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Abstract

One of the main potential uses of life cycle assessment (LCA) in environmental management is for identifying options for
environmental improvements of a system in which complete supply chains are considered. The main problem, however, lies in
finding the optimum improvement strategies and choosing the best alternative in a decision environment with multiple, and often
conflicting, objectives. To aid the decision-making process, this paper proposes the use of multiobjective optimisation (MO),
whereby the system is simultaneously optimised on a number of environmental objective functions, defined and quantified through
the LCA approach. This results in a Pareto or noninferior surface, with a range of environmental optima, from which the best
compromise solution for improving the environmental performance of the system can be chosen. However, system improvements
cannot be based solely on environmental considerations and other factors, including socio-economic, must be considered in
parallel. This paper also shows that MO coupled with LCA provides a powerful tool for balancing environmental and economic
performance, thus enabling the choice of best practicable environmental option (BPEO) and best available technique not entailing
excessive cost (BATNEEC). The value of this approach in environmental system analysis lies in providing a set of alternative
optimal options for system improvements rather than a single prescriptive solution, which may be optimal but not necessarily
appropriate for a particular situation. A decision–aid tool–optimum LCA performance (OLCAP)–has been developed for these
purposes. OLCAP is tested and demonstrated by application to a case study of an existing mineral-processing system producing
boron products. It is shown that LCA can successfully be combined with optimisation techniques to satisfy both economic and
environmental criteria for more sustainable performance of the product system over the whole life cycle. © 1999 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Life cycle assessment (LCA) represents an applica-
tion of system analysis to problems of environmental
management. Its embodiment of systems thinking is, at
root, no different from the approaches normally used in
selecting and designing processes. Yet, despite the fact
that, compared to the technical effort required in de-
signing and optimising a process, incorporation of LCA
represents only slight incremental effort, the adoption
of life cycle approaches by the process industries has
been relatively slow. However, recent literature suggests
that this attitude is changing and that LCA is gaining
wider acceptance in many industrial sectors (Lee,

O’Callaghan & Allen, 1995; Baumann, 1996; Curran,
1997; Wright, Allen, Clift & Sas, 1997; Clift, 1998),
particularly in the process industries (Franke, Kluppel,
Kirchert & Olschewski, 1995; Dobson, 1996; Ophus &
Digernes, 1996; Yoda, 1996; Aresta & Tommasi, 1997;
Bretz & Fankhauser, 1997). Some other examples of
using LCA in corporate decision making include energy
(Audus, 1996; Matsuhashi, Hikita & Ishitani, 1996;
Tahara, Kojima & Inaba, 1997; Dones & Frischknecht,
1998), nuclear (Griffin, 1997; Solberg-Johansen, 1998),
water (Roeleveld, Klapwijk, Eggels, Rulkens & van
Starkenburg, 1997; Dennison, Azapagic, Clift & Col-
bourne, 1998), electronic (de Langhe, Criel & Ceuter-
ick, 1998; Miyamoto & Tekawa, 1998) and other
industries.

There are reasons in addition to disciplinary compat-
ibility to expect the use of LCA in the process indus-
tries to expand rapidly. In the European Union, the
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Directive on Integrated Pollution Prevention and Con-
trol (IPPC) (EU, 1996) represents a significant shift in
the basis of environmental regulation (Emmott &
Haigh, 1996; Nicholas, 1998). IPPC incorporates the
principle of integrated pollution control (IPC), intro-
duced in the UK by the 1990 Environmental Protection
Act to regulate processes which give rise to different
emissions, particularly into different environmental me-
dia. However, IPPC goes beyond IPC to embrace the
life cycle both of the process (including construction
and decommissioning) and of materials and energy
(including resource usage and waste) (Nicholas, 1998;
RCEP, 1998). IPPC is planned to be implemented by
EU member states by October 1999. If applied strictly,
IPPC will mandate the use of LCA in identifying the
best practicable environmental option (BPEO).

Although the use of LCA has traditionally been
oriented towards improving the environmental perfor-
mance of products (Fava et al., 1991; Tillman, Bau-
mann, Eriksson & Rydberg, 1991; Boustead, 1992;
Heijungs et al., 1992; Pedersen & Christiansen, 1992;
Fava, Consoli, Dennison, Dickson, Mohin & Vigon,
1993; Guinée, Heijungs, Udo de Haes & Huppes, 1993;
Keoleian, 1993; Pedersen, 1993; Vigon et al., 1993;
Weidema & Krüger, 1993; Azapagic, 1997; Fleischer &
Schmidt, 1997), several authors have recently demon-
strated the previously unexplored potential of LCA as a
tool for process selection and BPEO (Golonka & Bren-
nan, 1996; Rice, 1997; Clift & Azapagic, 1998; Yates,
1998), process design (Pesso, 1993; Stefanis, Livingston
& Pistikopoulos, 1995; Kniel, Delmarco & Petrie, 1996;
Pistikopoulos, Stefanis & Livingston, 1996; Stewart &
Petrie, 1996; Stefanis, Livingston & Pistikopoulos,
1997) and optimisation (Azapagic & Clift, 1995a,b;
Azapagic, 1996; Azapagic & Clift, 1997; Azapagic &
Clift, 1999a,b; Azapagic, Clift & Lamb, 1996a,b). A
more detailed exposition of the application of LCA to
process selection and design is given elsewhere (Aza-
pagic, 1999). Here, the focus is on the use of LCA for

process optimisation. The aim is to show how the kind
of analysis adapted from operations research and wel-
fare economics can be combined with system analysis in
the context of LCA to provide a powerful decision-
making tool for more sustainable performance of pro-
cess industries. The potential of this approach is
illustrated by the example of an industrial case study of
a mineral-processing system.

2. Life cycle assessment

LCA is a quantitative environmental performance
tool, essentially based around mass and energy balances
but applied to a complete economic system rather than
a single process. In terms of the system boundary
definition, this represents an extension to the conven-
tional system analysis, in which the system boundary is
drawn around the process of interest only. Fig. 1
illustrates the way in which LCA can complement
conventional process analysis. While chemical or pro-
cess engineering is normally concerned with the opera-
tions within system boundary 1, LCA considers the
whole material and energy supply chains, so that the
system of concern becomes everything within system
boundary 2. The material and energy flows that enter,
exist in or leave the system include material and energy
resources and emissions to air, water and land. These
are often referred to as environmental burdens and they
arise from activities encompassing extraction and
refining of raw materials, transportation, production,
use and waste disposal of a product or process. The
potential effects of the burdens on the environment, i.e.
environmental impacts, normally include global warm-
ing potential (GWP), acidification, ozone depletion
(OD), eutrophication etc. (see Appendix A).

