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Abstract 

 

ABSTRACT 

This thesis describes the formation of and applications of self-assembled structures on 

metals. Primarily the focus of this PhD project is on the formation of surfaces structures 

on stainless steel (AISI 304) but other metals have been studied. Laser generated surface 

structures have been applied to the modification of wettability and reflectivity with a 

view towards developing these processes for industrial applications. Compared to 

conventional techniques for the modification of wettabililty, lasers offer the advantage 

of being a relatively simple technique for the modification of surface structure, reducing 

the need for complex processes. It is hoped that investigations into the reduction of 

surface reflectivity will have applications in the conversion of solar energy into useable 

power in the form of solar thermal energy. 

The production of self assembled structures is demonstrated using diode pumped solid 

state (DPSS) Nd:YVO4 lasers operating at wavelengths of 532 and 1064 nm. It is  

shown that the production of surface microstructures is highly dependant on the correct 

laser fluence and requires multiple pulses and processing passes. At 1064 nm 

wavelengths, it has been found highly reproducible surface structures can be formed by 

carefully controlling laser fluence and scanning speed while keeping the optical 

arrangement relatively simple. In addition to microstructure formation, the use of 

ultrafast femtosecond lasers, operating at 400 and 800 nm wavelengths has verified the 

production of laser induced periodic surface structures. Additionally, the stationary 

method used to produce these surfaces has been adapted to cover large surface areas 

with sub wavelength ripple structures with periods of ~295nm and 600nm. 



Abstract 

 

Applications of laser surface microstructures on metals have been studied in an effort to 

produce hydrophobic and superhydrophobic surfaces on metals. It has been found that 

the roughness change produced by laser processing induces composite wetting when 

water droplets are introduced to the surface. Contact angle measurements and small 

angle XRD analysis of laser processed stainless steel (AISI 304) have shown that 

surface wettability decreased over a period of approximately one month, leading to 

steady contact angles of over 140°. This is attributed to the formation of a magnetite 

(Fe3O4) oxide layer in the period after laser processing.  

The effect of surface microstructure on surface reflectivity has also been studied. It was 

found that laser induced surface microstructures on copper can decrease surface 

reflectivity by almost 90%. A comparative study of the effects of surface roughness and 

chemistry on the optical absorption of copper is given, finding that these surfaces are 

competitive with contemporary  coatings. 
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1 INTRODUCTION 

 

1.1 The Research Project 

The need for surfaces that have properties differing from those which occur at the time 

of initial manufacture can greatly enhance their usefulness in the modern world. More 

and more often in recent times, scientists have taken their inspiration for new surfaces 

from biology [1, 2]. Mimicking biology, biomimetics, is not a new concept [3]. 

However, as scientific investigation increases our understanding of how nature performs 

such feats of engineering, our ability to replicate these natural technologies with man 

made materials, structures and devices must keep pace. 

One particular example of a remarkable natural surface is that of the lotus plant [2]. 

Thriving in muddy environments, the lotus plant, Nelumbo nucifera, has developed self 

cleaning leaf surfaces [4]. These surfaces display a contact angle with water of over 

160°, allowing water droplets to roll off their surface rather than slide. This property is 

advantageous because dirt and debris is removed from the surface. The reason for this 

increase in water repellent, or superhydrophobicity, is as a result of the double scale 

roughness with both micron and sub-micron features present [5]. 

To produce these new materials, new technology has also had to be developed. When 

interest in the fabrication of these new surfaces began the adaptation of many 

techniques was carried out. Chemical etching [6], plasma etching [7, 8] and moulding 

[9] of surfaces have all had impressive results. Unfortunately, many of these techniques 

are reliant on technologies which involve vacuum chambers, large amounts of chemical 
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processing and cleaning. Although this is not abhorrent, it would be preferable if other 

tools and techniques could be found which simplify the production of such surfaces. 

The laser is one technology which falls into this category. Developed in the last fifty 

years [10], for the past thirty it has been used as a tool for the marking and cutting of 

materials [11]. One of the advantages of this technology, with the aid of computer 

control and automation, is that a surface can be modified with a high degree of accuracy 

and with little or no excess equipment needed.    

This project deals with the production and applications of micro and nano scale 

topographies which are produced using lasers. Various methods already exist for the 

production of micron scale surface topography on metals [12, 13] but these are mainly 

reductive methods. More recent developments have shown that it is possible to produce 

self organised structures on metals using lasers [14-17] that remove less material from 

surfaces and produce modified topography at the same level or above the original 

surface. Additionally the development of work already published on the formation of 

sub-wavelength nanostructures [15, 18, 19] is also developed to cover large areas on 

metals. 

This project is primarily focused on stainless steel (AISI 304) and copper. Although 

many attributes of these newly formed surfaces could be investigated those chosen to be 

concentrated on were the modification of the wettability and reflectivity of the surfaces. 

On the modification of wettability, an effort has been made to produce surfaces with 

properties similar to that of the lotus leaves. In addition to this application, it is also 

shown that it is possible to increase the amount of light which is absorbed by copper 
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surfaces by laser processing. This is done in an effort to produce new surfaces to aid in 

the harvesting of energy from solar radiation 

1.2 This Thesis 

This thesis is structured in a way so that the reader will have a good knowledge of the 

subject matter before new experiments and observations are introduced. In chapter two, 

a review of previous literature on the subjects of lasers and their use as tools for surface 

topography modification is discussed. Other literature specific to individual applications 

of the surfaces which are produced by this project are given attention in the chapters 

relating to that work. Attention has been paid to the physical principles of lasers and 

laser processing. 

To understand the changes which are brought about by laser processing, the various 

analysis tools and techniques which this project utilises are introduced in chapter three. 

Although many of these techniques are standard scientific tools some new techniques 

are included which warrant discussion.  

Chapter four embodies the work which is central to this project. Beginning with 

experiments which evaluate the previous work done in the field of laser generated, self 

assembled topography on metals, this chapter goes on to describe experimental results 

from experiments on the formation of various micron and sub-micron structures. The 

mechanisms of formation are discussed and new surfaces are introduced. The majority 

of the work will be dealing with diode pumped solid state lasers [11, 20, 21]. Also the 

use of ultrashort laser pulses has been shown to be a attractive option for high quality 

micromachining of many materials and their ability for minimal damage and precise 
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processing has been researched for a number of years [22-24]. The later part of Chapter 

4 describes ultrashort laser interactions to form microstructures and nanostructures 

Chapter five begins with a discussion of the modification of wettability on rough 

surfaces. This is done to give the reader an insight into the current status of the subject 

and discuss the methods by which surfaces can be engineered to modify their 

wettability. Continuing from this, results are given describing how the laser processed 

structures produced in chapter four can modify the wettability of metallic surfaces.  

Chapter six describes the application of laser generated structures for the modification 

of bulk reflectivity of stainless steel and copper. Here, special attention has been paid to 

the effect that increased absorption of light has on the heating of surfaces. This is done 

through the use of a light source acting as an analogue for solar radiation. It is hoped 

that this type of surface may find a use in the harvesting of energy from solar radiation. 

Chapter seven is the conclusion of this PhD thesis and contains a summary of all results 

found, linking together the work which makes up this project. This is followed by a 

short proposition of the future works which would further develop this project. 

Finally, the general conclusions reached from this work and possible additional 

application of microstructures and nanostructures surfaces are discussed in Chapter 8. 
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2 LITERATURE REVIEW 

 

2.1 Introduction 

This literature review will discuss the pertinent techniques and past progress in the field 

of lasers and laser processing. This is done to give the reader a full understanding of the 

generation of micron scale topography which will later be used to produce new 

structures on metals and modify the wettability and reflectivity of the surfaces. This 

project begins with the development of new surfaces and then explores the applications 

of these surfaces. To fully understand the methods by which structures are produced on 

metals, it is first necessary to discuss the tools with which these structures are formed. 

In this case, the laser.  

Section 2.2 to 2.5 of this review concentrates on the theory and practice of laser 

processing. This is not a complete introduction to the theory of laser processing and 

micromachining but the contents of these sections are necessary for the complete 

understanding of this project. Section 2.6 is a review of laser surface topography 

modification techniques. This begins with mare traditional techniques and moves on to 

previous work which has been reported on the formation of self-assembled micro and 

nanostructures on various materials using lasers.  

To simplify the flow of this thesis, the two main applications of the surface structures 

produced by this project are discussed individually in their own chapters. Chapter five 

concentrates on modification of wettability and modification of reflectivity is discussed 

in Chapter six. This includes reviews of previous work reported in their subject areas.  
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2.2 The Laser 

The first laser was built 50 years ago in 1960 [10]. Laser stands for Light Amplification 

by Stimulated Emission of Radiation. Today, lasers have become a mature technology 

and are at the heart of many new industrial processes. These processes range from 

communications to novelty toys and surgery to the measurement of gravitational waves 

[25]. The main benefits of laser interaction compared to other techniques are:  

• Energy is delivered in a highly directional and precise beam of light, which leads to 

high resolution and accuracy. 

• Lasers are non-contact and highly flexible 

• Lasers have the ability to machine a wide range of materials and selectively ablate 

composite materials. 

• Lasers have high processing speeds, which are needed for industrial applications. 

In short the range of uses for lasers is diverse. In this chapter the underlying principles 

of lasers are discussed. Their inception in the early 20th century, the practical realities 

of building a laser and how the light produced can be controlled and utilised for laser 

processing applications. 

There are several individuals who are responsible for the initial ideas and concepts that 

give rise to the laser, as we know it. The first of these is Max Planck [26].  In 1900 he 

discovered that light could be broken down theoretically into discrete quanta later to be 

called photons. These photons have a total energy;  
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E = hυ 2.1 

where h is planks constant (h=6.626 x 10
-34 

Js), an empirically derived value, and υ is 

the frequency of the light [27]. Together with Rutherford’s model of the atom and 

Bohr’s work on quantization of energy states [28], this theory showed that in a then 

imaginary laser resonator, only a finite number of frequencies would be allowed to 

propagate through a resonator. Unfortunately the method of producing the light within 

the resonator was still not understood. In 1917, Einstein [29] produced an elegant 

representation of a solid material surrounded by electromagnetic radiation. Einstein 

formulated this thought experiment as a way to confirm Planck’s theory of discreet 

quanta. 

At that time, the concept of spontaneous emission was understood. The first part of the 

spontaneous emission process is when a photon interacts with an atom. Here, the energy 

of the photon can be imparted to the atom in a discreet transaction, changing the 

configuration of the electron cloud and allowing an electron to sit in a higher orbit of 

the nucleus. For the atom to return to its stable configuration, the excess energy that the 

electron possesses must be shed somehow. This is done by the spontaneous emission of 

a photon.  

For example, assuming the active medium contains atoms with only two possible 

quantum energy levels E2 (higher) and E1 (lower), then the incident radiation frequency 

must satisfy [30]: 

hvEE  12 =−
 

2.2 
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If this equation is satisfied then the lasing medium can absorb photons of energy, thus 

raising the energy of the atom from the ground state E1 to the excited state E2.  The 

excited atom exists in this excited state for a short limited time, before returning to the 

ground state via two different mechanisms. One way is via ‘spontaneous emission’ 

where the atom decays and emits a photon of wavelength, λ [30, 31]: 

12 EE

hc

−
=λ

 
2.3 

Where c is the velocity of light (2.99x10
8
 m/s). Alternatively, stimulated emission can 

occur. Fortunately for the laser physicists of today, almost 50 years before the invention 

of the first working laser, Einstein took his thought experiment one step further and 

imagined what would happen if a photon was incident on an atom already in an excited 

state. This introduced the concept of stimulated emission [29]. If a photon with 

frequency, υ, interacts with the excited atom it may cause the atom to release a second 

photon with the same frequency, phase and polarisation as the first photon.  This 

stimulated emission is illustrated in Figure 2.1. 

 

Figure 2.1. Stimulated emission for an atom with two energy levels (Adapted from [32]). 
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The previous example is based on an atom with only two energy levels.  In reality, the 

atoms can be excited to a level that is two or three levels above the ground state. For the 

phenomenon of stimulated emission to be useful in a lasing device, the material in 

which the laser light is produced, the gain medium, must be so heavily saturated with 

electromagnetic radiation that a highly excited state called population inversion is 

brought about. Population inversion is most easily explained by thinking of its opposite, 

the ground state. When a gain medium is not under the influence of external excitation 

the majority of its electrons will be in there lower energy, ground state. Only a small 

percentage will be in higher orbits. The opposite of this is true for population inversion. 

Here, the majority of electrons are in higher orbits. This means that stimulated emission 

is the dominant process for releasing energy as the orbits of electrons decay. The 

population of electrons at any energy state can be described by the Boltzmann equation 

[28]:  








 −
−=

Tk

EE

N

N

b

12

1

2 exp

 

2.4 

Where N1 ,N2 = electrons at energy states E1 and E2 respectively, T = absolute 

temperature of the medium, kb = Boltzmann’s constant (1.38 × 10
-23

 J K
-1

). When N2 is 

statistically greater than N1, this is known as population inversion.  As the photon 

emitted through stimulated emission is identical to the incident one optical amplification 

can then occur. 

Lasers have been in use as a scientific tool since the 1960’s. The first laser, a pulsed 

Ruby laser operating at a wavelength of 694nm, was produced by Maiman et al [10]. 

The reason for a 40 year gap between the concept of a laser and its first incarnation is 
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that the laser is reliant on technologies which were themselves being developed. To 

utilise the quantum mechanical phenomenon of stimulated emission, other laser 

components are necessary. The following components are essential in a modern laser: 

Lasing (active) material: A suitable active material must be present that provides 

appropriate energy levels for spontaneous and stimulated emission. 

Energy Source: To achieve population inversion the atoms need to be ‘pumped’ to a 

higher energy level. This can be achieved by many methods (i.e. flash lamp pumping) 

depending on the type and power of the laser [33]. 

Resonant cavity: The resonant cavity or ‘resonator’ enables the optical amplification to 

occur.  The resonator forms an optical oscillator using totally reflective and partially 

reflective mirrors [11] .  The lasing material is situated on the optical axis between the 

mirrors and amplifies the light oscillations by stimulated emission.  There are various 

configurations or resonator cavity [34] and a simplified diagram of a laser system can be 

seen in Figure 2.2. 

 

Figure 2.2. Simplified Schematic of a laser resonator 

The main features of the laser resonator are the pump source, gain medium and the 

resonator, in the form of two mirrors. In most modern lasers, the resonator consists of 
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two mirrors. One of which is fully reflective and the other is only partially reflective. 

Other arrangements can be used, but they all rely on the same basic principles for 

operation. 

 

2.3 Characteristics of Laser Light 

Compared with other light sources, the unique characteristics of laser light enable it to 

be used for a vast number of applications. From medical applications to industrial 

material processing lasers are becoming an increasingly integral part of every day life. 

The name given to the continuum of wavelengths at which electromagnetic waves, 

variations in magnetic and electric fields, propagate is the electromagnetic spectrum. It 

ranges from high energy Gamma rays to the long frequency waves. The UV, visible and 

IR regions of this spectrum occupy only a small proportion of this spectrum. An 

illustration of the range of frequencies present in the electromagnetic spectrum can be 

seen in Figure 2.3. 

The majority of laser systems operate in the ultraviolet (UV), visible and infrared (IR) 

region of the electromagnetic spectrum. Wavelengths are commonly measured in 

nanometers (10
-9

m) or microns (10
-6

m). The visible spectrum extends from 

approximately 400 – 700nm. Longer wavelengths, up to 1000µm is considered the 

infrared region and is broken up into near infrared (0.7 - 2 µm), middle infrared (2-15 

µm) and far infrared. Wavelengths shorter than 400nm are generally classified as 

ultraviolet. This region extends down to wavelengths of approximately 1nm. At this 

point, the energy of a photon is high enough for it to be considered as a soft X-ray [35]. 
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These regions are not exact, however they serve as a useful approximation for 

transferring knowledge. 

White light consists of a large range of wavelengths propagating in unison. Laser light 

is unique because only a discreet number of wavelengths are produced.  The bandwidth 

or linewidth of a laser source is a measurement of how monochromatic the light that 

emerges from the resonator. 

 

Figure 2.3 The Electromagnetic Spectrum [35] 

Although lasers usually have their wavelengths quoted to nanometer resolution, this is 

usually the mean wavelength with a spread of wavelengths present to either side. As a 

rule of thumb, lasers with single mode outputs such as Gaussian beams usually have a 

small linewidth, multimode outputs such as excimer beams will have a larger linewidth.  
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The effect of this spread of wavelengths present in the output is noticed when the 

coherence of the beam is studied [36]. The two types of coherence in question are the 

temporal coherence, the time period over which the laser output is coherent, and the 

coherence length, the distance light travels during the coherent time period. The 

coherence length, lcoh, is given by: 

λ

λ

∆
=

2

cohl
 

2.5 

Where ∆λ is the linewidth (FWHM) of the laser output and λ is the mean wavelength. 

From this, the calculation of the coherence time, tcoh, is simply: 

c

l
t coh

coh =
 

2.6 

Although these calculations may seem relatively trivial if the laser is to be used as a raw 

beam when interacting with a material, if techniques such as interferometry are to be 

used, increased coherence length gives more leeway when arranging apparatus. 

As well as producing a coherent beam, the stimulated emission phenomena can produce 

a highly polarised beam [37]. If a preference for one polarisation exists in the laser 

cavity then a polarised beam will result.  The beam can be polarised in several different 

ways: 
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Linear polarisation All of the electric vectors of the radiation 

are aligned perpendicular to the direction 

of propagation. 

Random polarisation A mixture of all polarised states. 

Circular polarisation A mixture of two waves of the same 

wavelength but travelling at right angles 

with each other.  The waves are out of 

phase by ¼ of the common wavelength. 

As well as the presence of longitudinal mode inside the laser cavity, Transverse 

Electromagnetic (TEM) modes are also present. In lasers where the symmetry is 

controlled by a polarising element, rectangular TEM patterns are formed [38].  These 

modes are designated TEMmn with m and n being the horizontal and vertical orders of 

the pattern. The control of modes which are present in the optical output of a laser can 

have a great influence on the beam quality. The TEM00-33 modes can be seen in Figure 

2.4. 

 

Figure 2.4. Transverse Electromagnetic (TEM) modes which can be present in a laser resonator 

[39]. 

The most notable of all the mode structures mentioned in Figure 2.4 is the TEM00 mode, 

which is more commonly known as a Gaussian beam profile [36]. Gaussian beams are 
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characterised by there irradiance profiles; these can be described mathematically by 

Equation 2.7 an example of this can be seen in Figure 2.5. 



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2.7 

Where I0 is the peak intensity, r is the distance from the centre of the beam, ω is the 

beam half width and P is the power. 

 

Figure 2.5. Graph to show the irradiance profile of a Gaussian beam (Adapted from [36]). 

A large number of lasers have outputs which approximate the TEM00 modes. Other 

classes of lasers such as excimer lasers have outputs which fit different spatial beam 

profiles. Most common is the top-hat shape, so called because intensity is uniform 

across the beam. The top-hat intensity profile occurs because there are a large number 

of TEM modes present in the beam. 

 

2.3.1 Divergence 

The divergence of a beam gives a measure of the amount the laser beam spreads out as 

it propagates in free space. This value is the half angle of the amount a beam spreads, or 
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diverges, as it propagates into the far field. Given that the laser wavelength and focal 

spot size, ω0 are known, mathematically, the divergence, θ, of a Gaussian beam can be 

defined as [39, 40]: 

0

2

πω

λ
θ M=  2.8 

 

Where M
2
 is a quality factor that will be discussed shortly and all other variables have 

their usual meaning. In the ideal case, the divergence of a laser beam would be zero, 

however, the world is not ideal and the divergence is usually expressed in milliradians 

(mrad). For Gaussian beams, divergence values of ~1mrad are common and multimode 

beams can have divergences as high as 20mrad [41]. 

 

2.3.2 M
2
 and Beam Quality 

One of the most commonly used measures of beam quality is the M
2
 value [40, 42]. 

This parameter is dimensionless and can be used when quantifying the quality of 

approximately Gaussian beams and also multimode beams. For a diffraction limited 

beam, the M
2
 value is 1. In reality, this is a physical impossibility. 

The concept of a dimensionless beam propagation parameter arises from the fact that for 

all laser beams, the product of the beam waist radius and far field divergence are a 

constant. However, given that most laser beams are not truly Gaussian in shape, there 

will be differences in comparison to the theoretical Gaussian as the beam propagates  
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Figure 2.6. The measurement of an embedded (theoretical) Gaussian beam in comparison to a real 

beam. 

through an optical system. These are summarised in Figure 2.6 and from these 

measurements, the value of M
2
 for any laser beam can be calculated by: 

θω

θω

0

02 RRM =  2.9 

Where ω0R and θR are the beam waist and far field divergence of the real beam, 

respectively.  

In addition to the quality of laser light produced, the way the light is delivered is also an 

issue. If a pulsed laser is used, there are several parameters, which are time dependant 

such as the pulse duration, average power, and peak power. These factors in turn yield 

other properties such as fluence, intensity and brightness. 

2.3.3 Pulse Duration 

The duration of an optical pulse can vary in a huge range. These time periods can range 

from the millisecond (10
−3

s) regime to the extremely short attosecond (10
−18

s). Pulses 

are not usually a square shape and for this reason the most frequently used definition for 



2. Literature Review 

18 

a pulse duration is based on the full width at half-maximum (FWHM) of the optical 

power versus time. 

 

Figure 2.7. Usually, pulse durations are measured as the temporal pulse width at half of the peak 

value. 

 

 

2.3.4 Energy and Power of Lasers 

Considering a train of pulses with a repetition rate υ = 1/T as seen in Figure 2.8. 

Assuming the energy, EP, contained within each pulse is constant then defining the 

energy change with time can give the power. 

 

Figure 2.8. Common terms used to describe various features of laser pulses. 

The peak power, Ppeak, defines the energy flow within a single pulse and average power, 

Pavg, the energy flow over one period, T. These powers can be described mathematically 

as; 
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In a laboratory it is more usual that the average power of a laser system is measured. 

This means that it is more useful to define the peak power in the form; 

τυ∆
=

avg

peak

P
P

 

  

2.12 

This also leads to the relationship; 

τ∆= peakP PE  2.13 

 

2.4 Gaussian Beam Optics  

Although raw laser beams can be used to machine materials, it is often required that the 

light being emitted from the laser aperture is controlled in some way. This is where 

optics are needed. It is assumed that the reader of this document will have an 

understanding of the fundamental laws of optics, and for this reason these will not be 

commented on but further reading is available [40, 43, 44]. However, it would be 

advantageous to discuss Gaussian optics. 
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The theory of Gaussian beams is a common part of laser applications [45]. However, it 

is useful to recap some of the basic equations and relationships that result from the 

theory. When beams with a Gaussian profile are focussed using optics, because of their 

irradiance profiles, equations can be applied that describe certain properties and 

parameters of the beam such as beam waist, minimum focal spot size, Rayleigh range 

and depth of focus. 

To achieve small spot sizes when focussing Gaussian beams, it is necessary to 

understand the relationship between input beam size, lens focal length and wavelength. 

The relationship between the minimum beam waist and the focal length is given by: 

πω

λ
ω

f
=0  2.14 

Where f is the focal length of the lens [40]. The spot size of a laser beam at the focal 

point is given by 2ω0. A trade off which occurs with the reduction of spot size is the 

reduction of the depth of focus. The depth of focus is calculated as twice the Rayleigh 

range, ZR. The Rayleigh range is the region of the beam over which the radius of the 

beam increases by less than a factor of 2  [36]. This is also the point at which the area 

of the beam doubles. This region extends to each side of the focal plane, hence the 

concept of depth of field. The Rayleigh range, ZR at the focal point of a lens can be 

calculated by: 

λ

πω 2

=RZ  2.15 
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The theoretical radius of a Gaussian beam can be calculated at any point along the 

optical axis using Equation 2.16 [39]. This can be done when the radius of the beam at 

the laser aperture, ω, is known. As well as the distance along the optical axis, Z, and the 

Rayleigh range, ZR. 
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2.16 

These equations can be used to describe how a laser beam will behave in various 

scenarios. These same equations are used when modelling many of the applications 

where Gaussian beams are present, inside or outside the laser cavity. In this case, they 

are used to model the way a beam will react when it is focused through a lens. 

