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P
roving of bread dough was modelled using classical one-component diffusion theory, to
describe the rate of growth of bubbles surrounded by liquid dough containing dissolved
carbon dioxide. The resulting differential equation was integrated numerically to predict

the effect of initial bubble size and system parameters (carbon dioxide concentration, surface
tension at the bubble interface, temperature) on bubble growth. Two situations exist,
potentially; the dough could be either supersaturated or subsaturated with carbon dioxide.
When the dough is supersaturated, the model predicts a critical bubble size above which
bubbles grow inde® nitely, while below the critical bubble size bubbles reach a limiting size and
stop growing. The critical bubble size decreases with increasing carbon dioxide concentration
and increases with increasing surface tension. Below saturation, all bubbles reach an upper size
limit proportional to their initial size. The ® nal bubble size increases with carbon dioxide
concentration and decreases with increasing surface tension. Higher temperatures increase the
rate of bubble growth and reduce the critical bubble size for supersaturated doughs, by
increasing the value of Henry’ s Law constant. Higher temperatures also increase the ® nal
bubble size for subsaturated systems. The model could be extended to include yeast kinetics
and entire bubble size distributions, to develop a full simulation of the proving operation.
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INTRODUCTION

Breadmaking can be viewed as a series of aeration stages, in
which bubbles are incorporated during mixing, in¯ ated
with carbon dioxide gas during proving, and the
aerated structure modi® ed and set by baking1 . This view of
breadmaking emphasizes the physics of the process,
in contrast to the emphasis on cereal chemistry
which dominates most baking research. This offers a
different perspective on breadmaking which encourages
new approaches to studying and improving this unique
food.

In modern processes such as the Chorleywood Bread-
making Process (CBP), the state of aeration at the end of
mixing is critical to baked loaf structure and texture1 .
However, although mixing is arguably the most critical
stage in Mechanical Dough Development (MDD) processes,
affecting dough development and aeration, the proving
stage is still the heart of all processes to make raised bread.
Proving is the link between the state of the dough ex-mixer,
and the ® nal baked loaf quality. Understanding how aeration
during mixing affects bread quality requires a knowledge
therefore of how the bubbles in the dough grow and change
during proving.

Proving expands the original bubble structure to give a
dough mass which is predominantly gas. Baking then
converts the foam structure (containing discrete
bubbles) into a sponge structure (containing a continuous
porous network of interconnected gas cells). See Bloksma2 ,3

for reviews of mixing, proving and baking. Bubble growth
during proving is in¯ uenced by four factors:

(1) the rate of carbon dioxide production by yeast;
(2) the extent to which the carbon dioxide is retained within
the dough piece;
(3) the rate of carbon dioxide diffusion from the (saturated)
liquid phase into the nitrogen nuclei; and
(4) the rate of bubble coalescence.

The ® rst two of these factors are concerned with the gross,
macroscopic gas behaviour, while the latter two focus on
individual bubbles. The rate of carbon dioxide production
by yeast has been studied extensively4 ,5 ,6 , along with the
extent of gas retention5 ± 1 1 ; the latter depends on ¯ our
quality and is affected by ingredients such as emulsi® ers.
Bubble coalescence is dif® cult to observe and quantify in
opaque doughs and has remained essentially unstudied.

Diffusion of gas into bubbles, the third factor listed
above, is a classical chemical engineering problem. Using
diffusion theory to model the changing bubble size
distribution during proving can provide insights into this
process and its relation to aeration during mixing. Earlier
workers have modelled the shrinkage (due to gas dis-
solution) and growth (due to temperature rise) of
bubbles in water and unyeasted doughs1 2 ,1 3 , and bubble
growth during baking2 and in starchy systems during extrudate
expansion1 4 . Gan et al1 5 , reviewing gas cell stabilization in
bread doughs, decribed qualitatively the physical system of
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bubble growth during proving due to CO2 diffusion. During
proving, gas cells are stabilized by the gluten network and
by the surface-active materials in the thin liquid ® lm at the
gas-dough interface (which include proteins, polar lipids
and synthetic surfactants)1 5 . Fat crystals also aid gas
retention during proving, and more particularly during
baking1 5 ± 1 7 .

