
SECURING HOME AND

CORRESPONDENT

REGISTRATIONS IN MOBILE IPv6

NETWORKS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

By

Osama Elshakankiry

School of Computer Science

Contents

Abstract 12

Declaration 13

Copyright 14

Acknowledgements 15

Dedication 16

Definitions 17

Glossary of Terms and Acronyms . 17

Notation . 20

1 Introduction 21

1.1 Network Security Threats and Attacks 21

1.2 IP-based Mobility Protocols . 22

1.3 Research Hypotheses . 25

1.4 Research Aim and Objectives . 26

1.5 Research Method . 27

1.5.1 Literature Review . 27

1.5.2 Theoretical Work . 27

1.5.3 Security Analysis . 28

1.5.4 Simulation Modelling . 28

1.5.5 Evaluation . 28

1.6 Achievements and Novel Contributions 29

1.7 Thesis Structure . 31

2

2 The Mobile Internet Protocol version 6 (Mobile IPv6) 33

2.1 Basic Operations . 33

2.2 Security and Efficiency of Binding Updates 37

2.2.1 Security Risks and Attacks 37

2.2.2 Security Services and Performance Requirements 40

2.3 Internet Protocol Security (IPSec) 41

2.4 Standard Home Registration . 45

2.5 Standard Correspondent Registration 48

2.6 Chapter Summary . 56

3 A Survey of Correspondent Registration Protocols 57

3.1 Cryptographically Generated Addresses 57

3.2 Infrastructure-less Protocols . 61

3.2.1 Early Binding Update (EBU) Protocol 61

3.2.2 Purpose-Built Key (PBK) Protocol 63

3.2.3 Child-proof Authentication for MIPv6 (CAM) Protocol . . 63

3.2.4 Unauthenticated Diffie-Hellman-based Binding Update (UD-

HBU) Protocol . 64

3.2.5 Optimizing Mobile IPv6 (OMIPv6) Protocol 65

3.2.6 Applying CGAs to Optimize Mobile IPv6 (CGA-OMIPv6)

Protocol . 66

3.2.7 Enhanced Route Optimization for Mobile IPv6 (ERO-MIPv6)

Protocol . 68

3.3 Infrastructure-based Protocols . 69

3.3.1 Secret-Key based Protocols 69

3.3.1.1 Static Shared Key version 1 (SSKv1) Protocol . . 69

3.3.1.2 Static Shared Key version 2 (SSKv2) Protocol . . 70

3.3.1.3 Password-based Authenticated Key Exchange (PAK-

based) Binding Update Protocol 71

3.3.1.4 Ticket-based Binding Update (TBU) Protocol . . 71

3.3.2 Public-Key based Protocols 73

3.3.2.1 Certificate-based Binding Update (CBU) Protocol 73

3.3.2.2 Hierarchical Certificate-based Binding Update (HCBU)

Protocol . 74

3.3.2.3 Extended Ticket-based Binding Update (ETBU)

Protocol . 76

3

3.4 Chapter Summary . 78

4 The Enhanced Home Registration (EHR) Protocol 83

4.1 The EHR Protocol Overview . 84

4.1.1 The Symmetric CGA-based Technique 84

4.1.2 The Concurrent CoA Reachability Test 89

4.1.3 The Segmenting IPv6 Address Space Method 93

4.2 The EHR Protocol Description 95

4.3 Performance Evaluation . 99

4.3.1 Simulation Modelling . 99

4.3.2 Simulation Model Validation 101

4.3.2.1 The Validation Process: Phase One 101

4.3.2.2 The Validation Process: Phase Two 102

4.3.3 Simulation Results . 109

4.3.3.1 Home Registration Delay 109

4.3.3.2 Control Signalling Overhead 116

4.3.3.3 Discussions . 118

4.4 Chapter Summary . 118

5 A Family of Correspondent Registration Protocols 120

5.1 Design Requirements . 120

5.2 Design Preliminaries . 121

5.2.1 Design Assumptions . 121

5.2.2 Design Principles . 122

5.3 Protocols Overview . 123

5.4 Protocols Design . 126

5.4.1 The Creation Phase for the SK-based Protocol 126

5.4.2 The Creation Phase for the PK-based Protocol 130

5.4.3 The Creation Phase for the INF-based Protocol 134

5.4.4 The Update Phase . 137

5.4.5 The Deletion Phase . 140

5.5 Chapter Summary . 142

6 Security and Performance Analyses of the Protocols 144

6.1 Informal Analysis of Protocols . 144

6.2 Formal Verification of Protocols 149

4

6.2.1 Protocol Composition Logic (PCL) 149

6.2.1.1 Formal Verification using PCL 150

6.2.2 Casper Tool and FDR2 Model Checker 159

6.2.2.1 Formal Verification using Casper/FDR2 160

6.3 Performance Evaluation . 162

6.3.1 Simulation Modelling . 163

6.3.2 Simulation Model Validation 165

6.3.3 Simulation Results . 165

6.3.3.1 Correspondent Registration Delay 165

6.3.3.2 Control Signalling Overhead 175

6.3.3.3 Discussions . 178

6.4 Chapter Summary . 179

7 Conclusions and Future Work 180

7.1 Thesis Summary . 180

7.2 Contributions . 182

7.3 Future Work . 183

Bibliography 185

A Cryptographic Building Blocks 194

B Existing Protocols 204

C OPNET Modeler and CryptoSys Toolkit 216

D Proposed Protocols 232

E Protocol Composition Logic (PCL) 266

F Formal Verification using PCL 273

G Formal Verification using Casper 285

Word count: 44,241

5

List of Tables

3.1 Security requirements vs. state of the art 79

3.2 Performance requirements vs. state of the art (a) 80

3.3 Performance requirements vs. state of the art (b) 81

3.4 Performance requirements vs. state of the art (c) 82

4.1 M/S and H/C bits . 94

6.1 UPD phase written in PCL language 151

6.2 UPD phase preconditions and invariants 153

6.3 Casper specification of the UPD phase 162

6.4 Verification results of the UPD phase using Casper/FDR2 162

C.1 Model debugging - EHR protocol 224

C.2 Model debugging - SK-based protocol 231

F.1 CRE-SK phase written in PCL language 274

F.2 CRE-SK phase preconditions and invariants 275

F.3 CRE-PK phase written in PCL language 279

F.4 CRE-PK phase preconditions . 280

F.5 DEL phase written in PCL language 282

F.6 DEL phase preconditions and invariants 283

6

List of Figures

1.1 Dollar amount losses due to security threats 22

2.1 Bidirectional tunnelling communication 35

2.2 Route optimization communication 36

2.3 A malicious MN flooding attack 38

2.4 False Binding Update attacks . 39

2.5 IPSec AH header format . 42

2.6 IPSec AH authentication protection 43

2.7 IPSec ESP header, trailer, and authentication data format 44

2.8 IPSec ESP authentication and encryption protection 44

2.9 Home registration . 47

2.10 Standard correspondent registration - including the RR procedure 50

2.11 Verification of a BU in standard correspondent registration 53

2.12 Verification of a BA in standard correspondent registration 54

2.13 Standard correspondent registration - mobile to mobile 55

3.1 CGA-based address generation algorithm 59

3.2 CGA-based address verification algorithm 60

3.3 A correspondent registration protected by the EBU protocol . . . 62

3.4 The UDHBU protocol . 65

3.5 The CGA-OMIPv6 protocol . 67

3.6 The ERO-MIPv6 protocol . 68

3.7 The TBU protocol . 72

3.8 The CBU protocol . 74

3.9 The HCBU protocol . 75

3.10 The ETBU protocol . 77

4.1 Symmetric CGA-based address generation algorithm 85

4.2 Symmetric CGA-based address verification algorithm 87

7

4.3 Procedure 1 - executed by an HA upon receipt of a valid BU message 89

4.4 Procedure 2 - executed by an HA upon receipt of a valid BUCoT

message . 90

4.5 EHR protocol at mobile node side 97

4.6 EHR protocol at home agent side 98

4.7 Simulation model . 100

4.8 Theoretical delay for BU message 102

4.9 Theoretical delay for BACoT message 103

4.10 Simplified simulation model . 105

4.11 Theoretical and simulated results for HR-Delay at different wireless

links’ data transmission rates . 107

4.12 Theoretical and simulated results for HR-Delay at different wired

links’ data transmission rates . 107

4.13 Adjusted validation results at different wireless data transmission

rates . 108

4.14 Adjusted validation results at different wired data transmission rates108

4.15 HR-Delay for BHR and EHR protocols vs. handover (0% load) . . 110

4.16 HR-Delay for BHR and EHR protocols vs. handover (30% load) . 110

4.17 HR-Delay for BHR and EHR protocols vs. handover (80% load) . 111

4.18 Average HR-Delay (registration) for BHR and EHR protocols vs.

load . 111

4.19 Average HR-Delay (deregistration) for BHR and EHR protocols

vs. load . 112

4.20 HR-Delay (registration) for EHR protocol vs. number of MNs (0%

load) . 113

4.21 HR-Delay (registration) for EHR protocol vs. number of MNs

(90% load) . 113

4.22 HR-Delay (deregistration) for EHR protocol vs. number of MNs

(0% load) . 114

4.23 HR-Delay (deregistration) for EHR protocol vs. number of MNs

(90% load) . 114

4.24 HR-Delay (registration) for BHR and EHR protocols vs. number

of MNs (0% load) . 115

4.25 HR-Delay (registration) for BHR and EHR protocols vs. number

of MNs (90% load) . 116

8

4.26 Control signalling overhead (bits/sec) for BHR and EHR protocols

at MN . 117

4.27 Control signalling overhead (bits/sec) for BHR and EHR protocols

at HA . 117

5.1 Overview of correspondent registration protocols - stationary CN

case . 125

5.2 Creation phase for the SK-based protocol - stationary CN case . . 127

5.3 Creation phase for the SK-based protocol - mobile CN case 130

5.4 Creation phase for the PK-based protocol - stationary CN case . . 131

5.5 Creation phase for the PK-based protocol - mobile CN case 134

5.6 Creation phase for the INF-based protocol - stationary CN case . 135

5.7 Creation phase for the INF-based protocol - mobile CN case . . . 137

5.8 Update phase for the proposed protocols - stationary CN case . . 138

5.9 Update phase for the proposed protocols - mobile CN case 140

5.10 Deletion phase for the proposed protocols - stationary CN case . . 141

5.11 Deletion phase for the proposed protocols - mobile CN case 142

6.1 Simulation model - stationary CN case 163

6.2 Simulation model - mobile CN case 164

6.3 Average CR-Delay for RR and SK-based protocols vs. load (bind-

ing creation - stationary CN case) 167

6.4 Average CR-Delay for RR and SK-based protocols vs. load (bind-

ing creation - mobile CN case) . 167

6.5 Average CR-Delay for SSKv1, SSKv2, and SK-based protocols vs.

load (binding creation - stationary CN case) 168

6.6 Average CR-Delay for SSKv1, SSKv2, and SK-based protocols vs.

load (binding creation - mobile CN case) 168

6.7 Average CR-Delay for RR and PK-based protocols vs. load (bind-

ing creation - stationary CN case) 169

6.8 Average CR-Delay for RR and PK-based protocols vs. load (bind-

ing creation - mobile CN case) . 169

6.9 Average CR-Delay for RR, SSKv2, and SK-based and PK-based

protocols vs. load (binding update - stationary CN case) 170

6.10 Average CR-Delay for RR, SSKv2, and SK-based and PK-based

protocols vs. load (binding update - mobile CN case) 171

9

6.11 Average CR-Delay for SSKv1 protocol and SK-based and PK-

based protocols vs. load (binding update - stationary CN case) . . 171

6.12 Average CR-Delay for SSKv1 protocol and SK-based and PK-

based protocols vs. load (binding update - mobile CN case) 172

6.13 Average CR-Delay for RR protocol and SK-based and PK-based

protocols vs. load (binding deletion - stationary CN case) 173

6.14 Average CR-Delay for RR protocol and SK-based and PK-based

protocols vs. load (binding deletion - mobile CN case) 173

6.15 Average CR-Delay for SSKv1 and SSKv2 protocols and SK-based

and PK-based protocols vs. load (binding deletion - stationary CN

case) . 174

6.16 Average CR-Delay for SSKv1 and SSKv2 protocols and SK-based

and PK-based protocols vs. load (binding deletion - mobile CN case)174

6.17 Control signalling overhead (bits/sec) at MN 176

6.18 Control signalling overhead (bits/sec) at CN 176

6.19 Control signalling overhead (bits/sec) at HA 177

6.20 Control signalling overhead (bits/sec) at HACN 177

A.1 Secret-key encryption/decryption scheme 197

A.2 The use of a MAC for message integrity and authenticity checking 198

A.3 Public-key encryption/decryption scheme 199

A.4 Digital signature generation and verification processes 200

A.5 A Diffie-Hellman key exchange . 202

C.1 OPNET modelling hierarchy . 217

C.2 mipv6 mgr process model . 218

C.3 mipv6 mn process model . 220

D.1 Step S1-SK and message M1-SK (CoTI) 233

D.2 Step S2-SK and message M2-SK (CoT) 233

D.3 Step S3-SK and message M3-SK (BReq) 234

D.4 Verification HA1-SK . 235

D.5 Step S4-SK, message M4-SK (BRep), and Step S5-SK 236

D.6 Step S4-SK and message M5-SK (EBC) 237

D.7 Verification CN1-SK . 238

D.8 Verification CN2-SK . 239

D.9 Step S6-SK and message M6-SK (EBA) 239

10

D.10 Verification MN3-SK . 240

D.11 Step S7-SK and message M7-SK (BCC) 241

D.12 Verification CN4-SK . 242

D.13 Step S8-SK, message M8-SK (BA), and Step S9-SK 243

D.14 Verification MN4-SK . 244

D.15 Step S3-PK and message M3-PK (BReq) 245

D.16 Step S4-PK and message M4-PK (EBC) 246

D.17 Verification CN1-PK . 246

D.18 Verification CN2-PK . 247

D.19 Step S5-PK and message M5-PK (EBA) 248

D.20 Verification HA4-PK . 249

D.21 Step S6-PK and message M6-PK (BRep) 249

D.22 Step S1-INF and message M1-INF (HoTI&CoTI) 251

D.23 Step S2-INF and message M2-INF (HoT) 251

D.24 Step S2-INF and message M3-INF (CoT) 252

D.25 Step S3-INF and message M4-INF (BReq) 253

D.26 Step S4-INF and message M5-INF (EBC) 253

D.27 Verification CN2-INF . 254

D.28 Step S1-UPD and message M1-UPD (BU) 256

D.29 Verification CN2-UPD . 258

D.30 Step S2-UPD and message M2-UPD (BCReq) 258

D.31 Verification HA1-UPD . 259

D.32 Step S3-UPD and message M3-UPD (BCRep) 261

D.33 Verification CN3-UPD . 262

D.34 Step S4-UPD, message M4-UPD (BA), and Step S5-UPD 263

D.35 Verification MN1-UPD . 263

D.36 Step S1-DEL and message M1-DEL (BU) 264

D.37 Step S2-DEL, message M2-DEL (BA), and Step S3-DEL 265

11

Abstract

The Mobile IPv6 (MIPv6) protocol enables mobile nodes (MNs) to remain con-
nected to other correspondent nodes (CNs) while roaming the IPv6 Internet.
Home and correspondent registrations are essential parts of the MIPv6 proto-
col, whereby MNs register their care-of addresses (CoAs) with their home agents
(HAs) and with their CNs, respectively. Security provision for home and corre-
spondent registrations is a fundamental part of the MIPv6 protocol and has been
an open research issue since the early stages of the protocol.

This thesis examines state-of-the-art protocols for securing home and cor-
respondent registrations in MIPv6 networks. The strengths and weaknesses of
these protocols are discussed. The investigation of these protocols leads to the
proposal of an enhanced home registration protocol and a family of correspon-
dent registration protocols. The Enhanced Home Registration (EHR) protocol
extends the basic home registration protocol defined in MIPv6 to support the
location authentication of MNs to their HAs. The EHR is based on novel ideas of
segmenting the IPv6 address space, using a symmetric CGA-based technique for
generating CoAs, and applying concurrent CoAs reachability tests. As a result,
EHR is able to reduce the likelihood of a malicious MN being successful in luring
an HA to flood a third party with useless packets using MIPv6. In addition, EHR
enables HAs to help in correspondent registrations by confirming MNs’ CoAs to
CNs. Simulation studies of EHR have shown that it only introduces a marginal
increase in the registration delay, but a significant increase in the signalling over-
head as a cost of supporting the location authentication of MNs.

The thesis also proposes a family of correspondent registration protocols.
These protocols rely on the assistance of home networks to confirm the MNs’
ownership of the claimed HoAs and CoAs. The protocols consist of three phases:
a creation phase, an update phase and a deletion phase. Informal and formal
protocol analyses have confirmed the protocols’ correctness and satisfaction of
the required security properties. The protocols have been simulated extensively
and the results show that they produce lower registration delay and a reduction
in the signalling overhead during update and deletion phases. This is at the cost
of a varying increase, depending on the protocol variant, in the registration delay
and signalling overhead during the creation phase.

12

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

13

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available

from the Head of School of Computer Science (or the Vice-President).

14

Acknowledgements

I would like to express my deep gratitude to my first supervisor Dr. Andy Carpen-

ter for his support, encouragement, and guidance during this research. I would

also like to express my special thanks to my second supervisor Dr. Ning Zhang

for her numerous helpful discussions, invaluable suggestions, and comments on

my work.

My deepest gratitude and appreciation to my wife and children for their help and

support in difficult times. Your love, understanding and patience sustained me

through to the end of my Ph.D.

I cannot thank my parents enough for their love and sacrifice throughout my

whole life. Over the years they have continued to support and encourage me. I

would like to thank them for everything.

Last but not least, I would like to thank my beloved country “Egypt” for its

sponsorship to do this research and giving me this opportunity.

15

Dedication

I dedicate this thesis to my beloved mum and late dad who passed away on

Saturday, 7th August 2010.

16

Definitions

Glossary of Terms and Acronyms

The following gives the alphabetical list of terms and acronyms used in the thesis.

BA – Binding Acknowledgement; a mobility message sent by a home agent and

a correspondent node to a mobile node to acknowledge the binding of a

care-of address.

BACoT – Binding Acknowledgement with Care-of Token; a mobility message

sent by a home agent to a mobile node to acknowledge the binding of a

care-of address and deliver a fresh care-of token.

BHR – Basic Home Registration; a home registration process that allows a mo-

bile node to (de)register a care-of address with a home agent.

BU – Binding Update; a mobility message sent by a mobile node that contains

the mobile node’s home address and current care-of address.

BUCoT – Binding Update with Care-of Token; a binding update message sent

by a mobile node to a home agent, which contains a care-of token.

CA – Certification Authority; a trusted entity that issues and revokes public-key

certificates.

CGA – Cryptographically Generated Address; an IPv6 address in which the

interface identifier part is generated using a cryptographic one-way hash

function that takes the address owner’s public key and some auxiliary pa-

rameters as its input.

CN – Correspondent Node; a peer node either mobile or stationary that com-

municates with a mobile node.

17

CoA – Care-of Address; a mobile node’s transient address that gives the mobile

node’s location while away from home link.

CoT – Care-of Test; a mobility message sent by a correspondent node to a mo-

bile node as a response to a Care-of Test Init message.

CoTI – Care-of Test Init; a mobility message sent by a mobile node to initiate

the return routability procedure and request a care-of keygen token from a

correspondent node.

Correspondent Registration – A process that is initialized by a mobile node

to notify a correspondent node about the mobile node’s current location

while away from home link.

DAD – Duplicate Address Detection; a test for checking whether an address is

already in use.

EHR – Enhanced Home Registration; an enhanced home registration protocol

that supports the location authentication of mobile nodes to their home

agents, see Chapter 4.

HA – Home Agent; a router located on a mobile node’s home link with which

the mobile node has registered one of its current care-of addresses.

HoA – Home Address; a mobile node’s permanent address that identifies the

mobile node in its home link.

Home Registration (HR) – A process that is initialized by a mobile node to

notify a home agent about the mobile node’s current location while away

from home link.

HoT – Home Test; a mobility message sent by a correspondent node to a mobile

node as a response to a Home Test Init message.

HoTI – Home Test Init; a mobility message sent by a mobile node to initiate

the return routability procedure and request a home keygen token from a

correspondent node.

INF-based protocol – A correspondent registration protocol for use when no

prior relationship exists between mobile nodes’ home links and correspon-

dent nodes.

18

IPSec – Internet Protocol Security; a set of protocols that provides security to

IP and upper-layer protocols.

IPSec AH – IPSec Authentication Header; a member of the IPSec protocol

suite, which is used to protect the authenticity and integrity of an IP packet.

IPSec ESP – IPSec Encapsulating Security Payload; a member of the IPSec

protocol suite, which is used to protect the confidentiality, authenticity,

and integrity of an IP packet.

LT – Binding Lifetime; a lifetime for the binding of home and care-of addresses

of a mobile node.

MIPv6 – Mobile IPv6; an IP-layer mobility protocol that enables mobile nodes

to remain connected to other correspondent nodes while roaming the IPv6

Internet.

MN – Mobile Node; a mobile device that has a home link and a permanent

home address on that link. It can change links and maintain reachability

using its home address.

PK-based protocol – A correspondent registration protocol for use when a

mobile node’s home link has a certified public/private key pair.

PKI – Public-Key Infrastructure; an infrastructure including all entities involved

in managing public-key certificates.

Public-key certificate – A digital document, issued and digitally signed by a

CA, that binds the name of a public-key owner to his public key.

RO – Route Optimization; a mode of communication that allows packets to be

routed directly between a mobile node and a correspondent node.

RR – Return Routability; a procedure that is currently used to protect corre-

spondent registrations in the Mobile IPv6 protocol.

SA – Security Association; a bundle of algorithms and keys that is used to spec-

ify parameters controlling security operations in IPSec.

SK-based protocol – A correspondent registration protocol for use when a se-

cret key is shared between a mobile node’s home link and a correspondent

node.

19

Notation

The following notation has been used throughout the thesis.

KI Entity I’s secret key (a secret random value generated and

only known by I).

KI−J A secret key shared between entities I and J.

(PKI , SKI) Entity I’s public/private RSA key pair.

KBM A binding management secret key.

KBC A binding confirmation secret key.

ENCK(x) A ciphertext of a data item x encrypted with key K.

DECK(x) The inverse function of encryption function ENCK(x), i.e. it

denotes decryption of ciphertext x using key K.

SIGI(x) Entity I’s signature on a data item x.

H(x) A collision-resistant one-way hash function, such as SHA1.

MACK(x) A keyed hash function using key K, such as HMAC SHA1.

LTBReq A binding lifetime requested by a mobile node.

LTBRem A remaining lifetime for the binding of home address and

care-of address at the mobile node and the home agent.

NI A fresh random nonce generated by an entity I.

CGA

Parameters

Auxiliary parameters used in generating a CGA-based ad-

dress; they include a 128-bit random number (called a mod-

ifier), an eight-bit number (called a collision count), and a

64-bit subnet prefix of the CGA-based address.

x || y Concatenation of data items x and y.

20

Chapter 1

Introduction

The rapid growth in the number of wireless Internet devices combined with a

desire of the users of these devices to remain connected to the Internet lead to

the development of IP-based mobility protocols. These protocols allow mobile

Internet hosts (called mobile nodes (MNs)) to remain connected to other hosts

(called correspondent nodes (CNs)) while roaming the Internet. However, as will

be shown, these protocols also add inherent security risks to those already in the

Internet today. Most of these risks are introduced from redirecting traffic intended

for an MN from one address to another. The signalling for such redirection

requires protection. If not protected, it can have detrimental effects on the entire

Internet [1]. The need to reduce vulnerabilities can be seen by examining existing

attacks that have been launched on Internet devices.

1.1 Network Security Threats and Attacks

A security threat can be informally defined as an entity or program with the

capability to cause harm or distort normal security operations by exploiting vul-

nerabilities in a system [2, 3]. In these papers, five types of threats to computer

networks are identified:

• Errors and omissions: comprising of network errors, system faults and omis-

sions. They cause harms to the system, or create vulnerabilities in the system

and can be caused by all types of users (novice and expert users).

• Deliberate software threats: comprising of network worms, viruses, Trojans

and denial of service.

21

1.2. IP-BASED MOBILITY PROTOCOLS

• Insider threats: comprising of disgruntled employees and threats from legit-

imate users of the systems.

• Cyber-threats: comprising of terrorism, political warfare, organised crimes,

phishing, and pharming.

• Natural disaster: comprising of fire, flooding, earthquakes, and hurricane.

Figure 1.1: Dollar amount losses due to security threats [4]

Figure 1.1 shows the losses in US dollars caused by different types of threats

obtained from CSI/FBI crime survey [4]. As shown, viruses topped the list;

however, other new types of threats, such as Cyber-threats, are beginning to

emerge. These types of threats accounted for a significant amount of dollar losses

compared to previous years.

1.2 IP-based Mobility Protocols

IP-based mobility protocols aim to achieve two goals: first, allow MNs to be

reachable as long as they are connected somewhere to the Internet, and second,

22

1.2. IP-BASED MOBILITY PROTOCOLS

maintain ongoing connections between MNs and their CNs. These goals are

achieved by assigning an MN two IP addresses: a permanent home address (HoA)

that identifies the MN in its home link and a transient care-of address (CoA) that

gives the MN’s location while away from its home link. The HoA remains the

same during movements and the CoA changes every time the MN changes its IP

connectivity. When the MN moves to a foreign link and configures a new CoA,

it initiates a home registration process to register the CoA with a router in its

home link (called a home agent (HA)). This registration allows the HA to create

a binding for the MN between its HoA and its CoA. Using this binding, the HA

intercepts all packets on the home link destined for the MN’s HoA and forwards

them through a tunnel to the MN’s registered CoA, i.e. to the MN’s current

location [5, 6, 7, 8]. Thus, via the HA’s binding for the MN, the MN is reachable

at any location on the Internet using its CoA, and its ongoing connections are

maintained using the HoA.

IP-based mobility protocols also define a correspondent registration process

that allows an MN to register its CoA with a CN. The correspondent registration

improves routing (called route optimization (RO)) by enabling packets to be sent

directly between the MN and the CN. The correspondent registration is voluntary

in the sense that either the MN or the CN can refuse to do it, and they can

continue communicating via the MN’s home link [5].

In the home/correspondent registration, the MN sends the HA/CN a mobility

message called a ‘Binding Update (BU)’ that contains the MN’s HoA and current

CoA. The HA/CN first stores this binding in its binding cache, which indicates

packets destined to that HoA should be forwarded/sent to the bound CoA. The

HA/CN then replies to the MN by returning a ‘Binding Acknowledgement (BA)’

mobility message that acknowledges the binding of the current CoA.

The BUs sent from MNs during home and correspondent registrations, i.e. the

location management feature of IP-based mobility protocols, are obviously very

sensitive; they modify routing to enable mobility in the network. By spoofing

BUs, an attacker can divert traffic to itself or to another node and prevent the

original MN from receiving the traffic destined to it. This opens up possibilities

for many attacks, discussed later in Section 2.2.1, such as denial of service, man-

in-the-middle, connection hijacking, and impersonation attacks [5, 9]. Therefore,

23

1.2. IP-BASED MOBILITY PROTOCOLS

the biggest security vulnerability of IP-based mobility protocols is the authenti-

cation and authorization of BUs sent from MNs. Consequently, a security provi-

sion for home and correspondent registrations is a fundamental part of IP-based

mobility protocols. It is believed that the deployment of an IP-based mobility

protocol without securing home and correspondent registrations could result in a

breakdown of the entire Internet [1].

The current specifications of IPv6-based mobility protocols use IPSec Encap-

sulating Security Payload (ESP) [10] to protect home registrations and a Return

Routability (RR) procedure to protect correspondent registrations [5, 11]. In ad-

dition, sequence numbers are used within BUs and BAs to protect against replay

attacks. IPSec and sequence numbers can protect home registrations against out-

sider attacks, i.e. an attacker cannot send a spoofed or a replayed BU message

instead of the MN. They can also partially protect against insider attacks, i.e.

the MN cannot send a BU on behalf of another MN that is using the same HA.

However, they fail to prevent the MN from lying about its current location, i.e.

the MN might provide a false CoA to the HA and thus redirect data to this

address.

The RR procedure does not provide sufficient protection for correspondent

registrations. Furthermore, it is inefficient as it requires the exchange of six

messages and takes about 1.5 round-trip times between the MN and the CN to

complete one correspondent registration. The procedure checks the MN’s reach-

ability at both the HoA and the CoA. In the procedure, the CN generates and

sends two secret keys as plaintext to the MN’s home and care-of addresses. The

MN and the CN use the two keys to establish a session key that is used to pro-

tect the subsequent correspondent registration. However, an attacker that can

capture both the keys can generate the session key and successfully impersonate

the MN. As a result, the procedure only reduces the number of attackers from

any node in the Internet to those that are on the route between the CN and

the MN’s home link. In addition, the procedure increases signalling overhead

and registration delay as it requires six messages and about 1.5 round-trip times

per correspondent registration. Other protocols, discussed later in Chapter 3,

were proposed to overcome the RR’s limitations and to protect correspondent

registration; however, they also have their limitations in terms of needing a secu-

rity infrastructure, increasing registration delay, increasing signalling overhead,

and/or increasing load at MN side.

24

1.3. RESEARCH HYPOTHESES

The limitations of the solutions currently used to protect home and corre-

spondent registrations have motivated the research described here to investigate

ways of improving security provisions for home and correspondent registrations

in IPv6-based mobility protocols.

1.3 Research Hypotheses

Existing work on securing home registrations fails to protect against legitimate

MNs behaving maliciously. A malicious MN could pretend to own a third party’s

address and lure an HA to flood that victim with useless packets. Similarly, ex-

isting solutions for securing correspondent registrations do not provide sufficient

protection and/or cause high registration delay and signalling overhead. As men-

tioned above, securing home and correspondent registrations are a fundamental

part of the deployment of IP-based mobility protocols without the breakdown of

the entire Internet.

The first hypothesis of this research is that it is possible to improve home

registrations to support location authentication of MNs to their HAs. This could

be achieved by cryptographically configuring an MN’s CoA based on a secret key

shared between the MN and an HA, and by applying a concurrent CoA reachabil-

ity test. By doing so, the HA could verify authenticity of the CoA and verify the

MN’s reachability at the CoA with a marginal increase in the registration delay.

In addition, this could enable HAs to participate in correspondent registrations

by confirming MNs’ CoAs to CNs.

The second hypothesis is that an efficient and secure correspondent registra-

tion could be achieved by involving HAs in the registration (to confirm MNs’

HoAs and CoAs) and by designing the registration to occur in three phases: a

creation phase, an update phase and a deletion phase. The authentication of an

MN and a home link to a CN, and the establishment of registration session keys

could be done when they do not impact registration delay. They could take place

in the creation phase where the MN and the CN communicate through the MN’s

home link. In addition, by using these session keys in the update and the deletion

phases, the security strength of the correspondent registration could be increased

and the registration delay and signalling overhead could be reduced.

The third hypothesis is that all stationary hosts, such as popular web servers,

could be protected against different attacks caused as a side effect of the location

25

1.4. RESEARCH AIM AND OBJECTIVES

management feature of IP-based mobility protocols by finding a way to differen-

tiate between redirectable and non-redirectable IP addresses. This could prevent

attackers from falsely claiming that stationary hosts’ addresses are their HoAs or

CoAs. Consequently, it could significantly reduce possible attacks that could be

launched due to IP-based mobility protocols.

1.4 Research Aim and Objectives

The aim of this research is to improve the security as well as the efficiency of

home and correspondent registrations in IP-based mobility protocols. To restrict

the scope of the discussion, this thesis is limited to an improvement in the Mobile

IPv6 (MIPv6) mobility protocol. The reasons for this are threefold. Firstly, to

support the rapid growth of the Internet, it is expected that IPv6/MIPv6 will

replace the current IPv4/MIPv4 in the next few years. Secondly, MIPv6 is the

base for all IPv6-based mobility protocols; other IPv6-based mobility protocols

such as Fast Handover Mobile IPv6 [6] and Hierarchical Mobile IPv6 [8] are ex-

tensions of MIPv6 that improve handover latency. Thirdly, simulation packages

such as NS-2 and OPNET [12, 13] implement MIPv6, and thus could be used to

simulate and evaluate existing solutions as well as the proposed solutions.

In order to achieve this aim, the objectives of this thesis are as follows.

1. To thoroughly understand the security and performance needs of home and

correspondent registrations;

2. To identify weaknesses in the existing solutions for securing home and cor-

respondent registrations;

3. To overcome the weaknesses and to advance the state of the art by designing

an enhanced home registration protocol that supports location authentica-

tion of MNs to their HAs, i.e. allows HAs to verify MNs’ ownership of

claimed CoAs;

4. To overcome the weaknesses and to advance the state of the art by designing

a family of correspondent registration security protocols that could be used

in different scenarios depending on the relationship between MNs’ home

links and CNs;

26

1.5. RESEARCH METHOD

5. To perform security analysis and performance evaluation of the designed

protocols. This will show improvements offered and identify any negative

impacts of the designed protocols.

1.5 Research Method

It was possible to identify the following key tasks that need to be completed as

part of the research project.

1.5.1 Literature Review

The first task was to study the general area of interest. In the context of this

project, a starting point of addressing the issues related to IP-based mobility was

given. From this, MIPv6 protocol was selected as an IPv6-based mobility proto-

col that will be used in the next few years to support mobility in the Internet.

The next point was to identify security risks that could be launched by applying

the MIPv6 protocol. The security and performance requirements of home and

correspondent registration processes used in the MIPv6 protocol were then identi-

fied. Related existing work was identified and reviewed against the requirements.

Gaps where further work was necessary were identified. Design hypotheses based

on state-of-the-art work were identified, and theoretical work on designing pro-

tocols based on the hypotheses could start. From this, the area of securing home

and correspondent registrations was identified as the field of research. At this

point, the literature review was not finished; reviewing relevant literature carried

on throughout the project. As new work was published, this too was reviewed

and where necessary taken into account.

1.5.2 Theoretical Work

Upon the initial intensive literature review, solutions for the issue of providing

security to home and correspondent registrations in MIPv6 protocol were iden-

tified. The ideas were repeatedly refined by taking input from existing work.