 

2.5 Laser Interaction with Materials      

The primary focus of this project was to manipulate the surface topography of metals 

using lasers. This means that an understanding of how a laser interacts with matter is 

crucial. This section will discuss the interaction between light and matter, specifically 

those factors which affect laser material processing. 

To understand the interaction of laser light with materials, it is first necessary to 

understand the basic principles of the way any light interacts with a material. As has 

been mentioned previously, light is delivered to a surface in discreet wave-like particles 

named photons. The reason for this wave-particle duality still occupies some of the 

greatest minds and could take up the entirety of this thesis. However, it is enough to say 
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that photons can act a either a wave or a particle. This means that in the case of 

stimulated emission, a packet of energy can be received completely by an electron in its 

excited state and stimulated emission can begin. Yet curiously, if the same photon were 

sent through a small gap, it would experience diffraction. 

In the simplest terms, absorbed photons excite electrons, they give them energy. This 

energy is usually turned into heat. However the amount of absorption which occurs 

depends on the chemistry of the absorbing medium and, in this case, the wavelength of 

the particular laser system which is used. 

All materials absorb and reflect light differently. This is what gives them colour. The 

frequencies of light which are absorbed and reflected can be mapped in an absorption 

spectrum. This gives a laser user wishing to modify a material a good idea of how 

effectively energy will be coupled from laser beam to material at any given wavelength. 

A typical reflectivity spectrum for a range of metals can be seen in Figure 2.9. Since 

A=1-R, this type of spectrum can be used practically as the inverse of an absorption 

spectrum. 
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Figure 2.9 The reflectivity of Aluminium, Nickel, Copper and Steel over a range of laser 

wavelengths [11]. 

From Figure 2.9 it can be seen that there is a good reason for choosing the correct laser 

for a particular material. If a material is very reflective at the wavelength of the laser 

used to machine it then only a small amount of its energy will be coupled into the target. 

This can incur other problems also, such as damaging the laser itself as the reflected 

light returns along the same optical path as the incident beam. 

As would be expected, when a laser beam interacts with a material, not all of the 

radiation is absorbed. Some of the radiation will be reflected and some may be 

transmitted. The Beer-Lambert law (2.21) describes the attenuation of a laser beam of 

intensity, I0, in terms of the transmitted intensity, I, at a depth in the material, z in 

relation to the absorption coefficient, α which will be discussed later and is dependant 

on the material, wavelength and beam intensity [46, 47].     

)exp(0 zII α−=
 

2.17 
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When measuring the absorptance (A), the ratio of absorbed radiation to the incident 

radiation, of a material it is normal to measure the reflectance (R) that is the ratio of 

reflected radiation to incident radiation. From this it can be deduced that; 

RA −= 1  2.18 

If we concentrate on metals, it is known that a laser beam primarily interacts with the 

‘cloud’ of free electrons that are not associated with the majority of atoms forming the 

metal. When the laser interacts with these electrons, they oscillate and then re-radiate 

their excess energy. This is what gives metals their high values of reflectivity. 

Laser heating primarily happens in a thin layer at the surface of the target material [48]. 

This optical penetration depth is related to the absorption coefficient in the form: 

α
δ

1
=

 
2.19 

a heat affected zone (HAZ), which is very large in comparison to the optical penetration 

depth, can be formed if the radiation from the laser is better transmitted through the 

lattice. This occurs more often in materials when the heating, which occurs due to the 

laser-material interaction, is caused by diffusion of energy through the material. 

The thermal diffusivity, D of a material is a way of predicting how a material will 

behave when it interacts with a heat source such as a laser beam. It is described 

mathematically by [11, 47, 48]: 
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ρc

k
=D

 
2.20 

Where  k is the Thermal Conductivity, c is the heat capacity and ρ is the density of the 

material. Although this equation can be applied to any material, the way a material will 

react to the heating varies. It can be seen from Figure 2.13 that there are two distinct 

regions, which are affected by the incident laser radiation. These two regions are those 

which are heated due to optical absorption and heat flow/diffusion. Depending on the 

material, the heat affected zone (HAZ) during ablation can be dictated by the optical 

absorption length or the heat flow. 

 

Figure 2.10 Schematic of depths below a target surface where optical absorption and heat diffusion 

processes are present. 

In fig.5.1 the laser heated volume of the material is defined by the heat flow rather than 

the optical absorption of the material. The depth of the heat flow, δ is given by 

Dt=δ 2 , where D is the thermal diffusivity and t is the duration of the pulse. 
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2.5.1 The Effects of laser Heating 

The emission for a laser is simply coherent electromagnetic (EM) radiation. Due to its 

properties, this light can be focused into very small areas where its intensity can be 

raised into the GWm
-2

 regime, if only for a short period of time. The effect this EM 

radiation has on a material can range from simple heating of a few degrees to explosive 

vaporization called ablation. The way in which the laser light interacts with a material 

depends on various factors. These include the laser wavelength, the laser interaction 

time with the material, the reflectivity of the material and also the type of bonds which 

are present within the material. This PhD is primarily interested in metals, so it is this 

type of material which we will concentrate on. 

The topic of laser interaction with materials is extensive. This is because not only are 

there a large number of materials, there are also a large number of laser parameters that 

can be varied. Fortunately, there are several principles, which apply to all forms of laser 

interactions. The first of these that should be mentioned is laser heating. 

 

2.5.2 Laser Heating 

Although heating can occur when the light of a desk lamp is applied to a material, the 

heating that would occur if a laser of the same power was applied would, more than 

likely, be greater. This is because laser light is coherent and of a single or small spread 

of wavelengths. In this case, because of the coherence, the laser radiation is introduced 

to the surface of a material in waves rather than a randomly distributed spread. In 

addition to this, laser beams can be focused to very small focal spots which have very 
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high powers and intensities. A metallic material under the influence of laser heating 

experiences a temperature rise because the energy delivered by photons is transferred to 

electrons in the metal structure. As the energy of these electrons increases they being to 

collide with others, transferring their energy. In this way, the heat affected zone 

described earlier can be formed. When the power is increased so that the material is 

close to its melting point we move into the next regime. 

 

2.5.3 Laser Melting 

Due to the nature of laser radiation, especially when it is delivered in a very short pulse, 

heating is usually achieved very quickly and the material changes phase. At a 

temperature which varies from one material to another, the atoms in a crystalline 

structure stop vibrating in the solid state and enter a state of free rotation. This is the 

point at which a material enters a molten, or liquid, phase. Generally, materials with 

high bond strength have higher melting temperatures.  

 

2.5.4 Laser Vaporization (Ablation) 

If a material is heated with a laser past the point of melting and towards the heat of 

vaporization slowly, the same type of transition which occurred at the boundary 

between solid and liquid will occur between liquid and gas phases. However, again 

because of the high power densities which are present during laser processing, it is 

possible to increase the temperature of a target material so rapidly that explosive 

vaporization, or ablation, occurs. Ablation is usually referred to as the volumetric 
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removal of material. The power density at which there is a change directly from a solid 

material to vapor is a threshold value for each material. 

 

2.5.5 Ablation Threshold  

One of the early discoveries while investigating laser materials processing was that 

there is a linear correlation between the amount of material removed during laser 

ablation and the energy density on the target surface [46, 49]. The fluence of a laser 

beam is a measure of this energy density and usually has the units Jcm
-2

. As a derivation 

of the Beer-Lambert law (2.17), it was found that plotting the depth of material removed 

for a set number of laser pulses against the natural logarithm of the laser fluence, both 

the effective absorption coefficient and the threshold fluence for the material at that 

wavelength could be determined [14, 46, 50]. The derivation is: 

Teff F

F
d ln

1

α
=

 

2.21 

 where d is the depth of material removed per pulse , αeff is the effective absorption 

coefficient, F is the laser fluence and FT is the threshold fluence for laser ablation [46, 

50, 51] which is additionally given by ( ))R1()TT(cF RDT −α−ρ= , R is the 

reflectivity, ρ is the density of the material, c is the specific heat capacity, TR the initial 

temperature and TD is some critical temperature at which rapid thermal degradation 

occurs. Since a large effective absorption coefficient implies efficient coupling of light 

energy into a material this means the energy is absorbed into a small volume so the 

temperature increase is significant. For a small absorption coefficient the light is 
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absorbed into a greater volume therefore the energy loading is small and the resulting 

temperature rise is modest (at least in the absence of multiphoton processes). Figure (a) 

shows a large efficient absorption coefficient and (b) shows a small effective absorption 

coefficient. 

 

(a)     (b) 

Figure 2.11 a) large absorption coefficient, α1,  with high volumetric energy loading, (b) small 

absorption coefficient, α2, with small volumetric energy loading. This assumes the same input fluence. 

 

Figure 2.12. Example of the etch rate of a polymeric material [52].  The solid curve is a representation 

of experimental data, while the dashed line represents the ideal case, which fits the form of Beer’s law 

given in equation 2.21. 

Despite the insight obtained from Equation 2.21, the experimental etch depth as a 

function of the logarithmic fluence often deviates from the ideal case as illustrated in 

Figure 2.12. The solid line shows the experimental data, and eqn. 2.21 is represented by 
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the dotted line. At higher fluence it has been found [53] that the etch rate becomes 

curved with respect to an increase in fluence. The saturation of the etch rate at high 

fluence has been attributed to absorption or scattering in the plume thus attenuating part 

of the incident pulse before it reaches the sample surface [54].  

 

2.6 Review of Laser Surface Topography Modification 

Lasers are widely used as tools for manufacturing, there are a large number of 

techniques, which can be used to create micron scale topographical structures. Many of 

these have been highly developed and are now used in industrial processes. The creation 

of microstructures is usually dependant on optical arrangements and there are two basic 

methods. The first of these is direct writing. This method is the simplest to comprehend 

because it can be used in much the same way as a pen is used on paper. The difference 

is that rather than depositing material onto the surface, the target material is removed by 

ablation. There are many techniques which can be used to enhance the effectiveness of 

direct writing. Obviously, the first of these is the method of translation used to address 

different points on the target surface. The two main methods are target translation, using 

a mechanical stage, and beam translation, using a scanning system using prisms or 

mirrors. In this case, two mirrors which are controlled by software on a control 

computer are rotated in either the X or Y plane and focused using a flat field lens. Some 

examples of microstructures produced using direct writing can be seen in Figure 2.13 

below [13]. 
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Figure 2.13. Examples of direct writing of micro-features on metals using Gaussian beams [13]. 

The resolution of features produced using direct writing is limited by the accuracy of the 

beam delivery system and the quality of the optical arrangement which is used. For this 

reason, one of the necessities for direct writing of microstructures is a good beam 

quality, usually a Gaussian beam. If this is not so, then uniform machining will not 

occur and the resultant structures may be distorted. To make use of low quality laser 

beams, another method of micromachining must be used. Direct writing is probably the 

most used form of laser processing. Depending on the power used, the direct writing 

technique can be used to ablate the surface to create microstructure or, at higher powers, 

for the drilling and cutting of materials with a high degree of accuracy. 

Mask imaging can be a very useful technique when dealing with multimode beams or 

those with a low beam quality. Another advantage of using mask imaging is that large 

areas can be processed in a relatively short time if the technique is used in conjunction 

with system to address different points on the target, such as a translation stage. Some 
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examples of the types of features that can be produced using excimer beams to create 

microstructures can be seen in Figure 2.14 and Figure 2.15. 

      

Figure 2.14 Microstructures ablated in polymers by static mask projection 

      

Figure 2.15. Microchannels produced with (a) a triangle mask, (b) a 'T'-shaped mask 

The resolution of the features which can be produced using mask imaging are dependant 

on the wavelength of the laser being used, the quality of the optics and the size of the 

mask. It is particularly important the no diffraction occurs due to the apertures present 

in the mask.  
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These techniques have been discussed briefly so that the reader has an insight into the 

kind of practices which take place regularly. In this project the method used for surface 

topography modification is most akin to direct writing however a slightly different 

approach to surface topography modification using lasers is taken. Rather than 

removing material to directly form surface topography at specific points, this project 

produces topographical changes over desired areas.  

 

2.6.1 Self Assembly Methods of Laser Surface Topography Modification 

The use of lasers for the direct writing of micron scale topographical features is 

common practice in the field of materials processing. However, the use of lasers to 

produce self-assembled structures is a less exploited area. Over the past several years, 

there have been several reports of laser generated self-assembled microstructures on 

metals [12, 16, 55-59], semiconductors [16, 17, 56], and polymers [14, 50, 60-64]. 

These structures are designated as self-assembled because although the area in which 

features are desired is designated, the exact distribution is not. Initial work on this 

subject concentrated on polymers. It was found that the slope angle of microcones is 

related to the ablation threshold for individual materials [14]. Suggestions as to how 

these structures develop on polymers have also been given [14, 65] and are the result of 

small  
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Figure 2.16. Polyimide after machinng with a KrF (248nm) laser [65] 

particles that are deposited on the surface either from the ablation process or the 

environment. An example of the types of topographic structures that are seen on 

polymers can be seen in Figure 2.16. Unlike conical structures that have been reported 

on laser machined polymer surfaces, the process by which microcones and alike are 

produced on a metallic and semiconductor substrates is thought to be a melt flow 

dominated process rather than an ablation process. Previous results have shown that 

when a large number of laser pulses are delivered to various metal targets, self-

assembled arrays of microstructures, with a period of 30-50µm, can be formed [17, 57]. 

It has also been shown in similar studies that structure formation can occur in liquid 

environments [58]. It is also hoped that this project will address reports that the self-

assembled structures which are under discussion align themselves with the incoming 

laser beam. This has been shown to some degree by Dolgaev et al [17]. However, it is 

not clear if a systematic study of this effect has taken place. This group has also shown 

that silicon microcones can be produced by laser machining in an SF6 environment. As 

self-assembled microstructures are not exclusively produced in exotic gas 

environments, it would seem reasonable that such surfaces can be produced in a gaseous 
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Figure 2.17. Brass in Ethanol And Water. Nd:YAG (1064nm),~16 J/cm
2
, >10

4
 Pulses, Spot Size 

~40um. Scale bar 100µm [58]. 

environment such as air. The production of such features has been shown to have 

applications in the fields of surface reflectivity[66], wettability, microbiology and 

biomedicine. Some examples of self assembled structures produced in various 

environments can be seen in Figure 2.17 and Figure 2.18. 

 

Figure 2.18. Single Crystal Ge in Vacuum, Cu Vapour (510.6nm),τ = 20ns, ~1J/cm
2
, 10

4
 Pulses. Spot 

Size ~ 40µm [58] 

There have also been relatively recent developments in the modification of surface 

topography at larger scales. Continuing work done using electron beams [67], The 

Welding Institute (TWI) has developed a process named Surfi-Sculpt
®

. An  example of 
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the type of surface features that can be made using this technique can be seen in Figure 

2.19. 

A  B  
Figure 2.19.  An example of the types of surface topography that can be created using Surfi-

Sculpt
®
. Scale bars 200µm (A) and 1mm (B) 

These structures are grown by the careful control of the surface temperature as an 

electron beam of CW laser beam is scanned rapidly over the surface. At the heart of this 

process is the interplay between surface tension as the laser scan path is cools and the 

pressure from the vapourised material from the can path. This has the effect of 

displacing material in a direction opposite to the beam’s direction of travel. Larger 

features are created my repeatedly scanning over the same area, making the feature 

grow a little with each pass. Unfortunately, there is very little literature relating the 

Surfi-Sculpt
®

 directly as it is the intellectual property of TWI.  

Another method of changing the topography of a material is the use of interferometry. 

By interfering one or more beams, the constructive and destructive interference that 

occurs at their intersection allows a large number of different ablation patterns to be 

produced. Figure 2.20 shows examples of surfaces formed using various geometries of 

two and three beam interference. This type of surface topography modification is more 
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suited to the formation of submicron features, this is because the period of feature 

formation relies heavily on the wavelength of the laser light used.  

A  B  

C  
Figure 2.20. Examples of surfaces produced using interferometry. The three figures  show 

structures formed using two beam interferometry (A) [68]and three beam interferometry (B and 

C). The difference between structures seen in B an C [12] [69] are due to differing interference 

geometries. 

 

 

 

2.6.2 Producing sub-micron features using interference 

Due to the resolution limit of conventional optics, fabrication of structures which are in 

the sub-micron and nano scales must be created by manipulating the intensity of light.  

There are several successful techniques which utilise interference to control the 

intensity distribution of laser light used to produce sub micron structures. Commonly 

these techniques use variations in optical intensity produced by interference to 
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selectively ablate surfaces. Figure 2.21 shows the microstructures which can be 

produced by taking advantage of the way a multimode excimer beam diffracts through 

an amplitude mask consisting of an array square apertures with a spacing of 

approximately 20µm. The intricate intensity distribution is the result of near field 

diffraction [70].  

 

Figure 2.21. Scanning electron micrograph of an array of microfeatures etched in N-BK7glass 

using an F2 laser beam after propagation through a transmission mask [71] 

Other techniques to produce sub-micron structures can involve the interference of two 

or more [69, 72, 73]coherent beams allow the production of lines with a very small 

spacing which is below the wavelength of the laser used to machine them [74] and the 

use of three beams can facilitate the production of three dimensional structures [12, 73]. 

Unfortunately this technique requires a complicated experimental apparatus. 

Another type of topographical feature which is a known side effect of laser processing 

with pulsed lasers at low powers are laser induced periodic surface structures (LIPSS) 

[15, 18, 62, 75-83]. Again these structures were noted on polymers before metals but in 

both cases it is found that they are formed by interference between the incident laser 

beam and light scattered from the surface after reflection. It is simpler to produce these 

structures on surfaces and they can be confined to the area affected by laser pulses. An 
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example of this type of structure can be seen in Figure 2.22. Additionally, it is known 

that LIPSS form in a direction perpendicular to the direction of polarization of the laser 

beam unless it is circularly polarised [84].  

 

Figure 2.22. Demonstrations of LIPSS formed within the confined of a laser spot. It can be seen 

from both figure a and b that structures form perpendicular to beam polarization (indicated) and 

have almost the same period. [84]. 
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3 GENERAL METHODS 

As important as understanding the theoretical background of a subject is, the 

production, measurement and analysis of parameters and results is crucial. Although the 

physical principles which have already been discussed are explored in this PhD, the 

tools with which this is done are worth discussing in their own right. This chapter will 

briefly discuss many of the main technologies and analytical tools which are used in this 

project. Methods of delivering a laser beam to a target surface are discussed but the 

main focus here is on the analysis tools, which are used. 

 

3.1 Laser Control and Processing 

Very few of the laser processes carried out in this project can be controlled manually. 

The accuracy needed to control the synchronization of laser output and beam/target 

position is simply too high to be completed without the aid of control software. Some 

lasers have their own software to control various parameters of the laser output. These 

are generally custom made by the system manufacturer. Fortunately, this software can 

usually be overlooked as once they are set, changes do not often take place during a 

process. Indeed, the laser systems in this project require an external trigger to fire the 

laser. In laser materials processing, this external trigger is given by the control system 

which accurately synchronises the laser pulses and delivers the output beam to the 

correct position on a target. 

During this project, two beam delivery systems were used. The first of these is a galvo 

scanning head. These devices operate by steering an incoming beam using mirrors to 
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manipulate the laser beam in the x and y planes of the target surface. The beam is then 

focused by a flat field lens. This type of lens focuses incoming light to a plane rather 

than a single focal point. An illustration of the scanning head used in this project can be 

seen in Figure 3.1. 

 

Figure 3.1 Schematic of a scanning head 

The Waverunner software used in this project to control the scanning head follows paths 

which are input as vector drawings. These are then translated into scanning patterns. 

This type of beam delivery system is very good for the processing of large areas at high 

speed. However a trade-off is made. As the beam is directed towards the edge of the 

processing area its angle of incidence decreases which can sometimes have adverse 

effects.  

The second system used to control beam delivery was a three-axis translation stage, 

manufactured by Aerotech and controlled using NView software.  
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Figure 3.2 Three Axis Aerotech stage with focusing optics and target holder 

In contrast to the system equipped with a scanning head, a translational stage relies on 

target manipulation rather than beam manipulation. This gives more accurate control of 

the sample position. Unfortunately the processing speeds and target size are limited by 

the constraints of moving the stage and target. An Aerotech stage is controlled using the 

programming language GCODE. This is a language more commonly associated with  

CNC (Computerised Numerical Control) machines such as lathes or milling machines 

but the language has been adapted for use with laser systems. This simple language 

allows procedural control of a laser system, controlling the movements, including 

feedrate and position of each axis individually. 
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3.2 Analysis Tools 

One of the unfortunate limitations of the human senses is that we have evolved to be 

just good enough at a lot of tasks. Fortunately the species has also been imbued with a 

talent for adaptation and gifted individuals to develop tools and devices to extend our 

senses. These technologies allow us to understand the chemical and physical properties 

of materials.  

 

3.2.1 Microscopy 

Microscopy is one of the most widely used analytical techniques used in this project. 

However the methods of microscopy do vary. Two types of microscopy were used in 

this project, optical and scanning electron. Some specialised techniques related to these 

technologies are also discussed separately.  

If we begin with the most widely known method, we must begin with optical 

microscopy. Optical microscopy revolutionised the way we see the very small. It 

allowed features which are barely visible to the naked eye to be resolved with clarity. 

Early microscopes consisted of little more than a small glass bead which acted as lenses 

with high magnification due to their small radius of curvature. Soon however, more 

elaborate optical arrangements were developed until compound microscopes resembling 

those which we know today were built. 
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Figure 3.3 Arrangement of an optical microscope 

Modern optical microscopes, such as those seen in Figure 3.3 are modernised versions 

of those early designs. Where early microscopes had a fixed magnification, it is now 

common for an optical microscope to have multiple objective lenses ranging in 

magnification from x2 to x150. Obviously, this means that the resolving power of 

modern microscopes is greatly improved and so is the way these optical images are 

recorded. Although there are still eyepieces for the use of the operator, many optical 

microscopes now employ a charged coupled device (CCD) cameras to record the 

images that are seen. With the aid of digital processing software, it is also possible to 

perform measurements on these images, recording distances and feature height with 

micron accuracy.  

CCD Camera 

Eyepiece 

Light source 

 

Objective lend 

Sample holder 

Manual Focus 
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Unfortunately, the same physical restrictions which apply to laser processing mentioned 

in chapter two also apply to optical microscopy. This is because the same optical laws 

are used. One of the main problems is resolution, this is in both height and spatial 

parameters. Spatial resolution has a theoretical limit of 200nm. The problem of 

resolution in terms of height is due to the trade-off which is made as the magnification 

of a lens increases.  As with the principles employed in Gaussian optics, to produce a 

smaller spot, and hence increase the resolving power of a lens, then the numerical 

aperture of a lens must be increased and the depth of field sacrificed.  As magnification 

increases this means that rough surfaces, such as those produced in this project are 

difficult to inspect with any clarity.  Fortunately, higher resolutions can be achieved 

using scanning electron microscopy. 

 

3.2.2 Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) is one of the most common solutions to viewing 

surfaces at high magnification with more clarity. The operating principles of an SEM 

are very similar to those of an optical microscope. The difference being that rather that 

manipulating the path of photons as they interact with a sample, a SEM manipulates 

electrons. 
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Figure 3.4 Arrangement of a Scanning Electron Microscope (SEM) 

The arrangement of a SEM can be seen in Figure 3.4. If we carry on with the analogy of 

an optical microscope, we now come to the interaction of electrons with the sample to 

be inspected. In an optical microscope, photons are reflected back from a surface and 

returned to the eyepiece. Electron microscopy operates on a different principle. Firstly, 

rather than the sample being passive, in electron microscopy it must be electrically 

conductive and positively charged so that it attracts the negatively charged electrons. 

Secondly, as electrons are directed towards the target, they are so small that they will 

actually penetrate into the surface of the target. Once they interact with atoms directly, 

one of two events can happen. The electron can be absorbed into an atom and a short 

time later a secondary electron will be emitted, or the electron will interact with the 

nucleus of the atom directly and return to the collection device as a backscattered 



3. General Methods 

47 

electron. SEM devices are not exempt from limitations such as depth of focus or 

resolution; however, their resolving power is easily an order of magnitude better than 

their optical counterparts. The improved depth of field also means that the samples can 

be viewed from various positions. This in combination with the ability to measure 

distances on images formed by the image capture systems in SEMs makes them a very 

useful tool for measuring rough surfaces very accurately.  