The current study applies diffusion theory to the growth
of individual bubbles in bread doughs, in order to
investigate the in¯ uence of initial diameter and system
conditions on subsequent growth. The model is applicable
to the early stages of proving i.e. while bubbles are still
suf® ciently small not to be distorted by the presence of other
bubbles. The model also applies to slow bubble growth, as is
the case during proving; in this case the viscoelastic nature
of the dough rheology is incidental, at least during the early
stages of proving before the gluten network is stretched
signi® cantly, as the dough is able to undergo viscous ¯ ow in
response to bubble growth over the time scales involved. In
this respect the model differs from models of rapid bubble
growth resulting from thermal expansion or evaporation of
water into steam during baking or extrusion, as modelled by
other workers2 ,1 3 ,1 4 . The model developed below could also
be applied to chemical leavening of cakes, although in this
case rising takes place simultaneously with baking, and the
timescales involved are shorter.

MATHEMATICAL MODELLING

Model of the Growth of a Bubble in Dough

Dough mixing entrains bubbles which act as nucleation
sites into which CO2 diffuses during proving1 8 . Consider a
single bubble in a continuous dough phase containing
dissolved CO2 , as shown in Figure 1. The bubble is
assumed to be spherical with diameter D and at a total
pressure Pb . The total pressure in the dough is P¥ , which is
less than the pressure in the bubble because of surface
tension2 ,1 5 ,1 9 . The dissolved solute (CO2 ) concentration in
the dough is C¥ , which is assumed to be uniform. The mass
transfer resistance within the bubble is assumed to be
negligible, so that C* is the solute concentration that would
be in equilibrium with the solute partial pressure in the
bubble.

Initially, when D = Do , there is nitrogen but no CO2 in the
bubble, so a concentration driving force for mass transfer
exists allowing CO2 to diffuse into the bubble, causing the
bubble to grow. The following model describes the rate of
growth, by considering the rate of mass transfer into the
bubble, Q, in two ways. Firstly, the rate of mass transfer is
described in terms of its effect on the number of moles of
gas present, n, and thus bubble size:

Q =
dn

dt
= f

dD

dt
(1)

Secondly, Q is described in terms of the mass transfer
coef® cient and concentration driving force for mass transfer
using classical diffusion theory. These two equations for Q
are then equated, and rearranged to give an expression for
the rate of change of bubble size, dD/dt, in terms of CO2

concentration and other system parameters.
The total pressure inside the bubble of diameter D is Pb

and the surface tension is c . The surface tension causes the
internal bubble pressure to be raised above the pressure in

the liquid, as given by the Young-Laplace equation:

Pb = P¥ 1
4c

D
(2)

(A term to account for the yield stress of the dough could be
included; however the major contribution to the excess
pressure in the bubbles is surface tension2 .)

The bubble has grown from a nitrogen nucleus of
diameter Do , which contains no moles of nitrogen. From
the ideal gas law:

n0 =
Pbo

Vo

RT
=

(P¥ 1 4c /Do)pD3
o

6RT
(3)

since

Pbo
= P¥ 1

4c

Do

(4)

Nitrogen is assumed not to diffuse into the dough phase, so
that the bubble always contains no moles of nitrogen. For a
bubble of diameter D containing a total of n moles of gas:

n =
(P¥ 1 4c /D)pD3

6RT
(5)

The molar rate of mass transfer can also be expressed as the
rate of change of the number of moles with time, dn/dt:

Q =
dn

dt
=

pD2

6RT
3P¥ 1

8c

D

dD

dt
(6)

This gives the ® rst expression for the mass transfer rate, Q,
in terms of the rate of change of bubble size, dD/dt.