Considerations were given to minimising any additional overheads incurred by

the proposed solutions. At the conclusion of this stage, two novel protocols were

proposed. The first protocol was the Enhanced Home Registration (EHR) proto-

col and the second was a family of correspondent registration security protocols.

27

1.5. RESEARCH METHOD

1.5.3 Security Analysis

On completion of the design stage, the next stage was to verify the security of

the proposed protocols. The security analysis strategy included three methods:

informal analysis, formal analysis and comparison with related work. The in-

formal analysis was used to analyse the proposed protocols against the security

requirements and risks identified in the literature review stage. The formal anal-

ysis was used to provide a rigid and thorough means of testing the correctness of

the proposed. The formal analysis was carried out using both the framework of

protocol composition logic [14, 15] and the Casper/FDR2 model checker [16, 17].

Finally, a comparison of the proposed protocols and their most relevant work was

done to demonstrate the merits of the security (and performance) they provide

over the related work.

1.5.4 Simulation Modelling

After the security analysis stage, the next stage was to evaluate the performance

of the proposed protocols. Evaluation was carried out using the OPNETTM Mod-

eler version 14.5 simulation package [13]. The first step was to design and con-

struct the simulation models. Once the simulation models were constructed, they

were validated. Validation was performed by driving a mathematical model of a

simplified simulation model and comparing the simulated results with the results

obtained from the mathematical model. In addition, the OPNET debugger was

used to prove that the proposed protocols operate correctly by outputting dif-

ferent processes carried out by all involved entities, and by outputting relevant

packet information, i.e. source address, destination address, packet contents, and

packet size. Once the validation was complete, the simulation models could be

run with confidence that they were accurate.

1.5.5 Evaluation

When simulation was completed, the last stage was to process the results and

produce graphs. These graphs were used to compare the performance of the

proposed protocols with that of the most related existing work. Conclusions were

then drawn from these comparisons.

28

1.6. ACHIEVEMENTS AND NOVEL CONTRIBUTIONS

1.6 Achievements and Novel Contributions

The research work presented in this thesis has led to the following achievements

and novel contributions:

1. The design of a novel symmetrical CGA-based technique to cryptograph-

ically generate and verify an IPv6 address. It makes use of a secret key

shared between the participants, i.e. address owner and address verifier, in

the address generation and verification processes. As a result, it reduces

the computational and communication costs of the participants compared

to the traditional CGA-based technique, which requires digital signature

generation and verification processes. This in turn resulted in the suit-

ability for use by MNs to configure new CoAs and by HAs to verify the

authenticity of those CoAs. It aims to reduce the likelihood of a malicious

MN being successful in stealing a third party’s address by forcing the MN

to attempt about (261) tries to be able to produce the same address.

2. The design of a novel concurrent CoA reachability test that allows an HA

to register and use an MN’s new CoA while concurrently verifying the MN’s

reachability at that CoA. This test has no effect on the registration delay

as it runs parallel to data transfer to and from the new CoA. It also allows

the HA to make use of a secret key, called the ‘node key’, to produce tokens

sent to the MNs. This enables the HA to verify that the token returned

by the MN is indeed its own without forcing the HA to remember a list of

all tokens it has handed out. In addition, the test allows the HA to limit

the number of BUs that can be received from unreachable CoAs, which

prevents malicious MNs from bypassing the test by continuously sending

BUs without involving the test. Even though a concurrent CoA reachability

test is not entirely new in the MIPv6 context, this is the first concurrent

CoA reachability test between HAs and MNs that incorporates the node

key concept, is able to prevent malicious MNs from bypassing the test, and

has no effect on the registration delay.

3. The proposal of a novel method of segmenting IPv6 address space to dif-

ferentiate between redirectable and non-redirectable IPv6 addresses. The

method uses two bits of the IPv6 64-bits interface identifier field to distin-

guish between redirected-from addresses (i.e. MNs’ HoAs), redirected-to

29

1.6. ACHIEVEMENTS AND NOVEL CONTRIBUTIONS

addresses (i.e. MNs’ CoAs), and non-redirectable addresses (i.e. stationary

hosts’ addresses). This method needs to be deployed on a global scale on

the IPv6 Internet to be able to protect stationary hosts, as well as other

MNs located at their home links, against attacks that could be launched

via abuse of current and future mobility protocols.

4. The design of a novel home registration protocol called the Enhanced Home

Registration (EHR) protocol. It incorporates the novel symmetrical CGA-

based technique, the novel concurrent CoA reachability test, and the novel

segmenting IPv6 address space method mentioned above to allow HAs to

verify MNs’ ownership of claimed CoAs without incurring a negative impact

on registration delay. The protocol introduces a marginal increase in the

registration delay, but a significant increase in the signalling overhead as a

cost of supporting location authentication of MNs.

5. The design of a family of novel correspondent registration security protocols

that rely on the assistance of an MN’s home link to enable a CN to securely

authenticate an MN’s ownership of a HoA and a CoA. The protocols can

be used in different scenarios depending on the relationship between MNs’

home links and CNs:

− SK-based protocol for use when a secret key is shared.

− PK-based protocol for use when the home link has a certified pub-

lic/private key pair.

− INF-based protocol for use when no prior relationship exists.

The protocols are designed in three phases: a creation phase, an update

phase and a deletion phase, where most of the authentication and keys

establishment take place in the creation phase (while the MN and the CN

communicate through the MN’s home link). By carrying out authentication

and keys establishment in the creation phase, and by using these keys in

the update and deletion phases, security strength is increased and registra-

tion delay is reduced. In addition, the protocols offload computational and

communication to the home link from the MN, thus reducing computing

and memory requirements as well as power consumption for the MN.

30

1.7. THESIS STRUCTURE

6. Security and performance evaluation of the proposed protocols. Specifically,

(a) informal analysis of the protocols against the security requirements and

well-known attacks; (b) formal verifications of the security properties using

the framework of protocol composition logic and the Casper/FDR2 model

checker; and (c) evaluation of the performance of the protocols using OP-

NET simulation package, which has been compared to that of related work.

Parts of the research work presented in this thesis have been published in the

following conference proceedings.

1. Osama Elshakankiry, Andy Carpenter and Ning Zhang. A New Secure

Binding Management Protocol for Mobile IPv6 Networks, In Proceeding of

the 4th International Symposium on Information Assurance and Security

(IAS08), IEEE CS Press, Naples, Italy, September 2008, pp. 281-286.

2. Osama Elshakankiry, Andy Carpenter and Ning Zhang. A Novel Scheme

for Supporting Location Authentication of Mobile Nodes, In Proceeding

of the Second International ICST Conference on Security and Privacy in

Mobile Information and Communication Systems (MobiSec2010), LNICST,

Catania, Italy, May 2010, pp. 91-102.

1.7 Thesis Structure

The thesis is structured as follows. Chapter 2 describes the current specification

of the Mobile IPv6 protocol; it defines the basic home registration and the return

routability procedure, which are currently used to protect home and correspon-

dent registration processes, respectively. It also presents the security risks and

attacks and outlines the security services that define the security requirements

for securing home and correspondent registration processes. Chapter 3 gives a

survey of state-of-the-art protocols relevant to the protection of the correspon-

dent registration process. The strengths and weaknesses of these protocols are

then identified.

Chapters 4 to 6 present our novel research work, contributions, and results.

Chapter 4 presents the design, implementation and performance evaluation of our

EHR protocol. This chapter includes the efficiency analysis and the performance

comparison of the proposed EHR protocol with the basic home registration proto-

col. Chapter 5 presents the design of a family of novel correspondent registration

31

1.7. THESIS STRUCTURE

security protocols. Chapter 6 presents the security analysis and performance eval-

uation of the protocols proposed in Chapter 5. The security analysis is conducted

both informally against requirements and attacks, and formally using both proto-

col composition logic and Casper/FDR2 model checker. Again the performance

of the protocols are measured and compared with the most related existing pro-

tocols. A brief description of the methods chosen for formal verification of the

protocols’ security properties is also provided. Finally, Chapter 7 concludes the

thesis and suggests directions for future work. A brief introduction to the basic

cryptographic techniques that are used in the design of home and correspondent

registration protocols is given in Appendix A. Full details of simulation model

validation and formal protocol verification are also presented in the appendices.

A brief introduction to the OPNET Modeler simulation package and the Cryp-

toSys Cryptography Toolkit that are chosen for performance evaluation is also

given.

32

Chapter 2

The Mobile Internet Protocol

version 6 (Mobile IPv6)

This chapter gives an insight into the current specification of the Mobile IPv6

protocol. In detail, Section 2.1 presents an overview of the protocol, its main

components, and the two possible modes of communications allowed between

an MN and a CN. Section 2.2 details security risks and attacks that could be

launched via abuse of the location management feature of the protocol. It also

presents the security services and performance requirements needed to overcome

these attacks. Section 2.3 gives an overview of the Internet Protocol Security

(IPSec), which is currently used to protect control traffic between MNs and HAs.

Section 2.4 is devoted to the description of the basic home registration process

included in the protocol, which enables an MN (while away from home link) to

register its current location with an HA. It also analyses the security services

provided by the protocol to the process against the requirements specified in

Section 2.2. Section 2.5 presents a detailed description of the return routability

(RR) procedure included in the protocol to protect correspondent registrations. It

also identifies the security and performance limitations of the procedure against

the requirements specified in Section 2.2. Finally, Section 2.6 summarises the

chapter.

2.1 Basic Operations

Mobile IPv6 (MIPv6) is an IP-layer mobility protocol for the IPv6 Internet [5].

It is designed to allow a mobile node to always be reachable with one address,

33

2.1. BASIC OPERATIONS

i.e. a home address, regardless of the mobile node’s actual location. It also

makes it possible for the mobile node to maintain existing connections with other

correspondent nodes across different locations.

The MIPv6 protocol introduces three network entities: a mobile node (MN),

a home agent (HA) and a correspondent node (CN). The MN is a mobile device

that has a home link and a permanent home address (HoA) on that link. The MN

also acquires one or more transient care-of addresses (CoAs) when it roams to

some foreign link. The HA is a router located on an MN’s home link with which

the MN has registered one of its current CoAs. The HA maintains registrations

of the MNs that are away from home and their current CoAs. In addition, when

the MN is away from home, the HA intercepts packets on the home link destined

for the MN’s HoA and forwards them to the MN’s registered CoA. The CN is

a peer node that communicates with an MN. The CN may be either mobile or

stationary, and it does not have to be aware of the MIPv6 protocol.

In order for an MN to receive data packets destined for its HoA while away

from home, it must register one of its current CoAs with an HA on its home link.

When the MN moves to some foreign link, it automatically detects its movement

using the Router Discovery protocol [18]. In addition, the MN automatically

obtains a new CoA corresponding to the subnet prefix of the foreign link using

either stateless or stateful address auto-configuration [19, 20]. The MN may have

multiple CoAs at the same time with different subnet prefixes (e.g. in the case

of overlapping wireless networks). The MN registers one of its current CoAs

with the HA by running a home registration process. The MN initiates the home

registration by sending a Binding Update (BU) message to the HA, which contains

the MN’s HoA and CoA. The HA stores this binding, i.e. association between the

HoA and the CoA, in its Binding Cache (which will be explained later in greater

detail). Using this binding, the HA intercepts and forwards packets destined for

the HoA to the bond CoA. The HA concludes the home registration by returning

a Binding Acknowledgement (BA) message to the MN to acknowledge the binding

of the CoA. The MN’s CoA registered at the HA is called the MN’s primary CoA.

There are different ways for an MN to communicate with a CN. While the

MN is at home, all traffic between the MN and the CN is routed to and from the

HoA using the normal IPv6 routing mechanisms [21], i.e. no special procedure is

required. When the MN is away from its home link, two modes of communication

are possible: bidirectional tunnelling and route optimization. In the bidirectional

34

2.1. BASIC OPERATIONS

tunnelling mode, all traffic is routed indirectly via the MN’s home link. In detail,

this means packets from the CN are routed to the MN’s home link where the

HA intercepts and forwards them through a tunnel to the MN’s CoA. Packets

to the CN are tunnelled from the MN to the HA (‘reverse tunnelled’) and then

routed normally from the home link to the CN. Tunnels between MNs and HAs

are normally performed using IPv6 encapsulation [22]. However, when these

tunnels need to be secured, they are replaced by IPSec tunnels. The bidirectional

tunnelling mode is shown in Figure 2.1.

Figure 2.1: Bidirectional tunnelling communication

The route optimization (RO) mode allows packets to be routed directly be-

tween the MN and the CN, as shown in Figure 2.2. This mode requires the CN to

be aware of the MIPv6 protocol and the MN to register its current location with

the CN. The registration is performed by running a correspondent registration,

in which the MN and the CN exchange BU and BA messages. As a result, the

CN creates a Binding Cache entry and stores the binding between the MN’s HoA

and CoA. Subsequently, the CN sends all packets destined for the MN to its CoA

instead of its HoA. The RO mode allows the presumably shorter path between

the MN and the CN to be used and minimizes traffic levels at the HA as well as

at the home link [23].

In order for the optimized route to be used, two new types of routing headers

are included in the MIPv6 protocol: the ‘Home Address Destination Option’

35

2.1. BASIC OPERATIONS

header and the ‘Type-2’ header. When routing a packet directly to the CN,

the MN uses its CoA as the source address and includes its HoA in a ‘Home

Address Destination Option’ header. The header indicates that although the

source address is the CoA, the packet is actually from the node whose address is

the HoA. After receiving the packet, layer 3 at the CN replaces the source address

with the HoA before passing the packet to the upper layer protocol. Similarly,

when routing a packet directly to the MN, the CN sets the destination address to

the MN’s CoA and includes the MN’s HoA into the ‘Type-2’ header. The header

indicates that although the packet is destined for the CoA, it is really intended

for the HoA. When the MN receives the packet, layer 3 at the MN replaces the

destination address with the HoA before passing the packet to the upper layer

protocol. Thus, through the use of the two new headers, the MIPv6 operation

and the use of the CoA are transparent to the upper layer protocol, as far as the

upper layer protocol is concerned, and the HoA is used for all communications.

Figure 2.2: Route optimization communication

The MIPv6 protocol also defines a new mobility header called the ‘Alternate

Care-of Address’. This header may be used to hold the MN’s CoA in BU messages

sent by the MN. Normally, a BU message specifies the CoA in the source address

field of the IPv6 header. However, the MN may specify a different CoA by

including it in the ‘Alternate Care-of Address’ header. When the ‘Alternate

Care-of Address’ header is included in the BU message, the recipient must use it

36

2.2. SECURITY AND EFFICIENCY OF BINDING UPDATES

as the CoA for the binding rather than using the source address of the message

as the CoA. This header is provided for use when the MN wishes to register a

CoA that cannot be used as a topologically correct source address, when the MN

wishes to deregister its CoA with a CN while it is away from home, or when the

security mechanism used does not protect the IPv6 header.

The MN maintains a list called ‘Binding Update List’. This list specifies all

of the bindings that the MN has or is trying to establish with CNs. The binding

with the MN’s HA is stored in the list as well. The MN uses this list to determine

whether packets for a specific CN should be sent directly to the CN or tunnelled

via the HA. The list is also used to determine to whom the MN should send BU

messages when roaming to another link. On the other hand, both the HA and

the CN maintain a ‘Binding Cache’ of the accepted bindings received from other

MNs. The Binding Cache at the CN allows it to send packets directly to the

MN’s CoA. The HA uses its Binding Cache to determine which MNs it is serving

as a home agent.

2.2 Security and Efficiency of Binding Updates

The location management feature of the MIPv6 protocol makes it possible for an

attacker to send a spoofed BU message to an HA and/or to a CN. By spoofing

BUs, the attacker can launch different types of attacks including session hijacking,

man-in the-middle (MITM), and denial-of-service (DoS) [9]. This section exam-

ines the security and efficiency of BUs used in MIPv6 protocol. Section 2.2.1 first

presents security risks and attacks imposed by the introduction of the binding

feature of the MIPv6 protocol. Section 2.2.2 then describes security services that

should be provided to prevent such attacks, and the performance requirements

that should be considered while providing these security services.

2.2.1 Security Risks and Attacks

Most of the attacks introduced by the binding feature of the MIPv6 protocol

cause inappropriate bindings that misinform other entities (HAs and CNs) about

the location of an MN, making them redirect traffic intended for the MN to a

wrong destination. The attacks can be summarized as follows [5, 9]:

37

2.2. SECURITY AND EFFICIENCY OF BINDING UPDATES

• Malicious MNs flooding attacks. A legitimate MN sends a spoofed BU

message to an HA and/or a CN. In the spoofed message, the MN sets the

home address to its own HoA and the care-of address to a victim node’s ad-

dress, falsely claiming that it has moved to the victim’s location. As a result,

the HA/CN would redirect all subsequent packets, which should otherwise be

delivered to the MN itself, to the victim’s address, flooding the victim with

excessive unwanted data. This is shown in Figure 2.3.

Figure 2.3: A malicious MN flooding attack

• False Binding Update attacks. An attacker impersonates another (mobile)

node and sends a spoofed BU message. As a result, the attacker would redirect

traffic destined for the original (mobile) node to itself (or to a third node). This

is shown in Figure 2.4 and can be summarized as follows:

− Session hijacking attacks. The attacker sends a spoofed BU, in which

the home address is set to the (home) address of a victim (mobile) node,

and the care-of address is set to the attacker’s address. In this way, the

attacker can hijack existing connections and launch DoS attacks against

the victim (mobile) node as packets destined for the (mobile) node will

be directed elsewhere. This is shown in Figure 2.4(a).

− Denial-of-Service (DoS) attacks. The attacker sends a spoofed BU, in

which the home address is set to the (home) address of a victim (mobile)

node, and the care-of address is set to the address of a victim third node.

38

2.2. SECURITY AND EFFICIENCY OF BINDING UPDATES

In this way, the attacker can launch DoS attacks against both of the victim

(mobile) node and the victim third node. This is shown in Figure 2.4(b).

− Man-In-The-Middle (MITM) attacks. The attacker sends spoofed

BUs to two CNs in order to set itself as a MITM between them. This is

shown in Figure 2.4(c).

Figure 2.4: False Binding Update attacks

• Return-to-home spoofing attacks. An attacker claims to be an MN that

is currently away from its home link. The attacker starts a communication

with a CN and sends a spoofed BU in which the home address is set to the

(home) address of a victim (mobile) node, and the care-of address is set to the

attacker’s address. The attacker next starts to download a heavy stream of

data, such as video streaming, from the CN. The attacker then sends a spoofed

BU to remove its Binding Cache entry at the CN, claiming that it has returned

to the home link. As a result, the CN sends subsequent traffic to the victim’s

address, flooding the victim with excessive unwanted data.

39

2.2. SECURITY AND EFFICIENCY OF BINDING UPDATES

• Replay attacks. An attacker replays a BU that an MN had sent earlier to an

HA or to a CN. Consequently, the HA (or the CN) redirects subsequent traffic

to the MN’s old location. This causes DoS attacks to both of the MN and the

node (if any) that is currently located at that location.

• Resource exhaustion DoS attacks. A security protocol that could be used

to protect BUs may increase the participants’ vulnerability to resource exhaus-

tion DoS attacks. An attacker may exploit the protocol features to exhaust

memory and/or computing resources of a CN. The attacker can flood the CN

with BUs that cause it to perform computationally expensive cryptographic

operations or to create a lot of states in its memory.

It is expected that the correspondent functionality of MIPv6 will be deployed

in most IPv6 nodes. In addition, the addresses of MNs are indistinguishable

from those of stationary ones. Thus, the above attacks are applicable to the

whole Internet. The attacker can be anywhere on the Internet and all Internet

nodes are potential targets. To summarise, both BUs exchanged between an MN

and its HA and between an MN and its CN in MIPv6 protocol need protection.

Otherwise, the MN and the CN are vulnerable to DoS, MITM, impersonation,

and hijacking attacks. Third parties are also vulnerable to DoS attacks.

2.2.2 Security Services and Performance Requirements

In order to minimise and address the security risks and attacks discussed above,

the following security services should be provided [5, 9]:

• Authentication

The authentication service provides assurance that a BU message has originated

from the entity that owns the claimed home and care-of addresses. Authenticating

a home address ensures that the entity is authorized to create a binding for that

home address. In addition, authenticating a care-of address ensures that the

entity is indeed located at that care-of address.

• Integrity

The integrity service ensures that the received BU message contains the same

binding data as sent.

40

2.3. INTERNET PROTOCOL SECURITY (IPSec)

• Freshness

The freshness service prevents attackers from replaying a previously authenticated

BU message.

• Resource exhaustion DoS resistance

The resource exhaustion DoS resistance protects CNs against memory and CPU

exhaustion DoS attacks. A CN should set a limit on the amount of resources used

for managing locations of MNs. The CN also should not retain any state about

individual MNs until it receives an authentic BU from that MN, i.e. the honesty

of the MN is proved. Furthermore, the CN should use computationally inexpen-

sive cryptographic operations to authenticate the MN, or should delay expensive

operations (if any) until the MN provides some assurance of its honesty.

In addition, the following performance requirements should also be considered

while providing the above security services [24]:

• Cost-effective operation at MN

The MN’s capabilities should be considered through minimising the operational

load at the MN. The operational load includes:

− Computational cost: the number of computationally expensive cryptographic

operations performed by the MN.

− Communication cost: the number and length of messages sent/received by

the MN.

• Support delay-sensitive application

The delay introduced as the result of securing BUs should be considered. A longer

delay may significantly impact delay-sensitive applications.

2.3 Internet Protocol Security (IPSec)

Internet Protocol Security (IPSec) is a standard framework for securing IP com-

munications. IPSec is a set of protocols that provides security to IP and upper-

layer protocols for secured exchange of IP packets [25, 26]. It provides two types

of security algorithms: symmetric ciphers for encryption, and keyed one-way hash

41

2.3. INTERNET PROTOCOL SECURITY (IPSec)

functions for authentication and integrity. It can be used to provide data confi-

dentiality, data integrity, data authenticity, and optional anti-replay protection.

IPSec supports two modes of operation: transport mode and tunnel mode.

The transport mode protects the payload and upper-layer headers of each IP

packet. In this mode, an IPSec header is inserted between the IP header and the

upper-layer protocol header. On the other hand, the tunnel mode protects the

entire IP packet. In this mode, the entire IP packet to be protected is encapsulated

in a new IP packet and an IPSec header is inserted between the outer and inner

IP headers.

IPSec has two basic protocols to provide security: IPSec Authentication

Header (IPSec AH) [27] and IPSec Encapsulating Security Payload (IPSec ESP)

[10]. The IPSec AH is used to protect the authenticity and integrity of an IP

packet with a keyed cryptographic hash value. The proof of authenticity and

integrity is based on the possession of a secret key that is used to calculate a

MAC value for the IP packet. Figure 2.5 depicts the IPSec AH header format.

The ‘Next Header’ field identifies the type of transport protocol used in the up-

per layer. The ‘Payload Length’ field specifies the length of AH header. The

‘Reserved’ field is reserved for future use and must be set to zero. The ‘Secu-

rity Parameter Index (SPI)’ field, in combination with the destination IP address

and security protocol (IPSec AH), uniquely identifies the Security Association

(SA) for this datagram. The ‘Sequence Number’ field contains a monotonically

increasing counter value (sequence number). Finally, the ‘Authentication Data’

field is a variable-length field that contains the Integrity Check Value (ICV) for

the attached packet (including the AH header itself).

Figure 2.5: IPSec AH header format

Figure 2.6 depicts the coverage of the authentication protection for IPSec

AH in transport mode and in tunnel mode. The ICV is computed first at the

42

2.3. INTERNET PROTOCOL SECURITY (IPSec)

transmitter by the use of a keyed one-way hash function that is also known to the

receiver. Then, the ICV is recomputed at the receiver and compared to match

the received value for authentication integrity. The ICV computation excludes

values of the IP header that are subject to change during transmission such as

time-to-live, flags, and header checksum.

Figure 2.6: IPSec AH authentication protection

The IPSec ESP can provide confidentiality, integrity, authenticity, and op-

tional anti-replay services to the IP packets it is protecting. Figure 2.7 depicts

the IPSec ESP header and trailer format. The IPSec ESP header consists of

‘Security Parameter Index (SPI)’ and ‘Sequence Number’ fields that are exactly

the same as in IPSec AH. The IPSec ESP trailer consists of three fields. The

‘Padding’ field is used to adjust the size of the plaintext (consisting of the Pay-

load Data, Pad Length, and Next Header, as well as the Padding) to the size

required by the encryption algorithm used. The ‘Pad Length’ field contains the

number of pad bytes inserted by the encryption algorithm. The ‘Next Header’

field is the same as in IPSec AH. The figure also shows the ‘Authentication Data’

field, which contains the ICV computed over the packet and the ESP header and

trailer (not including the authentication data itself). This field is optional and is

included only if the authentication service is required.

Figure 2.8 depicts the protection coverage of authentication and encryption

for IPSec ESP in transport mode and tunnel mode. The ESP header is inserted

in exactly the same way as the AH header. The ESP trailer is inserted after the

payload data and before the ESP authentication data. The ICV computation

steps are the same as in IPSec AH.

43

2.3. INTERNET PROTOCOL SECURITY (IPSec)

Figure 2.7: IPSec ESP header, trailer, and authentication data format

Figure 2.8: IPSec ESP authentication and encryption protection

IPSec uses Security Associations (SAs) to specify parameters controlling se-

curity operations. The SAs are represented through data records stored in the

communicating entities that contain parameters such as encryption and authenti-

cation algorithms, secret keys, IPSec mode (transport or tunnel), IPSec protocol

(AH or ESP), and so forth. SAs can be set up manually or by a security as-

sociation and key-management protocol that performs an entity authentication.

SAs are unidirectional, so two SAs have to be set up for secured bi-directional

communication. IPSec can provide anti-replay protection only if dynamic keying

is used. The Internet Key Exchange (IKE) is the most widely adopted proto-

col for SA negotiation and keying material provisioning [28, 29]. It uses either

pre-shared secrets or public keys for authenticating IPSec, negotiating security

services and generating shared keys.

44

2.4. STANDARD HOME REGISTRATION

2.4 Standard Home Registration

Home registration is a process that is initialized by an MN to inform an HA

about the MN’s current location. It is performed through the use of BU and BA

mobility messages. When the MN roams away from the home link, it initiates the

process to request the HA to serve as the home agent for its HoA by registering

its current CoA with the HA. The process also allows the MN to update the

HA with the MN’s new CoA after roaming to a new foreign link, to extend the

lifetime of a registration that is about to expire, or to delete a registration after

returning to the home link.

Security provision for home registrations is a fundamental part of the MIPv6

protocol to avoid the various attacks stated in Section 2.2.1. The MN uses services

of the HA and they belong to the same administrative domain. Thus, it is

assumed that the MN and the HA know each other in advance and can use a

pre-shared secret (or other authentication infrastructure such as certificates) to

establish a bidirectional IPSec Security Association (SA), which can be then used

in protecting home registrations. As a result, the base specification of the MIPv6

protocol [5] uses IPSec Encapsulating Security Payload (ESP) [10] and sequence

numbers to protect control traffic between MNs and HAs [11]. The control traffic

includes BU and BA mobility messages, and is carried by the Mobility Header

protocol in IPv6 [21]. A home registration process is shown in Figure 2.9 and can

be summarised as follows [5].

An MN initiates a home registration by sending a BU mobility message to an

HA. The BU message contains the MN’s HoA, the MN’s current CoA, a sequence

number, and a binding lifetime request. The MN must include its current CoA in

the new ‘Alternate Care-of Address’ mobility header even if the CoA appears as

the source address of the BU message. That is because IPSec ESP in transport

mode does not protect the IPv6 header. To protect against replay attacks, the

MN sets the sequence number to a value that is greater than the value sent in

the previous BU to this HA (if any). In addition, if the purpose of the BU is

to delete the MN’s binding entry at the HA, the MN will set the CoA equal

to its HoA and the binding lifetime request to ‘zero’. Finally, if the MN does

not receive a valid matching BA message within a retransmission interval of

one second, the MN will resend the BU message to the HA. The retransmission

interval is doubled upon each retransmission, until either a matched response is

received or the retransmission interval reaches a maximum retransmission interval

45

2.4. STANDARD HOME REGISTRATION

of 32 seconds. At this point, if there is only one HA in the home link, the MN

will continue to periodically retransmit the BU message at this slower rate until

acknowledged. Otherwise, the MN will reinitiate the home registration by instead

trying a different HA.

When the HA receives the BU message, it authorizes the sender of the mes-

sage, and verifies the authenticity, integrity, and freshness of the message. The

HA first authorizes the sender of the BU to ensure that it is actually authorized

to create a binding for the claimed HoA. This authorization is meant to prevent

an MN from using its SA to send a BU on behalf of another MN that is using

the same HA and is provided by using the claimed HoA in identifying the IPSec

SA that must be used. The HA next uses the identified IPSec SA to verify the

authenticity and integrity of the BU message. The HA then uses the sequence

number enclosed in the BU to check the freshness of the message, i.e. the HA

confirms that the given sequence number is greater than the sequence number

carried in the last valid BU from this HoA (if any).

If all verifications are positive, i.e. the received BU message is valid, the HA

will decide whether it needs to perform a Duplicate Address Detection (DAD)

test [20] for the MN’s HoA. The HA runs the DAD test for a given HoA only if

it does not have an existing Binding Cache entry for that HoA. The DAD test is

done to ensure that no other node on the home link is using the MN’s HoA when

the BU arrives.

If the DAD test succeeds (or if there is no need to perform the DAD test),

the HA will create, update, or delete a Binding Cache entry for the received

HoA. If the BU deletes an existing binding entry, the HA will delete any existing

entry in its Binding Cache for this HoA and will stop intercepting packets on

the home link that are addressed to the HoA. In addition, the HA will return

an accepted BA message to the MN acknowledging the deletion of the binding.

If the BU creates a new binding entry or updates an existing one, the HA will

store the CoA and sequence number carried in the BU message and will grant

a binding lifetime in its Binding Cache entry for the given HoA. The granted

binding lifetime is set by the HA depending on the binding lifetime requested

in the BU and on the remaining valid lifetime for the subnet prefix of the given

HoA. The HA determines the remaining valid lifetime for this prefix based on

its own Prefix List entry [18]. The HA then sends an accepted BA message to

the MN acknowledging the binding of the CoA. The BA message contains the

46

2.4. STANDARD HOME REGISTRATION

MN’s HoA, the granted binding lifetime, a sequence number that is equal to the

sequence number enclosed in the BU, and optionally, a binding refresh advice.

The binding refresh advice, which must be shorter than the granted binding

lifetime, may be included in the BA message suggesting the MN refresh its home

registration at this shorter interval.

On the other hand, if any of the above verifications is negative or if the DAD

test fails, the HA will reject the binding and will reply with a BA message in

which the status field is set to a value indicating the rejection of the binding and

the cause of the rejection.

Figure 2.9: Home registration

Upon receiving the BA message from the HA, the MN identifies the IPSec

SA that must be used. The MN next verifies the authenticity and integrity of

the BA message. The MN then verifies that the sequence number enclosed in the

BA matches the sequence number sent by the MN to this HA as maintained in

the corresponding Binding Update List entry. If any of the above verifications

is negative, the MN will discard the BA message without any further action.

Otherwise, the MN will examine the status field of the message. If the status

47

2.5. STANDARD CORRESPONDENT REGISTRATION

field indicates that the BU was accepted, then the MN will stop retransmitting

the BU and will update the corresponding entry in its Binding Update List to

indicate that the BU has been acknowledged. In addition, if the given granted

binding lifetime is less than the requested binding lifetime sent in the BU being

acknowledged, the MN will subtract the difference between these two lifetime

values from the remaining binding lifetime. On the other hand, if the status field

indicates that the BU was rejected, then the MN will take steps to fix the error

and retransmit the BU with a new sequence number.

The use of the IPSec ESP protocol and sequence numbers can partially protect

home registrations against the attacks mentioned in Section 2.2.1. Specifically, it

can prevent attackers from sending spoofed or replayed BU messages. In addition,

it can prevent a legitimate MN from sending a BU on behalf of another MN that is

using the same HA. However, as it cannot authenticate the claimed CoA, it cannot

prevent a legitimate MN from lying about its current location by providing a false

CoA and thus causing the HA to redirect traffic to this address. This weakness

was previously ignored as the MIPv6 protocol assumed that an MN could only

register one CoA, and if the MN cheated the HA with a fake CoA then the MN

would lose the communication with the HA, thus losing its mobility. However,

recent research [30, 31] has suggested that MNs could be multi-homed. In such

a scheme, a multi-homed MN can (1) have multiple HoAs connected to different

home links, and (2) bind a HoA to multiple CoAs. As a result, the MN may cheat

one or more of its HAs with victim addresses while maintaining mobility through

other HAs. If this cheating is successful, it is possible for the cheated HAs to

flood the victims located at the fake CoAs with unwanted packets. Therefore,

the home registration must enable HAs to verify the authenticity of the claimed

CoAs to prevent these attacks.

2.5 Standard Correspondent Registration

Correspondent registration is a process that is initialized by an MN to notify a

CN about the MN’s current location while away from home link. It is performed

through the use of a return routability (RR) procedure and a registration, an

exchange of a BU message and an optional BA message. When the MN receives

a tunnelled packet from its HA, it infers that the CN that sent the original

packet is unaware of the MN’s current location. Therefore, the MN may initiate

48

2.5. STANDARD CORRESPONDENT REGISTRATION

the process to inform the CN of its location. The process also allows the MN to

update and/or delete binding information in the CN.

The purpose of the RR procedure is to assure the CN that the MN is able

to receive messages sent to the claimed HoA as well as the claimed CoA. It is

also used to establish a session key between the MN and the CN, which is used

to protect the subsequent registration. The RR procedure consists of two tests:

a home address test and a care-of address test. The MN can initiate the two

tests simultaneously by sending a Home Test Init (HoTI) message and a Care-of

Test Init (CoTI) message to the CN. The CoTI message is sent directly to the

CN, while the HoTI message is ‘reversed tunnelled’ from the MN to the HA,

which then forwards it to the CN. The CN responds to the HoTI message by

sending a Home Test (HoT) message containing a secret home keygen token.

The HoT message is addressed to the MN’s HoA and is forwarded by the HA to

the MN’s current CoA. In addition, the CN responds to the CoTI message by

sending a Care-of Test (CoT) message containing a secret care-of keygen token.