The LCA methodology is still under development. At
present, the methodological framework comprises four
phases (ISO, 1997):
1. Goal and scope definition: selecting the system

boundaries (see Fig. 1) to ensure that no relevant
parts of the system are omitted;

2. Inventory analysis: performing mass and energy bal-
ances to quantify all the material and energy inputs,
wastes and emissions from the system, i.e. the envi-
ronmental burdens;

3. Impact assessment: aggregating the environmental
burdens quantified in the Inventory Analysis into a
limited set of recognised environmental impact cate-
gories, such as global warming, acidification, Ozone
Depletion, etc.;

4. Interpretation: using the results to reduce the envi-
ronmental impacts associated with the product or
process.

Applied to process analysis, LCA can have two main
objectives. The first is to quantify and evaluate the

Fig. 1. Stages in the life cycle of a product (system boundary: 1,
process analysis; 2, life cycle assessment; T, transport.
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Fig. 2. The methodological framework for Optimum LCA Perfor-
mance (OLCAP).

straints in the system. Over the past decade, optimisa-
tion of environmental performance has started to be
incorporated into system optimisation, alongside tradi-
tional economic criteria. These approaches have mainly
been focused on various waste minimisation techniques
(El-Halwagi & Manousiouthakis, 1990; Ciric & Jia,
1994; Wang & Smith, 1994; Linninger, Stephanopoulos,
Ali, Han & Stephanopoulos, 1995). The attempts to
incorporate environmental considerations into the de-
sign and optimisation procedures represent the begin-
ning of the paradigm shift in the process industry
traditionally oriented towards the economic perfor-
mance of the process. However, the main disadvantage
of these approaches is that they concentrate on the
emissions from the plant only, without considering
other stages in the life cycle. Thus, it is possible for
waste minimisation approaches to reduce the emissions
from the plant but to increase the burdens elsewhere in
the life cycle, so that overall environmental impacts are
increased (e.g. RCEP, 1998).

Consequently, the need to integrate life cycle think-
ing into process design and optimisation procedures has
been recognised by a number of researchers (Azapagic,
1996; Pistikopoulos et al., 1996; Stewart & Petrie,
1996). One such approach that establishes a link be-
tween the environmental and economic performance of
a process from ‘cradle to grave’ has been developed by
Azapagic and co-workers (Azapagic & Clift, 1995a,b;
Azapagic, 1996; Azapagic et al., 1996a,b; Azapagic,
1997; Bell, Azapagic, Faraday & Schulz, 1998; Aza-
pagic, 1999; Azapagic & Clift, 1999a,b). This method,
here referred to as ‘Optimum LCA Performance’, is
presented and discussed in the following sections.

3.1. Optimum LCA performance (OLCAP)

A general framework for the optimun LCA perfor-
mance (OLCAP) methodology comprises four steps:
1. Completion of the LCA study;
2. Formulation of the optimisation problem in the

context of LCA;
3. Multiobjective optimisation (MO) on environmental

and economic criteria;
4. Multicriteria decision analysis and choice of the best

compromise solution.
The diagramatic representation of the OLCAP ap-
proach is given in Fig. 2. The first step in this procedure
involves carrying out an LCA study of the system, by
following the ISO (1997) methodology. As indicated in
Fig. 2, appropriate LCA software, e.g. PEMS (PIRA
International, 1998) or TEAM (Ecobalance, 1998), can
be used to carry out material and energy balances and
to quantify the burdens and impacts along the life
cycle. The material and energy balances for the process
itself (boundary 1 in Fig. 1) can also be carried out
within existing design operation software and these

environmental performance of a process from ‘cradle to
grave’ and so help decision-makers to choose between
alternative processes and processing routes. In this con-
text, LCA provides a useful tool for identifying BPEO.
Another objective of LCA is to help identify options
for improving the environmental performance of a sys-
tem. This objective can be of particular importance to
process designers and engineers, because it can inform
them on how to modify a system to decrease its envi-
ronmental impacts. To assist in identification of the
optimal options for improved system operation from
‘cradle to grave’, LCA can be coupled with optimisa-
tion techniques as discussed in the next section.

3. LCA and system optimisation

To describe and predict the behaviour of complex
industrial systems, it is often necessary to use elaborate
mathematical modelling. In the same manner, identifi-
cation of the optimum operating conditions that will
ensure improved process performance usually renders
the use of an optimisation technique essential. Histori-
cally, system optimisation in chemical and process engi-
neering applications has focused on maximising the
economic performance, subject to the certain con-
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data can then be fed into the LCA software. The data
for the other parts of the system (boundary 2 in Fig. 1)
can be sourced from a database which is normally an
integral part of the LCA software. A more detailed
exposition of the LCA methodology is given elsewhere
(ISO, 1997) and is not discussed further here. Instead,
the focus of this paper is on steps 2–4 of the OLCAP
procedure.

The environmental burdens and impacts quantified in
step 1, represent an input into the optimisation model,
which is formulated in step 2. In addition to environ-
mental criteria, the model includes economic, technical,
legislative and other constraints within which the sys-
tem must operate. In step 3, the system is optimised on
environmental and socio–economic objectives of inter-
est to the decision-makers, to yield a number of opti-
mum solutions. A suitable optimisation technique and
software must be used to generate and solve the optimi-
sation problem. A more detailed account of these two
steps of OLCAP is given in Sections 3.1.1 and 3.1.2.
Finally, step 4 enables the decision-makers to choose
the best compromise alternative from a range of opti-
mum solutions. Any of the multi-criteria decision mak-
ing techniques, some of which have been formalised in
various software packages, can be used to facilitate the
decision-making process. This is discussed in Section
3.1.3.

3.1.1. Step 2: Formulation of the optimisation problem
Because of the nature of LCA, where there are a

number of distinct environmental burdens or impacts to
be considered, optimisation problems in this context are
inevitably multiobjective. Thus, conventional single-op-
timisation problems, involving one (usually economic)
function are transformed into multiobjective problems,
to include the environmental objectives. A Multi-Objec-
tive (MO) problem in the context of LCA can take the
following form:

min f(x, y)= [ f1 f2 . . . fp ] (1)

s.t.

h(x, y)=0

g(x, y)50

x�X¤Rn

y�Y¤Zq (2)

where f is a vector of economic and environmental
objective functions; h(x, y)=0 and g(x, y)50 are
equality and inequality constraints, and x and y are the
vectors of continuous and integer (discrete) variables,
respectively. For instance, the equality constraints may
be defined by energy and material balances; the in-
equality constraints may describe material availabilities,
heat requirements, capacities etc. A vector of n continu-

ous variables may include material and energy flows,
pressures, compositions, sizes of units etc., while a
vector of q integer variables may be represented by
alternative materials or processing routes in the system.
If the integer set Z is empty and the constraints and
objective functions are linear, then Eqs. (1) and (2)
represent a Linear Programming (LP) problem; if the
set of integer variables is nonempty and nonlinear
terms exist in the objective functions and constraints,
Eqs. (1) and (2) is a Mixed-Integer Nonlinear Program-
ming (MINLP) problem. Mixed Integer Linear Pro-
gramming (MILP) problems incorporate integer and
linear variables only.