The mass transfer rate, Q, into a single bubble can now
also be described in terms of the standard mass transfer
equation:

Q = KL(pD2)(C¥ 2 C*) (7)

where C* is the concentration of carbon dioxide in the dough
that would be in equilibrium with the partial pressure of
carbon dioxide in the bubble, KL is the overall mass transfer
coef® cient and (pD2 ) is the surface area of a sphere of
diameter D.

From the two ® lm theory of mass transfer at a gas-liquid
interface2 0 :

1

KL

=
1

kL
1

RT

HkG

(8)

where kL and kG are the individual mass transfer coef® cients
for the liquid and gas phases, respectively. Assuming mass

74 SHAH et al.

Trans IChemE, Vol 76, Part C, June 1998

Figure 1. A bubble surrounded by dough containing dissolved carbon
dioxide.



transfer is liquid side controlled (i.e. H is relatively large),
then

KL < kL (9)

For pure diffusion2 0 :

Sh =
kLD

DL

= 2 (10)

where Sh is the Sherwood number and DL the diffusivity of
carbon dioxide in dough. Therefore equation (7) becomes:

Q < 2DL(pD)(C¥ 2 C*) (11)

Before equating this expression with equation (6) an
expression for C* is needed. This may be found by
considering the partial pressure of carbon dioxide in the
bubble, PCO2

b . From equations (3) and (5):

PCO2

b =
n 2 no

n
Po =

P¥(D3 2 D3
0) 1 4c (D2 2 D2

0)

D3

(12)

Assuming Henry’ s Law for dilute concentrations of solute:

C* =
PCO2

b

H
=

P¥
H

1 2
Do

D

3

1
4c

HD
1 2

Do

D

2

(13)

Equating equations (6) and (11) for Q and rearranging gives
the ® nal expression for the rate of change of bubble
diameter, dD/dt:

dD

dt
=

12RTDL(C¥ 2 C*)

3P¥D 1 8c
(14)

where C* is given by equation (13).
This model predicts the rate of change of bubble diameter

for a single spherical bubble into which carbon dioxide is
diffusing from the surrounding dough. The model assumes
that the values of C¥ , P¥ and H are constant over time, and
that the dough phase behaves as an in® nitely large region of
constant CO2 concentration. The model does not need to
consider dough rheology, as surface tension predominates
over rheology in affecting the pressure in bubbles during
proving2 , and bubbles will grow as described above if a
suitable mass transfer driving force exists (the dough will
simply move in response to the bubble growth).

Values for Physical Constants

The values used for the physical constants required to
integrate equation (14) are given in Table 1. Proving occurs

typically at 40°C for around 45 minutes, and dough typically
contains around 40% water.

The constant in Henry’ s law was taken for a
carbon dioxide-in-dough system2 . The value for surface
tension and solute concentration in dough were also taken
from the literature. The mass diffusivity coef® cients were
calculated after the method of de Cindio and Correra2 1 who
assumed that carbon dioxide diffuses through the water
present in dough and approximated the diffusion coef® cient
through the dough phase as a fraction of the diffusion
coef® cient of carbon dioxide in water:

DL = 1.77 ´ 10 2 9XW

T

298
(15)

Assuming that the mass fraction of water, XW = 0.4 and
that proving takes place at 313 K (40°C) gives

DL = 7.44 ´ 10 2 10 m2 s 2 1.
In the initial studies presented below, the value for the

carbon dioxide concentration in the dough was chosen to be
C¥ = 0.031 kmol m 2 3, indicating a slightly supersaturated
solution (in a real dough this situation could occur once the
dough phase becomes saturated if CO2 production
exceeds diffusion into bubbles and loss of CO2 to
atmosphere). Saturation occurs when C¥ = P¥ /H =
0.0303 kmol m- 3 . The effect of CO2 concentration on
bubble growth is discussed below. For this modelling,
bubble sizes in the range 0 to 300 mm were considered (the
number average bubble size in a dough ex-mixer is around
100 mm1 ,2 3 , with a range from below 40 mm to above
400 mm2 3 ).