The CoT message is routed directly to the MN’s CoA. If the MN really owns

both addresses, it will receive the two tokens from which it can compute a session

key. The session key is used by the MN and the CN to protect subsequent BU

and BA messages. The correspondent registration for updating a CN with an

MN’s location while away from the home link is shown in Figure 2.10 and can be

summarised as follows.

• Steps 1 and 2:

After the MN has completed a home registration, it can initiate a correspondent

registration with a specific CN. The MN first creates a Binding Update List entry

for the CN and sets it in a ‘Route Pending’ state. The MN then sends a HoTI

message to the CN (via the home link) requesting a home keygen token, where

HoTI = {Src=HoA, Des=CN, Cookie1}. At the same time, the MN also sends a

CoTI message directly to the CN requesting a care-of keygen token, where CoTI

= {Src=CoA, Des=CN, Cookie2}. The cookies, Cookie1 and Cookie2, are 64-bit

random numbers generated by the MN. The MN stores the cookies at the list

entry and compares them later with the responses from that CN to verify that

responses match with requests.

• Steps 3 and 4:

Upon receiving a HoTI message, the CN generates a home keygen token (Token1)

and sends a HoT message to the MN (via the home link). Specifically, the CN

49

2.5. STANDARD CORRESPONDENT REGISTRATION

Figure 2.10: Standard correspondent registration - including the RR procedure

first selects a home nonce NI that is identified by a home nonce index I. The CN

next generates the home keygen token, i.e. Token1 = First (64, HMAC SHA1

(KCN , (HoA || NI || 0))), where || denotes string concatenation; KCN is a secret

random value generated and only known by the CN (CN’s key); ‘0’ is a single zero

octet that is used to distinguish home keygen and care-of keygen tokens from each

other; HMAC SHA1 () denotes a keyed hashing MAC scheme using hash function

SHA1; and First (n, M) denotes the first n bits of message M. The CN then

sends out the HoT message to the MN’s HoA, i.e. HoT = {Src=CN, Des=HoA,

Cookie1, Token1, I}. The HA intercepts the HoT message and forwards it to the

MN’s registered CoA via a secure tunnel.

Similarly, upon receiving a CoTI message, the CN first generates a care-of

keygen token (Token2), i.e. Token2 = First (64, HMAC SHA1 (KCN , (CoA ||
NJ || 1))), where NJ is a care-of nonce that is selected by the CN and identified

by a care-of nonce index J. The home and care-of nonces, i.e. NI and NJ , may

be the same. The CN then sends out a CoT message directly to the MN, i.e.

CoT = {Src=CN, Des=CoA, Cookie2, Token2, J}. The home and care-of nonce

50

2.5. STANDARD CORRESPONDENT REGISTRATION

indices, i.e. I and J, will be returned later by the MN to remind the CN of which

nonce value is used in generating Token1 and Token2.

The KCN is a 160-bit random number generated by the CN. It is called the

‘node key’ and is used to produce the keygen tokens sent to the MNs. The KCN

is not shared with any other entity, i.e. it is known only to the CN. Generating

tokens using KCN allows the CN to verify that the keygen tokens used by the MN

in authorizing a BU are indeed its own without forcing the CN to remember a list

of all tokens it has handed out. The KCN can either be a fixed value or regularly

updated. An update of KCN can be done at the same time as an update of a

nonce, e.g. NI , so that the index I identifies both the nonce and the key. A CN

can generate a fresh KCN at any time; this avoids the need for secure persistent

key storage for KCN .

• Step 5:

Upon receiving a HoT or a CoT message, the MN uses the CN’s address, i.e. the

source address of the message, as an index to search its Binding Update List. If

a list entry is found with a ‘Route Pending’ status, the MN will verify that the

cookie enclosed in the message matches the cookie sent by the MN to this CN as

maintained in the list entry. If no entry is found (or if the matched entry is not

in a ‘Route Pending’ status), the MN will discard the received message without

any further action. Otherwise, the MN will record the given keygen token and

nonce index in the list entry and wait for the second message. When the MN

receives both the HoT and CoT messages, it hashes the two tokens together to

form a 160-bit binding management key KBM , i.e. KBM = SHA1 (Token1 ||
Token2). KBM is the shared secret key established between the MN and the CN

via the RR procedure. The MN then sends a BU message to the CN, i.e. BU =

{Src=CoA, Des=CN, HoA, CoA, Seq, Ack, LTBReq, I, J, MACKBM
(BU)}, where

Seq is a sequence number that is greater than the sequence number sent in the

previous BU to this CN (if any); Ack is an acknowledge bit that may be set by the

MN to request a BA message returned by the CN; LTBReq is a binding lifetime

request; I and J are the home and care-of nonce indices received previously from

the CN; and MACKBM
(BU) is a keyed hash value, i.e. MACKBM

(BU) = First

(96, HMAC SHA1 (KBM , (CoA || CN || BU))), where BU indicates the binding

update message itself. In addition, the MN will change the status of the list entry

to indicate the completion of the RR procedure. Specifically, if the MN sets the

Ack bit, then it will change the status to a ‘Binding Pending’ indicating that

51

2.5. STANDARD CORRESPONDENT REGISTRATION

it is waiting for an acknowledgement; otherwise, it will change the status to a

‘Binding Complete’ indicating that the correspondent registration is complete.

• Step 6:

When the CN receives a BU message, it first searches its Binding Cache for an

entry indexed by the HoA. If no entry exists, the CN will accept any sequence

number value enclosed in the received BU message. Otherwise, the CN verifies

that the given sequence number is greater than the sequence number received in

the last valid BU from this HoA. If the verification fails, then the CN will send

back a rejected BA message that contains the last accepted sequence number.

If the verification succeeds, the CN will use the home and care-of nonce indices

enclosed in the BU message (i.e. I and J) to regenerate the two tokens (i.e.

Token1 and Token2). The CN then hashes the two tokens together to form KBM

and verifies the validity of the received BU message, as shown in Figure 2.11.

If the verification succeeds, the CN will update the entry with the CoA and

sequence number carried in the BU message. In addition, the CN will grant a

binding lifetime in the entry based on the binding lifetime requested by the MN

in the BU message. Finally, the CN checks the Ack bit given in the BU message;

if it is set (i.e. the MN requests an acknowledgement), the CN will send back

an accepted BA message, i.e. BA = {Src= CN, Des= CoA, HoA, Seq, LTBGrant,

MACKBM
(BA)}, where Seq is a sequence number that is equal to the sequence

number given in the BU being acknowledged; LTBGrant is the granted binding

lifetime; and MACKBM
(BA) = First (96, HMAC SHA1 (KBM , (CN || CoA ||

BA)), where BA indicates the binding acknowledgement message itself.

The CN may decide to refuse the BU for many reasons, such as when it does

not have sufficient resources, when one or both of the given nonce indices are not

recognizable, or when the validity verification fails. If this is the case, the CN will

return a rejected BA message in which the status field is set to a value indicating

the cause of the rejection.

• Step 7:

Upon receiving a BA message, the MN uses the CN’s address, i.e. the source

address of the message, as an index to search its Binding Update List. If a

list entry is found, the MN will verify that the sequence number enclosed in

the message matches the last sequence number sent by the MN to this CN as

maintained in the list entry. If the verification succeeds, the MN will use KBM

52

2.5. STANDARD CORRESPONDENT REGISTRATION

Figure 2.11: Verification of a BU in standard correspondent registration

to verify the validity of the received BA message as shown in Figure 2.12. If

any of the above verifications is negative or if no list entry exists for that CN,

the MN will discard the received message without any further action. Otherwise,

the MN will examine the status field of the message. If the status field indicates

that the BU was accepted, the MN will update the status of the list entry to

‘Binding Complete’, indicating that the BU has been acknowledged. In addition,

the MN adjusts the remaining binding lifetime depending on the given granted

binding lifetime. On the other hand, if the status field indicates that the BU was

rejected, the MN will examine the cause of the rejection and take steps to fix the

error and retransmit the BU with a sequence number value greater than that used

for the previous transmission of that BU. However, if the rejection indicates that

the CN cannot provide route optimization, the MN will stop trying to initiate

route optimization and will revert back to the use of bidirectional tunnelling.

The MN is responsible for retransmissions in the standard correspondent reg-

istrations [5]. If the MN sends a HoTI message or a CoTI message to the CN

and does not receive a matching response within a retransmission interval, the

MN will resend the corresponding message with a new cookie value. Similarly, if

the MN sends a BU message in which the Ack bit is set and does not receive a

matching BA message within a retransmission interval, the MN will resend the

BU message with a new sequence number value greater than that used for the

53

2.5. STANDARD CORRESPONDENT REGISTRATION

Figure 2.12: Verification of a BA in standard correspondent registration

previous transmission of this BU. In all cases, the initial retransmission interval

is one second and is doubled upon each retransmission, until either a matched

response is received or the retransmission interval reaches a maximum retrans-

mission interval of 32 seconds. The MN may continue to send HoTI, CoTI, and

BU messages at this slower rate indefinitely [5].

If the correspondent registration is meant to delete a previously established

binding, then the CoTI and CoT messages are omitted from the RR procedure.

The MN initiates the procedure by sending a HoTI message, and the CN re-

sponds by returning a HoT message that contains a secret home keygen token,

i.e. Token1. The session key is generated through hashing the token, i.e. KBM

= SHA1 (Token1). Furthermore, in the BU message, the MN sets the CoA equal

to its HoA and the binding lifetime request to ‘zero’.

If the CN is also mobile, then all mobility messages (i.e. HoTI, CoTI, and

BU messages) are sent to the CN’s home address. In this case, if the mobile

CN is currently located in its home link, it will receive the messages directly.

Otherwise, the CN’s home agent will intercept and forward the messages to the

CN’s current care-of address. In addition, while the mobile CN is away from its

home link, it sends all of its responses (i.e. HoT, CoT, and BA messages) via its

home agent (reverse tunnelling) as shown in Figure 2.13. Apart from these, the

RR procedure for the stationary CN and the mobile CN cases are alike.

The RR procedure protects correspondent registrations from all attacks, ex-

cept where on-path attackers are concerned [5]. It protects CNs against replayed

54

2.5. STANDARD CORRESPONDENT REGISTRATION

Figure 2.13: Standard correspondent registration - mobile to mobile

BUs through the use of the sequence number; an attacker cannot replay a pre-

viously authenticated BU message due to the sequence number included in the

message. Also, the attacker cannot modify a BU message since the MAC verifica-

tion would fail after such a modification. In addition, the RR procedure protects

CNs against resource exhaustion DoS attacks. Specifically, the CN does not re-

tain any state about individual MNs until it receives an authentic BU from that

MN. Furthermore, it does not maintain the value for the KBM , instead it forms

the KBM based on its secret key (KCN), the given nonce indices, and the MN’s

addresses. Finally, as the RR procedure is dependent on the use of symmetric

cryptography, it requires very little processing at the CN and at the MN.

The RR procedure increases the registration delay because the MN must wait

for both address tests to conclude before it can register its CoA. As a result, a

registration consumes about 1.5 round-trip times between an MN and its CN. The

delay can be higher than 1.5 round-trip due to the home address test being relayed

through the home link. In addition, the RR procedure requires the exchange of

an extra four messages per registration, which increases signalling overhead.

55

2.6. CHAPTER SUMMARY

Considering the on-path attackers, the RR procedure fails to provide sufficient

protection for correspondent registrations. The RR procedure only limits the

potential attackers from any node in the Internet to those that are on the route

between the CN and the MN’s home link. Attackers that can capture both the

HoT and CoT messages can obtain the two tokens. Hence, they can hash the two

tokens to form the session key and send a fake BU on behalf of the MN.

To limit the on-path attacks, the MIPv6 protocol requires the mobility mes-

sages tunnelled through the HA (i.e. the HoTI and HoT messages) during the RR

procedure to be encrypted. This prevents attackers located on the MN’s current

foreign link from capturing the two tokens and launching attacks based on it.

Furthermore, the MIPv6 protocol requires the MN to periodically (at most every

seven minutes) rerun the RR procedure even with the absence of IP connectively

change. This prevents attackers from launching attacks after moving away, i.e.

attackers must be present on the path between the CN and the MN’s home link

to be able to launch the attack.

Based on the above discussion, we conclude that the RR procedure is ineffi-

cient as it fails to protect against on-path attacks; it requires the exchange of an

extra four messages; it requires about 1.5 round-trip times between an MN and

its CN; and it needs to be re-executed every few minutes. In other words, the

RR procedure does not address the security problems efficiently and causes high

registration delay as well as signalling overhead.

2.6 Chapter Summary

This chapter has presented an overview of the Mobile IPv6 protocol. Based

upon the location management feature of the protocol, the security threats and

attacks have been analysed, and the security services and performance require-

ments needed to address these attacks have been outlined. Finally, the chapter

studied the standard home and correspondent registrations and highlighted their

strengths and limitations in providing the required security services.

Before describing our proposed solutions for securing home and correspondent

registrations in the MIPv6 protocol, the next chapter will investigate and discuss

the existing correspondent registration security solutions.

56

Chapter 3

A Survey of Correspondent

Registration Protocols

This chapter surveys existing protocols for protecting correspondent registrations

in an attempt to identify their strengths and weaknesses with respect to the

security risks and attacks mentioned in Section 2.2.1, as well as the security

services and performance requirements mentioned in Section 2.2.2. The main

goal of these correspondent registration protocols is to reduce registration delays

and/or signalling overheads caused by the RR procedure (see Section 2.5) in a

secure manner. Most of these protocols do not require frequent computation of

fresh keys, thus reducing the number of redundant signalling messages generated

by the RR procedure. They also have built-in security measures to offer additional

security benefits over the RR procedure. The protocols can largely be divided into

two classes. The first class is referred to as the ‘infrastructure-less correspondent

registration protocols’. The protocols in this class are suited to cases where

participants do not have prior relationships among them. The second class of

protocols relies on security infrastructure support and is, therefore, referred to as

‘infrastructure-based correspondent registration protocols’.

Before surveying the existing correspondent registration protocols, we first

present an overview of cryptographically generated IPv6 addresses.

3.1 Cryptographically Generated Addresses

The concept of cryptographically generated addresses (CGAs) was proposed to

prevent stealing and spoofing of existing IPv6 addresses [32]. The basic idea is

57

3.1. CRYPTOGRAPHICALLY GENERATED ADDRESSES

to create a part of the IPv6 address from the address owner’s public key, i.e. to

bind the IPv6 address of an entity to the entity’s public key [33, 34, 35].

A 128-bit IPv6 address consists of a 64-bit subnet prefix, which is used for

routing, and a 64-bit interface identifier, which identifies a specific node in a

network [36]. The interface identifier is normally derived from the node’s link-

layer address [36], but actually, almost any value is valid. Only two bits of the

interface identifier have a special meaning, the ‘U/L’ bit (Universal/Local bit)

and the ‘I/G’ bit (Individual/Group bit), which means that the remaining 62-

bits can be generated by any method providing the resulting interface identifier

is unique in the network.

A CGA-based address is an IPv6 address for which the interface identifier

part is generated using a cryptographic one-way hash function that takes the

address owner’s public key and some auxiliary parameters as its input. The

auxiliary parameters are a 128-bit random number, called a modifier, an eight-

bit number, called a collision count, and a 64-bit subnet prefix of the CGA-based

address [33]. The address owner can protect a message sent from the address by

digitally signing it with the corresponding private key and sending the public key

and the auxiliary parameters along with the signed message [33]. Upon receipt

of the signed message, the recipient verifies the binding between the public key

and the address by re-computing and comparing the hash value with the interface

identifier part of the address. In addition, it authenticates the address by verifying

the signature.

The early proposals of CGA suffered from “the small number of bits of the

address to accommodate the result of the hash function”, i.e. at most, 62 bits of

the address can be used for the hash [32, 35]. If an attacker wished to impersonate

a given CGA-based address, he/she would only need to attempt about 261 (i.e.

approximately 2.3 * 1018) tries to find an alternative public key that hashed to

this address. This would leave open the possibility of brute-force attacks during

the lifetime of the IPv6 protocol [37]. The shortage in the hash length problem

is solved by Aura in [33] by using hash extensions.

The hash extension method [33] embeds a security parameter (Sec) into the

CGA-based address. The Sec is a three-bit unsigned integer encoded in the three

leftmost bits of the interface identifier that determines the strength of the address

against brute-force attacks. This leaves just 59 bits for the actual hash output.

The hash extension method applies a second hash function until the leftmost

58

3.1. CRYPTOGRAPHICALLY GENERATED ADDRESSES

16*Sec bits of the hash value are zero. This increases the cost of both address

generation and brute-force attacks by the same factor while keeps the cost of

address verification constant. In this way, the attacker would need to attempt

about 2((59+16*Sec)-1) tries to be able to bind its public key to a given CGA-based

address.

Figure 3.1: CGA-based address generation algorithm

The hash extension method theoretically solved the main weakness of the

CGA-based method, especially when the address was generated offline by an

59

3.1. CRYPTOGRAPHICALLY GENERATED ADDRESSES

entity that had sufficient computing power. However, for Sec values greater than

0, the second hash function is nondeterministic, i.e. not guaranteed to terminate

after a certain number of iterations, and when the Sec value equals 0, the cost of

brute-force attacks is decreased to about 258.

A detailed process of generating and verifying a CGA-based address is given

in [33] and can be illustrated in Figures 3.1 and 3.2.

Figure 3.2: CGA-based address verification algorithm

The CGA-based technique provides public-key authentication for IPv6 ad-

dresses without using trusted third parties or PKI to convince others that the

addresses are used by the owner of the public keys. As a result, the CGA-based

technique suffers from the following limitations [38]. Firstly, it does not guar-

antee the owner’s reachability at the address, i.e. an attacker can use its own

public key to cryptographically generate a non-used address with a subnet prefix

from a victim network. Secondly, although it can effectively stop attackers from

60

3.2. INFRASTRUCTURE-LESS PROTOCOLS

impersonating valid IPv6 addresses to launch attacks, it cannot thwart attacks

on an entire network by redirecting data to a non-used address. Thirdly, it relies

on public-key operations (in particular, digital signatures), which require heavy

computations both to compute and verify the signature. Thus, it could expose

the participants to denial-of-service attacks, especially when the participant is a

mobile device with limited computational power or when the participant needs

to verify digital signatures for a large number of peers at the same time. Fi-

nally, as a message needs to carry the address owner’s public key and signature

as well as auxiliary parameter values that are used to generate the address cryp-

tographically, there is a certain amount of overhead incurred to the bandwidth

consumption.

3.2 Infrastructure-less Correspondent Registra-

tion Protocols

The infrastructure-less correspondent registration protocols are proposed for use

on a global basis between MNs and CNs belonging to different administrative

domains. These protocols have a wide applicability and can be used generally on

the Internet; they enable CNs to authenticate MNs without requiring any security

infrastructure support.

3.2.1 Early Binding Update (EBU) Protocol

The Early Binding Update (EBU) protocol [39] is proposed to reduce the high

registration delay caused by the RR procedure. It enhances the RR procedure

by moving home address and care-of address tests to a handover phase where

they do not impact the registration delay. The home address test occurs while

the MN can still use its old CoA (i.e. performed before the handover), and the

care-of address test runs in parallel with data transfer to and from the new CoA

(i.e. done after the handover). It also utilises a Credit-Based Authorisation

technique [39, 40] to limit the amount of data that the CN can send to the new

CoA while concurrently running the care-of address test. This technique limits

the data a CN can send to an MN’s unconfirmed CoA by the data recently sent

to or received from that MN. In this technique, the CN grants the MN credit

for packets it sends to or receives from a confirmed CoA. When the MN sends

61

3.2. INFRASTRUCTURE-LESS PROTOCOLS

an early binding update message for registering a new CoA, subsequent packets

consume the credit that the MN has collected up to then. The EBU protocol is

shown in Figure 3.3 and is detailed in Appendix B.

Compared to the RR procedure, the EBU protocol reduces registration delay

of correspondent registrations to about one one-way time between the MN and

the CN. However, there is a cost for this reduction in delay. First, one or two

additional messages are required per correspondent registration. Secondly, the

MN may need to run the home address test periodically, which could increase the

signalling overhead. Thirdly, complexity at the CN is increased for implementing

the Credit-Based Authorisation technique. In addition to these costs, the EBU

protocol suffers from the same on-path attacks applicable to the RR procedure.

Figure 3.3: A correspondent registration protected by the EBU protocol

62

3.2. INFRASTRUCTURE-LESS PROTOCOLS

3.2.2 Purpose-Built Key (PBK) Protocol

The Purpose-Built Key (PBK) protocol [41] aims to authenticate the initiator

of a network communication where the actual identity of the initiator is not

important, but successive packets must come from the same initiator. Therefore,

the protocol is suitable to use in correspondent registrations where a CN needs

to be assured that a correspondent registration is actually coming from the same

MN that initiates the communication. The PBK protocol is detailed in Appendix

B.

The PBK protocol requires four messages during any correspondent registra-

tion, which reduces signalling overhead compared to the RR procedure. However,

it cannot improve registration delay as it requires about 1.5 round-trip times be-

tween the MN and the CN. It also increases the CN’s vulnerabilities to resource

exhaustion DoS attacks; the CN is required to create a state and to perform

two digital signature verifications during a protocol execution. The protocol is

also vulnerable to return-to-home spoofing attacks as it cannot authenticate the

claimed HoA. It is also vulnerable to MITM attacks affecting its initialisation.

An attacker needs to be on the path during the initialisation phase to be able to

intercept the hash of the public key, i.e. PBID, and send the hash of a different

key. Finally, the protocol requires each of the MN and the CN to perform two

public key operations per correspondent registration.

3.2.3 Child-proof Authentication for MIPv6 (CAM) Pro-

tocol

The Child-proof Authentication for MIPv6 (CAM) protocol [32] aims to authen-

ticate correspondent registrations in Mobile IPv6 networks. In this protocol, an

MN has a self-generated public/private key pair, and it configures its HoA as a

CGA-based address (see Section 3.1).

The MN runs a correspondent registration by sending just one BU mes-

sage to a CN, i.e. BU = {Src=CoA, Des=CN, HoA, PKMN , Modifier, TSMN ,

SIGMN [H(CoA || CN || HoA || TSMN)]} where PKMN is the MN’s public key;

Modifier is a random number indicating the value of the modifier used while con-

figuring the HoA; TSMN is MN’s timestamp; H() denotes a hash function; and

SIGMN [] denotes MN’s signature using the private key SKMN .

When the CN receives the signed BU message, it first compares TSMN against

63

3.2. INFRASTRUCTURE-LESS PROTOCOLS

its own clock to detect replayed BUs. The CN next verifies the binding between

the PKMN and the HoA by re-computing and comparing the hash value with the

interface identifier part of the HoA. The CN then verifies the signature and the

authenticity of the HoA by using the PKMN . If any of the above verifications

fails, the CN will reject the message. Otherwise, the CN will accept the message,

create/update a Binding Cache entry, and store the binding between the MN’s

HoA and CoA.

An entire run of the CAM protocol requires one message and one one-way

time between the MN and the CN, causing minimal signalling overhead as well as

registration delay. However, the protocol is vulnerable to malicious MNs flooding

attacks as it cannot authenticate the claimed CoA. In addition, as the protocol

uses timestamps to detect replayed BUs, it requires the clocks of the MN and

the CN to be synchronised. It also suffers from the same weaknesses of the

CGA-based technique mentioned in Section 3.1.

3.2.4 Unauthenticated Diffie-Hellman-based Binding Up-

date (UDHBU) Protocol

The Unauthenticated Diffie-Hellman-based Binding Update (UDHBU) protocol

[42] makes use of the Diffie-Hellman key exchange protocol to derive a shared

session key between an MN and a CN. The two nodes then use the shared secret

in authenticating subsequent correspondent registrations. The UDHBU protocol

is divided into two cases: an initial correspondent registration and a subsequent

correspondent registration. It is shown in Figure 3.4 and is detailed in Appendix

B.

The UDHBU protocol requires four messages during the initial correspondent

registration and two messages during subsequent ones. It also reduces the reg-

istration delay of subsequent registrations to one one-way time between the MN

and the CN. In addition, it protects CNs against resource exhaustion DoS attacks;

the CN does not create any state for individual MNs until it receives an authen-

tic BU from that MN in Message3. Furthermore, the CN is required to perform

just two exponential calculations during the initial correspondent registration; all

other calculations performed by the CN are based on MAC operations, which are

considered lightweight operations. Finally, it establishes a long-term shared key

between the MN and the CN, which reduces the number of redundant signalling

64

3.2. INFRASTRUCTURE-LESS PROTOCOLS

messages caused by the RR procedure for frequently generating a fresh shared

key.

Figure 3.4: The UDHBU protocol

The UDHBU protocol is vulnerable to malicious MNs flooding attacks as it

cannot authenticate the claimed CoA. In addition, it is vulnerable to MITM and

false BU attacks as it involves an unauthenticated DH key exchange between the

MN and the CN. An attacker on the path during the initial correspondent reg-

istration is able to intercept the DH public values and send its own DH public

values. Furthermore, the attacker can initialise the protocol instead of the legiti-

mate MN and gain the session key; subsequently it can use the key to send false

BUs.

3.2.5 Optimizing Mobile IPv6 (OMIPv6) Protocol

The Optimizing Mobile IPv6 (OMIPv6) protocol [43] combines the use of the RR

procedure and the Diffie-Hellman key exchange protocol to derive a shared session

65

3.2. INFRASTRUCTURE-LESS PROTOCOLS

key between an MN and a CN. It is similar to the UDHBU protocol mentioned

in Section 3.2.4 and is also designed into an initial correspondent registration

case and a subsequent correspondent registration case. However, in the initial

correspondent registration, the MN and the CN first run the RR procedure to

establish a shared secret. The two nodes then run the DH key exchange that is

authenticated by the shared secret established from the RR procedure to derive

a long-term shared session key. Apart from this, the OMIPv6 protocol is the

same as the UDHBU protocol; subsequent correspondent registrations in the two

protocols are identical.

The OMIPv6 protocol requires eight messages and about 2.5 round-trip times

between the MN and the CN during the initial correspondent registration. How-

ever, it requires only two messages and about one one-way time between the

MN and the CN during subsequent correspondent registrations. It also increases

the protection, compared to the UDHBU protocol, provided to the CN against

resource exhaustion DoS attacks by signing the DH messages with the shared

secret established from the RR procedure. Apart from these, the OMIPv6 pro-

tocol has the same features, pros, and cons as the UDHBU protocol mentioned

in Section 3.2.4.

3.2.6 Applying CGAs to Optimize Mobile IPv6 (CGA-

OMIPv6) Protocol

The CGA-OMIPv6 protocol [44] combines the use of the RR procedure and the

CGA-based technique. It applies the following set of optimizations to the Mobile

IPv6 protocol: (1) an MN has a self-generated public/private key pair; (2) the

MN configures its HoA based on the concept of CGAs mentioned in Section 3.1;

(3) the MN provides a care-of address reachability proof by exchanging CoTI and

CoT messages with a CN every time a new CoA is claimed; and (4) the MN

provides initial HoA ownership and reachability proofs at initial correspondent

registration with the CN. The MN provides the initial HoA ownership proof by

signing the first BU message with its private key and by sending its public key

along with the signed message. The initial HoA reachability proof is provided by

exchanging HoTI and HoT messages with the CN. The CGA-OMIPv6 protocol

is divided into two cases: an initial correspondent registration and a subsequent

correspondent registration. The former enables the CN to authenticate the MN’s

66

3.2. INFRASTRUCTURE-LESS PROTOCOLS

HoA and to verify the MN’s reachability at the HoA as well as the CoA. It also

enables the two nodes to securely exchange a secret session key. The latter is

performed every time the MN wants to register a new CoA at the CN. It enables

the CN to verify the MN’s reachability at the new CoA. The CGA-OMIPv6

protocol is shown in Figure 3.5 and is detailed in Appendix B.

Figure 3.5: The CGA-OMIPv6 protocol

The CGA-OMIPv6 protocol requires five messages during the initial corre-

spondent registration and four messages during subsequent ones. It also requires

about 1.5 round-trip times between the MN and the CN during any correspondent

registration. It employs a CGA-based HoA together with an initial HoA reach-

ability test for authenticating the HoA, which partially protects against return-

to-home spoofing attacks. It also employs a CoA reachability test whenever a

new CoA is to be claimed, which partially protects third parties against DoS at-

tacks. It also partially protects CNs against resource exhaustion DoS attacks; the

CN uses KBM established from the RR procedure to verify the authenticity and

integrity of the BU message before running the CGA-based address verification

67

3.2. INFRASTRUCTURE-LESS PROTOCOLS

algorithm. In addition, it requires each of the MN and the CN to perform two

public key operations during the initial correspondent registration.

3.2.7 Enhanced Route Optimization for Mobile IPv6 (ERO-

MIPv6) Protocol

The ERO-MIPv6 protocol [45] combines the use of the EBU and the CGA-

OMIPv6 protocols (see Sections 3.2.1 and 3.2.6). It is shown in Figure 3.6 and is

detailed in Appendix B.

Figure 3.6: The ERO-MIPv6 protocol

The ERO-MIPv6 protocol requires six messages during the initial correspon-

dent registration and four messages during subsequent ones. It optimises the reg-

istration delay to about one one-way time between the MN and the CN during

any correspondent registrations. Apart from this optimisation, the ERO-MIPv6

protocol has the same pros and cons of the CGA-OMIPv6 protocol mentioned in

68

3.3. INFRASTRUCTURE-BASED PROTOCOLS

Section 3.2.6. In addition, it increases complexity for implementing the Credit-

Based Authorisation technique at the CN, as in the EBU protocol.

3.3 Infrastructure-based Correspondent Regis-

tration Protocols

The infrastructure-based correspondent registration protocols rely on security

infrastructure support for protecting correspondent registrations. These protocols

can largely be divided into two subclasses. The first subclass is referred to as the

secret-key based protocols, as they protect correspondent registrations based on a

secret key shared between the participants. The second subclass relies on having

a certified public/private key pair and is, therefore, referred to as the public-key

based protocols. The infrastructure-based correspondent registration protocols

assure the CN that a specific home address is used by the right MN, i.e. the

shared secret key (or the public key of the public/private key pair) is related to

the MN’s HoA. In addition, they remove the need for a home address test leading

to a reduction in registration delay and signalling overhead.

3.3.1 Secret-Key based Protocols

Secret-Key based protocols require the establishment of a shared secret between

an MN and a CN. Therefore, the applicability of these protocols is limited to

scenarios when the MN and the CN know each other in advance and can agree

on a secret. A typical scenario where these protocols are applicable is within a

corporation or among users who know each other.

3.3.1.1 Static Shared Key version 1 (SSKv1) Protocol

The Static Shared Key version 1 (SSKv1) protocol [46] is based on the pre-

configuration of the data needed for creating the binding management key (KBM).

These data include a secret key (KCN), a home nonce (NI), and a care-of nonce

(NJ). The SSKv1 protocol protects correspondent registrations in the same way

as specified in the base specification of the MIPv6 protocol ([5], see also Sec-

tion 2.5). However, there are two differences. First, KCN is a shared secret

known to both the CN and the MN. Second, NI and NJ are shared secrets as

well. Therefore, the SSKv1 protocol omits the RR procedure; the MN generates

69

3.3. INFRASTRUCTURE-BASED PROTOCOLS

the home and care-of keygen tokens instead of requesting them from the CN. As a

result, an entire correspondent registration process only requires one BU message

and, optionally, one BA message.

The SSKv1 protocol requires only two messages during any correspondent

registration, which reduces signalling overhead compared to the RR procedure.

It also reduces registration delay to about one one-way time between the MN

and the CN. Furthermore, it increases the security strength by ensuring the home

address ownership, as the shared secrets are related to the MN’s HoA. Therefore,

it protects against return-to-home spoofing attacks. However, the SSKv1 protocol

is vulnerable to malicious MNs flooding attacks as it cannot authenticate the

claimed CoA. It also requires the MN to store different secrets for each CN and

the CN to store different secrets for each MN. In addition, it requires the CN to

keep track of the most recent value of the sequence number for BU messages from

each MN to protect against replay attacks. If the CN does not maintain the value

of the sequence number from a particular MN, then the CN could be fooled into

accepting a replayed BU message. Finally, it requires a manual reconfiguration

for the shared key (KCN) and the associated nonces (NI , and NJ) at the MN and

the CN whenever sequence numbers roll over, so that a new KBM is computed

and replay attacks are prevented.

3.3.1.2 Static Shared Key version 2 (SSKv2) Protocol

The Static Shared Key version 2 (SSKv2) protocol [47] enhances the SSKv1

protocol by applying a care-of address reachability test. It aims to verify MNs’

reachability at claimed CoAs to partially protect third parties against malicious

MNs flooding attacks. The SSKv2 protocol can be summarised as follows. Upon

receiving a BU message from an MN, a CN rejects the message and returns a BA

message to the claimed CoA containing a fresh token. When the MN receives

the rejected BA message, it retransmits the BU message with the exact received

token. When the CN receives the augmented BU message, it validates the received

token; the CN re-computes the token and compares it to the received one. If the

validation succeeds, the CN infers that the MN is reachable at the claimed CoA.

Therefore, the CN accepts the binding and returns a normal BA message.

The SSKv2 protocol verifies the MNs’ reachability at claimed CoAs, thus par-

tially protecting third parties against malicious MNs flooding attacks. However,

70

3.3. INFRASTRUCTURE-BASED PROTOCOLS

it adds two additional messages and one additional round-trip time, i.e. it re-

quires four messages and about 1.5 round-trip times between the MN and the

CN during any correspondent registration. Apart from these, the SSKv2 proto-

col has the same features, pros, and cons as the SSKv1 protocol mentioned in the

previous section.

3.3.1.3 Password-based Authenticated Key Exchange (PAK-based)

Binding Update Protocol

The PAK-based BU protocol [48] requires an MN to share a password with a CN.

It applies an optimised PAK scheme to enable the CN and the MN to authenti-

cate each other, establish a one-time binding management key for protecting the

subsequent correspondent registration, and verify the correctness of the home

address as well as the location of the MN.

In the PAK-based BU protocol, an MN performs a correspondent registra-

tion by exchanging four messages with a CN. The first two messages are the

optimised PAK scheme [48], in which the MN and the CN run a Diffie-Hellman-

based password authenticated key exchange scheme [49]. The other two messages

are the normal BU and BA, which are protected using the key established from

the optimised PAK scheme.