 

3.2.3 MEX  

Indeed, the problem of measuring rough surfaces is one which needed to be addressed 

in this project. The usual way to measure the roughness of a surface is to use either an 

optical or mechanical method. Optical methods usually involve measuring the distance 

to the surface from a fixed point using a laser and building a map of the surface or the 

use of white light interferometry. Mechanical methods use a stylus to track and record 

the surface. Unfortunately, many of the surfaces produced in this project are too small 

for these methods but too large for atomic force microscopy (AFM) which has an upper 

limit, in terms of height, of 10 – 20µm. The solution to this is the use of SEM along 

with digital electronic models (DEM) produced using a software package called MEX
®

 

produced by Alicona
©

. This software builds a DEM of a surface using SEM images of a 

surface which are made at three slightly different viewing angles. This arrangement can 

be seen in Figure 3.5. 
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Figure 3.5 Orientation of samples needed for the production of MEX digital electronic models. 

These images are then analysed to measure the change in position of surface features 

and, knowing the difference in viewing angle, the height of the surface at any particular 

point can be calculated by trigonometry. This allows the production of images such as 

Figure 3.6. From these datasets a number of surface measurements can be taken. These 

include statistical measurements, such as roughness values and direct measurements, 

including surface profiles and other direct measurements. The nature of a digital model 

means that software can analyse the topography of DEM surfaces and extract data such 

as surface roughness and arbitrary surface profiles easily. Particularly, this project uses 

this software for the analysis of surface roughness. This method is used rather than more 

traditional roughness measurement methods because of the scale of features produced.  
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Figure 3.6 An example of a digital electronic model (DEM) created in MEX
®
 (bottom) using three 

source images similar to the SEM image shown (top) . 
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3.2.4 White Light Interferometry 

Another method of measuring roughness and depth on reflective surfaces is that of 

white light interferometry. Figure 3.7(a) shows the Wyko NT1100 surface profiler that 

is a non contact tool that can measure a wide variety of surfaces and samples. 

A  

B  

 

Figure 3.7 (a) Annotated photograph of the Wyko NT1100 (b) schematic diagram of the inside of 

(a), both taken from the Wyko techniques manual .[85] 
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Figure 3.7(b) shows a diagram of the inside of the Wyko NT1100, where the light from 

the illuminator travels through the Integrated Optics Assembly (IOA) and is reflected 

down to an objective by a beamsplitter. Once the light reaches the objective, another 

beamsplitter separates the light into two beams. One beam, the reference beam, reflects 

from a smooth reference mirror in the objective, while the other (the test beam) reflects 

from the surface of the sample, in this case the optical fibre, and back to the objective.  

If the surface of the sample is in focus, the two light beams will recombine and form an 

interference pattern of light and dark bands called fringes. The number of fringes and 

their spacing depends upon the relative tilt between the sample and the reference mirror.  

If the sample and the reference are parallel, only one large fringe will be seen.  In this 

case, the fringes are said to be nulled. The interference pattern is received by the CCD 

camera and the signal is transferred to the computer where it is processed to produce a 

graphical output representing the surface topology of the sample.   

There are two types of measurements available with the Wyko NT1100 system.  In the 

first, phase-shifting interferometry (PSI), the bandwidth of the illumination is reduced 

and a mechanical translation system precisely alters the optical path length of the test 

beam.  Each optical path change causes a lateral shift in the fringe pattern.  The shifted 

fringes are periodically recorded by the camera, producing a series of interferograms.  

Computerised calculations combine the interferograms to determine the surface height 

profile. PSI is used for very smooth surfaces, such as mirrors, optics, or other highly 

polished samples. PSI measurements are not reliable for very rough samples or samples 

with an average surface roughness greater than 160nm as multiple fringe sets will exist 

simultaneously. The second type of measurement uses full bandwidth white light and is 

termed vertical scanning interferometry (VSI). This technique was developed to 
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measure samples with much greater surface roughness. An internal translator scans 

downward during the measurement as the camera periodically records frames. As each 

point on the surface comes into focus, the modulation on that point reaches a maximum, 

and then tapers off as the translator passes through focus. By recording the height of the 

translator at maximum modulation, the system can determine the height of each pixel. 

The maximum scan length for VSI using the NT1100 is 2 mm. 

 

3.2.5 Goniometry 

As has been seen previously, measurement of a contact angle must be accurate and 

reproducible. One of the most common techniques for measuring contact angle is the 

sessile drop technique. In this approach, a droplet of liquid (usually water) is placed 

onto the surface of a sample. The contact angle is then measured automatically by a 

computer linked to a digital optical microscope. The basic arrangement of this approach 

can be seen in Figure 3.8. 

 

Figure 3.8. Arrangement of sessile drop contact angle measurements using a video tensiometer. 

Although a sessile contact angle gives a good indication of the wettability of a sample, 

it does not indicate how a droplet will move over the surface of the sample in a real life 
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application. The most basic approach to measuring the dynamic properties of a droplet 

on a surface is to measure the roll-off angle of the droplet. To do this, a droplet is placed 

on the surface of a sample which is then tilted until the drop begins to move under its 

own weight. The angle of tilt of the surface at this moment is the roll-off angle. It is 

usually found that the roll-off angle decreases as the wettability and contact angle of a 

surface increase. This is simply because there is less contact area for the drop to adhere 

to the surface. 

 

3.2.6 Spectrophotometry 

Part of this project investigates the reflectivity of surfaces. Primarily, the reflectivity of 

a surface is quantified using a spectrophotometer. This device allows the reflectivity or 

transmission of a sample to be measured at a range of wavelengths ranging from the 

ultraviolet (UV) to the infrared (IR). This results in the production of a reflectivity or 

transmission spectrum.  An example the reflectivity spectrum of a number of metal 

surfaces can be seen in Figure 3.9. 

 

Figure 3.9. Schematic diagram of a single beam spectrophotometer 

Figure 3.9 is a schematic diagram showing the principle components of a single beam 

UV-visible spectrophotometer [86]. A hydrogen or deuterium lamp is used for the UV 
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region and a tungsten or halogen lamp for the visible region.  In this way light radiation 

from the whole range is scanned by the spectrophotometer.  The light is then diffracted 

through a grating, which splits the light to a number of different wavelengths. Each 

wavelength is then allowed to pass through a narrow slit to the sample/reference cell as 

shown in Figure 3.9 The reference and sample cells are placed into the 

spectrophotometer individually. Light is then passed through each cell in turn and the 

transmitted radiation is detected and the spectrophotometer records the absorption 

spectrum of the desired wavelengths of light.  Two beam instruments are also used and 

scan both the reference and sample cuvettes simultaneously. 

In particular, this project used an 

integrating sphere to aid in the 

measurement of light reflected 

from laser processed samples. A 

schematic of this apparatus can be 

seen in Figure 3.10. Integrating 

spheres allow the light reflected 

from the measured surface to be 

diffused inside the sphere so that 

both specular and diffuse 

reflections are taken into account. This gives a more accurate measurement of surface 

reflectivity. 

 

 

 

Figure 3.10 Schematic of an integrating sphere which  

can be used in conjunction with a spectrophotometer  

in place of a sample or reference cell. 
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3.2.7 X-Ray Diffraction. 

X-Ray diffraction (XRD) is a non-destructive method which can reveal the 

crystallographic structure, chemical composition and other physical properties of 

materials and thin films. This is done by directing a beam of X-Rays towards a target 

sample and  measuring how incident X-Rays are elastically scattered.  

Unlike other technologies such as energy dispersive x-ray spectroscopy (EDX), which 

can be used in conjunction with a SEM and identifies the elements present in a sample, 

XRD can help identify the compounds present. This is important because many 

compounds can contain the same elements in different arrangements, changing their 

properties. A well known example of this type of problem is carbon. Depending on the 

arrangement of the crystal structure formed by carbon atoms, different compounds can 

be formed. Two of the most well know of these are Graphite and diamond. Although 

these materials are chemically identical, their properties are almost completely opposed. 

Diamond is the hardest material known and can be perfectly clear while Graphite 

crumbles easily and is usually black. These differences in properties are due to the 

arrangement, or crystal orientation of their atoms. There are hundreds of these naturally 

occurring arrangements of atoms. However, much work has been done to understand 

these structures and how they are arranged in crystals [87] and now it is possible to use 

software to identify the compounds present in materials after XRD measurements have 

been taken.     

In this project, XRD is primarily used to identify the compounds present in thin layers 

at the surface of metals. These layers are typically in the order of nanometers in 

thickness. This means that to differentiate them from the bulk material of the sample is 
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very difficult. One method which has been developed to do this is small-angle Xray 

scattering [88]. This technique uses X-rays to graze the surface of a sample by directing 

them at a very low (~3°) angle. This means that although the chemical composition of 

the substrate is still seen, the compounds present in thin layers on the surface can also 

be identified more easily. 
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4 LASER GENERATION OF SURFACE STRUCTURES 

The most commonly noted applications of industrial lasers are those such as laser 

cutting and welding. While these techniques have enjoyed great success, the laser is a 

much more versatile tool. Due to the special qualities of laser light, it is possible to 

finely control the output of a laser. This allows laser users to damage a surface in a 

controlled fashion, producing surface microstructure that differs in both composition 

and morphology, resulting in the development of unique topographical patterns on the 

surface. The topographical patterns, or surface microstructures can be produced with 

scales in the micrometer to nanometer regimes.  The majority of laser microprocessing 

is performed by removing specific volumes of a material surface by ablation. In this 

project a different approach has been taken. Rather than directly removing target 

material to produce structure, here the majority of experiments concentrate on the 

melting and movement of material. Building on the work of researchers such as 

Dolgaev et al [17, 56, 57],  Kazakevich et al [58] and Vorobyev et al [89, 90], the 

possibilities of producing surface structures by more organic methods have been 

explored. This chapter gives an account of the development of these quasi self-

assembled laser induced microstructures. 

 

4.1 Experimental Methods 

The general processing method which was used to produce the surface structures was 

held approximately constant however, slight alterations were necessary when switching 

from different laser systems. In general, the laser beam was raster scanned over the 
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surface of the target material using a computer controlled galvo-scanning system, which 

was equipped with a flat-field lens. 

When scanning the laser over the surface of the sample there were several parameters 

which could be controlled these were the average power of the laser, PAVG, the scanning 

speed of the laser, V, and the distance between each line of the scan. This parameter is 

called the hatch distance, d. Other parameters such as the laser repetition rate, υ and the 

laser spot size, 2ω0, were held constant. By varying the scanning speed, V, it was 

possible to change the number of pulses, N, which were fired at each individual point on 

the target surface. If very large numbers of pulses per spot were required, multiple 

passes were needed to give the total number of pulses per spot, NT. To calculate the 

value of N for each pass, the equation used was: 

V
N

υω02
=  4.1 

 

This equation gives the total numbers of pulses along a single scan line. If it is required 

that the number of pulses fired at a given area, NA, is calculated, Equation 4.1 can be 

modified to: 
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where the values of x and y are the dimensions of the total scan area as seen in the 

illustration accompanying Equation 4.2. In the following sections the types of 

microstructures produced using various laser systems are described. Each section will 

describe the laser being used and the results obtained. 
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4.2 Development of textured surface topography using 532 nm 

Violino Green Marker 

The Violino Green Marking laser system is primarily a frequency doubled Nd:YVO4 

diode pumped solid state laser. This type of laser has become very common due to its 

small footprint and low maintenance requirements. The beam delivery system employed 

in the Violino systems is that of a scanning galvanometer head and was equipped with a 

flat field lens with a focal length of 150mm. This means that the laser beams can be 

scanned rapidly and accurately over the target surface. 

The image in Figure 4.1 shows the Violino green marking system it has the output 

parameters; 

 

Repetition rate: 30 kHz              

Pulse width: ~ 7ns  

Maximum Output power: 7 W 

Wavelength: 532 nm  

Focal Spot Size: 55 µm 

 

 

 
 

Figure 4.1 The enclosure which houses the 

Violino Marking System 
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The Violino Green system is very useful as a tool for scientific experiment. It is a 

relatively simple machine to operate, however, the inclusion of a scanning galvanometer 

in its design means that very accurate manipulation of the laser beam over a target 

surface can occur. Initially, the experiments conducted with the Violino Green laser 

investigate the findings of previous papers [17, 56, 58]. This includes the formation of 

microstructures on metals in various metals in both liquid and gaseous environments. 

Once this work had been reproduced, comparisons were made between previous works 

and those performed for this project.  

 

4.2.1 Comparing Production of Microstructures in Gaseous and Liquid 

Environments.  

In this experiment the 532nm Violino system was used to process AISI 304 stainless 

steel samples in liquid and air environments. This was done to make a comparison of 

both the distribution and size of features that are produced. The liquid environment was 

a mixture of deionised water and ethanol in the ratio 3:2 (deionised H20:Ethanol). This 

mixture was chosen because the addition of ethanol lowers the density of the liquid 

environment, increasing the ease with which any bubbles produced during processing 

are moved out of the path of the incoming laser beam.  

When V=1mm/s and υ=30kHz, N=1650 pulses. For this reason, seven passes were 

made so that the total number of pulses fired at each spot was ~11550. The hatch 

distance between scan lines was 25µm. This was chosen so that there was a ~33% beam 

overlap between consecutive scans. Both samples were processed at a fluence of 

19.64Jcm
-2 
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In the two different environments, after a total of ~11550 pulses had been fired at a 

stainless steel surface in a raster scan, the structures that can be seen in Figure 4.2 were 

produced. All scales being equal, the most obvious difference between the structures 

formed in air and those formed in liquid is the feature size. In liquids, the features have 

a size of 10–20µm. In air, the feature size rises to 40-50µm, approximately the spot size 

of the laser beam.   

A  

B  

Figure 4.2. Stainless Steel machined in a) Ethanol and water b) Air 

In addition to the increase in feature size, the shape and arrangement of the structures 

also changes. In a liquid environment, the structures are smaller, notably more rounded 
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and their distribution more random. In air, the structures are, although larger, more 

closely packed and their arrangement more linear, their period closely matching the 

laser spot size.  This change in distribution can be seen in Figure 4.3. 

It is thought that the reason for the change in feature size and distribution is the result of 

a number of different factors. The depth of liquid above the sample surface was 

approximately 5mm. The presence of this layer will have affected the formation of  

A  

B  
Figure 4.3. Structures produced in water (A) and Air (B). In these images, the scale bars are 20 and 

50µm respectively. This change in feature size is related to the environment in which the surface is 

processed. Indeed this is believed to be the case when discussing the orientation of features also. 

surface structures in several ways.  It is known that laser power will be lost due to 

reflection at a liquid – air interface and through absorption by the liquid itself. It is 

known that at an abrupt change of refractive index, approximately 4% of incident light 
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is reflected. In this case this would reduce the effective laser fluence to approximately 

18.8 Jcm
-2

. Another loss will be due to absorption by the liquid. Fortunately this will be 

negligible for two reasons. Firstly, water is almost 100% transparent at 532nm, and 

secondly the distance light has to travel to reach the target surface is very short.   

If the reason for this change in feature size is not because of reflection losses, there are a 

few more candidates. The liquid will have an effect on the temperature which the 

surface reaches, cooling the surface to a higher degree than air. This cooling would 

impede the flow of energy into the surface, reducing the efficiency of ablation. 

Although it was noted that a plasma was formed below the liquid surface during 

processing this would also have an effect on the not only the feature size of structures, 

but also the change in distribution. As a plasma forms, a shock wave is created [91]. In 

a gas, this shock wave will not affect the incident beam. In a liquid the shockwave will 

affect the beam indirectly. As the shock wave propagates the variations in pressure will 

disturb the surface of the liquid. Effectively this changes the angle of the surface, 

slightly scattering the laser beam. After the multiple passes which took place in this 

experiment, it is not surprising that the distribution of structures deviated from 

following the laser scan path. Having said this, there is much work that can still to be 

done to fully understand the subtle differences between these processes. Most 

importantly, to fully understand the change in feature size. 

4.2.2 Change in microstructure with increasing numbers of pulses in air 

The dependence of structure formation on the total number of pulses fired at the target 

was investigated. While using the same processing parameters as used in Section 4.2.1, 

the number of passes was increased from one (NT=1500 pulses) to seven (NT=10500 
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pulses). This was done to determine the number of pulses which are required to develop 

the structures seen in Figure 4.4. 

 

Figure 4.4. Scanning electron microscopy (SEM) images (view tilt 45°) of the target sites where the 

number of pulses per spot, NT , have been changed (laser wavelength 532 nm, intensity 1.5 

GW/cm2, beam spot diameter ~50µm, distance between the subsequent lines ~25 µm). From top to 

bottom, NT is (a) 10500, (b) 7500, (c) 4500, and (d) 1500, with average tip-to-tip distance of 50, 41, 

35, and 30 µm, respectively. Inset (e)—view tilt 75° is the enlarged part of the Fig. 5.04a. Exposed 

areas look like black regions on a bright steel surface 

Figure 4.4 shows a SEM image of the results from this experiment. It is possible to 

produce these structures by applying as few as 1500 pulses per spot this can be seen in 

the bottom of the image in Figure 4.4d. The major change that occurs at the surface as 

more pulses are applied is its position in relation to the original surface, as can be seen 

from Figure 4.5. As the total number of pulses, NT, is increased, the further below the 

original surface the structures are formed. 

It is clear from the formation of structures below the datum of the surface that the laser 

fluence used to process these samples is unnecessarily high. This was also apparent 

from the amount of ablated material that fell as particulates around the ablation sites. To 

(a) 

(b) 

(c) 

(d) 

(e) 



4. Laser Generation of Surfaces Structures 

65 

better understand the evolution of these structures as the number of passes increases, 

this experiment was performed a second time. 

 

Figure 4.5 SEM Image of microstructures formed in Air when NT=10500. This Image illustrates the 

position of structures below the datum of the surface. Scale bar 50µm.   

In the second set of processed surfaces, a fluence of 3.93Jcm
-2

 was chosen and the area 

to be processed was reduced to 300 x 300 µm. This reduction in area greatly reduced the 

time taken for processing. All other parameters were kept constant. In total nine passes 

were made. At a scanning speed of 1mm/s this resulted in 1650 pulses fired per spot. 

After nine passes, this total is approximately 15,000 pulses. The evolution of the first 

eight passes can be seen in Figure 4.6.  Figure 4.7 shows the surface of stainless steel 

after nine processing passes. 

The images seen in Figure 4.6 and Figure 4.7 give new insight into the formation of this 

type of surface feature. In Figure 4.6 A and B it can clearly be seen that during the first 

two passes, melting occurs on the surface. This increased the surface mobility of molten 

metal and due to the high repetition rate of the laser this material is disturbed and 

pushed away from the centre of the laser scan path. As increasing numbers of passes are 

made, material that has solidified to form relatively high points on the surface forms the 
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tips of the larger surface structures which form during subsequent passes. This can be 

hypothesised because here the peaks of surface structures are level with, and in some 

A  B  

C  D  

E  F  

G  H  

Figure 4.6 SEM images showing the evolution of surface microstructures over nine passes (A – H) 

with each pass being its own image. The surface is viewed at an angle of 45°  
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Figure 4.7 SEM image of the surface resulting from approximately 15000 pulses per spot being 

fired in a raster scanned pattern at a fluence of 3.93 Jcm
-2 

cases protrude above, the level of the original surface. This raises the question of how 

the material between these peaks is removed. From these studies it is thought that this 

material is removed firstly by the flow of molten material towards cooler areas on the 

surface and then by ablation. The intensities required for this ablation are achieved 

when the molten surface reflects the incident laser beam from the sides of proto-peaks 

enabling ablation to occur directly in the path of the laser. Once the peaks are 

sufficiently well developed, this mechanism acts to only increase the depth of the voids. 

One of the problems with this process is the time that is needed to cover large areas. 

From Figure 4.6  it is clear that after approximately 10,000 pulses (six passes, Figure 

4.6 F) have been fired, the overall appearance of the surface structures varies little. 
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4.3 Laser Micro-topography Modification using 1064 nm EU Marker 

 

The EU Marker system is very similar to the Violino Green Marker. Essentially, this is 

a lower powered system which is without a frequency doubling crystal. In this particular 

system, with the same beam delivery system the output parameters are: 

Repetition rate: 30 kHz  

Pulse width: ~ 8ns  

Output power: 4 W (full power) 

Wavelength: 1064 nm  

Focal Spot Size: 50 µm  

The use of the Violino 1064nm system was necessitated during this project by the 

breakdown of the Violino Green system.  Fortunately this allowed for the continuation 

of previous work at the fundamental Nd:YAG wavelength of 1064nm.  

 

4.3.1 Change of microstructure as scanning speed is changed. 

In the previous experiment, a low scan speed, V=1mm/s, was used. To try and increase 

the speed of the process, an experiment was performed to investigate the dependence of 

structure formation on both the scan speed and the number of pulses applied. To do this, 

an array of targets was machined on both stainless steel and titanium samples. The laser 

used was the Nd:YAG marker, operating at a wavelength of 1064nm, discussed 

previously. In these cases, the scan speed and the total number of pulses applied per 

spot, NT, were increased incrementally. The scan speeds used were 1, 5, 10, 20, 40 and 

60 mm/s. the values of NT used were 2500, 5000, 7500 and 10000 pulses. This was 

done while setting the hatch distance, d, to 40µm and the fluence to 3.6 Jcm
-2

. 
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It can be seen from Figure 4.8 that the microstructure of the stainless steel does respond 

to a change in laser scan speed. At a low speed of 1mm/s (Figure 4.8a) it can be seen 

that the structures, although individual, are not as regular as those already seen. The 

irregularity is the same as that seen at high laser powers and is the result of the scan   

A  B  

C  D  

E  F  

Figure 4.8 a-f. Development of Microstructures as 5000 pulses are deposited onto Stainless steel as 

the laser scan speed is increased. Left to right, top to bottom, 1, 5, 10, 20, 40, 60mm/s. Scale Bars 

50µm 

speed being too low. Due to this, too much energy is delivered to the surface and rapid 

oxidization occurs. As the speed increases to 5, 10 and 20 mm/s, more regular features, 
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such as those which are desired become apparent. At speeds of 20-60 mm/s, the 

structures become more linear in appearance. This is because the scan speed is now so 

high that there is not enough energy being delivered to the surface as the laser scans. 

From these images it was decided that the most separate and regular structures would be 

produced at a scan speed of approximately 10 mm/s. 

A  B  

C  D  

E  F  

Figure 4.9 Development of Microstructures as 5000 pulses are deposited onto Titanium as the laser 

scan speed is increased. Scanning speeds A – F are 1, 5, 10, 20, 40, 60mm/s respectively. Scale Bars 

50µm 
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If we now turn our attention to the same experiment performed using a Titanium target. 

Similar results can be seen, however structures are not as erratic at low scan speeds. 

Again, it would seem that the most regular structures are produced at scan speeds of 5 – 

10mm/s. This would suggest that with the repetition rate used, there is an optimum 

number of pulses that should be fired at the target in a given time period. This allows 

the structures to form, but doesn’t heat the target so much that vaporization takes place. 

It can also be seen from Figure 4.9 that at scan speeds above 10 mm/s, too few pulses 

are delivered to the surface. From the appearance of the structures, each pass of the laser 

simple melts the top layer of the target. Although it was seen that larger numbers of 

pulses do start to develop microstructure, they were in the form of holes in the surface 

and took far too many pulses to develop. 

 

4.3.2 Effect of average laser power on structure formation. 

Operating at 1064 nm, one of the first investigations that was carried out using this laser 

was to discover what effect the average power of the laser had on structure formation. 

This was done so that the best laser power for structure formation could be found. The 

laser parameters used were V=1mm/s, d=40µm and NT=4500. The maximum average  

Laser Power / % Average Output Power / W Fluence / Jcm-2 

100 4.18 14.19 
90 3.40 11.54 
80 2.62 8.90 
70 1.84 6.25 

60 1.06 3.60 
55 0.67 2.27  

Table 4-1. Average laser output power and fluence as a percentage of the full laser pump power. 