An economic objective typically involves a cost or
profit function as defined by:

min F=cTy+ f(x) (3)

where c is a vector of cost or profit coefficients for
integer variables and f(x) is a linear or nonlinear func-
tion described by continuous variables. The environ-
mental objectives in this context represent the burdens
Bj or impacts Ek :

min Bj= %
N

n=1

bj,nxn (4)

min Ek= %
J

j=1

ek, jBj (5)

where bj,n represents emission coefficients associated
with continuous variables xn. In Eq. (5), ek, j represents
the relative contribution of burden Bj to impact Ek, as
defined by the ‘problem oriented’ approach to Impact
Assessment (Heijungs et al., 1992). In this approach,
for example, GWP factors, ek, j, for different greenhouse
gases are expressed relative to the GWP of CO2, which
is therefore defined to be unity. If a different impact
assessment approach is used, then Eq. (5) may be
redefined accordingly. Note that at present the LCA
approach assumes that environmental burdens and im-
pacts functions are linear, i.e. they are directly propor-
tional to the output of functional unit(s) and there are
no synergistic or antagonistic effects.

Depending on the characteristics of the system, the
problem (1)-(2) can be formulated as LP, MILP or
MINLP. The theory for solving such problems is well
established (Dantzig, 1963; Floudas, 1995) and a num-
ber of commercial software packages are available for
large scale problems, of which XPRESS-MP (Dash
Associates, 1993) and GAMS (1998) are often used in
process and chemical engineering applications.

3.1.2. Step 3: Multiobjecti6e optimisation
The system is then optimised simultaneously on a

number of environmental and economic objective func-
tions to locate the multidimensional noninferior or
Pareto surface which maps the optimal solutions. By
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definition, the noninferior state is achieved if no objec-
tive can be improved without worsening the value of
some other objective. If examined more closely, it is
obvious that this definition is identical to the Pareto
optimality concept (Pareto, 1971) which marked the
beginning of new welfare economics and has been
influencing decision-making process ever since. Welfare
economics, although historically divided into several
periods, focuses on the general problem: how should
resources be allocated for the production and consump-
tion of goods so as to maximise social welfare? Al-
though this predates the sustainability concept of
today, the question asked remains the same; what
changed over time, however, was the definition of ‘so-
cial welfare’ and the approaches to solving this
problem.

The choice of environmental objectives for optimisa-
tion depends on the Goal and Scope of the study. Thus,
optimisation can be performed either at the inventory
or impact assessment levels, in which case the environ-
mental objectives are defined as either burdens or im-
pacts, respectively (Azapagic & Clift, 1999a,b). In
optimisation, local and global system improvements are
found by first moving the system to conditions on the
Pareto surface, and then ‘surfing’ on it. As already
pointed out, all objectives on the surface are optimal in
the Pareto sense and trade-offs between the objectives
are necessary to identify the best compromise solution.
For example, if the system is optimised simultaneously
on two objectives-one economic and one environmen-
tal-the resulting Pareto optimum does not necessarily
mean that these functions are at their respective optima
achieved when the system is optimised on each of them
separately (see Fig. 3). The Pareto optimum, however,
does mean that the set of best possible options has been
identified for a system in which both objectives should
be improved. This can be of particular relevance to the
chemical and process industries, which face problems of
having to keep total costs down while at the same time
complying with ever tightening environmental legisla-
tion and other socio–economic requirements.

One possible approach to optimisation in the context
of LCA would be to aggregate environmental and
economic objectives into a single function by attaching
weights to indicate their significance, so that the prob-
lem reduces to single objective optimisation. However,
one of the main advantages of MO is that it does not
require a priori articulation of preferences, so that the
whole noninferior set of solutions can be explored. The
emphasis is then on the range of choices from the set of
noninferior solutions, rather than explicit definition of
preferences before analysing all the trade-offs among
objectives. Trade-offs between the noninferior solutions
show explicitly what can be gained and what lost by
choosing each alternative. Where there are multiple
decision-makers with conflicting interests, this tech-
nique can help to resolve disputes by generating differ-
ent alternative solutions. Decision makers who
understand the trade-offs and the alternatives are more
likely to understand the interests of other parties and,
therefore, to compromise. Although the evaluation of
trade-offs between the objectives to choose the best
compromise solution will still imply certain preferences
and value judgements, at least the choice will be made
from all possible noninferior solutions.

Furthermore, by being able to trade-off incommen-
surable objectives, e.g. environmental impacts and eco-
nomic requirements, this approach avoids the well
known problems encountered, for instance, in cost–
benefit analysis (Pearce, Markandya & Barbier, 1989),
i.e. reducing individual preferences to a market value or
trying to express quality of the environment in financial
terms. Cost-benefit analysis (CBA) is probably the tool
most exploited by neoclassical1 economists in the deci-
sion-making process, particularly in the area of public
investments. CBA is based on the idea of maximum net
gain: it reduces aggregate social welfare to the mone-
tary unit of net economic benefit. So for example, given
several alternatives, the CBA approach would favour
the one in which the difference between monetarised
benefits and costs is the greatest. More recently, CBA
has been applied in environmental decision-making.
The most widely applied, and even more criticised,
technique is ‘contingent valuation’ (CV). In CV, partic-
ipants are asked to say how much they would be
prepared to pay to protect an environmental asset
(‘willingness to pay’) or how much they would be
willing to accept for loss of that asset (‘willingness to
accept’) (Pearce et al., 1989).

Limitations and difficulties of this approach have
been recognised both by its proponents and critics. The
latter (Jacobs, 1991; Adams, 1993; Clift, 1994) have

Fig. 3. Noninferior curve obtained in multiobjective optimisation.

1 The common feature of neoclassical economics is that it reduces
many broad categories of market phenomena to considerations of
individual choice, subject to the constraints of technical knowledge,
social practice, and scarcity of resources.
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pointed out that CBA has serious difficulties in dealing
with problems of intergenerational equity and sustain-
ability and in valuing the natural environment. They
have also shown that CV is based on individual prefer-
ences which may not provide firm foundations for
environmental decision-making. Furthermore, the re-
sults of the analysis largely depend on the way the
questions are asked, and whether the participants are
familiar with the asset in question. It is more likely that
people who know nothing about the asset will place a
nil value on it, although the life of others may depend
on it. Also, the values that people place on things
strongly depend on self-interest, which does not help
resolving conflict between opposing parties.

To summarise, CBA and related economic ap-
proaches to decision-making face at least three prob-
lems: the measurement of individual preferences, the
interpersonal comparison of these preferences, and their
aggregation into a social preference function. All these
operations imply ethical value judgements, probably the
least acceptable being the expression of individual pref-
erences and values in monetary terms. Indeed, the
controversial techniques of pricing nonmonetary objec-
tives, such as environmental quality, and aggregating
non-commensurables into a single ‘utility’ function
provide a strong motivation for using multiobjective
analysis in environmental decision-making.