The PAK-based BU protocol requires four messages and about 1.5 round-trip

times between the MN and the CN during any correspondent registration. It also

verifies the MN’s reachability at the CoA, thus partially protecting third parties

against malicious MNs flooding attacks. In addition, it increases the security

strength by ensuring the home address ownership, as the password is related to

the MN’s HoA. Therefore, it protects against return-to-home spoofing attacks.

However, it requires the MN to store a different password for each CN and the

CN to store a different password for each MN. It also requires both the MN and

the CN to perform two exponential calculations per correspondent registration.

3.3.1.4 Ticket-based Binding Update (TBU) Protocol

The TBU protocol [50] requires that the connection between an MN’s home link

and a CN is protected securely using IPSec ESP tunnel. It also requires that

an HA’s duty is extended to testify the legitimacy of an MN’s HoA, facilitate

mutual authentication between the MN and a CN, and establish a secret key and

ticket between the two nodes. The TBU protocol is divided into two cases: an

71

3.3. INFRASTRUCTURE-BASED PROTOCOLS

initial correspondent registration and a subsequent correspondent registration. It

is shown in Figure 3.7 and is detailed in Appendix B.

Figure 3.7: The TBU protocol

The TBU protocol requires only two messages and about one one-way time

between the MN and the CN during subsequent correspondent registrations. This

introduces low signalling overhead and registration delay. It also increases the

security strength by ensuring the home address ownership, i.e. it protects against

return-to-home spoofing attacks. In addition, it establishes a long-term secret key

and ticket between the MN and the CN, thus reducing the number of redundant

signalling messages caused by the RR procedure for frequently generating a fresh

shared key.

The TBU protocol requires four messages and about one one-way time be-

tween the MN and the HA plus one one-way time between the HA and the CN

during the initial correspondent registration. The TBU protocol also requires the

clocks of the MN, the HA, and the CN to be synchronised as it uses timestamps

to detect replayed messages. In addition, it increases the complexity at the HAs

72

3.3. INFRASTRUCTURE-BASED PROTOCOLS

for supporting correspondent registrations of MNs. Furthermore, it is vulnerable

to malicious MNs flooding attacks as it cannot authenticate claimed CoAs.

3.3.2 Public-Key based Protocols

Public-key based protocols require that an MN (or an MN’s home link) has a

certified public/private key pair. They assume that the public key has been

issued by a trusted CA and that a PKI is in place to provide the services of

certificate application, issuance and revocation.

3.3.2.1 Certificate-based Binding Update (CBU) Protocol

The CBU protocol [51, 52] makes use of a digital signature scheme and a unilateral

authenticated Diffie-Hellman key exchange protocol to derive a long-term shared

secret between an MN and a CN. It requires that each home link has a certified

public/private key pair (PKH , SKH) where the private key is kept by the HAs in

the home link. It also requires that an HA’s duty is extended to handle strong

authentication on behalf of the MN during correspondent registrations. The HA

testifies the legitimacy of the MN’s HoA, facilitates authentication of the MN to

the CN, and establishes a shared secret session key between the two nodes. The

CBU protocol is shown in Figure 3.8 and is detailed in Appendix B.

The CBU protocol has the same pros as the TBU protocol mentioned in

Section 3.3.1.4. In addition, it offloads public key operations and DH exponential

calculations from MNs to their HAs. Furthermore, it partially protects HAs and

CNs against resource exhaustion DoS attacks through the use of cookies during

the key exchange, and through the prevention of the CN from retaining any state

of individual MNs until it receives an authentic EXCH0 message from that MN’s

home link.

The CBU protocol requires eight messages and about one round-trip time

between the MN and the HA, plus two round-trip times between the HA and

the CN, plus one one-way time between the MN and the CN during the initial

correspondent registration. In addition, it has the same cons as the TBU protocol,

but synchronised clocks are not required.

73

3.3. INFRASTRUCTURE-BASED PROTOCOLS

Figure 3.8: The CBU protocol

3.3.2.2 Hierarchical Certificate-based Binding Update (HCBU) Pro-

tocol

The HCBU protocol [23] enhances the CBU protocol by assuring an MN’s own-

ership of a claimed CoA. It further extends an HA’s duty to cover all the nodes

currently under its home link, i.e. the HA’s duty covers not only MNs belonging

to its home link but also roaming MNs from other foreign links. In HCBU, when

an MN roams to a foreign link and is configured a new CoA, it additionally ob-

tains the foreign link’s signature on the binding of (HoA, CoA). The signature

convinces the MN’s home link that the MN actually owns the claimed CoA. Sub-

sequently, the home link proves the MN’s ownership of both the HoA and CoA

to the CN. The HCBU protocol is designed into an initial correspondent regis-

tration case and a subsequent correspondent registration case, where the former

74

3.3. INFRASTRUCTURE-BASED PROTOCOLS

case is designed into two steps: a pre-handover step and a post-handover step.

The HCBU protocol is shown in Figure 3.9 and is detailed in Appendix B.

Figure 3.9: The HCBU protocol

The HCBU protocol has the same pros as the CBU protocol mentioned in the

previous section. In addition, it authenticates the claimed CoA, thus achieving

much stronger security strength by protecting third parties against malicious MNs

flooding attacks. Furthermore, it reduces registration delay during the initial

correspondent registration by taking advantage of the EBU protocol, i.e. the

pre-handover step is performed before the handover. However, the MN may

periodically need to repeat the pre-handover step (such as when handovers cannot

be anticipated), which could increase the signalling overhead. The protocol also

requires the use of trusted third parties (i.e. foreign links) to verify the CoAs

75

3.3. INFRASTRUCTURE-BASED PROTOCOLS

used by the MNs; it requires an infrastructure that supports this authentication

service. Furthermore, it further increases the complexity at the HAs by extending

their duty to additionally cover roaming MNs from other foreign links. Finally,

as it requires foreign HAs to compute a signature for each roaming MN, this can

significantly reduce throughput at foreign networks.

3.3.2.3 Extended Ticket-based Binding Update (ETBU) Protocol

The ETBU protocol [53] extends the TBU protocol (see Section 3.3.1.4) to handle

with the case of two mobile nodes in simultaneous movement, i.e. when the

CN is also mobile, and when the two nodes move simultaneously to different

foreign links. It also makes use of a digital signature scheme and the CGA-

based technique to provide mutual authentication between an MN and a CN.

Specifically, it requires that (1) each home link has a certified public/private key

pair where the private key is kept by HAs in the home link; (2) each mobile

node has a self-generated public/private key pair; and (3) both the HoA and

CoA of each mobile node are configured as CGA-based addresses with the same

public key. In addition, it uses tickets issued by the MN and the CN instead of

signatures to minimise the computing costs that are needed to verify the CGA-

based addresses; a ticket is used instead of a new signature when the MN obtains a

new CoA. Furthermore, it utilises the smooth handoff mechanism [54] to solve the

simultaneous movement problem. That is, when an MN moves to a new foreign

link, the home agent of the previous link intercepts and forwards the messages

destined for the MN’s previous CoA to the MN’s new CoA.

The participants of the ETBU protocol are an MN, an MN’s HA (HAMN), a

CN, and a CN’s HA (HACN). Each HA executes the role of a verification server

that checks on the validity of the messages forwarded from the other node, which

offloads public-key operations from both the MN and the CN to its respective HA.

The ETBU protocol is divided into two cases: an initial correspondent registration

and a subsequent correspondent registration. It is shown in Figure 3.10 and is

detailed in Appendix B.

The ETBU protocol does not require the MN to create a signature each time

it obtains a new CoA. It also utilises the smooth handoff mechanism to handle

the case of two mobile nodes in simultaneous movement. However, it requires

six messages and about one one-way time between the MN and the HAMN , plus

one one-way time between the HAMN and the HACN , plus one one-way time

76

3.3. INFRASTRUCTURE-BASED PROTOCOLS

between the HACN and the CN during the initial correspondent registration.

In addition, it increases the HACN ’s vulnerabilities to resource exhaustion DoS

attacks; the HACN is required to perform digital signature verification during the

initial correspondent registration. An attacker can start an excessive number of

protocol runs by spoofing a large number of signed messages, which causes the

HACN to verify the signatures before rejecting the messages. Apart from these,

the ETBU protocol has all the pros and cons of the CBU protocol mentioned in

Section 3.3.2.1.

Figure 3.10: The ETBU protocol

77

3.4. CHAPTER SUMMARY

3.4 Chapter Summary

This chapter has presented a survey of the existing protocols for protecting

correspondent registrations in the MIPv6 protocol. The studied protocols in-

clude two classes: ‘infrastructure-less correspondent registration protocols’ and

‘infrastructure-based correspondent registration protocols’. Furthermore, the lat-

ter class includes secret-key based and public-key based protocols. Tables 3.1, 3.2,

3.3, and 3.4 summarise how well each of the studied protocols meets the security

services and the performance requirements set out in Section 2.2.2. Based on

this, we conclude that:

1. It is preferable to design a correspondent registration protocol into cases

to reduce iterating courses of the entire protocol; to avoid unnecessarily re-

peating some sections of the protocol. That is, designing the protocol into

an initial correspondent registration case, a subsequent correspondent reg-

istration case, and a correspondent registration deletion case could elevate

efficiency by reducing iterating registration courses.

2. A correspondent registration protocol could be designed in a way that the

registration procedure is completed with the help of HAs to reduce the

computing costs of the MNs.

3. None of the protocols, except the HCBU, are capable of guaranteeing the

authenticity of the claimed care-of address, thus they cannot protect third

parties against DoS attacks and malicious MNs flooding attacks. In addi-

tion, the HCBU protocol requires an infrastructure, i.e. the use of trusted

third parties (foreign links), to support this authentication service. Further-

more, the HCBU protocol requires both a foreign access router and a CN

to perform computationally expensive signature generation and verification

operations each time an MN moves to a different foreign link. This can

significantly reduce throughput at both the foreign network and the CN.

The next chapter presents a novel protocol for securing home registrations in

the MIPv6 protocol; it presents the design and evaluation of the Enhanced Home

Registration (EHR) protocol.

78

3.4. CHAPTER SUMMARY

RR

EBU

PBK

CAM

UDHBU

OMIPv6

CGA-OMIPv6

ERO-MIPv6

INF-based

SSKv1

SSKv2

PAK-based

TBU

SK-based

CBU

HCBU

ETBU

PK-based

P
ro

to
co

l
n

ee
d

s
se

cu
ri

ty
in

fr
as

tr
u

ct
u

re
su

p
p

or
t

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

P
ro

to
co

l
au

th
en

ti
ca

te
s

H
oA

s
4

4
x

4
4

4
4

4
4
4

4
4
4

4
4
4

√
√

√
√

√
√

√
√

√

P
ro

to
co

l
au

th
en

ti
ca

te
s

C
oA

s
4

4
4

x
x

x
4

4
x

x
4

4
x

√
x

√
4
4

√

P
ro

to
co

l
en

su
re

s
in

-
te

gr
it

y
of

B
U

s

√
√

√
√

√
√

√
√

√
√

√
√

√
√

√
√

√
√

P
ro

to
co

l
en

su
re

s
fr

es
h

-
n

es
s

of
B

U
s

√
√

√
√

√
√

√
√

√
√

√
√

√
√

√
√

√
√

P
ro

to
co

l
p

ro
te

ct
s

C
N

s
ag

ai
n

st
re

so
u

rc
e

ex
-

h
au

st
io

n
D

oS
at

ta
ck

s

√
√

x
x

√
√

4
4

4
√

√
√

√
√

4
4

x
4

P
ro

to
co

l
p

ro
te

ct
s

ag
ai

n
st

on
-p

at
h

at
-

ta
ck

s

x
x

x
√

x
∇

√
√

√
√

√
√

√
√

√
√

√
√

4
:

S
at

is
fi

es
th

e
se

cu
ri

ty
se

rv
ic

es
b
y

u
si

n
g

an
ad

d
re

ss
re

a
ch

a
b

il
it

y
te

st
.

4
4

:
S

at
is

fi
es

th
e

se
cu

ri
ty

se
rv

ic
es

b
y

u
si

n
g

a
C

G
A

-b
a
se

d
a
d

d
re

ss
.

4
4
4

:
S

at
is

fi
es

th
e

se
cu

ri
ty

se
rv

ic
es

b
y

u
si

n
g

a
C

G
A

-b
a
se

d
a
d

d
re

ss
a
n

d
a
n

a
d

d
re

ss
re

a
ch

a
b

il
it

y
te

st
.

∇
:

S
at

is
fi

es
th

e
se

cu
ri

ty
se

rv
ic

es
b
y

ru
n

n
in

g
th

e
R

R
p

ro
ce

d
u

re
fi

rs
t.

T
ab

le
3.

1:
S
ec

u
ri

ty
re

q
u
ir

em
en

ts
v
s.

st
at

e
of

th
e

ar
t

79

3.4. CHAPTER SUMMARY

RR

EBU

PBK

CAM

UDHBU

OMIPv6

CGA-OMIPv6

ERO-MIPv6

INF-based

SSKv1

SSKv2

PAK-based

TBU

SK-based

CBU

HCBU

ETBU

PK-based

N
u

m
b

er
of

m
essag

es
in

th
e

fi
rst

registra-
tio

n

6
8

4
1

4
8

5
6

9
2

4
4

4
8

8
8

6
8

N
u

m
b

er
of

m
essag

es
in

su
b

seq
u

en
t

regis-
tra

tion
s

6
8

4
1

2
2

4
4

4
2

4
4

2
4

2
2

2
4

N
u

m
b

er
of

m
essag

es
in

d
ereg

istra
tion

s
4

4
4

1
2

2
2

2
2

2
2

4
2

2
2

2
2

2

R
eg

istra
tion

d
elay

in

th
e

fi
rst

reg
istra

tion
1.5

?
0
.5

1
.5

0
.5

1.5
2
.5

?
1
.5

?
0
.5

0
.5

a

+0
.5

b

+
1
?

0
.5

1
.5

1.5
0.5

a
+

0.5
b

0.5
a

+0.5
b

+
1

1
a

+
2
b

+
0.5

1
a

+

0.5

0.5
a

+
0.5

b
+

0.5
c

0.5
a

+0.5
b

+
1

R
eg

istra
tion

d
elay

in
su

b
seq

u
en

t
reg

istra
-

tio
n

s

1.5
?

0
.5

1
.5

0
.5

0.5
0
.5

1
.5

0
.5

0
.5

0
.5

1
.5

1.5
0.5

0.5
0.5

0.5
0.5

0.5

D
ereg

istra
tion

d
elay

1.5
?

0
.5

1
.5

0
.5

0.5
0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

1.5
0.5

0.5
0.5

0.5
0.5

0.5
(D

e)reg
istra

tion
d

elay
is

th
e

n
u

m
b

er
o
f

ro
u

n
d

-trip
tim

es
b

etw
een

th
e

M
N

a
n

d
th

e
C

N
.

?:
O

n
e

ro
u

n
d

-trip
is

d
o
n

e
th

rou
g
h

th
e

M
N

’s
h

om
e

n
etw

o
rk

.
a

:
rou

n
d

-trip
b

etw
een

th
e

M
N

an
d

its
H

A
.

b
:

rou
n

d
-trip

b
etw

een
th

e
M

N
’s

H
A

a
n

d
th

e
C

N
.

c:
ro

u
n

d
-trip

b
etw

een
th

e
C

N
a
n

d
its

H
A

.

T
ab

le
3.2:

P
erform

an
ce

req
u
irem

en
ts

v
s.

state
of

th
e

art
(a)

80

3.4. CHAPTER SUMMARY

RR

EBU

PBK

CAM

UDHBU

OMIPv6

CGA-OMIPv6

ERO-MIPv6

INF-based

SSKv1

SSKv2

PAK-based

TBU

SK-based

CBU

HCBU

ETBU

PK-based

O
p

er
at

io
n

al
lo

ad
at

M
N

P
u

b
li

c
ke

y
0

0
2

1
0

0
2

2
0

0
0

0
0

0
0

0
0

0
E

x
p

on
en

ti
al

0
0

0
0

2
2

0
0

0
0

0
2

0
0

0
0

0
0

in
th

e
fi

rs
t

re
gi

st
ra

ti
on

H
M

A
C

4
8

0
0

2
6

4
8

2
6

9
4

0
3

2
2

0
2

S
ec

re
t

k
ey

0
0

0
0

0
0

0
0

2
0

0
0

2
3

2
3

3
2

O
p

er
at

io
n

al
lo

ad
at

M
N

P
u

b
li

c
ke

y
0

0
2

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
E

x
p

on
en

ti
al

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

in
su

b
se

q
u

en
t

re
gi

st
ra

t-
H

M
A

C
4

8
0

0
2

2
4

6
4

5
8

4
2

4
2

2
2

4
io

n
s

S
ec

re
t

k
ey

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
1

O
p

er
at

io
n

al
lo

ad
at

M
N

P
u

b
li

c
ke

y
0

0
2

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
E

x
p

on
en

ti
al

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

in
d

er
eg

is
tr

at
io

n
H

M
A

C
4

4
0

0
2

2
2

2
4

4
4

4
2

4
2

2
2

4
S

ec
re

t
k
ey

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

O
p

er
at

io
n

al
lo

ad
at

C
N

P
u

b
li

c
ke

y
0

0
2

1
0

0
2

2
2

0
0

0
0

0
1

1
0

3
E

x
p

on
en

ti
al

0
0

0
0

2
2

0
0

0
0

0
2

0
0

2
2

0
0

in
th

e
fi

rs
t

re
gi

st
ra

ti
on

H
M

A
C

7
1
1

0
1

4
1
1

9
1
1

9
5

1
0

4
1

6
4

5
0

6
S

ec
re

t
k
ey

0
0

0
0

0
0

0
0

0
0

0
0

3
1

0
0

1
0

O
p

er
at

io
n

al
lo

ad
at

C
N

P
u

b
li

c
ke

y
0

0
2

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
E

x
p

on
en

ti
al

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

in
su

b
se

q
u

en
t

re
gi

st
ra

t-
H

M
A

C
7

1
1

0
1

2
2

5
7

8
4

9
4

1
8

2
2

6
8

io
n

s
S

ec
re

t
k
ey

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

1
0

O
p

er
at

io
n

al
lo

ad
at

C
N

P
u

b
li

c
ke

y
0

0
2

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
E

x
p

on
en

ti
al

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

in
d

er
eg

is
tr

at
io

n
H

M
A

C
5

5
0

1
2

2
2

2
3

3
3

4
1

3
2

2
6

3
S

ec
re

t
k
ey

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

1
0

O
p

er
at

io
n

al
lo

ad
at

an
en

ti
ty

is
th

e
n
u

m
b

er
o
f

p
u

b
li

c-
ke

y,
ex

p
o
n

en
ti

a
l,

k
ey

ed
h

a
sh

fu
n

ct
io

n
,

a
n

d
se

cr
et

-k
ey

o
p

er
a
ti

o
n

s
p

er
fo

rm
ed

b
y

th
e

en
ti

ty
d

u
ri

n
g

a
p

ro
to

co
l

ex
ec

u
ti

o
n

T
ab

le
3.

3:
P

er
fo

rm
an

ce
re

q
u
ir

em
en

ts
v
s.

st
at

e
of

th
e

ar
t

(b
)

81

3.4. CHAPTER SUMMARY

RR

EBU

PBK

CAM

UDHBU

OMIPv6

CGA-OMIPv6

ERO-MIPv6

INF-based

SSKv1

SSKv2

PAK-based

TBU

SK-based

CBU

HCBU

ETBU

PK-based

O
p

era
tion

a
l

loa
d

at
H

A
P

u
b

lic
key

0
0

0
0

0
0

0
0

2
0

0
0

0
0

1
2

4
2

E
x
p

o
n

en
tial

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
2

0
0

in
th

e
fi

rst
reg

istra
tion

H
M

A
C

0
0

0
0

0
0

0
0

2
0

0
0

1
5

3
1

0
2

S
ecret

k
ey

0
0

0
0

0
0

0
0

2
0

0
0

4
2

2
3

2
2

O
p

era
tion

a
l

loa
d

at
H

A
P

u
b

lic
key

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

E
x
p

o
n

en
tial

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

in
su

b
seq

u
en

t
registrati-

H
M

A
C

0
0

0
0

0
0

0
0

3
0

0
0

0
3

0
0

0
3

on
s

S
ecret

k
ey

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
1

O
p

era
tion

a
l

loa
d

at
H

A
C
N

P
u

b
lic

key
0

-
-

-
-

-
-

-
0

-
-

-
-

0
-

-
4

0
E

x
p

o
n

en
tial

0
-

-
-

-
-

-
-

0
-

-
-

-
0

-
-

0
0

in
th

e
fi

rst
reg

istra
tion

H
M

A
C

0
-

-
-

-
-

-
-

0
-

-
-

-
0

-
-

0
0

S
ecret

k
ey

0
-

-
-

-
-

-
-

0
-

-
-

-
0

-
-

0
0

O
p

era
tion

a
l

loa
d

at
a
n

en
tity

is
th

e
n
u

m
b

er
o
f

p
u

b
lic-key,

ex
p

o
n

en
tia

l,
k
eyed

h
ash

fu
n

ction
,

an
d

secret-key
op

eration
s

p
erfo

rm
ed

b
y

th
e

en
tity

d
u

rin
g

a
p

ro
to

col
ex

ecu
tio

n

T
ab

le
3.4:

P
erform

an
ce

req
u
irem

en
ts

v
s.

state
of

th
e

art
(c)

82

Chapter 4

The Enhanced Home

Registration (EHR) Protocol

Section 2.4 investigated the basic home registration process included in the MIPv6

protocol to enable an MN to register its current CoA with an HA. The investi-

gation showed that the HA could not authenticate the given CoA. Therefore, the

MN could lie about its current location and lure the HA to redirect traffic to a

third party causing a DoS attack against that third party.

This chapter presents an enhanced home registration process to support loca-

tion authentication of MNs to their respective HAs. This is called the Enhanced

Home Registration (EHR) protocol. The EHR protocol allows an HA to verify

that a claimed CoA is indeed an MN’s real location. As a result, the EHR pro-

tocol can reduce the likelihood of a malicious MN being successful in luring an

HA to flood a third party with useless traffic using the MIPv6 protocol.

This chapter is organized as follows. Section 4.1 gives an overview of the EHR

protocol and details the design of its three building blocks: the symmetric CGA-

based technique, the concurrent CoA reachability test, and the segmenting IPv6

address space method. Section 4.2 presents a detailed description of the EHR

protocol and its informal security analysis in comparison to the basic home regis-

tration protocol. Section 4.3 presents the simulation and evaluation of the EHR

protocol compared to the basic home registration protocol. It first discusses the

design and construction of the simulation model. It next validates the simulation

model. It then presents the simulation results, discusses the implications of the

results and draws conclusions. Finally, Section 4.4 summarises the chapter.

83

4.1. THE EHR PROTOCOL OVERVIEW

4.1 The EHR Protocol Overview

The EHR protocol extends the basic home registration protocol defined in the

MIPv6 base document [5] by making use of a combination of three ideas. Firstly,

it uses a novel lightweight version of the traditional CGA-based technique to

cryptographically generate and verify MNs’ CoAs. This is called the symmetric

CGA-based technique. This technique makes use of a secret key shared between

an MN and its HA in the CoA generation and verification processes. It is used

to reduce the likelihood of a malicious MN being successful in stealing other

nodes’ addresses. Secondly, the EHR protocol applies a novel concurrent CoA

reachability test to verify an MN’s reachability at a claimed CoA. The test enables

an HA to register and use an MN’s new CoA while concurrently verifying the

MN’s reachability at that CoA. Thirdly, the EHR protocol optionally uses a novel

method called the segmenting IPv6 address space method to differentiate between

hosts based on their IPv6 address. The method divides the IPv6 address space

into three parts: home addresses, care-of addresses, and stationary addresses.

Therefore, it reduces the number of targets that are vulnerable to DoS attacks

launched by malicious MNs.

4.1.1 The Symmetric CGA-based Technique

The symmetric CGA-based technique is a novel lightweight CGA-based technique

that is used for the cryptographic generation and verification of an IPv6 address.

It requires a secret key to be shared between the participants, i.e. address owner

and address verifier, and is thus suitable for use between MNs and their respective

HAs.

If an MN wants to cryptographically generate a CoA that could be verified

by a number of HAs, the key used in the address generation and verification

processes must be shared with all of the HAs. To achieve this, when the MN is

in an initial state (not registered with any HA), it generates a random number

that represents a new key. The MN uses this key to cryptographically generate

subsequent CoAs when roaming away from home and securely sends this key

to each HA when first registering with that HA. The HA stores this key in its

Binding Cache entry for the MN’s HoA and uses it to verify the MN’s claimed

CoA as well as subsequent CoAs. Using this method, the MN can register any

of its CoAs with all of its home links. In addition, the original pre-shared secret

84

4.1. THE EHR PROTOCOL OVERVIEW

key with each of the home links (if any) is protected from brute force attacks, as

it is not used in the address generation or verification processes.

The details of the generation and verification processes of the symmetric CGA-

based technique are largely similar to those described by Aura [33] and mentioned

in Section 3.1. When generating a CGA-based CoA, an MN uses two input val-

ues: (1) a 64-bit subnet prefix, and (2) a secret key shared between the MN and

its HA. The generation process is depicted in Figure 4.1 and detailed as follows:

Figure 4.1: Symmetric CGA-based address generation algorithm

Symmetric CGA-based Generation Algorithm:

1. Generate a random 128-bit number, called a modifier. This modifier is used

to further randomise the addresses generated from the same subnet prefix

and shared key.

2. Concatenate from left the modifier and the subnet prefix. Execute the

HMAC SHA1 function on the concatenation using the secret key shared

85

4.1. THE EHR PROTOCOL OVERVIEW

with the HA and get the leftmost 64 bits of the output. The result is H,

i.e. H = First (64, HMAC SHA1 (shared key, (modifier || subnet prefix))).

3. Form an interface identifier from H by setting U/L and I/G bits to zero and

zero, respectively.

4. Concatenate the 64-bit subnet prefix and the 64-bit interface identifier to

form a 128-bit IPv6 address with the subnet prefix to the left and the

interface identifier to the right.

5. Perform a Duplicate Address Detection (DAD) test. If an address collision

is detected, increment the modifier by one and go back to step 2.

The outputs of the address generation algorithm are (1) a new CGA-based

IPv6 address (i.e. a CoA), and (2) a 128-bit number representing the final value

of the modifier. The modifier is carried in BU messages that are sent by MNs to

their HAs in order to convey the modifier value. In addition, if a BU message is

to create a new binding, the secret key is also encrypted and attached to the BU

message; the MN encrypts the secret key using the IPSec secret key shared by

the MN and the HA.

When an HA receives a BU message from an MN, it verifies the claimed

CGA-based CoA. The verification process requires the inputs of an IPv6 address,

a 128-bit modifier, and a shared secret key. The process is depicted in Figure 4.2

and detailed as follows:

Symmetric CGA-based Verification Algorithm:

1. Divide the IPv6 address into 64-bit subnet prefix and 64-bit interface iden-

tifier.

2. Concatenate from left the modifier and the subnet prefix. Execute the

HMAC SHA1 function on the concatenation using the secret key shared

with the MN and get the leftmost 64 bits of the output. The result is H,

i.e. H = First (64, HMAC SHA1 (shared key, (modifier || subnet prefix))).

3. Compare the calculated hash value (H) obtained from step 2 with the 64-

bit interface identifier obtained from step 1; differences in the U/L and I/G

bits are ignored. If the calculated hash value differs, the verification fails.

Otherwise, the verification succeeds.

86

4.1. THE EHR PROTOCOL OVERVIEW

Figure 4.2: Symmetric CGA-based address verification algorithm

If the verification fails, the HA will reject the received BU message and reply

with a BA message indicating that the binding is rejected due to a failure in CoA

verification. However, if the verification succeeds, the HA will gain confidence

that the CGA-based CoA was generated by the MN within that specific foreign

link and that it either belongs to the MN itself or it is a non-used address. This

is because with the symmetric CGA-based technique in place, a malicious MN

will need to attempt about (261) tries to be able to produce a CoA that matches

a third-party’s IPv6 address.

Compared to the traditional CGA-based technique, the symmetric CGA-

based technique has the following advantages. Firstly, the MN (i.e. address

owner) and the HA (i.e. address verifier) are not required to generate and verify

a digital signature, respectively, in order to verify the authenticity of the CoA

(i.e. CGA-based address). Therefore, it reduces the computational overhead im-

posed on the MN and the HA, which also protects the MN and the HA against

DoS attacks (see Section 3.1). Secondly, it removes the need to include the MN’s

public key and signature in BU messages sent to the HA to be able to verify the

CoA, and this could reduce signalling overhead. On the other hand, the symmet-

ric CGA-based technique cannot overcome the following limitations that exist in

87

4.1. THE EHR PROTOCOL OVERVIEW

the traditional CGA-based technique. Firstly, it does not guarantee the MN’s

reachability at the CoA, i.e. a malicious MN can use the shared secret key to

cryptographically generate a non-used address with a subnet prefix from a victim

network. Secondly, it cannot thwart attacks on an entire network by redirecting

data to a non-used address. Furthermore, it suffers from the same hash-length

shortage problem that exists in the early CGA-based techniques, i.e. at most, 62

bits of the address can be used for the hash. Basically, 62 bits are not sufficient to

provide strong security and real protection against brute force attacks [55, 56, 57].

If a malicious MN wishes to steal a third party’s IPv6 address, the MN will need

to attempt about (261) tries to find a modifier that, when used with the subnet

prefix and the shared secret key, produces the same address.

One possible way to increase the hash length is to use the hash extension

method proposed by Aura in [33] (see Section 3.1). However, this method also

increases the cost of address generation, thus increasing the latency in config-

uring a new CoA. Moreover, one of the hash functions included in this method

is nondeterministic, i.e. not guaranteed to terminate after a certain number of

iterations, thus the hash extension method is not suitable for use in the context of

generating CoAs. A second possibility is to make use of the idea of lossless com-

pression proposed by Hwang in [58]. A lossless compression algorithm allows the

exact original data to be reconstructed from the compressed data; it guarantees

that the original and the decompressed data are identical. When an MN gener-

ates a CGA-based CoA, it calculates a longer hash value and then compresses

it to 62 bits. Specifically, in step 2 of the symmetric CGA-based generation al-

gorithm, the MN gets the leftmost X bits of the keyed hash, i.e. H = First (X,

HMAC SHA1 (shared key, (modifier || subnet prefix))) where 64 ≤ X ≤ 160. The

MN then compresses H to 62 bits using a lossless compression algorithm. In the

same way, when an HA verifies a CGA-based CoA, it decompresses the 62 bits

from the interface identifier part of the CoA to obtain the original X bits again.

The HA then compares these X bits with a freshly calculated hash value. In this

way, the MN will need to attempt about (2X-1) tries to be successful in stealing

a third party’s IPv6 address. An initial experiment that attempted to use the

second technique has not resulted in any compression occurring. The reason for

this is currently unknown.

88

4.1. THE EHR PROTOCOL OVERVIEW

4.1.2 The Concurrent CoA Reachability Test

The idea of generating CoAs cryptographically is complemented by the idea of

concurrent CoAs reachability tests to validate the MNs’ reachability at claimed

CoAs. A concurrent CoA reachability test allows an HA to register and use an

MN’s new CoA while concurrently verifying an MN’s reachability at that CoA.

The reachability test uses two additional messages: a Binding Acknowledgement

with Care-of Token (BACoT) message and a Binding Update with Care-of Token

(BUCoT) message.

Figure 4.3: Procedure 1 - executed by an HA upon receipt of a valid BU message

The reachability test is initiated as soon as an HA receives a valid BU message

from an MN. The HA replies by sending a BACoT message to the MN. The

BACoT message acknowledges the binding of the new CoA and delivers a fresh

care-of token to the MN. The MN uses the received token to show its presence

at the new CoA, i.e. the MN sends a BUCoT message containing the received

token to the HA. When the test concludes, the HA sends a BA message to the

MN acknowledging the receipt of the token; hence, the successful completion of

the reachability test.

89

4.1. THE EHR PROTOCOL OVERVIEW

A care-of token is a 64-bit number that is produced using the idea of a ‘node

key’ [5]. The node key is only known to an HA, and it allows the HA to verify that

a token enclosed in a BUCoT message is indeed its own. The HA generates a fresh

node key at regular intervals and identifies it by an index. The HA produces a

fresh care-of token based on its active node key as well as values of the MN’s HoA,

the MN’s claimed CoA, and the sequence number received in a valid BU message.

The HA may use the same node key with all of the MNs it is in communication

with to avoid the need to store a token per MN.

Figure 4.4: Procedure 2 - executed by an HA upon receipt of a valid BUCoT
message

The reachability test limits the number of valid BU messages that can be

received from an unreachable CoA as well as the amount of traffic that can be

sent to an unreachable CoA. While running the test, i.e. after sending a BACoT

message and before receiving a BUCoT message, an HA is not yet able to vali-

date an MN’s reachability at a claimed CoA. Therefore, the test allows the HA

to limit the number of BUs that can be received from that unreachable CoA to

a MAX ATTEMPT value, which prevents the MN from bypassing the test by

90

4.1. THE EHR PROTOCOL OVERVIEW

continuously sending BUs without involving the test. In addition, the test allows

the HA to set the granted binding lifetime between the MN’s HoA and the un-

reachable CoA to a MIN BINDING LIFETIME value, which limits the amount

of data sent to the unreachable CoA.

The operational procedure of the concurrent CoA reachability test is summarised

as follows:

1. When an HA receives a valid BU message from an MN, the HA performs

Procedure 1, which is also shown in Figure 4.3:

Procedure 1:

1.1 The HA checks whether it has a Binding Cache entry for the HoA

enclosed in the message. If the HA does not have one (i.e. the MN

wants to create a new binding), then go to step 1.4.

1.2 The HA checks the state of the entry. If the state is reachable (i.e. the

previous run of the reachability test concluded successfully), then go to

step 1.4.

1.3 The HA checks number of attempts in the entry. If MAX ATTEMPT

is reached, then the HA rejects the message and replies to the MN

with a BA message in which the binding status field is set to ‘Rejected

due to maximum attempts from unreachable CoA has been reached’.