The results from processing at the various average powers can be seen in Figure 4.10. 
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power of the laser was measured to be 4.18W when being computer controlled at 100%. 

The increments in average power were those seen in Table 4-1. 

A  B  

C  D  

E  F  

Figure 4.10 A-F, Samples of stainless steel raster scanned at average powers of 0.67, 1.06, 1.84, 2.62, 

3.40 and 4.18W.  Scale Bar 200µm 

It can be seen from these images that as the average power of the laser increases, the 

structures become larger and less periodic. Until eventually, the structure that can be 

seen is more like a large oxide formation than the regular structures which were seen 

before. From this experiment, it was decided that an average laser power of 1.06W was 

to be used.   
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4.3.3 Influence of Hatch Distance on Structure Formation 

It was noted from previous investigations that the structures being developed occur 

between the lines where the laser scans. To look at the effect of the distance between 

scan lines, the hatch distance, d, scans like those seen in Figure 4.11 were made and the 

value of d changed incrementally. 

 
Figure 4.11. Diagram to show the meaning of the hatch distance, d. 

Using processing parameters of V=10mm/s, υ=25kHz, NT=2500, and varying the hatch 

distance between 10 and 60µm, the structures seen in Figure 4.12 are observed. There 

are several notable changes to the structures as the hatch distance is increased. The first 

of these is that when the hatch distance is small, 10-20µm (2ω0>d), the structures that 

are produced are much more random in their arrangement and have a feature size which 

is smaller than the spot size. Increasing the hatch distance to 30-50µm (2ω0~d) gives the 

best results in terms of separated features. Once the spot size of the laser is less than the 

hatch distance (2 ω0<d) we begin to see how the laser interacts with the target material. 

The majority of the processing occurs at the centre of the beam, this is where the 

intensity is highest. As we move away from the centre of the beam, the relative intensity 

decreases and a melt flow regime begins to become apparent. This can be seen most 

clearly in Figure 4.12f. Between the scan tracks, the surface of the target has remained 

undisturbed, while material from the centre of the scan track has been pushed up to form 

walls at its edges. 

A B 
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Figure 4.12 Development of Microstructures as 

2500 pulses are deposited onto stainless steel as 

the hatch distance, d, between scan lines is 

increased. A – G d = 10,20,30,40,50,60µm 

respectively. Scale Bars 50µm 
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4.3.4 The Effect of Different Laser Scanning Patterns 

Up to now, the laser has been scanned across the surface in a simple raster scan as can 

be seen in Figure 4.13a. As it had been noted that structures form between the scan 

lines, it was a logical step to scan the laser in two directions to form individual 

structures between the scan lines. The scan pattern that was used for this cross hatching 

regime can be seen in Figure 4.13b. 

 

Figure 4.13. Different Scanning patterns used to produce microstructures.  

a) Horizontal Line Scanning Regime (HSLR) b) Cross Hatching Regime (CHR) 

For these experiments laser fluence of 2 J/cm
2
, intensity of ~0.3×10

9 
W/cm

2
, was used. 

The laser beam was raster scanned over the surface of the target at a velocity of 

10mm/s, using a computer controlled galvo-scanning system equipped with a flat field 

lens. The hatch distance, the distance between adjacent raster scans, was varied for each 

experiment. Essentially, the overlap between consecutive scans was decreased from 

80% of the laser spot diameter on the surface, corresponding to the hatch distance of 

10µm, to no overlap corresponding to the hatch distance of 70µm, each step-change 

being equal to 10µm.  Consecutive scans were performed over each area (1mm
2
) so that 

the required number of pulses had accumulated. In fact, two laser scanning regimes 
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were employed for the experiments, namely horizontal line scanning regime (Figure 

4.13a) and cross hatching regime (Figure 4.13b). In the horizontal line scanning regime 

(HLSR) the laser was scanned only in the X direction (Figure 4.14a) and the hatch 

distance was varied between the lines, from 10µm (Figure 4.14(a)) to 70µm (Figure 

4.14 (g)) in steps of 10µm. However, in the crossed hatching regime (CHR) the laser 

was scanned over the surface in two directions (X and Y) to form a grid pattern (Figure 

4.15 (a) to (g)). The hatch distance was varied in the same fashion as for the HLSR and 

was maintained in both X and Y directions. For the HLSR and CHR the total number of 

pulses fired onto each target surface was calculated to be 2500 and 5000, respectively. 

The surface morphology of the samples was examined by scanning electron microscopy 

(SEM). Irradiation of the material in CHR resulted in the formation of structures shown 

in Figure 4.15.  Here the total number of pulses applied to each area was 5000. It is in 

contrast to the HLSR where only 2500 pulses were applied to each area. As it can be 

seen from Figure 4.15 (c) to (g), highly organized structures have been formed. Despite 

the large number of pulses applied, the heights of the structures from Figure 4.15(d) 

onward are always equal to the ablated layer thickness. Here the distance between the 

consequent scans were increased from 30µm (Figure 4.15 (c)) to 70µm (Figure 4.15 

(g)), in steps of 10µm, in both X and Y directions.  As it can be seen from the Figure 

4.15 (a) and (b), increasing the overlap between the scanned lines, once again resulted 

in the severe oblation of the material. No well-defined structures have been formed in 

these cases. 
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Figure 4.14 shows the results of the HLSR. 

Comparing (a) and (g), it is evident that 

increasing the hatch distance between the 

consequent lines, from 10µµµµm to 70µµµµm, resulted 

in much lower ablation. (e), (f) and (g) represent 

the situation were there were no overlaps 

between the scanned lines. In these pictures 

ablation of the material in the scanned path can 

be clearly seen. 
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Figure 4.15 The results of processing in the 

cross hatched regime. As with the HLSR 

surfaces,  above hatch distances of 20µm, the 

period of structures correlates to the hatch 

distance. Voids at the centre of structures in F & 

G are because no overlap occurs between scan 

lines in either direction. 
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It is believed that the driving force behind the material removal is the pressure of the 

expanding ablation products, which are produced at the centre of the laser beam. Owing 

to the high intensity and good beam quality of the source, ablation occurs at the centre 

of the laser beam, which is above the ablation threshold of the material.  At the edges of 

the beam, melting occurs. Interaction of the melt with the pressure in the near-surface 

plasma layer results in hydrodynamic instabilities of the melt.  As can be seen in Figure 

4.14(e), (f) and (g) some structures have been formed at the edge of the beam. These 

structures can also be observed in Figure 4.14(c) and (d) were the distances between the 

consequent lines are 30 and 40µm. For high level of overlap between the lines, Figure 

4.14 (a) and (b), only severe ablation of the materials occurs with the consequence of no 

defined structure. It is considered that for the plasma produced during our high intensity 

nanosecond pulse laser irradiation (intensity in the order of ~10
9
W/cm

2 
and τ=7ns) 

deposition of laser energy is nonlocal and occurs below the critical electron density of 

Nc~9.7×10
20

cm
-3

 (The critical electron density is taken equal to 1.1×10
21

/λl
2
 cm

-3
, where 

λl is the laser wavelength in microns [92]). The absorption of the laser radiation occurs 

via inverse bremsstrahlung. The duration of the ablation can be considered to be close to 

the duration of the laser pulse. The heat diffusion length, lT∼2(Dτ)
1/2 

[93], where D is 

the heat diffusivity (D=0.04) and τ is the laser beam dwell time (τ=7ns), was calculated 

to be approximately equal to 33µm. This value is smaller that the laser spot diameter on 

the target (φ~50µm), and hence the lateral heat flow can be substantially confined [48, 

92]. It is worth mentioning that the nonlocalized absorption of the radiation results in 

the heat transport to the target and hence makes accurate energy deposition difficult. It 

is known that in the absence of definite polarisation of the laser beam and spatial 

modulation of the radiation intensity (in this case achieved owing to the good beam 



4. Laser Generation of Surfaces Structures 

80 

quality of the source) melt instability in the field of ablation plume pressure results in 

the growth of large-scale surface structures with a characteristic period of ~20-30µm 

[94]. In the range of irradiation parameters here (intensity in the range of ~10
9
W/cm

2
, or 

in general intensities in the range of 10
8
-10

10
W/cm

2
, and pulse durations in the range of 

<10ns), formation of these structures is due to a spatial modulation of the pressure in the 

near-surface plasma layer, followed by melt outflow from pits to humps and subsequent 

solidification. In our experiments, the large depth of field maintained a high irradiance 

owing to the good beam quality of the laser. Development of the instability requires that 

large number of
 
pulses are fired onto the target.  

 

4.3.5 Production of angled structures on stainless steel 

 Both of the lasers used for these experiments used a computer controlled system to 

direct the laser beam to a desired point on the target. Obviously, this means that the 

beam is not delivered at an angle normal to the target anywhere except directly below  

the lens. It was noticed that when a sample was processed in a position which was at the 

extremity of the available scan area, the structures that were formed were inclined 

 
Figure 4.16 Schematic of experimental arrangement to show the change in shape and area of focal 

spot size as a target sample is tilted by angle θθθθ. 
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towards the direction of the incoming beam. This phenomena has also been observed by 

others working on this process [17]. Unfortunately, although this effect has been 

reported, a systematic study has not been carried out. 

It was calculated that the Rayleigh range and depth of focus of the laser system being 

used would be sufficient that the same type of processing that has been discussed 

previously could take place while the target was at an angle. Figure 4.17a-c  show laser 

processing performed in exactly the same manner as seen previously, however the 

sample was inclined to angles of 15, 30 and 45 degrees, effectively changing the 

incident angle of the laser beam. This arrangement can be seen in Figure 4.16. It can 

still be seen that the alignment of the surface structures agrees well with the incident 

beam angle.  

Applying the methodology of scanning the laser over the surface in a grid pattern 

allowed the structures that can be seen in Figure 4.18a-c to be developed. It was found 

that the most regular structures are produced when the hatch distance is larger than the 

laser spot size. One reason for this is that the melt flow can cause unwanted ridges and 

other anomalous structures when the hatch distance is smaller.  
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Figure 4.17 Angled Microstructures on stainless steel produced using the line scanning method. 

Left to right, samples tilted by 15, 30 and 45 degrees. Scale Bars 50µm 
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Figure 4.18 Angled Microstructures on stainless steel produced using the cross hatching method. 

Left to right, samples tilted by 15, 30 and 45 degrees. In all cases the hatch distance is 70µm. Scale 

Bars 50µm 
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As the target surface is tilted to produce these angles structures, the effective fluence at 

the surface changes with the tilt angle. As this processing is being carried out within the 

Rayleigh range of the optical system, It is convenient to treat the area around the focal 

point of the optical system as a cylinder. With this in mind, if the target plane is 

intersecting this cylinder then the focal spot will be either circular or elliptical. The 

change in the radius of the ellipse which is projected onto the plane of the target surface 

as the angle of tilt changes can be described as: 

θωω cos0=e  4.3 

Where ω0 has its normal meaning and ωe designates the half length of the variable axis 

of the ellipse. The area of an ellipse can be calculated by Ae=πab where a and b are the 

half lengths of the major and minor axis of the ellipse respectively. If we describe this in 

more familiar terms,  

eeA ωπω0=  4.4 

  

From here the equation for the fluence of a Gaussian beam shown in chapter three can 

be modified to: 

e

P
e

E
F

ωπω0

2
=  4.5 
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At normal incidence, with a fluence of 2 Jcm
-2

, the relationship in equation 5.5 results in 

the graph shown in Figure 4.19. In this case only three tilt angles were studied and the 

specific fluences at these angles can be seen in Table 4-2 

 

Figure 4.19 Angular dependence of focal spot fluence for target tilt angles between 0 and 90 

degrees. 

 

Tilt Angle / Degrees Fe / Jcm
-2 

2ωe / µm 

0 2.00 55.00 

15 1.93 56.95 

30 1.73 63.56 

45 1.42 77.90  
Table 4-2. The calculated change of Fluence and elliptical spot size depending on target tilt angle. 

The effect of this change in fluence can be seen in the topography of the features 

produced. Figure 4.18 shows structures produced by only changing the angle by which 

the target is tilted. If the structures are compared to those which were produced when 

changing the distance between scan lines (Figure 4.15) it can be seen that as the tilt 

angle increases, the structures begin to show features which would be associated with 

structures produced at larger hatch distances.  This difference is especially apparent 

between samples tilted at 30 and 45 degrees in Figure 4.18. There are voids present in 
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the tops of structures of Figure 4.18. This is because the effective fluence is lower and 

the energy required to fully melt form these structures by melt flow is no longer 

available due to the increased spot size.  
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4.4 Laser Micro-topography Modification using Spectraphysics 

YHP40 

4.4.1 The Effect of pulse duration on microstructure formation 

Moving on from laser processing using the Nd:YVO4 laser discussed previously, a  

Spectra-Physics YHP40-532Q Diode Pumped Solid State (DPSS) laser was used. This 

laser has a maximum output power of 15W at 1064nm, repetition rate of 30kHz and a 

pulse duration of 40ns. It is also worth noting that this laser has the option of output 

wavelengths of 532 and 355nm with the use of frequency doubling and tripling crystals. 

However, they were not used in this case. 

 

The main difference between this laser and the marking laser used previously is the 

pulse duration. In comparison to the relatively short 7ns pulses produced by the Violino 

system, the 40ns pulse duration of the Spectra-Physics system changes the way in which 

the target surface is heated. In this case the pulse duration is over four times longer. 

However, the repetition rate of the two lasers are the same.  

 

The similarities of these two lasers lend themselves well to experiments which make a 

direct comparison of the effect of pulse duration in the nanosecond regime. For this 

reason initial parameters for laser processing were set to be approximately equal to 

those which had produced the desired results with the Violino system.  

 

The SEM images below (Figure 4.20) show the surfaces which were formed when the 

output of the laser was focused to a ~20µm spot. The hatch distance was set equal to the  
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A  B  

C  D  

E  F  

G  H  

Figure 4.20. SEM images of Stainless steel targets processed using the Nd:YAG Laser. Fluence is 

varied from 53 Jcm
-2

 (a) to 15 Jcm
-2

 (h) in increments of 5 Jcm
-2

.  
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spot size and the scan speed was set at 10 mm/s. The average laser power was increased 

incrementally from ~15.9 Jcm
-2

 to 53 Jcm
-2

.  The increment was 5.31 Jcm
-2

. 

Top to bottom the average laser power is being reduced. It is not until fluences of less 

that ~5 Jcm
-2

 that anything like recognisable, individual structures begin to form. At 

powers above this, there is a large amount of oxidisation caused by too much power 

interacting with the target. Effectively boiling and burning takes place. 

The results which are discussed here represent the best results which were found using 

the Spectra-Physics laser. However, there were a number of problems with respect to 

producing structures that we have previously discussed using this laser system. The first 

is that although many efforts were made to produce structures, it was always the case 

that, with the set-up used, any trenches on the surface were only deepened by multiple 

passes and structures did not form.  Another problem was the stage which was used to 

manipulate the target. At the speeds that were of interest, what can only be described as 

a ‘wobble’ of ~10-15µm was encountered. This is of the same magnitude as the feature 

size of the structures and definitely did not help during the experiments. If time allows, 

this section of work will be returned to, and hopefully better results obtained as to the 

actual effect of increased pulse duration. 
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4.5 Laser Processing using Coherent Libra Femtosecond Amplifier 

Up to now, the lasers which have been discussed have been nanosecond pulsed lasers. 

These systems have pulse durations which span in the region of 1 to 100x10
-9 

seconds. 

Femtosecond (fs) systems, as the name would imply, have considerably shorter pulse 

duration, usually in the region of 100 fs (100x10
-15

 seconds). Femtosecond lasers have 

been causing quite a stir in the laser processing community in recent years. The reason 

for this is the way in which light emitted by these devices interacts with a target 

material. Due to there short pulse durations, even at average powers as low as 1W, 

intensities in the GW regime can be produced at a focal point. This combination of 

pulse duration and intensity has very interesting results when materials processing is the 

desired use. During ns laser ablation, there is enough time during the pulse for energy to 

be transferred to the atoms surrounding those being directly affected by the incident 

laser beam. In the case of fs laser ablation, this is not the case. During fs laser ablation 

there is no time for the energy from the incident laser beam to be transferred to the 

lattice. The product of this is that ablation can occur at much lower average powers and 

there is little or no heat affected zone surrounding laser processed areas. 

The Coherent Libra system is based upon a Ti:Sapphire laser. Ti:Sapphire 

lasers are tuneable lasers which emit red and near-infrared light in the range from 650 to 

1100 nm. Ti:Sapphire refers to the lasing medium, a crystal of Sapphire (Al2O3) that is 

doped with Titanium Ions (Ti
3+

). A Ti:Sapphire laser is usually pumped with another 

laser with a wavelength in the green part of the spectrum. In the case of the Libra 

system, this is a Coherent Evolution laser. Based on a frequency doubled Nd:YLF laser 

operating at 527 nm. Ti:Sapphire lasers operate most efficiently at wavelengths near 

800 nm. The system arrangement of this laser can be seen in Figure 4.21 
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The Libra is designed to amplify very short single pulses typically a few nano-joules to 

over 1mJ of pulse energy and a pulse duration of ~100 femtoseconds. The very short 

pulses are initially stretched and amplification takes place as the optical pulses passes 

through a Ti:Sapphire rod which has been optically excited by a laser pulse from the 

Evolution laser. Normally, amplification in the rod is small but a regenerative amplifier 

allows multiple  

 

Figure 4.22. Schematic of the Stretcher/Compressor module shown in Figure 4.21. Ultrashort 

pulses are achieved using this chirped pulse amplification method in the Coherent Libra System. 

 

Figure 4.21 Overview of Coherent Libra Ti:Sapphire femtosecond laser system. Two lasers, the 

Vitesse and Evolution provide the source and pump beams respectively. The regenerative amplifier 

and stricter compressor then manipulate these outputs into femtosecond output.  
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passes through the rod resulting in a power gain of ~10
6

. Following amplification the 

pulses are recompressed to a pulse duration on the femtosecond time scale. This process 

of pulse compression can be seen in Figure 4.22.     

 

4.5.1 Damage Thresholds of AISI 304 Stainless Steel under Femtosecond 

Irradiation 

Femtosecond laser ablation has a somewhat different mechanism to ablation performed 

using nanosecond pulsed lasers. When nanosecond lasers interact with a metal surface, 

energy is delivered at low enough rates that it is possible for energy to be transferred to 

surrounding material by lattice vibrations. Only when a volume of material is saturated 

with energy does ablation occur. When ultrashort (femtosecond) laser pulses interact 

with a material, the majority of the pulse energy is absorbed by the electrons with which 

they interact directly. Having such short pulse duration also means that the intensity of 

ultrashort pulses is several orders of magnitude higher than during nanosecond pulses. 

This short pulse duration, coupled with high intensities means that the material that 

laser light interacts with directly is ablated before energy can be transferred to the 

surrounding material. This mechanism gives ablation using fs lasers a much smaller 

heat affected zone and considerably less melting occurs in the area surrounding the 

interaction zone. 

All samples used in this experiment were AISI 304 stainless steel which was ground 

and polished to a roughness of 25 nm using progressively finer polishing paper from 

400 – 1200 grit. Samples were then polished using 1µm diamond paste. The final 
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roughness was evaluated using white light interferometry. The samples were mounted 

in the focal plane of a single, f = 50 mm, lens. This arrangement resulted in a damaged 

area ranging in diameter between 150µm and 20 µm, depending on laser power. The 

laser used was the Coherent Ti:Sapphire femtosecond laser system (PA= 1 W, v=1kHz, 

t=100 fs). To calculate the damage threshold using the Beer-Lambert relationship [51], 

trains of 1, 5, 10 and 20 pulses were fired at the surface at a repetition rate of ~1Hz and 

at fluences ranging from 13.2 – 0.05 Jcm
-2

 at 800nm and 1.65 – 0.01 Jcm
-2

 at 400nm. 

The output power of the laser was controlled using combinations of neutral density 

filters to attenuate the beam. The depths of the craters produced by these interactions 

were then measured using white light interferometry and the rate of ablation calculated 

for each laser fluence. The etch rate graph plotted in Figure 4.23 shows the ablation 

depth per pulse at the various laser fluences and wavelengths used. Incubation and 

ablation threshold fluence values for AISI304 stainless steel are given by the 

intersection of trend lines with the x - axis. Table 4-3 gives the numeric values of these 

threshold fluences. 

Wavelength / nm Incubation 

Threshold / Jcm
-2

 

Ablation 

Threshold / Jcm
-2

 

400 0.005 0.077 

800 0.013 0.342  
Table 4-3 Numerical values of ablation and incubation threshold fluences for femtosecond pulses of 

800 and 400 nm wavelengths. 

Apart from large scale ablation, resulting in drill holes, which would be expected at 

higher fluence values, smaller scale structures are also present in the surface areas 

which interact with the laser beam. Target sites which were subjected to fluences which 

fall between the incubation and ablation threshold show both micron scale and sub-

wavelength structure.  
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Figure 4.23 Ablation depth per pulse relationship for AISI 304 Stainless steel during femtosecond 

ablation at 40 and 800 nm. 

 

4.5.2 Microstructure Production using Femtosecond Lasers 

There are several simple experiments which were undertaken to find how structures 

produced with the fs system differed from those produced with ns systems. This first of 

these was to fire multiple laser pulses at a single spot on the target surface for various 

periods of time. Effectively, this allowed an investigation of the development of 

structures in a single spot over time. This was done by  focusing the raw beam to a 

~90µm diameter spot, using a 50 mm focal length singlet lens, at a fluence of ~9.5Jcm
-2

. 

The laser was then turned on and allowed to dwell for 0.047, 0.096 and 0.141 seconds. 

It being difficult to fully control or calculate the speed of the laser shutter, these values 

were chosen so that approximately, 50, 100 and 150 pulses would be delivered.  Typical 

results of this experiment can be seen in Figure 4.24.             
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A  B  

C  

 

 

 

Figure 4.24. Stainless steel targets after ~50, 100 

and 150 pulses have been fired a) to c) 

respectively. Both microstructure and 

nanostructure are present within the laser spot 

diameter. 

 

 

In the next section it will be seen that structure can be formed after single pulse ablation 

of a surface. These images show the development of a surface as larger numbers of 

pulses are fired at a fluence that is well above the threshold needed.  The most obvious 

difference between these results and those which would be found with ns laser systems 

is the amount of structure which is present within the machined laser spot. Where a hole 

approximately the size of the laser spot would be present in ns processing, we find that 

regular structure is formed.  Even though some aberration is present in the optical 

arrangement the structures present have a ring geometry that can be explained by 

diffraction in an Airy pattern [32] which is diffraction by a circular aperture. In this 

case, the circular aperture occurs before the laser interacts with the target. The aperture 

associated with the focusing lens is the most likely. It can also be seen that although 

there is a small amount of melt flow present, the majority of the structures were formed 

by an ablative process. This would mean that any structures produced by this method 

should vary greatly in comparison to those produced by ns lasers. 
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The second experiment, working with the same laser parameters was used to investigate 

the effect of laser scan speed. The laser was scanned over the target surface at 1, 2, 3 

and 4mm/s and in each case four passes were made. A hatch distance equal to that of the 

laser spot size, 90µm was used.  

 

The structures which resulted from this experiment can be seen in Figure 4.25 to Figure 

4.28. Each figure, shows how the scan speed affects that structure formed. The Figure 

4.25 is after one pass of the laser over the surface. Figure 4.28 shows the target surface 

after four passes. If we first discuss the effect of scanning speed, it is understandable 

that a lower scanning speed will allow more processing to take place. This is because a 

larger number of pulses interact with the target surface in a given period of time. For 

each pass, the number of pulses fired per spot in relation to the scanning speed is given 

in Table 4-4. 

Scanning Speed / mm/s Pulses per spot 

1 90 

2 45 

3 30 

4 22.5  
Table 4-4. Relationship between scanning speed and pulse number for a 90µm laser spot. 