Furthermore, these approaches cannot provide infor-
mation for decision-making on a ‘local’ level: for exam-
ple, they cannot advise engineers on how to modify a
process in order to improve its environmental perfor-
mance. MO, on the other hand, does exactly this: it can
optimise the operation of a system with environmental,
technical, economic and other aspects taken into ac-
count. If applied in the LCA context, it can optimise
the whole life cycle of a process or product and so
provide a more effective approach to environmental
management of a system.

3.1.3. Step 4: Choice of the best compromise solution
The noninferior solutions, obtained in step 3, provide

input into the decision-making process in step 4 of
OLCAP. To choose the best compromise solution out
of a number of optimum alternatives, some articulation
of preferences is necessary. However, these preferences
are at least articulated by decision-makers in the post-
optimal analysis of all noninferior solutions and their
trade-offs, as distinct from expressing preferences and
aggregating the objectives prior to identifying all nonin-
ferior solutions. One of the possible ways to choose the
‘best’ solution is to consider a graphical representation
of the noninferior set and then choose the best compro-
mise solution on the basis of the trade-offs. However,
this approach is limited to two or three objective func-
tions at most; beyond that, graphical representation
becomes too complex. Alternatively, the noninferior

values of the objectives may be expressed in terms of
the difference from the value at their individual optima.
If all objectives are considered to be of the same
importance, than the best compromise solution might
be that which equalises the percentage by which all
objectives differ from their optimum values. However,
should any of the objectives be considered more impor-
tant than the others, then other methods that allow
ordering and quantifying of preferences, usually re-
ferred to as multicriteria decision-making (MCDM)
techniques, can be used to identify the best compromise
solution.

MCDM techniques provide a structured approach to
a decision making process. They enable systematic
analysis and modelling of preferences with the aim of
providing help and guidance to decision-makers in
identifying their most desired solution. The major ad-
vantages of these techniques are that they are transpar-
ent, non-ambiguous and easy to use by non-experts.
Furthermore, the quantitative nature of these numerical
methods may particularly be appealing to quantita-
tively oriented managers and engineers.

A number of methods for ordering and quantifying
preferences have been developed over the past years
and some of them include simple additive weighting,
weighted product, median ranking method (Hwang,
Paidy & Yoon, 1980), the analytic hierarchy process
(Saaty, 1980), multiattribute utility theory (Keeney &
Raiffa, 1976), simple multi-attribute rating technique
(von Winterfeldt & Edwards, 1987). Extensive reviews
of MCDM techniques can be found in Stewart (1992)
and Yoon and Ching (1995). User friendly software
with various MCDM methods to aid the decision mak-
ing process are also available (Hämäläinen & Lauri,
1995).

The choice of a suitable MCDM technique will de-
pend on a given decision-making situation and the
sophistication of the decision-makers. Most of these
techniques are based on a definition of a multiattribute
or utility function, which associates a number with each
alternative to reflect the importance of the attribute in
the opinion of the decision-maker, so that all alterna-
tives may be ordered. For example, if there are five
noninferior solutions identified in step 3, each with
different values for the three objectives (attributes), i.e.
GWP OD and costs, the decision-makers are then
asked to articulate their preferences for each of the
attributes on scale 1–10. The mathematical analysis or
ordering of the preferences, for instance by a pair-wise
comparison of attributes (Saaty, 1980), returns the best
compromise solution for this particular example. It is
important to note that the attributes and the prefer-
ences are always identified on a case by case basis
within a bounded decision space, and that they only
apply in that particular decision-making context. This
avoids the criticism often voiced, in both LCA and
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Fig. 4. Simplified LCA diagram of the boron system.

CBA, of trying to use general weights or costs to
indicate the importance of distinct criteria in different
decision-making situations.

The OLCAP procedure is now illustrated on an
industrial case study of the boron products system.

4. Application of OLCAP — a case study

The process chosen for illustration of the OLCAP
approach is an existing mining and mineral processing
operation, producing several boron products from two
mineral ores. The environmental and economic perfor-
mance of the life cycle of the system can be optimised,
subject to market constraints, by varying the product
spectrum and some of the on-site operations, including
generation of electrical energy and steam.

4.1. Step 1: LCA of the boron system

A simplified LCA diagram of the boron system, from
extraction of primary resources through mining and
processing, is shown in Fig. 4. Two boron minerals,
borax (Na2B4O7 · 10H2O) and kernite (Na2B4O7 ·
4H2O), are extracted in the mine, crushed and trans-
ported to the adjacent plant. Five products are pro-
duced on site. 5 mol (Na2B4O7 · 4.67H2O) and 10 mol
(Na2B4O7 · 10H2O) borates are produced by dissolving
borax and kernite in water. Na-borates are then sepa-
rated from insolubles, crystallised and dried to produce
powder products. Boric acid (H3BO3) is made by react-
ing kernite ore with sulphuric acid and by drying the
crystallised borates. Anhydrous borax (Na2B4O7) and
anhydrous boric acid (B2O3) are produced in high-tem-
perature furnaces from 5 mol borate and BA, respec-
tively. All products are then either packed or shipped in

bulk. Electric energy and the steam for the system are
provided by the on-site natural gas cogeneration facil-
ity, which meets most of the electricity and steam
demand. If necessary, additional steam is provided by
the steam plant which is also fired by natural gas. The
waste water from the refinery is discharged into con-
tained ponds. All activities, from extraction of raw
materials to the production and packing of the boron
products, are included in the system. However, the use
and disposal phases of the products are not considered
in this study, making this a ‘cradle to gate’ study. The
functional unit, defined as the ‘operation of the system
for 1 year’, is related to the annual output of the boron
products.

One of the aims of this LCA study is to identify the
‘hot spots’ in the system and evaluate possibilities for
improving its environmental performance. Hence, the
first step in the OLCAP procedure includes identifica-
tion of the most significant burdens and impacts and
subsystems that contribute most to these impacts. The
efforts to improve the performance are then aimed at
these subsystems to achieve the maximum decrease in
the total impacts on the environment. The results of the
inventory and impact assessment stages (Figs. 5 and 6)
show the most significant burdens and impacts and
reveal that several subsystems contribute to most of
these burdens and impacts. They include mining, 5 and
10 mol plant, steam production, boric acid plant, and
packing and shipping. For instance, in the inventory
stage, it has been found that 5 and 10 mol plant and
steam production contribute 80% to nuclear electricity2

and gas consumption and to most of the emissions to
air. The boric acid plant accounts for around 60% of

2 Nuclear electricity and coal are mainly used in the life cycles of
gas and sulphuric acid, respectively.
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Fig. 5. The results of inventory analysis: selected burdens (expressed as a percentage of total burden from the system).