Otherwise, the HA continues to step 1.4.

Part B:

1.4 The HA creates/updates a Binding Cache entry with the claimed CoA

and the value of sequence number (Seq) received. The HA puts the

entry in an unreachable state and sets the granted binding lifetime in

the entry to a MIN BINDING LIFETIME value. In addition, the HA

either sets the value of the number of attempts in the entry to zero (if

a new entry is created) or increments it by one (if an existing entry is

updated).

1.5 The HA then uses its active node key (KHA) as well as the values of

the HoA, CoA, and Seq enclosed in the BU message to generate a fresh

91

4.1. THE EHR PROTOCOL OVERVIEW

care-of token CoT, i.e. CoT = First (64, HMAC SHA1 (KHA, (HoA ||
CoA || Seq))).

1.6 Finally, the HA sends a BACoT message to the MN in which the binding

status field is set to ‘Accepted for limited period’. The BACoT message

contains the fresh CoT and the index (I) of the current node key. The

granted binding lifetime and the binding refresh advice fields, in this

BACoT message, are set to a MIN BINDING LIFETIME value, which

indicates that the MN must send a BUCoT message as soon as possible.

2. Upon receipt of a valid BACoT message from an HA, the MN sends a

BUCoT message, which contains the CoT and I, back to the HA requesting

a longer lifetime by the binding lifetime request field.

3. Upon receipt of a valid BUCoT message from an MN, the HA performs

Procedure 2, which is also shown in Figure 4.4:

Procedure 2:

2.1 The HA checks whether it has a Binding Cache entry for the HoA

enclosed in the message. If the HA does not have one, then the HA

considers the received message a BU message, not a BUCoT message,

and responds by performing part B of Procedure 1.

2.2 The HA checks the state of the Binding Cache entry. If the state is

reachable, then the HA compares the values of the CoA enclosed in

the message and the CoA registered at the HA for that MN. If they

are matched, which means the MN is resending the BUCoT message

because it did not receive a BA message, the HA replies to the MN

by sending a BA message that contains a ‘Binding accepted’ value in

the binding status field and the remaining binding lifetime value in

the granted binding lifetime field. Otherwise, if the two CoAs are not

matched, the HA again considers the received message a BU message

and responds by performing part B of Procedure 1. On the other hand,

if the state of the entry is unreachable, the HA continues to step 2.3.

2.3 The HA uses the index (I) enclosed in the received message to retrieve

its node key (KHA). The HA next generates a CoT using the retrieved

92

4.1. THE EHR PROTOCOL OVERVIEW

node key, as well as the value of the HoA enclosed in the received

message and the values of the CoA and Seq retrieved from the Binding

Cache entry for that HoA, i.e. CoT = First (64, HMAC SHA1 (KHA,

(HoA || CoA || Seq))).

2.4 The HA then verifies that the generated CoT matches the received

CoT (Verification-1). If the verification succeeds, the HA will (1)

reset the value of the number of attempts in the cache entry to zero;

(2) extend the binding lifetime in the cache entry by setting the granted

binding lifetime to a BINDING LIFETIME value; and (3) send a BA

message that contains a ‘Binding accepted’ value in the binding status

field and a BINDING LIFETIME value in the granted binding lifetime

field. Otherwise, if the verification fails, the HA will send a BACoT

message containing the generated CoT and the index (I) of the current

node key to the MN. The granted binding lifetime and the binding

refresh advice fields are set to the remaining binding lifetime in this

BACoT message.

4. Upon receipt of a valid BA message with a ‘Binding accepted’ status from

an HA, the MN accepts the message and the current run of the test ends.

4.1.3 The Segmenting IPv6 Address Space Method

As just discussed, by generating CoAs cryptographically and by testing MNs’

reachability at claimed CoAs, HAs gain confidence that CoAs claimed by MNs

match with the MNs’ real locations. However, there is still a chance that a

malicious MN could falsely claim a third party’s address as its CoA. To do this,

the third party’s address must have a long lifetime, and the malicious MN must be

located on the path between an HA and the third party. In this case, the malicious

MN could attempt about (261) tries to cryptographically generate a CoA that

matches the third party’s IPv6 address. Furthermore, as the malicious MN is on

the path between the HA and the third party, it would be able to intercept the

BACoT message and send the BUCoT message. Therefore, the ideas mentioned

in Sections 4.1.1 and 4.1.2 are complemented with the idea of segmenting IPv6

address space into three parts (home addresses, care-of addresses, and stationary

addresses) to reduce the number of targets that are vulnerable to DoS attacks

launched by malicious MNs.

93

4.1. THE EHR PROTOCOL OVERVIEW

The segmenting IPv6 address space method distinguishes the addresses used

by MNs from those used by stationary nodes (SNs). Furthermore, it distinguishes

the addresses used by MNs as HoAs from those used by MNs as CoAs. This can

be done by dividing the IPv6 addresses into two groups: those that identify

SNs (group 1) and those that identify MNs (group 2). Furthermore, group 2

can be further divided into those that identify MNs located at their home links

(group 2.1) and those that identify MNs located at foreign links (group 2.2). In

this way, the IPv6 addresses that are vulnerable to flooding attacks launched by

malicious MNs are scoped to group 2.2 addresses. In other words, this method

(i.e. segmenting IPv6 address space) on its own can protect the IPv6 addresses

in group 1 and group 2.1 against malicious MNs flooding attacks.

The segmenting IPv6 address space method uses two bits of the IPv6 64-

bits interface identifier field to distinguish between SNs’ addresses and MNs’

addresses, and between MNs’ HoAs and MNs’ CoAs. As shown in Table 4.1,

the first bit, i.e. the Mobile/Stationary (M/S) bit, is used to indicate whether

an address is for a mobile or a stationary node, and the second bit, i.e. the

Home/Care-of (H/C) bit, is used to indicate whether the address is for a mobile

node at its home link or at a foreign link. The M/S and H/C bits are part of the

addresses; hence if a malicious MN changes them that will change the address and

the address owner will not be flooded by any directed packets. Consequently, the

proposed method prevents malicious MNs from impersonating either stationary

nodes or other MNs located at their home links. In addition, the method does

not impact the availability of the IPv6 address space. It divides the address space

into two groups, but the availability of the address space remains the same.

M/S H/C

0 X Stationary nodes (stationary IPv6 addresses)
1 0 Mobile nodes at foreign links (CoAs)
1 1 Mobile nodes at home links (HoAs)
X means either 0 or 1.

Table 4.1: M/S and H/C bits

The use of the proposed method must be deployed on a global scale on the

IPv6 Internet. It requires changing the way every IPv6 node in the world chooses

an IPv6 address, which seems unrealistic. However, the author can argue this

requirement as follows. Firstly, “IPv6 is still in its infancy in terms of general

94

4.2. THE EHR PROTOCOL DESCRIPTION

worldwide deployment” [59, 60] which makes it possible to be changed to support

the proposed method. Specifically, 5.5% of networks on the Internet could handle

IPv6 traffic by early 2010. Additionally, only 1.45% of the top 1000 websites had

an IPv6 website in January 2010. Secondly, the current IPv6 lacks any way

to know about a node from its address making it necessary to find a way to

differentiate between nodes, especially with the rapid growth of the number of

mobile devices connected to the Internet. Thirdly, the author believed that the

benefits of the proposed method far outweigh the costs, as it will not only be

used to support location authentication of mobile nodes but will also be used

in other applications to differentiate between redirectable and non-redirectable

IPv6 addresses, such as in MIPv6 route optimization, in protecting against future

address stealing [61], and in future protocols that allow redirecting of IP packets

from one IPv6 address to another one.

In summary, in the context of supporting location authentication of MNs to

HAs, the segmenting IPv6 address space method could protect nodes that use

stationary IPv6 addresses as well as MNs’ HoAs from being attacked as the result

of using MIPv6 protocol. This is because, with this method in place, it is not

possible for an MN to falsely claim that a SN’s address or another MN’s HoA is

its CoA.

4.2 The EHR Protocol Description

The EHR protocol is based on three ideas that (1) cryptographically generate

MNs’ CoAs based on a shared secret key; (2) verify MNs’ reachability at claimed

CoAs; and (3) differentiate between different address types. The EHR protocol

adds the three ideas mentioned above to the basic home registration protocol (see

Section 2.4) to help HAs authenticate MNs’ CoAs. The whole picture of the EHR

protocol is illustrated in Figures 4.5 and 4.6 and is detailed as follows.

1. When the MN roams into a foreign link, it uses a secret key along with the

foreign link’s subnet prefix to configure a new CoA using the symmetric

CGA-based generation algorithm. The MN also sets the M/S and the H/C

bits in the new CoA to one and zero, respectively. The MN then sends a BU

message to notify the HA about the new CoA. The BU message contains a

128-bit number representing the value of the modifier generated by the MN

while running the symmetric CGA-based generation algorithm. In addition,

95

4.2. THE EHR PROTOCOL DESCRIPTION

if the current run of the EHR protocol is to create a new binding at the

HA, the secret key is encrypted and carried in the BU message. If the

MN does not receive a matching response within a retransmission interval

of one second, the MN will resend the BU message to the HA. The MN

doubles the retransmission interval upon each retransmission in the same

way, as specified in the base specification of the MIPv6 protocol ([5], see

also Section 2.4).

2. Upon receipt of a BU message, the HA verifies the authenticity, integrity,

and freshness of the message, using an IPSec SA and a sequence number,

as in the basic home registration protocol. If any of these verifications

fails, the HA will discard the received message without any further action.

Otherwise, the HA will check that the values of the M/S and H/C bits

in the claimed CoA are ‘one’ and ‘zero’, respectively. If positive, the HA

will execute the symmetric CGA-based verification algorithm described in

Section 4.1.1 (see Figure 4.2). If the outcome of the algorithm is positive,

the HA will perform Procedure 1 described in Section 4.1.2 (see Figure 4.3),

which results in either (1) rejecting the received BU message and sending

a BA message to the MN with the binding status field set to ‘Rejected

due to maximum attempts from unreachable CoA has been reached’, or

(2) accepting the received BU message and sending a BACoT message to

the MN with the binding status field set to ‘Accepted for limited period’.

Otherwise, if the values of the M/S and H/C bits are not ‘one’ and ‘zero’,

respectively, and/or the address verification fails, the HA will reject the

received BU message and reply with a BA message in which the binding

status field is set to ‘Rejected due to failure in CoA verification’.

3. Upon receipt of a BACoT message, the MN verifies the authenticity, in-

tegrity, and freshness of the message as in the basic home registration pro-

tocol. If positive, the MN will send a BUCoT message, which contains the

CoT and I, back to the HA requesting a longer binding lifetime. Otherwise,

if any of these verifications is negative, the MN will discard the received

message without any further action. If the MN does not receive a matching

response within a retransmission interval of one second, the MN will resend

the BUCoT to the HA.

96

4.2. THE EHR PROTOCOL DESCRIPTION

4. Upon receipt of a BUCoT message, the HA verifies the authenticity, in-

tegrity, and freshness of the message as in the basic home registration pro-

tocol. If any of these verifications is negative, the HA will discard the

received message without any further action. Otherwise, the HA will per-

form Procedure 2 (described in Section 4.1.2, see Figure 4.4), which results

in either (1) accepting the received BUCoT message and sending a BA mes-

sage to the MN with the binding status field set to ‘Binding Accepted’, or

(2) accepting the received BUCoT message and sending a BACoT message

to the MN with the binding status field set to ‘Accepted for limited period’.

5. Upon receipt of a BA message, the MN verifies the authenticity, integrity,

and freshness of the message as in the basic home registration protocol.

If negative, the MN will discard the received message without any further

action. Otherwise, the MN will check the status of the message. If the status

is ‘Binding accepted’, the MN will accept the message and the current run

of the protocol will end. Otherwise, the MN will take steps to fix the error

and retransmit the BU message, or will reinitiate the home registration by

instead trying a different HA.

Figure 4.5: EHR protocol at mobile node side

97

4.2. THE EHR PROTOCOL DESCRIPTION

Figure 4.6: EHR protocol at home agent side

The EHR protocol is based on the BHR protocol; it also uses IPSec ESP and

sequence numbers to protect home registrations. Therefore, the EHR protocol

has the same security protection as the BHR protocol. Specifically, it can protect

home registrations against outsider attacks; an attacker cannot send a spoofed

or a replayed BU message instead of the MN. It also can prevent malicious MNs

from falsely sending BU messages on behalf of other MNs.

Furthermore, the EHR protocol extends the BHR protocol to support the lo-

cation authentication of MNs to their HAs. It adds the novel ideas of segmenting

the IPv6 address space, using a symmetric CGA-based technique for generating

CoAs, and applying concurrent CoAs reachability tests to the basic home registra-

tion protocol. As a result, the EHR protocol reduces the likelihood of a malicious

MN being successful in luring an HA to flood a third party. Specifically, when

the BHR protocol is in place, a malicious MN can be anywhere on the Internet

and launch an attack against any node; all Internet nodes are potential targets.

On the other hand, when the EHR protocol is in place, a malicious MN would

need to (1) attempt about (261) tries to be able to produce a CoA that matches a

third-party’s IPv6 address; and (2) be on the path between the HA and the third

98

4.3. PERFORMANCE EVALUATION

party. In addition, the malicious MN cannot target stationary nodes or other

MNs at their home links.

4.3 Performance Evaluation

This section reports the performance evaluation of the EHR protocol by compar-

ing it to the basic home registration (BHR) protocol. This is done by using the

OPNET Modeler simulation package and the CryptoSys Cryptography Toolkit.

A brief description of these is given in Appendix C. The performance is measured

in terms of home registration delay (HR-Delay) measured in seconds and control

signalling overhead measured in bits per second. The HR-Delay is defined as the

total amount of time taken for the MN to receive an acknowledgement message

(i.e. a BACoT in the EHR protocol or a BA in the BHR protocol) from the HA,

once a BU message has been sent. The control signalling overhead is the total

amount of Mobile IPv6 signalling traffic sent and received by the MN and the

HA.

4.3.1 Simulation Modelling

In order to measure the performance of the EHR protocol, OPNETTM Modeler

version 14.5 has been used to simulate the performance of the protocol under

varying network conditions. In particular, the performance is investigated when

varying levels of background traffic on the network are applied and when various

numbers of simultaneously roaming MNs are served by the same HA. The sim-

ulation results obtained are then compared to those when the BHR protocol is

run.

The network model, depicted in Figure 4.7, is composed of three CNs that are

connected via routers (R1 to R3) to the Internet. An HA and three access routers

(AR1 to AR3) each one representing a different IPv6 subnet are also connected

to the Internet. MNs, initially located at a home subnet, move to foreign subnets

and return back to the home subnet along the same route. When the MNs are

away from the home subnet, they register with the HA; i.e. the same HA serves

all the MNs. The MNs are initially located at the same position; move from one

subnet to another at the same speed; and wait the same interruption time at each

subnet before moving to the next subnet. In this way, all the MNs will perform

99

4.3. PERFORMANCE EVALUATION

handoff and consequently initiate the home (de)registration process at the same

time.

The HA, the Rs, and the ARs are placed at a fixed distance of 1 km (kilometre)

apart from the Internet. The value of 1 km has been chosen to make the validation

of the simulation model straightforward, but without loss of generality. The HA

and the ARs have been positioned in such a way that provide a continuous wireless

coverage area for the MNs. Each MN is communicating with the three CNs at

the same time and running three Internet applications, i.e. web browsing, email

and file transfer. These applications are selected because they are likely to be

the dominant applications in the Internet [62]. The MNs perform one hundred

passes (movement between HA and AR3) with six handoffs in each pass (five

registrations and one deregistration). The OPNET Modeler’s documentation

recommends thirty as an initial rule of thumb for the number of repetitions to use.

However, one hundred passes have been chosen (i.e. five hundreds registrations)

in the hope of averaging out any possible fluctuating factors.

Figure 4.7: Simulation model

Three separate simulation studies are performed. The first one is created to

investigate the impact of the EHR protocol on HR-Delay, i.e. whether the EHR

100

4.3. PERFORMANCE EVALUATION

protocol has led to any performance degradation through increasing HR-Delay.

In this study, ten background traffic scenarios ranging from 0% to 90% at 10%

increments are applied to investigate how different volumes of traffic may affect

the results of the HR-Delay. The second simulation study is to investigate the

impact of number of MNs served by an HA on the performance of the EHR pro-

tocol. In this study, the number of simultaneously roaming MNs varied between

one and one hundred as this is the default value for the maximum number of

MNs that can be served by one HA (maximum Binding Cache size). The third

simulation study is to investigate the control signalling overhead produced at the

MN and the HA when both of EHR and BHR protocols are executed.

4.3.2 Simulation Model Validation

This section validates the simulation model so that any collected results could be

considered reliable. For doing so, a validation process that consists of two phases

is adopted. The first phase involves the use of the OPNET debugger to prove that

the EHR protocol operates correctly. The OPNET debugger is applied to output

the processes of generating and verifying both a CoA and a CoT. In addition,

relevant packets’ information (i.e. source address, destination address, value of

modifier, value of CoT, and packet size) has been inspected during runtime. The

second phase involves deriving a theoretical equation for the calculation of the

HR-Delay under the condition that the underlying network is unloaded, i.e. the

only traffic in the network is the home registration signalling messages. Next

theoretical results are calculated. These are compared to the simulation results

collected under the same conditions to validate the correctness of the simulation

model.

4.3.2.1 The Validation Process: Phase One

The output from the OPNET debugger during simulation runtime is illustrated

in Appendix C. Trace labels have been defined in the code to request output of

specific information while monitoring simulation output. By observing the out-

put, the messages exchanged were confirmed to be consistent with the expected

mobility signalling exchanged between the MN and the HA.

101

4.3. PERFORMANCE EVALUATION

4.3.2.2 The Validation Process: Phase Two

A simplified simulation model and a theoretical validation model are constructed

to measure and calculate, respectively, the HR-Delay for the EHR protocol. The

theoretically calculated results are compared to the simulation results collected

under the same conditions, i.e. under the same assumptions and parameter value

settings, to validate the correctness of the simulation model.

Theoretical Model

For the purpose of simulation and validation, the equation for calculating theo-

retical value of the HR-Delay is as follows:

HR−Delay = Delay for BU message + Delay for BACoT message

+ Delay for HoA DAD test (4.1)

The delays for BU and BACoT messages are functions of four delays, i.e. trans-

mission delay, propagation delay, queuing delay, and processing delay. The BU

and BACoT messages are exchanged between various nodes before they reach

their final destination. Figures 4.8 and 4.9 illustrate the HR-Delay for each node

involved in processing and/or forwarding of the BU and BACoT messages. These

figures illustrate how the various delays that are experienced at each node are

combined together to calculate the total HR-Delay for the validation model. The

remainder of this section details how theoretical values for the five main delays

are calculated.

Figure 4.8: Theoretical delay for BU message

102

4.3. PERFORMANCE EVALUATION

Figure 4.9: Theoretical delay for BACoT message

• Transmission Delay

Transmission delay is the amount of time required to transmit all of the packet’s

bits onto the link. The equation for calculating transmission delay is as follows:

Transmission−Delay = Packet Size / Bandwidth (4.2)

Packet Size refers to the total amount of bits in a packet; whereas, Bandwidth

specifies the data transmission rate of a link.

• Propagation Delay

Propagation delay is the time taken by the packet’s bits to propagate from one

network node to another. The equation for calculating propagation delay is as

follows:

Propagation−Delay = Distance / Propagation Speed (4.3)

Distance in metres refers to the distance between the two network nodes.

Propagation Speed is usually equivalent to the Speed of Light which equals

300,000,000 metres per second in a vacuum (wired-link) and equals 299,702,547

metres per second in airspace (wireless-link).

• Queuing Delay

Queuing delay consists of message arrival queuing delay and message transmis-

sion queuing delay. The former is the amount of time that an arrived message

waits at the inbound network interface before being processed. The latter is

the amount of time that a processed message spent waiting at the outbound

network interface for transmission. The two delays depend entirely on the

level of packet congestion at the interface. By assuming a ‘zero’ background

103

4.3. PERFORMANCE EVALUATION

traffic, there are no extra packet queued at either the inbound interface or

the outbound interface, hence queuing delays are considered as insignificant

and negligible in this case. Therefore, the queuing delay is set to zero in the

theoretical validation model.

• Processing Delay

Processing delay refers to the amount of time taken to process an outgoing or in-

coming packet at the sender or receiver node respectively. The processing delay

for the EHR protocol is based on a HMAC SHA1 delay. The HMAC SHA1 de-

lay depends on processor speed whereby an increase in processor power leads to

a decrease in the HMAC SHA1 delay and vice versa. The HMAC SHA1 func-

tion is used by the HA twice to verify MN’s CoA and to generate a fresh CoT.

The HMAC SHA1 delay is measured on a DELL computer with the following

configuration:

Operating System: Window XP professional

Installed Memory: 2.00 GB

Processor Class: Pentium D

Processor Speed: 3.00 GHz.

1. The HMAC SHA1 delay for generating ID of CoA = 5.011 microseconds

2. The HMAC SHA1 delay for generating CoT = 4.966 microseconds

• HoA Duplicate Address Detection (DAD) Delay

HoA DAD delay is the amount of time taken by an HA, upon receipt of a BU

message, to perform a DAD test on the MN’s home link before sending back

a BACoT message. The HA performs the DAD test to ensure that no other

node on the home link is using the MN’s HoA when the BU message arrives.

The HA needs to perform a DAD test for an MN’s HoA when it creates a new

binding for that HoA. In other words, if the HA already has a Binding Cache

entry for a HoA, it means that the HA has already performed the required

DAD test before and there is no need to repeat it. The equation for calculating

HoA DAD delay is as follows [63]:

HoA DAD Delay = TRT + TWT (4.4)

TRT is the delay time in seconds that the HA must randomly wait after re-

ceiving a BU message before initializing the DAD test. Whereas, TWT is the

waiting time in seconds that the HA must wait after sending a neighbour so-

licitation message that includes MN’s HoA, as the solicitation’s target address,

104

4.3. PERFORMANCE EVALUATION

without receiving a neighbour advertisement reply to indicate DAD test suc-

cess. According to [20] the value of TRT is between 0 and 1000 milliseconds

and the value of TWT is about 1000 milliseconds. Consequently, the minimum

value of HoA DAD Delay is 1.0 seconds and the maximum value is 2.0 seconds.

Therefore the theoretical value of the HoA DAD Delay is calculated as 1.5

seconds when the MN is roaming from the home link to a foreign link and is 0

seconds when the MN is either roaming from a foreign link to another foreign

link or roaming back from a foreign link to the home link.

Figure 4.10: Simplified simulation model

Simplified Simulation Model

The simplified simulation model, depicted in Figure 4.10, is composed of a single

MN that is located at a home link, an HA that represents the home link, and an

access router (AR) that represents a foreign link. The model has the following

assumptions. (1) The underlying network is unloaded, i.e. background traffic is

set to 0%. (2) The HA and the AR are placed at a fixed distance (wired-distance)

of 1000 metres apart from the Internet. (3) The distance between the MN and the

AR (wireless-distance) is 300 metres. (4) The propagation speed in wired-links is

set to 300,000,000 metres per second. (5) The propagation speed in wireless-links

is set to 299,702,547 metres per second. (6) The IPv6 Internet cloud has a single

router. (7) The amount of time taken by the HA to perform a DAD test on the

MN’s HoA is set to 1.5 seconds. (8) The secret key used in the CoA generation

and verification processes is shared between the MN and the HA in advance. (9)

105

4.3. PERFORMANCE EVALUATION

The wired-link bandwidth and the wireless-link bandwidth are variable, i.e. a

different set of wired and wireless data transmission rates are applied.

Comparing Theoretical and Simulated Results

To validate the simulation model, Equation 4.1 is used to calculate a theoretical

value for the HR-Delay at 0% background traffic load. This value is then com-

pared to that obtained when the simulation model is run at 0% load. In order to

further confirm the accuracy of the simulation model, it was validated at different

wireless and wired data transmission rates. The validation results are shown in

Figures 4.11 and 4.12. The results show a gap between the theoretical results

and the simulation results. This gap is probably due to the processing delay

that was used in the theoretical model. To validate this suspicion, the processing

delay from Intel Pentium-133 was obtained and used to produce some adjusted

theoretical results illustrated in Figures 4.13 and 4.14. The HMAC SHA1 Delay

was re-measured on a DELL computer with the following configuration:

Operating System: Window 95

Installed Memory: 16 MB

Processor Class: Pentium I

Processor Speed: 133 MHz.

1. The HMAC SHA1 delay for generating ID of CoA = 155.47 microseconds

2. The HMAC SHA1 delay for generating CoT = 155.42 microseconds

The adjusted theoretical results show that the gap between theoretical and

simulation results has narrowed; hence, it confirmed that this insignificant gap is

due to the value of the processing delay that was used in the theoretical model.

As a result of the success of the adopted validation process, the simulation model

has been successfully validated; hence any results collated by the simulation could

be considered reliable.

106

4.3. PERFORMANCE EVALUATION

Figure 4.11: Theoretical and simulated results for HR-Delay at different wireless
links’ data transmission rates (wired data transmission rate is 1,544,000 bps)

Figure 4.12: Theoretical and simulated results for HR-Delay at different wired
links’ data transmission rates (wireless data transmission rate is 11,000,000 bps)

107

4.3. PERFORMANCE EVALUATION

Figure 4.13: Adjusted validation results at different wireless data transmission
rates (wired data transmission rate is 1,544,000 bps)

Figure 4.14: Adjusted validation results at different wired data transmission
rates (wireless data transmission rate is 11,000,000 bps)

108

4.3. PERFORMANCE EVALUATION

4.3.3 Simulation Results

This section presents and analyses simulation results obtained from the simulation

study of both the HR-Delay and the control signalling overhead. It compares the

results of both the EHR protocol and the BHR protocol.

4.3.3.1 Home Registration Delay

This section presents an analysis of the HR-Delay simulation results. A selection

of the simulation results are shown in Figure 4.15 to Figure 4.25. In these results,

the HoA DAD delay is set to zero even during the first registration of a CoA at

an HA, i.e. when an MN roams from a home subnet to a foreign subnet. The

reason for this is that the OPNET calculates this delay using a random number

generator, which affects the accuracy of the collected results.

Figures 4.15, 4.16 and 4.17 show the HR-Delay during registration (handovers

1, 2, 3, 4, and 5) and deregistration (handover 6) processes at different network

loads. The figures show that (1) in each of the two protocols, the HR-Delays at

handovers number 1, 2, 3, 4, and 5 are nearly identical, i.e. during registration

process; (2) the EHR protocol has a higher HR-Delay than the BHR protocol

at handovers number 1, 2, 3, 4, and 5, i.e. during registration process; and (3)

the HR-Delay is identical in the two protocols at handover number 6, i.e. during

deregistration process. The reason for this is that in the deregistration process

the two protocol operate the same way, i.e. there is no difference between them.

In order to further compare performance of the EHR protocol against perfor-

mance of the BHR protocol, the average HR-Delays for registration and dereg-

istration at different network loads are measured and illustrated in Figure 4.18

and Figure 4.19, respectively. As shown, the HR-Delays for registration and

deregistration increase exponentially as the network load increases. This pattern

is caused by the increase in the queuing delay experienced at each node. Fig-

ure 4.18 shows that, on average, the EHR protocol takes 3.76% longer than the

BHR protocol to allow an MN to register a CoA. This is caused by (1) the ad-

ditional two (computationally light) HMAC SHA1 operations performed by the

HA, and (2) the increase in the size of the BU and BACoT messages exchanged

in the EHR protocol compared to the BU and BA messages exchanged in the

BHR protocol. Figure 4.19 shows that, on average, the EHR protocol is identical

to the BHR protocol in allowing the MN to deregister the CoA.

109

4.3. PERFORMANCE EVALUATION

Figure 4.15: HR-Delay for BHR and EHR protocols vs. handover (one MN,
three CNs, 0% load)

Figure 4.16: HR-Delay for BHR and EHR protocols vs. handover (one MN,
three CNs, 30% load)

110

4.3. PERFORMANCE EVALUATION

Figure 4.17: HR-Delay for BHR and EHR protocols vs. handover (one MN,
three CNs, 80% load)

Figure 4.18: Average HR-Delay (registration) for BHR and EHR protocols vs.
load (one MN, three CNs)

111

4.3. PERFORMANCE EVALUATION

Figure 4.19: Average HR-Delay (deregistration) for BHR and EHR protocols vs.
load (one MN, three CNs)

The effect of the number of simultaneously roaming MNs on the performance

of the EHR protocol is depicted in Figures 4.20 to 4.23. In these figures, the

mean result (Average), the minimum result (Min), the maximum result (Max),

the mean result minus the standard deviation (Lower), and the mean result plus

the standard deviation (Upper) are all presented. It can be seen from these

figures that the HR-Delays for registration and deregistration increase linearly

as the number of simultaneously roaming MNs increases. That is, the HR-Delay

is proportional to the number of simultaneously roaming MNs. In addition, it

can be seen that as the number of simultaneously roaming MNs increases, the

deviation from the mean result increases. These are caused by the increased

queuing time on the HA side, as a high number of simultaneously roaming MNs

means a high number of BU messages to be processed at the HA.

112

4.3. PERFORMANCE EVALUATION

Figure 4.20: HR-Delay (registration) for EHR protocol vs. number of MNs (0%
load)

Figure 4.21: HR-Delay (registration) for EHR protocol vs. number of MNs (90%
load)

113

4.3. PERFORMANCE EVALUATION

Figure 4.22: HR-Delay (deregistration) for EHR protocol vs. number of MNs
(0% load)

Figure 4.23: HR-Delay (deregistration) for EHR protocol vs. number of MNs
(90% load)

114

4.3. PERFORMANCE EVALUATION

Figure 4.24 and Figure 4.25 compare the performance of the BHR and EHR

protocols as the number of simultaneously roaming MNs increases. As shown, the

EHR protocol has higher rates of increase of HR-Delay than the BHR protocol

during registration. This is because HAs in the EHR protocol are required to

perform more operations during registration than in the BHR protocol. Conse-

quently, the queuing time on the HA side in the EHR protocol increases faster

than it does in the BHR protocol. Therefore, as the number of simultaneously

roaming MNs increases, the HR-Delay in the BHR protocol increases less quickly

than in the EHR protocol.

Figure 4.24: HR-Delay (registration) for BHR and EHR protocols vs. number of
MNs (0% load)

115

4.3. PERFORMANCE EVALUATION

Figure 4.25: HR-Delay (registration) for BHR and EHR protocols vs. number of
MNs (90% load)

4.3.3.2 Control Signalling Overhead

This section presents an analysis of control signalling overhead results for the

BHR and EHR protocols. Figure 4.26 and Figure 4.27 show control signalling

overheads at the MN side and HA side, respectively. Generally, the reason for

any differences in control signalling overhead between BHR and EHR at an entity

is due to the difference in the number and length of signalling messages received

and/or sent at that entity. The following two observations can be made from

these figures: (1) the amount of control signalling overhead at both the MN and

HA are identical in the two protocols during deregistration processes; and (2)

while registering a new CoA, control signalling overhead at both the MN and HA

in EHR is about 126% higher than in BHR.

116

4.3. PERFORMANCE EVALUATION

Figure 4.26: Control signalling overhead (bits/sec) for BHR and EHR protocols
at MN

Figure 4.27: Control signalling overhead (bits/sec) for BHR and EHR protocols
at HA

117

4.4. CHAPTER SUMMARY

4.3.3.3 Discussions

From the simulation results presented, the following observations can be made:

• Firstly, the performance of the two protocols are identical during the dereg-

istration process.

• Secondly, the performance of the EHR protocol and the BHR protocol in

terms of HR-Delay is comparable.

• Thirdly, the impact of the increase in number of simultaneous roaming MNs

that are served by the same HA on the performance of the EHR protocol

is higher than in the BHR protocol.

• Fourthly, the EHR protocol doubles the control signalling overheads at both

the MN and the HA as a price to pay for supporting the location authen-

tication of MNs to their HAs.

Overall, the author concludes that if a comparison between both the EHR pro-

tocol and the BHR protocol is performed on the basis of efficiency as well as

security, the EHR protocol renders itself superior.

4.4 Chapter Summary

This chapter has presented the design of a novel enhanced home registration

(EHR) protocol that allows HAs to verify MNs’ ownership of claimed CoAs. The

EHR protocol makes use of a combination of three ideas. Firstly, it generates

CoAs cryptographically using a symmetric CGA-based technique. Secondly, it

applies a concurrent CoA reachability test to verify MNs’ reachability at claimed

CoAs. Thirdly, it uses a novel method to determine hosts’ types based on their

IPv6 addresses.

A simulation model of EHR has been constructed using the OPNET Modeler.

The model has been validated using the OPNET Modeler debugger and using

theoretical calculations. The analysis of simulation results has demonstrated

that EHR only introduces a marginal increase in the registration delay, but a

significant increase in the signalling overhead as a cost of supporting the location

authentication of MNs.

In the next chapter, a family of correspondent registration protocols is pre-

sented. These protocols require the use of the EHR protocol between MNs and

118

4.4. CHAPTER SUMMARY

their HAs in registering MNs’ CoAs. They rely on the assistance of HAs to

confirm the MNs’ ownership of the claimed CoAs and HoAs to the CNs.

119

Chapter 5

A Family of Correspondent

Registration Protocols

This chapter presents the design of a family of correspondent registration pro-

tocols. Section 5.1 describes the design objectives for the protocols. Section 5.2

outlines the design principles for the protocols and the common assumptions on

which the design is based. Section 5.3 gives an overview of the protocols and

their three phases: the creation phase, the update phase, and the deletion phase.

Section 5.4 presents detailed descriptions of the protocols. Finally, Section 5.5

summarises the chapter.

5.1 Design Requirements

The security and performance requirements mentioned in Section 2.2.2 have been

identified as the design objectives for the protocols. These requirements are:

• (S1) To provide authenticity of the claimed home address to assure the CN

that the binding request has originated from the entity that owns the home

address.

• (S2) To provide authenticity of the claimed care-of address to assure the CN

that the entity that sent the binding request is actually located at the care-of

address.

• (S3) To provide integrity of the binding request to detect the unauthorised

modification of binding data.

120

5.2. DESIGN PRELIMINARIES

• (S4) To provide freshness of the binding request to prevent replay attacks.