 

The surface structures which are produced after one laser processing pass at the four 

speeds mentioned can be seen in Figure 4.25. These images show that as the processing 

speed increases, thus lowering the number of applied pulses, less removal of surface 

material takes place. This is an understandable consequence. However these images also 

show that the formation of surface microstructures depends on multiple pulses being 

applied to the surface. The linear nature of the structures can be attributed to the 

movement of the target during processing. This is especially noticeable in Figure 4.25a 
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which has received the largest number of pulses. As indicated by Figure 4.24c, the 

deeper central ablated region has been extruded to form a channel.  

A  B  

C  D  

Figure 4.25. Structures produced after 1 pass at scan speeds of 1,2,3 and 4 mm/s. These can be seen 

in a) to d) respectively. 

 

If a comparison is drawn between these structures and those due to laser processing in a 

similar manner using ns laser pulses there are two significant differences. The first of 

these is a lack of re-solidified molten material. As mentioned previously, the ultrashort 

pulses from femtosecond lasers do not allow time for energy to flow by thermal 

conduction to the surrounding material. This drastically reduces the volume of material 

which is molten and available to flow about the surface. Secondly, although 

microstructures are immediately obvious features, sub-wavelength structures also cover 

the majority of the surface. These features will be discussed separately in the next 

section.  
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Returning to the microstructure observed, the images in the next three figures (Figure 

4.26, Figure 4.27 and Figure 4.28) show the evolution of surfaces as increasing numbers 

of passes are made over surfaces such as those seen in Figure 4.25. 

A  B  

C  D  

Figure 4.26. Structures produced after 2 passes at scan speeds of 1,2,3 and 4 mm/s. These can be 

seen in a) to d) respectively. 

 

Although there are two variables to consider with these four sets of images (Figure 4.25 

to Figure 4.28) it is possible to see trends appearing in the structures formed. It is 

thought that features present in Figure 4.25a and Figure 4.28d are extremely similar. 

This is explained by the condition that the same number of pulses have been applied to 

each surface. The difference in features at the beginning of the laser path can be 

explained by the dwelling of the laser beam as the mechanical stage decelerates and 

moves to the next scan line, causing larger numbers of pulses to begin drilling holes in 

the surface. As is the case in ns processing, multiple passes tend to accentuate the 

features which are formed during the first pass. This progression can be seen in the 
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A  B  

C  D  

Figure 4.27. Structures produced after 3 passes at scan speeds of 1,2,3 and 4 mm/s. These can be 

seen in a) to d) respectively. 

 

A  B  

C  D  

Figure 4.28. Structures produced after 4 passes at scan speeds of 1,2,3 and 4 mm/s. These can be 

seen in a) to d) respectively. 
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above figures. It can be seen from inspection that structures produced at higher scanning 

speeds have a finer microstructure.  
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4.5.3 Production of Sub-Wavelength Structures using Femtosecond Lasers 

Further investigations into the formation of sub-wavelength structures revealed that it is 

possible to use the well known bell shape intensity distribution of a Gaussian beam to 

our advantage. A known threshold of both damage and ablation means that as overall 

power is reduced, the effective area of the laser spot decreases. This means that at 

fluences between the incubation and ablation threshold it is possible to treat the laser 

beam as a flat top because only the central region of the beam is of a high enough 

intensity to modify the surface. This effect can be seen in Figure 4.29.  

A 

 

B 

 

Figure 4.29 The effect of femtosecond laser processing after ten pulses at fluences of 4.06Jcm
-2

 (a) 

and 0.09Jcm
-2

 (b) 

Here the processing of the two sites differed only in the fluence being used. Figure 

4.29a, processed with a fluence of ~4Jcm
-2

, shows the three different types of damage 

which occur. Beginning at the centre of the damaged area it can be seen that ablation 

takes place, moving outwards, the microstructures which have been discussed 

previously are beginning to form. As the periphery of the damaged area is reached, the 

intensity of laser light will be much lower. At these low powers, the dominant features 

are sub-wavelength laser induced periodic surface structures (LIPSS). Figure 4.29b 
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shows an area treated with ten laser pulses were at a fluence of 0.09 Jcm
-2

, just over the 

incubation threshold. This area is shown at higher magnification in Figure 4.30.  

 

Figure 4.30 Example of laser induced periodic surface structures (LIPSS) produced using an 

800nm femtosecond laser at an average power of 8mW and twenty applied pulses. 

White light interferometry measurements of the surface shown in Figure 4.29b can be 

seen in Figure 4.31. A crater with a maximum depth of 200nm is produced after 10 

pulses, with wavelength 800nm.  A closer look at this area using scanning electron 

microscopy revealed that the damaged area is covered in LIPSS with a mean period of 

589±42 nm. As can be seen by Figure 4.32, the mean period of LIPSS occurring at 

800nm can be considered independent of the laser fluence used, suggesting that it is 

indeed caused by interference effects as suggested. 

 

Figure 4.31 Profile of ablation crater obtained using white light interferometry 
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Figure 4.32. Mean period of LIPSS generated using 800nm femtosecond light. 

With the aid of a BBO crystal, allowing 800nm radiation to be frequency doubled the 

same experiment was performed at 400nm. At this wavelength, due to increased photon 

energy, a lower fluence is required. In this case it was found that a fluence of only 

0.13Jcm
-2

 was required. It was found that the average period of the LIPSS formed by 

400nm light was 282±21 nm.  

 

4.5.4 Sub-wavelength features over large areas. 

At this point, all LIPSS areas had been produced while the target was stationary. 

Translating the target perpendicular to the polarisation direction of the laser beam 

allows LIPSS structures, formed in a single spot, to be extruded into more linear 

features. 

Figure 4.33 shows an example of the types of structures which were formed using 100fs 

pulses at a wavelength of 800nm and a processing speed of 1mm/s. A fluence of 
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0.022Jcm
-2

 was used. The area that can be seen in the micrograph shows approximately 

the area of a single laser spot. As can be seen, the features which are present have a 

regular structure and a period of ~610nm. This period is in keeping with the period 

found during stationary processing. 

Working at the shorter, 400nm, wavelength in the same manner allowed the structures 

seen in Figure 4.34 to be produced. Although these structures are formed by the same 

mechanism of those seen in Figure 4.33 the period is much shorter, ~295nm. This is due 

to the change of laser wavelength.  

 

Figure 4.33 Laser induced periodic surface structures formed by translating a stainless steel sample 

with a speed of 1mm/s at a fluence of 0.022 Jcm
-2
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Figure 4.34 Laser induced periodic surface structures formed at 1mm/s and a fluence of 0.001Jcm
-2

. 

Structure period is found to be ~295nm 

It was found that varying the scanning speed and number of passes had very little effect 

on the arrangement of structure formation.   

To develop the types of structure that can be formed using this method, it was decided 

to investigate the formation of LIPSS by rotating the sample by 90° between processes. 

This has the effect of rotating the polarisation of the incident laser beam relative to the 

sample. This experiment was performed at a wavelength of 800 nm using the same 

parameters as those used to form the structure in Figure 4.33. These results can be seen 

in Figure 4.35. 
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Figure 4.35. Laser induced periodic surface structures formed by the superposition of two 

processing passes. Importantly, during the second pass, initial structures are not destroyed at the 

edges of the beam path. 

It is noted from this image that the LIPSS formed in a horizontal direction on the image 

were formed during the first processing pass. During the second pass the structures 

running in the vertical direction were formed. As is plainly obvious, the second 

processing pass destroyed the LIPSS which were formed initially, only at the edge of 

the beam path is there a superposition of structures. Here two sets of periodic ripples 

combine to produce sub-wavelength bumps with a spacing of approximately 600nm. 

This would suggest that, given the Gaussian intensity distribution of the processing 

beam that a lower intensity is required to form these bumps, that LIPSS formed during 

the first processing pass enhance the absorption of incident pulses during the second 

pass.  

 



4. Laser Generation of Surfaces Structures 

107 

4.6 Surface Structure Formation Mechanisms 

In this chapter it has been shown that the types of surface structure which can be formed 

on metals, specifically stainless steel, using lasers are diverse. To better understand the 

mechanics of microstructure formation, it is important to know the temperature changes 

involved during laser processing.  This is done with the assistance of a one dimensional 

heat flow model. This model allows a theoretical peak temperature to be obtained and 

gives some indication of the timescales involved in heating and cooling.  

 

4.6.1 One dimensional heat flow model 

Assuming that the heat flows in only one direction and there is no convection or heat 

generation the basic heat equation becomes:  

∂2
T

∂z
2

=
1

D

∂T

∂t
 4.6 

Where T is the temperature, z is the depth, t is the time and D is the thermal diffusivity. 

If it is assumed that there is a constant extended surface heat input and constant thermal 

properties, with no radiant heat loss. Then the solution taken from Steen [11] is: 

T(z,t) =
2I

k
Dt ⋅ ierfc

z

2 Dt

 

 
 

 

 
 

 

 
 

 

 
  4.7 

Where I is the intensity and k is the thermal conductivity. The ierfc function is called 

the “integral of complimentary error function” and is derived from a mathematical 
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polynomial [95]. However taking into account any losses due to reflectivity, R of the 

metal surface equation 4.8 becomes: 

T(z,t) =
2I(1− R)

k
Dt ⋅ ierfc

z

2 Dt

 

 
 

 

 
 

 

 
 

 

 
  4.8 

To include cooling of the material after the laser pulse, the integration in Equation 4.8 is 

extended beyond the pulse duration. Consider the uniform surface like previously then 

the material will cool according to the relationship [11]. 

T(z,t) =
2I(1− R)

k
Dt ⋅ ierfc

z

2 Dt

 

 
 

 

 
 − D(t − τ) ⋅ ierfc

z

2 D(t − τ)

 

 
 

 

 
 

 

 
 

 

 
  4.9 

Using these equations a basic understanding of the laser interaction with stainless steel 

can be formed. Using the values shown in Table 4-5 as input variables, the plots of 

temperature vs. time after the firing of a laser pulse can be seen in Figure 2.1. The 

values of fluence and pulse duration are those used in previously discussed experiments.  

 532nm 1064nm 

Thermal Conductivity (W/mK) 13.8 13.8 

Thermal Diffusivity (m
2
/s) 0.4x10

-5 
0.4x10

-5 

Fluence (J/cm
2
) 2.63 4.32 

Pulse Duration (ns) 7 7 

% Reflectivity 38 46 
 
Table 4-5. Input variables used in the calculation of surface temperature change using a one 

dimensional heat flow model [96]  
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Values at 532nm relate to topographical structures shown in Section 4.2.2 and values at 

1064nm relate to structures discussed in Sections 4.3.3 to 4.3.5. 

0 20 40 60 80 100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
T

e
m

p
e
ra

tu
re

 (
K

)

Time (ns)

 532nm

 1064nm

 

Figure 4.36.  Change of surface temperature with time of stainless steel surfaces subjected to 7ns 

pulses of laser radiation at 532 and 1064nm   

Figure 4.36 is quite revealing of the temperature changes which take place during 

processing and their timescales. Considering processing at 532nm, the peak temperature 

reached is calculated to be 3,460 K, this is over the boiling point of stainless steel. In 

addition to this, the surface only stays at that temperature for a short period of time, 

returning to a temperature below the melting point of 1783 K within 4ns of the end of 

the laser pulse. With a repetition rate of 30kHz, the time between laser pulses is three 

orders of magnitude longer than this period of heating and cooling. Now considering a 

wavelength of 1064nm the peak temperature reached is calculated to be 4,833 K and a 

further 12ns are taken for the surface temperature to return below the melting point. 

This is a reasonable value as a higher fluence is used. 
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Both of these theoretical results fit well with observed structures and formation theories. 

At both wavelengths, it is found that the temperature peaks above the boiling point of 

the metal for a short time. During this time, due to the irradiance profile of the beam 

used, small amounts of molten materials will flow towards the cooler edges of the beam 

path. At a repetition rate of 30kHz, the cumulative effects of these pulses will begin to 

form regular structures.  

Experimental observations of processing at 1064nm confirm this. It has been shown that 

higher fluences increase the peak temperature reached and that the time taken for a 

surface to re-solidify is almost three times longer. Higher temperatures mean more 

material on the surface will be molten and the extended period of time the material is 

molten accounts for the more abundant melt flow that occurs while processing at 

1064nm. 

 

4.7  Conclusions 

It has been shown that the topographical structures which can be produced by self 

assembled methods of laser processing are diverse. The formation of microstructures 

using nanosecond lasers has been shown to be dependant on various factors.  Laser 

fluence is possibly the most important of these. In this case, rather than using a laser for 

the complete removal of material a novel process has been shown that relies on the 

partial removal of the metal surface and more importantly the movement of molten. A 

one dimensional heat flow model has shown that fluences slightly above the threshold 

fluence of the metal allow the temperature of stainless steel surfaces are taken to 
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roughly 500 - 1000 K above the boiling point of the material. For brief periods of time 

(5 – 20ns) after the laser pulse has stopped, the surface of the material is still molten. 

During this time instabilities in the molten material allow the movement of material to 

the cooler edges of the beam path. This movement is fuelled by the expansion of 

ablation products at the high intensity central region of the laser beam. Owing to the 

high repetition rate of the laser, the formation of self assembled micro scale structures 

occurs over a period of time where large numbers of pulses are applied, each pulse 

contributing to the formation of structures which have approximately the same height as 

their period.  

It has also been shown that the distance between scanning paths has a great affect on 

structure formation. When there is a large overlap between consecutive scans, the 

structures shown in section 4.2 are typical. There is very little control over the exact 

positioning of these structures. In section 4.3 the advantages of processing with a larger 

hatch distance become apparent. Obviously, increasing the distance between scan lines 

means that the processing time for a set area will decrease. Additionally, using a hatch 

distance above 50% of the laser spot size allows topography with a period equal to the 

spot size to be formed. Further developments of this technique have shown that 

scanning with two interlaced patterns orientated perpendicular to each other allows even 

higher control of the feature size and position.  

Previous to this work the orientation of self assembled microstructures towards the 

incident angle of a laser beam other than normal to the surface had only been mentioned 

briefly in literature [17]. It has been shown in section 4.3.5 that there is a very good 



4. Laser Generation of Surfaces Structures 

112 

correlation between the angle of surface structure formation and the incident beam 

angle. 

Experiments using femtosecond lasers have shown this technology as particularly useful 

for the production of sub-wavelength structures. Owing to the high intensity and 

ultrashort pulse duration of femtosecond laser systems it has been shown that it is 

relatively simple to produce surface structures of approximately 600 and 280 nm with 

800 and 400nm laser light. Development of this technique has been shown to allow the 

coverage of large areas with these laser induced periodic surface structures. This is 

achieved by translating the target surface in a direction perpendicular to the polarisation 

of the laser. 
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5 MODIFICATION OF WETTABILITY 

In Chapter 4, topographies produced by laser modification of stainless steel surfaces 

were discussed. This chapter is intended to illustrate one of the applications of such 

surfaces, namely their effect on the contact angle of water droplets deposited onto the 

surfaces. 

In recent times, there has been an increased interest in the fabrication of surfaces with 

very high contact angles. These so called super-hydrophobic surfaces have a contact 

angle higher that 150°. A natural example of a super-hydrophobic surface is the leaf of 

the lotus plant [4] commonly found in many parts of the world. The ultimate goal of this 

work is to produce super-hydrophobic surfaces on metals. Initially, stainless steel is the 

target substrate, however in some cases, other metals including copper and titanium 

have been studied. The effects of several laser variables were of interest during the 

course of the experiments which are described in Chapter 4. The same variables are of 

interest now, however it is the effect on the contact angle rather than the resultant 

topography of the surface which is now the focus of our attention.  

 

5.1 Contact Angles and Wettability 

The wettability of a surface is a measure of how easily a liquid can spread out on a solid 

substrate. The wettability of a surface is usually discussed in conjunction with the 

contact angle of a liquid-vapour interface when it is in contact with a solid surface. 

When a liquid droplet (usually water) is formed on a surface, it is natural for the liquid 

to adopt a form that will minimise the interfacial energy at the points where it contacts 

both the surface and the surrounding atmosphere. This effect is especially important in 
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an environment of air. In this case, the droplet will form a bead on the surface, with the 

edges of the bead making a contact angle, θ, with the surface. 

Essentially, there are three regimes into which a droplet resting on a solid surface can 

fall. These regimes (Figure 5.1) are dictated by the contact angle which the droplet 

forms with the surface and are a measure of the surfaces wettability.  

 

Figure 5.1. Three regimes of contact angles when a droplet is formed on a surface. 

Beginning with low contact angles (high wettability), the first type of surface is a 

hydrophilic one. In these cases the contact angle is below 90°. Increasing the contact 

angle (decreasing the wettability), leads to a hydrophobic state. Here the contact angle is 

above 90°. Decreasing the wettability further brings us to the most interesting state, the 

case of a super-hydrophobic surface. Here the contact angle is greater than 150°. The 

reason for a heightened interest in super-hydrophobic surfaces is the bead shape which 

the droplet adopts. This is done to minimize energy, but it has other implications such as 

increasing the mobility of the droplet over the surface and allowing surface cleaning to 

occur as the droplet moves around.  

The first major investigations into the concept of wettability were conducted by Thomas 

Young, as early as 1805 [97]. The resultant equation from his work can be seen in (5.1).  
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Figure 5.2. Interfacial forces acting on a liquid droplet at rest on a surface. 

Where S

yθ is the Young’s angle and γ is the interfacial tension at the solid-vapour, solid-

liquid and liquid-vapour interfaces (Figure 5.2). The contact angle that a liquid droplet 

makes with a flat surface is dictated by the free energy of the surface. As a general rule 

when water is involved, the lower the surface energy, the higher the contact angle. This 

is all due to the fact a liquid droplet will assume the form which requires the lowest 

amount of energy. Although this work is the foundation of modern theory, the resultant 

contact angles are calculated for a chemically homogeneous and perfectly smooth 

surface. While further work has been done on the contact angle of smooth, 

homogeneous surfaces [98-100], for most applications it is important to take the 

roughness and varying chemical composition of the surface into account.  
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5.1.1 Wetting on rough surfaces 

In actuality, the complications of roughness and surface composition were tackled 

independently of one another. It was Wenzel, who studied the effect of the surface 

roughness on the apparent contact angle [101]. The result of these investigations gave 

the relationship: 

S

YW θr=θ coscos  
5.2 

Where Wθ is the Wenzel contact angle and r is the surface roughness, defined as the 

ratio of the true surface area to the horizontal projection of the surface area. The 

implications of (5.2) are that when the value of r = 1 (smooth surface), a return is made 

to the Young’s angle. However when r > 1 two different types of behavior become 

apparent. In the first case, if S

Yθ < 90° (hydrophilic surface) then Wθ < S

Yθ  since r > 1. 

Secondly, if S

Yθ >90° it will be the case that Wθ > S

Yθ . The resultant property of surface 

roughness, in terms of its effect on contact angle, is that the underlying wetting 

properties of the surface are magnified by the roughening of the surface. 

During a closer inspection of Wenzels relationship for the case of a rough hydrophobic 

surface, it soon becomes clear that a droplet deposited onto a rough surface may not be 

able to follow all of the contours of that surface. In this case some air pockets will be 

trapped underneath the droplet, as can be seen schematically in Figure 5.3. This is not in 

keeping with the assumptions made in the derivation of Wenzels theory. However, the 

effect of a heterogeneous surface on water contact angle was studied elsewhere. 
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Figure 5.3. Water droplet at rest under the assumptions of Wenzel, left and Cassie and Baxter, 

right. 

The problem of a heterogeneous surface was tackled by Cassie and Baxter in the hope 

of improving the water repellency of textiles [102]. The basis for their model was when 

a surface is chemically heterogeneous. In this model, it was assumed that a surface was 

made of two species, each having differing contact angles, 1θ and 2θ , and having 

fractional surface areas 1f  and 2f . Where 1f + 2f =1. When the interfacial energy is 

minimized and the Young’s relation is applied, this leads to the Cassie-Baxter equation: 

2211 coscoscos θf+θf=θCB  
5.3 

Where CBθ  is the Cassie-Baxter contact angle.  

Although (5.3) can be used in any situation, there is a special case for this equation 

when a droplet is placed onto a rough surface in an air environment. In this case, the 

contact angle between the air and the water is 180 deg. This means that (5.3) reduced to: 

1coscos −f+θf=θ YCB  
5.4 
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As we have already seen, there are two main factors which contribute to the contact 

angle assumed by a droplet deposited onto a solid surface. The first of these is chemical 

homogeneity of the surface. In the case of a planar and chemically homogeneous 

surface, the Young’s relationship applies. If the surface becomes chemically 

heterogeneous but remains planar, or air bubbles are trapped below the droplet, the 

Cassie-Baxter relationship can be used. The second contributing factor is the roughness 

of the surface. In this case, the Wenzel relationship applies.  

Not surprisingly, since the work of Wenzel and Cassie and Baxter, there has been a 

large amount of work carried out to further understand the wetting of rough surfaces. 

Although the Wenzel and Cassie-Baxter models can both explain an increase in the 

contact angle of a surface, there are conditions under which the two theories do not 

agree. A discussion of this problem by Patankar et al [103] gives a clear appraisal of the 

different predictions of Wenzel and Cassie Baxter theories. These predictions can be 

seen in Figure 5.4. 

 

Figure 5.4. Comparison of contact angle values from the theoretical work of Wenzel (a) and Cassie-

Baxter Theories (b)  
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From Figure 5.4it can be seen that there are there are only three points on these 

competing plots where the theories agree. Wenzel's theory, as depicted in Figure 5.4a 

tells us that the equilibrium contact angle on a rough surface will be the an amplification 

of the contact angle of the same liquid on a flat surface, caused by the roughness ratio, r. 

Whereas Cassie and Baxter's theory tells us that during composite wetting, if more of 

the area underneath a droplet exposed to air that surface material then the contact angle 

will increase significantly. These discrepancies have been investigated independently 

and there is experimental evidence that both theories are correct under the correct 

conditions. Bico et al reported good agreement between the theory of Cassie-Baxter 

type wetting and their experiments [9]. In this case a number of different surfaces – 

spikes, holes and stripes – were fabricated from a silicon wafer substrate with a 

monolayer of flourosilane. This was done in order to induce Cassie-Baxter type wetting 

and contact angles of 170º were observed. It is interesting to note that if a droplet with a 

contact angle of 170º was pressed, it made a transition from Cassie-Baxter wetting to 

Wenzel wetting and its contact angle decreased to 130º, as predicted by theory. The 

transition of droplets sitting on a rough surface from Cassie-Baxter to Wenzel wetting 

has also been studied by Liu et al [104]. The comparison of Wenzel theory and 

experimental data was performed by Onda et al [105]. Their experiments found that 

Wenzel type wetting on fractal surfaces made from alkylketene dimer resulted in 

contact angles of up to 174º. In addition to this, it was found that the experimental 

results fitted with Wenzel’s theory. From this collection of work, it has been proposed 

that Wenzel’s formula be used when the equilibrium contact angle is in the hydrophilic 

(θ<90°) region and Cassie and Baxter’s formula be used in the hydrophobic (θ>90°).  
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5.1.2 Contact Angle Hysterisis 

Further development of this idea brings us to the concept of contact angle hysterisis. 

Although the sessile drop method is a good estimate of the overall wettability of a 

surface, it is not a true representation of how a moving droplet would behave. In this 

case the concept of hysterisis must be used. 

When a droplet is moving, it is usually because the surface is not flat. In Figure 5.5 it 

can be seen that although the liquid droplet is in contact with the same surface at the 

upper and lower sides of the droplet, the contact angle is different. On the lower side of 

the droplet, the advancing contact angle, θA, is higher than that of the receding contact 

angle, θR, on the upper side of the droplet. Due to the nature of the droplet, there will be 

an infinite number of contact angles at the different points along the liquid-solid 

interface. For this reason, the contact angle hysterisis, ∆θ, is given as: 

RA θθθ −=∆  5.5 

 

Figure 5.5. Advancing and receding contact angles of a liquid droplet on an inclined surface. 
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The hysterisis an change of contact angle as a function of the surface roughness was 

investigated by Johnson and Dettre [106]. The results of their work on the contact angle 

hysterisis on a roughened wax substrate can be see in Figure 5.6 

 

Figure 5.6. Advancing and receding contact angles on rough surfaces [106]. 

