: 
Physical Metallurgy and Materials Science 29 (1998), no. 2, 617-630. 

99. W. R. Osorio and A. Garcia, Modeling dendritic structure and mechanical 
properties of zn-al alloys as a function of solidification conditions, Materials 
Science and Engineering A 325 (2002), no. 1-2, 103-111. 

100. J. Crank, Free and moving boundary problems, Clarendon Press, Oxford, UK, 
1984. 

101. R. W. Lewis and P. M. Roberts, Finite element simulation of solidification 
problems, Applied Scientific Research 44 (1987), no. 1-2, 61-92. 

102. J. Wanqi, Further discussions on the solute redistribution during dendritic 
solidification of binary alloys, Metallurgical and Materials Transactions B 25 
(1994), no. 5, 731-739. 

103. I. H. Katzarov and J. R. Popov, Pore formation in hot spots, International Journal 
of Heat and Mass Transfer 39 (1996), no. 14, 2861-2867. 

104. R. T. Tenchev, J. A. Mackenzie, T. J. Scanlon and M. T. Stickland, Finite element 
moving mesh analysis of phase change problems with natural convection, 
International Journal of Heat and Fluid Flow 26 (2005), no. 4 SPEC. ISS., 597-612. 

105. K. K. Tamma and R. R. Namburu, Recent advances, trends and new perspectives 
via enthalpy-based finite element formulations for applications to solidification 
problems, International Journal for Numerical Methods in Engineering 30 (1990), 
no. 4, 803-820. 

106. C. G. Makridakis and I. Babuska, On the stability of the discontinuous galerkin 
method for the heat equation, SIAM Journal on Numerical Analysis 34 (1997), no. 
1, 389-401. 

107. T. Strouboulis, I. Babuska and K. Copps, The design and analysis of the 
generalized finite element method, Computer Methods in Applied Mechanics and 
Engineering 181 (2000), no. 1-3, 43-69. 

108. J. Chessa, H. Wang and T. Belytschko, On the construction of blending elements 
for local partition of unity enriched finite elements, International Journal for 
Numerical Methods in Engineering 57 (2003), no. 7, 1015-1038. 

109. V. R. Voller, Fast implicit finite-difference method for the analysis of phase change 
problems, Numerical Heat Transfer, Part B: Fundamentals 17 (1990), no. 2, 155-
169. 

110. V. R. Voller and M. Cross, An explicit numerical method to track a moving phase 
front, International Journal of Heat and Mass Transfer 30 (1983), 147-150. 

111. W. Bushko and I. R. Groose, New finite element method for multidimensional 
phase change heat transfer problems, Numerical Heat Transfer B 19 (1991), 31-48. 

112. S. R. Runnels and G. F. Carey, Finite element simulation of phase change using 
capacitance methods, Numerical Heat Transfer B 19 (1991), 13-30. 

113. Y. Chen, Y.-T. Im and Z.-H. Lee, Three dimensional finite element analysis with 
phase change by temperature recovery method, International Journal of Machine 
Tools and Manufacture 31 (1991), no. 1, 1-7. 

114. S. Bounds, K. Davey and S. Hinduja, A modified effective capacitance method for 
solidification modelling using linear tetrahedral finite elements, International 
Journal for Numerical Methods in Engineering 39 (1996), no. 18, 3195-3215. 

115. K. Davey and I. Rosindale, Control volume capacitance method for solidification 
modelling, International Journal for Numerical Methods in Engineering 46 (1999), 
no. 3, 315-340. 



Reference 212 
 

Ricardo Mondragon The University of Manchester 
 

116. K. Davey and N. J. Rodriguez, A control volume capacitance method for 
solidification modelling with mass transport, International Journal for Numerical 
Methods in Engineering 53 (2002), no. 12, 2643-2671. 

117. ---, Solidification modelling with a control volume method on domains subjected to 
viscoplastic deformation, Applied Mathematical Modelling 26 (2002), no. 3, 421-
447. 

118. W. K. Liu, T. Belytschko and H. Chang, An arbitrary lagrangian-eulerian finite 
element method for path dependent materials, Comp. Meth. App. Mech. and 
Engineering 58 (1986), 227-245. 

119. K. Davey and L. D. Clark, Sensitivity and optimization for shape and non-linear 
boundary conditions in thermal boundary elements, International Journal for 
Numerical Methods in Engineering 56 (2003), no. 4, 553-587. 