• (S5) To provide protection for all involved entities against resource exhaustion

DoS attacks.

• (P1) To minimize delay introduced as a result of securing correspondent reg-

istrations.

• (P2) To minimize the number of expensive operations performed by the mobile

node.

• (P3) To minimize the number and length of messages sent/received by the

mobile node.

5.2 Design Preliminaries

Before presenting the design of the protocols, we first highlight the assumptions

and principles behind their design.

5.2.1 Design Assumptions

The following assumptions have been used in the design of the protocols.

• (A1) The protocols are designed for both stationary and mobile CNs. When

the CN is stationary, hereafter referred to as the stationary CN case, the pro-

tocol entities are an MN, an HA, and a CN. When the CN is also mobile,

hereafter referred to as the mobile CN case, the protocol entities are an MN,

an MN’s HA (denoted as HAMN), a CN, and a CN’s HA (denoted as HACN).

• (A2) A mobile node and its home agent have a preconfigured bidirectional

security association for encrypted and authenticated communication. They use

IPSec ESP protocol to protect mobility-related messages exchanged between

them. Therefore, (1) in the stationary CN case: the MN and HA share a

secret key (KMN−HA); and (2) in the mobile CN case: the MN and HAMN

share a secret key (KMN−HAMN
) and the CN and HACN share a secret key

(KCN−HACN
).

• (A3) A mobile node and its home agent agree on a validity period, where any

mobility-related messages received by the home agent after this validity period

121

5.2. DESIGN PRELIMINARIES

will be rejected. This validity period is to protect the home agent against

replay attacks and should be kept reasonably short.

• (A4) A mobile node’s home agent is a trusted entity. The mobile node and

the correspondent node trust that the home agent does not misbehave on its

own (both in the stationary and mobile CN cases).

• (A5) Cryptographic primitives are secure. That is, well-known primitives such

as the AES secret-key algorithm [64], the RSA public-key algorithm [65], and

the SHA-512 hash algorithm [66], are secure.

5.2.2 Design Principles

The following measures have been taken in the design of the correspondent reg-

istration protocols in order to satisfy the requirements mentioned in Section 5.1.

• Measure 1: The enhanced home registration (EHR) protocol, detailed in

Chapter 4, is used between the MN and its HA. When the MN roams away

from its home link, it uses the EHR protocol to register its new CoA with the

HA. The EHR protocol enables the HA to securely authenticate the MN’s own-

ership of the CoA. Therefore, it enables the HA to participate in correspondent

registrations by confirming the MN’s CoA to the CN.

• Measure 2: The idea of early binding updates ([39], see also Section 3.2.1)

is used to minimise registration delay in the update phase. That is, when the

CN receives an authentic binding update request from the MN, it registers the

claimed CoA enclosed in the request and sends subsequent packets destined

for the MN to that CoA while concurrently confirming the correctness of that

CoA with the MN’s home link. The CN limits the amount of data sent to the

unconfirmed CoA through granting a short binding lifetime instead of using

a Credit-Based Authorization technique ([39], see also Section 3.2.1). In this

way, the complexity at the CN is not increased as it does not implement the

technique.

• Measure 3: The remaining lifetime (LTBRem) for the binding of HoA and CoA

at the HA’s Binding Cache entry for the MN, and at the MN’s Binding Update

List entry for the HA, is used as a timestamp to protect the HA against replay

attacks. That is, as the HA is involved in the protocols, the HA is enabled to

122

5.3. PROTOCOLS OVERVIEW

verify the freshness of binding creation and confirmation requests received from

the MN and the CN, respectively, through the use of LTBRem. Specifically, the

value of LTBRem is enclosed in binding creation requests sent by the MN to

the HA. It is also enclosed in binding confirmation requests sent by the CN

to the HA. In the latter case, the MN encrypts the values of its HoA and

CoA, the CN’s address, and the LTBRem using a secret key shared with the

HA (Assumption A2). The MN then encloses the coded data to the binding

update request sent to the CN, which forwards it to the HA in the binding

confirmation request. In this way, the HA can detect replay attacks without

the need of clock synchronization; the only requirement is having accurate

clocks at the HA and the MN.

• Measure 4: The idea of increasing the maximum binding lifetime is used to

reduce the number of redundant binding refreshes, thereby reducing signalling

overheads. However, increasing the maximum binding lifetime could enable

malicious MNs to flood foreign networks. For example, the MN could send a

binding creation/update request to the CN requesting the maximum binding

lifetime for its CoA. The MN would next start to download a heavy stream of

data from the CN. The MN would then roam to a different network without

informing the CN. As a result, the CN would continue to send subsequent traffic

to the MN’s old CoA, flooding the MN’s old foreign network with excessive

unwanted data. Therefore, it is recommended that the CN periodically run a

care-of address reachability test, every few minutes, especially when the CN is

sending heavy streams of data to the MN’s CoA. That is, the CN generates

and sends a fresh token to the MN’s CoA for reachability reconfirmation. If

the CN does not receive a response within a specific interval, it deactivates its

cache entry for the MN and sends subsequent data to the MN’s HoA.

5.3 Protocols Overview

The proposed correspondent registration protocols rely on the assistance of the

MN’s home link to enable the CN to securely authenticate the MN’s ownership

of the HoA and the CoA; the HA of the MN asserts to the CN that the MN is

the legitimate owner of the HoA and it is indeed connected to the CoA. These

protocols are in three categories depending on the relationship between MNs’

home links and CNs: (1) the SK-based protocol for use when a secret key is

123

5.3. PROTOCOLS OVERVIEW

shared, (2) the PK-based protocol for use when the home link has a certified

public/private key pair, and (3) the INF-based protocol for use when no prior

relationship exists.

The three protocols are designed as shown in Figure 5.1. Each protocol is

divided into three phases: the creation phase, the update phase, and the deletion

phase. Each of the protocols has its own creation phase. However, they all have

the same update and deletion phases. The creation phase is to allow the CN to

securely identify the MN and to establish a session key between the two nodes.

It also allows the MN to create a new binding at the CN. The update phase is

to allow the MN to securely update the CN with its new CoA after roaming to

a new foreign link. It also allows the MN to securely extend the lifetime of an

existing binding that is about to expire at the CN. The deletion phase is to allow

the MN to securely delete its binding at the CN.

The creation phase: The creation phase is executed only once to provide au-

thentication of the MN and its home link to the CN, and the establishment of

registration session keys. Specifically, the creation phase consists of three steps.

In the first step, the CN verifies the MN’s reachability at the HoA and/or the

CoA. In the second step, the CN securely identifies and establishes session keys

with the MN and the home link. The CN also creates a new binding between

the HoA and the CoA. In the third step, the MN confirms the binding creation

request to the CN and the CN acknowledges it to the MN. This extra confirma-

tion is to assure the CN that the MN did not roam to a new CoA while the HA

and the CN were running the protocol. The creation phase runs parallel to data

transfer between the MN and the CN through the MN’s home link; thus, a high

delay is acceptable during this phase.

The update phase: The update phase is executed every time the MN needs

to update its binding at the CN. It consists of three steps. In the first step, the

MN sends an early binding update request to the CN. Upon receipt of this re-

quest, the CN registers the claimed CoA and sends subsequent packets destined

for the MN to that CoA. In the second step, the CN verifies the request with

the home link. In the third step, the CN returns an optional acknowledgement

to the MN. The early binding update request, the request verification, and the

acknowledgement messages are protected using the session keys established in the

124

5.3. PROTOCOLS OVERVIEW

Figure 5.1: Overview of correspondent registration protocols - stationary CN case

125

5.4. PROTOCOLS DESIGN

creation phase. The communication between the MN and the CN is interrupted

during the update phase (if the MN changes its CoA), and thus, the proposed

correspondent registration protocols use an early binding update to minimise the

delay during this phase.

The deletion phase: The deletion phase is executed every time the MN wants

to remove its binding at the CN. It consists of two steps. In the first step, the

MN sends a binding deletion request to the CN. In the second step, the CN

returns an optional acknowledgement to the MN. The binding deletion request

and the acknowledgement messages are protected using the session key established

between the MN and the CN in the creation phase.

5.4 Protocols Design

This section describes the design of the three protocols. As each of the three

protocols has its own creation phase, the section is divided into five subsections:

(1) the creation phase for the SK-based protocol (CRE-SK phase); (2) the creation

phase for the PK-based protocol (CRE-PK phase); (3) the creation phase for the

INF-based protocol (CRE-INF phase); (4) the update (UPD) phase; and (5) the

deletion (DEL) phase.

5.4.1 The Creation Phase for the SK-based Protocol

The following additional assumption has been used in the design of the SK-based

protocol.

• (SK1) A mobile node’s home link shares a long-term secret key with a cor-

respondent node before an invocation of the protocol. Specifically, (1) in the

stationary CN case: the HA and CN share a secret key (KHA−CN); and (2) in

the mobile CN case: the HAMN and CN share a secret key (KHAMN−CN).

The creation phase for the SK-based protocol in the stationary CN case is de-

signed as shown in Figure 5.2. It consists of eight messages, M1-SK to M8-SK,

and nine steps, S1-SK to S9-SK. Each of these messages is given a specific name:

126

5.4. PROTOCOLS DESIGN

• M1-SK: Care-of Test Init - denoted as CoTI.

• M2-SK: Care-of Test - denoted as CoT.

• M3-SK: Binding Request - denoted as BReq.

• M4-SK: Binding Reply - denoted as BRep.

• M5-SK: Early Binding Creation - denoted as EBC.

• M6-SK: Early Binding Acknowledgement - denoted as EBA.

• M7-SK: Binding Creation Confirmation - denoted as BCC.

• M8-SK: Binding Acknowledgement - denoted as BA.

Figure 5.2: Creation phase for the SK-based protocol - stationary CN case

127

5.4. PROTOCOLS DESIGN

• Step S1-SK: The MN sends message M1-SK to initiate the creation phase

and to check whether the CN supports route optimization.

• Step S2-SK: The CN sends message M2-SK, which contains a fresh token

(Token2), to the MN. Token2 will be returned to the CN later to protect the

CN against replay attacks and prove the MN’s reachability at the claimed CoA.

• Step S3-SK: The MN securely sends message M3-SK to request binding cre-

ation with the CN from the HA. The MN includes the CoA, the CN’s address,

an initial sequence number (Seq), a binding lifetime request (LTBReq), Token2,

and the remaining lifetime for the binding of HoA and CoA at both the MN and

the HA (LTBRem) in the message. LTBRem is used as a timestamp to protect

the HA against replay attacks.

• Step S4-SK: Upon receipt of message M3-SK, the HA checks the values of

the LTBRem and CoA to verify the freshness of the message and correctness

of the claimed CoA, respectively. The HA also checks the value of LTBReq to

confirm that the MN is not requesting a binding lifetime that is greater than

the remaining binding lifetime at the HA. Upon positive verifications, the HA

generates two keys (KBC1 and KBC2) from fresh nonces and the secret key

shared with the CN. The HA then securely sends message M4-SK to the MN

to deliver key KBC1. The HA includes the Seq and CN’s address in message

M4-SK. At the same time, the HA sends message M5-SK to the CN to request

binding creation on behalf of the MN. The HA includes the fresh nonces, the

MN’s HoA and CoA, the Seq, the LTBReq, and Token2 in message M5-SK. In

addition, the HA protects message M5-SK using key KBC2.

• Step S5-SK: Upon receipt of message M4-SK, the MN checks the value of

Seq to verify freshness of the message. Upon positive verification, the MN

stores key KBC1 in the Binding Update List entry for the CN.

• Step S6-SK: Upon receipt of message M5-SK, the CN checks the value of

Token2 to verify freshness of the message and reachability of the MN at the

claimed CoA. Upon positive verification, the CN generates KBC1 and KBC2

from the secret key shared with the MN’s home link and the fresh nonces

enclosed in the message. The CN then verifies the integrity and authenticity of

message M5-SK using key KBC2. Upon positive verification, the CN generates

a fresh key (KMN−CN), creates a Binding Cache entry, and stores the binding

128

5.4. PROTOCOLS DESIGN

between the MN’s HoA and CoA as well as the values of Seq, LTBReq, and

KMN−CN at the entry. The CN also sets granted binding lifetime (LTBGrant)

in the entry to a MIN BINDING LIFETIME value to handle the case of the

MN roaming to a new CoA while the HA and the CN are running the protocol.

Finally, the CN sends message M6-SK to the MN to deliver key KMN−CN

and to acknowledge the binding of the CoA. The CN includes Seq, LTBGrant,

and the encryption of key KMN−CN using key KBC1 in message M6-SK. In

addition, the CN protects the message using key KMN−CN .

• Step S7-SK: Upon receipt of message M6-SK, the MN checks the value of

the Seq to verify the freshness of the message. Upon positive verification, the

MN decrypts key KMN−CN using key KBC1. The MN then verifies the integrity

and authenticity of message M6-SK using key KMN−CN . Upon positive ver-

ification, the MN updates the value of KBC1 with the value of KMN−CN and

sends message M7-SK to the CN requesting a greater binding lifetime, con-

firming the receipt of KMN−CN and showing the existence at the CoA. The MN

includes a new sequence number (Seqnew) that is greater than the value of the

Seq sent by the MN in message M3-SK. In addition, the MN protects message

M7-SK using key KMN−CN .

• Step S8-SK: Upon receipt of message M7-SK, the CN checks the value of

the Seqnew to verify the freshness of the message. Upon positive verification,

the CN verifies the integrity and authenticity of message M7-SK using key

KMN−CN . Upon positive verification, the CN updates the Binding Cache entry

for the MN by storing the value of Seqnew enclosed in the message and by

setting LTBGrant to a value that is less than or equal to LTBReq. Finally, the

CN sends message M8-SK to the MN to acknowledge the binding of the CoA.

The CN includes the Seqnew and LTBGrant in message M8-SK. In addition,

the CN protects message M8-SK using key KMN−CN .

• Step S9-SK: Upon receipt of message M8-SK, the MN checks the value of

the Seqnew to verify the freshness of the message. Upon positive verification,

the MN verifies the integrity and authenticity of message M8-SK using key

KMN−CN . Upon positive verification, the MN updates the value of LTBGrant

in the Binding Update List entry for the CN.

A more detailed description of these execution steps is given in Appendix D.

129

5.4. PROTOCOLS DESIGN

Figure 5.3: Creation phase for the SK-based protocol - mobile CN case

The creation phase for the SK-based protocol in the mobile CN case is shown in

Figure 5.3. In this case, the CN is also mobile and could be away from its home

link. As a result, the MN and the HAMN send different binding-related messages

to the CN’s home address. If the CN is located in its home link, it will receive the

messages directly. Otherwise, the HACN will intercept and forward the messages

to the CN’s current care-of address via an IPSec ESP secure tunnel. In addition,

the CN sends different binding-related messages while it is away from home via

HACN (‘reverse tunnelling’). Apart from these points, the creation phases for

SK-based protocol in the stationary and mobile CN cases are the same.

5.4.2 The Creation Phase for the PK-based Protocol

The following additional assumption has been used in the design of the PK-based

protocol.

• (PK1) A mobile node’s home link has a certified public/private key pair (PKH ,

SKH); a trusted CA has issued the home link’s public key and a PKI is in place.

The home link possesses the key pair before an invocation of the protocol.

130

5.4. PROTOCOLS DESIGN

The creation phase for the PK-based protocol in the stationary CN case is de-

signed as shown in Figure 5.4. It consists of eight messages, M1-PK to M8-PK,

and nine steps, S1-PK to S9-PK. Each of these messages is given a specific name:

Figure 5.4: Creation phase for the PK-based protocol - stationary CN case

• M1-PK: Care-of Test Init - denoted as CoTI.

• M2-PK: Care-of Test - denoted as CoT.

• M3-PK: Binding Request - denoted as BReq.

• M4-PK: Early Binding Creation - denoted as EBC.

• M5-PK: Early Binding Acknowledgement - denoted as EBA.

• M6-PK: Binding Reply - denoted as BRep.

131

5.4. PROTOCOLS DESIGN

• M7-PK: Binding Creation Confirmation - denoted as BCC.

• M8-PK: Binding Acknowledgement - denoted as BA.

• Steps S1-PK and S2-PK: Steps S1-PK and S2-PK are identical, respec-

tively, to Steps S1-SK and S2-SK mentioned in Section 5.4.1.

• Step S3-PK: Step S3-PK is identical to Step S3-SK, but the MN includes

the hash value of Token2 (KBM = SHA1 (Token2)) instead of Token2 in message

M3-PK sent to the HA.

• Step S4-PK: The first part of Step S4-PK is identical to the first part of

Step S4-SK. Specifically, upon receipt of message M3-PK, the HA checks

the values of LTBRem, CoA, and LTBReq to verify the freshness of the message,

correctness of the claimed CoA, and to confirm that the binding lifetime re-

quested by the MN is not greater than the remaining binding lifetime at the

HA, respectively. However, upon positive verifications, the HA sends message

M4-PK to the CN to request binding creation on behalf of the MN. The HA

includes a fresh nonce (NHA), the MN’s HoA and CoA, the Seq, the LTBReq,

the HA’s signature on the message using the home link’s private key, and a

keyed hash value using key KBM in message M4-PK. This keyed hash value

is to protect the CN against replay attacks and resource exhaustion DoS at-

tacks. The HA also temporary stores the values of NHA and KBM to verify the

freshness, integrity, and authenticity of the response from that CN.

• Step S5-PK: Upon receipt of message M4-PK, the CN generates key KBM

from token Token2, and then verifies the freshness of the message and reachabil-

ity of the MN at the claimed CoA using key KBM . Upon positive verification,

the CN verifies the signature to confirm the integrity and authenticity of the

message. Upon positive verification, the CN generates two fresh session keys

(KMN−CN and KHA−CN), creates a Binding Cache entry, and stores the bind-

ing between the MN’s HoA and CoA, as well as the values of Seq, LTBReq,

KMN−CN , and KHA−CN at the entry. The CN also sets LTBGrant in the entry

to a MIN BINDING LIFETIME value to handle the case of the MN roaming to

a new CoA while the HA and the CN are running the protocol. Finally, the CN

sends message M5-PK to the MN’s HoA to deliver the two session keys and

to acknowledge the binding of the CoA. The CN includes NHA, Seq, LTBGrant,

132

5.4. PROTOCOLS DESIGN

and the encryption of the two session keys using the home link’s public key in

message M5-PK. In addition, the CN protects the message using key KBM .

• Step S6-PK: The HA intercepts message M5-PK and checks the value of

NHA to verify the freshness of the message. Upon positive verification, the HA

verifies the integrity and authenticity of the message using key KBM . Upon

positive verification, the HA decrypts the session keys, KMN−CN and KHA−CN ,

using the home link’s private key. The HA then securely sends message M6-

PK to the MN to deliver key KMN−CN and to acknowledge the binding of the

CoA. The HA also stores the value of KHA−CN and discards the values of NHA

and KBM .

• Step S7-PK: Step S7-PK is identical to Step S5-SK, but the key stored

by the MN at the Binding Update List entry for the CN is KMN−CN instead

of KBC1.

• Steps S8-PK and S9-PK: Steps S8-PK and S9-PK are identical, respec-

tively, to Steps S8-SK and S9-SK mentioned in Section 5.4.1.

A more detailed description of these execution steps is given in Appendix D.

The creation phase for the PK-based protocol in the mobile CN case is shown in

Figure 5.5. As in the SK-based protocol, the MN and the HAMN send binding-

related messages to the CN’s home address. In addition, the CN sends binding-

related messages while it is away from home via HACN (‘reverse tunnelling’).

133

5.4. PROTOCOLS DESIGN

Figure 5.5: Creation phase for the PK-based protocol - mobile CN case

5.4.3 The Creation Phase for the INF-based Protocol

The following additional assumptions have been used in the design of the INF-

based protocol.

• (INF1) A mobile node’s home link has a self-generated public/private key pair

(PKH , SKH) where the private key (SKH) is kept securely by HAs in the home

link.

• (INF2) A mobile node’s HoA is configured as a CGA-based address using

the home link’s public key (PKH). In addition, the CGA parameters (see

Section 3.1) are distributed between the MN and the home link. Specifically,

as the subnet prefix and the public key used are the same for all MNs belonging

to the same home link, they are kept at the home link. The modifier and the

collision count differ from one MN to another; thus, they are kept at the MN.

The creation phase for the INF-based protocol in the stationary CN case is de-

signed as shown in Figure 5.6. It consists of nine messages, M1-INF to M9-INF,

134

5.4. PROTOCOLS DESIGN

and nine steps, S1-INF to S9-INF. Each of these messages is given a specific

name:

Figure 5.6: Creation phase for the INF-based protocol - stationary CN case

• M1-INF: Home Test Init and Care-of Test Init - denoted as HoTI&CoTI.

• M2-INF: Home Test - denoted as HoT.

• M3-INF: Care-of Test - denoted as CoT.

• M4-INF: Binding Request - denoted as BReq.

• M5-INF: Early Binding Creation - denoted as EBC.

• M6-INF: Early Binding Acknowledgement - denoted as EBA.

135

5.4. PROTOCOLS DESIGN

• M7-INF: Binding Reply - denoted as BRep.

• M8-INF: Binding Creation Confirmation - denoted as BCC.

• M9-INF: Binding Acknowledgement - denoted as BA.

• Step S1-INF: Step S1-INF is identical to Step S1-SK and Step S1-PK,

but the MN’s HoA is also enclosed in message M1-INF sent from the MN to

the CN.

• Step S2-INF: Step S2-INF is identical to Step S2-SK and Step S2-PK,

but the CN generates two tokens (Token1 and Token2) and sends two messages:

message M2-INF is sent to the MN’s HoA and message M3-INF is sent to

the MN’s CoA.

• Step S3-INF: Step S3-INF is identical to Step S3-PK, but the MN hashes

the two tokens to generate key KBM , i.e. KBM = SHA1 (Token1 || Token2).

In addition, the MN includes the values of Modifier and Collision-Count in

message M4-INF sent to the HA.

• Step S4-INF: Step S4-INF is identical to Step S4-PK, but the HA con-

catenates the values of Modifier, Subnet Prefix, and Collision-Count to form

the CGA parameters used in generating the MN’s HoA. In addition, the HA

includes the CGA parameters and the home link’s self-generated public key in

message M5-INF sent to the CN.

• Step S5-INF: Step S5-INF is identical to Step S5-PK, but the CN gen-

erates KBM from tokens Token1 and Token2. In addition, the CN runs the

CGA-based address verification algorithm (see Figures 3.2 in Section 3.1) to

confirm the authenticity of HoA.

• Steps S6-INF, S7-INF, S8-INF, and S9-INF: Steps S6-INF, S7-INF,

S8-INF, and S9-INF are identical, respectively, to Steps S6-PK, S7-PK,

S8-PK, and S9-PK mentioned in Section 5.4.2.

A more detailed description of these execution steps is given in Appendix D.

The creation phase for the INF-based protocol in the mobile CN case is shown

in Figure 5.7. As in the SK-based and the PK-based protocols, the MN and the

136

5.4. PROTOCOLS DESIGN

HAMN send binding-related messages to the CN’s home address. In addition,

the CN sends binding-related messages while it is away from home via HACN

(‘reverse tunnelling’).

Figure 5.7: Creation phase for the INF-based protocol - mobile CN case

5.4.4 The Update Phase

The MN initiates the update phase either to inform the CN with its new CoA

after roaming to a new foreign link, or to extend the lifetime of an existing binding

that is about to expire at the CN. The update phase for the proposed protocols

in the stationary CN case is designed as shown in Figure 5.8. It consists of four

messages, M1-UPD to M4-UPD, and five steps, S1-UPD to S5-UPD. Each

of these messages is given a specific name:

• M1-UPD: Binding Update - denoted as BU.

• M2-UPD: Binding Confirmation Request - denoted as BCReq.

• M3-UPD: Binding Confirmation Reply - denoted as BCRep.

• M4-UPD: Binding Acknowledgement - denoted as BA.

137

5.4. PROTOCOLS DESIGN

Figure 5.8: Update phase for the proposed protocols - stationary CN case

• Step S1-UPD: The MN generates a new sequence number (Seqnew) and a fresh

key (KBM). The key KBM is generated from the shared session key established

between the MN and the CN in the creation phase (KMN−CN). The MN also

calculates a coded value (Authenticator) by encrypting the values of its HoA

and CoA, the CN’s address, and the LTBRem using the secret key shared with

the HA (KMN−HA). This Authenticator is to protect the MN’s HA against

replay attacks. Finally, the MN sends message M1-UPD to the CN to request

binding update. The MN includes its HoA and CoA, the Seqnew, a binding

lifetime request (LTBReq), and the Authenticator in message M1-UPD. In

addition, the MN protects the message using key KBM .

• Step S2-UPD: Upon receipt of message M1-UPD, the CN checks the value

of Seqnew to verify the freshness of the message. Upon positive verification,

the CN generates key KBM . The CN then verifies the integrity and authen-

ticity of message M1-UPD using KBM . Upon positive verification, the CN

registers and uses the claimed CoA and concurrently requests home network’s

confirmation of that CoA. That is, the CN updates the Binding Cache entry

for the MN with the values of CoA and Seqnew. The CN also sets the entry

in an unconfirmed state and sets the granted binding lifetime (LTBGrant) to a

MIN BINDING LIFETIME value. The CN then generates a fresh key KBC

138

5.4. PROTOCOLS DESIGN

from a fresh nonce (NCN) and the secret key (KHA−CN) shared with the MN’s

home network. Finally, the CN sends message M2-UPD to the MN’s HoA

requesting home network’s confirmation of the claimed CoA. The CN includes

the claimed CoA, NCN , LTBReq, and Authenticator in message M2-UPD. In

addition, the CN protects the message using key KBC .

• Step S3-UPD: The HA intercepts message M2-UPD and generates key KBC

based on key KHA−CN shared with the CN and on items enclosed in the mes-

sage. The HA then verifies the integrity and authenticity of the message using

key KBC . Upon positive verification, the HA decrypts Authenticator enclosed

in the message using key KMN−HA shared with the MN. The HA next checks

the values of LTBRem and CoA to verify the freshness of the message and cor-

rectness of the claimed CoA, respectively. The HA also checks the value of

LTBReq to confirm that the MN is not requesting a binding lifetime that is

greater than the remaining binding lifetime at the HA. Upon positive verifica-

tions, the HA sends message M3-UPD to the CN to confirm the claimed CoA.

The HA includes CoA, NCN , and LTBReq in message M3-UPD. In addition,

the HA protects the message using key KBC .

• Step S4-UPD: Upon receipt of message M3-UPD, the CN checks the value

of NCN to verify the freshness of the message. Upon positive verification, the

CN verifies the integrity and authenticity of message M3-UPD using key KBC .

Upon positive verification, the CN updates the Binding Cache entry for the MN

by changing its status to be confirmed and by setting LTBGrant to a value that

is less than or equal to LTBReq. Finally, the CN sends message M4-UPD to

the MN for acknowledging the binding of the CoA. The CN includes Seqnew

and LTBGrant in message M4-UPD. In addition, the CN protects message

M4-UPD using key KBM .

• Step S5-UPD: Upon receipt of message M4-UPD, the MN checks the value

of Seqnew to verify the freshness of the message. Upon positive verification,

the MN verifies the integrity and authenticity of message M4-UPD using key

KBM . Upon positive verification, the MN updates the value of LTBGrant in the

Binding Update List entry for the CN.

A more detailed description of these execution steps is given in Appendix D.

139

5.4. PROTOCOLS DESIGN

The update phase for the proposed protocols in the mobile CN case is shown in

Figure 5.9. Again, the MN and the HAMN send binding-related messages to the

CN’s home address. In addition, the CN sends binding-related messages while it

is away from home via HACN (‘reverse tunnelling’).

Figure 5.9: Update phase for the proposed protocols - mobile CN case

5.4.5 The Deletion Phase

The MN initiates the deletion phase to remove its binding at the CN. The deletion

phase for the proposed protocols in the stationary CN case is designed as shown

in Figure 5.10. It consists of two messages, M1-DEL and M2-DEL, and three

steps, S1-DEL to S3-DEL. Each of the two messages is given a specific name:

• M1-DEL: Binding Update - denoted as BU.

• M2-DEL: Binding Acknowledgement - denoted as BA.

• Step S1-DEL: Step S1-DEL is identical to Step S1-UPD, but the Au-

thenticator is not enclosed in message M1-DEL sent from the MN to the CN.

In addition, the MN sets the CoA equal to its HoA and the binding lifetime

request (LTBReq) to ‘zero’.

• Step S2-DEL: The first part of Step S2-DEL is identical to the first part

of Step S2-UPD. Specifically, the CN uses the MN’s HoA as an index to

search its Binding Cache. Then, the CN performs Verifications CN1-DEL

140

5.4. PROTOCOLS DESIGN

and CN2-DEL, which are identical to Verifications CN1-UPD and CN2-

UPD, respectively. In addition, the CN deletes the Binding Cache entry for

the MN and, if requested, sends Seqnew and MACKBM
(BA) to the MN in mes-

sage M2-DEL for acknowledging the deletion of the binding, where MACKBM

(BA) is a keyed hash value used to ensure the integrity and authenticity of

message M2-DEL; MACKBM
(BA) = First (96, HMAC SHA1 (KBM , (HoA ||

CN || Seqnew))).

• Step S3-DEL: Step S3-DEL is identical to Step S5-UPD, but after Veri-

fication MN1-DEL, which is identical to Verification MN1-UPD, the MN

will delete the Binding Update List entry for the CN.

Figure 5.10: Deletion phase for the proposed protocols - stationary CN case

A more detailed description of these execution steps is given in Appendix D.

The deletion phase for the proposed protocols in the mobile CN case is shown

in Figure 5.11. The MN sends message M1-DEL to the CN’s home address. In

addition, the CN sends message M2-DEL while it is away from its home link

via HACN (‘reverse tunnelling’).

141

5.5. CHAPTER SUMMARY

Figure 5.11: Deletion phase for the proposed protocols - mobile CN case

5.5 Chapter Summary

This chapter has presented the design of a family of correspondent registration

protocols: (1) the SK-based protocol for use when a secret key is shared between

the home link and the CN; (2) the PK-based protocol for use when the home

link has a certified public/private key pair; and (3) the INF-based protocol for

use when no prior relationship exists. In addition, the proposed protocols are

designed in three phases: the creation phase, the update phase, and the deletion

phase. Although the protocols have different creation phases, they all have iden-

tical update and deletion phases.

The features of the proposed correspondent registration protocols can be sum-

marized as follows:

• They handle the case of the MN roaming to a different CoA while the HA

creates a new binding with the CN on behalf of the MN. They do this by

limiting the binding lifetime of the claimed CoA at the CN and by requesting

the MN send a confirmation from that CoA.

• They use an early binding update to minimise the registration delay in the

update phase. The CN registers the new CoA and sends subsequent packets

destined for the MN to it for a limited time, while concurrently verifying the

CoA with the home link.

142

5.5. CHAPTER SUMMARY

• They use the remaining lifetime (LTBRem) for the binding of the HoA and CoA

at the HA’s Binding Cache entry for the MN as a timestamp to protect the

HA against replay attacks.

• They allow the MN’s home link to verify the claimed care-of address (CoA)

and the requested binding lifetime (LTBReq) to prevent the MN from cheating

the CN with a fake CoA and/or a long binding lifetime request.

• They increase the maximum binding lifetime to reduce the number of redundant

binding refreshes and thus reduce signalling overheads.

In the following chapter, we analyse the protocols against various security attacks,

prove security features, evaluate performance, and compare them with related

work.

143

Chapter 6

Security and Performance

Analyses of the Protocols

This chapter is devoted to the informal security analysis, formal security verifica-

tion, and performance evaluation of the protocols presented in Chapter 5. Specif-

ically, Section 6.1 presents informal analyses of the protocols against the security

requirements specified in Section 5.1 and against the well-known security attacks

specified in Section 2.2.1. To provide further proof of the security of the proto-

cols, Section 6.2 presents formal verifications of the protocols using the framework

of Protocol Composition Logic (PCL) and Casper/FDR2 model checker. Sec-

tion 6.3 presents the simulation and performance evaluation of the protocols and

their comparisons with the most related work. Namely, Section 6.3.1 discusses

the design and construction of the simulation model, Section 6.3.2 validates the

simulation model, and Section 6.3.3 presents the simulation results and draws

conclusions. Finally, Section 6.4 summarises the chapter.

6.1 Informal Analysis of Protocols

In this section, we informally analyse the protocols presented in the previous

chapter, and detailed in Appendix D, to demonstrate that they satisfy the se-

curity requirements specified in Section 5.1 and are resistant to the well-known

security attacks specified in Section 2.2.1.

(S1) Authenticity of home address: The CN confirms whether the MN owns

the claimed HoA. If not confirmed, an attacker can launch a false binding update

144

6.1. INFORMAL ANALYSIS OF PROTOCOLS

attack and/or a return-to-home spoofing attack. The authenticity of the HoA is

assured to the CN through the following measures.

1. The CRE-SK phase achieves the authenticity of the HoA by using a keyed

hash function that is generated based on the secret key shared between the

home link and the CN. Specifically, Verification CN2-SK ensures that

message M5-SK is indeed from the home link of the MN and has not been

altered in transit. Therefore, the CN is convinced that the MN actually

owns the HoA.

2. The CRE-PK phase achieves the authenticity of the HoA by using the home

link’s public key signature over message M4-PK using the home link’s

private key. Specifically, Verification CN2-PK ensures that message M4-

PK is indeed from the home link of the MN and has not been altered in

transit. Therefore, the CN is convinced that the MN actually owns the

HoA.

3. The CRE-INF phase employs a CGA-based HoA together with an initial

HoA reachability test to authenticate the HoA. The MN configures its HoA

as a CGA-based address using the home link’s self-generated public key.

The MN also provides an initial HoA reachability proof. Specifically, (1)

Verification CN2-INF ensures that message M5-INF is from a node that

is reachable at the HoA enclosed in the message; (2) Verification CN3-

INF ensures that the public key and the HoA enclosed in message M5-INF

are bound; and (3) Verification CN4-INF ensures that message M5-

INF is from a node that knows the private key corresponding to the public

key used in generating the HoA. These verifications together prevent false

binding update attacks and alleviate return-to-home spoofing attacks. As

a result, the CRE-INF phase is still vulnerable to return-to-home spoofing

attacks as it does not assure the CN that the public key enclosed in message

M5-INF is authentic. An attacker, on the path between the CN and a

victim network, could use its own public key and a spoofed subnet prefix to

cryptographically generate a non-used (home) address with a subnet prefix

from the victim network.