As can be seen in Figure 5.6, as the roughness increases, initially there is a dramatic rise 

in the contact angle hysterisis. As the roughness increases further, the contact angle 

hysterisis begins to decrease until an approximate equilibrium is reached. This means 

that the effect of increasing roughness on a hydrophobic surface is that not only is the 

contact angle increased, as predicted by Wenzel and Cassie-Baxter theory, but the 

hysterisis also decreases. This makes the surface more robust if it is desired to be super-

hydrophobic. 
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5.2 The Lotus Effect 

The self cleaning properties of most plant leaves are obvious and have probably 

developed as an evolutionary response to any number of factors such as disease or 

simply collection of sunlight for photosynthesis. The majority of leaves have a certain 

degree of hydrophobicity. This is usually due to the waxy or smooth surfaced of their 

leaves or petals. There are however, a number of plants whose leaves have super-

hydrophobic surfaces [107]. The lotus plant, Nelumbo Nucifera, is one of these such 

specimens. The term ‘lotus effect’ was first coined by Barthlott and Neinhuis [4] during 

their work on the self cleaning properties of various plant leaves. They found that the 

reason for the high water contact angle (~160°) on the lotus leaf was not due to a 

smooth surface, but actually a rough one. 

 

5.2.1 Physical Basis of the Lotus Effect 

As can be seen from Wenzel (eqn 5.2), the roughness of a surface amplifies the 

underlying wetting properties of the surface. It can be seen from Figure 5.7a that the 

surface of a lotus leaf is very rough. There are protrusions from the average surface, on 

which a water droplet rests. 
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A    B  

Figure 5.7 a) SEM image of the surface structure of a lotus leaf (right). b) Photograph of liquid 

droplets at rest on a lotus leaf (left)[108]. 

 

It was found during the studies of Barthlott and Neinhuis [4, 107] that lotus leaves have 

one of the highest contact angles 160.4 [4]. It is believed that this is because of the 

double scale structure that can be observed on the surface of a lotus leaf. In Figure 5.7a 

it can be seen that in addition to the relatively large micron scale features, there is a 

frosting of some white material. In actual fact the frost is made from wax crystals. 

These epicuticular wax crystalloids are the main cause of water repellency and are 

reported to have a length between 1 and 5 µm and a diameter in the nanometer range. 

 

5.2.2 How and Why the Lotus Leaf is Self Cleaning 

Most contaminants that are deposited on the surface of a lotus leaf are larger than the 

scale of the surface structure. For this reason, contaminants will rest on the peaks of the 

surface structures.  The reason particles are removed is due to the way the droplet 

moves over the surface.  
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Figure 5.8. Schematic of the way in which particles are removed from super-hydrophobic surfaces 

by liquid droplets [4] 

A high contact angle means that the droplet rolls over the surface rather than slides. As 

the droplet rolls, contaminants, which are usually hydrophilic, but even hydrophobic 

particles such as pollen, are embedded into the surface of the water droplet. 

It can be seen from Figure 5.8 how contaminants are removed from a super-

hydrophobic surface such as a lotus leaf. This is the beauty of a super-hydrophobic 

surface. Rather than the droplet sliding, as a raindrop would down a window pane, the 

droplet actually rolls, acting like a sticky marble and removing any debris in its path. 

 

5.2.3 The breakdown of the lotus effect. 

It has been shown [109] that the hydrophobic effects of the lotus leaf can be cancelled, 

if water is deposited onto the surface in the correct way.  When water vapor is allowed 

to condense onto super-hydrophobic surfaces, such as a lotus leaf [110] or some other 

super-hydrophobic surface, the vapor will fill any voids between protrusions on the 
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surface. As the vapor begins to condense, it does so over all of the features of the 

surface at the same rate. Effectively, this means that a Wenzel type of wetting is 

induced, whereas under normal circumstances of drop formation a Cassie-Baxter type 

would prevail. 

 

5.2.4 Artificial Low Wettability Surfaces. 

Although initial work, such as that by Cassie and Baxter, Wenzel and Johnson and 

Dettre was completed around the middle of the 20
th

 century, there was then a gap as 

interest in fabricating this type of surface waned. This was until the early 1990’s when a 

large number of papers were published on the subject. Nakajima et al [99] produced a 

review of these fabrication methods and found a wide variety of methods being 

employed, including molding of plastics [9], plasma etching [111], chemical vapor 

deposition [112], and direct machining [113].  The daily use of low wettability surfaces 

is still in its infancy, however there are already some commercial applications and a 

whole range of possibilities. One of the first uses of the lotus effect was by the company 

Lotusan™. One of their products is a render that can be applied to most surfaces and, 

when dried, leaves a super-hydrophobic surface. One of the most obvious applications 

for this product is its use in inaccessible areas, such as the outside of high rise buildings. 

Here the paint could be utilised so that expensive maintenance costs would be reduced. 

It is also conceivable that, if a suitable process were developed, structural engineering 

materials such as metals could be processed to have the same surface structures and 

properties. This is one of the aims of this PhD. 
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5.3 General Experimental Methods 

The variables which were considered in relation to the effect they have on the water 

contact angle were; the laser scanning speed and the total number of pulses applied per 

spot, NT. In addition to these laser processing parameters, the change of contact angles 

over longer timescales has been studied.  

In the case of contact angle measurements which were made to investigate the effect of 

scan speed, V, and the number of pulses applied, NT, contact angle measurements of all 

sites of interest were taken within minutes of each other. The same is true of samples 

being studied over longer time periods. However, between sets of measurements the 

samples were kept in grip-sealed polyethylene bags at room temperature and normal 

atmospheric conditions. All measurements of contact angles were made with a FTA 188 

Video Tensiometer using the FTA32 software supplied with the device.   

 

5.4 The effect of Laser Scan Speed the Total Number of Pulses 

Applied 

As can be seen from Section 4.3.1, the laser scan speed can have a great effect on the 

shape of the topography which is formed. It is known that the contact angle varies 

depending on the shape of the surface, because of the varying surface area which may 

be in contact with the droplet. This is not only true when Wenzel type wetting occurs, 

but also when Cassie-Baxter wetting occurs. Changing the shape of a surface will 

change how a liquid droplet rests on it and of particular importance, how much air can 

be trapped below it. To find the optimum speed to process a stainless steel and titanium 

sample to achieve the highest contact angles, the experiments in Section 4.3.1 were 
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repeated and contact angle measurements taken. The results of these can be seen in 

Figure 5.9 and Figure 5.10. 

 

If we first consider the change of contact angle with speed on stainless steel (Figure 

5.9), it can be seen that there is a general peak in the contact angle when the scan speed 

in 10mm/s. This is the same no matter what the total number of pulses applied is. At 

lower scan speeds, the contact angle decreases rapidly, however when the scan speed is 

above 10mm/s it is reasonable to say that increasing the number of pulses applied 

increases the contact angle. This is because although it is much harder to modify surface 

topography at high speeds, applying a larger number of pulses will increase the size of 

any features such as peaks or holes which have been initiated by previous sets of pulses.    

If we now move on to Figure 5.10, we find that the generalities which were true of 

stainless steel no longer apply. At lower pulse numbers (2500 and 5000 pulses) there is 

a peak in contact angle at approximately 5mm/s and the other features of the plot lines 

are similar to that of stainless steel, However, at higher pulse numbers (7500 and 10000 

pulses), there is a reduction in the contact angle generally. It can also be seen that there 

is not a distinct peak in the contact angle at a single processing speed when larger 

numbers of pulses are applied.   

The contact angles which are presented in figures Figure 5.9 Figure 5.10 show an 

increase in comparison to the values of both flat and roughened surfaces that have been 

reported previously [114]. Unfortunately, specific roughness measurements were not 

made of these surfaces however the peak contact angle for stainless steel was ~140° and 

for titanium ~68°. 
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Contact Angle of Stainless Steel as Scan Speed is Varied
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Figure 5.9. Graph to show contact angle measurements as a function of laser scan speed at various 

numbers of pulses on microstructured stainless steel. Time between laser processing and contact 

angle measurement, 15 days 

Contact Angle of Titanium as Scan Speed is Varied
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Figure 5.10. Graph to show contact angle measurements as a function of laser scan speed at various 

numbers of pulses on microstructured titanium. Time between laser processing and contact angle 

measurement, 14 days 
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5.5 Development of Contact Angles Over Long Time Periods 

The investigation of how the contact angle changes over longer periods, in this case 

approximately one month, was undertaken after it was noticed that the contact angle is 

very low when measured shortly after laser processing. It have been reported previously 

that the wettability of Aluminium [115] and Magnesium [116] is also susceptible to an 

increase in contact angle over time. In previous cases, this has been attributed to the 

growth of an oxide layer after processing. 

 

Figure 5.11 shows how the contact angle of a laser structures surface changes in 

comparison to the same material when it is untreated.  
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Figure 5.11. Graph to show the increase and development of contact angle measurement on laser 

textured stainless steel over long time periods in comparison to an untreated sample. The 

structured sample was processed at a fluence of 3.6Jcm
-2

. Approximately 10
3
 pulses were applied 

per spot during four processing passes at a speed of 10mm/s. 
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It can be seen that there is a sharp increase in the contact angle over the first 5-7 days 

and then the contact angle begins to plateau, eventually settling at a value of around 

140º.  

The change of contact angle over relatively long time periods raises another point about 

the mechanism of the contact angle change. After laser processing the surface 

topography present on a sample surface will change very little. Therefore any change to 

the surface which allows an increase in contact angle must be chemical in nature. 

Recent studies by Kietzig et al [117] have investigated the development of contact 

angles over time on laser processed alloys including AISI 304 stainless steel. Their 

work has shown that when active Magnetite Fe3O4 – δ (0 < δ < 1), a nonstochiometric, 

oxygen deficient iron oxide scale, is exposed to suitable atmospheres, dissociative 

absorption of carbon dioxide occurs [118].  When this happens, it is thought that carbon 

dioxide becomes carbon monoxide and zero valence carbon. Oxygen anions are then 

transferred into the lattice vacancies of the steel alloy to form stoichiometric Fe3O4. It is 

known that this reaction has a very slow rate and would account for the observed 

change in contact angle. 

To investigate further, a sample was prepared and subjected to analysis by X-ray 

Diffractometry (XRD). This sample was processed using the Violino marking system 

discussed in previous chapters. A laser beam, with spot size 55 µm was scanned over 

the stainless steel (AISI 304) surface in a raster scanned pattern. The processing speed 

was 20mm/s was used and 12 passes were made resulting in approximately 1000 pulses 

being fires at any given point in the processing area. The fluence used was 4.6 Jcm
-2

. 

This sample was stored for a period of three months. This was done so that any changes 
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in surface chemistry would have time to develop. The sample was stored in 

polyurethane sample bag before analysis using low angle XRD. The results of this 

analysis can be seen in Figure 5.12 and Table 5-1. 
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Figure 5.12. XRD data of a laser processed Stainless steel sample after a three month period 

 

Compound Name Scale Factor Chemical Formula  

Chromium Nickel 1.117 CrNi █ 

Magnetite 0.074 Fe3O4 █ 

Ferrite 0.143 Fe █ 
 
Table 5-1. Compounds present on the surface of a laser processed stainless steel sample after a 

three month period. 
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It is expected that Ferrite and Chromium Nickel compounds are found on the surface of 

laser processed AISI 304 stainless steel as these are constituents of the substrate. 

However, in addition to these, the oxide magnetite is also present. This is in agreement 

with the work of Kietzig et al. This confirms, by an alternate method, that the 

hypothesis that contact angle increase is due to carbon contamination as a result of the 

dissociative absorption of CO2 is correct. One of the sources of this carbon 

contamination is thought to be the polyurethane bags in which the samples were stored. 

Although it was though that this method of storage would provide sufficient sample 

protection, this effect was discovered at such a point during the investigation that to 

repeat all of the work up to that point would have been impractical. It was therefore 

decided to carry on with the same method under the assumption that any contamination 

caused would be common to all samples. 

 

5.6 Contact Angles of Angled Structures 

In Section 4.3.5, it was shown that it is possible to create microstructures which are 

formed at an angle to the original surface by changing the incident angle of the laser 

beam. One reason for doing this was to find out if the structure angle has any effect on 

the overall contact angle.  

If we take a moment to contemplate this, it can be hypothesized that an angled structure 

on a hydrophilic substrate, such a stainless steel, would have a lower contact angle than 

that of a surface with structures which are normal to the surface. The reason for this is 

that the area of the surface which is in contact with the droplet will be higher in the case 

of an angled structure. The smaller the angle between the structure and the substrate, the 
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more of the microstructure surface area will be available to be in contact with the 

droplet.  

The surfaces produced were the same as those discussed in Chapter 4. Therefore the 

contact angle of structures with angles of 45, 60 and 15 degrees were measured. The 

period of these structures is approximately 50 µm. The results from these contact angle 

measurements can be seen in Figure 5.13. 

 
Figure 5.13. Contact Angles of Angled structures on stainless steel. Insert; Visualisation of Surface 

structure and viewpoints. 

 

Figure 5.13 shows that as the angle of the structure increases, there is a drop in the 

contact angle from the point of view of V1 and V2. The decrease of contact angle is 

sharper when viewed from V2 because this is the plane where the water droplet is 

increasingly in contact with the structures surface. The contact angle from the point of 

view of V1 stays relatively unchanged because the profile of the surface structure 

effectively does not change. 
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5.7 Conclusions 

From the contact angle measurements that have been reported, there are several 

conclusions which can be drawn. It has been shown that as predicted, increasing the 

roughness of stainless steel and titanium surfaces by generating periodic microstructures 

using lasers, can increase the contact angle of droplets placed on the surface.  It was 

found that contact angles of up to 140º could be measured on both stainless steel and 

titanium. This was done by changing surface topography using the techniques shown in 

Chapter 4. 

 

It was found that the highest contact angles were produced on stainless steel at an 

optimum scanning speed of 10mm/s. On titanium, this speed was slightly lower at 5-

10mm/s. On stainless steel, the application of larger numbers of laser pulses generally 

increased the contact angle when compared to structures produced at the same speed 

with lower numbers of pulses. However, the highest contact angles were always 

produced at a scan speed of ~10mm/s. The effect of larger numbers of pulses at any 

speed on titanium had the opposite effect. As the number of pulses was increased at any 

speed, there was a decrease in the contact angle. 

 

It was found that laser processed stainless steel surfaces were extremely hydrophilic 

only a few hours after laser processing. It was then found that the contact angle of these 

surfaces increased in a logarithmic manner in the weeks after laser processing. It was 

found that over a 24 day period, the contact angle increased for almost zero to ~140º. 

This is thought to be because of the growth of an oxide layer or contamination from the 

atmosphere. However this is still under investigation and will be the subject of future 



5. Modification of Wettability 

135 

work. It should, however, be noted that after the 24 day period, the surfaces were 

washed in an ultrasonic bath with ethanol and the wettability was unchanged. This may 

suggest that an oxide layer has been formed. 

 

When a short investigation was made into the effect the structure angle has on the 

wettability, it was found that the as the angle of the surface structure increased, the 

contact angle decreased. This is because as the structure angle increases, the surface 

area of the structure which is in contact with the liquid is increased and less of the liquid 

is in contact with air and the surface fractions of air-liquid and material-liquid contact 

are changed slightly and a lower contact angle is favored.
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6 MODIFICATION OF SURFACE REFLECTIVITY 

6.1 Introduction 

During studies of laser generated microstructures on metal surfaces it has been noted 

that after processing and regardless of material used, the surface obtained exhibits 

decreased reflectivity or has become completely black in appearance [119, 120]. This 

has also been reported for semiconductor materials such as silicon [121] as well as a 

number of other materials [122-124]. Having been reported on multiple materials, it can 

be assumed that this effect occurs due to a structural change on the surface as this is the 

commonality in all cases.  

The way a surface reflects light depends greatly on its surface finish. As with any 

surface, light will reflect at an angle equal to the incident angle. If a surface is flat, as is 

the case with a mirror, then the reflected light will form an image of the surroundings. 

The opposite of this case is to intentionally diffuse the light incident on a surface. These 

variations in the type of reflection, which occur, can be seen in Figure 6.1. 

 

Figure 6.1. Visualization of specular and diffuse reflectivity [96] 
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Perhaps the simplest enhancement of reflectivity is the modification of surface 

roughness and topography. If this concept is taken further, it is possible to engineer the 

surface to direct reflected light towards another part of the surface after its first 

interaction with a surface. This means that the residual energy from the first interaction 

has the opportunity to be absorbed by another part of the surface. 

 

(a)                 (b)                (c) 

Figure 6.2 Beam paths of light rays incident onto three cavity shapes at normal incidence. 

Figure 6.2 shows an example of three surface shapes that will have varying effects on 

the intensity of light reflected away from the surface. A photon interacting with a flat 

surface will only encounter one reflection, regardless of the incident angle. More 

reflections can be induced by forming steep sided features on the surface. Figure 6.2(b) 

is an example of a special case. Known as a retro-reflector, a V-shape with a wall angle 

of 45° will reflect light on a vector parallel to the initial incident ray. Once the wall 

angle increases beyond this, it is possible for higher numbers of interactions to occur, as 

seen in Figure 6.2(c). Although this example only considers two dimensions, these same 

properties apply to three dimensional structures. Additionally, if the surface is 

roughened in some way, more diffuse reflection occurs, decreasing the probability of 

reflection away from the surface. 
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Factors that have been overlooked until this point are the reflectivity of a surface due to 

its chemistry or colour. The chemical properties of a surface determine the absorption 

depending on the wavelength, hence energy, of incident photons.  

 

6.2 Reflectivity of Laser Processed Stainless Steel and Copper. 

In initial experiments, reflectivity measurements were taken from surfaces of stainless 

steel (AISI 304) and pure Copper (99.999) which had been structured by nanosecond 

laser processing. Samples were processed using a frequency doubled Nd:YVO4 marking 

laser with a wavelength of 532nm, τ=7ns, υ=30kHz, F = 2.81 Jcm
-2

. The spot size of the 

laser was 55µm, which was equal to the hatch distance used. In the experiments, a low 

number of pulses per spot were fired at the target, ranging from 66 (1 pass) to 198 (3 

passes). The laser scanning speed used was 25mm/s.  

Reflectivity of the samples was measured using a UV-Vis Spectrophotometer (Analytik 

Jena Specord 250) with the ability to measure between 360 and 1100nm. An integrating 

sphere allows the overall reflectivity of the surface to be obtained.  

SEM images of the surfaces can be seen in Figure 6.3 and Figure 6.4. Here it can be 

seen that the surface morphology is a highly periodic groove and ridge structure. The 

reason that this type of structure can be seen rather than the periodic microstructures as 

seen in chapter four is the low number of laser pulses and relatively high processing 

speed used.  
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Figure 6.3 Stainless steel surface after one pass has been made in an effort to modify reflectivity. 

Inset: The same surface at higher magnification. Due to the low number of pulses used. only a 

periodic trough and peak structure can be seen. 

 

 

Figure 6.4 Copper surface after three passes have been made in an  effort to modify reflectivity. 

Inset: The same surface at higher magnification. As the number of passes increases, more 

individual structures begin to develop 
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Figure 6.5. Diffuse and specular reflectivity spectra of reference and a laser processed (fig.3.21) 

stainless steel surface. Reflectivity is reduced by upto 45%. Diffuse and specular reflectivity are 

almost identical post processing due to high roughness of microstructure. 

 

Figure 6.6. Diffuse and specular reflectivity spectra of reference and a laser processed (fig.3.22) 

copper surface. Most interesting in this case is the reduction in reflectivity at wavelengths about 

600nm. In this region most of the energy which would otherwise be reflected is absorbed by the 

sample. 
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After laser processing, these surfaces had a black tone as expected. To further 

understand the extent of this increase in absorption; the reflectivity of the surfaces was 

measured. Figure 6.5 and Figure 6.6 are plots of the diffuse and specular reflectivity 

spectra of reference and laser processed stainless steel and copper surfaces. The first 

thing, which is obvious from these figures, is the reduction in the percentage of 

reflected light due to laser processing and the resultant topography. In the case of 

stainless steel, this reduction is 30-45% and on copper between 10 and 80% depending 

on the wavelength and type of reflectivity measured. In Figure 6.5, it is noted that the 

difference between the specular and diffuse reflectivity of the sample is negated by the 

laser processing, after which the values of both types of measured reflectivity are almost 

identical. In this case this would mean that no light is reflected specularly. Hence 

measurement with an integrating sphere gives the same result in both modes. 

Given a high enough intensity of light the absorption of photons will impart enough 

energy to the surface and through conduction the bulk temperature of the metal will rise. 

With possible applications in solar thermal technology in mind, it was decided to 

measure how Copper surfaces react to focussed white light. 
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6.3 Preparation and Characterisation of Surface Microstructures for 

Solar Energy Harvesting 

 

6.3.1 Introduction 

In this approach, a discussion of how various laser processed, coated and plain 

(uncoated) surfaces behave under exposure to focused white light is investigated.  

Although it is expected that the surfaces under study would experience a rise in 

temperature, the main focus here is to elucidate how the absorption increase compares 

to conventional surfaces, and to characterise the optical absorption efficiencies during 

exposure to simulated sunlight. Through an appreciation of surface texture, 

micromachining conditions and optical absorption uses for applications in energy 

harvesting are envisaged. 

 

6.3.2 Experimental 

Using knowledge from previously reported work [119, 120] a range of laser processed 

surfaces were produced on 0.8mm thick pure Copper sheets approximately 25mm 

square. This was undertaken out in order to yield an appropriate array of samples with 

varied textures or roughness. The surfaces were processed using a Nd:YVO4 (Laservall) 

laser system (λ=532nm, τ=7ns, PAVG=1.08W,  υ=30kHz, 2ω0=55µm, M
2
~1.5, F=6.49 

Jcm
-2

) at processing speeds of 5, 10, 20 and 50mm/s. The beam is scanned in an 

interlaced pattern and the distance between scan lines is equal to the laser spot size. So 
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that the effect of oxide layer formation can be quantified, laser processing is carried out 

in both air and argon atmospheres. To do this, a processing chamber, filled with argon is 

utilised. This chamber was purged for one minute at a regulator pressure of 3psi before 

processing commenced. The gas flow continued until processing was completed. 

The newly produced surfaces were then be analysed using a number of techniques. 

Measurements of the optical properties of the surfaces are made using a UV-Vis 

Spectrophotometer (Analytik Jena Specord 250) in conjunction with an integrating 

sphere. To inspect the physical attributes of the surfaces, Scanning Electron Microscopy 

(Hitachi s-3400N) in conjunction with Alicona MEX software is used to produce three 

dimensional digital models of the surfaces. In addition to this, analysis by X-Ray 

Diffraction (XRD) is used to identify the species of copper oxide which grow on the 

surface during laser processing in air. This technique is also used to confirm the lack of 

oxide on samples processed in Argon atmospheres. 

To measure the response of the surfaces to an optical impulse, the experimental 

arrangement shown in Figure 6.7 was used. To heat the samples, a halogen lamp with 

an output of 1.3W was used. Focusing of the white light to a spot size of ~15mm 

resulted in an optical intensity of ~7.3kWm
-2

 at the target surface. For comparison, the 

irradiance of the Sun, unfocused, is approximately 642 Wm
-2 

[96]. Using the same 

optical arrangement and replacing the light source with the sun could produce an 

intensity of over 25MWm
-2

 in a 15mm focal spot. 
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Figure 6.7. Arrangement of equipment used to measure thermal response. Temperature was 

measured using a K-type thermocouple attached to the back of the 0.8mm thick sample. Back-

reflected light was measured from an arbitrary point. The temperature data was captured using a 

Keithley Instruments 2701 digital multimeter equipped with a M7706 data acquisition module. 

The output spectrum of the light source used can be seen in Figure 6.8. Here, a 

normalised comparison to the output spectrum of the sun is shown. As can be seen, the 

solar analogue has an output roughly similar to the output of the sun.  

 

Figure 6.8. A comparison of the output of the artificial light source used and optical solar radiation. 