RESULTS AND DISCUSSION

Modelling the Growth of Single Bubbles in Dough
Supersaturated with Carbon Dioxide

From this model of the growth of a single bubble in
yeasted dough, a FORTRAN 77 program was written to
predict the growth of a bubble with a given initial diameter.
The program used a 5th-order Runge-Kutta algorithm2 4

with adaptive step-size control to integrate equation (14)
over time for different initial bubble diameters, for the
conditions de® ned in Table 1.

Figure 2 shows the predicted bubble growth over a 50
minute proving time for the conditions given in Table 1.
Under these conditions of slight supersaturation, a critical
bubble size exists below which bubbles stop growing;
bubbles of 9.0 mm cease growing when they reach about
32 mm, while 10 mm bubbles continue to grow inde® nitely.
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Table 1. Values for physical parameters used in modelling growth of bubbles in dough.

Parameter Value Reference

Carbon dioxide concentration in dough, C¥ Varied:
0.029±0.033kmol m 2 3

Diffusivity of carbon dioxide in dough, DL 7.44 ´ 102 10 m2 s 2 1 de Cindio and Correra21

Henry’ s Law constant, H 3.30 ´ 106 J kmol2 1 Bloksma2

Ambient pressure in dough, P¥ 100,000 Pa
(ignoring hydrostatic pressures)

Universal gas constant, R 8314J kmol2 1 K 2 1

Proving temperature, T 313 K
Surface tension, c 0.04N m2 1 Kokelaar and Prins22



Calculation of the Critical Bubble Size

Bubbles stop growing because the partial pressure of
carbon dioxide inside the bubble balances the carbon
dioxide concentration in the dough i.e. C* = C¥. Large
bubbles never stop growing; this means C* never reaches
C¥ . As bubbles grow, C* increases initially (it must do, as
CO2 is entering the bubble), then it decreases again later
(again, it must do, as C* is proportional to PCO2

b , which
decreases at large diameter as diameter increases, according
to equation (12)). Therefore, as bubbles grow, C* and PCO2

b
pass through a maximum. But if C* reaches C¥ , then the
bubble will stop growing. So the initial bubble size for
which this maximum corresponds to C* = C¥ is the critical
bubble size; this is the bubble size which is just small
enough for C* to reach C¥ and stop growing. This can be
calculated by differentiating equation (12) and setting the
differential to zero, and solving to ® nd the diameter at which
the partial pressure of CO2 is at a maximum. From this C*

max

can be calculated; the critical bubble size occurs when C*
max

and C¥ are equal. The derivation is as follows:

dPCO2

b

dD
=

3P¥D3
0 2 4c D2 1 12cD2

0

D4
= 0 (16)

Therefore, setting D*
0 as the critical initial bubble size and

D* as the corresponding ® nal diameter, gives:

P¥D*2
o 1 4c D*2

0 2
4

3
c D*2 = 0 (17)

This gives one equation and two unknowns; another
equation relating the initial and ® nal bubble diameters is
needed. This is provided by equation (13), as when the
bubble initially of diameter D*

0 reaches D* and stops
growing, then C* = C*

max = C¥:

C*
max =

P¥
H

1 2
D*

o

D*

3

1
4c

HD*
1 2

D*
o

D*

2

= C¥

(18)

Rearranging equation (18) gives:

P¥D*3
o 1 4c D*2

o 2 [P¥ 2 HC¥]D*3 2 4c D*2 = 0

(19)

Equations (17) and (19) can be solved simultaneously to
give the following equation for D* :

D* =
8c

3[HC¥ 2 P¥]
(20)

which can be substituted back into equation (17) to solve
for D*

o. Figure 3 shows the relationship between
D*

o, D* and C¥ . For the conditions modelled above
(CO2 concentration = 0.031 kmol m 2 3), D*

o = 9.6 mm and
D* = 46.4 mm. For a CO2 concentration in the dough of
0.032 kmol m 2 3, D*

o = 5.5 mm and D* = 19.0 mm, i.e. at
greater levels of supersaturation, smaller bubbles can be
forced to grow.