4. In the UPD phase, Verification CN2-UPD ensures that the keyed hash

function enclosed in message M1-UPD is generated using a key (KBM)

145

6.1. INFORMAL ANALYSIS OF PROTOCOLS

that is generated from the secret key KMN−CN shared between the CN and

the MN. In addition, Verification CN3-UPD ensures that the keyed hash

function enclosed in message M3-UPD is generated using a key (KBC) that

is generated from the secret key KHA−CN shared between the CN and the

MN’s home link. These two verifications enable the CN to confirm the

authenticity of the HoA.

5. In the DEL phase, the validity of the keyed hash function enclosed in mes-

sage M1-DEL is verified in Verification CN2-DEL with a key (KBM)

that is generated from the secret key KMN−CN shared between the CN

and the MN. Therefore, the authenticity of the HoA enclosed in message

M1-DEL is ensured.

(S2) Authenticity of care-of address: The CN confirms whether the MN is

indeed connected to the claimed care-of address. If not confirmed, a malicious MN

and an attacker can launch a malicious MN flooding attack and a false binding

update attack, respectively. The CN is assured of the authenticity of the care-of

address by obtaining a confirmation from the home link. This is achieved through

the following measures.

1. In the CRE-SK and CRE-PK phases, the MN provides an initial CoA reach-

ability proof. In addition, the home link confirms to the CN that the MN

is connected to the CoA. Specifically, verifications CN1-SK and CN1-

PK ensure that messages M5-SK and M4-PK, respectively, are from a

node that is reachable at the CoA. In addition, verifications CN2-SK

and CN2-PK ensure that messages M5-SK and M4-PK, respectively,

are indeed from the home link of the MN and have not been altered in

transit. As a result, the CN is convinced that the MN is connected to the

CoA.

2. The authenticity of the CoA in the CRE-INF phase is achieved in the same

way as in the CRE-SK and CRE-PK phases, i.e. by an initial CoA reach-

ability proof and a confirmation from the home link. Therefore, the MN

cannot launch a malicious MN flooding attack. In addition, an attacker

cannot impersonate a legitimate MN to launch a false binding update at-

tack. However, the attacker that had used its own public key to generate a

non-used (home) address could launch a false binding update attack. This

146

6.1. INFORMAL ANALYSIS OF PROTOCOLS

is because the CN has not been ensured that the confirmation is indeed

coming from the home link due to the use of the unauthentic public key.

3. In the UPD phase of the SK-based and PK-based protocols, the home link

confirms to the CN that the MN is connected to the CoA. Specifically,

Verification CN3-UPD ensures that message M3-UPD is coming from

the home link and has not been altered in transit. Therefore, the CN is

convinced that the CoA claimed by the MN in message M1-UPD matches

with the CoA registered at the home link for that MN and thus the CN is

assured that the MN is connected to the CoA.

4. The authenticity of the CoA in the UPD phase of the INF-based protocol

is achieved in the same way as in the SK-based and PK-based protocols,

i.e. by a confirmation from the home link. However, due to the use of the

unauthentic public key in the CRE-INF phase, an attacker could launch

a false binding update attack as the CN has not been ensured that the

confirmation is indeed coming from the home link.

(S3) Integrity of binding data: The CN confirms the integrity of the bind-

ing data to detect any unauthorised modification of the home address and/or

the care-of address. This requirement is achieved through the use of keyed hash

functions. The analysis given for the authentication of home address and care-of

address applies here.

(S4) Freshness of binding data: The CN confirms the freshness of the binding

data received from the MN and home link through the use of cryptographically

protected tokens, sequence numbers, and nonces. If not confirmed, an attacker

can launch a replay attack by replaying a previously authenticated binding cre-

ate/update request. This requirement is achieved through the following measures.

1. The CN confirms whether the tokens enclosed in the early binding creation

messages, i.e. messages M5-INF, M5-SK, and M4-PK, match the tokens

sent by the CN in the home test and/or care-of test messages, i.e. messages

M2-INF and M3-INF, M2-SK, and M2-PK. Specifically, Verification

CN2-INF ensures that the keyed hash function enclosed in message M5-

INF is generated using a key (KBM) that is generated from fresh tokens,

147

6.1. INFORMAL ANALYSIS OF PROTOCOLS

Token1 and Token2, and thus, message M5-INF is fresh. Also, Verifica-

tion CN1-SK ensures that the token (Token2) enclosed in message M5-

SK is fresh, and thus, message M5-SK is fresh. In addition, Verification

CN1-PK ensures that the keyed hash function enclosed in message M4-

PK is generated using a key (KBM) that is generated from a fresh token

(Token2), and thus, message M4-PK is fresh.

2. The CN confirms whether the sequence number (Seqnew) enclosed in mes-

sages M8-INF, M7-SK, M7-PK, M1-UPD, and M1-DEL is greater

than the sequence number (Seq) received in the previous valid binding cre-

ate/update request from the MN. The sequence number (Seqnew) is pro-

tected using KMN−CN or KBM ; thus without the corresponding key, it would

be difficult for an attacker to change Seqnew without being detected.

3. The CN confirms whether the nonce (NCN) enclosed in message M3-UPD

matches the nonce sent by the CN in message M2-UPD.

(S5) Protection against resource exhaustion DoS attacks: The CN does

not retain any state about individual MNs until it authenticates them first, which

protects the CN from memory exhaustion DoS attacks. In addition, the CN is

protected against CPU exhaustion DoS attacks as following: (1) most of the

verifications done by the CN are based on cheap operations; and (2) the CN

performs expensive operations (if any) only after a positive outcome from cheap

ones, which gives the CN some assurance about the MN before performing heavy

computations.

To summarise (shown in Table 3.1), the SK-based protocol and the PK-based-

protocol achieve all the security requirements stated in Section 5.1 and protect

against all well-known attacks stated in Section 2.2.1. The INF-based protocol

achieves the security requirements and protects against well-known attacks, ex-

cept where on-path attackers that could use their own public key to generate a

non-used (home) address are concerned. Considering those on-path attackers,

the INF-based protocol cannot provide sufficient protection due to the use of the

unauthentic public key; it fails to authenticate the HoA and CoA. As a result,

the author decides to exclude the INF-based protocol from the security formal

verification and the performance evaluation discussed in the rest of this chapter.

148

6.2. FORMAL VERIFICATION OF PROTOCOLS

6.2 Formal Verification of Protocols

This section formally verifies the security properties of the SK-based and PK-

based correspondent registration protocols presented in Chapter 5. A formal

verification of a security protocol is useful for identifying security flaws that are

subtle and hard to find [67]. Formal methods are more effective than informal

methods. For example, the Needham-Schroeder public key protocol [68] suc-

ceeded in informal analysis, but failed in formal verification [69, 70].

Various formal methods have been successfully used to verify and debug se-

curity protocols. Generally, a formal method uses the following approach for

verification of a security protocol. High-level formal notations are used in the

first three steps to (1) formally model the protocol, (2) formally state the in-

variants and preconditions of the protocol, and (3) formally specify the security

properties against which the protocol is to be checked. In step 4, the protocol

is verified against its properties using either a manual tool or an automated tool

that understands these notations.

In this thesis, two formal methods are used to verify the SK-based and PK-

based protocols: the protocol composition logic (PCL) method and the Casper-

/FDR2 model checker. These formal methods have proved successful for mod-

elling and verifying several security protocols; they have been used to verify au-

thentication, secrecy, and other security properties [71, 72, 73, 74, 75, 76, 77, 78].

Thus, we consider them also appropriate for the verification of the SK-based and

PK-based protocols. The Casper/FDR2 model checker is used to verify the se-

curity properties of the protocols. If the protocols do not satisfy the specified

security properties, then the FDR2 checker shows a counterexample which repre-

sents the reason against vulnerability. Although Casper/FDR2 model checker has

shown that the SK-based and PK-based protocols are not vulnerable to attacks,

it does not validate the correctness of the protocols. This validation is performed

using the PCL method.

6.2.1 Protocol Composition Logic (PCL)

Protocol Composition Logic (PCL) is a logic for stating and proving security

properties of network protocols that use key cryptography operations [71, 72,

74]. PCL has an axiomatic system and inference rules about individual protocol

actions and temporal reasoning that yield assertions about protocols composed

149

6.2. FORMAL VERIFICATION OF PROTOCOLS

of multiple steps. PCL also uses a novel form of induction, called the “honesty

rule”, for combining facts about one role with inferred actions of other roles. For

example, if Alice receives a response from a message sent to Bob. Alice may use

properties of Bob’s role to infer that Bob must have performed certain actions

before sending his reply. PCL proofs usually use modal formulas of the form θ

[P]X φ. This form means that starting from a state where formula θ is true, after

actions P are executed in thread X, the formula φ is true in the resulting state.

6.2.1.1 Formal Verification using PCL

This section presents a formal correctness proof of the UPD phase using the PCL

method. It first models the UPD phase using a simple “protocol programming

language” based on [14] and summarised in Appendix E. It then formulates the

security properties that the phase ought to satisfy from the CN’s point of view.

Finally, it proves the correctness of the phase using a proof system based on

[14, 71, 72, 73, 74] and summarised in Appendix E. The verification of the other

phases can be found in Appendix F.

Modelling the UPD phase

The UPD phase is formally described by three roles (MobileNode, HomeAgent,

and CorrespondentNode), each specifying a sequence of actions to be executed

by an honest principal. This is illustrated in Table 6.1.

UPD : MobileNode =

(MN, ĈN , LTBRem, LTBReq , HoA, CoA, CNA, Ack, seq, KMN−HA, KMN−CN)

[new seqnew such that seqnew := succ(seq);

KBM := hash(HoA || CoA || CNA || seqnew, KMN−CN);

authenticator := enc HoA || CoA || CNA || LTBRem, KMN−HA;

macBU := hash(HoA || CoA || seqnew || LTBReq || Ack || authenticator, KBM);

msg1 := HoA, CoA, seqnew, LTBReq , Ack, authenticator, macBU ; send M̂N , ĈN , msg1;

receive ĈN , M̂N , msg4; match msg4 / seqnew, LTBGrant, macBA;

match seqnew / seqnew;

match macBA / hash(HoA || CoA || CNA || seqnew || LTBGrant, KBM);

]MN

UPD : HomeAgent = (HA, LTBRem, HoA, CoA, KMN−HA, KHA−CN)

[receive ĈN , ĤA, msg2;

match msg2 / HoA, CoA, LTBReq , authenticator, NCN , macBCReq ;

KBC := hash(HoA || CoA || CNA || NCN , KHA−CN);

match macBCReq / hash(HoA || CoA || LTBReq || authenticator || NCN , KBC);

values := dec authenticator, KMN−HA; match values as HoA || CoA || CNA || LTBRem;

match HoA / HoA; match CoA / CoA;

150

6.2. FORMAL VERIFICATION OF PROTOCOLS

match LTBRem / LTBRem; isLess(LTBReq , LTBRem);

macBCRep := hash(HoA || CoA || LTBReq || NCN , KBC);

msg3 := CoA, LTBReq , NCN , macBCRep; send ĤA, ĈN , msg3;

]HA

UPD : CorrespondentNode = (CN, CNA, LTBGrant, KMN−CN , KHA−CN)

[receive M̂N , ĈN , msg1;

match msg1 / HoA, CoA, seqnew, LTBReq , Ack, authenticator, macBU ;

isLess(seq, seqnew); KBM := hash(HoA || CoA || CNA || seqnew, KMN−CN);

match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack || authenticator, KBM);

new NCN ; KBC := hash(HoA || CoA || CNA || NCN , KHA−CN);

macBCReq := hash(HoA || CoA || LTBReq || authenticator || NCN , KBC);

msg2 := HoA, CoA, LTBReq , authenticator, NCN , macBCReq ; send ĈN , ĤA, msg2;

receive ĤA, ĈN , msg3; match msg3 / CoA, LTBReq , NCN , macBCRep;

match NCN / NCN ; match macBCRep / hash(HoA || CoA || LTBReq || NCN , KBC);

macBA := hash(HoA || CoA || CNA || seqnew || LTBGrant, KBM);

msg4 := seqnew, LTBGrant, macBA; send ĈN , M̂N , msg4;

]CN

Table 6.1: UPD phase written in PCL language

Security Properties

The security properties that the UPD phase ought to satisfy from the CN’s point

of view include the following: (1) the CN agrees on the identities of the MN and

the HA, i.e. session authentication; (2) the derived KBM and KBC keys should

not be known to any principal other than the MN and the CN, and the HA and

the CN, respectively, i.e. key secrecy; and (3) the HA should confirm the MN’s

current CoA to the CN. These properties are formulated in Definitions 1 and 2,

where the predicate ActionsInOrder(a1, a2, ..., an) means that the actions a1, a2,

..., an were executed in that order.

Definition 1 (Session Authentication for the CN)

The authentication property in PCL is formulated as matching conversations

[14, 72]. The basic idea of matching conversations is that after execution of

the CorrespondentNode role, it is proven that there exist roles of the intended

MobileNode and HomeAgent with corresponding views of the interactions. For

CorrespondentNode ĈN , communicating with MobileNode M̂N and HomeAgent

ĤA, matching conversations are formulated as φUPD,CN−auth defined below, where

msg1, msg2, msg3, and msg4 represent the corresponding UPD messages in Table

6.1. Note that the receive action corresponding to the last message sent by the

CN, i.e. msg4, is not part of the guarantee as the CN received no acknowledgement

151

6.2. FORMAL VERIFICATION OF PROTOCOLS

for this message.

φUPD,CN−auth ::= Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA) ⊃
∃(M̂N ∧ ĤA).ActionsInOrder(

Send(MN, M̂N , ĈN , msg1), Receive(CN, M̂N , ĈN , msg1),

Send(CN, ĈN , ĤA, msg2), Receive(HA, ĈN , ĤA, msg2),

Send(HA, ĤA, ĈN , msg3), Receive(CN, ĤA, ĈN , msg3),

Send(CN, ĈN , M̂N , msg4))

Definition 2 (Key Secrecy for the CN)

The UPD phase is said to provide key secrecy for the CN if φUPD,CN−sec1 and

φUPD,CN−sec2 hold, where:

φUPD,CN−sec1 ::= (Honest(ĈN) ∧ Honest(M̂N) ∧ Has(Ẑ, KBM)) ⊃
Ẑ = ĈN ∨ Ẑ = M̂N

φUPD,CN−sec2 ::= (Honest(ĈN) ∧ Honest(ĤA) ∧ Has(Ẑ, KBC)) ⊃
Ẑ = ĈN ∨ Ẑ = ĤA

Security Guarantee

Theorem 1 states the security guarantee for the CN. It states that starting from

a state in which the invariants and preconditions (defined in Table 6.2) of the

UPD phase hold, if the CorrespondentNode role is executed, then the desired

authentication and secrecy properties are guaranteed in the resulting state. In-

formally, the formula of theorem 1 guarantees that the CN, the MN and the HA

have consistent views of protocol runs. In addition, it states that only the CN

and the MN possess key KBM , and only the CN and the HA possess key KBC .

The CN deduces its security properties based on the actions that it performs, the

properties of certain cryptographic primitives, i.e. keyed hashes, and knowledge

of the behaviour of honest MN and HA (by definition, an honest principal be-

haves in accordance with the protocol).

Theorem 1 (CN Security Guarantee)

After execution of the CorrespondentNode role, session authentication and key

secrecy are guaranteed if the formulas in Table 6.2 hold. Formally,

152

6.2. FORMAL VERIFICATION OF PROTOCOLS

ΓUPD1 ∧ ΓUPD2 ∧ θUPD1 ∧ θUPD2 ∧ θUPD3 `[UPD : CorrespondentNode]CN Honest(ĈN)

∧ Honest(M̂N) ∧ Honest(ĤA) ∧ ĈN 6= M̂N 6= ĤA ⊃

φUPD,CN−auth ∧ φUPD,CN−sec1 ∧ φUPD,CN−sec2

Where:

− ΓUPD1 is the first invariant of the UPD. It states that the CN and the MN

derive key KBM locally and do not reveal it.

− ΓUPD2 is the second invariant of the UPD. It states that the CN and the

HA derive key KBC locally and do not reveal it.

− θUPD1 is the first precondition of the UPD. It requires that key KMN−HA is

only known to the MN and the HA.

− θUPD2 is the second precondition of the UPD. It requires that key KMN−CN

is only known to the CN and the MN.

− θUPD3 is the third precondition of the UPD. It requires that key KHA−CN

is only known to the CN and the HA.

θUPD1 := (Honest(M̂N) ∧ Honest(ĤA) ∧ Has(Ẑ, KMN−HA)) ⊃

Ẑ = M̂N ∨ Ẑ = ĤA

θUPD2 := (Honest(ĈN) ∧ Honest(M̂N) ∧ Has(Ẑ, KMN−CN)) ⊃

Ẑ = ĈN ∨ Ẑ = M̂N

θUPD3 := (Honest(ĈN) ∧ Honest(ĤA) ∧ Has(Ẑ, KHA−CN)) ⊃

Ẑ = ĈN ∨ Ẑ = ĤA

ΓUPD1 := Computes(Ẑ, HASH(Ẑ, HoA || CoA || CNA || seqnew, KMN−CN)) ⊃

¬(Send(Ẑ, m) ∧ Contains(m, HASH(Ẑ, HoA || CoA || CNA || seqnew, KMN−CN)))

ΓUPD2 := Computes(Ẑ, HASH(Ẑ, HoA || CoA || CNA || NCN , KHA−CN)) ⊃

¬(Send(Ẑ, m) ∧ Contains(m, HASH(Ẑ, HoA || CoA || CNA || NCN , KHA−CN)))

Table 6.2: UPD phase preconditions and invariants

Proof of Theorem 1

The secrecy of KBM (φUPD,CN−sec1) and KBC (φUPD,CN−sec2) are proved first,

and are then used in proving the authentication property (φUPD,CN−auth). The

secrecy properties are formalized using the Has(X, s) predicate and require that

153

6.2. FORMAL VERIFICATION OF PROTOCOLS

X refers only to honest principals that shared the secret s. In φUPD,CN−sec1, X is

either the MN or the CN, and s is the key KBM . Similarly, in φUPD,CN−sec2, X is

either the HA or the CN, and s is the key KBC .

An induction on the basic sequences of various UPD roles is performed to

show that honest principals do not perform actions that compromise the secrecy

of the key KBM (and KBC). Informally, each induction step in the proof asserts

that if, at the beginning of a basic sequence, the key KBM has not already been

compromised, i.e. SafeNet(KBM) holds, then the basic sequence executed by a

thread Z does not perform any actions that compromise the secrecy of the key

KBM , i.e. SendSafeMsg(Z, KBM). The secrecy of the key KBM is reasoned as

follows:

1. Let MobileNode1 be the first basic sequence of the MN role. Though Mobile-

Node1 sends out a keyed hash (recall that the KBM is a hash keyed by the

KMN−CN), as the key hash has a structure different from that used for the

KBM , the SH4 axiom can be used to argue that the send action is safe, as

indicated in lines (1)-(4).

2. The basic sequence MobileNode2 is the easy case; it contains no send action.

3. The proof for the remaining basic sequences follows a similar approach.

4. From (4), (6), (10), (14), and (18), and by application of the NET rule and

the HPOS axiom, if an entity Z has KBM , it implies that Z has KMN−CN ,

as indicated in line (19).

5. Finally, according to (19) and using the secrecy of KMN−CN , θUPD2, the

proof of secrecy of KBM is concluded, as indicated in line (20).

Let [MobileNode1]MN : [new seqnew such that seqnew := succ(seq);

KBM := hash(HoA || CoA || CNA || seqnew, KMN−CN);

authenticator := enc HoA || CoA || CNA || LTBRem, KMN−HA;

macBU := hash(HoA || CoA || seqnew || LTBReq || Ack || authenti-

cator, KBM);

msg1 := HoA, CoA, seqnew, LTBReq , Ack, authenticator, macBU ;

send M̂N , ĈN , msg1;]MN

(1)

SH4 [MobileNode1]MN (HoA || CoA || CNA || seqnew) 6= (HoA || CoA ||
seqnew || LTBReq || Ack || authenticator) ⊃ Safe(macBU , KBM)

(2)

154

6.2. FORMAL VERIFICATION OF PROTOCOLS

SH*, (2) [MobileNode1]MN Safe(M̂N , ĈN , msg1, KBM)

(3)

(3) SafeNet(KBM) [MobileNode1]MN SendsSafeMsg(M̂N , KBM)

(4)

Let [MobileNode2]MN : [receive ĈN , M̂N , msg4;

match msg4 / seqnew, LTBGrant, macBA; match seqnew / seqnew;

match macBA / hash(HoA || CoA || CNA || seqnew || LTBGrant,

KBM);]MN

(5)

SafeNet(KBM) [MobileNode2]MN SendsSafeMsg(M̂N , KBM)

(6)

Let [HomeAgent]HA : [receive ĈN , ĤA, msg2;

match msg2 / HoA, CoA, LTBReq , authenticator, NCN , macBCReq ;

KBC := hash(HoA || CoA || CNA || NCN , KHA−CN);

match macBCReq / hash(HoA || CoA || LTBReq || authenticator ||
NCN , KBC); values := dec authenticator, KMN−HA;

match values as HoA || CoA || CNA || LTBRem;

match HoA / HoA; match CoA / CoA;

match LTBRem / LTBRem; isLess(LTBReq , LTBRem);

macBCRep := hash(HoA || CoA || LTBReq || NCN , KBC);

msg3 := CoA, LTBReq , NCN , macBCRep; send ĤA, ĈN , msg3;]HA

(7)

SH4 [HomeAgent]HA (HoA || CoA || LTBReq || NCN) 6= (HoA || CoA ||
seqnew || LTBReq || Ack || authenticator) ⊃ Safe(macBCRep, KBM)

(8)

SH*, (8) [HomeAgent]HA Safe(ĤA, ĈN , msg3, KBM)

(9)

(9) SafeNet(KBM) [HomeAgent]HA SendsSafeMsg(ĤA, KBM)

(10)

Let [CorrespondentNode1]CN : [receive M̂N , ĈN , msg1;

match msg1 / HoA, CoA, seqnew, LTBReq , Ack, authenticator,

macBU ; isLess(seq, seqnew);

KBM := hash(HoA || CoA || CNA || seqnew, KMN−CN);

match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack || au-

thenticator, KBM);

new NCN ; KBC := hash(HoA || CoA || CNA || NCN , KHA−CN);

macBCReq := hash(HoA || CoA || LTBReq || authenticator || NCN ,

KBC);

msg2 := HoA, CoA, LTBReq , authenticator, NCN , macBCReq ;

send ĈN , ĤA, msg2;]CN

(11)

155

6.2. FORMAL VERIFICATION OF PROTOCOLS

SH4 [CorrespondentNode1]CN (HoA || CoA || LTBReq || authenticator ||
NCN) 6= (HoA || CoA || seqnew || LTBReq || Ack || authenticator) ⊃
Safe(macBCReq , KBM)

(12)

SH*, (12) [CorrespondentNode1]CN Safe(ĈN , ĤA, msg2, KBM)

(13)

(13) SafeNet(KBM) [CorrespondentNode1]CN SendsSafeMsg(ĈN , KBM)

(14)

Let [CorrespondentNode2]CN : [receive ĤA, ĈN , msg3; match msg3 / CoA, LTBReq , NCN ,

macBCRep; match NCN / NCN ;

match macBCRep / hash(HoA || CoA || LTBReq || NCN , KBC);

macBA := hash(HoA || CoA || CNA || seqnew || LTBGrant, KBM);

msg4 := seqnew, LTBGrant, macBA; send ĈN , M̂N , msg4;]CN

(15)

SH4 [CorrespondentNode2]CN (HoA || CoA || CNA || seqnew || LTBGrant)

6= (HoA || CoA || seqnew || LTBReq || Ack || authenticator) ⊃
Safe(macBA, KBM)

(16)

SH*, (16) [CorrespondentNode2]CN Safe(ĈN , M̂N , msg4, KBM)

(17)

(17) SafeNet(KBM) [CorrespondentNode2]CN SendsSafeMsg(ĈN , KBM)

(18)

(4), (6), (10), (14), (18),

NET, HPOS

Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA) ∧ Has(Z, KBM) ⊃
Has(Z, KMN−CN)

(19)

(19), θUPD2 Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA) ∧ Has(Z, KBM) ⊃

Ẑ = ĈN ∨ Ẑ = M̂N ⊃ φUPD,CN−sec1

(20)

The authentication property (φUPD,CN−auth) is formulated as matching conversa-

tions. It can be asserted only when the secrecy of KBM and KBC are guaranteed

and is reasoned as follows:

1. Since the CN is honest, obviously it knows that its own actions are in order,

i.e. axioms AA1, AR1, AA4 are used in line (1) to conclude that the CN

has performed a certain sequence of actions.

2. Since the CN received and verified msg1, there must be some entity X̂ that

has HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator} and

that sends out msg1 at a previous stage, as indicated in line (2).

156

6.2. FORMAL VERIFICATION OF PROTOCOLS

3. The entity X̂ has HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || au-

thenticator}, which implies that X̂ either computes HASHkBM
{HoA || ...

|| authenticator} itself, or there must be a third entity Ŷ that computes

and sends HASHkBM
{HoA || ... || authenticator} at a previous stage, as

indicated in line (3).

4. For an entity Ẑ ∈ {X̂, Ŷ } to be able to compute HASHkBM
{HoA || ... ||

authenticator}, it must have the key KBM , as indicated in line (4).

5. From (4) and φUPD,CN−sec1, Ẑ must be either the CN itself or the MN, as

indicated in line (5).

6. The CN knows that it does not send out msg1 by itself; thus, it must be

the MN that had computed and sent out msg1. Furthermore, according to

(2) and (5), the CN can conclude that the MN sends msg1 before the CN

receives it, as indicated in line (6).

7. Due to the freshness of the nonce NCN generated by the CN, the HA can

only receive msg2 after the CN sends it, as indicated in lines (7)-(9).

8. The CN assumes that the honest HA acts honestly by obeying the protocol.

Therefore, the HA must receive msg2 before sending msg3, as indicated in

line (10).

9. Steps 11 to 15 are similar to steps 2 to 6, but HA, msg3, KBC , HASHkBC
{HoA

|| CoA || LTBReq || NCN}, and φUPD,CN−sec2 are used instead of MN, msg1,

KBM , HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator},

and φUPD,CN−sec1, respectively. Also, the CN can conclude that the HA

sends msg3 before the CN receives it.

10. According to (1), (6), (9), (10), and (15), all the actions are matched as in

line (16). Hence, the CN can conclude that the security property of session

authentication is guaranteed in the UPD phase.

157

6.2. FORMAL VERIFICATION OF PROTOCOLS

AA1, AR1,

AA4

[UPD : CorrespondentNode]CN Receive(CN, M̂N , ĈN , msg1) < Send(CN, ĈN , ĤA,

msg2) < Receive(CN, ĤA, ĈN , msg3) < Send(CN, ĈN , M̂N , msg4)

(1)

AR1,

HASH3,

ΓUPD1

θUPD2 [receive M̂N , ĈN , msg1; match msg1 / HoA, CoA, seqnew, LTBReq , Ack, au-

thenticator, macBU ; isLess(seq, seqnew); KBM := hash(HoA || CoA || CNA || seqnew,

KMN−CN); match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack || authenticator,

KBM);]CN Receive(CN, M̂N , ĈN , HoA, CoA, seqnew, LTBReq , Ack, authenticator,

HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator} ⊃

(∃X.Has(X, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator}) ∧ Send(X,

HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator})) ∧

(Send(X, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator}) <

Receive(CN, M̂N , ĈN , msg1))

(2)

(2), HASH4 Has(X, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator}) ⊃ Com-

putes(X, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator}) ∨

∃Y,m.Computes(Y, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator})

∧ Send(Y, m) ∧ Contains(m, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authen-

ticator})

(3)

(3), HASH1 Computes(Z, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack || authenticator}) ⊃

Has(Ẑ, KBM) ∧ Has(Ẑ, HoA || CoA || seqnew || LTBReq || Ack || authenticator)

(4)

(4),

φUPD,CN−sec1

θUPD2 [receive M̂N , ĈN , msg1; match msg1 / HoA, CoA, seqnew, LTBReq , Ack, au-

thenticator, macBU ; isLess(seq, seqnew); KBM := hash(HoA || CoA || CNA || seqnew,

KMN−CN); match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack || authenticator,

KBM);]CN Honest(ĈN) ∧ Honest(M̂N) ∧ Has(Ẑ, KBM) ⊃ Ẑ = ĈN ∨ Ẑ = M̂N

(5)

(2), (5) θUPD2 [receive M̂N , ĈN , msg1; match msg1 / HoA, CoA, seqnew, LTBReq , Ack, au-

thenticator, macBU ; isLess(seq, seqnew); KBM := hash(HoA || CoA || CNA || seqnew,

KMN−CN); match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack || authenticator,

KBM);]CN Honest(ĈN) ∧ Honest(M̂N) ⊃ Send(MN, M̂N , ĈN , msg1) < Receive(CN,

M̂N , ĈN , msg1)

(6)

AN3 [new NCN ;]CN Fresh(CN, NCN)

(7)

(7), FS1, P1,

ΓUPD2

[KBC := hash(HoA || CoA || CNA || NCN , KHA−CN); macBCReq := hash(HoA || CoA ||
LTBReq || authenticator || NCN , KBC); msg2 := HoA, CoA, LTBReq , authenticator, NCN ,

macBCReq ; send ĈN , ĤA, msg2;]CN FirstSend(CN, NCN , msg2)

(8)

(1), (8), FS2,

ΓUPD2

θUPD2 ∧ θUPD3 [new NCN ; KBC := hash(HoA || CoA || CNA || NCN , KHA−CN);

macBCReq := hash(HoA || CoA || LTBReq || authenticator || NCN , KBC); msg2 := HoA,

CoA, LTBReq , authenticator, NCN , macBCReq ; send ĈN , ĤA, msg2;]CN Receive(HA,

ĈN , ĤA, msg2) ∧ ĤA 6= ĈN ⊃ Send(CN, ĈN , ĤA, msg2) < Receive(HA, ĈN , ĤA,

msg2)

(9)

(9), HON,

AA4, P1

Honest(ĈN) ∧ Honest(ĤA) ⊃ Receive(HA, ĈN , ĤA, msg2) < Send(HA, ĤA, ĈN , msg3)

(10)
158

6.2. FORMAL VERIFICATION OF PROTOCOLS

AR1,

HASH3

θUPD3 [receive ĤA, ĈN , msg3; match msg3 / CoA, LTBReq , NCN , macBCRep; match

NCN / NCN ; match macBCRep / hash(HoA || CoA || LTBReq || NCN , KBC);]CN

Receive(CN, ĤA, ĈN , CoA, LTBReq , NCN , HASHkBC
{HoA || CoA || LTBReq || NCN} ⊃

(∃X.Has(X, HASHkBC
{HoA || CoA || LTBReq || NCN}) ∧ Send(X, HASHkBC

{HoA ||
CoA || LTBReq || NCN})) ∧ (Send(X, HASHkBC

{HoA || CoA || LTBReq || NCN}) <
Receive(CN, ĤA, ĈN , msg3))

(11)

(11), HASH4 Has(X, HASHkBC
{HoA || CoA || LTBReq || NCN})⊃ Computes(X, HASHkBC

{HoA || CoA

|| LTBReq || NCN}) ∨ ∃Y,m.Computes(Y, HASHkBC
{HoA || CoA || LTBReq || NCN}) ∧

Send(Y, m) ∧ Contains(m, HASHkBC
{HoA || CoA || LTBReq || NCN})

(12)

(12), HASH1 Computes(Z, HASHkBC
{HoA || CoA || LTBReq || NCN}) ⊃ Has(Ẑ, KBC) ∧ Has(Ẑ, HoA

|| CoA || LTBReq || NCN)

(13)

(13),

φUPD,CN−sec2

θUPD3 [receive ĤA, ĈN , msg3; match msg3 / CoA, LTBReq , NCN , macBCRep; match

NCN / NCN ; match macBCRep / hash(HoA || CoA || LTBReq || NCN , KBC);]CN

Honest(ĈN) ∧ Honest(ĤA) ∧ Has(Ẑ, KBC) ⊃ Ẑ = ĈN ∨ Ẑ = ĤA

(14)

(11), (14) θUPD3 [receive ĤA, ĈN , msg3; match msg3 / CoA, LTBReq , NCN , macBCRep; match

NCN / NCN ; match macBCRep / hash(HoA || CoA || LTBReq || NCN , KBC);]CN

Honest(ĈN) ∧ Honest(ĤA) ⊃ Send(HA, ĤA, ĈN , msg3) < Receive(CN, ĤA, ĈN , msg3)

(15)

(1), (6), (9),

(10), (14)

θUPD2 ∧ θUPD3 [CorrespondentNode]CN Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA) ⊃
Send(MN, M̂N , ĈN , msg1) < Receive(CN, M̂N , ĈN , msg1) <

Send(CN, ĈN , ĤA, msg2) < Receive(HA, ĈN , ĤA, msg2) <

Send(HA, ĤA, ĈN , msg3) < Receive(CN, ĤA, ĈN , msg3) <

Send(CN, ĈN , M̂N , msg4) ⊃ φUPD,CN−auth

(16)

6.2.2 Casper Tool and FDR2 Model Checker

Casper is a compiler for the analysis of security protocols [16]. It provides a

concise notation for specifying protocols and security properties. It accepts a

script containing an abstract description of a protocol as well as an intruder

and produces a CSP (Communicating Sequential Processes) [79] code which is

verified using the FDR2 (Failure-Divergence Refinement) model checker [17]. The

translation of the Casper script to the CSP code is made automatically and

transparently to the user, and the results of the verification are presented in

terms of the Casper model.

A Casper script defines not only the operation of a protocol but also the

system to be checked. It contains a number of sections, including the following.

The ‘Free variable’ section declares the types of variables and functions that are

159

6.2. FORMAL VERIFICATION OF PROTOCOLS

used in the protocol definition. For example, in Table 6.3, the variables ‘seq1’

and ‘ncn’ have been declared as a sequence number and a nonce, respectively.

