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Abstract 

The University of Manchester 
Adam Giles 
Doctor of Philosophy – PhD 
Wnt signalling in oestrogen-induced lactotroph hyperplasia 
2011 

 

The anterior pituitary gland is the major hormonal regulator in the body. The gland 
contains five secretory cell types whose emergence during development is defined by a 
tightly regulated array of transcription factors. In adult life, the gland is plastic with the 
relative proportions of cells varying depending on physiological context. Tumours of the 
pituitary gland account for 15% of all intracranial tumours in man and are caused by the 
selective proliferation of one of the secretory cell types. The majority of these (60%) are 
prolactinomas which consist of very slowly proliferating lactotroph cells, which produce 
the hormone prolactin. Pituitary tumours are almost never malignant and do not 
express common genetic markers for cancer, suggesting endogenous proliferative 
stimuli in the pituitary are the cause of tumour development. 
 
Oestrogen causes lactotroph hyperplasia during pregnancy and increases prolactin 
secretion. Our group previously showed that Wnt-4 mRNA was upregulated during 
oestrogen-induced lactotroph hyperplasia in Fischer 344 rats. Wnt molecules are key 
regulatory proteins controlling differentiation, proliferation and migration in development 
and adult life. Wnt-4 is involved in the emergence of lactotrophs during development, 
and has been implicated in pituitary tumour formation. Wnt molecules signal through 
three pathways. The well studied canonical pathway has been implicated in numerous 
cancers and centres around gene transcription initiated by translocation of β-Catenin 
into the nucleus. There are two non-canonical pathways: the Wnt-planar cell polarity 
(PCP) pathway and the Wnt-calcium pathway which are both poorly understood. 
 
In this thesis, the expression of Wnt-4 was studied in the pituitary, and effects of 
downstream signalling pathways in response to oestrogen were assessed. Wnt-4 was 
expressed in all secretory cell types of the pituitary, as well as the marginal zone (MZ), 
a region of the pituitary that may harbour stem cells. Oestrogen upregulated Wnt-4 
protein in the somatolactotroph GH3 cell line, though this could not be replicated in 
primary tissue. A number of approaches (western blotting, immunofluorescence, 
reporter gene assays and mutant β-Catenin overexpression) were utilised to show that 
the canonical pathway was not activated in the pituitary. Wnt-4 had a clear inhibitory 
effect on calcium oscillations in GH3 cells, showing for the first time a non-canonical 
effect in the pituitary, though the downstream effects are currently unknown. Attempts 
made to study the activation of the PCP pathway were inconclusive. Efforts focused on 
the distribution of key structural and regulatory proteins in the anterior pituitary and the 
MZ. The MZ was characterised by a single layer of cells at the border of the anterior 
and intermediate lobes of the pituitary, with high expression of E-Cadherin and Sox 9, 
though no change in distribution was observed with oestrogen treatment. In the anterior 
lobe, oestrogen treatment decreased N and E-Cadherin expression, which could be an 
indicator of PCP pathway activation during oestrogen induced-lactotroph hyperplasia.  
 
Overall, data suggest that Wnt-4 does not directly cause oestrogen-induced lactotroph 
proliferation, but is likely to play a role in regulating tissue plasticity in the adult gland, 
as well as in the pathogenesis of pituitary tumours. 
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1.1. The pituitary gland 

 

1.1.1. Basic pituitary function 

 

The pituitary gland is a small organ located at the base of the brain in a small bony 

cavity called the sella turcica (Davidovici et al., 2008). It secretes hormones which 

collectively regulate diverse homeostatic mechanisms in vertebrates such as growth, 

reproduction and metabolism. It consists of two functionally and anatomically distinct 

regions; the adeonohypophysis which consists of the anterior lobe (AL) and 

intermediate lobe (IL), and the neurohypophysis, also termed the posterior lobe (PL).  

 

The AL contains 5 different secretory cell types;  

• Somatotrophs produce growth hormone (GH) which regulates growth and 

metabolism 

• Lactotrophs produce prolactin (PRL) which regulates milk production in females 

• Corticotrophs produce adrenocorticotrophic hormone (ACTH) which regulates 

glucocorticoid synthesis in the adrenal gland to control metabolic function 

• Thyrotrophs produce thyroid stimulating hormone (TSH) which regulates the 

thyroid gland to control skeletal remodelling and metabolism  

• Gonadotrophs produce luteinizing hormone (LH) and follicle stimulating 

hormone (FSH) which act on gonads to initiate and maintain reproductive 

function (Voss and Rosenfeld, 1992).  

 

PRL and GH are monomeric proteins produced by their respective cell types, while 

ACTH is produced by post-translational modification of pro-opiomelanocortin (POMC) 

which is produced by corticotroph cells. TSH, FSH and LH are heterodimeric proteins 

which all contain a common α-subunit bound to a hormone specific β-subunit (TSH-β, 

FSH-β, LH-β) (Zhu et al., 2007). The anterior pituitary also contains folliculostellate 

(FS) cells, discussed in more detail in the following section. 

 

The IL consists of melanotrophs which secrete α-melanocyte stimulating hormone (α-

MSH) to regulate melanin production from melanocytes. The IL is not found in all 

mammals, but is present in the adult rodent brain. In humans it is well developed in 

foetal life, but is involuted in late pregnancy and disappears, with other stimuli 
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maintaining melanin secretion from melanocytes throughout life (e.g. vitamin D, 

diacylglycerol, retinoids) (Saland, 2001). The posterior lobe is composed of 

magnocellular axon terminals. These neurons produce vasopressin (regulates water 

retention and blood pressure), and oxytocin (controls uterine contraction and lactation), 

which are transported to the neuron terminals in the PL and released into the 

circulation (Sladek and Kapoor, 2001). 

 

1.1.2. Pituitary organogenesis 

 

Development of the pituitary gland originates with formation of the Rathke’s pouch. In 

the rat, this arises due to invagination of the oral ectoderm induced by secretion of 

bone morphogenic protein 4 (BMP-4) at embryonic day 9.5 (e 9.5) from the adjacent 

ventral diencephalon (Davis and Camper, 2007). A plethora of other signalling 

molecules including sonic hedgehog (shh), Wnt molecules, fibroblast growth factors 

and BMP’s are expressed in the infundibulum, ventral diencephalon and the Rathke’s 

pouch, and induce extension of the Rathke’s pouch into a defined pocket which 

subsequently closes. The ventral wall of the Rathke’s pouch proliferates and becomes 

the AL, while the IL is formed from a more limited proliferation of the dorsal wall. The 

infundibulum proliferates down adjacent to the IL and eventually becomes the PL. This 

basic structure is fully formed by e13.5 (Davis and Camper, 2007; Ericson et al., 1998; 

Kioussi et al., 2002; Revest et al., 2001; Savage et al., 2003) and is summarised in 

Figure 1.1 A. 

 

Within the anterior pituitary gland, temporal and spatial expression of transcription 

factors between e11.5 and e17.5 drives differentiation and proliferation of immature 

progenitor cells into the mature secretory cell types described previously. For example, 

Pitx1 and 2 are both expressed from e10.5 and knock out of both genes results in 

vastly reduced pituitary cell number. Lhx3 and 4 are thought to be regulated by Pitx1 

and 2 and are also vital for normal pituitary development (Pellegrini-Bouiller et al., 

1999). At e11.5, Tbx19 regulates differentiation of corticotrophs by promoting POMC 

expression and preventing further differentiation into alternate cell fates (Maira et al., 

2003).  Prophet of Pit1 (Prop1) is expressed at e12.5 and precedes the expression of 

Pit1 by a single day (Sornson et al., 1996). Prop1 modulates Pit1 via β-Catenin, which 

is a vital step in maturation of the lactotroph, somatotroph and thyrotroph lineages 

(Kioussi et al., 2002). Pit1 is not only important for differentiation of these cell types, but 

is expressed throughout life in these cells to regulate hormone expression. By an 
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unknown mechanism, Pit1 activates transcription of the hormone gene specific for that 

cell type, while simultaneously repressing expression of the other hormone genes 

(Scully et al., 2000). Gonadotroph expression is driven by SF1 which is first expressed 

at e13.5. However, mature gonadotrophs are not detected until e17.5, most likely due 

to temporal control over SF1 mediated Erg1 expression which is thought to be key in 

gonadotroph proliferation (Zhao et al., 2001). The process is summarized in Figure 1.1 

B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Embryonic pituitary development in rat. A - The structural changes that occur 

during pituitary development between e7.5 and birth. Initial invagination of the oral ectoderm 

occurs at e9.5 due to BMP-4 expression in the ventral diencephalon (VD). The Rathke’s pouch 

(RP) extends down and closes up between e10.5 and e12.5 and becomes the anterior and 

intermediate lobes at e13.5. VD descends and becomes the posterior pituitary (P) at e13.5 and 

pituitary is fully formed by e17.5. B - Transcription factors driving expression of mature secretory 

phenotypes in the anterior pituitary. Pitx1 and 2 regulate Lhx3 and 4 from e10.5. Corticotroph 

and melanotroph expression is driven by Tbx19, while Prop1 stimulates Pit1 via β-Catenin to 

induce expression of somatotrophs, thyrotrophs and lactotrophs. SF1 expression mediates 

gonadotroph differentiation at e17.5, the last of the mature cell types to appear. Figure taken 

from Zhu et al., Physiol Rev 87, 933-963, 2007. 
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The anterior pituitary also harbours 2 other cell types, marginal cells (MC’s) and 

folliculostellate (FS) cells. MC’s form a planar, single cell layer at the border of the AL 

and IL, termed the marginal zone (MZ) while FS cells are distributed throughout the 

anterior pituitary. The MZ has been proposed to harbour stem cells due to the 

expression of stem cell markers such as nestin and Sox 2, and when cultured these 

cells can form pituispheres and terminally differentiated hormone secreting cells 

(Fauquier et al., 2008; Gleiberman et al., 2008). However, it is still unknown if these 

cells simply play a supportive role in differentiation of mature phenotypes, or are the 

actual predecessors of mature cells (Vankelecom, 2007).  

 

FS cells are a source of growth factors such as fibroblast growth factor (FGF), vascular 

endothelial growth factor (VEGF) and follistatin, and have been suggested to regulate 

cells in the anterior pituitary in a paracrine fashion to modulate hormone secretion 

(Allaerts and Vankelecom, 2005). The true function of FS cells and cells in the MZ is 

currently unknown. 

 

1.1.3. Pituitary plasticity and cell networks 

 

Postnatally, the pituitary undergoes a period of rapid proliferation to increase total cell 

number. The rate of proliferation is highest at postnatal day 2 (PN2), and declines 

gradually to PN30, after which basal levels of proliferation are maintained throughout 

life (Carbajo-Perez and Watanabe, 1990). The relative proportions of secretory cell 

types within the adult pituitary vary depending on the physiological needs of the body. 

When no unusual demand is being placed on the pituitary, is estimated that 40% of 

cells in the anterior pituitary are somatotrophs, 35% are lactotrophs, 10% are 

corticotrophs, 10% are gonatotrophs and 5% are thyrotrophs (Asa et al., 2002).  

 

However, the pituitary is a plastic organ, and the relative proportions of secretory cells 

can vary throughout adult life according to the physiological demands of the body. For 

example, during pregnancy, high circulating oestrogen levels result in lactotroph 

hyperplasia, pituitary enlargement and increased circulating PRL levels (Asa et al., 

1982; Elster et al., 1991; Goluboff and Ezrin, 1969; Lloyd et al., 1988), while during 

puberty, the number of somatotrophs doubles to induce growth (Fauquier et al., 2008). 

As such, care should be taken to consider the physiological context when considering 

the relative proportions of cell types in the pituitary. For example, the published 

proportions of lactotrophs in the rat pituitary have varied from less than 9% to more 
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than 35% between groups (Levy, 2002) while the percentage of corticotrophs in an 

unstimulated pituitary has varied between 3% (Taniguchi et al., 1995) and 20% (Castro 

et al., 1995). 

 

When viewed in a 2D manner, the distribution of cells within the anterior pituitary 

appears fairly random, with small clusters of similar cell types being the most obvious 

structural aspect (Asa et al., 2002). However, in the last 10 years evidence has 

appeared demonstrating clear 3D networks between cells in the pituitary. The first 

network identified was between FS cells, where it was shown that a calcium signal 

could be propagated through gap junctions between FS cells across the pituitary 

(Fauquier et al., 2001). The same group have subsequently demonstrated that GH 

cells form a continuously linked network throughout the pituitary (Bonnefont et al., 

2005) and that each cell type in the pituitary can be categorised by the specific 

cadherin molecule they express, providing a cell-type specific networking mechanism 

(Chauvet et al., 2009). Studies on PRL transcription indicate that a co-ordinated pattern 

of PRL transcription occurs throughout the intact pituitary, which is not seen when cells 

are dispersed in culture (Harper et al., 2010). This suggests that cells in the pituitary 

function as part of a network, enabling a pituitary wide response of a particular cell type 

in response to external stimuli.   

 

Overall, the pituitary is a dynamic organ containing distinct cellular phenotypes in close 

proximity to one another. During development, the emergence of these cell types is 

driven by a tightly regulated array of transcriptional queues. In adult life, physiological 

demands such as pregnancy and puberty exert external influence on the pituitary, 

altering the proportions of cell types within the pituitary to match hormonal output to 

physiological requirement. It is likely that these signals are transduced to secretory 

cells through complex networks that enable a global pituitary response of a specific cell 

type. 
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1.2. Pituitary tumours 

 

1.2.1. Pituitary adenomas 

 

Pituitary adenomas account for roughly 10-15% of diagnosed intracranial tumours in 

man (Dudley et al., 2009) It is estimated that roughly 20% of the population harbours a 

pituitary adenoma at time of death as judged by meta-analysis and autopsy, though the 

vast majority of these are too small to exert any clinical significance (Gueorguiev and 

Grossman, 2009). Adenomas are termed macroadenomas if they are larger than 

10mm in diameter, and microadenomas if they are less than 10mm in diameter 

(Osamura et al., 2008). 

 

Most pituitary adenomas are characterised by excess hormone secretion due to 

proliferation of one of the secretory cell types in the pituitary. The most common of 

these are prolactinomas (PRLomas), accounting for roughly 60% of pituitary tumours 

(discussed further in section 1.3) (Ezzat et al., 2004a). These arise due to proliferation 

of lactotroph cells which causes excess release of PRL from the pituitary, termed 

hyperprolactinaemia (Asa and Ezzat, 2002). Other adenomas are termed in a similar 

manner by the hormone they are producing in excess; GHoma, TSHoma, ACTHoma, 

FSHoma (Osamura et al., 2008). Roughly 25% of pituitary adenomas do not secrete 

any hormone and are termed non-functioning tumours (NFT’s) (Colao et al., 2008). 

These tumours are thought to derive from gonadotroph cells as they often secrete the 

common α-subunit and LH-β and FSH-β subunits, though do not secrete active 

hormone. However, they can cause secondary endocrine dysfunction by applying 

pressure on normal pituitary cells and shrinking the pituitary (Greenman and Stern, 

2009).  

 

A key facet of pituitary adenomas is that they grow extremely slowly and are almost 

never malignant. Only 0.2% of pituitary tumours are malignant, and these seem mainly 

to arise from lactotroph or corticotroph cells (Caron, 2009). Most genetic mutations 

associated with cancerous tumour growth are absent in pituitary adenomas (e.g. ras, 

p53, PKC).  This is not surprising as mutation of these genes causes uncontrolled, 

rapid growth and invasion of tumours, where the growth of pituitary tumours is slow and 

restricted to a single cell type (Asa and Ezzat, 1998). This in turn suggests that 
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adenoma progression is likely caused by malfunction of the usual endocrine/paracrine 

control mechanisms that regulate pituitary plasticity (Asa and Ezzat, 1998). 

1.2.2. Craniopharyngiomas 

 

Another distinct type of pituitary tumour is the craniopharyngioma. These are more 

aggressive than other pituitary tumours and mainly affect children aged between 5 and 

14. They are often treated surgically, but commonly reoccur, often more aggressively 

than before surgery (Yang et al., 2010). They arise from a neoplastic transformation of 

the craniopharyngeal duct which becomes involuted during embryogenesis, and are 

thought to be caused by mutation of GSK-3β resulting in aberrant Wnt-canonical 

signalling (discussed in far greater detail in section 1.10.1) (Pettorini et al., 2010).  

 

 

1.3. Prolactinomas 

 

1.3.1. Incidence and effects 

 

Roughly 60% of all pituitary tumours are prolactinomas (Asa and Ezzat, 2002). 

Prolactinomas grow extremely slowly and initially exert few debilitating effects so that 

the patient is often unaware of any problem. The first symptoms are caused by mass 

effect of the tumour, causing headaches and visual disturbances due to pressure 

applied to the optic nerve. Excess PRL secretion occurs as the lactotroph population 

proliferates resulting in hyperprolactinaemia, with symptoms including galactorrhea, 

oligomenorrhea, loss of libido and sexual dysfunction (Davis et al., 2001; Gurlek et al., 

2007a). 

 

1.3.2. Normal prolactin function 

 

PRL is a 23kDa hormone secreted from lactotroph cells. It signals via the PRL receptor 

(PRLR) which is a single pass trans-membrane protein from cytokine-type 1 receptor 

family, and transduction of PRL signal is mediated via Jak-Stat, MAPK and PI3K 

pathways (Ben-Jonathan et al., 2008). 
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The best known action of PRL is on the mammary gland during pregnancy, where it 

regulates milk duct side-branching and elongation, as well as stimulating and 

maintaining milk production (Harris et al., 2004). It also regulates areas of reproduction, 

including maintenance of the corpus luteum throughout pregnancy, and control over 

certain mating and maternal behavioural patterns. PRL is also known to exhibit more 

diverse roles in the regulation of osmotic balance, immune function and angiogenesis 

(Freeman et al., 2000). Importantly, its secretion is strongly inhibited by dopamine from 

the hypothalamus, which provides the major regulatory control over PRL secretion 

(Gonzalez-Iglesias et al., 2007). 

 

1.3.3. Treatment of prolactinomas 

 

The first option for treating prolactinomas is the use of dopamine agonists such as 

bromocriptine or cabergoline. These inhibit PRL secretion and lactotroph proliferation, 

and in most cases this is enough to reduce tumour size and control PRL levels 

(Gonzalez-Iglesias et al., 2007). Some adenomas are resistant to dopamine agonist 

treatment, which is more common in macroadenomas than microadenomas as judged 

by PRL normalisation. This is thought to be due to decreased expression levels of 

dopamine receptors and decreased affinity for dopamine (Caccavelli et al., 1994). If 

dopamine agonist treatment is unsuccessful the patient can undergo surgery which is 

often ineffective in the long term, with many patients redeveloping pituitary dysfunction 

(Davis et al., 2001).  

 

Prolactinomas are the only type of pituitary tumour where surgery is not the first option, 

and over 90% of prolactinoma patients are treated successfully with dopamine agonists 

precluding the need for surgery. While avoiding surgery is of course beneficial to the 

patient, it does make study of prolactinomas more difficult than other pituitary tumour 

types due to lack of primary tissue to study. 

 

1.3.4. Oestrogen as a stimulator of lactotroph proliferation 

 

Oestrogen has long been known to exert a proliferative effect on the lactotroph 

population. This was first observed during pregnancy, where high circulating E2 levels 

result in lactotroph hyperplasia, pituitary enlargement and increased circulating PRL 

levels (Asa et al., 1982; Goluboff and Ezrin, 1969; Lloyd et al., 1988). In vitro, E2 
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induces proliferation of the somatolactotroph GH3 cell line which can be reversed by 

treatment with anti-oestrogens (Horvath and Kovacs, 1988; Kansra et al., 2005; 

Lieberman et al., 1982; Song et al., 1989). Many of the effects of oestrogen in vivo 

have been studied using the oestrogen-sensitive Fischer 344 rat. Lactotroph 

hyperplasia, subsequently followed by pituitary tumour formation, can be induced by 

constant treatment with oestrogen for 3-12 weeks (Heaney et al., 1999; Mucha et al., 

2007; Phelps and Hymer, 1983; Wiklund et al., 1981). This has provided an extremely 

useful model to study the effects of oestrogen on the pituitary in vivo. However, despite 

intense study, the mechanism by which oestrogen exerts this proliferative effect on 

lactotrophs is unknown.  

 

 

1.4. Oestrogen signalling 

 

Oestrogen signalling is transmitted via the oestrogen receptor (ER) which leads to the 

upregulation of E2 target genes (Mosselman et al., 1996). The effects of E2 can vary 

hugely between tissues and even between cells within the same tissue. Such variance 

is surprising as signalling is thought to be mediated by just two receptors, ERα and 

ERβ (Damdimopoulos et al., 2008). The two receptors are members of the nuclear 

receptor (NR) superfamily of ligand activated transcription factors, vary structurally and 

are coded for by genes on different chromosomes (Enmark et al., 1997; Gosden et al., 

1986; Gruber et al., 2002; Pettersson and Gustafsson, 2001).  

 

ER is normally present in the cytoplasm. E2 diffuses into the cell and binds to the 

ligand binding (LBD) of ER. ER-ligand complexes form dimers which are then 

transported to the nucleus where the DNA binding domain (DBD) of ER binds to DNA 

to initiate transcription of E2 target genes (Nilsson et al., 2001). The DBD consists of 2 

zinc fingers which bind to specific sequences on DNA called oestrogen response 

elements (EREs) to initiate transcription (Whittal et al., 2000). Binding of the ligand to 

the LBD induces the required conformational change within the DBD to expose the Zn 

fingers and allow the receptor to bind to the ERE and initiate transcription (Heldring et 

al., 2007). 

 

Both receptors are expressed in the adult pituitary, with higher expression of ERα than 

ERβ (Kansra et al., 2005). PRL secretion and lactotroph proliferation are both thought 



 29

to be mediated through ERα (Byrnes et al., 2009). ERα is highly expressed in 

prolactinomas, and there is a correlation between increased ERα expression and 

decreased dopamine receptor expression, possibly via E2 induced alternate splicing of 

the dopamine receptor (Wu et al., 2009). This provides a possible explanation for the 

increased resistance of macroprolactinomas to dopamine agonists. 

 

 

1.5. Factors implicated in prolactinoma development 

 

1.5.1. Proto-oncogenes 

 

As described previously, very few genes associated with cancerous tumour growth 

have been identified in prolactinoma development. One exception was a mutation of 

the RAS gene which was found in one of the very rare, aggressive tumours described 

previously, which ultimately proved lethal. The group that identified this mutation 

studied 59 slowly proliferating prolactinomas and found no other examples of the 

mutation  (Cai et al., 1994). 

 

An early promising genetic factor found in pituitary adenomas was a mutation of the α-

subunit of the stimulatory G protein, termed gsp. This occurs in 30% of GH-secreting 

tumours and results in constitutively active adenylate cyclase (Landis et al., 1989; 

Pertuit et al., 2009; Vallar et al., 1987). However, incidence of gsp within other tumour 

types is low and no consistent link has been shown between the mutation and tumour 

development (Davis et al., 2001). No mutations of gsp have been identified in 

prolactinomas. Some examples of c-myc and c-fos overexpression have been 

described in prolactinomas, though proliferation rates do not correlate with expression 

levels indicating other factors must be involved in tumour progression (Boggild et al., 

1994). 

 

Another factor implicated in pituitary tumourigenesis was an alternatively spliced form 

of the FGF-4 receptor, termed pituitary tumour derived (ptd)-FGFR-4. This was 

expressed in 40% of human pituitary adenomas studied, and could not be detected in 

normal pituitary tissue. The splice variant contained an N-terminal truncation resulting 

in a protein of 65kDa as opposed to the 110kDa normal protein. Transfection of ptd-

FGFR-4 mRNA into NIH-3T3 cells induced cellular proliferation where injection of 
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FGFR-1 did not. Transgenic rats were generated using the PRL promoter to drive 

expression of ptd-FGFR-4 which resulted in pituitary tumours in 90% of rats by 11 

months of age (Ezzat et al., 2002). 

1.5.2. Tumour suppressor genes 

 

Tumour progression can be caused by down regulation of tumour suppressing genes. 

A common tumour repressor gene which has been shown to cause pituitary adenomas 

is retinoblastoma gene (RB). A heterozygotic RB knock out mouse model (Rb+/-) 

develops aggressive tumours of the anterior and intermediate lobes after a few months 

of age (Chesnokova et al., 2008; Jacks et al., 1992). However in humans, deletion or 

mutation of RB are rare, and are generally restricted to aggressive carcinomas and a 

small proportion of non-functioning tumours and GH-omas (Pei et al., 1995; Simpson et 

al., 1999). Deletion of cyclin-dependent kinases p18 and p21 also result in tumour 

progression in mice, though reduced levels of either are rarely found in pituitary 

adenomas (Yu and Melmed, 2010). 

 

Multiple endocrine neoplasia type 1 (MEN1) syndrome is a genetic disease caused by 

inactivating mutations of the tumour suppressor gene MEN1 which codes for the 

protein menin (Pannett and Thakker, 1999). Menin is a nuclear protein which interacts 

with numerous transcription factors, cytoskeletal proteins and DNA processing and 

repair proteins to regulate the cell cycle (Piecha et al., 2008). Patients generally 

develop tumours in 3 organs; the parathyroid gland, the pancreas and the pituitary. At 

40 years of age, 40% of MEN-1 sufferers exhibit pituitary tumours, half of which are 

prolactinomas. It is unknown why mutation of MEN1 causes tumour growth, and 

especially confounding as to why tumours grow in these organs specifically (Yu and 

Melmed, 2010).   

 

Another tumour suppressor gene which has been implicated in pituitary adenoma 

development is aryl hydrocarbon receptor interacting protein (AIP). AIP regulates the 

trafficking of aryl hydrocarbon receptor (ARH) between the cytoplasm and nucleus 

where it acts as a transcription factor regulating numerous xenobiotic metabolising 

enzymes. Toxins such as dioxin are thought to elicit most of their functions through 

binding to ARH (Karhu and Aaltonen, 2007). Mutations in AIP have been demonstrated 

in numerous familial circumstances, most notably with mutations being detected in 44% 

of familial somatotropinomas. However, incidence of mutation in sporadic tumours is 

far lower, with the mutation being harboured in less than 2% of sporadic 
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somatotropinomas, and less than 0.3% of other pituitary adenoma sub-types (Yu and 

Melmed, 2010). 

 

1.5.3. Pituitary tumour transforming gene (pttg) 

 

Much research in the last decade has focused on pituitary tumour transforming gene 

(pttg). Transcription of pttg produces the active protein PTTG, which was originally 

isolated from GH4 cells (Pei and Melmed, 1997). Human PTTG is expressed at low 

levels in many adult tissues, though is absent from the normal pituitary (Zhang et al., 

1999b). Numerous studies have shown high expression levels in all pituitary adenoma 

subtypes (Hunter et al., 2003; McCabe et al., 2002; McCabe et al., 2003; Zhang et al., 

1999a), and subsequently in thyroid, colon, breast and liver tumours (Kim et al., 2007).  

 

Much of the pioneering work on PTTG was carried out in E2 induced prolactinomas in 

the Fischer 344 rat. E2 induces PTTG expression by activating an ERE in the PTTG 

promoter, and this upregulation precedes lactotroph hyperplasia and adenoma 

formation (Heaney et al., 1999). PTTG has been shown to upregulate basic FGF 

(bFGF) and vascular endothelial growth factor (VEGF) in E2 induced prolactinomas 

which promotes tumour growth and angiogenesis (Ishikawa et al., 2001; McCabe et al., 

2002; McCabe et al., 2003).  

 

PTTG has also been identified as the cell cycle regulator securin, which inhibits 

metaphase to anaphase transition by inhibiting sister chromatid separation (Zou et al., 

1999). High levels of PTTG have been associated with genetic instability and 

aneuploidy in thyroid cancers (Kim et al., 2005). Pituitary tumours exhibit high 

frequency of aneuploidy, and it is thought that PTTG induced genetic destabilisation 

contributes to pituitary tumour growth (Heaney et al., 1999). 

 

Further evidence for a role of PTTG in pituitary tumourigenesis comes from knock out 

and transgenic models in mice. Deletion of PTTG (PTTG-/-) results in pituitary 

hypoplasia. Furthermore, tumour induction caused by heterozygotic RB knock out 

(Rb+/-) is prevented when PTTG-/- mice are crossed with Rb+/- mice (Chesnokova et 

al., 2005; Chesnokova et al., 2007). Over expression of PTTG in the pituitary, driven by 

the promoter of the α-subunit of glycoprotein hormones (αGSU.PTTG), results in 

pituitary hyperplasia, which is enhanced when αGSU.PTTG mice are crossed with 

Rb+/- mice (Donangelo et al., 2006). These data are summarised in Figure 1.2. 
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Figure 1.2. PTTG in pituitary tumourigenesis. Mouse models with descending levels of 

pituitary PTTG are shown on the left, with or without cross-over with tumourigenic RB+/- mouse 

model. Horizontal bars represent the pituitary trophic status of the pituitary, with arrow (right) 

indicating the likelihood of tumour development. Figure adapted from Donangelo et al, 2006. 

 

 

Overall, a number of factors have been implicated in the pathogenesis of pituitary 

tumours. However, despite intense research, only a small number of mutations have 

been identified in these factors, they are not found in all sporadic tumours, and are 

often restricted to familial tumours. Much evidence has focused on the role of PTTG as 

it is upregulated in pituitary adenomas and has been linked to invasiveness of tumours. 

However, if this is the case, tumours would be expected to grow faster and invade 

more than observed in pituitary tumours suggesting other factors are involved in 

regulating tumour growth. Therefore, it is important to look for new pathways which 

may be involved in pituitary tumour development.  
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1.6. Wnt signalling 

 

1.6.1. Wnt signalling in oestrogen-induced lactotroph hyperplasia 

 

In an attempt to identify novel signalling pathways in prolactinoma development, our 

group conducted microarray analysis on rat pituitaries undergoing lactotroph 

hyperplasia induced by the synthetic oestrogen diethylstilbestrol (DES). Amongst 

several genes whose regulation was altered, we noted upregulation of the 

developmental protein Wnt-4 (discussed in detail in section 1.11). The aim of this thesis 

is to examine the potential role of Wnt-4 in prolactinoma development. 

 

1.6.2. The Wnt family 

 

Wnt proteins were initially discovered in the 1980’s. In mammalian cells, Wnt was 

identified as the MMTV proto-oncogene Int-1, and in Drosophila it was identified as 

Wingless. The two were found to be homologous, and the combination of these terms 

produced the name Wnt (Nusse et al., 1991; Rijsewijk et al., 1987).  Wnt molecules 

signal through Frizzled (Fz) receptors (see section 1.9), and in mammals there are 19 

Wnt ligands and 10 Fz receptors (Coudreuse and Korswagen, 2007). Since their 

discovery, a huge array of actions has been attributed to Wnts. Initially focus was 

placed on their role in development and cancer, but more recently they have been 

shown to play numerous roles in adult life as well. 

 

 

1.7. General roles of Wnt signalling 

 

1.7.1. Roles in development 

 

Wnt proteins exert diverse effects on cells and tissues by driving proliferation, 

differentiation, apoptosis and cell survival (Willert and Jones, 2006). Wnt signalling has 

been implicated in virtually every aspect of normal body function, including key 

developmental process such as sex determination (Tevosian and Manuylov, 2008), 



 34

facial morphology (Liu et al., 2010a) and neural crest formation (Kuriyama and Mayor, 

2008), as well as development of individual organs e.g. heart (Gessert and Kuhl, 2010), 

kidney (Schmidt-Ott and Barasch, 2008), lung (Weng and Liu, 2010), pituitary (Treier et 

al., 1998) and intestine (Clarke, 2006) to name but a few.  

 

1.7.2. Roles in adult life 

 

More recently it has emerged that Wnts play key roles in modulating physiological 

processes in adult life as well as in development. Examples include regulation of adult 

T-cells, monocytes and macrophages during the immune response (Staal et al., 2008), 

control over endothelial cells in the vascular system to induce angiogenesis (Franco et 

al., 2009)  and regulation of the thickness and pigmentation of skin (Yamaguchi et al., 

2009).  

 

Over the last 10 years, a role for Wnt signalling in tissue maintenance and repair has 

been studied through regulation of stem cell niches. The classic examples are the loss 

of stem cells from the colon after knock out of the Wnt activated transcription factor 

TCF4 (Korinek et al., 1998), and inhibition of hematopoietic stem cell (HSC) renewal 

using Wnt inhibitors, with reciprocal differentiation induction of HSCs with Wnt-3A 

stimulation (Reya et al., 2003; Willert et al., 2003). 

 

1.7.3. Roles in cancer 

 

With such a huge array of growth inducing and developmental effects, it is hardly 

surprising to find that Wnt signalling has been implicated in numerous cancers. 

Aberrations in Wnt signalling have been identified in liver (Miyoshi et al., 1998), 

intestinal (Harada et al., 1999), prostate (Thudi et al., 2010) ovarian (Chen et al., 2010) 

and renal (Banumathy and Cairns, 2010) cancers. Once again, these are just a few 

examples found in the literature, aiming to give an indication of the huge variety of 

effects attributed to Wnt signalling in recent years. More detailed descriptions of Wnt 

involvement in cancer will be given relative to the specific Wnt signalling pathways in 

sections 1.10.1/2/3. 
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1.8. Wnt structure 

 

Wnt molecules are highly conserved between species. Generally they are about 350 

amino acids long with a molecular weight of about 40kDa (Yavropoulou and Yovos, 

2007). They do not have any functional domains, but contain 22-25 charged cysteine 

residues which are thought to form intra- and inter-molecular di-sulphide bonds to 

regulate protein folding (Tanaka et al., 2002).  

 

Despite the numerous charged cysteine residues, Wnt molecules are hydrophobic. 