The output spectra of these sources have been normalised. The loss of spectral data in the UV 

wavelengths (<400nm) for solar radiation is due to the attenuation of these wavelengths by an 

optical filter which was a necessary part of the experimental arrangement.  
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6.3.3 Reflectivity of Surfaces 

The reflectivity spectra of the laser processed metallic surfaces show a substantial 

improvement in absorption with respect to surfaces that were left unprocessed, as can be 

seen from Figure 6.9. It can also be seen the overall shape of the reflectivity spectra 

varies depending on the atmosphere used during processing. In the case of copper (Cu 

99.999% grade), a distinctive rise in reflectivity around 550 to 600 nm can be seen. This 

accounts for its reddish lustre. For Cu samples processed in an Argon atmosphere, this 

observation can still be made. However, the reflectivity is diminished. Much of the 

absorption enhancement can be attributed to roughening of the surface. On the other 

hand, Cu samples processed in air do not exhibit the same reflectivity spectrum profile. 

This can be explained by the formation of localised copper oxides immediately after 

processing in air yielding a much darker and therefore more absorbing spectral profile. 

Darkening surfaces of Cu with carbon paint, shows similar levels of absorption as 

samples processed in air. This helps separate those effects which are due to the 

topographical features of the studied surfaces rather than their apparent colour.  



6. Modification of Surface Reflectivity 

146 

 

Figure 6.9. Reflectivity spectra of four samples shows overall a decrease in reflectivity  before and 

after processing. This was observed at a translation speed of 5mm/s, in Air and Argon atmospheres. 

The samples processed in air exhibit a fairly similar absorption to those coated with a carbon based 

black coating (Carbon Black) 

A microscopic examination of surfaces processed under the same conditions, except for 

the atmosphere, reveals some interesting clues. Figure 6.10a and b show two copper 

surfaces, processed using the same laser parameters, processed at 5mm/s and a fluence 

of 7.4 Jcm
-2

. However, it is obvious that these two surfaces have very different 

microstructure formations present.  

Considering that surfaces shown in Figure 6.10 were produced in air and argon 

atmospheres respectively it is possible to hypothesise how this difference came about.  
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(a)  

(b)  

Figure 6.10. SEM Micrographs of Copper surfaces processed under air (A) and Argon (B) 

atmospheres. The same parameters, 5mm/s, 7.4 J/cm
-2

 are used to produce each. Differences is 

surface structure occur due to oxide formation between processing passes. 

Previous work [120] has shown that these types of structures form when a Gaussian 

irradiance profile of a laser beam is such that the central region of the beam allows for 

ablation while its peripheries only melt the target material, so that the structural surface 

mobility of the metal is increased. As the products of ablation expand from the ablation 

site at the centre of the beam path, the force of this expansion pushes molten material 
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towards the edge of the path along which the beam is travelling. Moreover, to deposit 

the required number of pulses per spot, multiple passes were made over the surface.   

When a sample is processed in air, an oxide layer will be present after a single pass. 

This oxide layer will then, as we have seen, affect the reflectivity of the surface and the 

laser material interaction during the second pass and successive passes. Effectively, the 

oxide layer acts to increase the absorption of laser light. An artefact of this is that after 

preparation of samples in both atmospheres, the surface of those processed in air is 

further below the datum of the sample than those processed in Argon. This would 

suggest that more vaporisation of material would have taken place on surfaces where an 

oxide layer increased absorption of laser light. 

 

6.3.4 Identification of oxide species. 

To understand the nature of the oxide layer present when processing in an air 

environment, low angle XRD analysis was used to identify the species of oxide present. 

For comparison, the same analysis was carried out on a sample processed in an Argon 

environment where it is expected that no oxide formation would be able to take place. 

The results of this analysis can be seen in Figure 6.11 and Figure 6.12 and their adjacent 

tables show the corresponding key, chemical compounds and scale factors. It can be 

seen from analysis of the copper sample processed in air that there are two species of 

copper oxide present in addition to the substrate material.  
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Figure 6.11 XRD data from copper samples processed in an atmosphere of Air. 

 

Compound Name Chemical Formula Scale Factor  

Copper Cu 0.919 █ 

Cuprite Cu2+1O 0.144 █ 

Tenorite CuO 0.037 █ 
 

Table 6-1. Compounds preset on copper samples laser processed in Air. 

The most abundant of these is cuprite, a very dark red or black oxide with the chemical 

formula Cu2O.  The second oxide present is tenorite, CuO. Again, this oxide has a black 

colour which is in keeping with observations.  
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Figure 6.12 XRD data from the analysis of Copper samples which have been laser processed in an 

Argon atmosphere. 

 

Compound Name Chemical Formula Scale Factor  

Copper Cu 0.962 █ 
 
Table 6-2. Compounds present on copper samples laser processed in an Argon atmosphere. 

 

6.3.5 Surface Roughness 

Surface roughness can be defined in many ways. Here, it is given as the ratio, r, of the 

projected surface area to the actual surface area, i.e. a perfectly flat surface would have 
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the surface roughness, r=1. The data available in Figure 6.13 shows that the presence of 

the reported oxide layer has a substantial influence on the final roughness of the surface. 

The result is that a consistently higher roughness ratio is obtained for surfaces processed 

in an argon atmosphere. This change in roughness of different laser processed surfaces 

can be attributed directly to the gas environment in which they are processed. In Air an 

oxide layer will form after the first processing pass. On subsequent passes, the increased 

absorption which this layer facilitates will allow more surface heating to occur and 

ablation will be less efficient. Conversely, in Argon, each processing pass will be 

processing on an oxide free surface. Due to the intensity distribution of a Gaussian 

Beam, the highest beam intensities, and thus heat, are confined to the centre of the beam 

path. This allows higher aspect ratio grooves to be formed in the surface. These further 

increase the actual surface area in comparison to those processed in air.  

 

Figure 6.13. The surface roughness ratio of samples processed in Air (left), that is the ratio between 

the projected and true surface areas, is generally lower than those processed in Argon (right). This 

is due to the formation of an oxide layer after the first processing pass, leading to the occurrence of 

more surface heating and less ablation. 
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6.3.6 Back Reflection 

In addition to measuring the bulk reflectivity of the tested samples, the spectrum of light 

reflected from the sample was measured. The spectra from these measurements can be 

seen in Figure 6.14.  

What is immediately obvious from these two graphs is that the two types of surfaces 

measured have different absorption characteristics. In the case of surfaces processed in 

Argon the shape of the reflected spectrum closely resembles that of light reflected from 

a virgin copper surface. However, for surfaces processed in Air, the shape shows that 

different wavelengths of light are absorbed more readily than others. Generally, surfaces 

processed in air absorb more light than those processed in Argon. This is not surprising. 

Darker surfaces, by definition are more absorbent. 

 

Figure 6.14. As the translation speed increases, it can be seen that the difference in relative 

backreflections are more pronounced in air than in an argon atmosphere. The light reflected from 

laser processed surfaces gives a good indication that the presence of an oxide layer improves 

absorption over the whole spectrum.   
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6.3.7 Heating of Samples by White Light. 

By measuring the Dynamic thermal response of surfaces to a finite impulse (1250 

seconds) of illumination, the amount of energy absorbed by the samples could be 

approximated using the relationship; 

E=mc∆T 6.1 

where the specific heat capacity, c, was taken to be 391 J.kg
-1

K
-1

[96]. The thermal 

energy of four copper samples (two laser processed in Air and Argon respectively, one 

coated in carbon paint and one untreated) measured during their heating and subsequent 

cooling can be seen in Figure 6.15.    

 

Figure 6.15 Thermal energy of various copper samples in response to an optical impulse. 
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The highest temperature recorded was approximately 65°C. This is a 45 degree rise 

from the starting temperature of 20°C. It can be seen from Figure 6.15 that the degree of 

temperature rise in the various tested surfaces correlates well with those that are most 

absorbent, as shown by Figure 6.9. As is expected, the lower the surface reflectivity, the 

more energy is absorbed. The most efficiently absorbing samples are the sample laser 

processed in air and also the sample coated in carbon paint. Although these two surfaces 

reach approximately the same steady state energy, the conversion of light into heat is 

faster for the laser processed sample. This is clear because while the heating of samples 

begins at the same time and temperature, the energy of the laser processed surface is 

consistently ahead of the painted surface until the plateau is reached. This faster 

response is thought to be brought about due to a lack of paint impeding heating. Rather 

than light having to heat paint, which then heats the copper substrate by conduction, the 

laser processed surface interacts directly with the incident light. 

 

6.3.8 Conclusions 

A study of laser processed copper surfaces for the purposes of investigating reflectivity 

and heat absorption has been carried out. The observations made provide new insight 

into producing novel surfaces and topographies pertinent to the research effort for the 

production of energy, in the form of heat, from solar radiation. The findings of this 

investigation show that absorption increases with higher roughness ratio values. It is 

thought that this is due to increased surface area and incoming light experiencing an 

increased number of reflections due to surface geometry. In addition to this, the surface 

chemistry also has a distinct effect on reflectivity. Surfaces processed in inert 
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environments display higher reflectivity than those processed in air. On copper, the 

formation of an oxide layer, an artefact of processing in Air, gives a black, absorbent 

optical surface. This increases absorption of optical EM radiation and findings show 

that  heating due to increased absorption is competitive with conventional ‘black’ 

coatings. In addition to this, the speed of thermal response is marginally faster.
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7 CONCLUSIONS 

This PhD has three main points of interest. These are the modification of surface 

topography on metals with micron and sub-micron feature sizes, the modification of 

wettability and the modification of reflectivity. This chapter is intended to give a 

summary of the results of these investigations. Firstly, the formation of these 

topographical structures will be discussed first before moving on to their applications.  

It has been found that the types of structures which can be produced by self-assembled 

methods of laser processing vary widely. Depending on parameters such as the laser 

power, processing speed, laser pulse duration and the number of pulses applied, the 

surface topography produced can vary greatly. Experiments concentrated on the 

production of microstructures by processing stainless steel (AISI 304) samples. This 

processing was completed using the fundamental (1064nm) and frequency doubled 

(532nm) output from DPSS Nd:YVO4 lasers. These systems had a pulse duration of 7ns 

and repetition rate of 30kHz.  

Results have shown that at fluences marginally above the ablation threshold of the 

target material a reasonably large amount of molten material is formed at the same time 

as ablation takes place. This is due to the Gaussian intensity profile of the laser beams 

used. As expanding ablation products interact with the molten material, differences in 

surface tension cause instabilities in the melt pool allowing molten material increased 

surface mobility. Over reasonably large numbers of pulses this results in the formation 

of structures on the surface on metal targets.   
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Initial experiments showed that it is possible to produce structures in both liquid and 

gaseous environments. Although features produced in both environments have a similar 

shape, their characteristic size is different. In air the feature size is comparable to the 

laser spot size. It was found that processing in liquid reduced this to approximately half 

of this value. It is thought that this is due to the cooling effects of a liquid environment 

decreasing the ability of molten material to flow before it re-solidifies. Further 

experiments concentrating on the number of pulses necessary to form features found 

that surfaces with similar topographies could be achieved with as few as 1500 pulses. It 

was also noted that higher numbers of pulses begin to remove material and produce 

structures further below the original surface. 

Until this point all processing had taken place under conditions where the distance 

between consecutive laser scan lines (hatch distance) provided a fixed overlap between 

30-40%. To try to reduce the time necessary to produce these structures it was decided 

that an investigation into the effect of changing the hatch distance was required. To do 

this a similar laser operating at a wavelength of 1064nm was used. When the hatch 

distance was changed from values of 10µm to 60µm (laser spot size 50µm) it was found 

that a close correlation was found between the hatch distance and structure period until 

the hatch distance exceeded the laser spot size. When the hatch distance exceeded the 

laser spot size areas of the surface between scan lines remained unprocessed. 

It has been found that, for stainless steel, operating at a fluence of ~3.5Jcm
-2

 allows the 

production of highly organised periodic structures. These are formed by a process which 

depends on a cycle of melting and re-solidification. It was found that at these fluences 

increasing the scanning speed and hatch distance have important roles to play in the 
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formation of structures. As speed increases, the cumulative heating effect from laser 

pulses declines and individual structures become less defined. It was found that well 

defined structures are formed at a scanning speed of 15 – 25 mm/s. 

Another objective of this project was to methodically show that self-assembled 

structures align themselves to the same direction as incident laser light. It has been 

demonstrated that this is indeed the case. While processing with samples tilted to angles 

of 15, 30 and 45 degrees it has been shown that there is excellent correlation between 

the structure alignment and incident beam angle. 

Experiments using femtosecond pulses were found to give surface topography that is 

drastically different to that produced using nanosecond lasers. Initial experiments found 

that the threshold fluence for stainless steel processed with 100fs pulses at wavelengths 

of 800 and 400nm was 0.077 and 0.342 Jcm
-2

 respectively. This is much lower than 

fluences necessary for ablation using ns lasers because although only a small amount of 

energy is delivered per pulse of fs light, the intensity is extremely high because of the 

ultrashort pulse duration. Most interestingly it has been shown that femtosecond lasers 

are excellent at producing sub-wavelength periodic surface structures. These are 

produced at fluences below the ablation threshold of stainless steel and are produced 

when the reflected portion of incident radiation is reflected and interferes with the rest 

of an incoming laser pulse. Where constructive interference takes place, grooves appear 

and in this way, ripples, orientated perpendicular to the incident beam polarization are 

formed. It was found that LIPSS structures with mean periods of 295 nm and 600nm 

were formed at 400 and 800nm respectively. Through the application of techniques 

learned from producing structures with ns lasers, it has been shown that large areas can 
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be covered by these surfaces structures with relative ease, producing surfaces with 

unique properties. 

The self assembled microstructures produced using ns laser have been applied to the 

modification of wettability on metals with some surprising results. Common methods of 

producing superhydrophobic surfaces can rely on processes which involve harmful 

chemicals and complicated processes. The use of lasers to produce superhydrophbic 

surfaces on stainless steel is thought to be a cleaner and simpler method of producing 

these surfaces.  

It has been found that it entirely possible to modify the contact angle of stainless steel 

surfaces by laser surface topography modification.  Considering that untreated stainless 

steel has a contact angle of ~70°, it can be concluded that surface topography induces 

composite wetting of the surfaces. This means that a water droplet is suspended by the 

tips of surface topography and air is trapped in the remaining voids. It has been found 

that contact angles of 140° are easily achievable using this technique and in some 

special cases contact angles of 155° have been recorded.  Confirmation that composite 

wetting has been induced on the surface of stainless steel can be taken from the change 

of contact angle depending on the angle of surface topography. Mentioned earlier, these 

surfaces have structures at 85, 60 and 45 degrees to the surface. Measuring their contact 

angle shows that surfaces with more surface area exposed to a water droplet have lower 

contact angles. This is in keeping with the Cassie-Baxter relationship [102].   

One of the major developments of this project has been the investigation of how contact 

angles change over time on laser processed surfaces. Initial measurements of contact 

angles after laser processing seemed erratic. This was until it was noted that in the days 
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and weeks after laser processing the contact angle of laser processed stainless steel 

changes in a predictable way. Results show that over a period of 30 days, contact angles 

on stainless steel rise from 0° (total wetting) to around 140°, at which point they 

become stable. Through analysis of the surfaces using XRD it has been shown that an 

oxide layer of Magnetite, Fe3O4, is formed on the surface of stainless steel after laser 

processing. This confirms reported results gained by x-ray photospectrometry (XPS) 

measurements in 2009 [117].  

The modification of reflectivity was the final application investigated during this 

project. The impetus for this work was due to observations that the appearance of metal 

surfaces was always much darker when surface structures had been applied using lasers. 

To test the assumption that these new surfaces are absorbing more light at optical 

wavelengths, measurements of reflectivity and temperature change during and after 

exposure to concentrated white light were made.  

The reflectivity of two metals was studied before and after laser processing using the 

same DPSS laser operating at 532nm as earlier experiments with a fluence of 2.8 Jcm
-2

 

and scanning speed of 25mm/s. These were stainless steel (AISI 304) and copper. 

Copper was chosen because of obvious applications this type of surface could have in 

solar thermal energy applications. Having a high heat capacity yet being highly 

reflective at infrared wavelengths make copper an ideal candidate for enhanced 

absorption. Reflectivity measurements of stainless steel and copper after laser 

processing showed that reflectivity was greatly decreased. It has been shown that there 

are two reasons for this. It has been shown that both surface topography and chemistry 

contribute to enhanced optical absorption. By laser processing in an atmosphere of 
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Argon, any oxide layer formed during laser processing in air was denied the opportunity 

to form.  From this surface an indication of the effect of surface roughness in 

comparison to both roughness and absorption enhancement by surface chemistry 

changes was established. By allowing the surfaces to be heated by white light, a 

comparison of their efficiency at absorbing energy from light was determined. It was 

found that both characteristics improve absorption by decreasing reflectivity but the 

colour of the surface, caused in this case by surface chemistry change is most important.  

It was found that surface roughness increases absorption by diffusing light over the 

surface and effectively stopping specular reflection. As incident light is scattered along 

the surface the number of reflections it encounters increases and reflectivity is decreased 

by over 70% across the whole spectral range measured. When an oxide layer is allowed 

to form during processing it was found that less than 10% of incident light is reflected. 

Through XRD analysis, it was found that the oxide formed during laser processing on 

copper is Cuprite (Cu2O) and Tenorite (CuO).  

Although many results have been found from the work done during this project, as with 

all scientific endeavours, further questions are raised. These are discussed in the 

following chapter. 
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8 FUTURE WORK 

In this PhD study, a number of techniques have been developed and the formation of 

self-organised, periodic micro and nanoscale topography on various metals has been 

demonstrated. Continuation of fundamental research into the formation of these 

structures should be considered. Later developments in this project have shown that the 

formation of sub-wavelength structures over large areas is possible. As yet, the 

applications of these surfaces are not known.  

Many aspects of this project are the beginning of the use of these new surfaces for real 

world applications. However there are still a number of details which need further 

investigation. Developing surfaces which increase water contact angle is probably the 

most promising result of this project. It has been shown that the change in surface 

chemistry greatly affects surface wettability but the reasons for this change are still not 

yet fully understood. The phenomenon of the time effect on wettability of laser-textured 

metallic surfaces has only been reported recently for the first time [125]. It was 

explained by the formation of Fe-oxides and continuous carbon decomposition 

occurring on the surface with time. However, we found that this time effect occurred not 

only on stainless steels (containing iron to form Fe-oxides), but also Ti alloys and pure 

Cu. More interestingly, it has also been noted to occur on Ti alloys after laser cleaning 

(without formation of oxides). Therefore we believe that in other explanations there are 

significant aspects that have been neglected. It is proposed that work be undertaken to 

determine the reasons for this time effect. It is believed that the exposure of laser 

textured surfaces in air will allow hydrocarbon contaminants deposited on the surface to 

increase hydrophobic behaviour. It is proposed that XPS (X-ray photoelectron 
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spectroscopy) is employed to measure the change of carbon contents with time. To help 

engineers produce functional superhydrophobic materials, the understanding of the 

influence of surface chemistry on the wettability of metals is important. Additionally, 

investigation into the corrosion properties of these new materials should be considered. 

It is obvious that the increase of surface area which occurs during laser processing could 

have a detrimental effect on the corrosion of surfaces. If applications in the real world 

are to be developed, robust, long lifetime surfaces are crucial.  

The observations of laser-textured copper surface for the purposes of investigating 

reflectivity and heat absorption have provided a new insight into producing novel 

surface structures pertinent to the research effort for the production of energy. It has 

been shown that both surface roughness and the absorbance of a surface have a part to 

play in increasing optical absorption. It is proposed that further development of work 

done here would create a surface which is has a high roughness and incorporates the 

absorbing properties of surface oxides such as cuprite. In addition to this, further 

investigation of the oxides formed during laser processing, using XPS would give a 

clearer view of the mechanisms in action. With a high thermal heat capacity, copper is 

already used in commercial solar thermal applications. One development which could 

be pursued as a direct continuation of this project is the laser processing of copper in 

two gaseous environments. If a sample is first processed in argon to develop high 

surface roughness and subsequently processed in air to form an absorbent oxide layer it 

is believed that almost total absorption of incident light will occur. In a world which is 

slowly being weaned off non-renewable energy solutions, such as fossil fuels, the 

development of new technologies to improve the generation of energy from freely 

available energy sources are important. This project has touched upon the generation of 
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thermal energy using laser processed surfaces for the conversion of solar radiation into 

heat. Development of these ideas has already begun but integration of these optically 

absorbent surfaces into current technological solutions needs to be completed. 
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Abstract Utilising a Nd:YVO4 laser (wavelength of
532 nm, pulse duration of 8 ns, repetition rate of 30 kHz)
and a Nd:YAG laser (wavelength of 1064 nm, pulse duration
of 7 ns, repetition rate of 25 kHz), it was found that during
the pulsed laser ablation of metal targets, such as stainless
steel, periodic nodular microstructures (microcones) with
average periods ranging from ∼30 to ∼50 μm were formed.
This period depends on the number of accumulated laser
pulses and is independent of the laser wavelength. It was
found that the formation of microcones could occur after as
little as 1500 pulses/spot (a lower number than previously
reported) are fired onto a target surface location at laser flu-
ence of ∼12 J/cm2, intensity of ∼1.5 GW/cm2. The initial
feedback mechanism required for the formation of struc-
tures is attributed to the hydrodynamic instabilities of the
melt. In addition to this, it has been shown that the struc-
tures grow along the optical axis of the incoming laser radi-
ation. We demonstrate that highly regular structures can be
produced at various angles, something not satisfactorily pre-
sented on metallic surfaces previously. The affecting factors
such as incident angle of the laser beam and the structures
that can be formed when varying the manner in which the
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laser beam is scanned over the target surface have also been
investigated.

PACS 42.55.Xi · 61.66.Dk · 81.65.Cf

1 Introduction

The use of lasers for the direct writing of microfeatures is
common practice in the field of materials processing [1–14].
The formation of laser-induced surface structures with a pe-
riod approximately equal to the laser wavelength is well
understood [5, 6]. However, the use of lasers to produce
self-assembled structures is a less exploited area, and the
mechanisms responsible for their growth are still under dis-
cussion. The microstructures developed under multi-pulse
laser irradiation have usually a somewhat higher period (typ-
ically tens of micrometers) [7]. Microstructures have been
observed in many materials under inert and reactive ambient
gases, with laser wavelengths from UV to IR and laser pulse
durations from nanosecond to femtosecond. In some cases,
such as pulsed laser deposition of thin films they appear at
the bottom of craters after laser ablation processes. In other
cases, they grow from the surface of the target, e.g. in surface
modification treatment at various laser fluences. The latter
results from the melting of a surface layer and a low vapori-
sation rate depending on the intensity of the source and num-
ber of accumulated pulses. Over the past several years, there
have been several reports of laser generated self-assembled
structures on metals [9–12], semiconductors [8–11], and
polymers [13, 14]. Unlike conical structures that have been
reported on laser machined polymer surfaces, the process
by which microcones and alike are produced on a metal-
lic substrates is a melt flow dominated process rather than
vaporisation–redeposition process [8–10]. Previous results
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have shown that when a large number of laser pulses (105)
at laser intensities in the order of 106 W/cm2 are delivered to
metal targets, self-assembled arrays of microstructures, with
a period of ∼70 μm, can be formed [8, 9]. This value was
much smaller that the laser spot size of ∼300 μm used for
these experiments, and was also far from the initial capillary
wave period. Initial impetus for this work came from similar
studies of structure formation in liquid environments [10].

This paper intends to show a methodical approach to the
different types of structures that can be produced by firing
relatively large numbers of pulses (102–104 pulses) at metal-
lic targets, specifically stainless steel. We show that at high
laser intensities, in the order of ∼1.5 × 109 W/cm2 and after
as little as 1500 pulse/spot are fired onto the target, regu-
lar microstructures can be formed. The formations of these
structures are attributed to the hydrodynamic instabilities of
the melt produced on the surface during laser heating. It is
also reported that the axis of the self-assembled structures
are oriented along the direction of the laser beam. It results
in the formation of highly regular structures at various an-
gles on the metal surface owing to the good beam quality
of the source. This has been shown to some degree in [7],
where silicon microcones where produced by laser machin-
ing in an SF6 environment. As formation of microstructures
is not exclusively produced in exotic gas environments, it
would seem reasonable that they could be produced in an
air environment. The production of such features is believed
to have applications as black body sources [15], and in the
fields of surface wettability, and microbiology.