Fig. 6. The results of Impact Assessment (expressed as a percentage of total impact from the system).

the coal usage, 70% of SO2 emissions and most of
the total suspended and dissolved solids in water.
Packing and shipping are the main users of renewable
resources (paper bags), while oil reserves and other
non-renewables (i.e. borax and kernite ore) are used in
the mining operations. Furthermore, the mining activi-
ties are the main source of emissions of metals and
dust to air.

The corresponding contributions of these processes
to the impacts are found in the impact assessment
phase (see Fig. 6). The subsystems with the greatest
impacts are the first to be considered for targeted
system improvements. The analysis of the results indi-
cates there are a number of possibilities for bringing
about environmental improvements to these subsys-
tems; to illustrate the potential of MO in LCA, some
of the alternatives are considered here. In the mining
subsystem, a significant part of the burdens and im-
pacts is attributed to transport within the mine. There-
fore, one of the options to reduce the burdens from

this subsystem is to consider conveyors as an alterna-
tive means for transport of the ore. Another possibility
considered for reducing the burdens from the mining
system is to identify the optimum kernite to borax
ratio for production of 5 and 10 mol borates, subject
to the process constraints.

Further analysis of the disaggregated LCA results
shows that the burdens from 5 and 10 mol production
are mainly energy related, and a significant proportion
is attributed to the dryers. There are a number of
possibilities to reduce the burdens from this area; how-
ever, in this work only two of them are considered.
Since 5 mol can be produced in both rotary and fluid
bed dryers, the most immediate option is to optimise
their use so that only dryers with the least environmen-
tal impacts in the system are in operation. This option
is also easy to implement because it does not require
any major changes in the process. The second option
for improvements in the primary process concerns
plans to install low-NOx burners in the dryers.
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Furthermore, steam production, which includes the
steam cogeneration and steam plant subsystems, has
been identified as one of the significant contributors to
the burdens from the boron system. Since the steam can
be produced in both cogeneration and steam plants,
one of the possibilities to reduce the burdens is to
identify the best options for generating steam. The final
improvement option taken into consideration here is
related to packing and shipping. Since most of the
burdens from this subsystem arise from the life cycle of
different packaging, the system is optimised to identify
the type of packaging that causes the lowest environ-
mental burdens.

4.2. Step 2: Optimisation model of the boron system

Following the OLCAP procedure, the next step is to
formulate the boron system as an optimisation problem
in the context of LCA. The model incorporates the
alternative operations and technologies for environmen-
tal improvements identified in step 1. In this case, the
system model is formulated as a linear programming
problem and includes the following constraints:

(i) Mass balance constraints:

%
N

n=1

ai,n
(k)mn

(k)=0 Ön (6)

(ii) Market demand constraints:

Pl5Dl Öl (7)

(iii) Primary and raw material availability:

R g
(k)5S g

(k) (8)

(iv) Productive capacity constraints:

%
N

n=1

mn
(k)5Cu

(k) Öu (9)

(v) Heat requirements:

%
N

n=1

Hn
(k)5Qz

(k) Öz (10)

The optimisation variables in this case study describe
material and energy flows only; however, depending on
the goal of the study, they could also include operating
pressures, stream compositions, unit sizes etc. The mass
balance constraints include mass flows mn in each sub-
system k from ‘cradle to gate’. Production of each
product Pl is limited by the market demand Dl. Since
the discussion in this paper is related to the functional
unit defined as the operation of the system for 1 year,
the product demand Dl is taken to be equal to the total
output of each product for 1 year. Primary and raw
materials consumption Rg is constrained by their supply
Sg ; mass flows mn in each subsystem are subject to the
capacity limit Cu of a process or operation unit and the
heat production Hn is determined by the heat demand

Qz. The alternative operations and technologies are
defined by Eqs. (7), (9) and (10) and are optimised for
the material and energy flows.

The objective functions are defined by the environ-
mental burdens or impacts; the economic objectives are
taken to be total annual production and life cycle
operating costs, respectively:

(vi) Minimise burdens or impacts:

min Bj= %
N

n=1

bj,n
(k)mn

(k) (11)

min Ek= %
J

j=1

ek, jBj (12)

(vii) Maximise production:

max P= %
L

L=1

Pl (13)

(viii) Minimise life cycle operating costs:

min C= %
N

n=1

cn
(k)mn

(k) (14)

The model consists of around 1500 constraints and
3500 variables. The total number of environmental
objectives at the inventory level (burdens) is 17, as
defined by Eq. (11) and shown in Fig. 5. For the
analysis at the impact assessment level, the number of
objective functions (impacts) of interest is seven; they
are given by Eq. (12) and listed in Fig. 6. Finally, there
are two economic objectives, defined by Eqs. (13) and
(14). A large scale LP software XPRESSMP (Dash
Associates, 1993) has been used to formulate and solve
this optimisation problem. MO was tackled by the
constraint method (Cohon, 1978), in which a series of
single-objective optimisations is performed to identify
the lower and upper feasible bounds for each objective.
All objectives but one are then converted into con-
straints and optimisations repeated with the parameters
of the objectives-constraints ranging from the lower to
upper bounds to generate a Pareto surface.

4.3. Step 3: Multiobjecti6e en6ironmental optimisation

MO on environmental and economic performance
criteria is the next step in the OLCAP methodology.
Although the objective functions have been defined in
step 2, the choice of the objectives for optimisation is
deferred to step 3. The objectives for optimisation are
chosen by the decision-makers, depending on the goal
of the study. The goal of this study was to identify the
optimum options for improvements in both environ-
mental and economic performance. However, to illus-
trate the approach, the system is initially optimised on
the environmental objective functions, first at the inven-
tory then the impact assessment level, to identify the
BPEO in the system; these results are compared with
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Fig. 7. Single-objective optimisation on environmental burdens.

Fig. 8. Single-objective optimisation on environmental impacts.

the existing operations. In these optimisations, the eco-
nomic objectives are ignored. The system is then simul-
taneously optimised on environmental impacts and
economic objective functions to yield the whole set of
optimum solutions as an input into the decision-making
process in step 4 of OLCAP.

4.3.1. Single-objecti6e optimisation of en6ironmental
performance

Prior to MO, it is interesting to compare the results
of single-objective optimisations on the environmental
burdens and impacts with the existing operations. This
comparison is depicted in Figs. 7 and 8 and indicates

that environmental optimisation offers a potential for
an average reduction of the burdens of 12%, with the
highest reduction of 44% for oil reserves. The environ-
mental impacts follow similar trends: the average reduc-
tion in the optimised system is 20%, while photo-
chemical oxidants creation potential can be decreased
by 62%. At the same time, the total production is
reduced by only 0.5% in comparison to the current
operations. On closer inspection of the optimisation
results, the reason for these significant improvements
becomes apparent. Firstly, the ratio of kernite to borax
ore is increased from the current value of 0.2 to the
optimum value of 0.4. Since increasing the kernite to
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borax ratio increases B2O3 content, the total amount of
ore required in the production process is reduced thus
reducing the extent of the mining operations and the
related environmental burdens from the mine. More-
over, the increased kernite to borax ratio also causes a
decrease of the insolubles to borates ratio in the dis-
solvers and thickeners. This, in turn, results in reduced
gangue, energy requirements, and other related envi-
ronmental burdens from the 5 and 10 mol process.