This is attributed to addition of a palmitate group (a 16-carbon saturated fatty acid) at a 

highly conserved cysteine residue corresponding to C77 in mouse Wnt-3A (Willert et 

al., 2003), while further post-translational modification is observed in the form of 

multiple glycosylation sites (Coudreuse and Korswagen, 2007). Figure 1.3 shows the 

evolutionary conservation of these sites between C. elegans, Drosophila and Mouse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. A schematic diagram of Wnt-3A from mouse, Wingless from Drosophila and 

EGL-20 from C.elegans. Wnt molecules express 22-25 cysteine molecules which are 

conserved between species. A palmitate molecule binds to a highly conserved cysteine (at C77,  

C93 and C99 in mouse, Drosophila and C.elegens respectively) across the yellow region, while 

numerous glycosylation sites important for Wnt secretion are present. Adapted from Coudreuse 

and Korswagen, 2007. 

 



 36

 

Glycosylation may be involved in intracellular trafficking as levels of glycosylation are 

higher in Wnts prior to secretion (Kitajewski et al., 1992; Mason et al., 1992), and 

secretion of Wnt-3A and Wnt-5A is impaired when glycosylation sites are removed. 

Conversely, palmitoylation seems to be important for Wnt signalling. Removal of the 

palmitate group from Wnt-3A and Wnt-5A does not affect secretion, but reduces 

binding affinities to Fz receptors and prevents downstream Wnt signalling events 

(Komekado et al., 2007; Kurayoshi et al., 2007). 

 

Another possible benefit of palmitoylation may relate to the generation of concentration 

gradients which mediate Wnt signalling. Unbound Wnt molecules interact with the cell 

membrane via their palmitate group. However, Wnts have been shown to bind to 

extracellular lipoproteins which displace them from the cell membrane. This allows 

them to travel up to 20-30 cell distances away from their point of secretion (Figure 1.4) 

(Coudreuse and Korswagen, 2007; Neumann and Cohen, 1997), while knock down of 

lipoproteins severely reduces the range of Wnt signalling (Panakova et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Long range Wnt signalling enabled by lipoprotein transport. Wnt molecules are 

bound in extracellular regions by lipoproteins which counteract Wnt adhesion to the cell 

membrane via the palmitate group. This allows Wnts to spread out further across their 

morphogenic field, generating concentration gradients which mediate Wnt signalling. Adapted 

from Coudreuse and Korswagen, 2007. 
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1.9. Frizzled receptors 

 

Interestingly, all the diverse effects of Wnt signalling seem to be mediated via Wnt 

binding to Fz receptors. There are 10 known mammalian Fz receptors containing 7-

transmembrane domains and a large, highly conserved extracellular motif containing 

10 cysteine residues called cysteine rich domains (CRD) (Lyons et al., 2004). Wnts 

bind to the CRD of a Fz receptor, and it has been shown that a number of Fz receptors 

bind multiple Wnts with high affinity (Wu and Nusse, 2002).  

 

The combination of Wnt ligand and Fz receptor interacting determines downstream 

signalling events. Therefore, the overall effect of Wnt signalling is dependent on the 

specific expression patterns of Wnt ligands and Fz receptors in a particular tissue. 

Clearly, with 19 ligands and 10 receptors, there is huge potential for variation in the 

downstream effects of Wnt signalling, giving an explanation of the hugely variable 

effects of Wnt molecules described previously (Rao and Kuhl, 2010).  

 

 

1.10. Wnt signaling pathways 

 

Wnt molecules classically activate 3 signalling pathways; the Wnt-canonical pathway, 

the Wnt-planar cell polarity (PCP) pathway and the Wnt-calcium pathway. By far the 

most studied of these is the canonical pathway due to its involvement in numerous 

cancers. While the canonical pathway has been extensively defined, the PCP and 

calcium pathways remain poorly understood. As such, Wnt signalling is often discussed 

in terms of canonical or non-canonical signalling, often with no differentiation made 

between the 2 non-canonical pathways. Over recent years, more focus has been 

applied to the non-canonical pathways, and they are slowly becoming accepted as vital 

pathways to regulate the huge variation in Wnt signalling events. 

 

Traditionally, specific Wnt molecules were assigned to either canonical or non-

canonical functions. For instance, Wnt-1, Wnt-3A and Wnt-8 are generally known as 

canonical Wnts, Wnt-5A and Wnt-11 are considered non-canonical Wnts, while Wnt-2, 

Wnt-4, Wnt-5B and Wnt-6 have been shown to activate both canonical and non-

canonical pathways (Kikuchi and Yamamoto, 2008). This was based on early studies of 
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Wnt protein function which defined Wnt molecules as canonical or non-canonical 

depending on their ability to transform C57 MG mammary epithelial cells (Wong et al., 

1994). More recently it has become apparent that this system is an oversimplification; 

Wnt-11 activates the canonical pathway in axis formation in Xenopus (Tao et al., 2005), 

Wnt-3A activates the calcium pathway in bone formation in mouse (Tu et al., 2007), 

while Wnt-5A and Wnt-11 have been shown to interact physically to activate canonical 

signalling in Xenopus embryogenesis (Cha et al., 2008).  

 

In the same manner Fz 4 has been shown to activate canonical signalling in the blood 

brain barrier (Ye et al., 2009), and also activates non-canonical signalling in retinal 

angiogenesis (Robitaille et al., 2002). It is becoming clear that analysis of any Wnt 

ligand or Fz receptor in a biological context requires detailed examination of all Wnt 

signalling pathways.  

 

1.10.1. The Wnt-Canonical Pathway 

 

1.10.1.1. β-Catenin 

 

Canonical signalling is centred around the stability of cytoplasmic β-Catenin. β-Catenin 

is a large protein which can interact with numerous proteins through structures known 

as armadillo repeats (arm repeats) which are made up of two sequential 20aa alpha 

helices forming a hairpin structure. β-Catenin contains a sequence of 12 arm repeats, 

which collectively form a positively charged super-helix to which multiple regulatory 

proteins can bind simultaneously (Huber et al., 1997; Willert and Nusse, 1998). 

 

β-Catenin plays two major roles in cells. At the cell membrane it interacts with the 

cytoplasmic regions of cadherin molecules to regulate cell-cell adhesion via adherens 

junctions (see section 1.10.3.2) (Shapiro and Weis, 2009). In the nucleus, β-Catenin 

interacts with transcription factors T-cell specific transcription factor (TCF) and 

Lymphoid enhancer-binding factor (LEF) to influence expression of a host of genes 

which regulate diverse aspects of cell behaviour (Mo et al., 2009).  

 

Free β-Catenin is found in the cytoplasm, and is rapidly destroyed under basal 

conditions preventing gene transcription. This occurs in 2 steps; firstly adenomatous 

polyposis coli (APC) and axin bind to β-Catenin via arm repeats to form the “destruction 
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complex”. β-Catenin is then sequentially phosphorylated by casein kinase 1 (CK1) at 

Ser-33, and glycogen synthase kinase-3β (GSK-3β) at Ser-37 and Thr-41 resulting in 

its ubiquitination at the proteasome (Mo et al., 2009; Price, 2006; Willert and Jones, 

2006). The structure of β-Catenin showing the arm repeats and interactions with key 

regulating proteins is shown in Figure 1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. β-Catenin structure. A – The primary structure of β-Catenin contains 12 arm 

repeats which allow interactions with APC, axin, TCF/LEF and E-cadherin. Ubiquitination sites 

are located at the amino terminus. B – Topological representation of the arm repeat region of β-

Catenin. α-helicies are represented as either circles or rectangles as viewed from top or side 

respectively.  C – Ribbon representation of the arm repeat region of β-Catenin demonstrating 

the superhelical structure formed from repeating arm repeats. Figure adapted from Willert and 

Nusse, 1998. 
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1.10.1.2. Wnt activation of canonical signalling 

 

Binding of Wnt to Fz inhibits ubiquitination of β-Catenin in two ways. Firstly it 

hyperphosphorylates low density lipoprotein related protein (LRP) which is located 

adjacent to Fz on the cell membrane and is essential for canonical signalling. 

Hyperphosphorylated LRP binds axin with high affinity and sequesters it away from the 

destruction complex to the cell membrane. Axin is expressed at relatively low levels, 

and so its binding to LRP and removal from the destruction complex rapidly inhibits β-

Catenin degradation (Lee et al., 2003).  

 

Secondly, binding of Wnt to Fz recruits the cytoplasmic protein Dishevelled (Dsh) to the 

membrane. Here Dsh is phosphorylated which allows it to bind and inhibit CK1 and 

GSK-3β (Lee et al., 2001). These factors allow β-Catenin to accumulate in the 

cytoplasm, and then translocate into the nucleus where they activate TCF/LEF to elicit 

transcription of Wnt target genes (Cadigan and Liu, 2006; Chien et al., 2009; Kikuchi 

and Yamamoto, 2008; van and Nusse, 2009). The mechanism by which β-Catenin 

translocates to the nucleus is not known, but it does not require a nuclear localisation 

signal, the most common mechanism by which molecules enter the nucleus (Fagotto et 

al., 1998) 

 

The TCF/LEF family has four members; LEF-1, TCF-1, TCF-3 and TCF-4. These are 

normally bound to intranuclear repressors of canonical signalling termed Groucho and 

C-terminal binding protein (CBP). β-Catenin displaces Groucho and CBP from 

TCF/LEF by unknown mechanisms, providing β-Catenin with a DNA binding domain to 

upregulate canonical genes (Ilyas, 2005; Jin, 2008; Jin and Liu, 2008; Staal et al., 

2008). The canonical pathway is summarised in Figure 1.6.  
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Figure 1.6. The canonical pathway. In the absence of ligand (left) β-Catenin is bound by axin 

and APC forming the “destruction complex”, allowing GSK-3β and CK1 to phosphorylate β-

Catenin resulting in its degradation at the proteasome. In the nucleus, TCF transcriptional 

function is repressed by Groucho and CBP. When Wnt binds to Fz (right), LRP is 

phosphorylated and sequesters axin to the membrane, and Dsh is bought to the membrane 

where it inactivates GSK-3β and CK1. β-Catenin accumulates in the cytoplasm, and 

translocates to the nucleus where it displaces Groucho and CBP from TCF, binds TCF itself, 

and activates transcription of canonical target genes. Image taken from Wormbook – The online 

review of C.Elegans biology (Eisenmann D, 5 A.D.) 

 

1.10.1.3. Extracellular inhibition of the canonical pathway 

 

The canonical pathway is inhibited by a number of secreted factors. The best 

categorised of these is Dickkopf (Dkk), which inhibits Wnt signalling by forming a 

ternary complex with Wnt, Fz and LRP (Rao and Kuhl, 2010). Dkk was discovered 

through its ability to inhibit axis duplication in Xenopus embryos overexpressing β-

Catenin (Krupnik et al., 1999). It is upregulated by canonical signalling, providing a 
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negative feedback loop to regulate the canonical pathway (Gonzalez-Sancho et al., 

2005). 

 

Other extracellular canonical inhibitors include secreted frizzled related proteins 

(sFRPs) and Wnt Inhibitory Factors (WIFs). The human sFRP family consists of 5 

members which contain a CRD sharing 30-50% homology with the CRD on Fz 

receptors. Wnt molecules thus bind to sFRPs and are prevented from binding to Fz 

(Melkonyan et al., 1997).  The actions of WIFs are less understood. They do not have a 

CRD, but instead are defined by five evolutionarily conserved epidermal growth factor 

(EGF)-like repeats. The function of these EGF repeats is not known but WIFs have 

been shown to down regulate Wnt signalling in a number of tissues (Ilyas, 2005).  

 

1.10.1.4. Gene regulation by the canonical pathway 

 

The canonical pathway has been shown to regulate over 100 genes. It is thought that 

β-Catenin directly activates a relatively small number of genes itself, such as c-myc, 

MMP-7, cyclin D1 and VEGF. These genes themselves regulate pathways that have 

diverse effects on gene activation themselves, ultimately regulating a much larger 

number of genes in a secondary or tertiary manner to bring about the effects of the 

canonical pathway (Vlad et al., 2008).  

 

After β-Catenin has activated target genes, it exits the nucleus by binding to axin and 

APC which are thought to shuttle between the cytoplasm and nucleus (Cong and 

Varmus, 2004; Henderson and Fagotto, 2002). However, the mechanisms involved are 

poorly understood and require much further attention. 

 

1.10.1.5. The canonical pathway in cancer 

 

The canonical pathway was quickly identified as playing a role in cancer and tumour 

progression. The most widely studied example is in colorectal cancer, where 80% of 

tumours exhibit mutations of APC resulting in constitutively active β-Catenin, excessive 

stem cell renewal and tumour formation (Rowan et al., 2000; Saif and Chu, 2010; 

Takemaru et al., 2008). The Wnt inhibitor Dkk is downregulated in colorectal cancer, 
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suggesting loss of negative feedback may contribute to cancer progression (Gonzalez-

Sancho et al., 2005).  

 

Mutations of β-Catenin have been found in 54% of endometrioid ovarian cancers, as 

well as in two paediatric cancers, hepatoblastoma (Koch et al., 2004) and Wilms’ 

Kidney tumours (Li et al., 2004). Interestingly, although most hepatoblastoma tumours 

express nuclear β-Catenin, 80% of them also display upregulated Dkk levels, 

suggesting its potential role in clinical therapy (Wirths et al., 2003). Dysregulated β-

Catenin-LEF coupling has been identified in breast cancer (Gebeshuber et al., 2007), 

β-Catenin upregulation of the apoptosis inhibitor survivin contributes to the 

development of small cell lung cancer (Nakashima et al., 2010) and nuclear β-Catenin 

was found in 23% of metaplastic breast carcinomas (Lacroix-Triki et al., 2010).  

 

1.10.2. The Wnt-calcium pathway 

 

1.10.2.1. Calcium signalling 

 

Calcium is a vital regulator of intracellular signalling in virtually all cells in multicellular 

organisms. Alterations in intracellular calcium levels activate ubiquitous calcium 

sensors like protein kinase C (PKC) and calmodulin (CaM) which in turn activate 

secondary messengers such as calmodulin dependent kinases (CaMK I-IV) and 

calcineurin which shape subsequent cellular responses (Gwack et al., 2007). 

 

Intracellular calcium levels can be elevated from 2 major calcium sources. Ion channels 

at the cell membrane can open to allow influx of calcium from the extracellular space, 

while intracellular stores of calcium can be also be released. There are feedback 

mechanisms between receptors and channels at both sites. In most non-excitable cells, 

the majority of intracellular calcium release comes from the inositol 1, 4, 5-triphosphate 

(IP3)-sensitive calcium channels in the endoplasmic reticulum. Opening of IP3 

channels can then induce calcium release from neighboring calcium channels in the 

ER in a process called “calcium induced calcium release”. If release of intracellular 

calcium is continued and stores become depleted, the store operated calcium entry 

(SOC) pathway becomes activated at the plasma membrane triggering calcium influx 

from the extracellular space (Berridge, 2009; Mikoshiba, 2007; Slusarski and Pelegri, 

2007).   
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Changes in intracellular calcium are usually transient as newly released calcium is 

quickly bound by calcium binding proteins. These can either be calcium buffers whose 

role is simply to absorb free calcium and transport it back into calcium stores, or can be 

calcium sensors such as CaM which mediate calcium signalling. As such, intracellular 

calcium levels can often be observed as dynamic oscillations, and changes in the 

frequency, amplitude and duration of these oscillations can determine downstream 

cellular responses (Slusarski and Pelegri, 2007; Uhlen and Fritz, 2010).  

 

1.10.2.2. Wnt induction of calcium transients and calcium enzymes 

 

The Wnt-calcium pathway was first discovered on the finding that injection of Wnt-5A 

mRNA intro zebrafish embryos induced IP3 mediated intracellular calcium release and 

doubled the frequency of calcium transients in the subsequently formed blastocyst 

(Slusarski et al., 1997a; Slusarski et al., 1997b), while mutation of Wnt-5A reduced 

calcium transients in the same model (Westfall et al., 2003). This calcium release may 

require the action of Dsh as a gain-of-function Dsh mutant results in increased calcium 

fluxes in Xenopus embryos, while loss-of-function Dsh mutants cause decreased 

calcium fluxes (Sheldahl et al., 2003). Dsh is though to activate phospholipase C (PLC) 

which then initiates calcium release from intracellular stores by activation of IP3 

channels (Staal et al., 2008).  

 

It has subsequently been shown that Wnt-induced calcium release was sufficient to 

activate PKC in mouse embryonic bone formation (Tu et al., 2007) and CaMKII in 

dorsoventral axis formation in Xenopus embryos (Kuhl et al., 2000). Calcineurin is also 

activated by the Wnt-calcium pathway, which subsequently activates the transcription 

factor nuclear factor of activated T-cells (NFAT) which may mediate some effects of the 

Wnt-calcium pathway (Rao and Kuhl, 2010); Wnt molecules activate NFAT to promote 

cardiac hypertrophy and cardiac remodeling (Rao and Kuhl, 2010), regulate axis 

formation in Xenopus (Saneyoshi et al., 2002) and play a key role in bone formation by 

regulating osteoblast proliferation and differentiation (Fromigue et al., 2010; Stern, 

2006). The eventual effects of the Wnt-calcium pathway are thought to include altered 

cytoskeletal remodeling and cell motility, differentiation, apoptosis and morphogenesis. 

The Wnt-calcium pathway is summarized in Figure 1.7.  

 



 45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. The Wnt-calcium pathway. 

 

The role of the Wnt-calcium pathway in cancer has been poorly studied, however, a 

few examples in the literature are available. In virtually all cases, studies focus on the 

actions of Wnt-5A which is considered the main “non-canonical” Wnt; Wnt-5A was 

increased in a human prostate cancer cell line which was associated with upregulated 

CamKII signalling and altered cytoskeletal remodeling and cell motility (Wang et al., 

2010), Wnt-5A was upregulated in human cutaneous melanoma cells and its over 

expression was correlated with PKC activation and increased cellular invasion 

(Weeraratna et al., 2002) and Wnt-5A activated NFAT to promote tumour growth in 

human breast cancer cells (Leandersson et al., 2006). 

 

Figure 1.7. The Wnt-calcium 

pathway. Binding of Wnt to Fz 

leads to calcium release from 

intracellular stores through IP3 

channels on the endoplasmic 

reticulum, mediated by Dsh. 

Increased intracellular calcium 

levels in turn activate calcium 

enzymes PKC, calmodulin 

kinases (eg CamKII) which 

may regulate cytoskeletal 

remodelling, and calcineurin. 

Activation of calcineurin leads 

to NFAT phosphorylation and 

translocation to the nucleus  

where it acts as a transcription 

factor to upregulate calcium 

pathway genes. Figure 

adapted from Staal and 

Tiessmen, 2008. 
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1.10.3. The Wnt-planar cell polarity pathway 

 

Planar Cell Polarity (PCP) is the generation of a uniform orientation of a population of 

cells along a single epithelial plane. Establishment of PCP is found throughout the 

animal kingdom. It regulates the orientation of wings of a bird, scales on a fish and 

hairs on mammals. PCP is also evident within the body, such as in the orientation of 

microvilli extending into the intestine, organisation of mechanosensory hairs in the 

cochlea, or extension of a single axon branching out from a neurone (Fanto and 

McNeill, 2004; Rao and Kuhl, 2010; Zallen, 2007).  

 

The most studied example of PCP is the arrangement of bristles on the wing of 

Drosophila. Orientation of the bristles is dependent of localization of Fz and five other 

key cytoplasmic proteins which organise themselves along the proximal-distal axis. In 

particular, Flamingo, Prickle and Dsh bridge the proximal-distal axis on both sides, Fz 

and Diego localise distally, and Strabismus localises proximally, thus establishing 

polarity of the cell (Wang, 2009; Widelitz, 2005). The mechanisms by which this occurs 

are not understood, but have been summarised in Figure 1.8. 

 

 

 

 

 

 

 

 

 

Figure 1.8. Establishment of planar cell polarity in Drosophila. A schematic diagram of a 

Drosophila wing epithelial cell at early (A/B) and late phase (C) in development. Distal is to the 

right, proximal is left and apical is up. A – The core PCP proteins are distributed homogenously 

in the cytoplasm. B – Flamingo moves to the apical membrane, and recruits Fz and Strabismus, 

which then recruit and bind Dsh and Prickle respectively. C – PCP proteins sort into distal and 

proximal domains with Fz and Diego located distally, Strabismus located proximally and 

Flamingo, Prickle and Dsh bridging the axis. The process is modulated by a proximodistally 

aligned microtubule network (grey lines in C). Figure adapted from Zallen, 2007. 
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The establishment of PCP in vertebrates is poorly understood, though it involves Dsh 

recruitment by Fz at the cell membrane, which then activates small GTPases such as 

Rho A and Rac. Other downstream cellular regulators such as Rho Kinase (ROCK) 

and JNK are then activated which modulate gene transcription and cytoskeletal 

reorganization (Kikuchi and Yamamoto, 2008; Rao and Kuhl, 2010).  The pathway is 

summarized in Figure 1.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. The planar cell polarity pathway in vertebrates. 

 

1.10.3.1. The planar cell polarity pathway regulates cell motility in convergent 

extension 

 

A well studied example of PCP signalling in vertebrates is during convergent extension 

during gastrulation in Xenopus, where polarised mesenchymal cells derived from the 

mesoderm interact to lengthen the embryo along the anterior-posterior axis (Yamanaka 

et al., 2002). In these cells, Prickle is located at the anterior membrane of migrating 

Figure 1.9. The planar cell 

polarity pathway in vertebrates. 

Wnt binding to Fz recruits Dsh to 

the membrane. Dsh activates small 

GTPases Rho A and Rac, which in 

turn activate ROCK and JNK 

downstream effectors to regulate 

gene transcription and cytoskeletal 

reorganisation. Figure adapted 

from Staal and Tiessmen, 2008. 
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cells, while Dsh is located at the posterior membrane, in a manner reminiscent of the 

proximal and distal distribution of these proteins in Drosophila wing cells described in 

Figure 1.9 (Wada and Okamoto, 2009; Yin et al., 2008). The PCP pathway is thought 

to play a key role in convergent extension as mutation of Strabismus results in 

decreased velocity of dorsally directed cells (Jessen et al., 2002), knock down of 

Prickle with siRNA results in shortening of the embryo (Carreira-Barbosa et al., 2003) 

while loss-of-function studies demonstrate that the process is dependent on Wnt-5A 

and Wnt-11 signalling (Kilian et al., 2003). 

 

1.10.3.2. Planar cell polarity in cancer due to epithelial to mesenchymal 

transition 

 

A key attribute of mesenchymal cells is that they are not connected to each other via 

adherens junctions, which allows them to migrate past neighboring cells during 

convergent extension. This differs from epithelial cells which are connected to each 

other via adherens junctions (see figure 1.10) and are therefore unable to move past 

each other (Zallen, 2007).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Adherens junction structure. Schematic diagram showing 2 adjacent cells bound 

by an adherens junction. Extracellular regions on E-Cadherin bind to each other in the 

extracellular space. β-Catenin binds to the intracellular tail of E-Cadherin via arm repeats, and 

α-Catenin then binds to β-Catenin. The head and tail domains of vinculin separate, activating 

the protein. The head binds α-Catenin, while the tail binds to actin filaments to modulate actin 

polymerisation. The junction provides a direct link between cytoskeletal structures of 

neighboring cells (Pokutta and Weis, 2002).  
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E-Cadherin is a vital component of adherens junctions. A relatively simple, but very 

important distinction can be made between static epithelial cells expressing membrane 

bound E-Cadherin, and mobile mesanchymal cells which express N-Cadherin, but do 

not express E-Cadherin (Huber et al., 2005). This is important because the loss of 

adherens junctions and the subsequent ability of cells to migrate away from their 

original location is a vital step in tumour metastasis. Wnt-PCP signalling has been 

implicated in this process, which is known as epithelial to mesenchymal transition 

(Heuberger and Birchmeier, 2010). 

 

Wnt-5A over expression in human gastric cancer cells resulted in increased cell 

migration and invasion due to activation of Rac and focal adhesion kinase (FAK). 

Importantly, no effect on proliferation was observed suggesting this pathway does not 

directly cause tumour growth, but only changes the invasive characteristics of cells 

(Kurayoshi et al., 2006).  In a similar manner, Wnt-5A was overexpressed in human 

breast cancer cells leading to activation of Jnk and increased cell invasiveness. 

Canonical signalling was also detected and considered key for tumour cell proliferation, 

though it had no impact on tumour invasiveness demonstrating 2 Wnt pathways 

working together to drive cancer (Pukrop et al., 2006). Further examples of PCP 

induced cell invasiveness in cancer have been documented in renal (Hirata et al., 

2010) lung (Zhao et al., 2010), prostate (Yamamoto et al., 2010) and intestinal (Sancho 

et al., 2009) cancer. In virtually all these cases, Wnt activation of the PCP pathway is 

observed only in late phases of cancer when patient prognosis is poor, suggesting PCP 

activation could play a key role in transition from pre-malignant tumour to malignant 

tumour, and could therefore be a key therapeutic target in cancer research. 

 

1.10.4. Overlap of Wnt signalling pathways  

 

In previous sections, the three Wnt signalling pathways have been described in 

isolation from one another, however there is a growing body of evidence suggesting 

complex interplay between the pathways.  

 

For example, the traditional classification of Wnt ligands to a specific pathway can no 

longer hold true as Wnt-5A (which has been used to study virtually all key aspects of 

non-canonical signalling) activates Jnk (Pukrop et al., 2006), calcium (Slusarski et al., 

1997b) and canonical (Mikels and Nusse, 2006) signalling depending on cellular 

context. Wnt-5A also activates both the Jnk and calcium pathways in axis formation. 
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Although they have been studied independently, mutation of Wnt-5A downregulates 

PCP and calcium pathways to cause identical embryo dysmorphology, suggesting they 

are part of the same pathway (Kilian et al., 2003; Kuhl et al., 2000). Wnt-3A, known as 

“the canonical” Wnt, does activate the canonical pathway in most cases, but has also 

been shown to activate Jnk pathways in Chinese hamster ovary cells to regulate cell 

migration (Endo et al., 2005), and PKC in embryonic bone development in mice (Tu et 

al., 2007). 

 

Downstream signalling components from the different pathways have also been shown 

to interact. CamKII is involved in epithelial-mesenchymal transition during neural crest 

migration which is usually attributed to the PCP pathway (De et al., 2005) while 

conversely, Prickle has been shown to regulate intracellular calcium levels during 

gastrulation (Veeman et al., 2003). Non-canonical pathways have been shown to inhibit 

canonical signalling numerous times; Wnt-5A promoted β-Catenin degradation in a 

colon cancer cell line (Topol et al., 2003), overexpression of Wnt-5A reduced 

invasiveness, proliferation and migration of thyroid tumour cells by promoting 

membrane localisation of β-Catenin (Kremenevskaja et al., 2005), Wnt-5A down 

regulation in Xenopus embryos resulted in dorsalisation due to increased nuclear β-

Catenin expression (Westfall et al., 2003) and Wnt/Jnk induced upregulation of Dkk 

caused inhibition of canonical signalling in human non-small cell lung cancer cells (Lee 

et al., 2004).  

 

β-Catenin is the central player of the canonical pathway, but is also a key component of 

adherens junctions which are deconstructed during PCP-induced cell migration 

(Kurayoshi et al., 2006). Adherens junction deconstruction can in turn activate 

canonical signalling as β-Catenin freed from the cell membrane then accumulates in 

the cytoplasm, which can then drive cancer cell proliferation (Pukrop et al., 2006). 

Conversely, β-Catenin can be sequestered away from the nucleus to the cell 

membrane to inhibit canonical signalling (Bernard et al., 2008). 

 

The cytoplasmic protein Dsh has been implicated in all 3 pathways (Rao and Kuhl, 

2010). During canonical signalling, Dsh molecules polymerise to form large structures 

which bind Fz and LRP at the cell membrane. Axin and GSK-3β then bind to the 

Dsh/Fz/LRP complex which prevents degradation of β-Catenin (Cliffe et al., 2003; Zeng 

et al., 2008). In PCP signalling, Dsh binds Fz and Diego at the distal membrane, while 

Prickle blocks Dsh activation and prevents its localization at the proximal membrane 

(Jenny et al., 2005). Dsh has also been shown to interact directly with Dsh associated 
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activator of morphogenesis (Daam) which results in the formation of the Rho-GTP 

complex which subsequently activates ROCK to regulate cytoskeletal structure (Habas 

et al., 2001). Dsh also impacts on calcium signalling, as gain-of-function Dsh results in 

increased calcium flux and translocation of PKC to the membrane, whereas loss-of-

function results in decreased calcium flux and reduced PCK membrane translocation 

(Sheldahl et al., 2003).  

 

The mechanisms by which a specific Wnt pathway is activated in a given context is 

currently far from understood. It is becoming clear that the Wnt pathways can no longer 

be considered independent of each other, and highlights a point made earlier that that 

when studying an aspect of Wnt signalling, attention should be given to the specific 

Wnts present, the expression of Fz receptors and the downstream effects of all 

signalling pathways in that context. 

 

 

1.11. Wnt signalling in the pituitary 

 

Dr Sönke Friedrichsen, a postdoctoral fellow in our lab, conducted microarray analysis 

on pituitaries undergoing oestrogen-induced lactotroph hyperplasia. Amongst several 

genes whose regulation was altered, Wnt-4 was found to be upregulated. This early 

work provided the basis for the current project, and using the microarray data and a 

substantial amount of data presented here, we recently published a paper in Journal of 

Cell Science, which has been inserted at the back of this thesis. All the work in this 

thesis was conducted by myself, except for a very few instances which have been 

highlighted in the text. 

 

The array data showed a modest increase in Wnt-4 mRNA which was subsequently 

validated by Q-PCR. This array was conducted on anterior pituitary tissue which 

therefore contained all the secretory cell types in the gland, albeit in a situation where 

lactotrophs dominated after oestrogen stimulation (Giles et al., 2011). Therefore the 

effect cannot be confined to lactotrophs, and indeed, the localisation of Wnt-4 is a key 

topic examined in this thesis. There is one other similar array study in the literature 

which examined gene regulation in GH3 cells after oestrogen stimulation (Fujimoto et 

al., 2004). This study was conducted using an older array which could detect changes 

of expression in considerably less genes than in our paper (7000 genes against 31000 
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genes). This study on GH3 cells only detected alterations in expression of 33 genes 

(26 upregulated and 7 downregulated) where our study detected altered regulation of 

thousands of genes. None of the genes considered focused on in our study were 

altered in the GH3 array. 

 

Wnt signalling may be involved in pituitary pathophysiology: Wnt-4 affects specific cell 

type expansion in the normal developing mouse pituitary. It is expressed from 

embryonic day 9.5 (e9.5) to e14.5, and Wnt-4-/- mice displayed drastically reduced 

numbers of TSH and GH positive cells (Treier et al., 1998). PRL positive cells were not 

analysed in this study, though the near absence of TSH and GH positive cells, and the 

common delineation of TSH, GH and PRL cells would suggest that lactotrophs were 

also reduced in number. In a similar study, Potok et al also found reduced cell numbers 

in the AL of Wnt-4-/- mice which this time did investigate the lactotroph population, 

though the decrease in cell number was not as great as in the previous report (Potok et 

al., 2008). This is most likely explained by the fact that tissue used by the Potok group 

was taken at E18.5 as opposed to E17.5 used by the Treier group, giving an extra day 

for mature cells to emerge, and for hormone levels to build up to detectable levels. 

 

Wnt-4 is rapidly upregulated by oestrogen during uterine growth in mice, associated 

with activation of the canonical signalling pathway (Hou et al., 2004). Molecules 

associated with Wnt signalling, such as the Frizzled receptor, APC, β-Catenin and TCF 

are expressed in the developing mouse pituitary (Douglas et al., 2001), and β-Catenin 

has been shown to interact with Prop-1 to control cell fate determination of Pit-1 

derived cell lines in the developing pituitary (Olson et al., 2006).  

 

Evidence regarding the downstream effects of Wnt molecules in the adult pituitary is 

contentious. Semba et al (2001) found frequent nuclear accumulation of β-Catenin in 

57% of human pituitary adenomas studied (Semba et al., 2001). However, in a similar 

study using 54 human pituitary adenomas, Miyakoshi et al (2008) found that although 

Wnt-4 expression was increased in GH/TSH/PRL-omas, β-Catenin was restricted to 

the cell membrane and never found in the nucleus, suggesting a non-canonical action 

of Wnt-4 (Miyakoshi et al., 2008a). The same group also reported that Wnt-4 was 

specifically expressed in the majority of somatotrophs, and a few thyrotrophs in the 

untreated rat pituitary, and that oestrogen increased Wnt-4 expression in these cell 

types (Miyakoshi et al., 2009). The canonical inhibitor Wnt inhibitory factor 1 (WIF-1) 

was reported to be down-regulated in a series of human pituitary tumours which was 

associated with increased expression of the canonical target gene cyclin D1 
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Furthermore, transfection of GH3 cells with WIF-1 decreased cell proliferation 

suggesting a role for WIF-1 as a potential tumour suppressor (Elston et al., 2008).  

 

A number of Fz receptors have been implicated in the pituitary. Fz 6 is expressed in the 

pituitary and has been shown to interact with Wnt-4 in kidney cells (Miyakoshi et al., 

2008a). Fz 2 and Fz 5 have both been detected in the developing pituitary (Burns et al., 

2008; Douglas et al., 2001), while Fz 4 has been detected in the developing mouse 

brain and the adult mouse pituitary. Taken together, these data suggest Wnt-4 could be 

involved in oestrogen-induced prolactinoma development. 