120. G. H. Golub and C. F. Van Loan, Matrix computations, John Hopkins University 
Press, London, 1991. 

121. K. Davey and R. Mondragon, A non-physical enthalpy method for the numerical 
solution of isothermal solidification, International Journal for Numerical Methods 
in Engineering 84 (2010), no. 2, 214-252. 

122. J. Chessa, P. Smolinski and T. Belytschko, The extended finite element method 
(xfem) for solidification problems, International Journal for Numerical Methods in 
Engineering 53 (2002), no. 8, 1959-1977. 

123. D. R. Noble, P. R. Schunk, E. D. Wilkes, T. A. Baer, R. R. Rao and P. K. Notz, 
"Large deformation solid-fluid interaction via a level set approach," Sandia 
National Laboratories, Albuquerque, New Mexico, USA, 2003. 

 
 

 

 



Appendix A 213 
 

Ricardo Mondragon The University of Manchester 
 

 

 

APPENDIX A 
Validation of transport equation (3.41), which is of a form that requires some justification 

as it includes a term unseen in transport equation in Sections 3.4 to 3.8, i.e. 
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where subscripts T and N refer to tangential and normal components, respectively. 

Since equation (A 1) applies equally to any portion of e
iΓ  the equivalent partial differential 

equation can be deduced and is of the form 
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Application Leibniz law to the derivatives and on rearrangement equation (A 2) reduces to 
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which in turn implies 
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where equation (A 5) confirms equation (3.43) 

It is important to appreciate that 

 

( )
tD

NDNvv
tD

ND
*

i
*

i
*i =∇⋅−+ ×

×

×

 (A 6)

 

but  

 

( )
tD
hDhvv

tD
hD

*

'*
'*

' )
)

)

≠∇⋅−+ ×
×

×

 (A 7)

 

since 'h
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∇  is not defined and neither is tDhD *'*)  as the domain of definition for 'h
)

 is e
iΓ  

and not eΩ . 
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APPENDIX B 
Solidification with two discontinuities and linear transition zone depicted in Figure  B-1 

has been analysed in chapter 5 with special interest in the effect of the transition zone size 

has in order to define accurately the temperature field and non-physical variable using 

NEM.  Firstly, the energy balance equation that captures sensible and latent heat and 

secondly the identification of the source terms, which are annihilated 

Integral evaluation 

The evaluation of the integrals in equations (4.51) and (4.52) requires the establishment of 

relationship between specific enthalpy and temperature.  Therefore, assuming specific heat 

capacitance approach dTdhc c
k

c
k = , which is spatially and temporally invariant in e

kΩ  see 

section 4.10.  For this case, two discontinuities with linear mushy solidification is depicted 

in Figure  B-2 for 1-D solidification moving in an Eulerian frame and in Figure  B-3 for 

various linear elements and represented in general with equation (4.59) for time nt  , which 

is 
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which capture the specific heat distribution for the two discontinuities with a linear mushy 

solidification see Figure  B-3, only if 
1212

TThhc ccc
2 ΓΓΓΓ

−−= +− , similar expression can be 

obtained for 1nt +  
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Jump term evaluation 

Accurate evaluation of the integral ] [
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t Kk t k dtdnvh  has been achieved and 

discussed on detail in Section 4.10.1, where a constant mass element is considered thus 
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In this case, for two discontinuities and a mushy linear solidification the above equation 

gives 
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recall that 1kL −  is undefined and set to zero when 1kk n
s ==  

Combining equation (B-1) for 1nt +  and nt  and equation (B-2) gives 
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which reduces to 
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where it is apparent that latent energy terms are annihilated in equation (B-3) to give 

equation (B-4) as predicted by the annihilation theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  B-1  Partition domain  Ω   with non-overlapping open domains and two 
discontinuities 

 



Reference 218 
 

Ricardo Mondragon The University of Manchester 
 

( )wallTThq −=
2

TT Γ>

1Ω 2Ω 3Ω

1Γ 2Γ

+
1v +

2v

1
TΓ 2

TΓ

1X

2X

x

 

 

 

 

 

 

 

 

 

 

 

 
Figure  B-2  1-D solidification problem with two fronts on an Eulerian frame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure  B-3  Solidification with phase discontinuities and associated regions in a linear 

element 
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