Reductions of the environmental burdens are also
achieved in the 5 and 10 mol plant by using the rotary
instead of fluid bed dryer for production of 5 mol
product. The main reason for choosing the rotary dryer
as a better environmental option lies in its lower energy
requirements. A reduction in the burdens and impacts
from the dryers due to this change amounts to 60% per
unit of 5 mol. A further reduction of up to 85% per unit
of product in the NOx emissions (and the correspond-
ing impacts) is also achievable by installing low NOx

burners in the dryers.
A decrease in the burdens and impacts in the opti-

mised operations is also attained through different
transportation means in the mine. However, unlike the
other improvement options discussed so far, it is more
difficult to decide which type of transport is a better
choice. In minimising gas consumption, for example,
transport by trucks is a more environmentally accept-
able solution, because the electricity used to drive the
conveyors is generated by gas. Optimisation on oil
usage, on the other hand, favours the use of conveyors
because of the reduced need for diesel fuel.

Single-objective optimisation, as shown in Figs. 7
and 8, identifies an optimum solution for a particular
objective for which the optimisation has been per-
formed. However, in many cases it may so happen that,
while optimising that objective, the other objectives will
in fact be sub-optimised. For instance, analysis of the
single-objective optimisation results shows that minimi-
sation of the nuclear electricity objective maximises gas,
oil and some other objectives. Similarly, minimisation
of GWP maximises photochemical oxidant creation
potential3 (POCP). These two examples reinforce the
importance of optimising all relevant objectives simul-
taneously, so that trade-offs between the burdens or
impact are made explicit. MO on environmental objec-
tives is illustrated in the next section.

4.3.2. Multiobjecti6e optimisation of en6ironmental
performance

As already mentioned, MO can be performed on
objective functions representing either environmental
burdens or impacts. In this study, the interest is in
identifying possibilities for reducing the impacts, so that

the analysis is at the impact assessment level. Prior to
optimisation, it is useful to analyse the results of the
single-objective optimisation to identify if optimisation
on one of the objectives simultaneously optimises some
of the others. This may reduce the number of the
functions in MO and hence decrease the computational
burden. It may be noted that, in theory, the number of
the objectives can be as large as necessary. However, on
a practical level, it is better to optimise on a smaller
number of objectives, not only because of the computa-
tional burden but because the number of optimum
solutions increases exponentially with the number of
objectives, which can make the decision-making process
more complex.

The single-objective optimisations on the impacts
show that minimisation of GWP also minimises acidifi-
cation, nutrification and human toxicity, while optimi-
sation on POCP gives the optimum value of OD. The
value of the resource depletion objective, which is dom-
inated mainly by depletion of the boron mineral, does
not change in the optimisations, so that it can be
disregarded. Therefore, to identify and explore the non-
inferior solutions, it suffices to optimise the system on
two objectives only, for instance GWP and POCP, and
the other objectives will be optimised accordingly. The
constraint method (Cohon, 1978), in which one of the
functions is arbitrarily chosen for the optimisation and
all other objectives are converted to constraints, has
been used for generating the optimum solutions. In a
number of optimisations, the parameters of the objec-
tives-constraints are varied between their lower and
upper feasible limits, obtained in single objective opti-
misations, to yield a number of noninferior solutions.
These results are then fed into the decision-making
process to identify BPEO.

4.4. Step 4: Choosing the BPEO

As introduced in Section 3.1.3, there are a number of
techniques to facilitate the decision-making process.
One of the possible ways to choose the ‘best’ solution is
to consider a graphical representation of the noninfe-
rior set and then choose the best compromise solution
on the basis of the trade-offs. The noninferior curve,
showing the trade-offs between GWP and POCP for
the boron system, is shown in Fig. 9. The values of the
impact objective functions have been normalised by
dividing them by their respective optimum values,
GWP* and POCP*, obtained in the single-objective
optimisations. Several noninferior solutions are shown
to illustrate how much of one objective has to be given
up to gain in another. At point A, for instance, GWP is
at its optimum; moving along the curve increases its
value to reach its maximum at point E, where POCP is
at its minimum. Shifting from point A to B yields a
‘gain’ (improvement) of 33% in POCP and a ‘loss’3 Also known as Photochemical smog.
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Fig. 9. Noninferior curve for multiobjective optimisation on GWP and POCP.

(deterioration) in the GWP objective of 17%. Point D
brings an improvement in POCP of 19% for a loss of
GWP of 10%, relative to the point C. These changes in
the optimum solutions are mainly related to a change in
the transportation means and to the source of steam.
So for instance, at solution A, transport by the convey-
ors with steam produced in the cogeneration plant are
chosen as the better environmental options, while the
best environmental options at point E are transport by
the trucks with steam produced in the steam plant. The
environmental options are discussed in more detail in
conjunction with economic optimisation in Section 4.5.

Another way to facilitate the decision-making pro-
cess, as shown in Fig. 10, is to express the values of the
objectives in terms of the percentage that they differ
from their individual optima. So for instance, GWP
and other related functions are at the minimum at point
A; however, POCP and OD are 65 and 7% above their
respective optima. At solution C, all objectives are
between 20 and 30% away from their optima, except for
OD, which is barely 3% above its minimum, and so on.
As already discussed, if all objectives are considered to
be of the same importance, then the best compromise
solution could be that at which all objectives differ
from their optimum values by the same percentage.
However, if the objectives are not considered to be
equally important, then a MCDM technique can be
used to identify the best environmental solution.

In the preceding discussion, the system has not been
optimised on any objective related to economic perfor-
mance. In reality, few decisions are made on the basis
of environmental performance only and a number of
other criteria, usually technical and economic, are con-
sidered in parallel. The remaining sections of this paper
show for the boron case study how optimisation on
both environmental and economic performance can
help identify options for a more sustainable system
operation. For that, it is necessary to return to step 3 of
the OLCAP procedure, i.e. MO. To avoid unnecessary
repetition, steps 3 and 4 are presented together in the
following section.

4.5. Steps 3 and 4: Impro6ing the economic and
en6ironmental performance

In this section, MO on environmental and economic
performance is carried out to identify possibilities for
minimising total environmental burdens and impacts
from the boron system, while maximising production
subject to total product demand and keeping the pro-
duction costs at the minimum. This will also enable the
identification and choice of BPEO and best available
technique not entailing excessive cost (BATNEEC).
Thus, in addition to environmental impacts (Eq. (12)),
the objective functions include total production and
operating costs, as defined by Eqs. (13) and (14).