 

 

1.12. Wnt-4 

 

Wnt-4 is a 39kDa molecule containing 25 conserved cysteine residues and 2 N-

glycosylation sites (Coudreuse and Korswagen, 2007). Wnt-4 plays important roles in 

the development of a number of organs. Wnt-4 knock out mice die within 24h of birth 

through renal failure (Stark et al., 1994) and exhibit poorly developed pituitary glands 

(as discussed in the previous section) (Treier et al., 1998). Wnt-4 plays a vital role in 

sex determination by preventing Leydig cell differentiation in the developing ovary (Yu 

et al., 2006), and Wnt-4 knock out male mice show partial female-male sex reversal 

(Vainio et al., 1999). Wnt-4 knock out mice also have poorly developed adrenal glands 

due to incomplete zona glomerulosa formation (Heikkila et al., 2002), and exhibit low 

numbers of thymocytes (Mulroy et al., 2002). 

 

Wnt-4 is generally considered a non-canonical Wnt due to its inability to transform C57 

MG mammary epithelial cells (Wong et al., 1994). Other examples of non-canonical 

Wnt-4 signalling include activation of PKC in axon guidance in the rat spinal chord 

(Wolf et al., 2008), activation of P38 and MAPK in mesanchymal stem cells (Chang et 

al., 2007) and regulation of milk duct side branching through β-Catenin independent 

pathways (Kim et al., 2009) 

 

However, Wnt-4 also activates the canonical pathway in a number of circumstances. 

Wnt-4 activation of β-Catenin controls cell growth and survival in MDCK cells through 

binding to Fz 6 (Lyons et al., 2004), maintains female germ cells in the foetal mouse 

ovary (Liu et al., 2010b), and regulates renal nephrogenesis in mouse (Park et al., 
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2007). As such, when studying the effect of Wnt-4, care must be taken to consider all 

Wnt signalling pathways. 

 

 

1.13. Project Aims 

 

This project aims to study the role of Wnt-4 in oestrogen-induced lactotroph 

hyperplasia. This will be sub-divided into 2 sections: 

 

1. Wnt-4 expression in the pituitary 

 

• Is Wnt-4 expressed in the pituitary, and in which cell types? 

• Is Wnt-4 upregulated by oestrogen in the pituitary? 

• Does Wnt-4 affect lactotroph proliferation? 

 

2. Wnt signalling pathway analysis 

 

• Does E2 or Wnt-4 activate canonical signalling in lactotroph cells? 

� Can lactotroph proliferation be altered by canonical pathway 

manipulation? 

• Does Wnt-4 activate calcium signalling in lactotroph cells? 

� Are calcium oscillations in lactotroph cells affected by Wnt-4? 

� Does Wnt-4 activate downstream calcium signalling pathways? 

• Does E2 activate PCP signalling in lactotroph cells? 

� Is the expression pattern of PCP proteins altered in pituitaries 

undergoing E2-induced lactotroph hyperplasia? 
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1.14. Models used 

 

1.14.1. GH3 cells 

 

GH3 cells are an immortal somatolactotroph cell line which can be used indefinitely in 

vitro. They produce PRL and proliferate in response to E2 treatment making them a 

useful model for studying E2-induced lactotroph hyperplasia. Importantly, they lack the 

dopamine receptor, the major regulatory control over PRL secretion and lactotroph 

proliferation, demonstrating a key difference between GH3 cells and real lactotrophs. 

More information regarding the expression of receptors in this cell line can be found in 

section 2.4.1.  

 

1.14.2. Fischer 344 rats 

 

The Fischer 344 originated through the breeding of #344 rats from a local breeder 

(Fischer) in 1920, and the rat strain was subsequently inbred at Columbia University. 

Fischer 344 rats are oestrogen sensitive and will develop prolactinomas in response to 

constant E2 treatment. The reason for their sensitivity to oestrogen is unknown, and 

therefore care must be taken when interpreting results. However, they provide an 

extremely useful model in which to study the proliferative effects of oestrogen in the 

pituitary. 

 

1.15. Hypothesis 

 

This thesis will assess the hypothesis that oestrogen increases expression of Wnt-4 

protein in lactotroph cells, and that Wnt-4 will mediate oestrogen-induced lactotroph 

hyperplasia by activation of either one, or a combination of, the 3 classical Wnt 

signalling pathways. This activation could underpin mechanisms causing prolactinoma 

development in humans. 
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2.0. Materials and Methods 
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2.1. Antibodies 

 

 
2.1.1. Primary antibodies  

 

Wnt-4 (Rabbit, 1:1000 for western blot and 1:50 for immunohistochemistry, SDI, 

Newark, DE), α-Tubulin (Mouse, 1:25000, Abcam, Cambridge UK), GH (Goat, 1:50, 

R&D Systems, Abingdon, UK), PRL (Mouse, 1:4000, Pierce, Rockford, IL), TSH 

(Guinea Pig, 1:100, NIDDK, Bethesda, MD), ACTH (Mouse, 1:200, Novocastra, Milton 

Keynes, UK), LH (Mouse, 1:1000, kindly donated by Dr.J.F Roser, University of 

California), R51 PRL (rabbit, 1:500, kindly donated by AS McNeilly, MRC Human 

Reproductive Sciences Unit, Edinburgh, UK), β-Catenin (mouse, 1:400, BD 

Transduction Laboratories, Oxford, UK), E-Cadherin (Mouse, 1:200, Transduction 

Laboratories), N-Cadherin (Mouse, 1:200, Transduction Laboratories) and Sox-9 

(Millipore, Billerica, MA). 

 

2.1.2. Secondary antibodies  

 

Donkey anti-rabbit HRP-conjugated (1:2000) and donkey anti-mouse HRP-conjugated 

(1:25000) (both from Santa Cruz, Heidelberg, Germany), donkey-anti rabbit Alexa Fluor 

546 (1:500) and mouse Alexa Fluor 488 (1:1000) (both from Invitrogen, Paisley, UK), 

donkey anti-goat anti-guinea pig FITC (1:64, Sigma, Dorset, UK), donkey anti-goat 

FITC (1:500, Santa Cruz) and donkey anti-rabbit Texas Red (1:500, Santa Cruz). 

 

 

2.2. Plasmids 

 

Super 8x TopFlash is a TCF reporter plasmid containing 8 TCF binding sites linked to a 

luciferase expression vector (Addgene, Cambridge, MA). Negative control comes in the 

form of Super 8x FopFlash (Addgene) which contains a point mutation in each of the 

TCF binding sites, preventing TCF binding, and transcription of luciferase. pNFAT-TA 

(termed pNFAT) is an NFAT reporter plasmid. Its negative control, pTA, contains the 

minimal TATA box promoter linked luciferase. pNFAT has the same TATA box 

promoter linked to luciferase, but with 3 additional NFAT binding sites (both were kind 
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gifts from Prof Ludwig Neyses, University of Manchester, UK). Mutant β-Catenin (mβ-

Cat) was a kind gift of Dr H. Clevers who developed the plasmid (Morin et al., 1997). It 

contains a point mutation rendering β-Catenin constitutively active. The mutation is a 

C98→A missense mutation which changes Ser33→Tyrosine. This prevents GSK-3β 

binding to β-Catenin and targeting it for degradation at the proteosome. This plasmid 

contains an ampicillin resistance gene and the neomycin phosphotransferase gene 

which allows for selection of cells containing the plasmid using the antibiotic G-418. 

 

In transient transfection experiments transfection efficiency was measured by co-

transfecting the above vectors with pRL-TK Renilla (Promega, Hampshire, UK). In this 

plasmid, the HSV-thymidine kinase promoter drives constitutive Renilla luciferase 

expression, providing a quantifiable internal control from which the luciferase value can 

be normalised. 

 

 

2.3. Primers 

 

PCR Name Primers PCR target

size in base pairs

β-Catenin F - 5' - TGACCTCATGGAGTTGGACA - 3' 621

R - 5' - CGGGCTGTTTCTACGTCATT  - 3'

Calcineurin F - 5' - CAGGGTGGTGAAAGCCGTTC - 3' 230

R - 5' - GGATGTCCCCGCAAACTGTG - 3'

Fz 2 F - 5' - TCTGGTGGGTGATTCTGTCC - 3' 413

R - 5' - GTAGCAGGCGATGACGATG - 3'

Fz 4 F - 5' - TGTGCTGACCTTCCTGATTG - 3' 280

R - 5' - TGCCAAAAACCAAGTGAGTG - 3'

Fz 5 F - 5' - CCCCATCATCTTCCTGTCTG - 3' 381

R - 5' - TTTTGGTTGCCCACATAACA - 3'

Fz 6 F - 5' - AGAAAATGGAGTTGCGAAGC - 3' 190

R - 5' - ACAGAGGCAGAAGGACGAAG - 3'

NFAT 1 F - 5' - ACGATGTGGAGGTGGAAGAC - 3' 152

R - 5' - GGACGCCTCAGAGTTACAGC - 3'

NFAT 2 F - 5' - CACCCAATGCTGGCCGAGTC - 3' 300

R - 5' - CTGCTGGCTGGCCGAGGAGG - 3'

NFAT 3 F - 5' - AGGTCAGCCTTCTTCCCATT - 3' 240

R - 5' - TGCCCTGTACTTTGTGCTTG - 3'

NFAT 4 F - 5' - GACTTTGCTCCCAGAGAACA - 3' 300

R - 5' - GATCCAGTCAACACTAGCTC - 3'
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2.4. Cell lines 

 

2.4.1. GH3 cells 

 

The GH3 cell line is a well characterised somatolactroph (producing both GH and PRL) 

cell line, established from a GH producing rat pituitary tumour (Bancroft et al., 1969). 

They do not produce other pituitary hormones such as TSH, LH, FSH or POMC. They 

do express a wide variety of receptors including the TRH receptor (Hinkle and 

Tashjian, Jr., 1973), galanin receptor (Kalkbrenner et al., 1995) and somatostatin 

receptor (Coleman and Bancroft, 1993) although they lack a functional dopamine 

receptor (Fischberg and Bancroft, 1995). They undergo proliferation in response to E2 

and are thus a useful tool for studying the effects of E2 on lactotrophs. 

 

2.4.2. Human Embryonic Kidney 293 (HEK 293) cells 

 

HEK 293 cells were isolated from a healthy aborted foetus, then transformed by 

adenovirus to produce an immortal cell line (Graham et al., 1977). They are not 

considered to be a reliable model of any animal cell type, but they are easy to culture 

and manipulate making them a very useful tool for molecular biologists.  

 

2.4.3. NIH 3T3 cells expressing Wnt-4 

 

NIH 3T3 cells originate from mouse embryonic fibroblast cells which were continuously 

cultured until they spontaneously became immortalised (TODARO and GREEN, 1963). 

A Wnt-4 expression vector was stably transfected into NIH-3T3 cells, using the 

cytomegalovirus (CMV) promoter to drive constitutive expression of Wnt-4 (Kispert et 

al., 1998). 
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2.4.4. LMTK- cells expressing Wnt-3a 

 

LMTK cells are a thymadine kinase-deficient mouse fibroblast cell line initially derived 

by Kit et al (1963). Cells were stably transfected with Wnt-3a expression vector driven 

by the CMV promoter (ATCC) (KIT et al., 1963). 

 

 

2.5. Rats 

 

Fischer 344 rats were obtained from Harlan (Indiana, IN) and were subsequently bred 

under project licence PPL40\2691. Rats were housed according to home office 

guidelines and killed by a schedule 1 method.  

 

Fischer 344 rats are an inbred, albino strain of rat. A high proportion of rats develop 

pituitary adenomas in late age (36% in females, 24% in males). They are E2 sensitive, 

and continuous treatment with E2 for roughly three weeks results in proliferation of the 

lactotroph population. Continued treatment with E2 results in the development of 

prolactinomas (Harlan Laboratories F344 datasheet, 2008; Steinmetz et al., 1997).    

 

 

2.6. Cell Culture 

 

2.6.1. Cell lines 

 

2.6.1.1. General cell culture technique 

 

All procedures were carried out in a Labcaire lamina flow hood to maintain sterility. Any 

equipment or reagents used in the hood were sterilised by spraying with 70% industrial 

methylated spirit (IMS) before being taken into the hood. Cells were grown in 10ml 

culture medium - Phenol Red free Dulbecco’s Modified Eagles Medium (DMEM) 

supplemented with 1g/l glucose (Gibco, UK), 10% Foetal Bovine Serum (FBS) (Gibco) 

and 1% Glutamax (Gibco). Cells were grown at 37°C and 5% CO2 in T75 vented flasks 
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(Corning, Amsterdam, The Netherlands). Regular visual checks were carried out to 

check viability of cells using an inverted phase contrast microscope. 

 

2.6.1.2. Thawing cells from liquid nitrogen stores 

 

Cells were removed from liquid nitrogen storage and thawed at 37°C in a water bath. 

Thawing was carried out as quickly as possible to prevent damage to the cell 

membrane. Once thawed, 10ml of culture medium was added drop-wise to the cells. 

Cells were centrifuged at 1200rpm for 5 minutes, before being re-suspended in 10ml 

culture medium, and then transferred to a T75 flask and incubated as previously 

described. 

 

2.6.1.3. Splitting cells 

 

At 90% confluence, media was removed from cells and cells were washed with 10ml 

PBS. For a T75 flask, 1ml 1x Trypsin/EDTA (Lonza, Slough, UK) was added to cells. 

The flask was incubated at 37°C and 5% CO2 for 5 minutes until cells were detached 

from the flask surface. The reaction was stopped by addition of 5ml culture medium, 

then cells were centrifuged at 1200rpm for 5 minutes. Cells were resuspended in 10ml 

culture medium and multiple pipetting of the cell solution was carried out to break up 

cell clumps. For passaging of cells, resuspended cells were split into new T75 flasks at 

1:5 dilutions of culture medium. Where required, resuspended cells were counted using 

a haemocytometer (Electron Microscopy Sciences, Hatfield PA) and diluted to the 

appropriate concentration. 

 

2.6.1.4. Cryogenic Freezing of cells 

 

At 90% confluence, cells were trypsinised and spun down as described previously. 

Cells were resuspended in 3ml freezing medium consisting of 50% FBS, 40% culture 

medium, 10% Dimethyl sulphoxide (DMSO) (Sigma). 1ml volumes of freezing 

media/cell solution were put in 2ml cryotubes and placed in a cryo-freezing container 

(Nalgene, Roskilde, Denmark) at -80°C for 24 hours. Cells were then stored in liquid 

nitrogen. 
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2.6.2. Rat primary cell culture  

 

2.6.2.1. General technique 

 

As with cell lines, all work was carried out in a Labcaire lamina flow hood and any 

equipment or reagents used in the hood were sterilised by spraying with 70% industrial 

methylated spirit (IMS) before being taken into the hood. Importantly, a different hood 

was used to that in which culture of cell lines was carried out to avoid contamination. 

Primary cells do not adhere to culture vessels as well as cell lines do. Therefore, 

whenever primary cultures were used, the surface to which they bound was treated 

with Poly-L-Lysine (Sigma), which is a small polypeptide containing roughly 25 L-

Lysine residues. In water, this is positively charged which allows cell surface IgG’s to 

bind more strongly to the culture surface. A suitable volume of Poly-L-Lysine was 

added to totally cover the culture surface (e.g. 200µl for a 24 well plate) and was 

incubated for 15 minutes. The surface was then washed 3 times with sterile PBS and 

left to dry in the hood. 

 

2.6.2.2. Generation of cultures of dispersed pituitary cells 

 

Fischer 344 rats were killed by schedule 1 method, pituitaries were removed and 

placed in PBS. Pituitaries were placed on a 10cm dish in 40µl per pituitary of 0.1% 

trypsin and 0.3% bovine serum albumin (BSA) (Sigma) in phenol red-free DMEM 

supplemented with 4.5g/l glucose: Nutrient Mixture F12 (DMEM/F12) (Gibco). 

Pituitaries were cut into small pieces with scalpel blades for 3 minutes. Tissue was 

removed and placed in a 15ml falcon tube, the dish was washed with a further 80µl per 

pituitary of 0.1% trypsin and 0.3% BSA in DMEM/F12 which was then added to the 

tissue in the tube. The tube was then placed in a water bath at 37°C for 30 minutes and 

shaken every 10 minutes to break up cells. 120µl per pituitary of 0.1% trypsin, 0.3% 

BSA and 0.2% Deoxyribonuclease 1 (Sigma) was then added to the tube, which was 

then placed back into the water bath for a further 15 minutes. The tube was centrifuged 

at 1200 rpm for 5 minutes and the supernatant carefully removed. Calcium was 

removed from the cells to inhibit calcium-dependent adhesion molecules (cadherins) 

and further disperse cells by re-suspending the pellet in 2ml of 2mM EGTA in Hanks 

Balanced Salt Solution (HBSS) (Gibco). Tissue was centrifuged at 1200rpm for 5 
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minutes before tissue was resuspended in 2ml of 1mM EGTA in HBSS. Tissue was 

centrifuged at 1200rpm for 5 minutes before tissue was re-suspended in 2ml of EGTA-

free HBSS. Tissue was centrifuged at 1200rpm for 5 minutes before tissue was re-

suspended in 2ml of primary culture medium - DMEM/F12 supplemented with 1% 

Glutamax (Gibco), 1µg/ml penicillin/streptomycin (Lonza) and 10% FBS. Further 

dissociation of tissue was carried out by multiple pipetting, then cells were passed 

through a 40µm cell strainer, counted with a haemocytometer and seeded at 

appropriate densities in primary culture medium. Cells were allowed to settle for 48 

hours before starvation. 

 

2.6.2.3. Generation of live pituitary slices 

 

Fischer 344 rats were killed by schedule 1 method, pituitaries were removed and 

placed in PBS. For each pituitary, 10ml of 2% Type IX-A, Ultra-low Gelling 

Temperature Agarose (Sigma) was made up and stored in liquid form at 37°C.  

 

5ml syringes had their nozzle ends cut off, and plunger pulled out so that the syringes 

were empty. The syringes were inverted and packed in ice. When ready, liquid agarose 

was poured into the syringes, and as it cooled and set, the pituitaries were placed in 

the gel. Manipulation of pituitaries was carried out using tweezers to ensure that the 

pituitaries were not touching the sides of the syringes when the gel fully set. Pituitaries 

were left for 30 minutes to allow gel to fully set. When ready, the plungers were pushed 

in so that the gel containing the pituitary was expelled from the syringe. The gel was 

mounted on a metal base with superglue and sliced in a coronal axis on an Integraslice 

7550MM vibratome machine at a frequency of 70Hz, speed of 3mm/s and thickness of 

300µm. Slices were placed in primary culture medium and stored in the incubator until 

required. 

 

2.6.3. Starving cells/pituitary slices 

 

Cells (both cell lines or primary cells) and slices must be starved in serum free medium 

before an experiment, as steroids or growth factors present in culture medium can 

affect experimental conditions. Cells/slices were washed in PBS before addition of 

starving medium. Cell lines were either starved in DMEM supplemented with 1g/l 

glucose, 1% Glutamax and 5% BSA, or DMEM supplemented with 1g/l glucose, 1% 
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Glutamax and 10% Dextran-Charcoal treated FBS (DCT-FBS) (Perbio Scientific, 

Nothumberland, UK) as indicated. DCT-FBS is high quality FBS which has been 

filtered through carbon-absorbant charcoal filters to remove non-polar material such as 

hormones, steroids and growth factors.  It still retains low levels of growth factors which 

were necessary to maintain cell viability in experiments over long durations. Importantly 

however, estradiol is virtually absent after filtration rendering DCT-FBS a suitable 

starving medium for experiments studying the effects of oestrogen. Primary cell 

cultures were starved in either DMEM/F12 supplemented with 1% Glutamax, 1µg/ml 

penicillin/streptomycin and 5% BSA or DMEM/F12 supplemented with 1% Glutamax, 

1µg/ml penicillin/streptomycin and 10% DCT-FBS. Pituitary slices were always starved 

in DMEM/F12 supplemented with 1% Glutamax, 1µg/ml penicillin/streptomycin and 

10% DCT-FBS. Cells/slices were left in starving medium for 24h before stimulation. 

 

2.6.4. Stimulating cells/pituitary slices 

 

After 24h starvation, starving medium was removed from cells/slices and stimulation 

media was added as defined for each experiment. Cells/slices were then placed back 

in the incubator for the defined time points for that experiment. 

 

 

2.7. Transfection studies 

 

DNA can be deliberately introduced into cells via the process of transfection. This 

process can be transient where the foreign DNA does not enter the host cells genome, 

and is subsequently diluted out by mitosis, or stable where the foreign DNA 

incorporates permanently into the host cell genome. This incorporation is random and 

only a few cells will take up the DNA. In stable transfections, the transfected DNA must 

include a selection gene giving any cell that incorporates the DNA into its genome 

resistance to a particular selection agent. Only the cells which have incorporated the 

DNA into their genome will have resistance, and these cells will then proliferate 

generating a cell population containing the plasmid of interest. In this thesis, all 

transfections were carried out using the lipid based transfection reagent Fugene 6 

(Roche, Burgess Hill, UK). In this protocol, positively charged lipid vesicles are bound 

by free DNA outside the cell. These vesicles bind to and interact with lipid structures in 
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the cell membrane allowing incorporation of foreign DNA through the lipid bilayer into 

the cell.  

 

2.7.1. Transient transfections and luciferase expression assays 

 

HEK 293 and GH3 cells were seeded at appropriate densities (see below) in sterile, 

white, 96 well plates in 100µl culture medium. GH3 cells were plated at 1x104 cells per 

well and were transfected with 0.1µg/well of each plasmid with a Fugene:DNA ratio of 

3:1. HEK 293 cells were plated at 5x103 cells per well, with 0.05µl/well of test plasmid 

and 0.01µg/well of Renilla at a Fugene:DNA ratio of 6:1. These conditions result in 

relatively similar transfection efficiencies between the cell lines as judged by Renilla 

luciferase expression readout. Transfection media was made up in DMEM 

supplemented with 1g/L glucose and 1% Glutamax. 20µl transfection medium was then 

added to each well directly into the usual culture medium containing FBS. Cells were 

left for 24 hours in the incubator for transfection to occur, cells were then starved and 

stimulated as required in the normal manner. After appropriate stimulation, the volume 

in each well was reduced to 50µl, and luminescence was measured using the Dual 

Glo-Luciferase Assay System (Promega) according to manufacturer’s instructions. 

Briefly, 50µl luciferase reagent was added to each well which first lyses cells and then 

acts as a substrate for firefly luciferase. Luminescence was detected using a Mithras 

LB 940 luminometer (Berthold Technologies, Hertfordshire, UK). Next, 50µl Stop and 

Glo reagent was added to each well which quenches the firefly luciferase signal by up 

to 10000 times, and subsequently provides a substrate for Renilla luciferase which was 

read on the luminometer. 

 

 

2.7.2. Stable transfection of GH3 cells with mutant β-Catenin (mβ-Cat) 

expression vector 

 

2.7.2.1. Amplification of mβ-Cat plasmid 

 

mβ-Cat is a plasmid expressing a constitutively active form of β-Catenin and was kindly 

donated by Dr H. Clevers. mβ-Cat was used to transform E.Coli (Sigma). Briefly, 1µg 

plasmid was added to 30µl competent E.Coli and incubated on ice for 30 mins. E.Coli 
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were heat shocked for 1 minute at 42°C, before being streaked on an ampicillin 

resistance agar gel which selects for bacteria containing the plasmid. E.Coli were 

grown at 37°C overnight, then a colony was picked and placed in 2 ml LB solution (1% 

Bacto-tryptone, 0.5% yeast extract and 1% NaCl) containing 100µg/ml ampicillin  and 

shaken for 8 hours at 37°C. 200µl of bacteria solution was removed and placed in 

200ml LB solution containing 100µg/ml ampicillin, and was shaken overnight at 37°C. 

mβ-Cat was then purified from E.Coli population using the Quiagen Maxi Prep kit 

(Qiagen, Hilden, Germany) according to manufactures instructions. 

 

2.7.2.2. Linearisation of mβ-Cat 

 

The mutant β-Catenin plasmid is a circular DNA fragment. In order for it to integrate 

into the GH3 genome it must be cut into a linear form which can then enter into the 

host DNA sequence. If this cut was left to chance it is possible that the cut could occur 

within mβ-Cat or G-418 resistance regions, rendering the transfection useless. As 

such, the plasmid was deliberately cut using the restriction enzyme Sma 1 (Roche) at 

base pair 1127 of the pCL-Neo vector (Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Plasmid map of mutant β-Catenin vector. Mutant β-Catenin was inserted into the 

multiple cloning region of pCL-neo backbone vector at XhoI and XbaI sites. For linearization, 

plasmid was cut at the SmaI site – bp 1127. 
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Briefly, 20µg plasmid, 20µl 10x Recommended SuRE/Cut Buffer A (Roche) 8µl SMA I 

(Roche) and 139.8µl sterile H2O were incubated overnight at 25°C. The reaction was 

then terminated by heating the sample to 65°C for 20 minutes. To purify DNA, 300µl 

100% ethanol was added and solution was placed at -20°C for 1 hour. Solution was 

centrifuged at 13000g for 10 minutes to form a DNA pellet. Supernatant was carefully 

removed and pellet was washed in 500µl 70% ethanol, before centrifugation at 13000g 

for 10 minutes. Supernatant was carefully removed, then sample was allowed to air dry 

on the bench to ensure total evaporation of ethanol. 40µl ultrapure water was added to 

the pellet which was left on the bench overnight to dissolve. DNA concentration was 

measured by nanodrop. 

 

2.7.2.3. Stable transfection and generation of clonal cell lines 

 

GH3 cells were plated at 5x105 cells per well in a 6 well plate in 2ml culture medium. 

Cells were transfected with Fugene 6 with a Fugene:DNA ratio of 3:1 and 6µl Fugene 

per well (therefore 2µg DNA per well). Transfection medium was made up to 100µl with 

DMEM supplemented with 1g/L glucose and 1% Glutamax, and added dropwise to 

cells to ensure mixing before cells were placed overnight in the incubator. Medium was 

removed and replaced with standard culture medium supplemented with 600µg/ml G-

418 to select for cells containing the plasmid. From then on, these cells were always 

grown in standard culture medium supplemented with 600µg/ml G-418 (mβ-Cat 

medium). Medium was replaced every 3-4 days for 2-3 weeks until stably transfected 

cells had been selected for and were proliferating in distinct colonies. At this point, the 

cell population was hetrogenous as the insertion site of mβ-Cat plasmid into the host 

genome is random and would be different for every transfected cell. In order to obtain 

homogenous cell lines, cells were trypsinised and plated at varying low densities in 

10cm dishes and stored in the incubator. Low density plating results in viable cells 

growing large distances apart allowing for easier selection. Individual cells were 

allowed to proliferate into colonies which were then removed using a sterile pipette tip, 

and placed in a 24 well plate in 100µl mβ-Cat medium. After another week, colonies 

which had been transferred successfully and which were proliferating in distinct 

colonies were trypsinised and transferred into T-25 flasks. Populations were grown up, 

transferred into T-75 flasks and then frozen down and stored in liquid nitrogen. 3 clonal 

cell lines containing the plasmid were generated, termed mβ-Cat 2/3/4. 
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2.8. Immunofluorescence studies 

 

Immunofluorescence work was carried out on either dispersed cells 

(immunocytochemistry) or on tissue slices (immunohistochemistry). The staining 

protocol was similar between the two processes. 

 

2.8.1. Preparation of cells for immunocytochemistry 

 

Primary cells or cell lines were plated and stimulated as previously described. The only 

addition to the protocol was that cells were seeded on top of a 7mm glass coverslip 

(Poly-L-Lysine treated in the case of primary cultures) in 24 well plates. Cover slips 

were sterilised in 70% IMS for a minimum of 4 hours before being placed in the wells 

and left overnight in the hood to thoroughly dry off. After stimulation, cells were washed 

twice with cold PBS and then fixed in 4% paraformaldehyde (PFA) for 15 minutes at 

4°C. PFA is a cross linking molecule which forms intermolecular bridges through free 

amino groups. This process preserves subcellular morphology and immobilizes 

antigens within the cell, while allowing free access of antibodies to all cellular 

components. Cells were then washed 3 times in PBS before being stored in 70% 

ethanol until required 

 

2.8.2. Preparation of tissue slices for immunohistochemistry 

 

Rats were killed, pituitaries were dissected out and stored in PBS. Pituitaries were then 

fixed in 4% PFA for 2 hours at room temperature. Pituitaries were washed twice in PBS 

before being stored in 70% ethanol. Paraffin is immiscible with water so tissue samples 

must be thoroughly dehydrated by treatment with increasing concentrations of ethanol. 

Afterwards, xylene is used as a clearing agent to remove ethanol, and samples are 

placed in molten paraffin wax which infiltrates the sample and replaces the xylene. This 

process was carried out in a tissue processor on the following cycle: 
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70% Ethanol – 2.5 hours 

70% Ethanol – 1 hour 

90% Ethanol – 1 hour 

95% Ethanol – 1 hour 

100% Ethanol – 3 cycles, 1 hour each 

Xylene – 0.5 hours 

Xylene – 2cycles, 1 hour each 

Wax – 2 hour 

Wax – 3 hour 

 

Tissue was then sliced at 5µm using a microtome, and slices were placed in a 42°C 

water bath so that the slices spread out flat on the surface of the water. Slices were 

then mounted on slides and allowed to dry overnight at 37°C. Wax was then removed 

by washing with xylene before rehydration of tissue in decreasing concentrations of 

ethanol as follows: 

 

Xylene – 5 minutes 

Xylene – 5 minutes 

Dip into 100% ethanol 

100% Ethanol – 3 minutes 

90% Ethanol – 3 minutes 

70% Ethanol – 3 minutes 

 

Antigen retrieval was then carried out by boiling samples in 0.01M sodium citrate buffer 

(pH6) for 20 minutes. This breaks formalin induced protein cross-links from the fixation 

process, which can then expose previously hidden antigen binding sites and enhance 

staining intensity of antibodies. Slices were then washed twice in PBS. 

 

2.8.3. Staining protocol 

 

From this point onwards the protocols were the same for both immunocytochemistry 

and immunohistochemistry. Samples were blocked for 1 hour in PBS with 20% donkey 

serum and 5% BSA. Blocking reduces background staining as proteins in the blocking 

buffer occupy free protein binding sites on the sample not specific to the antibodies 

used. The first primary antibody was diluted to the appropriate concentration in 

blocking buffer and added to samples overnight at 4°C. Samples were washed 3x10 



 70

minutes in PBS before addition of the 1st secondary antibody diluted in PBS for 2h at 

room temperature. From this point the protocol was carried out in the dark to prevent 

photo-bleaching of secondary antibodies. Samples were washed 3x10 minutes and 

blocking buffer was added again for 1h at room temperature. The second primary 

antibody was then added overnight at 4°C. Samples were washed 3x10 minutes before 

the second secondary was added for 2h at room temperature. Samples were washed 

3x10 minutes before being treated with 4',6-Diamidino-2-phenylindole (DAPI - 

0.1µg/ml, Sigma) for 15 minutes at room temperature. DAPI is a blue fluorescent 

nucleic acid stain which binds to AT clusters in the minor groove of double stranded 

DNA and is therefore used to identify nuclei. Samples were washed 3x10 minutes, and 

then mounted for analysis in Permafluor (Thermo Scientific, Cheshire, UK).  Images 

were collected using a Nikon C1 confocal microscope (Bioimaging Facility, Faculty of 

Life Sciences, University of Manchester). 

 

 

2.9. Western Blotting 

 

2.9.1. Generation of lysates 

 

Protein lysates were either generated from cultures of dispersed cells or from live 

pituitary slices. All steps in lysate generation were carried out at 4°C.  

 

2.9.1.1. Preparation of lysates from dispersed cells 

 

Cells were grown in 6 well plates and stimulated as previously described. Cells were 

washed twice in PBS before addition of 200µl/well of RIPA buffer (50mµ Tris HCl, 

150mM NaCl, 1% NP-40, 0.5% sodium doexycholate and 0.1% SDS in H2O). Protease 

inhibitors were also added to RIPA buffer as when cells are disrupted, they release 

proteases which degrade protein. 1 tablet of Complete, Mini, EDTA free, protease 

inhibitor cocktail (Roche) was dissolved in every 10ml RIPA buffer just prior to lysis. 

Cells were scrapped with a sterile cell scraper and the lysate was transferred to an 

eppendorf and rotated for 30 minutes. Lysate was centrifuged at 12000g for 10 minutes 

and the supernatant removed and stored at -80°C. 
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2.9.1.2. Preparation of lysates from live pituitary tissue 

 

After stimulation, slices were washed twice in PBS. Slices were transferred into an 

eppendorf containing 75µl per pituitary slice of RIPA buffer containing protease 

inhibitors. Slices were then broken up by being passed 20 times through a 25 gauge 

syringe needle before being rotated for 30 minutes. Lysate was centrifuged at 12000g 

for 10 minutes and the supernatant removed and stored at -80°C. 

 

2.9.2. Protein assay 

 

The protein level of the lysates was measured using the Dc protein assay (Biorad, 

Hemel Hempstead, UK) according to manufacturer’s instructions. In the assay, an 

acidic dye is added to the protein solution which undergoes a differential colour change 

based upon the protein concentration. Protein standards at 0.4, 0.8, 1.2 and 1.6mg/ml 

BSA were made up and run alongside samples. A standard curve was drawn from the 

premade standards which could then be extrapolated to determine the protein 

concentration in the samples.  