Clearly, when P¥ = HC¥, equation (20) has no solution,
and when P¥ > HC¥, a meaningless negative solution for D*

results. So a critical initial bubble size exists only
when P¥ <HC¥ , i.e. when the dough is supersaturated
with carbon dioxide. This is indicated on Figure 3 by
the fact that the curve of D*

o versus C¥ approaches
C¥ = P¥ /H = 0.0303 kmol m 2 3 asymptotically.

Potentially two situations exist; the dough could be
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Figure 2. In¯ uence of the initial diameter (Do) on subsequent bubble
growth, as predicted by integrating equation (14), showing how a small
change in bubble size from 9 to 10 mm affects long term growth.
P¥ = 100kPa, c = 0.04 N m2 1, C¥ = 0.031kmol m 2 3 (slightly super-
saturated).

Figure 3. Critical initial bubble size, D*
o for different solute concentrations

in the dough. The corresponding ® nal bubble size, D*, is also shown.
P¥100kPa, c = 0.04 N m 2 1 .

Figure 4. Effect of surface tension c on the critical bubble size D*
o for C¥

above saturation.



supersaturated or subsaturated with carbon dioxide.
Subsaturation will occur in a dough at least during the
early stages of proving. Supersaturation could arise when
the rate of CO2 production by yeast exceeds the rate of
diffusion into gas bubbles and loss to atmosphere; whether
this situation is reached within the 50 minutes of proving has
not been established (see later discussion). Under conditions
of supersaturation, a critical initial bubble size exists below
which bubbles are unable to grow inde® nitely. The greater
the level of supersaturation, the smaller the critical bubble
size, as illustrated in Figure 3. The growth of bubbles in
dough not saturated with CO2 is considered below. First, the
effect of surface tension on the critical bubble size is
considered.

From equation (24), if the surface tension, c , is zero, then
the solution to the equation is D* = 0 and no critical bubble
size exists. Figure 4 shows the effect of surface tension and
C¥ on the critical bubble size. As surface tension decreases,
the pressure inside the bubble decreases. Therefore the
partial pressure of CO2 decreases, allowing smaller bubbles
to grow for a given value of C¥ . Figure 4 also con® rms the
conclusion noted above, that larger values of C¥ produce
smaller critical bubble sizes.

Figure 5 shows the effect of surface tension on bubble
growth for two bubble sizes. For a bubble initially of
5.0 mm, a change in c from 0.04 to 0.02 Nm 2 1 has the effect
of lowering the critical bubble size, allowing the bubble to
grow inde® nitely.

Modelling the Growth of Single Bubbles in Dough Not
Saturated With Carbon Dioxide

If C¥ is below saturation, a critical bubble size does not
exist; all bubbles grow, but none grows inde® nitely.
Figure 6 shows, for C¥ = 0.030 kmol m 2 3, that all bubbles,
regardless of their initial size, approach an upper size limit.
The ® nal bubble size, D* is only reached after very long time
scales, in excess of 3 hours (c.f. typical proving times of 45
minutes).

The ® nal bubble size depends on C¥ and c , as shown in
Figure 7, which summarizes the effects of C¥ and c both
above and below saturation. Below saturation, the ® nal

bubble size, D* , increases as C¥ increases. When C¥
exceeds saturation, no ® nal bubble size exists, except for
bubbles below the critical initial bubble size. Larger values
of C¥ reduce the critical bubble size, as smaller bubbles can
be forced to grow by the larger concentration driving force.
Reducing surface tension increases the ® nal bubble size
when C¥ < Csat, and reduces the critical bubble size when
C¥ < Csat, by reducing the pressure inside bubbles and
therefore the partial pressure of carbon dioxide.

The ® nal bubble size can be calculated for large initial
bubble diameters by assuming the surface tension contribution
to C* is negligible. From equation (18), growth will cease
when C* = C¥:

C* =
P¥
H

1 2
Do

D

3

1
4c

HD
1 2

Do

D

2

<
P¥
H

1 2
Do

D

3

= C¥ (21)
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Figure 5. Effect of surface tension on the growth of bubbles and the critical
bubble size.C¥ = 0.031kmol m 2 3 , P¥ = 100000Pa, Do = 5 mm,

Do = 25 mm.