2 Experimental details

For the first set of experiments, a Nd:YVO4 laser system
(λ = 532 nm, τ = 8 ns, with a repetition rate of 30 kHz) was
used to process Stainless Steel (AISI 304) samples in air
environments (at room temperature and normal atmospheric
pressure). The laser beam with a near Gaussian intensity dis-
tribution (M2 ∼ 1.5) was focused onto the surface with spot
diameter of ∼50 μm. For these experiments laser fluence of
∼12 J/cm2, intensity of ∼1.5 GW/cm2, was used. The laser
beam was raster scanned over the surface of the target us-
ing a computer controlled galvo-scanning system equipped
with a flat field lens. The hatch distance, the distance be-
tween adjacent raster scans, was 25 μm resulting in ∼50%
beam overlap between consecutive scans. Due to the laser
repetition rate and the scan velocity multiple passes were
required in order that the desired number of pulses at each
spot on the target surface were achieved. The dependence of
structure formation on the total number of pulses fired at the
target was investigated by changing the number of passes
from one (1500 pulses/spot) to seven (10500 pulses/spot).

For the next set of experiments Nd:YAG laser sys-
tem (λ = 1064 nm, τ = 7 ns, with a repetition rate of

25 kHz) was used. Once again the laser beam with a near
Gaussian intensity distribution (M2 ∼ 1.5) was focused onto
the surface with spot diameter of ∼50 μm. For these ex-
periments only a laser fluence of ∼3 J/cm2, intensity of
∼0.43 GW/cm2, was used to process the samples in air en-
vironments (at room temperature and normal atmospheric
pressure). It has been noted that the structures are formed
aligned towards the incoming laser beam. Although it has
been previously indicated, a systematic study to produce
microstructures, which are aligned with the laser beam,
on metallic surface does not seem to have been reported.
It was calculated that the depth of focus, the distance ei-
ther side of the beam waist over which the beam diameter
grows by 5%, at a wavelength of 1064 nm was ∼±400 μm.
This allowed the target to be tilted so that processing could
take place within a regime where the laser beam parame-
ters would stay relatively uniform. Three incident angles of
75, 60, and 45 degrees were used. These structures were
processed in both the parallel line scanning and the cross
hatching regimes. The target was processed so that ∼2500
pulses were fired at a single target site in the line scanning
regime, and hence 5000 pulses were fired per spot in the
cross hatching regime.

3 Results and discussion

Raster scanning of a 532 nm laser beam over a stainless
steel target produced the microstructures that can be seen
in Fig. 1e. This occurred after ∼10500 pulses had been ap-
plied per spot. Here, the period of the microstructures, mea-
sured as the average separation between tips, is ∼50 μm,
close to the laser spot size on the target. It was not men-
tioned in previous reports, that it is possible to produce these
structures by applying as few as 1500 pulses/spot, as can be
seen in Fig. 1d. It was found that an increase in the num-
ber of pulses per spot, from 1500 to 10500 (Fig. 1a, b, c,
and d), results in the increase of the period of the microstruc-
ture, from ∼30 μm to ∼50 μm, respectively, with interme-
diate values being ∼34 μm for 4500 pulses/spot (Fig. 1c),
and ∼41 μm for 7500 pulses/spot (Fig. 1b). This affects the
number density of the structures. The number density of the
cones decreases as the number of pulses fired per spot in-
creases. Thus, the increase in the period of the microstruc-
tures suggests the growth of some cones at the expense of
others. It can be seen from Fig. 2 that as the number of
pulses applied to a target surface are increased, the period
of the microstructure increases in a parabolic manner. This
would suggest that there will be a practical limit to the pe-
riod of the microstructure. After this point, only ablation of
the surface would take place and the structures would ap-
pear further below the original surface. It was also observed
that when the number of pulses per spot is kept constant the
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Fig. 1 Scanning electron
microscopy (SEM) images
(view tilt 45°) of the target sites
where the number of pulses per
spot, NT , have been changed
(laser wavelength 532 nm,
intensity 1.5 GW/cm2, beam
spot diameter ∼50 μm, distance
between the subsequent lines
∼25 μm). From top to bottom,
NT is (a) 10500, (b) 7500,
(c) 4500, and (d) 1500, with
average tip-to-tip distance
of ∼50, 41, 35, and 30 μm,
respectively. Inset (e)—view
tilt 75° is the enlarged part of
the Fig. 1a. Exposed areas look
like black regions on a bright
steel surface

Fig. 2 Graph showing the increase of microstructure period as the to-
tal number of pulses fired at the target increases

height of the microcones increases with the laser fluence,
while the total number of cones decreases. In the experi-
ment under discussion, the major change that occurs in the
surface is the position of the microcones in relation to the
original surface. As can be seen from Fig. 1, as more pulses
are applied, the structures are formed further below the orig-
inal surface. This is attributed to the ablation of the material.
One may consider evaporation and redeposition of the ab-
lated material as a dominant mechanism since a large num-
ber of pulses at high laser fluence are accumulated in this
case. However, the smooth surface of the microcones with
well-defined apex angle suggests melt displacement as the
dominant growth mechanism in these experiments.

It is believed that there are two driving forces behind this
material movement. The first of these is the pressure of the
expanding ablation products, which are produced at the cen-

tre of the laser beam. Owing to the high intensity and good
beam quality of the source, ablation occurs at the centre of
the laser beam, which is above the ablation threshold of the
material. At the edges of the beam, melting occurs. Interac-
tion of the melt with the pressure in the near-surface plasma
layer results in hydrodynamic instabilities of the melt. De-
velopment of the instability requires that a large number of
laser pulses fired onto the target. It is known that in the ab-
sence of definite polarisation of the laser beam and spatial
modulation of the radiation intensity (in our case achieved
owing to the good beam quality of the source) melt insta-
bility in the field of ablation plume pressure results in the
growth of large-scale surface structures with a characteristic
period of ∼20–30 μm [16]. In the range of irradiation para-
meters here (intensities in the range of ∼108–1010 W/cm2,
and pulse durations in the range of <30 ns), formation of
these structures is due to a spatial modulation of the pressure
in the near-surface plasma layer, followed by melt outflow
from pits to humps and subsequent solidification. It is be-
lieved that these large-scale surface structures and capillary
wave instabilities (aperiodically unstable capillary waves)
in the vicinity of plume pressure would act as precursors
to the formation of microcones. These waves would alter
the reflectivity of the target surface and hence introducing a
non-uniform temperature distribution on the target. The non-
uniform temperature melt will then give rise to gradients in
the surface tension of the molten material. The surface ten-
sion of liquids decreases with temperature and they tend to
be pulled from hotter regions towards cooler ones. In this
case, after initial steps, >1000 pulses/spot and development
of the first microcones, more heating occurs at locations that
are orientated normal to the incoming laser beam, i.e. the
tips of the micro-cones and the inter-cone areas. This results
in the general effect that any parts of the surface, which are
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Fig. 3 SEM image (view tilt 75°) of the Stainless Steel surface after
only 165 pulses are applied per spot (laser wavelength 532 nm, inten-
sity 1.5 GW/cm2, beam spot diameter ∼50 μm, distance between the
subsequent lines ∼25 μm)

not orientated normal to the beam, will be cooler and there-
fore have a higher surface tension, i.e. the sidewalls of the
micro-cones. Due to the small cross-section of the tips they
do not absorb much of the laser energy. We can thus con-
clude that the inter-cone areas acquire the highest tempera-
ture due to the fact that they are oriented perpendicular to
the laser beam. They are also exposed, and hence absorb
the laser irradiation reflected by the sidewalls of the micro-
cones. This indicates that the surface tension in these areas
has the lowest value on the target material. This results in
the development of new structures until a certain number of
pulses per spot have been fired onto the target, in our case
1500, and the surface is covered by microcones.

It has to be pointed out that at lower laser fluences the
morphology of the surface also evolves with the number of
pulses fired onto the target. Figure 3 shows the surface of
the target after only 165 pulses/spot are applied laser flu-
ence of 3 J/cm2 (intensity of ∼0.38 GW/cm2). It can be seen
that at the initial stage the structures are formed from the
surface relief. It was earlier suggested that capillary waves
on the melted target surface are precursors to the formation
of three-dimensional periodic structures [17]. Later, a feed-
back mechanism responsible for the growth of such struc-
tures from capillary waves was suggested [8].

So far, the method of scanning the laser beam over the
sample had been simple raster scanning. To try and improve
the quality of the microstructures that were produced, a cross
hatched scanning method was adopted using the Nd:YAG
laser system (intensity of ∼0.43 GW/cm2). It was noticed
that this technique results in the production of highly regu-
lar arrays of microfeatures on the surface of a metallic sam-
ple. Analysis of further studies of this technique will be the
subject of a subsequent paper.

Fig. 4 SEM images (view tilt 30°) of the surface at incident beam
angles of (a) 75°, (b) 60°, and (c) 45° using the following pa-
rameters: Laser wavelength 1064 nm, intensity 0.43 GW/cm2, and
2500 pulses/spot

When a stainless steel target was tilted and processed
within the depth of focus of the laser system used, struc-
tures were formed (Fig. 4a, b, and c). The incident beam
angles in Fig. 4a, b, and c were 75, 60, and 45 degrees, re-
spectively. This gives a good agreement with the final angles
of the structures. For this experiment, ∼2500 pulses were
applied per spot. It was noted that the development of in-
dividual structures is slower the shallower the incident an-
gle of the laser beam. This is because the actual area that
the focused beam covers increases due to foreshortening at
shallower incident angles, thus decreasing the laser fluence.



Laser-assisted generation of self-assembled microstructures on stainless steel 121

Fig. 5 SEM images (view tilt 30°) of the surface at incident beam
angles of (a) 75°, (b) 60°, and (c) 45° using the following pa-
rameters: Laser wavelength 1064 nm, intensity 0.43 GW/cm2, and
5000 pulses/spot

This is due to the dependence of the laser fluence on the
cosine of the incident angle. Eventually, structuring would
stop as the fluence at the target drops below that required
to effectively process the surface. Applying the cross hatch-
ing technique, it is possible to produce the structures shown
in Fig. 5a, b, and c. Here, approximately 5000 pulses per
spot are fired onto the target. The structures shown were
produced at the same incident angles as those in Fig. 4; how-
ever, the scanning pattern and hatch distance were varied to
produce regular arrays of structures aligned with the incom-
ing laser beam. It can be seen uniform and evenly spaced

microfeatures are produced. In addition to this, the effect of
varying the incident beam angle allows the accurate control
of structure angles on a micron scale.

4 Conclusion

It is shown that raster-scan multipulse irradiation of steel
at 532 and 1064 nm in air produces microcone arrays with
spatial periods ranging from 30 to 50 μm, depending on the
number of pulses fired onto the target surface for constant
intensity. Regular arrays of microcones with average tip-to-
tip distances of ∼30 μm for 1500 pulses/spot to ∼50 μm
for 10500 pulses/spot at intensity of 1.5 GW/cm2 were pro-
duced. The initial feedback mechanism required for the for-
mation of structures is attributed to the hydrodynamic insta-
bilities of the melt.

There are several other outcomes from this work that
should be noted if it is desirable to form this type of struc-
ture. Firstly, it is not necessary to deposit 104+ pulses. Us-
ing the correct combination of laser intensity, hatch distance,
number of pulses/spot it has been shown that it is possible to
produce microstructures by applying as few as 1500–2000
pulses per spot. This greatly decreases the amount of time
and effort, which is needed to microstructure a given metal-
lic surface. It was found that the structures produced do align
themselves with the incident laser beam; however, the pro-
duction of such features requires more pulses the further
away from the normal incidence.

To avoid the reliance on self-assembly, it is possible to
control not only the size but also the arrangement of mi-
crostructres by changing the way the laser beam is scanned
over the target. Choosing a cross hatching pattern will pro-
duce microfeatures between the scan lines. The size and
form of these features is largely dependant on the focal spot
size of the laser. This will have to be tested from the results
and analysis of further studies, and will be the subject of a
subsequent paper.
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Abstract We present results on the growth of highly organ-
ised, reproducible, periodic microstructure arrays on a stain-
less steel substrate using multi-pulsed Nd:YAG (wavelength
of 1064 nm, pulse duration of 7 ns, repetition rate of 25 kHz,
beam quality factor of M2 ∼ 1.5) laser irradiation in stan-
dard atmospheric environment (room temperature and nor-
mal pressure) with laser spot diameter of the target being
∼50 µm. The target surface was irradiated at laser fluence
of ∼2.2 J/cm2 and intensity of ∼0.31 × 109 W/cm2, result-
ing in the controllable generation of arrays of microstruc-
tures with average periods ranging from ∼30 to ∼70 µm,
depending on the hatching overlap between the consecutive
scans. The received tips of the structures were either below
or at the level of the original substrate surface, depending
on the experimental conditions. The peculiarity of our work
is on the utilised approach for scanning the laser beam over
the surface. A possible mechanism for the formation of the
structures is proposed.
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1 Introduction

Researchers within the laser materials processing commu-
nity are familiar with the conical and periodic structures that
can be produced on various surfaces when the intensity of
the laser beam is near or at the damage threshold of the ma-
terial. An interesting topic in this field is the study of laser-
assisted formation of microstructures on material surfaces.
Indeed, the formation of microstructures on the surface of
metals, ceramics and semiconductors, utilising various pulse
laser durations and wavelengths, have been reported [1–6].
In surface modification treatments, where a range of laser
fluences lead to melting of a surface layer and a low vapor-
isation rate, growth of protruding structures (microcones)
from the target surface have been observed. In particular,
recently, growth of large microcones in steel under multi-
pulsed laser irradiation has been reported [7]. In the range
of radiation parameters employed by the authors (a pulse
duration of τ ∼ 300 ns and intensity of I ∼ 106 W/cm2 at
1064 nm line of Nd:YAG laser) the formation of microstruc-
tures on metallic surfaces, such as steel, was attributed to the
melt flow produced by surface tension gradients resulting
from temperature non-uniformity on the surface. The fully
developed microcones exhibited an average separation be-
tween tips of ∼70 µm, much less than the employed beam
spot diameter (∼300 µm) on the target and far from the sur-
face relief originated by the capillary waves with a period
of ∼10–20 µm. For other materials, such as semiconduc-
tors, the effect of vaporisation–redeposition has been used to
explain the growth of microstructures, which also exhibited
periods much larger than the laser wavelength [8, 9]. Gener-
ally, it is common for the microstructures developed under
multi-pulse laser irradiation to have periods larger than the
laser wavelength [10].
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In this paper, we explore experimental conditions re-
quired for the formation of highly organised, periodic mi-
crostructures on a steel target upon multi-pulsed laser irradi-
ation at 1064 nm in air. The microstructures exhibited an av-
erage separation between tips ranging from 30 to 70 µm, de-
pending on the hatching overlap between consecutive scans.
The tips of the generated structures are at the level of the
original substrate or below, depending on the experimental
conditions. To the authors’ knowledge, the irradiation para-
meters employed (pulse duration of τ = 7 ns and intensity
of I ∼ 0.3 × 109 W/cm2) as well as the utilised approach
for scanning the laser beam over the sample surface have
not been reported before. The fabrication of such organised,
periodic and highly reproducible microstructures on metal-
lic surfaces is believed to have applications in the fields of
surface wettability modification, and microbiology [11].

2 Experimental

The experiments were performed using stainless steel plates
(AISI 304), 1 mm in thickness. The plates were first ultra-
sonically cleaned with ethanol and deionised water to re-
move organic contamination. A Nd:YAG laser (Laservall
Violino EU Marker) at λ = 1064 nm, τ = 7 ns and rep-
etition rate of 25 kHz was utilised for irradiation of the
samples in standard atmospheric environment (room tem-
perature and normal pressure). The laser beam with a near
Gaussian intensity distribution (M2 ∼ 1.5) was focused
onto the surface. The beam spot diameter on the surface
was approximately 50 µm. The depth of focus (DOF =
±0.08πf 2/M2λ) [12], i.e. the distance either side of the
beam waist over which the beam diameter grows by 5%, is
calculated to be ∼400 µm. This large DOF results in negligi-
ble change of the spot size on the target, providing a uniform
ablation trace throughout the experiments.

For these experiments laser fluence of 2.2 J/cm2, in-
tensity of ∼ 0.31 × 109 W/cm2, was used. The damage
threshold of the material was previously reported to be
<2 J/cm2 [13]. The laser beam was raster scanned over the
surface of the target at a velocity of 10 mm/s, using a com-
puter controlled galvo-scanner equipped with a flat field lens
system. The hatch distance d , i.e. the distance between ad-
jacent raster scans, was varied for each experiment. Essen-
tially, the overlap between consecutive scans was decreased
from 40% of the laser spot diameter (d = 30 µm), to no over-
lap (d = 70 µm), in steps of 20% (�d = 10 µm). Consecu-
tive scans were performed over each area (1 mm2) so that
the required number of pulses had accumulated.

Two different scanning regimes were employed for the
experiments, namely horizontal line scanning (results shown
in Fig. 2) and cross hatched scanning (shown in Fig. 3). In
the horizontal line scanning regime (HLSR) the laser was

scanned only in the X-direction (Fig. 2(a)–(e)) and the hatch
distance was varied between the lines as described above.
In the cross hatching regime (CHR) the laser was scanned
over the surface in two directions (X and Y ) to form a grid
pattern (Fig. 3(a)–(e)), with the total number of pulses fired
onto the target surface being twice as many as in the HLSR.
The hatch distance was varied in the same manner as for
the HLSR in both directions. The surface morphology of
the samples was examined using a Hitachi S3400N scanning
electron microscope (SEM).

3 Results and discussion

Figure 1 shows the total number of pulses fired per mm2 of
the target surface versus the hatch distance for both HLSR
and CHR. As it can be seen from Fig. 1, the number of pulses
decreased as the overlap between consecutive scans was in-
creased. Figure 2 shows the results of the HLSR. Comparing
Figs. 2(a) and 2(e) as the extremes provided, it is evident
that increasing the hatch distance between the consequent
lines, from 30 to 70 µm, and hence decreasing the number
of pulses given per area, from ∼83250 to ∼35700, resulted
in much lower levels of ablation. Figures 2(c), 2(d) and 2(e)
represent the situation were there were no overlaps between
the scanned lines. In these pictures, ablation of the material
in the scanned path can be clearly seen.

As can be seen in Figs. 2(c), 2(d) and 2(e), some struc-
tures have been formed at the edge of the beam. These struc-
tures can also be observed in Figs. 2(a) and 2(b) where the
distances between the consequent lines are 30 and 40 µm,
respectively. It was found that for higher levels of overlap
between the lines (<30 µm) only substantial ablation of the
materials occurred with the consequence of no defined struc-
ture.

Fig. 1 Graph showing the total number of pulses per mm2 fired onto
the target surface as a function of the hatch distance for both horizontal
line-scanning regime (HLSR) and crossed hatching regime (CHR)
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Fig. 2 SEM picture of the steel surface after laser irradiation
in the horizontal line-scanning regime (HLSR). The hatch dis-
tance was varied between the scanned lines from 30 µm (a)

to 70 µm (e) in steps of 10 µm. The hatch distances are 30,
40, 50, 60, and 70 µm for (a), (b), (c), (d), (e), respectively

Irradiation of the material in CHR resulted in the forma-
tion of structures as shown in Fig. 3. These structures appear
to be highly organised, as can be identified in Figs. 3(a)–(e),
corresponding to the number of pulses per area of between

∼166500 and ∼62500, respectively. Despite the large num-
ber of pulses applied, the heights of the structures from
Fig. 3(b) onward are always equal to the ablated layer thick-
ness. Here the distance between the consequent scans were
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Fig. 3 SEM picture of the steel surface after laser irradiation in
the crossed hatching regime (CHR). The laser scanned over the
surface in two directions, X and Y , to form a grid pattern. The
hatch distance was fixed between the scanned lines for each area

in both X and Y , and varied for each area from 30 µm (a) to
70 µm (e) in steps of 10 µm. The hatch distances are 30, 40,
50, 60, and 70 µm for (a), (b), (c), (d), and (e), respectively

increased from 40 µm (Fig. 3(b)) to 70 µm (Fig. 3(e)), in
both X- and Y -directions. Figure 4 shows the average struc-

ture period versus the hatch distance. It follows a linear
trend, hence suggesting that as the hatch distance increase
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Fig. 4 Graph showing the increase of microstructure period (see
Figs. 3(a)–(e)) as the hatch distance increases

(total number of pulses fired onto the target decrease) larger
microstructures appear at the expense of the extinction of
other, smaller ones.

Once again it was found that increasing the overlap be-
tween the scanned lines (hatch distance <30 µm) only re-
sulted in the substantial ablation of the material. No well-
defined structures have been formed in these cases.

We consider that for the plasma produced during our
high intensity nanosecond pulse laser irradiation (intensity
in the order of ∼109 W/cm2 and τ = 7 ns) deposition of
laser energy is non-local and occurs below the critical elec-
tron density of Nc ∼ 9.7 × 1020 cm−3 (the critical electron
density is taken equal to 1.1 × 1021/λ2

l cm−3, where λl

is the laser wavelength in microns [14]). The nonlocalised
absorption of the radiation results in the heat transport to
the target and hence makes accurate energy deposition dif-
ficult. The absorption of the laser radiation occurs via in-
verse bremsstrahlung. The duration of the ablation can be
considered to be close to the duration of the laser pulse.
The heat diffusion length, lT ∼ 2(Dτ)1/2 [15], where D is
the heat diffusivity (here taken to be approximately equal
to 0.04 cm2 s−1) and τ is the laser beam dwell time (τ = 7
ns), was calculated to be approximately 33 µm. This value is
fairly close to the laser spot radius on the target (∼25 µm).
Hence, the lateral heat flow can be substantially confined.

It is proposed that the driving force behind the material
removal is the pressure of the expanding ablation products
which are produced at the centre of the laser beam interac-
tion site. Owing to the high intensity and good beam qual-
ity of the source, ablation would occur at the centre of the
laser beam, which is above the ablation threshold of the ma-
terial. This would release an expanding volume of partially
ionised plasma and some quantities of vapour. At the pe-
riphery of the beam, melting is likely occurring instead. The
lifetime of the meltpool is in approximately the same order

of magnitude as the time between pulses (∼tens of µs) [16],
which will result in an interaction of the persistent melt with
the pressure in the near-surface plasma/vapour layer. This
will induce a hydrodynamic instability of the melt. In the
absence of definite polarisation of the laser beam and spatial
modulation of the radiation intensity (in our experiments,
the large DOF maintained a high irradiance owing to the
good beam quality of the laser), melt instability in the field
of ablation plume pressure results in the growth of large-
scale surface structures [17]. In the range of irradiation pa-
rameters used here (pulse duration of 7 ns and intensity in
the order of 109 W/cm2), the formation of these structures is
induced through a spatial modulation of the pressure in the
near-surface plasma layer, followed by melt outflow from
pits to humps and subsequent solidification [17]. It has to be
pointed out that during the lifetime of the molten phase the
structures are damped due to the viscous nature of the liquid.
Upon resolidification, the actual shape of the surface freezes.
They then act as precursors to the formation of microcones
by altering the reflectivity of the target surface, and hence in-
troducing a non-uniform temperature distribution on the tar-
get. It can be seen from Fig. 4 that the period of the surface
structures is fairly close to the distance between the adjacent
traces (hatch distance). We believe that increasing the hatch
distance results in the less efficient damping of the structures
during the lifetime of the molten surface, with consequence
of increasing the average period of the structures.

4 Summary

In conclusion, a practical route towards microstructuring of
metallic surfaces is proposed. Periodic, highly organised, re-
producible microstructures were formed upon pulsed laser
irradiation of steel. Changing the overlap between consec-
utive scans of the target surface as well as scanning the
laser beam in both horizontal and vertical directions resulted
in the formation of arrays of microstructures with various
shapes and average periods ranging from 30 to 70 µm. High
intensity and good beam quality of the laser source consider-
ably facilitated the uniform processing/ablation/removal of
the material.

The feasibility of using the fabricated structures for ap-
plications in microbiology and surface wettability are cur-
rently being explored, the results of which are subject of a
subsequent publication.
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