 

2.9.3. Western blotting 

 

Equal amounts of protein (generally 10-20µg/lane) were mixed with 5x laemmli buffer 

(60 mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.01% 

bromophenol blue) and heated to 95°C for 5 minutes. The SDS and heating denatures 

proteins allowing them to separate based more on size than shape. SDS also binds to 

regular positive charges on the proteins giving the protein an overall negative charge 

ensuring proteins migrate at a similar rate. Glycerol makes the sample denser so that it 

sinks to the bottom of the lane, while bromophenol blue acts as a marker of migration, 

travelling just ahead of the protein. Samples were then separated through an SDS-10% 

polyacrylamide gel (30% Bis/acrylamide, 1.5M Tris-HCl pH 8.8, 10% SDS, 10% APS, 

0.1% Temed) before being transferred onto nitrocellulose membrane using methanol 

transfer buffer (25mM Tris, 200mM glycine, 10% methanol). Membranes were blocked 

for 1 hour at room temperature in blocking buffer; 0.05% Tris-Buffered Saline Tween-

20 (TBST) (150mM NaCl, 2mM KCl, 25mM Tris Base, 0.05% Tween-20) with 5% non-

fat dry milk (NTDM). The membrane was exposed to primary antibody diluted in 
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blocking buffer, and rocked overnight at 4°C. The membrane was washed 3 x 10 

minutes in TBST, then a horseradish peroxidise (HRP) conjugated secondary antibody 

was added. The membrane was rocked for 1.5 hours at room temperature before 3 x 

10 minutes washes in TBST. The membrane was treated with EZ-ECL reagent (Pierce) 

which contains p-iodophenol. This enhances the reaction by which HRP oxidises 

luminol to 3-aminophthalate, and light is emitted as a bi-product of the reaction. This 

light was detected using BioMax XR Film (Kodak, Hemel Hempstead, UK) using a 

Compact x 2 Automatic Film Processor (X-ograph Ltd, Gloucestershire, UK). 

 

 

2.10. Proliferation assays 

 

Cells were seeded in clear, 96 well plates and stimulated as previously described. To 

measure cell number, 15µl of CellTiter 96® AQueous One Solution Cell Proliferation 

Assay (Promega) was added to 100µl medium in each well. The plate was then 

returned incubated at 37°C and 5% CO2 for 2 hours. The MTS solution contains a 

tetrazolium compound which is bioreduced by metabolically active cells to produce a 

coloured product. The depth of colour is directly proportional to the number of cells in 

each well, and measuring the absorbance at 490nm therefore gives information on the 

relative proportions of cells between wells. 

 

 

2.11. Reverse Transcriptase - Polymerase chain 

reaction (RT-PCR) 

2.11.1. PCR templates 

 

In this thesis, PCR was carried out on either complementary DNA (cDNA) generated 

from mRNA isolated from cells, genomic DNA or plasmid preparation. 
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2.11.1.1. Generation of cDNA 

 

Cells were cultured and stimulated according to experimental design. Cells were lysed 

and mRNA was isolated using RNeasy Mini Kit (Quiagen) according to manufacturer’s 

instructions. Briefly cells were lysed and homogenised, and lysate was then added in a 

high-salt buffer system to the RNeasy silica membrane. mRNA binds to the membrane, 

contaminants were washed away and mRNA was eluted in water. When handling RNA, 

all equipment and surrounding bench space was cleaned with RNase Away (Sigma) to 

prevent degradation of RNA by RNases. mRNA was then converted to cDNA using the 

Transcriptor High Fidelity cDNA Synthesis Kit (Roche) according to manufacturer’s 

instructions. This kit contains recombinant reverse transcriptase to transcribe mRNA 

into cDNA, as well as proofreading enzymes to ensure accurate cDNA synthesis. 

 

2.11.1.2. Isolation of genomic DNA 

 

2x106 cells were isolated and lysed overnight at 55°C in 300µl DNA extraction buffer 

(300mM NaCl, 10mM Tris HCl pH8, 0.5% SDS, 5mM EDTA). Proteinase K was added 

overnight at 150µg/ml to digest protein and isolate DNA. Protein was then washed 

away by adding NaCl to a final concentration greater than 2M. Sample was shaken for 

5 minutes, centrifuged at 13000rpm for 10 minutes, and supernatant was decanted into 

a fresh eppendorph. 250µl isopropanol was added and mixed thoroughly, and then the 

sample was incubated at -20°C for 2 hours to precipitate DNA. Sample was centrifuged 

at 13000rpm for 10 minutes and supernatant carefully removed. The pellet was washed 

in 500µl 70% ethanol and centrifuged again at 13000rpm for 10 minutes. Supernatant 

was removed and the pellet was allowed to air dry thoroughly to ensure removal of all 

the ethanol. The pellet was then re-suspended in sterile H2O and left overnight on the 

bench to dissolve. The amount of DNA present was then quantified using a nanodrop. 

 

2.11.1.3. Plasmid template preparation 

 

mβ-Cat plasmid was used as a PCR template - see section 2.7.2.1. 
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2.11.2. PCR reaction 

 

PCR was carried out using Biotaq DNA Polymerase Kit (Bioline, London, UK) 

according to manufacturer’s instructions in a TC-512 PCR machine (Techne, 

Staffordshire, UK). 50ng DNA template was used for each reaction. The following basic 

program was used with annealing time and number of repeats of the cycle being 

determined for each pair of primers: 

 

Initial denaturation – 94°C for 5 mins 

 

Denaturation – 94°C for 30 secs 

Annealing – x°C for 30 secs                         Repeat y number of times 

Extension – 72°C for 1 min 

 

Final extension – 72°C for 5 mins 

 

2.11.3. Sequencing of PCR product 

 

After PCR, sample was run on a gel to make sure the DNA product was clean. DNA 

was purified from the PCR reaction using the QIAquick PCR Purification Kit (Quiagen) 

according to manufacturers instructions and DNA was quantified. Briefly sample was 

subjected to high salt concentrations and through a silica membrane to which DNA 

binds and impurities pass through. DNA was then eluted in water and DNA 

quantification was carried out. For each sequencing reaction, 4pM of primer and 30ng 

DNA were mixed in a final volume of 10µl sterile H2O. Sequencing was carried out with 

the assistance of the University of Manchester DNA Sequencing Facility using a 3730 

DNA Analyzer (Applied Biosystems, Carlsbad, CA) and the sequence produced was 

analysed using Chromas Lite software. 

 

 

2.12. Live cell calcium imaging 

 

GH3 cells were seeded in glass bottom dishes (Iwaki, Japan) and left to settle for 24 

hours. Cells were loaded with Fluo-4 calcium dye (Invitrogen) for 30 minutes, and then 
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the dish was transferred onto the stage of a Zeiss Axiovert 200 microscope with an 

attached XL incubator (humid conditions, 37oC, 5% CO2). Fluo-4 fluoresces upon 

binding to calcium and therefore the intensity of fluorescence coming from a single cell 

at any one time gives an indication of the intracellular concentration of calcium within 

that cell. Cells were either stimulated with vehicle (DCT-FBS), Wnt-4 recombinant 

protein (Novus Biologicals, Littleton, CO) or Bay-K-8644 (Sigma) which is an L-type 

calcium channel agonist, causing calcium influx into cells. Images were taken every 3 

seconds, areas of interest were drawn around fluorescent cells and mean intensity 

throughout the experiment was calculated using Kinetic Imaging AQM6 software 

(Andor, UK). 

 

Calcium oscillations are extremely sensitive and can be influenced by numerous 

external factors such as temperature and movement. It is vital when performing live cell 

calcium imaging to ensure that the physical transition between stimuli does not affect 

calcium oscillations. In an attempt to reduce any effect of stimulus addition, cells were 

mounted on a microscope stage that was enclosed within an incubator maintained in 

humid conditions at 37oC and 5% CO2. Stimuli added were kept at 37°C and were 

added in a concentrated form so that a relatively small volume could be added to the 

well to reduce flow movement caused by addition of new fluid. In all cases, 2ml 

medium was initially placed in the well, and 100µl of concentrated stimulus was 

carefully pipetted into the well at the appropriate time. 

 

 

2.13. Flow cytometry 

 

2.13.1. Cell cycle analysis 

 

GH3 cells were seeded and cultured as previously described. Cells were trypsinised, 

and 1x106 cells were resuspended in 200µl ice cold PBS. 2ml ice cold ethanol was 

then added to cells whilst vortexing, then cells were left for 2h at 4°C. Cells were 

centrifuged at 400g for 10 minutes, ethanol was removed and cells were resuspended 

in 400µl PBS. RNAse was added to a final concentration of 100µg/ml and propidium 

iodide was added to a final concentration of 40µg/ml. Cells were incubated for 30 

minutes at 37°C, then analysed using a 613/20nm band pass filter on a Beckman 

Coulter Cyan ADP 220 using Summit V. 4.3 software. 
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2.13.2. Production of FACS enriched lactotroph population 

 

Rat pituitaries were harvested and dissected as described previously. Cells were 

incubated in culture medium at 2x106 cells/ml at 37°C for 2 hours. Cells were washed 

twice by centrifuging for 1500rpm for 5 minutes, then resuspending the pellet in 1ml 

wash buffer (EBSS with 25mM Hepes, pH= 7.4, with 4mg/ml BSA). Cells were sorted 

using forward scatter and side scatter on a BD Biosciences FACS Aria, and two 

populations were sorted and isolated. Cells were then plated at required density for 

further experimental use. 
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3.0. Results - Wnt-4 expression 

and regulation in the pituitary 
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3.1. Introduction 

 

Prolactinomas represent approximately 60% of all pituitary tumours in man (Gurlek et 

al., 2007b). They result from abnormal lactotroph cell proliferation, but they usually 

display only very slow growth, and the pathogenesis of prolactinoma formation and 

progression has remained elusive. Classical oncogenic mechanisms seem unlikely to 

be involved in most cases, and none of the common genetic mutations causing cancer 

have been found to operate in prolactinomas so far (Levy, 2008). A number of genes 

have been implicated in pituitary adenoma development (e.g. PTTG, VEGF, gsp) 

however the origins of many tumours are still unknown. 

 

Oestrogen has long been known to exert a proliferative effect on the lactotroph 

population. High circulating oestrogen levels during pregnancy result in lactotroph 

hyperplasia, pituitary enlargement and increased circulating PRL levels (Melmed, 

2003). The effects of E2 on lactotroph proliferation can be studied in vivo using the 

oestrogen-sensitive Fischer 344 rat. In this model, lactotroph hyperplasia, and eventual 

prolactinoma formation, can be induced by treatment with oestrogen or the synthetic 

oestrogen diethylstilbestrol (DES) (Heaney et al., 1999; Mucha et al., 2007). 

 

In previous work from our group, microarray analysis was carried out on pituitaries 

undergoing oestrogen-induced lactotroph hyperplasia in an attempt to identify novel 

genes that may be involved in pituitary adenoma development. Amongst several genes 

whose regulation was found to be altered, we detected upregulation of the 

developmental protein Wnt-4. 

 

Wnts exert diverse effects on cells and tissues by driving proliferation, differentiation, 

apoptosis and cell survival (Willert and Jones, 2006). They play key roles in the 

development of a number of systems and organs, and have been repeatedly implicated 

in tumour growth and cancer progression (Kikuchi and Yamamoto, 2008).  

 

Wnt-4 has been implicated in pituitary organogenesis, as knock out of Wnt-4 results in 

decreased numbers of Pit-1 derived cell lineages (somatotrophs, lactotrophs and 

thyrotrophs) in mice (Potok et al., 2008; Treier et al., 1998). Wnt-4 is also expressed in 

the adult pituitary, and was upregulated by oestrogen treatment (Miyakoshi et al., 

2009). Furthermore, Wnt-4 was upregulated in prolactinomas, as well as other types of 
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functioning pituitary adenoma (Miyakoshi et al., 2008a). Taken together, these data 

suggest that Wnt-4 is a good candidate for the mediation of oestrogen-induced 

lactotroph hyperplasia and prolactinoma development. 

 

 

3.2. Aims 

 

The aims of this chapter are as follows: 

 

• To induce lactotroph hyperplasia in Fischer 344 rats by oestrogen treatment.  

o This will provide a useful, in vivo model in which to study the effects of 

oestrogen on the pituitary, and will be used throughout this thesis 

• To assess which cells in the pituitary express Wnt-4: 

o Is Wnt-4 expressed in GH3 cells? 

o Is Wnt-4 expressed in primary lactotrophs?  

o Do other cell types in the pituitary express Wnt-4? 

o Is the distribution of Wnt-4 in the pituitary altered by oestrogen 

treatment? 

• To assess whether Wnt-4 is upregulated in the pituitary in response to 

oestrogen 

• To assess which Frizzled receptors are present on lactotroph cells 

• To assess whether Wnt-4 has a proliferative effect on GH3 cells 
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3.3. Oestrogen treatment of Fischer 344 rats induces 

pituitary hyperplasia and lactotroph proliferation 

 

To study the effects of oestrogen on lactotroph hyperplasia, Fischer 344 rats were 

treated with E2 for 3 weeks. Rats were implanted with mini-osmotic pumps calibrated 

to deliver E2 at a rate of 125µg/kg/day. In similar studies, a delivery rate of 10-

20µg/kg/day is generally used to replicate physiological levels of E2 in ovariectomised 

rats. As such, the dose administered in our study represents a supraphysiological dose 

which aims to induce lactotroph hyperplasia.  

 

After treatment, rats were killed and pituitaries and uteri harvested and weighed.  As 

expected, pituitary weight increased just over 2-fold from 11mg to 23mg, while uterus 

weight (the standard recognised bioassay for oestrogen effect) doubled from 0.6g to 

1.2g (Figure 3.1).  

 

 

 

 

 

 

 

Figure 3.1. Oestrogen induces pituitary and uterus hyperplasia in Fischer 344 rats. 

Fischer 344 rats were implanted with Azlet mini pumps delivering either vehicle (polyethylene 

glycol 400 - PEG) or E2 (125µg/kg/day) for 3 weeks. Rats were killed by schedule 1 method and 

pituitaries (A) and uteri (B) were weighed. Statistical analysis was carried out using Student t-

Test (n=8). 

 

 

Table 3.1 shows the individual measurements for each animal in the study. Most of the 

E2 treated animals underwent the expected enlargement of pituitary gland and uterus 

(highlighted in tan), however, 2 animals (3B and 2C – highlighted in green) did not. The 

reason for this is unknown though it is thought to relate to improper preparation of the 
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mini-pumps and therefore restricted delivery of E2. Pituitaries from this experiment 

were to be used for either western blot or immunohistochemical (IHC) analysis. As 

relatively less material can be generated for western blot protocols, the pituitaries with 

the biggest pituitary weight increase were used for western blotting, while the rest were 

used for immunofluorescence. 

 

Animal Number Cage Letter Treatment

Pituitary Weight 

(mg) Uterus weight (g)

Future 

experimental 

design

0 A E2 16.60 1.24 IHC

1 A Control 11.60 0.71 Western Blot

2 A E2 33.50 1.86 Western Blot

3 A Control 13.90 0.53 IHC

0 B Control 9.60 0.63 Western Blot

1 B E2 43.50 1.75 Western Blot

2 B Control 13.50 0.53 IHC

3 B E2 16.20 0.67 IHC

0 C Control 5.60 0.72 IHC

1 C E2 22.90 1.15 IHC

2 C E2 14.60 0.76 IHC

3 C Control 12.40 0.51 IHC

0 D Control 9.00 0.62 Western Blot

1 D E2 14.10 1.13 IHC

2 D Control 13.00 0.6 IHC

3 D E2 23.30 1.6 Western Blot  

 

Table 3.1. Three weeks E2 treatment of Fischer 344 rats induces uterus and pituitary 

hyperplasia.  Fischer 344 rats were implanted with Azlet mini pumps delivering either vehicle 

(PEG) or E2 (125µg/kg/day) for 3 weeks. Rats were killed and pituitaries and uteri were 

dissected out and weighed. Control animals are shown in white, E2 treated animals which 

exhibited the expected increases in pituitary and uterus weight are highlighted in tan, E2 treated 

animals which did not exhibit increased pituitary and uterus weights are highlighted in green.  

 

 

Pituitary PRL content was assessed by western blotting (Figure 3.2 A). Quantification 

of the PRL band compared against the α-Tubulin loading control revealed a 2-fold 

increase in PRL in E2 treated rats (Figure 3.2 B). Furthermore, IHC analysis of the 

anterior pituitary gland showed that in control animals, 46% of cells expressed PRL 

(cells counted = 856) in keeping with published data, which increased to 65% of cells 

(cells counted = 1028) in E2 treated pituitaries (discussed in greater detail in section 

3.5.1). Together, these data demonstrate that E2 treatment induced lactotroph 

hyperplasia and PRL secretion. Attempts were made to quantify the levels of serum E2 

in our rats to demonstrate successful administration of stimulus. This work is usually 

carried out by our collaborator Prof Alan McNeilly in Edinburgh, however, technical 

problems with the assay prevented this work being carried out in time for publication of 

this work. 
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Figure 3.2. Three weeks E2 treatment of Fischer 344 rats increases pituitary PRL levels. 

Western blot for PRL and α-Tubulin loading control on anterior pituitary lysates from Fischer 344 

rats treated with either vehicle (polyethylene glycol 400) or E2 (125µg/kg/day) for 3 weeks. Each 

blot represents a lysate generated from a single animal selected for western blotting in Table 

3.1. (A). Quantification of PRL band intensity relative to α-Tubulin band intensity (B). Data 

represent means ±SEM. Statistical analysis carried out using Student T-Test (n=3).  

 

 

3.4. Validation of Wnt-4 antibody 

 

Wnt proteins have been traditionally difficult to purify, and until recently few adequate 

tools were available to study the effects of Wnt molecules. As such, it is important to 

ensure that any tool we use is validated to a reasonable degree. To judge the 

specificity of our antibody, we stained rat kidney, a well characterised positive control 

for Wnt-4, with our antibody and compared it to published findings. We demonstrated 

specific expression of Wnt-4 in cortical renal tubules while the renal cortices were 

negative for Wnt-4 (Figure 3.3 A and B). This staining pattern was in keeping with 

previously observed expression patterns in this tissue (Figure 3.3 D) (Terada et al., 

2003). Secondary only staining demonstrated the specificity of our secondary antibody 

(Figure 3.3 C). Figure 3.3 E shows a western blot for Wnt-4 demonstrating a clean 

band at 37kDa, the predicted molecular weight of Wnt-4, further highlighting the 

specificity of the antibody. 
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Figure 3.3. Validation of Wnt-4 antibody specificity. Specific Wnt-4 staining in cortical renal 

tubules (A and B), consistent with previously published material (D) and secondary only control 

(C). Western blot on a lysate generated from NIH-3T3 cell line constitutively expressing Wnt-4 

showing highly specific antibody binding to a protein of the correct predicted size (E). 

 

 

3.5. Wnt-4 expression in the pituitary 

 

3.5.1. Wnt-4 expression in the anterior pituitary 

 

Dual staining immunocytochemistry (ICC) for PRL and Wnt-4 was carried out on GH3 

cells and dispersed cultures of primary pituitary cells. As expected, only some GH3 

cells expressed PRL as the GH3 cell line is a somatolactotroph cell line containing both 

GH expressing and PRL expressing, as well as GH and PRL co-expressing cells. In 

contrast, Wnt-4 was expressed in all GH3 cells studied (Figure 3.4 top row).  In cultures 

of dispersed pituitary cells, roughly half the cells present expressed PRL in agreement 

with published data. Wnt-4 expression was not ubiquitous, as would be expected from 

a primary culture expressing different cell phenotypes. Some cells co-expressed Wnt-4 

and PRL, while some cells expressed Wnt-4 alone and some expressed PRL alone. 
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This indicates that Wnt-4 is not specifically confined to the lactotroph population, and 

that not all lactotrophs express Wnt-4 (Figure 3.4 bottom row). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Wnt-4 expression in GH3 cells and primary pituitary lactotrophs. ICC of GH3 

cells (top row) and cultures of dispersed primary pituitary cells (bottom row). Images show Wnt-

4 in red (1st column), PRL in green (2nd column) and DAPI in blue with merged images for PRL 

and Wnt-4 in the 3rd column. Examples of primary cells co-expressing Wnt-4 and PRL are 

highlighted by white arrows. Secondary antibody only staining is shown in the 4th column. White 

bar represents 20µM.  

 

 

 

In order to assess which endocrine cell types in the pituitary express Wnt-4, adult 

female rat pituitary tissue was analysed by dual immunofluorescence staining for Wnt-4 

with GH, PRL, ACTH, LH-β and TSH-β. Examples were found where all the secretory 

cell types co-localised with Wnt-4 (as seen by yellow staining in the merged images) 

indicating all the secretory cell types in the pituitary expressed Wnt-4 (Figure 3.5.).  
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Figure 3.5. Wnt-4 expression in the anterior pituitary. Adult female pituitary tissue was co-

stained for Wnt-4 (red) with GH, PRL, ACTH, LH-β and TSH-β (all green). Hormone staining is 

shown in the left column, Wnt-4 staining is shown in the central column and merged images in 

the right column. Secondary only staining is shown in the bottom row,  



 86

The relative proportions of Wnt-4 expressing cells and secretory cell types in control 

and E2 treated animal pituitaries were quantified. Overall, Wnt-4 expression was 

widespread with roughly 70% (±8%) of cells expressing Wnt-4 in controls, which 

decreased to 56% (±5% - P < 0.05) of cells in E2 treated animals. The relative 

proportions of secretory cell types were roughly consistent with previously published 

material. In E2 treated animals, the proportion of lactotrophs increased to 65% (±9% - 

P < 0.05) in keeping with lactotroph hyperplasia. As the proportion of lactotrophs was 

increased, the proportions of the other secretory cell types should decrease. Although 

this is the case in TSH, ACTH and LH secreting cells, the proportion of GH secreting 

cells increased slightly to 49% (±6%) of cells. This could be because images used for 

cell counting were chosen at random meaning regions with high incidence of GH 

producing cells could skew the counting. It is also possible that a number of cells in E2-

treated pituitaries are somatolactotroph cells, expressing both GH and PRL, which 

would therefore be counted twice using the staining protocol in this experiment.  

 

The proportion of each hormone secreting cell type co-expressing Wnt-4 was also 

quantified. Somatotrophs exhibit the highest rate of co-localisation, with 93% of GH 

cells expressing Wnt-4 in controls, while 79% of gonadotrophs expressed Wnt-4. Less 

than half of lactotrophs, thyrotrophs and corticotrophs (26%, 48% and 24% 

respectively) expressed Wnt-4, and no significant change in the proportion of cells co-

expressing Wnt-4 was detected in E2 treated rats (Table 3.2). 

 

Control E2 Control E2

GH 45.7 ± 7.2 48.7 ± 6.1 93.0 ± 3.1 98.1 ± 2.4

PRL 45.8 ± 3.8 65.0 ± 9.2    P < 0.05 26.0 ± 8.4 33.6 ± 9.1

TSH 5.73 ± 2.9 5.17 ± 1.8 48.1 ± 4.3 53.0 ± 6.7

ACTH 5.38 ± 0.9 3.96 ± 2.1 23.5 ± 9.1 21.8 ± 4.3

LH 3.67 ± 1.6 3.23 ± 1.1 79.3 ± 11.1 73.1 ± 6.4

Wnt-4 70.3 ± 8.1 56.4 ± 4.6    P < 0.05 N/A N/A

% of total cells expressing % of hormone cells co-expressing Wnt-4

 

 

Table 3.2. The proportion of Wnt-4 and hormone expressing cells in the pituitary. The 

relative proportions of each secretory cell type in control and E2 treated pituitaries were 

quantified, and the proportion of hormone cells co-expressing Wnt-4 was also quantified. In 

each case, a minimum of 800 individual cells were counted from randomly chosen images, and 

for each hormone cell type, a large enough number of cells was counted to ensure at least 50 

secretory cells had been counted. Percentage errors representing SEM are given in each case. 

Statistics carried out using Student T-Test. Where P values are not given, no significance was 

detected. 
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3.5.2. Wnt-4 expression in the marginal zone 

 

The marginal zone (MZ) is a single layer of cells which lies between the intermediate 

lobe and the anterior lobe of the pituitary, and is thought to harbour stem cells. These 

cells may drive cell proliferation of a defined secretory cell type in response to 

physiological demands.  

 

The MZ can be identified using DAPI staining due to the differences in nuclei 

dispersion between the anterior and intermediate lobes. Nuclei are most tightly packed 

in the anterior lobe and are more spread apart in the intermediate lobe (Figure 3.6 A 

and C). Cells in the marginal zone are reported to specifically express E-Cadherin 

(Garcia-Lavandeira et al., 2009), and staining sections with E-Cadherin makes the 

border between the 2 regions even more apparent (Figure 3.6 B). As previously shown, 

Wnt-4 was widely expressed in the anterior lobe, and was also expressed at high levels 

in the intermediate lobe. However, it was also highly expressed in a single cell layer 

along the marginal zone (Figure 3.6 D). Wnt-4 expression patterns in control rats and 

E2 treated rats were compared but no difference in staining pattern was observed.  
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Figure 3.6. Wnt-4 and E-Cadherin are expressed in the marginal zone. IHC staining for E-

Cadherin (A and B) and Wnt-4 (C and D) in normal adult female pituitary tissue showing regions 

encompassing the anterior lobe (AL), the marginal zone (MZ) and the intermediate lobe (IL). A 

and C show DAPI only staining demonstrating the different dispersion of cell nuclei between 

regions, and B and D show staining for protein of interest (E-Cadherin in green and Wnt-4 in 

red). White bar represents 30µm. 

 

 

3.6. Is Wnt-4 upregulated in the pituitary by oestrogen? 

 

3.6.1. Regulation of Wnt-4 protein by oestrogen in GH3 cells 

 

Having identified that Wnt-4 was expressed in the lactotroph population in vivo, and 

that the proportion of lactotrophs was increased after E2 treatment, we sought to 

assess whether Wnt-4 regulation could be altered by E2 in vitro. Figure 3.7 shows that 

Wnt-4 protein was upregulated in GH3 cells treated for 72, 120 and 168h with E2. 
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Figure 3.7. Wnt-4 upregulation by oestrogen in GH3 cells. GH3 cells were treated for 72, 

120 and 168h with either control (BSA) or E2 (10nM). Blots were probed for Wnt-4 and α-

Tubulin loading control. Data are representative of 3 repeated experiments. 

 

 

3.6.2. Wnt-4 protein levels are unaffected by oestrogen in primary pituitary 

cell cultures 

 

To see if this upregulation could be replicated in primary cells, cultures of dispersed 

pituitary cells were treated for 72 and 120h with E2. These cultures contain all the 

different secretory cell types of the pituitary, consisting mainly of lactotrophs and 

somatotrophs. As expected from the IHC data, Wnt-4 was expressed in unstimulated 

cells, however no upregulation was observed when treated with E2 (Figure 3.8). 

 

 

 

 

 

 

 

 

 

Figure 3.8. Wnt-4 is not upregulated by oestrogen in primary pituitary cell cultures. 

Primary cultures of dispersed pituitary cells were generated from adult female Fisher 344 rats 

and treated for 72 and 120h with either control (DCT-FBS) or 10nM E2. Blots were probed for 

Wnt-4 and α-Tubulin loading control. Wnt-4 positive control was generated from NIH-3T3 cell 

line constitutively expressing Wnt-4, negative control contained water only. Data are 

representative of 3 repeated experiments. 
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3.6.3. Wnt-4 expression is unaltered by oestrogen in intact pituitary tissue 

 

Continuous networks have been demonstrated to exist in the pituitary linking cells of a 

particular cell type to each other. Though a functional network between lactotroph cells 

has not been demonstrated, pulses of PRL promoter activity between lactotroph cells 

are synchronised in intact pituitary tissue, and coupling is lost when pituitary cells are 

dispersed (Harper et al., 2010). This suggests that a lactotroph cell network does exist, 

and therefore dispersion of primary cultures as in Figure 3.8 may disrupt such a 

network.  

 

Instead of dispersing pituitaries into single cell cultures, pituitaries were sliced to a 

thickness of 300µm and cultured for 24, 72 and 120h. This process is distinct from 

slicing tissue for histological purposes as the tissue is kept alive in culture after slicing. 

The protocol has been validated in our group, and tissue viability was maintained 

through the course of the experiment (Harper et al., 2010). Wnt-4 protein was 

expressed in control pituitary slices, but was not upregulated by E2 at any of the time 

points studied (Figure 3.9). 

 

 

 

 

 

 

 

 

 

Figure 3.9. Wnt-4 is not upregulated in pituitary slices treated with E2. Adult female Fischer 

344 rats were killed and pituitaries were dissected and sliced at a thickness of 300µm. Slices 

were then cultured for 24, 72 and 120h in either control medium (DCT-FBS) or 10nM E2. Blots 

were probed for Wnt-4 and α-Tubulin loading control. Wnt-4 positive control was generated from 

NIH-3T3 cell line constitutively expressing Wnt-4, negative control contained water only. Data 

are representative of 3 repeated experiments. 
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3.6.4. Frizzled receptor expression in lactotroph cells 

 

Having demonstrated that Wnt-4 is present in the lactotroph population of the adult 

pituitary gland, we sought to assess the expression pattern of Fz receptors in GH3 cells 

and primary lactotroph cells. As described in section 1.11 Fz receptors 2, 4, 5 and 6 

have been demonstrated in the rodent brain and pituitary during development and in 

adult life, and Fz 6 has been shown to transduce Wnt-4 signalling in the kidney. In 

order to assess the expression of these receptors specifically in the lactotroph 

population, rather than in a heterogeneous cell population obtained by dispersing the 

whole pituitary, we carried out FACS sorting on dispersed pituitary cells.  

 

By using a simple forward scatter and side scatter analysis, cells were divided into 2 

populations, P1 and P2. Immunocytochemical analysis revealed that the smaller P1 

population was 70% positive for GH and PRL co-expressing cells, while the P2 

population was 80% positive for PRL with less than 1% of cells positive for GH (Figure 

3.10A). FACS sorting and analysis was carried out by Dr Frederic Madec. cDNA was 

generated from GH3 cells and the FACS P2 lactotroph enriched population and used to 

run PCR for the above receptors. Genomic DNA (gDNA) was used to optimise the 

primers and ensure DNA products were of the correct size. Fz-2, 4, 5 and 6 were all 

expressed in GH3 cells, while Fz-2 and Fz-4 were expressed in the FACS sorted 

lactotroph population. No band was present for Fz-5 or Fz-6 indicating these receptors 

were not present in primary lactotroph cells (Figure 3.10 B). 
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Figure 3.10. Fz receptor expression in GH3 cells and FACS sorted primary lactotroph 

cells.  A - FACS sorting of primary pituitary cells using forward scatter (x-axis) and side scatter 

(y-axis) isolated 2 cell populations - P1 population was 70% positive for GH and PRL co-

expressing cells, P2 population was 79% positive for PRL expressing cells. B - PCR for Fz 2, 4, 

5 and 6 was run on rat genomic DNA and cDNA generated from GH3 cells and FACS P2 

lactotroph enriched cells. Negative control is presented as PCR run on cDNA samples 

generated without reverse transcriptase. 

 

 

3.7. Does Wnt-4 affect GH3 cell proliferation? 

 

Wnt-4 was expressed in GH3 cells and was upregulated by E2 in vitro. We sought to 

assess whether Wnt-4 had any direct effect on GH3 cell proliferation. GH3 cells were 

treated for 120h with Wnt-4 recombinant protein and cell number was assessed using 

MTS assay. Results obtained were unexpectedly variable over 7 separate experiments 

run using an identical protocol (Figure 3.11). In the 7 experiments run, 3 experiments 

showed that Wnt-4 increased the rate of proliferation (experiments 1, 3 and 7), 3 

experiments showed that Wnt-4 decreased the rate of proliferation (experiments 2, 4 

and 5) while one experiment (experiment 6) showed no significant change. 
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Figure 3.11. Wnt-4 has a variable effect on GH3 cell proliferation.  GH3 cells were plated at 

1x10
4
 cells per well in a 96 well plate and stimulated for 120h with either control (DCT-FBS) or 

recombinant Wnt-4 protein (200ng/ml). Cell number was quantified using MTS assay. Data 

represent means ±SEM. Statistical analysis was carried out using standard t-Test (n=10 for 

each condition).  

 

 

In a proliferation assay, the initial seeding density of cells is of vital importance. Due to 

the relatively small number of cells seeded per well (1x104), any variation between the 

initial cell number plated can have a large effect 5 days later when the final cell number 

is quantified. The seeding densities in experiments 6 and 7 from Figure 3.11 were 

measured at day 0 to ensure the variability in results was not related to uneven 

seeding. They were found to be the same, suggesting that the differences in final cell 

number occurred in the latter part of the experiment (Figure 3.12).  
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Figure 3.12. Seeding protocol is not the cause of variable proliferation assay result. GH3 

cells were plated at 1x10
4
 cells per well in a 96 well plate and allowed to settle for 24h after 

which cell number was quantified by MTS assay. Data represent means ±SEM. Statistical 

analysis was carried out using standard t-Test (n=10 for each condition). 

 

 

The above proliferation assays were run over the course of a few months and utilised 

GH3 cells from a number of different passages. We therefore tested whether passage 

number of the GH3 cells could affect the proliferation rate. GH3 cells from 2 different 

passage numbers (P27 and P37) were stimulated for 120h with both DCT-FBS and 

FBS. A seeding density test was carried out at day 0 showing that cells were seeded at 

the same density. After 120h in both conditions, P37 GH3 cells had proliferated more 

than P27 GH3 cells (Figure 3.13). This highlights the heterogeneous nature of GH3 

cells and in future care should be taken to ensure that cells of a consistent passage 

number are utilised between experiments of this nature. 
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Figure 3.13. GH3 cell passage number affects basal rate of proliferation. GH3 cells from 

passage number 27 and 37 were plated at 1x10
4
 cells per well in a 96 well plate. A seeding 

density test was carried out at 0h, while identical plates were stimulated for 120h with either 

DCT-FBS or FBS. Data represent means ±SEM. Statistical analysis was carried out using 

standard t-Test (n=10 for each condition). 

 

 

Overall, the proliferation assay results are inconclusive. The effects of Wnt-4 on GH3 

cells were variable, with some experiments showing that Wnt-4 increased the rate of 

proliferation, and some showing that it decreased proliferation (Figure 3.11). This 

variability is hard to explain as seeding densities were comparable between conditions 

(Figure 3.12), though the difference in basal rate of proliferation between cells at 

different passage numbers may contribute to the variation observed (Figure 3.13). 
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3.8. Discussion 

 

3.8.1. Oestrogen-induced lactotroph hyperplasia in the Fischer 344 rat 

 

The principal objective of this study was to assess the role of Wnt-4 in E2-induced 

lactotroph hyperplasia. Although the link between E2 and lactotrophs has been known 

for more than 40 years, the mechanisms by which it occurs remain elusive.  