Figure 6. Bubble growth for different initial bubble sizes under
subsaturated conditions. C¥ = 0.030kmol m 2 3 , P¥ = 100kPa,
c = 0.04 N m 2 1 .

Figure 7. Effect of carbon dioxide concentration in the dough, C¥, and
surface tension, c , on the ® nal bubble diameter. c = 0.02 N m2 1,

c = 0.04 N m 2 1 .



when D = D*. Therefore

D* < 3
P¥

P¥ 2 HC¥
Do (22)

The slopes of the upper parts of the lines of D* versus Do

in Figure 7 are equal to:

3
P¥

P¥ 2 Hc¥
,

for C¥ = 0.0290, 0.0295 and 0.0300kmol m 2 3. When
P¥ # HC¥ (i.e. the solution is saturated or supersaturated),
equation (22) has no positive real solution, and no ® nal
bubble size exists; bubbles continue to grow inde® nitely.
This is shown on Figure 7 by the slopes becoming in® nite
above the critical bubble size for C¥ > 0.0303kmol m 2 3.

Considering the range of initial bubble sizes reported by
Campbell et al2 3 , from below 40 to above 400 mm, all of
these bubbles will grow, but not inde® nitely if super-
saturation is not achieved. If a ® nal CO2 concentration of
0.0300kmol m 2 3 were achieved, bubbles initially of 40 mm
would reach around 150mm, and bubbles of 400 mm initially
would reach about 1800 mm.

Effect of Temperature On Bubble Growth

If proving were to take place at higher or lower
temperatures than 313 K, then bubble growth would
be affected. As T increases, H also increases2 , i.e. CO2 is
less soluble at higher temperatures, which has the effect of
reducing C* . Equation (14) shows that if T increases and
(C¥ 2 C*) increases, then dD/dt also increases; this is borne
out by Figure 8. Furthermore, raising the temperature
decreases D*

o, since according to Henry’ s Law, increasing H
reduces C* . This increases the concentration driving force
for diffusion, allowing even smaller bubbles to grow.
Equation (22) shows that for systems below saturation,
raising the temperature increases H and therefore
(P¥ 2 HC¥) decreases. Thus the ratio P¥ /(P¥ 2 HC¥)
becomes larger, increasing D* , so higher temperatures
tend to produce larger ® nal bubble sizes.

Qualitative Description of Proving

The above discussion gives useful indications about how
initial bubble size and system parameters should affect
bubble growth. The real situation during proving is that
initially the dough is essentially free of dissolved carbon
dioxide. The yeast produces carbon dioxide at a rate of
around 2.5 ´ 102 5 kmol gas per m3 liquid dough phase per
second2 ; to reach a saturated concentration of 0.0303kmol
m 2 3 would therefore take around 20 minutes, ignoring
transfer of CO2 into bubbles or loss to atmosphere. So for at
least the ® rst half of proving, the dough is not saturated; all
bubbles are below the critical bubble diameter during this
time, and no bubbles are destined to grow inde® nitely unless
supersaturation is achieved. Whether or not supersaturation
is ever achieved depends on whether the rate of CO2

production by the yeast ultimately exceeds the rate of mass
transfer into bubbles and to atmosphere. Resolution of this
question will require a more fully developed application of
the above model to consider the growth of entire bubble size
distributions, along with yeast kinetics and losses of carbon
dioxide to atmosphere.

In a dynamic system containing a distribution of bubbles,
bubbles are competing for the available CO2 . Large bubbles
have the advantage that they have lower pressures and
therefore a greater driving force for mass transfer, but
smaller bubbles have greater mass transfer coef® cients, as
indicated by equations (9) and (10). Also, smaller bubbles
tend to be more numerous. One can envisage a complex and
interesting situation in which small bubbles initially grow
quickly, with larger bubbles maintaining their growth over
the longer term.