In order to explain the approach on a simpler exam-
ple, the system is first optimised on three objectives
only, i.e. GWP, production (P) and costs (C), and other
functions are ignored. In the second part of this section,
in addition to these three objectives, the system is also
simultaneously optimised on OD, to generate a range
of noninferior solutions which map a four-dimensional
Pareto surface. The results of both 3- and 4-objective
optimisation are presented on the noninferior surfaces
showing the trade-offs among the objectives as an input
into the decision making-process.

Fig. 10. Selected noninferior solutions of multiobjective optimisation
on Global Warming Potential (GWP) and Photochemical smog
(POCP).
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Fig. 11. Noninferior surface for optimisation on GWP, P and C objective functions.

4.5.1. Three-objecti6e optimisation
The 3-dimensional objective space ABCD, represent-

ing the noninferior surface obtained in optimisations on
the GWP, P and C objectives, is shown in Fig. 11.

Point A in Fig. 11 represents the minimum costs;
however the production is at the minimum and GWP
is 31% above its optimum. The Kuhn–Tucker
multipliers4, equal to −140 and 51 for GWP and
production, respectively, indicate that at this solution,
the effect of GWP on costs is larger than that of the
production; the marginal cost of reducing GWP by 1
tonne is $140 while, if the production were to increase
by 1 tonne, the resulting increase in the costs would be
equal to $51. The BPEO and BATNEEC at point A are
represented by transport in the mine by the trucks and
steam produced in the steam plant. The whole output
of 5 mol is produced in the rotary dryer and polypropy-
lene bags are preferred to paper packaging. The latter
two options remain the BPEO and BATNEEC in all
subsequent optimisations.

By moving from point A along the noninferior curve
for constant GWP, both costs and production increase,
to reach their maximum feasible values at point B.
Here, the Costs function is 4% above its optimum
value. The effects of the GWP and production objec-
tives on costs have now reversed order, so that P
influences changes in the costs much more than GWP.
If production is increased by 1 tonne, $450 of the cost
objective have to be given up. Similarly, 1 tonne change
in the GWP is associated with a cost change of $170. At
this solution, steam is generated by both steam and
cogeneration plants; however, the contribution of the
latter to the total steam production is only 6%. As
opposed to the solution at point A, the preferred trans-
portation means in the mine are the conveyors.

Furthermore, if for instance the system were to be
operated at point C, GWP would be 3.3% above its
optimum value obtained in the single-objective optimi-
sation. The production would be at its minimum, and
the costs would increase by 14%. The effect of GWP
and production on costs is similar to that found at
point A, except that an improvement in GWP of 1
tonne would worsen the values of the costs objective by
$170, while a tonne increase in P would result in $54
increase in the costs. These changes in the system are
due to the different environmental options chosen at
this solution. Here, the BPEO and BATNEEC are
represented by generation of 93% of the steam in the
cogeneration plant and the rest in the steam plant. The
conveyors still remain the best transport option in the
mine.

However, if for example, point D were to be chosen
as the best compromise solution, then for the same
value of GWP as at point C, the production would
reach the maximum; however, costs would have to
increase by 17%. It may be noticed here that both GWP
and production affect the cost similarly: a decrease in
GWP by one tonne increases the Cost objective by
$5240 while, if the production is increased by 1 tonne,
the costs increase by $5400. At this solution, the BPEO
and BATNEEC are defined by truck transport in the
mine and steam production in the cogeneration plant.

It is now interesting to find out what improvement
options exist if the system is simultaneously optimised
on OD, GWP, P and C objective functions.

4.5.2. Four-objecti6e optimisation
MO on GWP, OD, P and C generates a whole

plethora of noninferior solutions on a four dimensional
surface. For graphical analysis, these results are shown
in Fig. 12a–d in the 3-dimensional OD-GWP-C space
for constant values of the P objective. The surface
delineated by points A1B1C1D1 in Fig. 12a represents
the noninferior solutions for a constant production of

4 Kuhn-Tucker multipliers show trade-offs between the objective
functions; they are equivalent to marginal or Lagrange values.
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Fig. 12. Noninferior surface for optimisation on OD, GWP, P and C: (a) P/P*=0.982; (b) P/P*=0.987; (c) P/P*=0.992; (d) P/P*=1.00.

1.8% below the optimum. At solution B1, for instance,
the costs are at the minimum; however, GWP and OD
are 31 and 27% above their optimum values. This
solution corresponds to point A in Fig. 11, obtained in

the three-objective optimisation. There, GWP and C
are, respectively 0.7 and 0.3% lower than at point B1;
however, OD is 3.4% higher. As at point A, transport
by trucks and steam production in the steam plant are
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also identified as the best environmental options at
solution B1. Furthermore, it is noticeable that the effect
of OD on the costs is much higher than the effect of the
other two objectives: 1 kg decrease in OD causes costs
to increase by $974. For the same change in GWP and
P, the costs increase by, respectively $0.134 and $0.054.

If the operating state of the system moves, for exam-
ple from point B1 to A1, it is possible to reduce the
value of GWP by 1%. However, this improvement is
carried out at the expense of OD and C, which increase
by 3 and 0.8%, respectively. Trucks and steam plant are
still the best environmental options in the system.

A more extreme change occurs if the system is oper-
ated around solution C1 in Fig. 12a. There, the costs
are 14.5% above the minimum and OD and GWP are,
respectively 6.9 and 1.3% higher than their optimum
values. The ore is transported by the conveyors and
97% of the steam is generated in the cogeneration plant.
Furthermore, for the same GWP, a 0.1% increase in the
costs brings the value of OD down to the minimum at
point D1. The steam is again produced in the cogenera-
tion plant and trucks are the best environmental option
for transport in the mine. If compared to the 3-objec-
tive optimisation, the operating state at point C in Fig.
11 falls in between points C1 and D1 in Fig. 12a.

Similar trade-offs among C, OD and GWP are no-
ticed for P/P*=0.987, i.e. for production 1.3% below
the optimum (Fig. 12b). At points A2, B2 and C2, OD
and GWP remain almost the same as at solutions A1,
B1 and C1 in Fig. 12a, while costs increase by on
average 0.5%. However, at point D2, OD is 1.9% above
its minimum and Costs increase by 1% in relation to
the values obtained for solution D1. At the same time,
GWP is 1.2% higher than the optimum. These changes
are a result of the combined transport of ore by convey-
ors and trucks, as opposed to transport by trucks only
which was the best environmental option at point D1.
Moreover, the effect of OD on the cost objective func-
tion at point D2 reaches its maximum of 23 241 $/kg,
while the effect of the same change in GWP or P is only
$4.40 and $0.75, respectively.