 

In this study, Fischer 344 rats were treated for 3 weeks and pituitary tissue was 

analysed. Rats were treated with 125µg/kg/day for 3 weeks, a dose considered to be 

towards the lower end of the supraphysiological range, but well above the dose 

required to replicate physiological E2 levels in ovariectomizsed rats of 25µg/kg/day 

(Nolan and Levy, 2009a). Pituitary weight and wet uterus weight both increased in 

accordance with numerous published data. The increase in uterus weight arises from 

the secretion of uterine luminal fluid which aids sperm motility and maturation and is 

the standard bioassay for oestrogen effect (Kuo et al., 2009). The increases in pituitary 

PRL content and the proportion of lactotrophs in oestrogen treated animals indicate 

lactotroph hyperplasia as the likely cause of increased pituitary weight. 

 

Some animals did not respond to oestrogen treatment as expected. Animals 3B and 2C 

seemed to only show a slight increase in uterus weight and negligible increase in 

pituitary weight (Table 4.1). It is unknown why these animals did not respond to E2 

treatment, though it is possible that delivery of E2 to the rats was impaired though 

improper preparation of mini-pumps. Attempts were made to investigate this by testing 

serum levels of E2. This assay is usually carried out by Prof Alan McNeilly’s lab in 

Edinburgh, though technical difficulties prevented work from being carried out. 

 

3.8.2. Cell proportions in the anterior pituitary 

 

The proportions of cells within the anterior pituitary in this study roughly conform to 

published data. Table 3.3 shows the findings of the current investigation compared to 

the predicted proportions of cells in the pituitary (Asa et al., 2002).  
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Cell type Asa Published 
data (%) 

Current study 
Control rats (%) 

Current study E2-
treated rats (%) 

Somatotrophs 40 46 49 

Lactotrophs 35 46 65 
Corticotrophs 10 5 4 

Gonadotrophs 10 3 3 
Thyrotrophs 5 6 5 

 

Table 3.3. Cell proportions in the pituitary. The proportions of secretory cell types in control 

and E2 treated rats from the present study were compared to published data (Asa et al., 2002).   

 

The results published by Asa et al (2002) are based on studies using different protocols 

to define cell number including immunofluorescence, electron microscopy and flow 

cytometry which all have drawbacks and limitations (Levy, 2002). The data for control 

animals in the current study roughly compares to the findings of Asa et al (2002). 

Clearly the total percentage in our study adds up to more than 100%, however staining 

for only one hormone at a time (hormone was always co-stained with Wnt-4) means 

that invariably errors will arise through imaging on different sections and regions within 

that section. Overall, the rough distribution of cell types observed is as expected. 

 

However, the sum of percentages in E2 treated animals is significantly over 100% 

which is a slight cause for concern. Immunofluorescence has a number of drawbacks 

which could explain these errors. Firstly, cells were counted on random images from 

the pituitary, which does not take into account pituitary regions with high density of a 

particular cell type. For example, lactotroph cells are more highly expressed in the 

periphery of the pituitary, with highest expression in lateral regions (Harper et al., 

2010). By counting a minimum of 800 cells for each hormone producing cell-type, it 

was hoped that this intrinsic error could be reduced, but on reflection a higher number 

of cells should have been counted which would likely allow for different expression 

patterns of cells. A second drawback is that sometimes it is difficult to make clear 

distinctions between cells in close proximity to each other, or cells lying on top of each 

other which can lead to inaccurate counting. Finally, the process does not take into 

account cells co-expressing hormones, as can be the case of somatolactotroph cells. 

The errors shown most likely reflect miscounting of somatotroph and lactotroph cells as 

they are the most common cells in the pituitary, and dual staining with these hormones 

would most likely reduce the errors to reasonable levels. However, the increase in PRL 

positive cells in E2-treated animals is reassuring, and fits with the upregulated pituitary 

PRL content demonstrated and with the well known action of E2 on lactotroph 

proliferation.  
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3.8.3. Wnt-4 expression in the pituitary 

 

Our findings indicate that Wnt-4 was highly expressed in all regions of the pituitary. 

Validation of our antibody was carried out by staining rat kidney sections, and the 

staining presented here closely resembles Wnt-4 expression patterns in published 

material (Terada et al., 2003). Furthermore, western blotting with the antibody 

specifically identified a protein at the correct size for Wnt-4. One validation protocol not 

presented here is an antibody pre-absorption test on histological sections. Attempts 

were made to carry out this protocol, but as high concentrations of Wnt-4 antibody 

were used experimentally, the amount of Wnt-4 protein required to pre-absorb the 

antibody was extremely large, and hence expensive. Considering the other validation 

protocols presented, we considered there was adequate evidence for Wnt-4 antibody 

specificity, and considered it an unnecessary expense to continue with further 

validation.  

 

A proportion of each secretory cell type in the pituitary expressed Wnt-4. The highest 

expressing cell type were somatotrophs with roughly 95% of cells expressing Wnt-4, 

while the lowest expressing cell type were corticotroph cells with only 23% of cells 

expressing Wnt-4. Only 26% of lactotrophs expressed Wnt-4 in uncontrolled pituitaries, 

which increased slightly to 33% in E2 treated animals, though the percentage errors 

render this difference insignificant. However, immunofluorescence techniques cannot 

quantify the levels of Wnt-4 in any particular cell type. Therefore, although the 

proportion of cells expressing Wnt-4 did not change in response to E2, the level of 

expression may have increased which could give rise to the upregulation of Wnt-4 

observed in previous published material.   

 

Wnt-4 was upregulated in GH3 cells in response to E2 treatment, however, no increase 

in Wnt-4 was observed in cultures of dispersed pituitary cells or in intact pituitary tissue. 

These later models comprise mixed populations of cells and therefore an increase of 

Wnt-4 production in one particular cell type may get masked by unaltered levels in 

other cell types.  

 

We have shown that it is possible to generate a lactotroph enriched population using 

FACS sorting. Although this method could have potentially been used to study Wnt-4 

levels in lactotroph cells, the number of rats required to generate enough material for 

such an experiment rendered it impractical. Also, Wnt-4 was expressed within all the 



 99

other cell types in the AL, as well as the marginal zone and IL. To conduct the 

investigation properly would require suitable protocols to isolate each of the cell types 

in the pituitary and time was inadequate to take this line of work on. This highlights a 

key issue in studying the heterogeneous population of cells that comprises the pituitary 

gland.  

 

The expression of Wnt-4 in the MZ suggests complex regional organisation in the 

pituitary. It should be noted that the expression of Wnt-4 in the MZ was only detected in 

the latter stages of the project. Initial focus was placed on the anterior pituitary, and as 

such the posterior pituitary was always removed during organ processing. When 

removing the posterior pituitary, the IL and MZ were removed also, and therefore Wnt-4 

localisation in the MZ was initially not noted. No alteration in Wnt-4 expression pattern 

was observed in the MZ, though more detailed analysis of the region is carried out in 

section 5.4.   

 

In summary, Wnt-4 was expressed in a large number of cells in the pituitary. E2 

increased Wnt-4 expression in GH3 cells lines, but no increase in Wnt-4 protein could 

be detected in heterogeneous pituitary cell populations. It is possible that increases of 

Wnt-4 in one cell population could be masked by unchanged expression in other cell 

types resulting in globally unchanged Wnt-4 expression. 

 

3.8.4. Wnt-4 effects on GH3 cell proliferation 

 

The effects of Wnt-4 on GH3 cell proliferation were inconclusive. A number of identical 

studies were carried out over the process of a few months which gave conflicting 

results.  The reasons for this are unknown but are not thought to be related to the 

seeding densities of cells as these were measured in later experiments and shown to 

be equal between conditions. This suggests that the differences in cell population occur 

after seeding, though why different rates of proliferation then occurred is unknown.  

 

It is interesting that GH3 cells at different passage numbers proliferated at different 

rates. The reason for this is unknown. Throughout this project, care was taken to 

maintain GH3 cells between passage numbers 25 and 42, and this result highlights the 

fact that the characteristics of cell lines can alter through time and should never be 

considered absolutely constant. 
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3.8.5. Conclusions 

 

This chapter shows that E2 treatment of Fischer 344 rats induced lactotroph 

hyperplasia and increased PRL production in the pituitary. Wnt-4 was expressed in 

GH3 cells and in all secretory cell types in the anterior pituitary, though Wnt-4 

upregulation was not demonstrated in heterogeneous pituitary cell populations. 

However, experimental approaches could not distinguish between Wnt-4 levels in 

specific cell populations meaning that changes in Wnt-4 expression may have been 

masked by other cell populations in the pituitary. Wnt-4 was upregulated by E2 in GH3 

cells, but the effect of Wnt-4 directly on GH3 cell proliferation is currently unknown.  
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signalling activated by 
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4.1. Introduction  

 

The Wnt-canonical pathway is the most studied of the Wnt pathways. The pathways 

best known action is regulation of cell proliferation which is driven by expression of 

canonical target genes such as c-myc and cyclin D. Malfunction of the pathway can 

result in uncontrolled cellular proliferation and has been implicated in the progression of 

numerous cancers.  

 

The canonical pathway centres around the stability of β-Catenin. In unstimulated cells, 

β-Catenin is either bound to E-Cadherin at the cell membrane, or free in the cytoplasm. 

Cytoplasmic β-Catenin is quickly bound by APC and axin, allowing GSK-3β to 

phosphorylate and degrade β-Catenin. Wnt binding to Fz prevents axin and APC 

binding to β-Catenin, thus inhibiting its destruction. This allows β-Catenin to 

accumulate in the cytoplasm, and then translocate into the nucleus where it interacts 

with transcription factors TCF and LEF to induce transcription of Wnt target genes (Rao 

and Kuhl, 2010; Widelitz, 2005).  

 

Canonical activation has been demonstrated in 80% of colorectal cancers, 54% of 

endometriod ovarian cancers, 23% of metaplastic breast carcinomas and several other 

types of cancer. At the start of this project, evidence in the literature suggested the 

canonical pathway may be functional in pituitary tumours. A number of canonical 

pathway molecules were shown to be expressed in the pituitary such as the Frizzled 

receptor, APC, β-Catenin and TCF (Douglas et al., 2001), and β-Catenin had been 

shown to play a key role in cell fate determination in the pituitary through interaction 

with Prop-1 (Olson et al., 2006).  Importantly, nuclear β-Catenin was observed in 57% 

of human pituitary adenomas examined in one study, strongly suggesting the canonical 

pathway was active in pituitary adenomas (Semba et al., 2001).  

 

However, during the course of this project, conflicting data has arisen confusing these 

findings. The extracellular canonical inhibitor WIF-1 was down regulated in human non-

functioning tumours, and although this was associated with upregulation of the 

canonical target gene cyclin D2, nuclear β-Catenin was not observed (Elston et al., 

2008). Furthermore, in a study of 54 human pituitary adenomas, β-Catenin was found 

only at the cell membrane and never in the nucleus suggesting the canonical pathway 

was not activated in these tumours (Miyakoshi et al., 2008b). Taken together, it is 

currently unknown if the canonical pathway is activated in the pituitary. 
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Despite classically being considered a non-canonical Wnt, Wnt-4 does activate 

canonical signalling in a number of circumstances. Wnt-4 activation of β-Catenin 

controls cell growth and survival in MDCK cells through binding to Fz 6 (Lyons et al., 

2004), maintains female germ cells in the fetal mouse ovary (Liu et al., 2010b), and 

regulates renal nephrogenesis in mice (Park et al., 2007). This suggests that Wnt-4 

may activate canonical signalling in the pituitary. 

 

 

4.2. Aims  

 

The aims of this chapter are as follows: 

 

• To determine whether β-Catenin levels are upregulated in GH3 cells and 

primary pituitary tissue in response to E2 treatment 

• To determine whether β-Catenin translocation to the nucleus can be detected in 

GH3 cells and primary pituitary tissue in response to E2 treatment 

• To determine whether canonical-TCF dependent gene transcription can be 

induced by E2 or Wnt-4 in GH3 cells 

• To determine whether overexpression of β-Catenin in GH3 cells affects cell 

proliferation 
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4.3. β-Catenin expression in the pituitary 

 

4.3.1. β-Catenin expression in GH3 cells 

 

Wnt-canonical signalling centres around the translocation of β-Catenin form the 

cytoplasm into the nucleus where it exerts its effects by activating transcription of 

canonical target genes. The expression of β-Catenin and its regulation by E2 was 

assessed in pituitary cells. β-Catenin was expressed at consistent levels in GH3 cells 

cultured over 120h, and global levels were not changed by treatment with E2 (Figure 

4.1). 

 

 

 

 

 

 

 

 

Figure 4.1. β-Catenin expression in GH3 cells is unaffected by oestrogen treatment. 

Western blot for β-Catenin and α-Tubulin loading control on GH3 cells stimulated for 24, 72 and 

120h with either control (BSA) or 10nM E2. Data are representative of 3 repeated experiments. 

 

 

4.3.2. β-Catenin expression in pituitary tissue 

 

Western blots were also run on lysates generated from cultured pituitary slices. As 

seen in GH3 cells, β-Catenin was expressed in the pituitary under control conditions, 

but its regulation was not affected by E2 treatment over the time-courses studied 

(Figure 4.2). 
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Figure 4.2. β-Catenin levels are unaltered by oestrogen in cultured pituitary slices. 

Western blot for β-Catenin and α-Tubulin loading control. Whole pituitaries were sliced to a 

thickness of 300µm and cultured for 24, 72 and 120h with control (DCT-FBS) or 10nM E2. Data 

are representative of 3 repeated experiments. 

 

 

Slicing and culturing live pituitaries to maintain pituitary structure is a technique 

routinely used in our lab, and we are confident that the integrity of the tissue is 

maintained over the time-courses studied. However, the disruption caused by slicing 

the pituitary and the exposure of tissue to external growth factors in culture medium 

renders this an inaccurate, although convenient, model to study. To address this, 

lysates generated from anterior pituitary tissue of animals treated in vivo for 3 weeks 

with E2 were analysed for β-Catenin. β-Catenin was expressed in control tissue, and 

again, its regulation was unaltered by E2 treatment (Figure 4.3). 

 

 

 

 

 

 

 

 

 

Figure 4.3. β-Catenin expression is unaltered in the anterior pituitary after 3 weeks 

oestrogen treatment. Fischer 344 rats were treated for 3 weeks with subcutaneously 

administered vehicle (PEG) or E2 (125µg/kg/day). Posterior pituitaries were removed, lysates 

were generated from anterior pituitary tissue and tested for β-Catenin and α-Tubulin loading 

control. 
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Overall, these results show that global β-Catenin levels are not changed by E2 in GH3 

cells or adult pituitary tissue, even when E2-induced pituitary hypertrophy is occurring. 

This is not particularly surprising as the key component of canonical signalling is 

translocation of β-Catenin into the nucleus. The actual levels of β-Catenin translocation 

required to initiate canonical gene expression can be small, and it is likely that western 

blotting is not a sensitive enough tool to detect this.  

 

 

4.3.3. β-Catenin distribution in lactotroph cells 

 

A more sensitive way to assess canonical activation is by using immunofluorescence, 

which visually depicts the subcellular localisation of proteins of interest, and will 

highlight changes in nuclear β-Catenin more clearly than western blotting. Figure 4.4 

shows that β-Catenin was expressed at the cell membrane in GH3 cells, where it is 

known to interact with E-Cadherin to regulate cell-cell adhesion. Neither treatment with 

E2 or LiCl altered the distribution pattern of β-Catenin (LiCl is a standard positive 

control for canonical activation which promotes nuclear translocation of β-Catenin by 

blocking its degradation by GSK-3β). No nuclear staining for β-Catenin was apparent in 

any condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Subcellular localisation of β-Catenin is unaltered E2 or LiCl treatment in GH3 

cells. 

Figure 4.4. Subcellular 

localisation of β-Catenin 

is unaltered by E2 or LiCl 

treatment in GH3 cells. 

GH3 cells were stimulated 

for 72, 120 and 168h with 

control (BSA), 10nM E2 or 

10mM LiCl and stained for 

β-Catenin. White bar 

represents 40µm. 
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The same distribution was found in primary lactotroph cells. Pituitaries were dispersed 

and dual-stained for β-Catenin and PRL to identify lactotroph cells. At 72 hours, 

expression of PRL was relatively low in control and LiCl treated cells, and much higher 

in E2 treated cells in line with the known stimulatory effect of E2 on PRL synthesis. At 

120h, PRL expression was consistently high between conditions and it was observed 

that the vast majority of cells at this time point were positive for PRL, most likely 

reflecting proliferation of lactotrophs in culture. 

 

In all conditions, membrane bound β-Catenin was observed with no nuclear β-Catenin 

in any condition. At 72h, the intensity of membrane bound β-Catenin appeared to be 

higher in E2 treated cells than control or LiCl treated cells. At 120h, the intensity of 

membrane bound β-Catenin was comparable between stimuli, though still appearing 

more intense than compared to controls at 72h. A major limitation of 

immunofluorescence is that quantification of data is extremely difficult, and though the 

images presented are considered representative of the data, these observations 

cannot be validated. Attempts were made to quantify the data using an external 

company claiming the ability to quantify the amounts of β-Catenin in distinct subcellular 

regions. However, attempts were unsuccessful (Figure 4.5). 
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Figure 4.5. Subcellular localisation of β-Catenin is unaltered by treatment with E2 and 

LiCl in primary lactotroph cells. Pituitaries from female Fischer 344 rats were dispersed and 

stimulated for 72 and 120h with control (DCT-FBS), 10nM E2 or 10mM LiCl. Cells were stained 

for β-Catenin (green - left column), PRL and DAPI (red and blue respectively - middle column) 

with merged images in the right column. White bar represents 30µm. 
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4.3.4. β-Catenin distribution in the anterior pituitary 

 

As previously described, dispersal of pituitary cells into a monolayer culture may 

disrupt pituitary networks, altering cell-cell communication and disrupting the natural 

physiological actions which may occur in vivo. Therefore, staining of β-Catenin was 

carried out on structurally intact histological pituitary sections from E2 treated rats. As 

seen in GH3 cells and primary pituitary lactotrophs, a clearly defined β-Catenin 

membrane staining pattern was observed in the anterior pituitary, which was unaltered 

by E2 treatment (Figure 4.6). Although only a few images have been presented here, 

there was not a single instance of nuclear staining found in any pituitary studied.  

 

Dual-staining for PRL was not carried out in this instance as lactotroph cells comprise 

roughly 40% of the cells in the anterior pituitary. Therefore it is assumed that a sizable 

proportion of the cells present were lactotrophs and it is therefore almost certain that β-

Catenin distribution was not altered in lactotroph cells by E2.  
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Figure 4.6. β-Catenin distribution is unaltered in the anterior pituitary gland by oestrogen. 

Fischer 344 rats were treated with vehicle (PEG) or E2 (125µg/kg/day) for 3 weeks. Pituitaries 

were stained for β-Catenin (green) and DAPI (blue). Animal numbers correspond to Table 3.1. 

White bar represents 50µm. 

 

 

 

 

 



 111

4.4. TCF-dependent transcriptional signalling in GH3 

cells 

 

 

Immunofluorescence is a more sensitive tool than western blotting to study the 

translocation of β-Catenin into the nucleus. However it may still not be sensitive 

enough to detect low levels of β-Catenin translocation which might induce transcription 

of canonical target genes. We therefore employed a reporter gene assay technique to 

measure functional transcriptional output of the canonical pathway in GH3 cells.  

 

The reporter gene Super 8x TopFlash (TopFlash) is a widely used tool in the literature. 

It contains 8 binding sites for the canonically activated transcription factor TCF, linked 

to a luciferase expression vector. Activation of the canonical pathway results in binding 

of TCF to the reporter gene, inducing transcription of luciferase which can 

subsequently be quantified. A mutated form of the plasmid, FopFlash, was used as a 

negative control. 

 

4.4.1. Validation of TopFlash/FopFlash 

 

TopFlash and FopFlash were acquired from Addgene, then amplified and purified as 

described previously. To ensure that the plasmid we obtained was the correct plasmid, 

a series of restriction enzyme digests was performed.  

 

Two enzymes were used to validate the protocol. Hind III was used alone to determine 

the size of the plasmid and Hind III and Sal I were used together to fragment the DNA. 

The size of the plasmid cannot be determined by running the untreated plasmid alone, 

as the intact plasmid is made of supercoiled DNA which runs faster through the gel 

than normal DNA. Cutting the plasmid at a single site linearises the DNA which can 

then be measured accurately.  

 

A band of 5Kb was observed when using Hind III alone, and 2 fragments of 1900bp 

and 3100bp were detected when using Hind III and Sal I together, in line with predicted 

fragment lengths. As expected, the undigested plasmid ran relatively faster than 

linearised DNA, appearing to be 3Kb long, and highlighting the importance of 

linearising DNA in this type of assay (Figure 4.7). 
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Figure 4.7. Restriction digest of Top/FopFlash plasmids. TopFlash and FopFlash were 

digested with either Hind III alone, Sal I alone, or Hind III and Sal I together. Untreated and 

digested plasmids were run on an agarose gel to determine size of DNA.  

 

 

To check the functionality of the plasmids, TopFlash and FopFlash were transfected in 

HEK 293 cells and stimulated with LiCl and Wnt-3 conditioned medium. LiCl elicited a 

30-fold increase in luciferase expression in cells transfected with TopFlash, while Wnt-

3 conditioned medium elicited a smaller, but equally significant expression of 

luciferase. No response was observed in cells transfected with FopFlash (Figure 4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Functionality test for Top/FopFlash. HEK 293 cells were transfected with either 

TopFlash or FopFlash along with Renilla luciferase expression vector. Cells were stimulated for 

24h with control (DCT-FBS), 10mM LiCl or Wnt-3 conditioned medium. TCF driven luciferase 

expression was normalised to Renilla luciferase expression to control for variable transfection 

efficiency between wells. Data represent means ±SEM. Statistics carried out using the Student 

t-test (n=10). 
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4.4.2. Activation of TCF-dependent transcriptional signalling in GH3 cells 

 

GH3 cells were subsequently transfected with TopFlash and stimulated with E2, and 

Wnt-4 conditioned medium, as well as positive the controls, Wnt-3 conditioned medium 

and LiCl. Surprisingly, none of the above stimuli were able to induce luciferase 

expression in GH3 cells, whereas LiCl and Wnt-3 conditioned medium were able to 

induce luciferase expression in HEK 293 cells in parallel experiments (Figure 4.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. The Wnt-canonical pathway is not activated in GH3 cells. GH3 cells were 

transfected with either TopFlash or FopFlash along with Renilla luciferase expression vector. 

Cells were stimulated with either control (DCT-FBS), 10nM E2, Wnt-4 conditioned medium, 

10mM LiCl or Wnt-3 conditioned medium for 24h, and TCF driven luciferase expression was 

measured and normalised to Renilla luciferase expression. Data represent means ±SEM. 

Statistics carried out using the Student t-test (n=10). 

 

 

The lack of transcriptional output in GH3 cells is not due to unsuccessful transfection of 

GH3 cells. Cells were co-transfected with a Renilla-luciferase expression plasmid, and 

higher levels of Renilla luciferase expression were detected in GH3 cells than HEK 293 

cells indicating GH3 cells were successfully transfected. Therefore it appears that 

some aspect of the canonical pathway is inhibited or non-functional in GH3 cells.   
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4.5. Overexpression of mutant β-Catenin in GH3 cells 

 

 

To further address this issue, we acquired a constitutively active mutant β-Catenin 

expression plasmid termed mβ-Cat. This plasmid contains a C98→A missense mutation 

in the normal mouse β-Catenin sequence which changes Ser33→Tyrosine. This 

mutation prevents GSK-3β binding to β-Catenin and targeting it for degradation at the 

proteasome, rendering in constitutively active (Morin et al., 1997).  

 

4.5.1. Validation of mβ-Cat plasmid 

 

Validation of mβ-Cat was carried out using restriction digestion. Sma I was used to 

make a single cut in the plasmid to check overall plasmid length, while Hind III was 

used to make multiple cuts to further validate the plasmid. The restriction sites have 

been shown on the plasmid map in Figure 4.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Plasmid map of mβ-Cat. mβ-Cat was cloned into a pCl-neo backbone. Map 

shows a number of restriction sites including all 4 Hind III restriction sites. 
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Using Sma I, a single band at 8Kb was observed. Using Hind III, 4 bands were 

observed at 4000bp, 2500bp, 900bp and 400bp. These values correspond closely with 

the predicted fragment lengths of 3815bp, 2662bp, 879bp and 420bp validating the 

plasmid. As expected, the undigested plasmid ran faster than the Sma I digested 

plasmid, giving an inaccurate measure of plasmid length (Figure 4.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Restriction digest of mβ-Cat plasmid. Untreated plasmid, and plasmid digested 

with either Sma I or Hind III were run on an agarose gel, showing bands at lengths 

corresponding to predicted lengths. 

 

 

The mβ-Cat plasmid should harbour a single C98→A point mutation. To identify if this 

nucleotide was indeed mutated in mβ-Cat, primers were designed to amplify a 621bp 

length of DNA containing C98. PCR was run on the plasmid, as well as on cDNA 

generated from GH3 cells, and a band of the correct size was amplified in both cases 

(Figure 4.12).  
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Figure 4.12. PCR amplification of region encoding the C
98

 mutation. PCR was run on mβ-

cat plasmid and cDNA obtained from GH3 cells. Negative control for mβ-Cat replaced the 

plasmid with water, negative control for cDNA was cDNA generated without RT. 

 

 

The two sequences should be identical apart from the point mutation. PCR products 

were purified and sequenced using the reverse primer and as expected, the two 

products showed over 99% homology. After reversing and complementing the 

sequences obtained, the mutation should be present at bp 85 in the sequence. Figure 

4.13 shows that in GH3 cells, bp 85 was a cytosine residue, and in the mβ-Cat 

sequence it was an adenine residue. This changes the codon translated from TCT 

(serine) to TAT (tyrosine) as predicted. 
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Figure 4.13. C
98
→A point mutation is present in mβ-Cat. DNA sequencing was carried out 

on PCR products from Figure 4.12. The sequences were reversed and complemented and a 

region spanning the mutation site is presented. The C
98
→A point mutation at bp 85 is shown, 

and a box is drawn around the altered codon. 

 

 

 

The functionality of mβ-Cat was tested by co-transfecting HEK 293 cells with mβ-Cat 

and TopFlash. As expected, this spontaneously induced a robust luciferase output 

which was not observed in cells not co-transfected with mβ-Cat. Therefore the mβ-Cat 

plasmid functions as predicted (Figure 4.14). 
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Figure 4.14. mβ-Cat plasmid spontaneously activates TopFlash reporter gene expression. 

HEK 293 cells were transfected with either TopFlash or FopFlash, with or without mβ-Cat, and 

luciferase expression was measured after 24h. Data represent means ±SEM. Statistics carried 

out using the Student t-test (n=10). 

 

4.5.2. Effect of mβ-Cat expression in GH3 cells 

 

The effect of β-Catenin overexpression was studied in GH3 cells by generating GH3 

cell lines stably expressing mβ-Cat. Three viable clonal cell lines were generated, 

termed mβ-Cat 2, 3 and 4. The cell lines were continuously cultured in medium 

supplemented with G-418 antibiotic, and the continued viability of the cells in this 

medium ensured the cells maintained the integrated plasmid. 

 

mβ-Cat cell lines were transfected with TopFlash and spontaneous luciferase 

expression was measured. None of the cell lines exhibited spontaneous activation of 

TopFlash. Normal GH3 cells were co-transfected with mβ-Cat and TopFlash, and these 

cells also did not exhibit any activation of TopFlash, while HEK 293 cells co-transfected 

with mβ-cat and TopFlash did exhibit spontaneous activation of TopFlash (Figure 4.15) 

These data indicate that constitutively active β-Catenin was unable to activate TCF-

dependent transcription in GH3 cells.  
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Figure 4.15. Constitutively active β-Catenin does not activate TopFlash in GH3 cells. mβ-

Cat cell lines were transfected with TopFlash reporter gene and Renilla expression vector, GH3 

and HEK 293 cells were co-transfected with Renilla expression vector, mβ-Cat plasmid and 

TopFlash. Spontaneous activation of TopFlash was recorded after 24h and normalised to 

Renilla luciferase expression. Data represent means ±SEM. Statistics carried out using the 

Student t-test (n=10). 

 

 

To assess whether linearisation of the mβ-Cat plasmid may effect its ability to activate 

TopFlash in mβ-Cat cell lines, intact and linearised plasmid were co-transfected with 

TopFlash into HEK 293 cells, and expression of luciferase was measured. Both forms 

of the plasmid elicited robust expression of luciferase indicating that the linearised form 

of the plasmid transfected into mβ-Cat lines functioned normally (Figure 4.16 A). 

Finally, endogenous TCF levels were measured in GH3 cells and mβ-Cat cell lines to 

ensure that the negative result observed was not related to absence of TCF. TCF-4 

was expressed in all cell lines indicating the machinery required for luciferase 

expression was present. (Figure 4.16 B). TCF western was carried out by Julia Resch. 
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Figure 4.16. Further testing for mβ-Cat functionality. 

 

The rate of proliferation of GH3 cells and mβ-Cat cell lines was compared. Cells were 

treated with either normal FBS or DCT-FBS for 5 days to test their basal rate of 

proliferation. In both cases, mβ-Cat cell line 4 proliferated at a higher rate than GH3 

cells. No difference in proliferation was observed between GH3 cells and mβ-Cat lines 

2 and 3 when treated with DCT-FBS, but both mβ-Cat lines 2 and 3 proliferated more 

slowly than GH3 cells when treated with normal FBS (Figure 4.17).   
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Figure 4.16. Further testing for mβ-Cat 

functionality. A – Linearisation of mβ-

Cat does not affect function. HEK 293 

cells were transfected with TopFlash 

alone, or co-transfected with TopFlash 

and either linearised or intact mβ-Cat 

plasmid. The spontaneous activation of 

TopFlash was recorded after 24h. Data 

represent means ±SEM. B – Western 

blot for TCF-4 on lysates generated from 

GH3 cells, mβ-Cat cell lines and HEK 

293 cells.  

 



 121

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. mβ-Cat cell lines proliferate at different rates. GH3 cells and mβ-Cat cell lines 

were seeded at 1x10
4
 cells per well in a 96 well plate and stimulated for 120h with either DCT-

FBS or normal FBS. Cell number was quantified using MTS assay. Data represent means 

±SEM. Statistics carried out using the Student t-test (n=10). 
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4.6. Discussion 

 

Canonical activation is generally associated with cellular proliferation which is brought 

upon by activation of cell cycle drivers such as cyclin D and c-myc, and growth factors 

like VEGF. Aberrant canonical signalling has been implicated in the development of 

numerous tumours and as such, it would seem a likely pathway by which Wnt-4 may 

contribute to prolactinoma development.  

 

Virtually all research on the canonical pathway focuses on the activation and 

downstream signalling events of β-Catenin. Experimentally, β-Catenin is relatively easy 

to study. It is easily purified and a number of good antibodies have been designed 

against it which are now standard within the field. The extensive research into its 

function has led to the development of a number of validated molecular tools such as 

reporter genes and loss/gain-of-function plasmids, some of which have been used in 

this report. 

 

Unlike other Wnt pathways which act on generic intracellular signalling networks, the 

actions of β-Catenin are fairly well confined to Wnt signalling. Other than translocation 

to the nucleus in response to Wnt signalling, its only other well documented role is in 

cell-cell adhesion at the cell membrane. As discussed previously, even this may be part 

of a Wnt-signalling network by sequestering β-Catenin away from the nucleus. 

Importantly, its translocation into the nucleus is thought to be specific to Wnt-canonical 

signalling (Chien et al., 2009), meaning any nuclear expression of β-Catenin, or β-

Catenin driven gene expression can be ascribed to activation of the canonical pathway. 

 

β-Catenin was highly expressed in GH3 cells and in other cell types in the pituitary. 

Global levels of β-Catenin did not increase in response to E2 treatment in the pituitary 

as judged by western blotting. Activation of the pathway is defined by the translocation 

of β-Catenin from the cytoplasm to the nucleus, rather than upregulation of protein 

levels, therefore this is not particularly surprising. Attempts were made to fractionate 

anterior pituitary tissue into cytoplasmic and nuclear compartments to compare nuclear 

β-Catenin levels between control and E2 treated rats, though attempts were 

unsuccessful. However, as only small amounts of β-Catenin may be required to 

translocate to the nucleus to elicit canonical gene transcription, this method may still 

not have been sensitive enough to identify activation of the pathway. 
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Immunofluorescence techniques are a more accurate measure of nuclear localisation 

of β-Catenin, and they are widely used in the literature to study canonical activation. In 

all models studied, β-Catenin was only ever observed at the cell membrane. 

Immunocytochemistry on GH3 cells and dispersed cultures of primary pituitary cells 

showed membrane localised β-Catenin within the lactotroph population as well as other 

uncharacterised pituitary cells. Immunohistochemical analysis on histological pituitary 

sections showed that this distribution was the same in all cell types in the anterior 

pituitary. Not a single example of nuclear localised β-Catenin was observed in any 

model in this project, suggesting the canonical pathway was not activated in response 

to E2 in the pituitary. This directly contradicts findings by Semba et al (2001) who did 

find nuclear β-Catenin in human pituitary tumours (Semba et al., 2001). However, our 

work is in line with more recent findings that suggest that β-Catenin does not localise to 

the nucleus in the pituitary (Miyakoshi et al., 2008b). 