Mita and Matsumoto2 5 studied bubble growth in
fermenting doughs by photographing the exposed surfaces
of freeze-dried dough samples. They found that the number
of visible bubbles increased during the ® rst 20 minutes of
proving, but that their size increased only slowly during this
time. Beyond 20 minutes, bubble growth accelerated, and
bubbles started to coalesce after about 50 minutes. This may
re¯ ect the initial rapid growth of small bubble nuclei, such
that these became visible, taking up much of the available
CO2 , while larger bubbles grew only slowly. Once the
supply of nitrogen nuclei was exhausted, the pressure
advantage of the larger bubbles dominated, so that these
showed more rapid growth for the remaining time. Again,
modelling of the growth of entire bubble size distributions
should demonstrate this phenomenon.

CONCLUSIONS

Bubble growth during proving of bread dough can be
modelled in terms of classical diffusion theory. The
resulting differential equation can be integrated numerically
to reveal insights into how bubble growth is likely to be
affected by bubble size, surface tension and other system
conditions.

Two situations can exist in theory; the dough can be
supersaturated or subsaturated with carbon dioxide. When
the dough is supersaturated, a critical bubble size exists;
above the critical bubble size, bubbles continue to grow
inde® nitely, while below the critical bubble size bubbles
stop growing due to the carbon dioxide concentration in the
bubble and in the dough reaching equilibrium. The critical
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Figure 8. Effect of temperature, T, on bubble growth. C¥ = 0.031kmol
m 2 3 , c = 0.04 Nm 2 1 , Do = 10 mm, Do = 500mm.



bubble size depends on the degree of supersaturation and the
value of the surface tension at the bubble interface.

At carbon dioxide concentrations below saturation, all
bubbles eventually reach an upper limit, albeit over
timescales, much longer than typical proving times. The
® nal bubble size is approximately proportional to the initial
bubble size. Higher dissolved carbon dioxide concentrations
in the dough increase the ® nal bubble size, while larger
values of the surface tension decrease the ® nal bubble size.
Higher temperatures increase the rate of bubble growth and
decrease the critical bubble size, due to the dependency of
Henry’ s Law constant on temperature.

Real dough systems are not saturated with carbon dioxide
for at least the ® rst half of proving, and possibly never reach
saturation. Bubbles compete for the available carbon
dioxide, and the ® nal bubble size distribution will depend
on the degree of saturation of carbon dioxide achieved and
the relative extent of mass transfer of carbon dioxide into
bubbles of different sizes within the time available.

The model could be applied to entire bubble size
distributions, and could be extended to incorporate yeast
kinetics, loss of carbon dioxide to atmosphere and spatial
variations throughout a proving dough. This is the subject of
future work.

NOMENCLATURE

C* solute concentration at interface, kmol m 2 3

C*
max maximum solute concentration at interface, kmol m 2 3

C¥ solute concentration in dough,kmol m 2 3

Do initial bubble diameter, mm
D*

o critical initial bubble diameter, mm
D bubble diameter, mm
D* ® nal bubble diameter corresponding to critical initial bubble

diameter, mm

DL coef® cient of diffusivity, m2 s
2 1

H Henry’ s Law constant, J kmol2 1

kG gas phase mass transfer coef® cient, m2 s 2 1

kL liquid phase mass transfer coef® cient, m2 s 2 1

KL overall mass transfer coef® cient, m2 s 2 1

n number of moles of nitrogen in a bubble,kmol
no initial number of moles of nitrogen in a bubble,kmol
Pb solute pressure in bubble, Pa
Pbc

initial solute pressure in bubble, Pa
P CO2

b partial pressure of carbon dioxide in bubble, Pa
P¥ solute pressure in dough, Pa
Q molar rate of transfer, kmol s

2 1

R universal gas constant, J kmol2 1 K2 1

Sh Sherwood number
t time, s
T absolute temperature, K
Vo initial bubble volume, m 2 3

Xw mass fraction of water in dough
c surface tension, N m 2 2
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