As production increases to reach the maximum and
the requirements on the other objectives become
stricter, thereby limiting the range of options for the
process operations, the noninferior space becomes pro-
gressively more narrow and hence offers a more limited
choice of noninferior solutions (Fig. 12c and d). For
instance, if the system is operated anywhere on the
boundary between points C1 and D1 (Fig. 12a), the
noninferior solutions with respect to OD range from 0
to 6.9% above the minimum. Compared to this, the
choice of the noninferior solutions between points C4

and D4 (Fig. 12d) is significantly more limited and
ranges from 0 to 1.2% above the optimum.

These examples illustrate the value of MO in not
being prescriptive; it offers a set of alternative options

for system improvements, rather than a single optimum
solution. Single-objective models dictate the use of a
single measure of efficiency and provide only one solu-
tion for decision makers. Decision-makers like to de-
cide and MO allows them to do so. The elicitation of
preferences and identification of the best compromise
solution by the decision-makers can then be carried out
with the aid of graphical presentation, as shown in
Figs. 11 and 12, or by using any of the MCDM
techniques, as discussed in Section 3.1.3.

5. Concluding remarks

As an environmental tool for process management,
LCA has two main objectives. The first is to quantify
and evaluate the environmental performance of a pro-
cess from ‘cradle to grave’ and so help decision-makers
to choose a more sustainable option among alterna-
tives. Another objective is to provide a basis for assess-
ing potential improvements in the environmental
performance of a system. Two main problems are asso-
ciated with these objectives of LCA. First, in many
cases there will be a number of options and possibilities
for improvements and it may not always be obvious
which of them represents the optimum solution. There-
fore, some kind of system optimisation will be neces-
sary. Secondly, there may exist more than one optimum
solution for improving the system’s performance, in
which case the issue becomes that of choosing the best
compromise option from a number of optimum
solutions.

The optimisation problem in the LCA context is
inevitably multiobjective, and that is one of the reasons
that MO has been chosen for this work. The paper has
attempted to demonstrate that MO can be combined
with LCA to assist in the decision-making process for
improving both environmental and economic perfor-
mance of a process from cradle to grave. The main
advantage of MO over other methods which have been
used in LCA is that generating optimum solutions does
not require a priori articulation of preferences, so that
the whole noninferior set of solutions can be explored.
The emphasis is then on the range of choices from the
set of noninferior solutions, rather than explicit defini-
tion of preferences before analysing all the trade-offs
among objectives. By being able to trade-off incom-
mensurable objectives, e.g. environmental impacts and
economic requirements, this approach avoids the well
known problems encountered, for instance, in cost-
benefit analysis, i.e. reducing individual preferences to a
market value or trying to express quality of the envi-
ronment in financial terms.

Furthermore, MO can be applied in a wide range of
decision-making contexts. In the case of single decision-
makers, it provides information on the trade-offs be-
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tween different objectives, to show explicitly what can
be gained and what lost by choosing each alternative.
Where there are multiple decision-makers with conflict-
ing interests, this technique can help to resolve disputes
by generating different alternative solutions. Decision
makers who understand the trade-offs and the alterna-
tives are more likely to understand the interests of other
parties and, therefore, to compromise.

A decision-support tool — OLCAP — has been
developed for these purposes. Multiobjective optimisa-
tion used in this approach provides a more effective
approach to environmental system management by of-
fering a number of alternative optimal solutions and
enabling decision-makers to identify and choose the
BPEO and BATNEEC.

Appendix A. Nomenclature

All units are expressed per functional unit of the
system.

input/output coefficients of a process orai,n
(k)

activity n (kg/kg)
bj,n environmental burden coefficients (kg/

kg)
Bj Environmental burden (kg)

cost objective function ($)C
Cu

(k) capacity of a process or an operation
unit (kg)

cn cost coefficients in the cost objective
function ($/kg)
market demand on the output of theDl

products (kg)
ek, j environmental impact coefficients (kg/

kg)5

Ek environmental impact (kg)
economic objective function ($)F

fp objective function (kg); ($)
g inequality constraints
h equality constraints
Hn heat production in the system (MJ)

mass flow n in a subsystem k (kg)mn
(k)

Pl product output (kg)
Qz heat demand (MJ)
R g

(k) primary or raw material availability (kg)
Rn set of n continuous variables (kg); (MJ)
S g

(k) supply of primary or raw material (kg)
Zq set of q integer variables (−)
Vectors
c cost or profit coefficients for integer

variables

environmental and economic objectivef
functions

x continuous variables
y integer variables

Appendix B. Environmental impacts

This section lists definitions of environmental impacts
which are referred to in the paper. A more detailed
description can be found in Heijungs et al. (1992). It
may be noted that these impact categories are starting
to be used in reporting the environmental performance
of multinational companies (e.g. Wright et al., 1997).
1. Resource depletion (RD) describes depletion of non-

renewable resources, i.e. fossil fuels, metals and
minerals related to the world’s estimated reserves.

2. GWP is believed to be caused by emissions of the
greenhouse gases, e.g. CO2, N2O, CH4 and other
VOCs. GWP factors for different greenhouse gases
are expressed relative to the GWP of CO2, which is
therefore defined to be unity. The values of GWP
depend on the time horizon over which the global
warming effect is assessed. GWP factors for shorter
times (20 and 50 years) provide an indication of the
short-term effects of greenhouse gases on the cli-
mate, while GWP for longer periods (100 and 500
years) are used to predict the cumulative effects of
these gases on the global climate.

3. The OD category indicates the potential of chlor-
ofluorocarbons (CFCs) and chlorinated HCs for
depleting the ozone layer. The ODP factors of each
of the ozone-depleting substance is expressed rela-
tive to the ozone depletion potential of CFC-11.

4. Acidification potential (AP) is based on the contri-
butions of SO2, NOx, HCl, NH3, and HF to the
potential acid deposition, i.e. on their potential to
form H+ ions.

5. Eutrophication (or nutrification) potential (EP) is
defined as the potential to cause over-fertilisation of
water and soil, which can result in increased growth
of biomass. Emissions of species such as NOx, NH4

+

, N, PO4
3−, P, and COD are considered to be

responsible for eutrophication. EP is expressed rela-
tive to PO4

3−.
6. Photochemical oxidants creation potential (POCP),

or photochemical smog, is thought to be caused
primarily by VOCs, including: alkanes, halogenated
HCs, alcohols, ketones, esters, ethers, olefins,
acetylenes, aromatics and aldehydes. POCPs of
these species are expressed relative to the POCP of
ethylene.

7. Human toxicity potential (HTP) is related to re-
leases to air, water and soil which are toxic to5 kg/year for Abiotic resource depletion.
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humans. The toxicological factors are calculated
using the acceptable daily intake or the tolerable
daily intake of the toxic substances. The human
toxicological factors are still at an early stage of
development so that HTP can only be taken as an
indication and not as an absolute measure of the
toxicity potential.
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