 

Once again, the levels of β-Catenin translocation required to activate gene transcription 

may be extremely low, and the negative result observed could be related to technical 

limitations in detection. However, the antibody used in this project is the most 

commonly used and validated antibody in literature, while the microscope setup used 

was extremely sensitive. Therefore, the systems employed in this study are likely to 

have detected nuclear β-Catenin if it had been present. 

 

A still more accurate measure of canonical activation is using the TCF-dependent 

reporter gene TopFlash. This has the benefit over previous methods that we are not 

measuring the absolute level of β-Catenin in the nucleus, but the functional 

transcriptional output initiated by β-Catenin translocation. Interestingly, no luciferase 

expression was detected in GH3 cells in any condition. Wnt-3A and LiCl are standard 

positive controls in the literature, and efficiently activated canonical signalling in HEK 

293 cells in this study. The reporter gene was validated both structurally by restriction 

enzyme digest, and functionally in HEK 293 cells. One possible issue could be 

transfection of GH3 cells, though this is unlikely. Cells were co-transfected with Renilla 

luciferase expression plasmid to normalise transfection efficiencies between wells. In 

all cases Renilla luciferase expression was comparable between GH3 cells and HEK 

293 cells indicating successful transfection. This suggests that some aspect of 

canonical signalling is inhibited in GH3 cells. 
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This concept is strengthened by data using the constitutively active mβ-Cat plasmid. 

The plasmid was validated structurally by restriction digest, the mutated nucleotide was 

identified in the correct location, and the plasmid spontaneously induced expression of 

luciferase in HEK 293 cells when co-transfected with TopFlash. However, no luciferase 

induction could be detected when TopFlash and mβ-Cat were co-transfected into GH3 

cells, nor could luciferase expression be detected in GH3 cells stably transfected with 

mβ-Cat. The stable cell lines were continuously cultured in medium containing G-418 

antibiotic. Each new bottle of medium used was tested for its ability to kill normal GH3 

cells, and the retained ability for transfected cell lines to survive in G-418 medium 

indicates the plasmid remained integrated into the host DNA. Furthermore, the 

linearised version of the plasmid used to generate the stable cell lines was just as 

effective at activating TopFlash in HEK 293 cells as the non-linearised plasmid. Finally, 

GH3 cells and mβ-Cat cell lines all expressed TCF-4 demonstrating the necessary 

signalling machinery was present to activate TopFlash.  

 

The proliferation assays provide some interesting results, if only to highlight the 

necessity for repeating experiments. One of the mβ-Cat cell lines consistently 

proliferated at a greater rate than GH3 cells, while the other two proliferated slower 

than GH3 cells. Had only one cell line been used for this study, conclusions would have 

been drawn about the effect of mutant β-Catenin overexpression on GH3 cell 

proliferation, but as such, this data is inconclusive. The reason for this discrepancy 

cannot be explained, but is likely due to differences in integration site of the plasmid 

into the host DNA rather than from any direct action of the plasmid which we have 

shown does not function in our cell line.  

 

Taken together, our data strongly suggest that canonical signalling is not activated in 

the pituitary in response to E2, and does not function in GH3 cells. This data is in line 

with other work that had been published since the start of the project from other groups 

suggesting canonical pathway activation was not involved in the pituitary (Elston et al., 

2008; Miyakoshi et al., 2008b). Therefore, although it would have been interesting to 

find out why canonical signalling is non-functional in GH3 cells, it was decided not to 

investigate this pathway further, but instead to focus on other potential Wnt signalling 

pathways in the pituitary.  



 125

 

 

 

 

5.0. Results 3 - Wnt-4 signalling 

via non-canonical pathways in 

the pituitary 

 

 

 

 

 



 126

5.1. Introduction 

 

Wnt-4 is widely expressed in the pituitary. It is expressed in all the secretory cell types 

in the anterior pituitary, though the proportions of each secretory cell type expressing 

Wnt-4 vary. Wnt-4 is expressed in primary lactotroph cells, and is upregulated by E2 in 

GH3 cells. Wnt-4 is also highly expressed in the marginal zone (MZ) a region of the 

pituitary suspected to harbour progenitor stem cells which may contribute to cell 

renewal and restructuring of the pituitary during pituitary plasticity. Data from Results 

Section 4.0 strongly suggest that the canonical pathway is not activated in the pituitary 

and that it is non-functional in the GH3 cell line. Wnt molecules signal via two other 

signalling pathways, collectively termed the non-canonical pathways: the Wnt-calcium 

pathway, and the Wnt-planar cell polarity (PCP) pathway. Currently there are no data in 

the literature regarding the activation of either pathway in the pituitary. 

 

5.1.1. The Wnt-calcium pathway 

 

Calcium is a vital regulator of intracellular signalling in virtually all cells in multicellular 

organisms. Wnt binding to Fz increases intracellular levels of calcium through 

activation of IP3 channels on the endoplasmic reticulum. Newly released calcium is 

quickly absorbed either by calcium buffers, or calcium dependent enzymes such as 

PKC or calmodulin (CaM). These in turn activate secondary messengers such as 

calmodulin dependent kinases (CaMK I-IV) and calcineurin which regulate downstream 

calcium signalling events. Calcineurin has subsequently been shown to activate the 

transcription factor NFAT which may mediate some Wnt-calcium pathway actions.  

 

The mechanism of rapid calcium release and protein binding results in oscillating levels 

of intracellular calcium, and alterations in the amplitude and frequency of these 

transients can determine downstream cellular responses. GH3 cells have been shown 

to exhibit spontaneous calcium oscillations which may regulate PRL release (Wozniak 

et al., 2005) indicating that calcium signalling operates in GH3 cells. The eventual 

effects of the Wnt-calcium pathway are thought to include altered cytoskeletal 

remodeling and cell motility, differentiation, apoptosis and morphogenesis. The Wnt-

calcium pathway has been implicated in tumour progression in prostate cancer, breast 

cancer and human cutaneous melanoma cells.  
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5.1.2. The Wnt-planar cell polarity pathway 

 

Planar Cell Polarity (PCP) is the generation of a uniform orientation of a population of 

cells along a single epithelial plane and is found throughout the animal kingdom. The 

most studied example of PCP is the arrangement of bristles on the wing of Drosophila 

which is controlled by the polar distribution of Fz and a number of other cytoplasmic 

proteins along the proximal-distal axis.  

 

This polar organisation is also evident during convergent extension during gastrulation 

in Xenopus, where polarised mesenchymal cells derived from the mesoderm interact to 

lengthen the embryo along the anterior-posterior axis. In this circumstance, activation 

of the PCP pathway induces transition of epithelial cells into mesanchymal cells. 

Epithelial cells are held in place by adherens junctions which are composed of 

membrane bound E-Cadherin and β-Catenin. Induction of PCP signalling deconstructs 

these adherens junctions, transforming them into mesenchymal cells and allowing 

them to migrate past each other. This transition is highlighted by the loss of E-Cadherin 

at the cell membrane and increased N-Cadherin expression in the cytoplasm.  

 

Epithelial to mesenchymal transition is a vital step in the progression of a number of 

malignant tumours. The loss of cell to cell contact allows tumour cells to migrate away 

from their original location to proliferate and invade surrounding tissues. The 

mechanism by which PCP signalling induces this in mammals is poorly understood. 

Binding of Wnt to Fz activates small GTPases such as Rho A and Rac which then 

activate downstream kinases such as JNK and ROCK. Alterations in gene transcription 

can be induced by the activation of transcription factors like Jun, or kinases can act 

directly on the actin cytoskeleton. Both pathways are thought to alter cytoskeletal 

organisation which can lead to modulation of adherens junctions. Clearly defined 

instances of PCP signalling in mammals and detailed analysis of the signalling 

molecules involved in the pathway have been poorly documented to date.  

 

The pituitary displays a region which suggests the participation of PCP signalling. The 

marginal zone (MZ) is a single cell planar line of cells which acts as a border between 

the anterior lobe (AL) and the intermediate lobe (IL) of the pituitary. The function of MZ 

cells is currently unknown, though they have been shown to express stem cell markers 

such as Sox 2, Sox 9 and nestin which may play a role in populating the anterior 
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pituitary during tissue plasticity. Wnt molecules have been demonstrated to maintain 

stem cell niches in the body. It is possible that the planar organization of the MZ is a 

result of Wnt-PCP signalling, and that Wnt-4 may be acting via this pathway to maintain 

the cells in this region of the gland. 

 

 

5.2. Aims 

 

5.2.1. The Wnt-calcium pathway 

 

The effects of Wnt-4 on the Wnt-calcium pathway in lactotrophs will be studied as 

follows: 

• To assess whether spontaneous oscillations in intracellular calcium can be 

observed in GH3 cells 

• To assess whether Wnt-4 has any effect on GH3 cell calcium oscillations 

• To determine which, if any, NFAT isoforms are expressed in GH3 cells 

• To assess whether NFAT signalling is activated in GH3 cells by Wnt-4 

 

5.2.2. The Wnt-planar cell polarity pathway 

 

The effects of Wnt-4 on the Wnt-planar cell polarity pathway in lactotrophs will be 

studied as follows: 

• To assess the expression pattern of key PCP signalling proteins in control 

pituitaries and pituitaries undergoing E2-induced lactotroph hyperplasia 

o Focus will be placed on cells in and around the MZ, as well as in the AL 

• Proteins to be studied include:  

o Developmental proteins and potential stem cell markers: Wnt-4, Sox 9 

o Proteins whose expression pattern may be altered in PCP signalling: E-

Cadherin, N-Cadherin, β-Catenin 
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5.3. The Wnt-calcium pathway 

 

5.3.1. Wnt-4 inhibits calcium oscillations in GH3 cells 

 

GH3 cells are reported to undergo spontaneous oscillations of intracellular calcium. 

Live cell calcium imaging was performed on GH3 cells to see if Wnt-4 affects these 

oscillations. Calcium oscillations are extremely sensitive and can be affected by 

changes in temperature or movement. The effect of adding new medium onto cells may 

be enough to affect oscillations. In order to ensure that our protocol did no affect 

calcium oscillations, sequential control medium to control medium transitions were 

carried out. GH3 cells did spontaneously oscillate in culture, and oscillations were 

unaffected by this transition demonstrating a protocol where any effect on oscillations 

can be deemed specific to addition of stimulus. The trace also demonstrates 

oscillations were maintained for the duration of the experiment. This experiment lasted 

20 minutes and generally experimental duration did not exceed this time (Figure 5.1 A) 

 

As a positive control for calcium signalling, cells were treated with Bay-K-8644 (Bay K), 

an L-type calcium channel agonist, which causes calcium influx into cells through 

activated voltage-dependent calcium channels. Addition of Bay K brought about a 

classical increase in baseline of intracellular calcium indicating cells were viable (Figure 

5.1 B). 
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Figure 5.1. GH3 cell calcium oscillation control experiments. GH3 cells were loaded with 

Fluo-4 and images were taken every 3 seconds. Areas of interest were drawn around cells and 

fluorescence for each cell was quantified over the course of the experiment. Cells were 

stimulated at time points indicated by bars with either control (A – DCT-FBS, no effect seen in 

35/35 cells) or Bay K (B – 0.5µM, effect observed in 16 out of 16 cells).  

 

 

Wnt-4 produced a variable effect on GH3 cell calcium transients (Figure 5.2). In some 

cells, Wnt-4 induced total inhibition of calcium transients for long periods (Figure 5.2 A 

– 37% of cells studied) while partial inhibition of transients was observed in other cells 

(Figure 5.2 B/C – 26% of cells studied). Partial inhibition of transients could be further 

subcategorised into 2 types, where Wnt-4 induced a reduction in frequency and 

amplitude of oscillations for the duration of the experiment (Figure 5.2 B), or gave a 

temporary inhibition of oscillations (Figure 5.2 C). In some cells, addition of Wnt-4 had 

no effect on calcium transients (Figure 5.2 D – 37% of cells studied). Overall, Wnt-4 

inhibited calcium oscillations in 63% of cells. To test the specificity of our protein, Wnt-4 

recombinant protein was immunoneutralised by prior incubation with Wnt-4 antibody 

before addition to cells. This abrogated the inhibitory effect of Wnt-4 in 19 out of 19 

cells studied over 2 separate experiments, indicating the inhibitory effect observed was 

specific to Wnt-4 (Figure 5.2 E). 
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Figure 5.2. Wnt-4 inhibits calcium oscillations in GH3 cells. GH3 cells were loaded with 

Fluo-4 and images were taken every 3 seconds. Cells were treated with either control (DCT-

FBS) (D), recombinant Wnt-4 protein (200ng/ml, examples A-C) or Wnt-4 protein which had 

been immunoneutralised by prior incubation with Wnt-4 antibody (E, no effect observed in 19/19 

cells). Total cell number studied for Wnt-4 only effect = 209 from 12 separate experiments, and 

the percentage of cells in each subtype of Wnt-4 effect is indicated.  

 

Time (sec)

0
0 200 400 600 800 1000 1200 1400

200

400

600

800

1000

Control
Wnt-4

In
te

n
s
it

y

B

Control

0

200

400

600

800

0 200 400 600 800 1000 1200 1400

Wnt-4

In
te

n
s
it

y

A

Time (sec)

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

Control

In
te

n
s
it

y

Wnt-4

C

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

Time (sec)

Wnt-4
Control

In
te

n
s
it

y

D

0

100

200

300

400

0 200 400 600 800 1000 1200 1400

In
te

n
s
it

y

Time (sec)

Control
Wnt-4 + Wnt-4 antibody

E

Total inhibition  -
37% of cells

Partial inhibition -
26% of cells

No effect -
37% of cells

Time (sec)

0
0 200 400 600 800 1000 1200 1400

200

400

600

800

1000

Control
Wnt-4

In
te

n
s
it

y

B

Control

0

200

400

600

800

0 200 400 600 800 1000 1200 1400

Wnt-4

In
te

n
s
it

y

A

Time (sec)

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

Control

In
te

n
s
it

y

Wnt-4

C

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

Time (sec)

Wnt-4
Control

In
te

n
s
it

y

D

0

100

200

300

400

0 200 400 600 800 1000 1200 1400

In
te

n
s
it

y

Time (sec)

Control
Wnt-4 + Wnt-4 antibody

E

Time (sec)

0
0 200 400 600 800 1000 1200 1400

200

400

600

800

1000

Control
Wnt-4

In
te

n
s
it

y

B

Time (sec)

0
0 200 400 600 800 1000 1200 1400

200

400

600

800

1000

Control
Wnt-4

In
te

n
s
it

y

B

Control

0

200

400

600

800

0 200 400 600 800 1000 1200 1400

Wnt-4

In
te

n
s
it

y

A

Time (sec)

Control

0

200

400

600

800

0 200 400 600 800 1000 1200 1400

Wnt-4

In
te

n
s
it

y

A

Time (sec)

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

Control

In
te

n
s
it

y

Wnt-4

C

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

Control

In
te

n
s
it

y

Wnt-4

C

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

Time (sec)

Wnt-4
Control

In
te

n
s
it

y

D

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

Time (sec)

Wnt-4
Control

In
te

n
s
it

y

D

0

100

200

300

400

0 200 400 600 800 1000 1200 1400

In
te

n
s
it

y

Time (sec)

Control
Wnt-4 + Wnt-4 antibody

E

0

100

200

300

400

0 200 400 600 800 1000 1200 1400

In
te

n
s
it

y

Time (sec)

Control
Wnt-4 + Wnt-4 antibody

E

Total inhibition  -
37% of cells

Partial inhibition -
26% of cells

No effect -
37% of cells



 132

Attempts were made to rescue calcium transients after Wnt-4 inhibition. Replacing 

Wnt-4 medium with control medium was unable to rescue calcium transients (Figure 

5.3 A), but addition of Bay K did bring about an increase in intracellular calcium and 

induced calcium transients (Figure 5.3 B) indicating viability of GH3 cells after Wnt-4 

treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Calcium transient rescue experiments. GH3 cells were loaded with Fluo-4 and 

images were taken every 3 seconds. Cells were treated with Wnt-4 recombinant protein 

(200ng/ml), before medium was removed and replaced with either control medium (DCT-FBS) 

or Bay K (0.5µM).  
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5.3.2. Cell cycle analysis 

 

Flow cytometry was carried out on GH3 cells to assess whether the variable response 

of Wnt-4 on calcium oscillations was related to the cell cycle. Analysis indicated that 

63% of GH3 cells were in G1 phase of the cell cycle, 36% were in S phase and 1% 

were in G2/M phase, suggesting a potential link between calcium response to Wnt-4 

and the cell cycle (Figure 5.4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Cell cycle analysis of GH3 cells. GH3 cells were loaded with propidium iodide and 

analysed by flow cytometry at a wavelength of 488nm. The proportion of cells in each phase of 

the cell cycle is indicated. Data represent means between 2 repeated experiments 

 

5.3.3. NFAT signalling in lactotroph cells 

 

The Wnt-calcium pathway is proposed to signal through nuclear factor of activated T-

cells (NFAT). There are 4 isoforms of NFAT, termed NFAT1-4, which are 

phosphorylated by calcineurin upon calcium influx into the cell. Phosphorylation of 

NFAT results in its translocation into the nucleus where it functions as a transcription 

factor to elicit downstream effects of calcium. The expression of NFAT isoforms and 

calcineurin was assessed in GH3 cells and FACS sorted lactotrophs (FACS sorting 

was carried out by Frederic Madec). Figure 5.5 shows that all 5 genes were expressed 

in both cell populations. 
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Figure 5.5. Expression of NFAT isoforms and calcineurin in GH3 cells. PCR was run for 

NFAT 1-4 and calcineurin on rat genomic DNA (positive control) and cDNA generated from GH3 

cells and FACS sorted lactotrophs. Negative control was run on sample generated without 

reverse transcriptase. 

 

 

An NFAT reporter gene (pNFAT) was used to assess the effect of Wnt-4 calcium 

signalling in GH3 cells. Its negative control, pTA, contains the minimal TATA box 

promoter linked luciferase. pNFAT has the same TATA box promoter linked to 

luciferase, but with 3 additional NFAT binding sites. This region is conserved across all 

NFAT isoforms, so activation of any isoform should elicit luciferase transcription. 

Functionality of the plasmid was tested in HEK 293 cells which were stimulated with the 

calcium ionophore ionomycin, and the PKC activator 12-O-tetradecanoylphorbol-13-

acetate (PMA), which together induced a dose dependent expression of luciferase 

(Figure 5.6). Luciferase output for pTA was significantly lower in both cases, though 

there was some luciferase output with this plasmid. 
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Figure 5.6. Functional validation of pNFAT and pTA. HEK 293 cells were transiently 

transfected with Renilla luciferase and either pNFAT or pTA, and stimulated for 24h with either 

20ng/ml PMA and 1µM ionomycin, or 40ng/ml PMA and 2µM ionomycin, and luciferase output 

was quantified relative to Renilla luciferase expression. Data represent means ±SEM. Statistics 

carried out using Student T-Test (n=5). 

 

 

 

Wnt-4 effects on NFAT transcriptional output were assessed in GH3 cells and HEK 293 

cells. No luciferase expression was induced in GH3 cells with either Wnt-4 or positive 

controls. In HEK 293 cells, Wnt-4 had no effect on luciferase expression, though high 

levels of luciferase expression were observed after stimulation with PMA and 

ionomycin. In all conditions, cells transfected with pTA negative control elicited a 

degree of spontaneous luciferase expression, though this is much smaller than the 

large signal evoked upon stimulation of HEK 293 cells transfected with pNFAT with 

PMA and ionomycin (Figure 5.7).  
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Figure 5.7. Wnt-4 does not activate NFAT in GH3 or HEK 293 cells. GH3 (A) cells and HEK 

293 cells (B) were transfected with either pNFAT or pTA along with Renilla luciferase 

expression vector. Cells were stimulated for 24h with either control (DCT-FBS), 20ng/ml PMA 

and 1µM ionomycin, or Wnt-4 recombinant protein (200ng/ml) and luciferase expression was 

quantified relative to Renilla luciferase expression. Data represent means ±SEM.  

 

 

This is troubling as the calcium-NFAT pathways are common to many cell types, and 

the stimuli administered induce large influxes of calcium which would be expected to 

induce an NFAT response in most cell types. As with the TopFlash reporter gene 

studies, the lack of functional output is not likely due to an inability to transfect GH3 

cells. The spontaneous expression of Renilla and pTA demonstrate that cells were 

transfected and that luciferase expression could be detected at levels comparable to 

HEK 293 cells. Furthermore, the huge transcriptional output observed from pNFAT in 

HEK 293 cells demonstrates the functionality of the plasmid and would suggest that 
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only a small amount of plasmid transfected into cells would be able to elicit a 

detectable luciferase output in GH3 cells. Lack of signalling is therefore more likely 

related to the absence of a critical signalling component within the pathway, or 

inhibition from cross talk with other signalling pathways, however the reasons remain 

unknown. 

 

To test this further, GH3 cells were transfected with increasing amounts of pNFAT 

plasmid. No matter how much pNFAT was transfected into cells, the luciferase output 

was still negligible, while transfection efficiency as judged by Renilla luciferase 

expression was maintained. Conversely, low levels of pNFAT were transfected into 

HEK 293 cells and elicited a 35-fold increase in luciferase output when stimulated with 

PMA and ionomycin (Figure 5.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. pNFAT is not activated in GH3 cells. GH3 and HEK 293 cells were transfected 

with pNFAT and Renilla expression plasmid. The amount of pNFAT transfected into GH3 cells 

was varied and is indicated. HEK 293 cells were transfected with 0.05µg pNFAT. Cells were 

stimulated for 24h with either control (DCT-FBS) or 20ng/ml PMA and 1µM ionomycin and 

luciferase expression was quantified. Data represent means ±SEM.  
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5.3.3.1. Activation of NFκB signalling pathways in the pituitary 

 

It is slightly concerning that no transcriptional output was detected in GH3 cells using 

two separate reporter genes (TopFlash and pNFAT). Both these plasmids function as 

expected in HEK 293 cells, and Renilla expression indicated successful transfection 

protocol during co-transfection studies. However, using well established positive 

controls, no expression of luciferase was detected in any circumstance in GH3 cells. 

 

A poster at the ENDO 2010 conference last year reported a novel Wnt signalling 

pathway where Wnt-10A was shown to activate NFkB in osteoblast proliferation 

(Moedder et al, poster communication ENDO Conference, 2010). Our group has 

experience working with NFκB, and we have an NFκB reporter gene which has been 

used successfully in GH3 cells (Adamson et al., 2008).   

 

GH3 cells were co-transfected with an NFκB reporter construct (NFκB-Luc) and Renilla 

luciferase expression vector, and stimulated with increasing amounts of recombinant 

Wnt-4 protein and positive control tumour necrosis factor α (TNFα). Wnt-4 did not elicit 

transcription of luciferase at any concentration, however a robust response was 

observed when cells were treated with TNFα indicating luciferase transcriptional output 

could be induced and detected in GH3 cells (Figure 5.9). 
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Figure 5.9. Wnt-4 does not activate NFκB signalling in GH3 cells. GH3 cells were co-

transfected with NFκB-Luc reporter construct and Renilla luciferase expression vector and 

stimulated for 24h with control (DCT-FBS), 10ng/ml TNFα, or Wnt-4 recombinant protein at 

specified concentrations. NFκB driven luciferase expression was measured and normalised to 

Renilla luciferase expression. Data represent means ±SEM. Statistics carried out using the 

Student t-test (n=10). 
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5.4. The Wnt-planar cell polarity pathway 

 

In this section, the expression of proteins which may be involved in PCP-induced 

lactotroph hyperplasia were studied. Proteins of interest included Wnt-4, cell-cell 

adhesion proteins (E-Cadherin, N-Cadherin, β-Catenin) and the transcription factor Sox 

9.  

 

Focus was initially placed on cells in and around the MZ. Progenitor stem cells have 

been proposed to exist in the MZ which may proliferate to increase the population of 

endocrine cells in response to external stimuli. Attention then shifted to the AL to 

assess whether oestrogen induced changes in cell-cell adhesion throughout the 

pituitary during E2-induced lactotroph hyperplasia.  

 

 

5.4.1. Protein expression in the marginal zone and surrounding pituitary 

regions 

 

5.4.1.1. Wnt-4 expression around the marginal zone 

 

The effect of E2 treatment on Wnt-4 expression in the MZ was assessed. In both 

conditions, Wnt-4 was expressed at higher levels in the MZ than surrounding regions, 

however, no difference in Wnt-4 staining intensity could be detected between control 

and oestrogen treated animals (Figure 5.10).  
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Figure 5.10. Wnt-4 expression in the marginal zone is unaltered by E2 treatment. Pituitary 

sections from control and E2 treated rats (n=3 for each condition) containing the MZ were 

stained for Wnt-4 (red) and DAPI (blue). Regions of the pituitary are indicated; AL – Anterior 

lobe, IL – Intermediate lobe, MZ – Marginal zone. Images were taken along the length of the MZ 

and images displayed are considered representative of the experiment. 

 

5.4.1.2. Sox 9 and E-Cadherin expression around the marginal zone 

 

Cells in the marginal zone are reported to express stem cell markers including Sox 9. 

We assessed the expression of Sox 9 across the marginal zone to see if E2 treatment 

resulted in Sox 9 upregulation. To easily identify MZ cells, sections were co-stained for 

E-Cadherin which we have previously shown is expressed specifically in cells along the 

MZ (Figure 3.6). E-Cadherin was specifically expressed in all MZ cells, was weakly 

expressed in a small number of cells in the AL and was not expressed in the IL. Sox 9 

was expressed in a proportion of cells along the MZ, and a small number of cells in the 

AL in keeping with previously published material (Fauquier et al., 2008). No change in 

E-Cadherin expression pattern was found between control and E2 treated rats (Figure 

5.11 A). The percentage of cells in the MZ expressing Sox 9 was quantified. Roughly 

50% of cells in the MZ express Sox 9, and this was unaltered by treatment with E2 

(Figure 5.11 B). 
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Figure 5.11. Sox 9 and E-Cadherin expression in the marginal zone. A – IHC staining of the  

MZ and adjacent pituitary regions for DAPI (blue), E-Cadherin (green), and Sox 9 (red) showing 

individual staining and merged image. Image was taken from a control rat pituitary, but is 

considered representative of both control and E2 treated rats (n=5 from each condition). MZ – 

Marginal zone, IL – Intermediate lobe, AL – Anterior lobe. White bar represents 20µm. B – 

Percentage of cells in the marginal zone expressing Sox 9 in control and E2 treated rats (n=5). 

Data represent means ±SEM.  

 

 

5.4.1.3. N-Cadherin expression around the marginal zone 

 

During epithelial to mesenchymal transition, cells are able to move across each other 

due to loss of E-Cadherin at the membrane. This can be visualised by decreased E-

Cadherin expression at the cell membrane which is often accompanied by increased 

expression of N-Cadherin.  If Wnt-4 is acting via the PCP pathway to induce lactotroph 

hyperplasia, the expression of N-Cadherin may be increased around the MZ. N-

Cadherin was strongly expressed within the IL and along cells of the marginal zone in 

both control and E2 treated rats. The MZ was not highlighted by co-staining with E-

Cadherin in this experiment, though the boundary between the IL and MZ could be 

seen from differences in nuclei distribution as previously described. In the images 
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presented below, the difference in cellular distribution between the AL and IL is not as 

clear in E2 treated rats as in control animals. However, when viewed under the 

microscope from a wider field of view, this difference was still clear. No change in N-

Cadherin expression was detected between control and E2 treated rats (Figure 5.12). 

N-Cadherin staining was carried out by Frederic Madec. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. N-Cadherin expression in the marginal zone. IHC staining of the MZ and 

adjacent pituitary regions in control and E2 treated rats showing DAPI (blue) and N-Cadherin 

(red). Top row shows DAPI staining alone, bottom row shows DAPI and N-Cadherin merged 

images. MZ – Marginal zone, IL – Intermediate lobe, AL – Anterior lobe. White bar represents 

20µm. Images in each column were taken from different animals and are considered 

representative of the experiment. 

 
 

5.4.1.4. β-Catenin expression around the marginal zone 

 

β-Catenin plays an intrinsic role at the cell membrane as a functional component of 

adherens junctions. Its expression was assessed in the MZ and anterior, posterior and 

intermediate lobes in control and E2 treated rats. Membrane bound β-Catenin was 

strongly expressed in the AL (as previously shown in Results chapter 4.0), the IL and 

the PL. Expression was consistently stronger in the IL than the AL or PL, and no 

specific expression was observed in the MZ as seen with E-Cadherin expression. 
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There was not a single example of nuclear localised β-Catenin in any animal in any 

area of the pituitary, and no difference in the distribution of β-Catenin was observed 

between control and E2 treated rats (Figure 5.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. β-Catenin expression in posterior and anterior pituitary lobes. Pituitaries from 

control and E2 treated rats containing the posterior, intermediate and anterior lobes were 

stained for DAPI (blue) and β-Catenin (green). The animal number is indicated and relates to 

Table 3.1. Regions of the pituitary are indicated; AL – Anterior lobe, IL – Intermediate lobe, PL – 

posterior lobe. White bar represents 50µm. The microscopic fields of vision are considered to be 

representative of the whole study. 
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5.4.2. Proteins of interest in the anterior lobe 

 

The expression patterns of Wnt-4 and β-Catenin in the AL of the pituitary have already 

been discussed in Results Chapters 3.0 and 4.0 respectively and were both unaffected 

by E2 treatment. The expression of N-Cadherin, E-Cadherin and Sox 9 was assessed 

in the AL to see whether the expression patterns of possible PCP pathway mediators 

were altered by E2 treatment during pituitary remodelling. 

 

5.4.2.1. N-Cadherin expression in the anterior lobe 

 

N-Cadherin was widely expressed in control pituitaries, and staining intensity appeared 

to decrease after E2 treatment (Figure 5.14 A). Images were quantified by assigning 

values to the intensity of staining for individual cells. Counting cells revealed that in 

control animals, 10% of cells did not stain for N-Cadherin, 77% of stained with low 

intensity and 13% of cells stained with high intensity. In E2 treated rats, 84% of cells 

did not stain for N-Cadherin, 15% stained with low intensity, while less than 1% stained 

with high intensity. Statistical analysis shows that the proportion of cells not expressing 

N-Cadherin increased significantly with E2 treatment (P < 0.001), while the proportion 

of cells expressing N-Cadherin (i.e. +1 and +2 intensity cells added together) 

decreased significantly with E2 treatment (P < 0.001 - Figure 5.14 B). This was further 

demonstrated by western blotting as faint expression for N-Cadherin was detected in 2 

out of the 3 control animals tested, while no band was present in E2 treated animals 

(Figure 5.14 C). 
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Figure 5.14. N-Cadherin expression in the anterior lobe. A – IHC staining of histological 

pituitary sections from control and E2 treated rats. Sections were stained for N-Cadherin (red) 

and DAPI (blue). White bar represents 20µm. B – Quantification of IHC images. Cells were 

rated according to staining intensity as follows - 0 – no staining, +1 – low staining, +2 – high 

staining. For counting, 2 random images of the AL were selected from each animal (n=3) and at 

least 800 cells counted per animal according to the above criteria. Statistical analysis was 

carried out on cells not expressing N-Cadherin, and cells expressing N-Cadherin (+1 and +2 

cells combined) using Student T-Test (n= 6). C – Western blot for N-Cadherin on AL lysates. 

Fischer 344 rats were treated for 3 weeks with subcutaneously administered vehicle (PEG) or 

E2 (125µg/kg/day). Posterior pituitaries were removed, lysates were generated from anterior 

pituitary tissue and tested for N-Cadherin and α-Tubulin loading control. 
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5.4.2.2. E-Cadherin expression in the anterior lobe 

 

In contrast to the MZ, E-Cadherin was expressed at low intensity in the cell membrane 

in a relatively small proportion of cells which were scattered through the AL. The 

phenotype of these cells was not determined by co-staining hormones with E-Cadherin 

due to species cross-reactivity between antibodies.  No difference in E-Cadherin 

expression pattern could be determined visually (Figure 5.15 A). Quantification of the 

number of cells expressing E-Cadherin in the AL shows that there is a slight, though 

non-significant, reduction in the number of E-Cadherin expressing cells in E2 treated 

rats (Figure 5.15 B). However, western blots show that global levels of E-Cadherin 

were reduced in the AL by E2 treatment (Figure 5.15 C). 
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Figure 5.15. E-Cadherin expression in the anterior lobe. A – IHC staining of histological 

pituitary sections from control and E2 treated rats. Sections were stained for E-Cadherin (green) 

and DAPI (blue). White bar represents 20µm. B – Quantification of the proportion of cells in the 

AL expressing E-Cadherin. 2 random images of the AL were selected from each animal (n=3) 

and at least 800 cells counted per animal. C – Western blot for N-Cadherin on AL lysates. 

Fischer 344 rats were treated for 3 weeks with subcutaneously administered vehicle (PEG) or 

E2 (125µg/kg/day). Posterior pituitaries were removed, lysates were generated from anterior 

pituitary tissue and tested for E-Cadherin and α-Tubulin loading control. Each lane represents a 

lysate generated from a single animal. 
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5.4.2.3. Sox 9 expression in the anterior lobe 

 

Sox 9 was expressed in the nuclei of a small number of cells in the AL (Figure 5.16 A). 

Dual expression studies were not carried out in order to identify which cell types in the 

pituitary expressed Sox 9. Roughly 5% of cells expressed Sox 9 in the AL, and this was 

not altered by E2 treatment (Figure 5.16 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Sox 9 expression in the anterior lobe. A – IHC staining histological pituitary 

sections from control and E2 treated rats. Sections were stained for Sox 9 (red, left column) and 

DAPI (blue, middle column) with merged images in the right column. White bar represents 

20µm. B - Quantification of the proportion of cells in the AL expressing Sox 9. 2 random images 

of the AL were selected from each animal (n=3) and at least 800 cells counted per animal. Data 

represent means ±SEM. 
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5.5. Discussion 

 

Unlike the canonical pathway which has been extensively defined, non-canonical 

pathways are very poorly understood. Both pathways are thought to interact with 

generic kinases and cell regulators such as Jnk kinases, cytoskeletal regulators and 

modulators of calcium signalling, which integrate signals from numerous inputs to 

control diverse aspects of cell behaviour. As such, it is hard to isolate aspects of these 

pathways experimentally, and tools to study non-canonical Wnt pathways are not yet 

commercially available. The effects of modulating generic signalling pathways are 

clearly variable depending on cell type and tissue context, and so far there is no 

consensus in the literature regarding the best way to study non-canonical Wnt 

signalling pathways. In this section, attempts were made to examine both these 

pathways in the pituitary. 

 

5.5.1. The Wnt-calcium pathway 

 

The effects of Wnt-4 on the calcium pathway were assessed by studying calcium 

transients in GH3 cells in response to Wnt-4 treatment. In initial studies characterising 

the Wnt-calcium pathway, it was shown that injection of Wnt-5A RNA into zebrafish 

embryos doubled the frequency of calcium transients in the subsequently formed 

blastocyst (Slusarski et al., 1997a; Slusarski et al., 1997b). GH3 cells are known to 

exhibit spontaneous calcium oscillations (Wozniak et al., 2005), so the effects of 

recombinant Wnt-4 protein on these oscillations was studied.  

 

In our study, intracellular calcium levels in GH3 cells did spontaneously oscillate in 

culture. Calcium transients can be very easily influenced by physical changes in 

movement and temperature, and as such it was vital that addition of new stimuli under 

the microscope did not affect calcium transients. We demonstrated that transients were 

unaffected by transition between different media, and that GH3 cells responded 

appropriately to administration of Bay K, an L-Type calcium channel agonist which 

generated an increase in levels of intracellular calcium (Figure 5.1).  

 

Addition of recombinant Wnt-4 protein resulted in inhibition of transients in 63% of cells 

and had no effect in 37% of cells (Figure 5.2). In retrospect it may have been useful to 

carry out statistical analysis in the calcium oscillation data. Small spikes present in the 
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blots most likely reflect noise, and an amplitude threshold could have been made under 

which spikes could have been discounted. Quantification of the number, amplitude and 

frequency of spikes above this threshold could have then been carried out which would 

have given more information on the inhibitory effect of Wnt-4 on calcium transients in 

GH3 cells. Overall, these data show that the number of cells undergoing inhibition of 

calcium oscillations correlates closely with cell cycle analysis, which showed that under 

these experimental conditions 63% of GH3 cells were in the G1 phase, 36% were in 

the S phase and 1% were in the G2 phase. This suggests that calcium oscillations in 

cells in the G1 phase could be inhibited, while there is no effect on transients of cells in 

the S phase, though this was not confirmed.  

 

The Wnt-calcium pathway may signal through NFAT, a cytoplasmic transcription factor 

which when activated by calcineurin, translocates to the nucleus to elicit gene 

transcription. Calcineurin and all 4 isoforms of NFAT were expressed in GH3 cells and 

FACS enriched lactotroph cells, however using an NFAT-dependent reporter gene, no 

expression of NFAT could be detected in GH3 cells. As observed with TopFlash 

reporter gene studies, this is likely not to result from inability to transfect cells with the 

plasmid as Renilla expression levels were comparable between GH3 cells and control 

HEK 293 cells. Furthermore, then negative control vector pTA did elicit some 

transcriptional output which was consistent between GH3 cells and HEK 293 cells. The 

plasmids are structurally very similar and the same protocol was used to transfect both 

plasmids, therefore it is highly unlikely that the negative control pTA was transfected, 

while the positive plasmid, pNFAT, was not. However, the result is slightly 

disconcerting as the NFAT pathway is a common pathway in mammalian cells, the 

necessary signalling components were expressed in GH3 cells, the positive stimuli 

(PMA and ionomycin) are well documented to induce large changes in intracellular 

calcium, and calcium machinery is clearly functional in GH3 cells as observed through 

live cell calcium imaging data presented here. Furthermore, parallel experiments in 

HEK 293 cells show that the plasmid is clearly functional, eliciting huge transcriptional 

output in response to positive controls.  

 

In order to validate the transfection protocol in GH3 cells, the effect of Wnt-4 on NFκB 

activity was assessed. Wnt-10A may activate NFκB in osteoblast cells, and our group 

has previously studied NFκB signalling with reporter constructs in GH3 cells. Using the 

same transfection protocol as was used throughout this thesis, the NFκB reporter 

construct was transfected into GH3 cells and stimulated with Wnt-4 and positive control 

TNFα. Although Wnt-4 elicited no effect on NFκB, TNFα induced expression of 
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luciferase indicating the successful transfection and activation of the reporter construct 

in GH3 cells (Figure 5.9). Therefore, it is likely that the negative results for NFAT 

signalling in GH3 cells do reflect a lack of NFAT signalling, though this cannot be 

explained at present. However, NFAT is only one pathway through which the Wnt-

calcium pathway may signal. Other possibilities not studied here include PKC, PLC and 

CAMKII signalling pathways providing further scope for this pathway in the pituitary. 

 

5.5.2. The Wnt-planar cell polarity pathway 

 

The PCP pathway is even more difficult to study than the calcium pathway. As a cell 

signalling molecule, calcium itself can be isolated and followed experimentally in terms 

of its oscillatory action. Though the downstream signalling effects of calcium inhibition 

are far more difficult to understand, it was relatively easy to ascertain a clear effect on 

calcium signalling by Wnt-4, which warrants further investigation.  

 

However, no such easily identifiable molecule exists in the PCP pathway. The pathway 

is so poorly understood in vertebrates that only a few instances of signalling have been 

attributed to the PCP pathway which may involve GTPases and kinases with numerous 

possible cellular outcomes. In an attempt to study the pathway in a more functional 

manner, immunofluorescence techniques were used to study the distribution of key 

developmental proteins and cadherin molecules throughout the pituitary, which may be 

downstream targets of PCP signalling. Different cell types in the pituitary express 

different cadherin molecules which are thought to link cells to each other in networks 

(Chauvet et al., 2009; Fauquier et al., 2001), and alterations in the distribution of 

cadherins has been shown to contribute to pituitary dysmorphology (Ezzat et al., 

2004b; Moran et al., 2010).  

 

The expression patterns of the following proteins were compared between control and 

E2 treated rats: Sox 9, Wnt-4, β-Catenin, E-Cadherin, N-Cadherin. Research focused 

on 2 different areas: the AL, and the MZ. 
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5.5.2.1. Planar cell polarity signalling in the anterior lobe 

 

The expression patterns of Wnt-4 and β-Catenin in the AL have been discussed at 

length already in Results Chapters 3.0 and 4.0 respectively, and will not be discussed 

further here. 

 

The most striking difference between control and E2-treated rats was the marked 

reduction in N-Cadherin expression. This was shown by western blot where global 

levels of N-Cadherin were decreased, and by immunofluorescence where the staining 

intensity for N-Cadherin was markedly decreased. This was coupled with a decrease in 

E-Cadherin levels, though the expression of E-Cadherin was already relatively low in 

control pituitaries. Dual staining with hormones would have been useful to see whether 

the downregulation of cadherins observed was specific to a particular cell type, or 

whether it reflects a global morphological change in response to pituitary enlargement 

and lactotroph hyperplasia. 

 

Sox 9 was expressed sporadically throughout the pituitary, though once again dual 

staining for hormones was not performed to ascertain which cell types expressed Sox 

9. It has been reported that FS cells specifically express Sox 9 in the adult mouse 

pituitary (Fauquier et al., 2008), and the proportion of FS cells reported in the rat is 

comparable to the proportion of cells expressing Sox 9 in this study (Jin et al., 2001). 

The proportion of Sox 9 expressing cells decreased slightly with E2 treatment, though 

no significant change was observed. The expression of Sox molecules in the pituitary 

has been implicated by a number of different groups as a possible marker for 

progenitor stem cells (Chen et al., 2009; Fauquier et al., 2008; Garcia-Lavandeira et 

al., 2009; Moran et al., 2010), though the downstream effects of Sox signalling has not 

been studied yet. 

 

5.5.2.2. Planar cell polarity signalling in the marginal zone 

 

All proteins of interest were expressed in and around the MZ, though no change in the 

expression of any of the proteins was observed with E2 treatment. Wnt-4, β-Catenin 

and N-Cadherin were all expressed in cells along the MZ and in adjacent IL and AL 

regions. Wnt-4 staining intensity was higher in the MZ than surrounding areas, though 
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β-Catenin and N-Cadherin staining was more intense in the IL than the AL, and no 

specific difference could be deduced between IL and MZ staining for these proteins. 

 

Cells in the MZ expressed E-Cadherin at high intensity. Some cells in the AL did 

express E-Cadherin as previously discussed, though the intensity of staining was 

considerably higher in the MZ. Sox 9 was expressed in roughly 50% of cells in the MZ, 

and was unaltered by E2 treatment. The incidence of Sox 9 expression in the MZ was 

considerably higher than in the AL (50% of cells in the MZ against 5% in the AL) 

suggesting it may play an important role in this region. 

 

Although no changes in the expression of these proteins was observed with E2 

treatment, the expression of stem cell markers and the clear structural characteristics 

of the MZ certainly warrant further investigation.  

 

 

5.6. Summary 

 

Overall this chapter shows the novel finding that Wnt-4 impacts on a non-canonical 

pathway in the pituitary by inhibiting calcium oscillations in lactotroph cells. Although 

attempts to study the downstream effects of this inhibition were unsuccessful, it does 

open new possible avenues of research for the scientific community which has thus far 

concentrated solely on the canonical pathway. Attempts to understand the role of PCP 

signalling in the pituitary were less successful. However the high expression of Wnt-4 

in this region, the planar organisation of the MZ, and alterations in cell to cell adhesion 

molecules during oestrogen-induced lactotroph hyperplasia do suggest a possible role 

for the pathway in pituitary remodelling.  
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6.0. Discussion 
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6.1. Introduction 

 

The pituitary gland is a fascinating organ in the manner in which multiple secretory cell 

phenotypes exist in close proximity to each other. The origin of these cell types has 

been extensively studied and has given key insight into the mechanisms by which 

networks of transcription factors work simultaneously to develop the heterogeneous 

pool of cells that constitutes the mature gland. More recently it has emerged that the 

adult pituitary is plastic, with the relative proportions of secretory cells changing in 

response to the physiological demands of the body. The mechanisms by which this 

occurs are unknown but are likely to involve locally produced transcription and growth 

factors which selectively induce proliferation of a particular cell type. This process 

would appear to be hijacked during the development of pituitary adenomas, where the 

low rate of proliferation of a particular cell type results in a slowly expanding adenoma 

which can take over 20 years to reach clinical significance depending on the cell type 

involved. To date, little information is present in the literature regarding control over 

adult tissue plasticity, with researchers focusing on the causes of pituitary adenomas to 

explain proliferative effects in plastic pituitary response. 

 

 

6.2. Oestrogen effect on lactotroph proliferation 

 

The basis of this thesis is the well known proliferative effect of oestrogen on the 

lactotroph population. In this study, Fischer 344 rats were treated with E2 for 3 weeks 

which induced lactotroph hyperplasia. The Fischer 344 rat is oestrogen sensitive, and 

the rate of lactotroph proliferation and prolactinoma development is higher in Fischer 

344 rats than other rat models. However, E2 treatment of other rat strains does induce 

lactotroph hyperplasia, albeit less marked.  

 

In a direct comparison between Fischer 344 rats and Sprague Dawley rats, 8 weeks E2 

treatment doubled pituitary weight in Fischer 344 rats (as in the present study) but 

pituitary weight in Sprague Dawley rats only increased from 22mg to 30mg. Pituitary 

PRL content was comparable between the two strains, and although plasma PRL 

levels were increased in Sprague-Dawley rats, they were significantly lower than in 

Fischer 344 rats (Lawson and Parker, 1992). In a different study, treatment of Sprague 
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Dawley rats with high levels of E2 (500µg/kg/day compared to 125µg/kg/day in our 

study) for 7 weeks induced pituitary tumours and increased PRL secretion (Diaz-Torga 

et al., 1998). In two further studies, chronic E2 treatment of Fischer 344 and Sprague 

Dawley rats did result in lactotroph hyperplasia, although the degree of proliferation 

was less in Sprague Dawley rats than in Fisher 344 rats and the duration of E2 

exposure required to induce comparable hyperplasia was longer in Sprague Dawley 

rats (Lawson and Parker, 1992; Suarez et al., 2002). 

 

Male Wistar rats were treated with 2mg/kg/day estradiol benzoate for 3 weeks which 

doubled pituitary weight (Nedvidkova et al., 2001) though it was not stated if prolonged 

treatment resulted in tumour development, and the dose used in this study is 

considered extremely high. Not all rats undergo lactotroph hyperplasia in response to 

E2 treatment.  In a direct comparison between comparison between Fischer 344 and 

Holtzman rats, chronic E2 treatment induced tumours in Fischer 344 rats but not in 

Holtzman rats (Lieberman et al., 1981).  

 

Overall, the system employed in this study can be considered somewhat reflective of 

normal rat physiology. One question that does become apparent when considering 

other studies is that the dose of E2 used in this project was relatively low and of short 

duration (125µg/kg/day for 3 weeks). Other studies treated rats with up to 2mg/kg/day 

and in some studies treatment lasted for up to 8 weeks. In our model, lactotroph 

hyperplasia was induced, but prolactinoma formation was not, though would be 

expected to if the duration of treatment was extended. It is therefore important when 

considering results obtained from this model that further treatment may induce more 

chronic and detectable changes than observed in this thesis.  

 

When compared to humans, the link between chronic oestrogen treatment and 

prolactinoma development is not so clear. An example of chronic oestrogen treatment 

to humans is in the treatment of transsexuals with high doses of oestrogen to suppress 

testosterone production and promote femininity. Prolactinomas are not more prevalent 

in these people than normal people. However, the numbers of transsexuals studied in 

this context are extremely low, and therefore increased rates of prolactinoma 

development may have not been detected. It has been shown that women taking an 

oestrogen-containing contraception pill may have a slight increase in serum PRL levels 

and a slight increase in incidence of prolactinoma development (Luciano et al., 1985), 

though other studies show no difference in tumour incidence (Davis et al., 1984).  

Considered together, the rat models used in this study may be relevant to humans, 
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though direct comparisons between the models cannot be made at without further 

investigation. 

 

 

6.3. Wnt-4 upregulation in the pituitary 

 

Over the last 10 years, a number of studies have implicated Wnt-4 as being a key 

regulator of pituitary development, as well as playing a role in pituitary adenoma 

formation; Wnt-4 knock out resulted in decreased pituitary cell number in mice (Potok 

et al., 2008; Treier et al., 1998), Wnt-4 was expressed in the adult rat pituitary and 

oestrogen treatment to GH producing MtT/S cells increased Wnt-4 expression 

(Miyakoshi et al., 2009), and Wnt-4 was upregulated in human pituitary tumours 

(Miyakoshi et al., 2008b). Pervious work from our group also showed that Wnt-4 mRNA 

was upregulated in pituitaries undergoing lactotroph hyperplasia (Giles et al., 2011). In 

the present study, Wnt-4 protein was widely expressed throughout the pituitary, was 

upregulated in GH3 cells in response to oestrogen treatment, and was also expressed 

in the MZ, a poorly understood region of the pituitary which may contain progenitor 

cells.  

 

However, upregulation of Wnt-4 protein could not be detected in primary tissue. The 

reasons for this are not understood though may relate to RNA message for some 

reason not being translated into protein expression, upregulation of Wnt-4 in only a 

subset of cells which may go undetected when measuring global levels of Wnt-4 in the 

pituitary, or too short a duration of E2 treatment to elicit a measurable increase in Wnt-

4 protein level. 

 

 

6.4. Site of Wnt-4 expression in the pituitary 

 

The wide expression of Wnt-4 poses a question as to which cells Wnt-4 may be 

exerting its effects on in the pituitary. The initial premise of this project was that Wnt-4 

was expressed specifically in lactotroph cells, and that upregulation of Wnt-4 would 

result in proliferation of the lactotroph population through paracrine action of Wnt-4. If 

true, numerous aspects of Wnt signalling could have been, and were, studied using the 
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somatolactotroph GH3 cell line.  Clearly data gathered using the GH3 cell line cannot 

be considered representative of other cell types in the anterior pituitary. 

 

Our data clearly show that Wnt-4 is expressed in all cell types studied in the pituitary. 

This is supported from data demonstrating that Wnt-4 is upregulated in a number of 

different pituitary adenoma subtypes, and not restricted to prolactinomas (Miyakoshi et 

al., 2008b). Ideally, the downstream signalling events of Wnt-4 would be studied in all 

pituitary cell types, though the lack of well characterised cell lines for other pituitary cell 

phenotypes limits experimental scope. 

 

The heterogeneous nature of the pituitary renders isolation of a specific cell type from 

primary tissue difficult. In this thesis, FACS sorting was used to isolate a population of 

cells 80% positive for PRL. However, this is still far from ideal as the identity of the 

other 20% of cells in this population is unknown and furthermore, the amount of rats 

required to obtain enough material to study these cells would be expensive and 

unsuitable for most experimental approaches. Another possibility would be to use 

transgenic rats generated in our group which express green fluorescent protein (GFP) 

driven by the human PRL promoter. Using the GFP signal, our group is able to isolate 

a pure population of lactotroph cells through FACS sorting.  A separate group has used 

a similar protocol to isolate somatotrophs by fusing GFP to the N-terminus of the hGH 

gene enabling isolation of a pure GH producing population (Magoulas et al., 2000). 

However, the same limitations apply regarding the amount of useful experimental 

material that can be attained through these procedures. 

 

Though protocols are available to isolate lactotroph and somatotroph cells, we are still 

unable to isolate pure populations of other cell types to study. This problem is 

especially evident when trying to study the single layer of cells which constitutes the 

MZ. The only way in which we, and others, have studied this region is though 

immunofluorescence techniques, which have been extremely useful in identifying the 

expression of proteins which may regulate tissue plasticity. The high levels of Wnt-4 

expression in the MZ suggest a role for Wnt-4 in this region, and the planar 

organisation suggests a possible action for PCP signalling in regulating the region. 
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6.5. Downstream Wnt signalling in the pituitary 

 

6.5.1. Canonical signalling in the pituitary 

 

Despite numerous data reporting the involvement of Wnt molecules in the pituitary, few 

groups have tried to fully examine the downstream signalling events Wnts may employ. 

Predictably, most groups have focused on whether or not the canonical pathway is 

activated in the pituitary due to the relative ease with which this pathway can be 

studied.  

 

Although initial evidence suggested that the canonical pathway was activated in 

pituitary adenomas (Semba et al., 2001), more recent evidence suggests that the 

canonical pathway is not activated in the pituitary (Miyakoshi et al., 2008b). Our data 

clearly shows that canonical signalling could not be induced in GH3 cells, even when a 

constitutively active mutant form of β-Catenin was introduced into cells. IHC analysis 

shows that no examples of nuclear β-Catenin were found in the project strongly 

suggesting that canonical signalling is not active in the pituitary.  

 

Craniopharyngiomas, a distinct subset of pituitary tumours originating from the 

remnants of the Rathke’s pouch, are thought to be caused by aberrant β-Catenin 

signalling (Pettorini et al., 2010). They exhibit a much more aggressive proliferation 

profile than pituitary adenomas which usually requires medical intervention in early 

youth. The difference in proliferation profiles of pituitary adenomas and 

craniopharyngiomas suggests that canonical signalling plays no role in pituitary 

adenoma growth. 

 

This concept is strengthened when studying other cancers caused by aberrant 

canonical signalling. In colorectal cancer, a mutation in APC renders the canonical 

pathway constitutively active resulting in uncontrolled cell proliferation and malignancy. 

Tumours in the pituitary are almost never malignant, once again arguing that the 

proliferative effect initiated by the canonical pathway would likely cause more 

aggressive tumour growth than observed in pituitary adenomas. 

 

Finally, unpublished data presented in an oral communication last year shows an 

interesting effect of upregulated canonical signalling in the pituitary. Constitutively 
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active mutant β-Catenin (not confirmed if it was the same mutant β-Catenin plasmid 

used in this thesis) was selectively expressed under two different promoters in the 

mouse pituitary. In the first case, mutant β-Catenin expression was driven by Hesx-1, 

which is expressed in the Rathke’s pouch and precursors to all secretory cell types in 

the AL between e9.5 and e15.5, and is essential for normal pituitary development 

(Mantovani et al., 2006). Secondly, mutant β-Catenin expression was driven by the 

PRL promoter. In Hesx-1 driven expression, mice developed pituitary tumours similar 

to craniopharyngiomas, while no effect was observed in mice with PRL driven mutant 

β-Catenin expression (Martinez-Barbera, personal oral communication, 2010). 

 

Taken together, with the single exception of immunohistochemical analysis presented 

by Semba et al (2001), all data in the literature, and in this report, suggest that 

canonical signalling is not involved in pituitary adenoma pathogenesis. 

 

6.5.2. Non-canonical signalling in the pituitary 

 

Attempts were made to study the non-canonical pathways in the pituitary. As previously 

described, no specific tools are currently available to study non-canonical pathways 

due to the poor understanding of both pathways.  

 

6.5.2.1. Planar cell polarity signalling in the pituitary 

 

The PCP pathway was studied by assessing the expression of Cadherin molecules in 

different regions of the pituitary. The PCP pathway is thought to alter cytoskeletal 

organisation and cell to cell adhesion in order to generate planes of cells from which 

the pathway derives its name. Alterations in cadherin expression are important in 

tumour progression. Loss of cell to cell adhesion through downregulated E-Cadherin 

expression allows cells to migrate past each other and invade surrounding tissue 

(Huber et al., 2005). Recent data shows that disruption of cadherin structures by Notch 

upregulation results in disorganised cellular organization at the IL/PL border and 

altered progenitor cell (defined by Sox 2 expression) localisation (Moran et al., 2010).  

 

In the present study, both E-Cadherin and N-Cadherin levels were decreased in E2 

treated pituitaries, suggesting some form of structural reorganisation. However, E-

Cadherin was only expressed in a small number of cells in the AL and furthermore was 
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only expressed at low levels when compared to the high expression observed in the 

MZ. It is therefore hard to ascribe too great an importance to this decrease. However, 

N-Cadherin was strongly expressed throughout the AL in control animals, and its 

expression was markedly decreased after E2 treatment.  

 

It has been shown that specific cell types in the pituitary express different cadherin 

molecules which are likely to form networks between cells (Chauvet et al., 2009). It is 

likely that reorganisation of these structural networks takes place during pituitary 

remodelling to allow for cellular proliferation, but whether this reorganisation is directly 

caused by PCP signalling in the pituitary or secondary to reorganisation induced by 

proliferation is unknown. 

 

In contrast to the low expression of E-Cadherin in the AL, E-Cadherin was highly 

expressed in the MZ where it was specifically expressed along the MZ, though its 

expression in this site is unaltered by E2 treatment. The planar organisation of the MZ 

suggests a possible role for the PCP pathway in regulating this region. The MZ may 

contain stem cells which may regulate the plasticity of the adult gland by regulating 

proliferation of new cells from existing progenitor cells. Wnt molecules have been 

proposed to maintain stem cell niches (Reya et al., 2003; Willert et al., 2003) and it is 

possible that the function of Wnt-4 in the pituitary is to maintain cells in the MZ to allow 

them to regulate tissue plasticity.  

 

For some time the origin of new lactotroph cells during lactotroph hyperplasia was 

debated. Possible origins include proliferation of already existing lactotroph cells, trans-

differentiation of somatotrophs into lactotrophs, or emergence of newly differentiated 

cells from a stem cell niche. Recent findings suggest that trans-differentiation is unlikely 

to be the cause as less than 1% of cells were shown to trans-differentiate from 

lactotrophs to somatotrophs after weaning. This period is thought to reflect a reversal of 

E2-induced lactotroph proliferation, returning the pituitary to a state where 

somatotrophs are more prevalent than lactotrophs.  

 

Recent data shows that in control animals, 31% of lactotrophs incorporated BrdU 

compared to 36-39% of lactotrophs in E2 treated animals, suggesting only a small 

increase in the number of lactotrophs undergoing mitosis induced by E2 treatment 

(Nolan and Levy, 2009c). The same group also showed that although the mitotic index 

of lactotrophs was increased for a week after E2 stimulation, it decreased upon 

prolonged treatment of up to 28 days (Nolan and Levy, 2009b). Together, these data 
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suggest that the increase in lactotroph cell number is partially bought about by 

proliferation of already existing lactotroph cells, though it is likely that this would not be 

sufficient to induce the reported increase in lactotroph content in the pituitary. It is 

therefore likely that proliferation of progenitor cells also contributes to the increase in 

lactotroph cell number during E2-induced lactotroph hyperplasia.  

 

Overall, the MZ is a subset of cells which expresses a number of key pituitary 

regulators and markers for stem cells. In culture, MC’s can form spheres and 

differentiate into all hormone producing cell types strongly suggesting they play a role 

in regulating pituitary plasticity (Fauquier et al., 2008). The defined planar organisation 

of the MZ suggests that the PCP pathway may play a role in regulating the region, and 

the high expression of Wnt-4, and the known action of Wnt-4 in maintaining other stem 

cell populations suggests this could be a key site for Wnt-4 action in the pituitary. 

However, studying this region is currently difficult, as the lack of specific markers for 

MC cells makes isolation of a pure population difficult. One possibility for isolating the 

MZ is by using laser capture microdissection where groups of cells can be selected 

under a microscope and then isolated using a laser. This technique has been used 

successfully to obtain a pure population of FS cells from Wistar rats (Jin et al., 2001), 

and could provide a way of specifically studying the MZ which may provide important 

information regarding the regulation of adult pituitary plasticity. 

 

6.5.2.2. Calcium signalling in the pituitary 

 

The Wnt-calcium pathway was the least studied of the Wnt pathways in this thesis. 

Experimental limitations prevented study on primary tissue and as such all data 

regarding the calcium pathway were collected from GH3 cells, the drawbacks of which 

have already been discussed.  

 

Our data show that Wnt-4 has a clear inhibitory effect on the frequency and amplitude 

of calcium transients in GH3 cells, and is the first example of non-canonical Wnt 

signalling in the pituitary. Interestingly, we also demonstrated an effect where Wnt-4 

inhibited calcium transients, where the Wnt-calcium pathway is usually related to an 

increase in frequency and amplitude of oscillations. Whether this represents a new 

action of Wnt, or simply that other groups have not observed inhibition of calcium 

signalling is unknown, but considering the relatively poor understanding of the pathway 
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this should not be cause for concern. The key finding is that Wnt-4 impacts strongly on 

calcium signalling in GH3 cells.  

 

The downstream function of this inhibition however is far from understood. As 

described previously, calcium signalling impacts on virtually all cells in the body in a 

hugely variable manner. Despite much interest over the last 20 years, very little 

information has arisen regarding the function of calcium signalling. Numerous 

regulators and effectors have been identified, and clearly some effect cellular actions 

such as transcription and structural reorganisation, but the later responses, and 

mechanisms of selectively altering these effects have not been elucidated.  

 

The same problem was encountered here. Calcium signalling is known to play a role in 

PRL release (Wozniak et al., 2005) and is likely to impact on other lactotroph actions. 

However, as the mechanisms by which calcium functions are unknown, the effects of 

inhibition are also unknown. This data does however reveal a novel input into GH3 

cells which clearly regulated calcium signalling, and may well encourage further 

investigation into this pathway in the pituitary. 

 

6.6. Possible roles for Wnt-4 in the pituitary 

 

The role of Wnt-4 in the pituitary has been examined but no conclusive results 

regarding Wnt-4 function have been determined. However, the initial hypothesis of this 

thesis that activation of the canonical pathway by Wnt-4 in lactotroph cells would result 

in lactotroph proliferation is clearly not correct. Presented here are three possible roles 

for Wnt-4 in the adult that warrant further investigation: 

 

1. Wnt-4 acts as a tumour suppressor in the AL. All cell types in the AL express 

Wnt-4, which may act as a break over cell proliferation in response to 

proliferative inputs to control overall cell number. 

2. Wnt-4 acts via the PCP pathway to maintain the MZ, which then regulates the 

cellular content of the AL by acting as a progenitor stem cell niche.  

3. Wnt-4 acts to control Cadherin expression in different cell types in the AL, and 

thus control cellular networks in the pituitary which may regulate tissue 

plasticity. This may involve the calcium pathway which is known to have effects 

on cell migration via alterations and cell-cell adhesion characteristics. 
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6.7. Future work 

 

A number of experimental options are available to carry on this work. The use of 

transgenic animals is likely to shed useful light on the function of Wnt-4 in the pituitary. 

Overexpression of Wnt-4 or conditional expression of siRNA to knock down Wnt-4 

could be targeted either to lactotroph cells or precursor cells such as Hesx-1 

expressing cells. Current transgenic Wnt-4 KO models die before birth, so conditional 

knock down would allow study of Wnt-4 function in adult life after pituitary development 

has correctly occurred.  

 

The inhibition of calcium signalling, the planar organisation of the MZ and the clear lack 

of canonical signalling in the pituitary strongly suggests that Wnt-4 impacts on non-

canonical signalling pathways. Unfortunately, most data regarding these pathways 

focuses on activation of generic kinases and signalling molecules such as Jnk, Erk, 

PKC and PLC. Proteomic analysis of these pathways could be carried out on purified 

populations of GH or PRL cells, and could even be done in conjunction with conditional 

siRNA knock down of Wnt-4 in the pituitary. 

 

Furthermore, it is likely that more than one Wnt molecule is functioning in the pituitary. 

In the original microarray study published by our group, Wnt-10A was also upregulated 

during oestrogen induced lactotroph hyperplasia (Giles et al., 2011). Focus in this 

thesis was given to Wnt-4 as more information had been published regarding Wnt-4 in 

the pituitary, and better antibodies were available for Wnt-4. In addition, Wnt-11, Wnt-

5A and Wnt-6 have all been shown to be expressed in the pituitary during development 

and others may well be expressed in the pituitary. It will be useful to characterise fully 

which Wnt molecules are expressed in the pituitary, and attempt to answer which Wnts 

bind to which Fz receptors in the pituitary.  

 

 

6.8. Implications of research  

 

In the context of the pituitary, our published work should go on to encourage 

researchers within the field to examine non-canonical Wnt pathways which is likely to 

shed light on the development and maintenance of the most important endocrine 

regulator in the body. From a clinical context, understanding of these pathways may 
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well contribute to the development of therapeutic techniques to regulate pituitary 

adenoma growth and reduce the necessity for surgery as is currently required in all 

tumours except prolactinomas. 

 

However, this research is also important in developing our understanding of Wnt 

signalling in a more general context. Wnt signalling is found in virtually every organ and 

system in the body, and in those where it has not been demonstrated, it most likely will 

be soon. However our knowledge of how Wnts function is relatively poor. Since the 

discovery of Wnt signalling and its involvement in cancer, huge amounts of research 

have been poured into the canonical pathway. Though our understanding of this 

pathway is considerable, it has come at the cost of the other signalling pathways. With 

growing evidence to suggest that Wnts signal as a complex network, it is becoming 

clear that the canonical pathway cannot be studied in isolation.  

 

An overall change in approach to studying Wnt signalling is needed from researchers. 

To date most research has simply focused on whether canonical signalling is activated 

in a given context or not. Most “non-canonical” actions of Wnts are simply ascribed in a 

given context based on initial findings in Wnt research, which showed that certain Wnts 

were unable to transform C57 MG mammary epithelial cells, and were therefore 

characterised as “non-canonical” (Wong et al., 1994). Since then, numerous papers 

have shown that a “non-canonical Wnt” is expressed in a given context and defined its 

actions as non-canonical, often without examining any downstream signalling events. 

Furthermore, virtually all the downstream non-canonical events published have been 

studied using Wnt-5A in Xenopus and Drosophila embryogenesis. As the effects of 

Wnts are so varied and dependent on tissue and cell-type context, the effects of non-

canonical signalling cannot simply be defined using these models. For example, this 

thesis (and our recently published paper) reports for the first time inhibition of calcium 

signalling by a Wnt molecule. This is not likely to be an exception to Wnt signalling, just 

an aspect that was not documented in the effects of Wnt-5A in Xenopus development 

where Wnt-5A resulted in upregulation of calcium transients. 

 

It is important that researchers begin to examine all downstream signalling events 

relative to a particular Wnt molecule in an experimental context. It will also be important 

to fully characterise which Wnts are present in a given context, and which ligands 

interact with which receptors to produce which effects. The Wnt network will only 

become understood through consensus from published data in this context. Already 

arrays are available which will make this kind of screening commonplace within the lab.  
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This thesis provides a basic framework with which Wnt signalling could be studied. It 

focuses on a region where Wnt signalling is known to function, isolates a Wnt molecule 

to study, then attempts to study the downstream signalling events in all common 

pathways (and novel pathways e.g. NFκB signalling) which take place relative to that 

Wnt. Though the research into non-canonical aspects was not a detailed as canonical 

aspects, attempts were made to imagine functional outputs of non-canonical pathways 

which fall outside the limited current knowledge in the literature. There has been too 

easy a tendency to ignore non-canonical pathways, though efforts must be made to 

examine them if the physiology of Wnt signalling is to be understood. Understanding 

the intricacies of its function will considerably advance our knowledge of mammalian 

physiology. 
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540 Research Article

Introduction
Prolactinomas represent approximately 60% of all pituitary tumors
in humans (Gurlek et al., 2007). They result from abnormal
lactotroph cell proliferation and usually display only very slow
growth, but the pathogenesis of prolactinoma formation and
progression has remained elusive. Classical oncogenic mechanisms
seem unlikely to be involved in most cases, and none of the
common genetic mutations causing cancer has so far been found
to operate in prolactinomas (Levy, 2008). A number of proteins
have been implicated in pituitary adenoma development; pituitary
tumor transforming gene (PTTG) (Kim et al., 2007), basic fibroblast
growth factor (bFGF) (Zhang et al., 1999), vascular endothelial
growth factor (VEGF) (McCabe et al., 2002), bone morphogenetic
protein 4 (BMP4) (Labeur et al., 2010), pituitary tumor apoptosis
gene (PTAG) (Bahar et al., 2004) and histone deacetylase 2
(HDAC2) (Bilodeau et al., 2006), among several others, have been
demonstrated to play a role in pituitary tumorigenesis but the
origins of many tumors are still unknown.

Estrogen has long been known to exert a proliferative effect on
lactotroph cells. High circulating estrogen levels during pregnancy
result in lactotroph hyperplasia, pituitary enlargement and increased
circulating prolactin (PRL) levels (Asa et al., 1982; Goluboff and
Ezrin, 1969; Lloyd et al., 1988). In vitro, estradiol (E2) induces
proliferation of the somatolactotroph GH3 cell line (Horvath and
Kovacs, 1988; Kansra et al., 2005; Lieberman et al., 1982; Song
et al., 1989) and the effects of E2 on lactotroph proliferation can
be studied in vivo using the estrogen-sensitive Fischer 344 rat. In
this model, lactotroph hyperplasia, and eventual prolactinoma
formation, can be induced by treatment with estradiol or the

synthetic estrogen diethylstilbestrol (DES) (Heaney et al., 1999;
Mucha et al., 2007; Phelps and Hymer, 1983; Wiklund et al.,
1981).

Wnt molecules, a family of 19 secreted signaling proteins in
humans, are expressed in overlapping temporal and spatial
patterns during development (Yavropoulou and Yovos, 2007).
They regulate diverse cellular processes, such as proliferation,
differentiation, apoptosis and cell survival (Willert and Jones,
2006), and are crucially involved in embryonic development. In
this capacity, they are thought to interact with other traditional
signaling pathways regulating development, including the BMP,
sonic hedgehog (Shh), sox and notch pathways, although the
interactions are complex. Abnormalities in Wnt signaling
pathways have been associated with numerous cancers (Giles et
al., 2003) and, in most cases, activation of canonical Wnt signaling
is involved in cancer progression (Reya and Clevers, 2005; Willert
and Jones, 2006).

The canonical Wnt signaling pathway centers on activation of
-catenin. In unstimulated cells, -catenin is either bound to E-
cadherin, at the cell membrane, or resides unbound in the cytoplasm
(Benjamin and Nelson, 2008). Cytoplasmic -catenin is bound
rapidly by adenomatous polyposis coli (APC) and axin, allowing
glycogen synthase kinase (GSK)-3 to phosphorylate -catenin,
which promotes its degradation (Price, 2006). Wnt binding to its
frizzled (Fzd) receptor prevents axin and APC binding to -catenin,
thus inhibiting its destruction (Rao and Kuhl, 2010). This allows
-catenin to accumulate in the cytoplasm and then translocate into
the nucleus, where it interacts with the transcription factors T-cell-
specific transcription factor (TCF) and lymphoid-enhancer-binding

Summary
Prolactinomas are the most common type of functioning pituitary adenoma in humans, but the control of lactotroph proliferation
remains unclear. Here, using microarray analysis, we show that estrogen treatment increased expression of Wnt4 mRNA in adult
Fischer rat pituitary tissue. Dual immunofluorescence analysis revealed that Wnt4 expression was not confined to lactotrophs, but that
it was expressed in all anterior pituitary cell types. Estradiol induced proliferation in the somatolactotroph GH3 cell line, in parallel
with Wnt4 mRNA and protein induction. A reporter gene assay for TCF- and LEF-dependent transcription revealed that there was no
activation of the canonical Wnt pathway in GH3 cells upon stimulation with Wnt-conditioned culture medium or coexpression of
constitutively active mutant -catenin. Expression of -catenin in both GH3 cells and normal rat anterior pituitary cells was restricted
to the cell membrane and was unaltered by treatment with estradiol, with no nuclear -catenin being detected under any of the
conditions tested. We show for the first time that Wnt4 affects non-canonical signaling in the pituitary by inhibiting Ca2+ oscillations
in GH3 cells, although the downstream effects are as yet unknown. In summary, Wnt4 is expressed in the adult pituitary gland, and
its expression is increased by estrogen exposure, suggesting that its involvement in adult tissue plasticity is likely to involve -catenin-
independent signaling pathways.
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factor (LEF) to induce transcription of Wnt target genes (Widelitz,
2005).

Wnt molecules also signal through two non-canonical pathways;
in the Wnt–Ca2+ pathway, binding of Wnt to Fzd induces Ca2+

influx through calcium-release-activated calcium (CRAC) channels
to regulate downstream effectors, such as calcineurin and nuclear
factor of activated T-cells (NFAT) (Medyouf and Ghysdael, 2008).
The Wnt–planar cell polarity (PCP) pathway regulates the polar
orientation of a cell using small GTPases, such as Cdc42 and Rho-
A, to alter cell–cell adhesion through cadherin molecules (Widelitz,
2005). To date, these two pathways have been poorly defined, and
their downstream effects appear to be tissue- and cell-type-specific.
Wnt4 has been shown to activate both canonical and non-canonical
pathways (Wang et al., 2007; Chang et al., 2007); however, there
is presently no information in the literature regarding regulation of
non-canonical Wnt pathways in the pituitary.

Wnt signaling might be involved in pituitary pathophysiology:
Wnt4 affects expansion of specific cell types in the normal
developing mouse pituitary. It is expressed from embryonic day
9.5 (E9.5) to E14.5, and Wnt4–/– mice have diminished cell numbers
in the anterior pituitary (Treier et al., 1998; Potok et al., 2008).
Wnt4 is rapidly upregulated by estrogen during uterine growth in
mice and this is associated with activation of the canonical signaling
pathway (Hou et al., 2004). Molecules associated with Wnt
signaling, such as the frizzled receptor, APC, -catenin and TCF,
are expressed in the developing mouse pituitary (Douglas et al.,
2001), and -catenin has been shown to interact with Prop-1 to
control key stages in cell fate determination in the developing
pituitary (Olson et al., 2006). The evidence regarding the
downstream effects of Wnt molecules in the adult pituitary is
contentious. Semba and colleagues (Semba et al., 2001) found
frequent nuclear accumulation of -catenin in 57% of the human
pituitary adenomas that they studied. However, in a similar study
using 54 human pituitary adenomas, Miyakoshi and colleagues
(Miyakoshi et al., 2008) found that, although Wnt4 expression was
increased in adenomas producing growth hormone (GH), thyroid-
stimulating hormone (TSH) and PRL, -catenin was restricted to
the cell membrane and was never found in the nucleus, suggesting
a non-canonical action of Wnt4 (Miyakoshi et al., 2008). The same
group also reported that Wnt4 was specifically expressed in the
majority of somatotrophs and in a few thyrotrophs in the untreated
rat pituitary, and that estrogen increased Wnt4 expression in these
cell types (Miyakoshi et al., 2009). Finally, downregulation of Wnt
inhibitory factor 1 (WIF1) has been reported in a series of human
pituitary tumors, and this was associated with increased nuclear -
catenin accumulation, and transfection of GH3 cells with WIF1
decreased cell proliferation (Elston et al., 2008).

In the present study we conducted a microarray analysis on
pituitary tissue obtained from estrogen-treated Fischer 344 rats in
order to identify novel genes and pathways involved in lactotroph
hyperplasia. Among numerous genes upregulated by estrogen, we
noted induction of Wnt4 and Wnt10a. The induction of Wnt4
mRNA and protein was confirmed both in vivo, in the rat pituitary
gland after estrogen treatment, and in vitro, in the somatolactotroph
GH3 cell line. We sought to clarify whether Wnt4 acts via the
canonical pathway in the pituitary gland, and found no evidence
for activation of canonical Wnt signaling in either GH3 cells or
primary Fischer 344 rat pituitary cells. However, Wnt4 did inhibit
Ca2+ oscillations in GH3 cells, suggesting that non-canonical
signaling pathways might be involved in the pituitary remodeling
response to estrogen.
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Results
Wnt signaling components are upregulated in estrogen-
induced pituitary hyperplasia
Treatment of female Fischer 344 rats with DES for three weeks
resulted in a twofold increase in uterus weight, a threefold increase
in pituitary weight and a twofold increase in PRL mRNA expression
(Fig. 1). Microarray analysis was conducted on the estrogen-treated
pituitary tissue using an Affymetrix rat genome 2.0 array. Analysis
of the array data revealed significant increases in a series of
mRNAs that we expected to identify, including those encoding
galanin, Pttg1 and transforming growth factor alpha (TGF) (see
Table 1 for selected examples, a more complete data set is shown
in supplementary material Table S1). A number of genes involved
in cell proliferation were also upregulated, including those encoding
calpain 8, calbindin 3, cyclin A2, cyclin B2 and Ki67 (Mki67).
Wnt4 and Wnt10a, which are both known to play roles in the
developing pituitary, were both markedly increased (75- and 6.6-
fold respectively). Other genes related to Wnt signaling pathways
were also upregulated, including those encoding carboxypeptidase
Z (Cpz), protein kinase C (PKC)-1 and Wif1. Jagged 2 and delta-
like 3, two members of the notch signaling pathway, which is
known to interact with the Wnt pathway, were also increased
(fourfold and sevenfold, respectively). To validate the microarray
analysis, quantitative RT–PCR analysis confirmed significant
increases in Wnt10a, Wnt4 and Cpz expression in rat pituitary
tissue (Fig. 2).

Wnt4 protein expression in rat anterior pituitary tissue
In order to identify the Wnt4-expressing endocrine cell types in the
pituitary, adult female rat pituitary tissue was analyzed by dual
immunofluorescence staining for Wnt4 with GH, PRL,
adrenocorticotropic hormone (ACTH), luteinizing hormone (LH)
and TSH- (Fig. 3C–G). The specificity of the anti-Wnt4 antibody
was assessed using adult Fischer 344 rat kidney tissue, and we
confirmed expression of Wnt4 in cortical renal tubules and absence
of expression in adjacent cells (Fig. 3A), in keeping with the

Fig. 1. Three weeks of DES treatment induces uterus growth and
lactotroph hyperplasia in Fischer 344 rats. Fischer 344 rats were treated
with either placebo or 10 mg of DES in slow-release pellets for 3 weeks. The
uterus weight in DES-treated rats increased twofold (A), whereas pituitary
weight increased threefold (B) in comparison with the weight in controls. PRL
mRNA was increased twofold by DES treatment (C). Data are means+s.e.m.
(n5).
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previously observed expression patterns in this tissue (Terada et
al., 2003). All of the endocrine cell types in the anterior pituitary
were found to express Wnt4, although the prevalence was highest
in somatotrophic cells. No major alterations in coexpression patterns
were seen in animals treated with estrogen.

Estradiol induces Wnt4 expression in somatolactotroph
GH3 cells
To investigate the effect of estrogen on Wnt signaling in the
pituitary, we used the somatolactotroph GH3 cell line as a model
system. Estradiol induced a slow proliferative response in the rat
pituitary GH3 cell line; cell number increased by 50% after
stimulation for 4 days, and was almost doubled after 7 days (Fig.
4A). Quantitative RT–PCR (Q-PCR) analysis confirmed induction
of PRL mRNA in GH3 cells, by eightfold at 24 hours and 14-fold
at 72 hours (Fig. 4B). The level of Wnt4 mRNA was unchanged at
24 hours, but was increased 2.5-fold at 72 hours (Fig. 4C), and the
level of Wnt4 protein was increased at 72, 120 and 168 hours (Fig.
4D).

Estradiol does not induce canonical Wnt signaling in GH3
cells
Activation of the canonical Wnt signaling pathway was assessed
using the TopFlash reporter gene, which displays a transcriptional
response to activation of TCF and LEF by -catenin, inducing
luciferase expression. No induction of luciferase activity occurred
in GH3 cells after treatment with either estradiol or Wnt4-
conditioned medium. Lithium chloride and Wnt3a-conditioned
medium, two well-characterized inducers of canonical Wnt
signaling in many cell lines, were also unable to induce TCF-
mediated gene expression in GH3 cells, but gave a robust induction
in human embryonic kidney HEK-293 cells (27-fold and sevenfold,
respectively; Fig. 5A). RT–PCR analysis of Fzd receptor expression
confirmed that Fzd2, 4, 5 and 6 were all expressed in GH3 cells
(data not shown), indicating that their lack of response to Wnt
ligands was not related to the absence of receptor expression.
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Furthermore, GH3 cells cotransfected with plasmids encoding a
constitutively active mutant -catenin (m-Cat) and the TopFlash
reporter showed no induction of luciferase, whereas HEK-293
cells treated under the same conditions exhibit a 14-fold induction
of luciferase (Fig. 5B). Taken together, these results indicate that
canonical Wnt signaling is not inducible in pituitary GH3 cells.

Translocation of -catenin from the cytoplasm to the nucleus is
a key feature of activation of the canonical Wnt pathway.
Immunocytochemical analysis of GH3 cells and primary pituitary
cells showed that -catenin was predominantly at the cell membrane
in unstimulated cells, with no apparent nuclear staining. Neither
treatment with estradiol nor LiCl was able to induce nuclear

Table 1. Selected examples of induced genes from microarray analysis of DES-treated pituitary tissue

Mean expression level

Gene name GenBank accession number Control DES-treated Fold change

Galanin NM_033237 38.6 10800 279
Dopamine receptor 4 BI284462 36.1 589 16.3
Pituitary tumor transforming gene 1 NM_022391 9.64 272 28.2
Transforming growth factor alpha BG670310 0.58 66.7 114

Calpain 8 D14480 14.0 705 50.3
Calbindin 3 NM_012521 25.7 5010 195
Cyclin A2 AA998516 0.14 103 718
Cyclin B2 (predicted) AW253821 5.23 258 49.3
Ki-67 AI714002 1.85 185 100

Wnt4 NM_053402 5.35 403 75.3
Wnt10a AI029140 101 670 6.60
Carboxypeptidase Z NM_031766 10.7 353 33.1
Protein kinase C beta 1 M13706 7.26 216 29.7
Wnt inhibitory factor 1 NM_053738 5.30 20.9 3.94
Jagged 2 AI715578 36.5 151 4.12
Delta-like 3 BE107343 1.27 9.11 7.15

Genes have been split into three functional groups. The top section refers to genes previously known to be upregulated in the pituitary in response to estrogen,
showing the expected increases in a hyperplastic response. The middle section refers to genes involved in cell proliferation. The bottom section shows increases
in Wnt ligands and Wnt-associated genes expressed in the pituitary. All gene expression changes in the table have a probability of positive log-ratio (PPLR) value
of close to 1 indicating a high degree of significance (Bolstad et al., 2003).

Fig. 2. Quantitative real-time RT–PCR validation of microarray analysis.
Q-PCR for genes of interest was performed on pooled RNA extracted from the
pituitary glands of Fischer 344 rats. Three weeks of DES treatment induced
upregulation of Wnt4, Wnt10a and Cpz (threefold, tenfold and tenfold,
respectively) mRNA in comparison with the level in controls. Data are
means+s.e.m. (n5).
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translocation of -catenin, and membrane staining remained
unchanged, further indicating that canonical signaling was not
activated in GH3 cells or in primary rat pituitary cell cultures
(Fig. 6).

Wnt4 inhibits Ca2+ oscillations in GH3 cells
GH3 cells are known to have spontaneous oscillations in
intracellular Ca2+ concentrations (Haymes and Hinkle, 1993). To
assess whether Wnt4 signals through the Wnt–Ca2+ pathway, we
carried out live-cell Ca2+ imaging on GH3 cells loaded with Fluo-
4 and measured whether treatment with Wnt4 recombinant protein
modulated the spontaneous Ca2+ oscillations (Fig. 7). The addition
of Wnt4 partially or completely suppressed oscillations in
intracellular Ca2+ in 63% of cells. By comparison, no change was
observed in the oscillations following the addition of a control
medium (Fig. 7E). Wnt4 induced the total inhibition of oscillations
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for long periods in some cells (Fig. 7A), whereas in other cells it
induced a reduction in frequency and amplitude of oscillations
(Fig. 7B), gave a temporary inhibition of oscillations (Fig. 7C) or
had no effect (Fig. 7D). Immunoneutralization, by prior incubation
with an anti-Wnt4 antibody, completely prevented the inhibition of
the Ca2+ transient currents by Wnt4 (Fig. 7F). The proportion of
the cells displaying complete suppression, partial inhibition or no
effect is shown in Fig. 7G. Flow cytometry analysis indicated that
63% of GH3 cells in these conditions were in the G1 phase of the
cell cycle, 36% were in S phase and 1% were in G2 or M phase
(data not shown), suggesting a potential link between the Ca2+

response to Wnt4 and the cell cycle.

Discussion
Here, we have provided evidence for the involvement of Wnt4 in
the proliferative response of the pituitary gland to estrogen. We

Fig. 3. Wnt4 protein expression in secretory cell
types in the rat anterior pituitary. (A,B)Validation
of the anti-Wnt4 antibody staining using rat kidney
tissue. Specific staining is seen in cortical renal
tubules (A), consistent with previously published
material. Panel B is a control with secondary
antibody only. (C–G) Pituitary sections from
untreated adult female rats were co-stained for Wnt4
(red) with GH (C), PRL (D), ACTH (E), LH (F) and
TSH- (G). The immunostaining of the hormone is
shown in the left-hand column, Wnt4 staining is
shown in the central column and merged images in
the right-hand column. Examples of Wnt4
colocalization with each hormone are shown, and the
percentage of each endocrine cell type coexpressing
Wnt4 in untreated (Control) or estrogen (E2)-treated
rats is indicated.
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have shown that Wnt4 expression was increased upon estrogen
treatment in pituitary tissue in vivo and that its expression is also
induced by estrogen in the somatolactotroph GH3 cell line.
Expression of Wnt4 in the pituitary was not restricted to lactotrophic
cells, and Wnt4 action in pituitary cells did not involve the canonical
-catenin signaling pathway, implying that other pathways are
likely to be involved.

Wnt4 is a growth factor involved in many developmental
processes and is thought to have a role in fetal pituitary development
(Treier et al., 1998; Potok et al., 2008; Brinkmeier et al., 2009).
Wnt4 is expressed in the developing mouse pituitary between e9.5
and e14.5 and might regulate differentiation of ventral cell types
(Potok et al., 2008; Treier et al., 1998), perhaps through interaction
with Prop1 (Olson et al., 2006). Wnt4-deficient mice display
pituitary hypoplasia, at least affecting the somatotroph and
thyrotroph lineages (Potok et al., 2008); however, until now, very
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little information regarding Wnt4 in the adult rat pituitary has been
available. In the present study, we found that the expression of
Wnt4 in the adult rat was not confined to the lactotroph population
but was readily detectable in all of the endocrine cell types in the
pituitary. Estrogen treatment increased the proportion of lactotrophic
cells in the pituitary (data not shown), as expected, but did not
markedly alter the proportions of cell types that expressed Wnt4.
Previous data from Miyakoshi and colleagues (Miyakoshi et al.,
2009) suggested that Wnt4 expression was confined to the GH-
producing cells and a minority of the TSH-producing cells in
the rat pituitary. The reasons for the discrepancy between the
Miyakoshi study and the present study are not clear, but we found
that Wnt4 expression was seen in over 90% of somatotrophic cells.
Other reasons for this difference could relate to the different rat
strains used (Fischer 344 in the present study and Sprague
Dawley in the Miyakoshi study), or the antibodies used for

Fig. 4. Effects of estradiol in the GH3
somatolactotroph cell line. (A)GH3 cell
proliferation assay. GH3 cells were treated
for 1, 2, 4 and 7 days with 10 nM E2,
inducing a proliferative response. Q-PCR
analysis of PRL (B) and Wnt4 (C)
expression treatment with 10 nM E2 for 6,
24 and 72 hours. (D)Western blotting
analysis of Wnt4 protein expression
following treatment with 10 nM estrogen
for 72, 120 and 168 hours. Staining of -
tubulin was used as a loading control. Data
are means±s.e.m. (n3).

Fig. 5. Canonical Wnt signaling is not functional in
pituitary GH3 cells. (A)TopFlash reporter gene assay in GH3
and HEK-293 cells. Cells were transiently transfected with
either TopFlash or the FopFlash control and then stimulated for
24 hours with control medium (DCT-FBS), E2 (10 nM), LiCl
(10 mM), Wnt3a-conditioned medium or Wnt4-conditioned
medium. (B)HEK-293 cells and GH3 cells were transfected for
24 hours with TopFlash with (+) or without (–) a constitutively
active mutant -catenin expression vector (m-Cat).
Spontaneous activity of m-Cat was measured in HEK-293
cells and GH3 cells. Data are means+s.e.m. (n3).

Jo
ur

na
l o

f C
el

l S
ci

en
ce



immunohistochemistry; the antibody used in the previous report
was raised against a 14-amino-acid oligopeptide, whereas our
antibody was produced against a 100-residue peptide. Antibody
specificity was confirmed in the present study by checking for the
specific staining in renal tubules, the lack of non-specific staining
in the absence of primary antibody and by establishing that a
protein of the appropriate size was detected by western blotting.

Wnt4 was recently found to be highly expressed in several
human pituitary adenoma types, including lactotroph, somatotroph
and thyrotroph adenomas (Miyakoshi et al., 2008). The authors of
that report speculated that Wnt4 might be involved in proliferation
of those cell lineages, and the present findings support the general
hypothesis that Wnt4 is involved in plasticity of function and
structure in the adult pituitary gland. In addition, a recent study
found that expression of WIF1, an extracellular inhibitor of Wnt
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signaling, was significantly reduced in pituitary adenomas, and
that its overexpression reduced GH3 cell proliferation, further
implicating Wnt signaling in pituitary growth (Elston et al., 2008).

The signaling pathway involved in Wnt action in the pituitary
was previously unclear, but here we have shown that canonical
signaling was not activated in the rat pituitary GH3 cell line, either
by estrogen or by Wnt4 or Wnt3a. Furthermore, a constitutively
active mutant -catenin protein, which markedly activated TCF-
and LEF-dependent transcriptional signaling in HEK-293 cells,
had no effect in pituitary GH3 cells. We have found no evidence
for nuclear localization of -catenin in GH3 cells, in primary
cultures of rat pituitary cells or in intact rat pituitary tissue (data
not shown), and similarly no evidence has been found for nuclear
expression of -catenin in those pituitary adenomas that displayed
Wnt4 overexpression (Miyakoshi et al., 2008).

Non-canonical Wnt signaling pathways remain less well defined
than the canonical cascade, but in different systems have been
found to target Ca2+ signaling or kinase pathways that might affect
PCP (Rao and Kuhl, 2010). One target of the Wnt –PCP pathway
is E-cadherin, through which Wnt ligands might alter cell–cell
adhesion in order to control the orientation and development of a
number of organs (Fanto and McNeill, 2004). The cellular patterns
of cadherin expression in the pituitary have recently been identified
(Chauvet et al., 2009), and the interaction of -catenin and E-
cadherin at the cell membrane might play an important role in the
development and plasticity of cell networks. We show here, for the
first time, that Wnt4 has an impact upon non-canonical signaling
in pituitary cells by inhibiting spontaneous Ca2+ oscillations. The
mechanism by which this inhibition occurs has not been studied
but might well involve inactivation of CRAC channels (Gwack et
al., 2007), although further study will need to be performed to
elucidate the details of this signaling pathway in the pituitary. The
Wnt–Ca2+ pathway has recently been implicated in the progression
of a number of cancers, where it has both suppressive and inductive
properties (McDonald and Silver, 2009), and, therefore, study into
the effects of the non-canonical actions of Wnt4 in the pituitary is
likely to throw new light on the nature of adult pituitary remodeling
and adenoma formation.

Materials and Methods
Microarray analysis
Female Fischer 344 rats were implanted with slow-release subcutaneous pellets
(containing 10 mg of DES, n5, or placebo, n5; Innovation Research, Novi, MI)
for 3 weeks. Animal experiments were performed according to UK Home Office
guidelines and rats were killed by a schedule 1 method. Pituitary glands were
harvested, then washed with ice-cold PBS and snap-frozen on dry ice. RNA was
extracted using the Qiagen RNeasy mini kit according to the manufacturer’s
instructions. Expression profiling was performed using an Affymetrix gene chip rat
genome 2.0 array (no. 230; three chips per group with individual animals for each
chip). Background correction, quantile normalization and gene expression analysis
were performed using the robust multichip average (RMA) function in Bioconductor
(Bolstad et al., 2003).

Cell culture
GH3 cells and HEK-293 cells (ATCC, Rockville, MD) were grown at 37°C under a
5% CO2 atmosphere, in Phenol-Red-free Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 1 g of glucose/l, 10% fetal bovine serum (FBS) and
1% Glutamax (all Gibco). Two stably transfected cell lines were used to obtain
conditioned media: LM (TK–) cells transfected with a Wnt3a expression vector
(ATCC) and NIH-3T3 cells transfected with a Wnt4 expression vector (kindly
donated by Andreas Kispert, Institute of Molecular Biology, Hannover Medical
School, Hannover, Germany). The conditioned media were generated as previously
described (Willert et al., 2003).

PCR
For the verification of microarray results, RNA from all five animals from each
group was pooled for quantitative real-time PCR (Q-PCR) analysis. For cell culture

Fig. 6. Subcellular -catenin localization is unchanged in lactotrophs upon
estrogen treatment. GH3 cells (A) or cultures of dispersed primary pituitary
cells (B) were treated with control (0.5% BSA), E2 (10 nM) or LiCl (10 mM)
for 72 or 120 hours, followed by immunofluorescence analysis of -catenin
and PRL protein localization. -Catenin staining is shown in green (A, and
left-hand column in B). In B, the middle column shows PRL (red) and DAPI
(blue) staining, and the right-hand column shows merged images.
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timecourse experiments, GH3 cells were grown in 25 cm2 flasks (~5�106 cells),
serum-starved for 24 hours and then stimulated with 10 nM E2 (Sigma) for the
indicated times. Cells were harvested by trypsinization and washed twice in ice-cold
PBS. Total RNA was isolated using the Qiagen RNeasy kit according to the
manufacturer’s instructions.

cDNA was generated with the Omniscript RT system (Qiagen). Q-PCR was
performed using the Stratagene Mx3000 P thermocycler (Stratagene) and the
SYBRgreen Jump Start Taq ready mix (Sigma). Cyclophilin was used as the
housekeeping gene for normalization. The following primers were used: cyclophilin,
5�-TTTTCGCCGCTTGCTGCAGAC-3� and 5�-CACCCTGGCACATGAAT -
CCTGGA-3�; PRL, 5�-AGCCAAGTGTCAGCCCGGAAAG-3� and 5�-TGGC -
CTTGGCAATAAACTCACGA-3�; Wnt4, 5�-acgaggggccgcacttgcaaca-3� and
5�-ggcacaggcgggcacggtcac-3�; Cpz, 5�-ccccagggcgcgtaggcagc-3� and 5�-cccgg -
gccgtggaggtggacat-3�; and Wnt10a, 5�-ccagcttcagtgcattgcccaaca-3� and 5�-agct -
caggcaggtgggggtggtag-3�.

GH3 cell proliferation assay
GH3 cells were plated at a density of 1�104 cells per well in 96-well plates. They
were starved for 24 hours in 0.25% BSA, before stimulation at defined timepoints.
The cell number was measured using the CellTiter 96 AQueous one solution cell
proliferation assay (MTS; Promega) according to the manufacturer’s instructions.

Antibodies
Primary antibodies used were against: Wnt4 (rabbit Ig, 1:1000 for western blot and
1:50 for immunohistochemistry; SDI, Newark, Germany), -tubulin (mouse Ig,
1:25000; Abcam, Cambridge UK), GH (goat Ig, 1:50; R&D Systems, Abingdon,
UK), PRL (mouse Ig, 1:4000, Pierce, Rockford, IL), TSH (guinea-pig Ig, 1:100;
NIDDK, Bethesda, MD), ACTH (mouse Ig, 1:200; Novocastra, Milton Keynes, UK)
or LH (mouse Ig, 1:1000; kindly provided by Janet Roser, University of California-
Davis, Davis, CA), R51 PRL (rabbit Ig, 1:500, kindly donated by Alan McNeilly,
MRC Human Reproductive Sciences Unit, Edinburgh, UK) and -catenin (mouse
Ig, 1:400; BD Transduction Laboratories, Oxford, UK).

Secondary antibodies were: anti-(rabbit Ig)–HRP-conjugated (donkey Ig, 1:2000)
and anti-(mouse Ig)–HRP (donkey Ig, 1:25000) (both from Santa Cruz
Biotechnology), anti-(rabbit Ig)–Alexa-Fluor-546 (donkey Ig, 1:500, Invitrogen),
anti-(mouse Ig)–Alexa-Fluor-488 (donkey Ig, 1:1000, Invitrogen), anti-(guinea-pig
Ig)–FITC (goat Ig, 1:64, Sigma), anti-(goat Ig)–FITC (donkey Ig, 1:500, Santa Cruz
Biotechnology) and anti-(rabbit Ig)–Texas-Red (donkey 1:500, Santa Cruz
Biotechnology).

Western blotting analysis
GH3 cells were plated at ~7.5�105 cells per well in six-well plates and serum-
starved in 10% dextran-charcoal-treated FBS (DCT-FBS) (Perbio Scientific,
Cramlington, UK) for 24 hours before stimulation with either control (DCT-FBS) or
E2 (10 nM, Sigma). Cells were washed twice with ice-cold PBS and lysed using
RIPA buffer with Complete mini EDTA-free protease inhibitors (Roche). Cells were
scraped, agitated for 30 minutes on a rocker and centrifuged for 10 minutes at 12,000
g at 4°C, and the supernatant was collected and stored at –80°C. Samples were
subjected to SDS-PAGE (10% gels), before transfer onto nitrocellulose membrane.
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Primary antibodies were applied overnight at 4°C, then secondary antibodies were
applied for 1 hour at room temperature. Staining was detected with EZ-ECL (Pierce)
using Kodak Biomax XAR film.

Immunofluorescence
Female Fischer 344 rats were killed by a schedule 1 method and pituitary glands
were removed for either wax-embedding or dissociation. Pituitary glands were fixed
for 2 hours in 4% PFA before wax-embedding and sectioning at a thickness of 5 m.
Deparaffinization of wax-embedded slices was conducted in xylene, and sections
were subsequently re-hydrated in decreasing concentrations of ethanol. Antigen
retrieval was performed by boiling in 10 mM sodium citrate for 20 minutes. Pituitary
cells were dissociated as previously described (Sartor et al., 2004), and cultures of
primary pituitary cells or GH3 cells were plated on poly-(L-lysine)-coated glass
coverslips and stimulated as indicated, before fixation in 4% PFA.

Cells or tissue were blocked in 5% donkey serum in PBS for 1 hour, and incubated
with the first primary antibody overnight at 4°C followed by the secondary antibody
for 2 hours at room temperature. Samples were blocked again in 5% donkey serum,
before an overnight incubation with the second primary antibody at 4°C, followed
by the secondary antibody for 2 hours at room temperature. Samples were treated
with DAPI (0.1 g/ml, Sigma) for 20 minutes at room temperature, and then
mounted for analysis in Permafluor (Thermo Scientific). Images were collected
using a Nikon C1 confocal microscope (Bioimaging Facility, Faculty of Life Sciences,
University of Manchester, Manchester, UK).

Reporter gene assays
GH3 and HEK-293 cells were plated in sterile white 96-well plates at ~1�104

cells per well and ~5�103 cells per well, respectively. Cells were transfected using
Fugene 6 transfection reagent (Roche) according to the manufacturer’s instructions.
Cells were transfected with either Super 8� TopFlash, Super 8� FopFlash negative
control (both at 0.1 g per well; Addgene, Cambridge, MA) or a vector encoding
m-Cat [0.1 g per well; a kind gift from Hans Clevers (Hubrecht Institute,
Utrecht, The Netherlands) (Morin et al., 1997)] with pRL-TK Renilla (Promega,
0.1 g per well for GH3 cells and 0.01 g per well for HEK-293 cells).
Fugene:DNA ratios were 3:1 for GH3 cells and 6:1 for HEK-293 cells. Cells were
left for 24 hours, then stimulated as specified. Luminescence was measured using
the Dual-Glo luciferase assay system (Promega) according to the manufacturer’s
instructions.

Live-cell Ca2+ imaging
GH3 cells were seeded in glass-bottomed dishes (Iwaki) and left to settle for 24
hours. Cells were loaded with Fluo-4 (Invitrogen) for 30 minutes and then the dish
was transferred onto the stage of a Zeiss Axiovert 200 microscope with an attached
XL incubator (at 37°C and under a humid 5% CO2 atmosphere). Cells were either
stimulated with vehicle (DCT-FBS) or Wnt4 recombinant protein (Novus Biologicals,
Littleton, CO). For the immunoneutralization experiment, Wnt4 protein was incubated
with Wnt4 antibody for 1 hour at room temperature, before addition to cells in a 10:1
antibody:protein molar ratio. Images were taken every 3 seconds, areas of interest
were drawn around cells and mean intensity throughout the experiment was calculated
using Kinetic Imaging AQM6 software (Andor, Belfast, UK).

Fig. 7. Ca2+ oscillations in GH3 cells. GH3 cells were
loaded with Fluo-4 and images were taken every 3
seconds. Areas of interest were drawn around cells and
the fluorescence in each cell was quantified over the
course of the experiment. Cells were treated with control
(E) (DCT-FBS; no effect seen in 35/35 cells), Wnt4
recombinant protein (200 ng/ml) (A–D) or Wnt4 protein
that had been immunoneutralized by incubation with the
anti-Wnt4 antibody (F) (no effect observed in 19/19
cells). (G)A bar graph showing the percentage of cells
exhibiting total inhibition, partial inhibition and no effect
upon Wnt4 treatment. The total cell number studied was
209.
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