The ‘Processes’ section represents the roles played by the different honest

principals. The parameters and the variables following the keyword ‘knows’ define

the knowledge that the principal in question is expected to have at the beginning

of the protocol run.

The ‘Protocol description’ section defines the sequence of messages in the

protocol. For example, in Table 6.3, the notation ‘{hoa, coa, seq1}{kmnha} %

authenticator’ represents that the values of hoa, coa, and seq1 are encrypted with

key kmnha. In addition, this notation also means that the recipient should not

attempt to decrypt this coded value, but should instead store it in the variable ‘au-

thenticator’. Similarly, the notation ‘authenticator % {hoa, coa, seq1}{kmnha}’
indicates that the sender should send the value stored in the variable ‘authenti-

cator’, but the recipient should expect a value of the form given by ‘{hoa, coa,

seq1}{kmnha}’.
The ‘Specification’ section is used to specify security properties of the protocol.

For example, the line starting with ‘Agreement (mn, cn, [hoa, coa])’ defines the

authentication property associated with the authentication of an MN to a CN; it

means that “the MN is correctly authenticated to the CN, and they agree upon

the values of HoA and CoA.”

The ‘Actual variables’ and ‘System’ sections represent the actual system to be

checked. The type of variables to be used in the system to be checked is defined

in the former section; whereas, the number and the role of the principals involved

in the system are defined in the latter section. Finally, the ‘Intruder Information’

section defines the intruder’s identity and his/her initial knowledge.

6.2.2.1 Formal Verification using Casper/FDR2

This section presents a formal verification of the update (UPD) phase using the

Casper/FDR2 model checker. The verification of the other phases can be found

in Appendix G. The first step of the verification is to specify the UPD phase

and its security properties in a Casper script as shown in Table 6.3. The second

step is to run the Casper tool to automatically translate the script to a CSP

code. Finally, the CSP code is run in the FDR model checker. The result of the

verification is shown in Table 6.4, which confirms that the UPD phase enables a

CN to securely authenticate an MN and a home link.

160

6.2. FORMAL VERIFICATION OF PROTOCOLS

Free variables

mn : MNode

cn : CNode

ha : HomeAgent

hoa, coa : IPv6Address

seq1 : SequenceNumber

ncn : Nonce

kmnha, khacn, kmncn : SessionKey

InverseKeys = (kmnha, kmnha),(khacn, khacn),(kmncn, kmncn)

HMAC : HashFunction

Processes

MOBILENODE(mn, cn, hoa, coa, seq1, kmnha, kmncn) knows HMAC

CORRESNODE(cn, ha, ncn, khacn, kmncn) knows HMAC

HOMEAGENT(ha, hoa, coa, kmnha, khacn) knows HMAC

Protocol description

0. → mn : cn

1. mn → cn : hoa, coa, seq1, {hoa, coa, seq1}{kmnha} % authenticator, HMAC(kmncn, hoa, coa, seq1)

2. cn → ha : hoa, coa, ncn, authenticator % {hoa, coa, seq1}{kmnha}, HMAC(khacn, hoa, coa, ncn)

3. ha → cn : hoa, coa, HMAC(khacn, hoa, coa)

4. cn → mn : hoa, coa, HMAC(kmncn, hoa, coa)

Specification

Agreement(mn, cn, [hoa, coa])

Agreement(ha, cn, [hoa, coa])

Actual variables

MN, Mallory : MNode

CN : CNode

HA : HomeAgent

HoA, CoA, MalA : IPv6Address

Seq1, Seqm : SequenceNumber

Ncn, Nm : Nonce

Kmnha, Khacn, Kmncn, Kmala : SessionKey

InverseKeys = (Kmnha, Kmnha),(Khacn, Khacn),(Kmncn, Kmncn), (Kmala, Kmala)

System

MOBILENODE(MN, CN, HoA, CoA, Seq1, Kmnha, Kmncn)

161

6.3. PERFORMANCE EVALUATION

CORRESNODE(CN, HA, Ncn, Khacn, Kmncn)

HOMEAGENT(HA, HoA, CoA, Kmnha, Khacn)

Intruder Information

Intruder = Mallory

IntruderKnowledge = {MN, CN, HA, Mallory, HoA, CoA, MalA, Seqm, Nm, Kmala}

Table 6.3: Casper specification of the UPD phase

Initialising; please wait.... Ready.

Casper version 1.8

Parsing...

Type checking...

Consistency checking...

Compiling...

Writing output...

Output written to /mnt/ntfs/Casper/UPD.csp

Done

Starting FDR

Checking /mnt/ntfs/Casper/UPD.csp

Checking assertion AUTH1 M::AuthenticateMOBILENODEToCORRESNODEAgreement hoa coa

T= AUTH1 M::SYSTEM 1

No attack found

Checking assertion AUTH1 M::AuthenticateHOMEAGENTToCORRESNODEAgreement hoa coa

T= AUTH2 M::SYSTEM 1

No attack found

Done

Table 6.4: Verification results of the UPD phase using Casper/FDR2

6.3 Performance Evaluation

This section reports the performance evaluation of the SK-based and PK-based

protocols by comparing them to the standard correspondent registration protocol,

i.e. when the return routability (RR) procedure is used to protect the registration

process (see Section 2.5). In addition, the SK-based protocol is compared to the

SSKv1 and SSKv2 protocols (see Sections 3.3.1.1 and 3.3.1.2). The performance

is measured in terms of correspondent registration delay (CR-Delay) measured

162

6.3. PERFORMANCE EVALUATION

in seconds and control signalling overhead measured in bits per second. The CR-

Delay is defined as the total amount of time taken for the MN to register a new

CoA with the CN. The control signalling overhead is the total amount of Mobile

IPv6 signalling traffic sent and received by all involved entities, i.e. the MN, CN,

and HA.

6.3.1 Simulation Modelling

OPNETTM Modeler version 14.5 has been used to simulate the performance of the

SK-based and PK-based protocols. In particular, the control signalling overhead

is investigated at all involved entities. The CR-Delay is also investigated when

varying levels of background traffic on the network are applied. The simulation

results obtained are then compared to those when the RR, SSKv1, and SSKv2

protocols are run.

Figure 6.1: Simulation model - stationary CN case

Two network models are constructed to measure the performance in the sta-

tionary and mobile CN cases. The first model, depicted in Figure 6.1, is composed

of: (1) a single stationary CN that is connected via a router (R1) to the Internet;

(2) a single MN that is located at a home link; (3) an HA that represents the

163

6.3. PERFORMANCE EVALUATION

home link; and (4) two access routers (AR1 and AR2) that represent foreign links.

The MN moves from the home link to the first foreign link, from the first foreign

link to the second foreign link, and then from the second foreign link to the home

link. In this way, the MN will create a new binding, update the binding, and

delete the binding with the CN, respectively.

Figure 6.2: Simulation model - mobile CN case

The second model (depicted in Figure 6.2) is identical to the first model, but

one additional access router (AR3) that represents a third foreign link is included.

In addition, the CN is also mobile and is located at that foreign link. The router

(R1) is now referred to as the CN’s home agent and represents the home link of

the mobile CN.

The HA and the ARs have been positioned in such a way that provide a

continuous wireless coverage area for the MN. The MN performs one hundred

passes (movement between HA and AR2) with three handoffs in each pass (one

binding creation, one binding update, and one binding deletion). The OPNET

Modeler’s documentation recommends thirty as an initial rule of thumb for the

number of repetitions to use. However, one hundred passes have been chosen in

164

6.3. PERFORMANCE EVALUATION

the hope of averaging out any possible fluctuating factors.

Two separate simulation studies are performed. The first one is created to

investigate the impact of the SK-based and PK-based protocols on CR-Delay,

i.e. whether the protocols have led to any performance degradation through

increasing CR-Delay. In this study, ten background traffic scenarios ranging from

0% to 90% at 10% increments are applied to investigate how different volumes

of traffic may affect the results of the CR-Delay. The second simulation study is

to investigate the control signalling overhead produced by all involved entities,

i.e. the MN, CN, and HA, when SK-based, PK-based, RR, SSKv1, and SSKv2

protocols are executed.

6.3.2 Simulation Model Validation

This section validates the simulation models. For doing so, the OPNET debug-

ger is used to prove that the SK-based protocol operates correctly. The OPNET

debugger is applied to output the processes of generating and/or verifying session

keys, cookies, tokens, and MACs values. In addition, relevant packets’ informa-

tion (i.e. source address, destination address, and packet size) has been inspected

during runtime.

The simulation model in the stationary CN case (see Figure 6.1) has been used

to validate the correctness of the SK-based protocol in the stationary CN case.

The output from the OPNET debugger during simulation runtime is illustrated

in Appendix C. Trace labels have been defined in the code to request output of

specific information while monitoring simulation output. By observing the out-

put, the messages exchanged were confirmed to be consistent with the expected

mobility signalling exchanged among the MN, the CN, and the HA.

6.3.3 Simulation Results

This section presents and analyses simulation results obtained from the simulation

study of both the CR-Delay and the control signalling overhead. It compares the

results of the SK-based, PK-based, RR, SSKv1, and SSKv2 protocols.

6.3.3.1 Correspondent Registration Delay

This section presents an analysis of the CR-Delay simulation results in both the

stationary and mobile CN cases. A selection of the simulation results are shown

165

6.3. PERFORMANCE EVALUATION

in Figures 6.3 to 6.16. These figures illustrate the average CR-Delay in the three

binding phases (i.e. creation, update, and deletion) at different network loads.

As shown, the CR-Delays increase exponentially as the network load increases.

This pattern is caused by the increase in the queuing delay experienced at each

node. In addition, it is shown that the CR-Delay in the mobile CN case is higher

than in the stationary CN case. The reason for this is due to the fact that all

mobility-related messages that are sent to/from the mobile CN should be routed

through the mobile CN’s home link. As a result, the CR-Delay in the mobile CN

case is higher by the amount of time needed to route mobility-related messages

between the mobile CN’s HoA and CoA. Of course, this amount depends on the

current location of the mobile CN, i.e. how far the mobile CN is away from its

home link.

Figures 6.3 to 6.8 show the CR-Delay in the binding creation phase for the

stationary and mobile CN cases. Figures 6.3 and 6.4 illustrate the CR-Delay of

the RR and SK-based protocols. These figures show that around 70% load in the

stationary CN case and around 50% load in the mobile CN case, the SK-based

protocol outperforms the RR protocol. This pattern could be explained as fol-

lows. At low network loads, the queuing delay experienced at each node has a less

dominant impact on the CR-Delay. Therefore, the RR protocol produces a lower

CR-Delay as it has shorter signalling messages and fewer processing operations.

However, as the network load increases, the CR-Delay will be increasingly dom-

inated by the queuing delays and the number of signalling messages exchanged

will be a determining factor. Therefore, the SK-based protocol produces lower

CR-Delay as it requires fewer number of signalling messages to create a binding.

Figures 6.5 and 6.6 illustrate the CR-Delay of the SSKv1, SSKv2, and SK-

based protocols. As shown in these figures, at all loads, the SK-based protocol

produces a higher CR-Delay than the SSKv1 and SSKv2 protocols. This is be-

cause the SK-based protocol requires four messages to create a new binding;

whereas, the SSKv1 protocol and the SSKv2 protocol require one message and

three messages, respectively, to create a new binding.

Figures 6.7 and 6.8 illustrate the CR-Delay of the RR and PK-based proto-

cols. As shown, at all loads, the PK-based protocol produces a higher CR-Delay

than the RR protocol. This is because the PK-based protocol uses computation-

ally expensive signature generation and verification operations while creating a

binding; whereas, the RR protocol uses computationally light hash operations.

166

6.3. PERFORMANCE EVALUATION

Figure 6.3: Average CR-Delay for RR and SK-based protocols vs. load (binding
creation - stationary CN case)

Figure 6.4: Average CR-Delay for RR and SK-based protocols vs. load (binding
creation - mobile CN case)

167

6.3. PERFORMANCE EVALUATION

Figure 6.5: Average CR-Delay for SSKv1, SSKv2, and SK-based protocols vs.
load (binding creation - stationary CN case)

Figure 6.6: Average CR-Delay for SSKv1, SSKv2, and SK-based protocols vs.
load (binding creation - mobile CN case)

168

6.3. PERFORMANCE EVALUATION

Figure 6.7: Average CR-Delay for RR and PK-based protocols vs. load (binding
creation - stationary CN case)

Figure 6.8: Average CR-Delay for RR and PK-based protocols vs. load (binding
creation - mobile CN case)

169

6.3. PERFORMANCE EVALUATION

Figures 6.9 to 6.12 show the CR-Delay in the binding update phase for the

stationary and mobile CN cases. In the update phase, the SK-based and PK-

based protocols are identical; thus, they will be referred to as the ‘proposed

protocols’ in the following discussions. Figures 6.9 and 6.10 illustrate the CR-

Delay of the RR protocol, the SSKv2 protocol, and the proposed protocols. As

shown in these figures, at all loads, the proposed protocols produce a lower CR-

Delay than the RR and SSKv2 protocols. This is because the proposed protocols

require one message to update a binding; whereas, the RR and SSKv2 protocols

require five messages and three messages, respectively, to update a binding.

Figures 6.11 and 6.12 illustrate the CR-Delay of the SSKv1 protocol and

the proposed protocols. These figures show that the SSKv1 protocol slightly

outperforms the proposed protocols. Specifically, on average, the SSKv1 protocol

updates a binding about 6% and 7% faster than the proposed protocols in the

stationary and mobile CN cases, respectively.

Figure 6.9: Average CR-Delay for RR, SSKv2, and SK-based and PK-based
protocols vs. load (binding update - stationary CN case)

170

6.3. PERFORMANCE EVALUATION

Figure 6.10: Average CR-Delay for RR, SSKv2, and SK-based and PK-based
protocols vs. load (binding update - mobile CN case)

Figure 6.11: Average CR-Delay for SSKv1 protocol and SK-based and PK-based
protocols vs. load (binding update - stationary CN case)

171

6.3. PERFORMANCE EVALUATION

Figure 6.12: Average CR-Delay for SSKv1 protocol and SK-based and PK-based
protocols vs. load (binding update - mobile CN case)

Figures 6.13 to 6.16 show the CR-Delay in the binding deletion phase for the

stationary and mobile CN cases. Again, in the deletion phase, the SK-based and

PK-based protocols are identical and referred to as the ‘proposed protocols’. In

addition, the SSKv1 and SSKv2 protocols are also identical and are thus referred

to as the ‘SSK protocols’ in the following discussions. Figures 6.13 and 6.14

illustrate the CR-Delay of the RR protocol and the proposed protocols. As shown

in these figures, at all loads, the proposed protocols produce a lower CR-Delay

than the RR protocol. This is because the proposed protocols require one message

to delete a binding; whereas, the RR protocol requires three messages to delete

a binding.

Figures 6.15 and 6.16 illustrate the CR-Delay of the SSK protocols and the

proposed protocols. These figures show that the SSK protocols slightly outper-

form the proposed protocols. Specifically, on average, the SSK protocols delete a

binding about 4.9% and 5.2% faster than the proposed protocols in the stationary

and mobile CN cases, respectively.

172

6.3. PERFORMANCE EVALUATION

Figure 6.13: Average CR-Delay for RR protocol and SK-based and PK-based
protocols vs. load (binding deletion - stationary CN case)

Figure 6.14: Average CR-Delay for RR protocol and SK-based and PK-based
protocols vs. load (binding deletion - mobile CN case)

173

6.3. PERFORMANCE EVALUATION

Figure 6.15: Average CR-Delay for SSKv1 and SSKv2 protocols and SK-based
and PK-based protocols vs. load (binding deletion - stationary CN case)

Figure 6.16: Average CR-Delay for SSKv1 and SSKv2 protocols and SK-based
and PK-based protocols vs. load (binding deletion - mobile CN case)

174

6.3. PERFORMANCE EVALUATION

6.3.3.2 Control Signalling Overhead

This section presents an analysis of the control signalling overhead simulation

results in both the stationary and mobile CN cases for the RR, SSKv1, SSKv2,

SK-based, and PK-based protocols. The control signalling overhead at an entity

is the amount of Control Traffic Received (CTR) and Control Traffic Sent (CTS)

by the entity. A selection of the simulation results are shown in Figures 6.17

to 6.20. These figures illustrate the control signalling overhead produced at all

involved entities in the three binding phases (i.e. creation, update, and deletion)

when all the simulated protocols are executed at the same rate.

The following observations can be made from Figures 6.17 to 6.20.

• While creating a new binding, the control signalling overheads in the proposed

protocols, i.e. SK-based and PK-based protocols, at all involved entities are

higher than in the other simulated protocols (shown in all the figures).

• While updating a binding, the control signalling overheads in the proposed

protocols at the MN are lower than in the RR and SSKv2 protocols, but higher

than in the SSKv1 protocol (Figure 6.17).

• While updating a binding, the control signalling overheads in the proposed

protocols at the CN (and also at the CN’s HA in the mobile CN case) are

about 6%, 150%, and 19% higher than in the RR, SSKv1, and SSKv2 protocols,

respectively (Figures 6.18 and 6.20).

• While updating a binding, the control signalling overheads in the proposed

protocols at the MN’s HA are about 14% lower than in the RR protocol (Fig-

ure 6.19).

• While deleting a binding, the control signalling overheads in the proposed pro-

tocols at all involved entities are lower than in the other simulated protocols

(shown in all the figures).

175

6.3. PERFORMANCE EVALUATION

Figure 6.17: Control signalling overhead (bits/sec) at MN

Figure 6.18: Control signalling overhead (bits/sec) at CN

176

6.3. PERFORMANCE EVALUATION

Figure 6.19: Control signalling overhead (bits/sec) at HA

Figure 6.20: Control signalling overhead (bits/sec) at HACN

177

6.3. PERFORMANCE EVALUATION

6.3.3.3 Discussions

From the simulation results presented, the following observations can be made:

• Firstly, in the creation phase, the SK-based and PK-based protocols produce

a higher registration delay and control signalling overhead than all the other

simulated protocols. However, this high delay is acceptable as the creation

phase runs parallel to data transfer between the MN and the CN through the

MN’s home link.

• Secondly, in the update phase, the SK-based and PK-based protocols produce a

lower registration delay than both the RR protocol and the SSKv2 protocol, but

a slightly higher registration delay than the SSKv1 protocol. This is because

the SK-based and PK-based protocols utilize early binding updates to minimise

the registration delay. The simulation results also show that the SK-based and

PK-based protocols produce a reduction in the signalling overhead compared

to the RR protocol at the MN and the HA, but an increase in the signalling

overhead at the CN.

• Thirdly, in the deletion phase, the SK-based and PK-based protocols produce

a lower registration delay than the RR protocol, but a slightly higher regis-

tration delay than both the SSKv1 protocol and the SSKv2 protocol. The

simulation results also show that the SK-based and PK-based protocols pro-

duce a reduction in the signalling overhead compared to all the other simulated

protocols.

Overall, the author concludes that if a comparison between the proposed pro-

tocols and the most related work is performed on the basis of efficiency as well

as security, the proposed protocols render themselves superior. Specifically, the

proposed protocols offer significantly enhanced security for correspondent regis-

trations. This is at the cost of a varying increase, depending on the protocol,

in the delay and signalling overhead during the creation phase. In the update

and deletion phases, the delay and signalling overhead is considerably less than

at related work. It would therefore be commercially advantages to adopt the

proposed protocols.

178

6.4. CHAPTER SUMMARY

6.4 Chapter Summary

This chapter has presented the security and performance analyses of our cor-

respondent registration protocols. The protocols are first informally analysed

against the security requirements and known security attacks specified in Sec-

tions 5.1 and 2.2.1, respectively. This informal analysis has demonstrated that

the INF-based protocol cannot authenticate the HoA and CoA due to the use of

the unauthentic public key. It also has demonstrated that both the SK-based and

PK-based protocols meet the specified security requirements and defend against

the specified known attacks. The formal verification of the SK-based and PK-

based protocols has further confirmed our intuitive analysis that the security

requirements and known attacks are indeed satisfied and defended against, re-

spectively, by our protocols.

Simulation models of the SK-based and PK-based protocols have been con-

structed using the OPNET Modeler. The model of the SK-based protocols has

been validated using the OPNET Modeler. The analysis of simulation results

has demonstrated that the SK-based and PK-based protocols, compared to the

RR protocol, produce lower registration delay and a reduction in the signalling

overhead during update and deletion phases. This is at the cost of a varying in-

crease, depending on the protocol variant, in the registration delay and signalling

overhead during the creation phase.

The next chapter concludes this thesis, and gives recommendations to further

work.

179

Chapter 7

Conclusions and Future Work

The focus of this thesis was on improving the security and efficiency of home and

correspondent registrations, i.e. the location management feature, of the MIPv6

protocol. This chapter summarises the work presented in this thesis, gives the

conclusions drawn from the research findings, and recommends future work.

7.1 Thesis Summary

The work presented in this thesis can be arranged into four parts: research back-

ground, enhanced home registration protocol, family of correspondent registration

protocols, and the evaluation of both protocols.

• Research Background

The thesis has introduced home and correspondent registrations in the MIPv6

protocol. Chapter 2 gave an overview of the MIPv6 protocol, its main compo-

nents, and the two possible modes of communications allowed between an MN

and a CN. This chapter also detailed the security attacks that could be launched

via abuse of the location management feature of the protocol. In addition, it

outlined the security services and performance requirements needed for securing

home and correspondent registrations. The basic home registration protocol and

the return routability procedure, which are currently used to protect home and

correspondent registrations respectively, were also described. Chapter 3 surveyed

other related works in protecting correspondent registrations.

180

7.1. THESIS SUMMARY

• The Enhanced Home Registration protocol

Chapter 4 described our novel enhanced home registration (EHR) protocol. This

chapter first presented an overview of the EHR protocol and detailed the design

of its three novel building blocks: the symmetric CGA-based technique, the con-

current CoA reachability test, and the segmenting IPv6 address space method.

The chapter next presented the description of the EHR protocol. It then infor-

mally analysed the security of the EHR protocol. Finally, Chapter 4 simulated

and presented the performance comparison of the EHR protocol with the basic

home registration protocol.

• The Family of Correspondent Registration protocols

Chapters 5 and 6 presented our novel correspondent registration protocols. Specif-

ically, Chapter 5 first specified the design objectives for the protocols. It then

gave an overview of the protocols and their three phases: the creation phase, the

update phase, and the deletion phase. Finally, it presented detailed descriptions

of the protocols. Chapter 6 gave the security analysis and performance evaluation

of the protocols presented in Chapter 5. It first informally analysed the proto-

cols against the requirements and the well-known attacks specified earlier. The

formal verifications of the protocols using the Protocol Composition Logic (PCL)

method and the Casper/FDR2 model checker were also given. Finally, the chap-

ter simulated and presented the performance comparison of the protocols with

the most related work.

• Evaluation

The following methods of evaluation have been used to evaluate our designs:

1. The performance (in terms of registration delay and signalling overhead) of

the EHR protocol has been measured and compared with the basic home

registration protocol.

2. The security of the proposed correspondent registration protocols has been

informally analysed against the requirements and well-known attacks.

3. The security of the proposed correspondent registration protocols has been

formally verified using the PCL method and the Casper/FRD2 model checker.

4. The performances (in terms of registration delay and signalling overhead)

of the proposed correspondent registration protocols have been measured

and compared with the most related work.

181

7.2. CONTRIBUTIONS

7.2 Contributions

The thesis has made the following contributions and discoveries:

• The symmetrical CGA-based technique is a novel lightweight CGA-based tech-

nique that makes use of a secret key shared between the participants in generat-

ing and verifying an IPv6 address. This technique reduces the computational

and communication costs of the participants compared to traditional CGA-

based techniques. Therefore, it is suitable for use by MNs to configure new

CoAs and by HAs to verify the authenticity of those CoAs. In addition, it

forces a malicious MN to attempt about (261) tries to falsely claim a third

party’s address as its CoA, thus reducing the likelihood of stealing third par-

ties’ addresses.

• The concurrent CoA reachability test is a novel reachability test that enables

HAs to register and use MNs’ new CoAs while concurrently verifying MNs’

reachability at those CoAs. This test runs parallel to data transfer to and from

the CoAs, thus having no effect on the registration delay.

• The segmenting IPv6 address space method is a novel method that uses two

bits of the IPv6 64-bits interface identifier field to differentiate between redi-

rectable and non-redirectable IPv6 addresses. This method reduces the number

of targets that are vulnerable to DoS attacks launched via abuse of the loca-

tion management feature of current, as well as future, mobility protocols; it

prevents malicious MNs from impersonating either stationary nodes or other

MNs located at their home links.

• The enhanced home registration (EHR) protocol extends the basic home reg-

istration protocol to support the location authentication of MNs to their HAs.

The EHR protocol adds the novel symmetrical CGA-based technique, the novel

concurrent CoA reachability test, and the novel segmenting IPv6 address space

method mentioned above to the basic home registration protocol. Therefore, it

reduces the likelihood of a malicious MN being successful in launching DoS at-

tacks against third parties. This is done with a marginal impact on registration

delay, but a significant increase in the signalling overhead.

• The SK-based, PK-based, and INF-based protocols are a family of novel corre-

spondent registration protocols that rely on the assistance of MNs’ home links

182

7.3. FUTURE WORK

in authenticating MNs’ HoAs and CoAs to CNs. These protocols offload the

operational load from an MN to its home link and are designed in creation,

update, and deletion phases to reduce iterating courses of the entire protocol.

The creation phase runs parallel to data transfer between the MN and the

CN through the MN’s home link; thus, most of the authentication and keys

establishment take place in it. In addition, the established keys are used to

secure the update and deletion phases. Therefore, the SK-based and PK-based

protocols improve the security strength and registration delay; they satisfy all

the specified security requirements and reduce registration delay in the update

and deletion phases. This is at the cost of an increase in the registration delay

and signalling overhead during the creation phase.

• To demonstrate the efficiency and efficacy of the EHR, SK-based, and PK-based

protocols, the performance of the protocols has been evaluated and compared

to that of related work using the OPNET simulation package. In addition,

the security of the protocols has been informally analysed against the security

requirements and well-known attacks. Furthermore, the security of the SK-

based and PK-based protocols has been verified using formal methods.

7.3 Future Work

The author has the following recommendations for future work:

• All of the proposed protocols, i.e. both the EHR protocol and the correspondent

registration protocols, have allowed an HA and a CN to initially set the granted

binding lifetime between an MN’s HoA and CoA to a MIN BINDING LIFETIME

value. This lifetime value is to limit the amount of data that the HA/CN can

send to the MN’s CoA while gaining confidence that the MN is indeed con-

nected to that CoA. The optimal value for this lifetime value is an area for

further research.

• The EHR protocol has prevented an MN from bypassing the concurrent CoA

reachability test by limiting the number of BUs that the MN can send from

an unreachable CoA to a MAX ATTEMPT value. The optimal value for this

number of attempts is a direction for further research.

• The proposed correspondent registration protocols have increased the maxi-

mum permitted binding lifetime to reduce the number of redundant binding

183

7.3. FUTURE WORK

refreshes, thus reducing signalling overheads. The optimal value for this per-

mitted lifetime is a point of further research.

• The symmetrical CGA-based technique has only used the compression algo-

rithm included in the CryptoSys toolkit to try to overcome the hash-length

shortage problem, i.e. at most, 62 bits of the address can be used for the hash.

However, this compression algorithm cannot compress a hash value. The au-

thor needs to try further compression algorithms to investigate whether the

idea of lossless compression proposed by Hwang in [58] is suited to overcome

the hash-length shortage problem.

• The segmenting IPv6 address space method has required changing the way

every IPv6 node chooses an IPv6 address. The resulting changes in network

infrastructure and endpoint devices are points of further research

• The PK-based protocol has only been compared to the RR protocol. The

protocol can be compared to other public key based protocols.

• The thesis has simulated all of the proposed protocols in an IEEE 802.11 wire-

less environment. The protocols can be simulated in other wireless technologies,

e.g. UMTS, to evaluate the performance costs.

In conclusion, the aims of this research, to determine the security and per-

formance needs of home and correspondent registrations, to investigate existing

solutions in the context, and to design an enhanced home registration protocol as

well as a family of correspondent registration security protocols with high levels

of security and efficiency, have been achieved but there remain other possible

avenues of future work.

184

Bibliography

[1] T. Aura, “Mobile IPv6 Security,” in Proc. Security Protocols, 10th Interna-

tional Workshop, LNCS, vol. 2845, pp. 215–234, Springer, 2002.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing,” IEEE Transactions on

Dependable and Secure Computing, vol. 1, no. 1, pp. 11 – 33, 2004.

[3] C. Onwubiko and A. Lenaghan, “Spatio-Temporal Relationships in the Anal-

ysis of Threats for Security Monitoring Systems,” 2nd International Con-

ference on Computer Science and Information Systems, pp. 455–471, June

2006.

[4] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson, “CSI/FBI

Computer Crime and Security Survey 2006,” 11th Annual CSI/FBI Com-

puter Crime and Security Survey, 2006.

[5] D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in IPv6.” RFC

3775 (Proposed Standard), June 2004.

[6] R. Koodli, “Fast Handovers for Mobile IPv6.” RFC 4068 (Experimental),

July 2005.

[7] C. Perkins, “IP Mobility Support for IPv4.” RFC 3344 (Proposed Standard),

Aug. 2002. Updated by RFC 4721.

[8] H. Soliman, C. Castelluccia, K. ElMalki, and L. Bellier, “Hierarchical Mobile

IPv6 (HMIPv6) Mobility Management.” RFC 5380 (Proposed Standard),

Oct. 2008.

[9] P. Nikander, J. Arkko, T. Aura, G. Montenegro, and E. Nordmark, “Mobile

IP Version 6 Route Optimization Security Design Background.” RFC 4225

(Informational), Dec. 2005.

185

BIBLIOGRAPHY

[10] S. Kent, “IP Encapsulating Security Payload (ESP).” RFC 4303, 2005.

[11] J. Arkko, V. Devarapalli, and F. Dupont, “Using IPsec to Protect Mobile

IPv6 Signaling Between Mobile Nodes and Home Agents.” RFC 3776 (Pro-

posed Standard), June 2004. Updated by RFC 4877.

[12] “The Network Simulator NS-2.” http://www.isi.edu/nsnam/ns/.

[13] O. Technologies, “OPNET University Program.” http://www.opnet.com/

university_program/.

[14] N. Durgin, J. Mitchell, and D. Pavlovic, “A Compositional Logic for Protocol

Correctness,” Computer Security Foundations Workshop, IEEE, pp. 241–

255, 2001.

[15] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocol Composition

Logic (PCL),” Electronic Notes in Theoretical Computer Science, vol. 172,

pp. 311–358, 2007.

[16] G. Lowe, “Casper: A compiler for the analysis of security protocols,” Journal

of Computer Security, vol. 6, no. 1-2, pp. 53–84, 1998.

[17] F. S. E. LTD. Failure-Divergences Refinement FDR2 Manual, 1997.

[18] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor Discovery

for IP version 6 (IPv6).” RFC 4861 (Draft Standard), Sept. 2007.

[19] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney, “Dy-

namic Host Configuration Protocol for IPv6 (DHCPv6).” RFC 3315 (Pro-

posed Standard), July 2003. Updated by RFCs 4361, 5494.

[20] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address Autocon-

figuration.” RFC 4862 (Draft Standard), Sept. 2007.

[21] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specifica-

tion.” RFC 2460 (Draft Standard), Dec. 1998. Updated by RFCs 5095, 5722,

5871.

[22] A. Conta and S. Deering, “Generic Packet Tunneling in IPv6 Specification.”

RFC 2473 (Proposed Standard), Dec. 1998.

186

BIBLIOGRAPHY

[23] K. Ren, W. Lou, K. Zeng, F. Bao, J. Zhou, and R. H. Deng, “Routing opti-

mization security in mobile IPv6,” Comput. Netw., vol. 50, no. 13, pp. 2401–

2419, 2006.

[24] S. Song, H.-K. Choi, and J.-Y. Kim, “A Secure and Lightweight Approach

for Routing Optimization in Mobile IPv6,” EURASIP J. Wirel. Commun.

Netw., vol. 2009, pp. 1–10, 2009.

[25] S. Kent and K. Seo, “Security Architecture for the Internet Protocol.” RFC

4301 (Proposed Standard), Dec. 2005.

[26] N. Doraswamy and D. Harkins, IPSec: The New Security Standard for the

Internet, Intranets, and Virtual Private Networks. Prentice Hall, 2003.

[27] S. Kent, “IP Authentication Header,” 2005.

[28] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” 1998.

[29] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol,” 2005.

[30] B. Lim, C. Ng, K. Aso, and S. Krishnan, “Verification of Care-of Addresses

in Multiple Bindings Registration,” Expired Internet-Draft: draft-lim-mext-

multiple-coa-verify-02.txt, July 2008.

[31] R. Wakikawa, V. Devarapalli, G. Tsirtsis, T. Ernst, and K. Nagami, “Mul-

tiple Care-of Addresses Registration.” RFC 5648 (Proposed Standard), Oct.

2009.

[32] G. O’Shea and M. Roe, “Child-proof Authentication for MIPv6 (CAM),”

ACM SIGCOMM Computer Communication Review, vol. 31, no. 2, pp. 4–8,

2001.

[33] T. Aura, “Cryptographically Generated Addresses (CGA).” RFC 3972 (Pro-

posed Standard), 2005.

[34] G. Montenegro and C. Castelluccia, “Statistically Unique and Cryptograph-

ically Verifiable (SUCV) Identifiers and Addresses,” in ISOC Symposium on

Network and Distributed System Security, San Diego, CA, USA, February

2002.

187

BIBLIOGRAPHY

[35] G. Montenegro and C. Castelluccia, “Crypto-Based Identifiers (CBIDs):

Concepts and Applications,” ACM Transactions on Information and Sys-

tem Security, vol. 7, no. 1, pp. 97–127, 2004.

[36] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture.” RFC

4291 (Draft Standard), 2006.

[37] P. C. van Oorschot and M. J. Wiener, “Parallel Collision Search with Appli-

cations to Hash Functions and Discrete Logarithms,” in 2nd Annual ACM

Conference on Computer and Communications Security, Fairfax, Virginia,

pp. 210–218, ACM Press, 1994.

[38] Z. Cao, H. Deng, Y. Ma, and P. Hu, “Integrating Identity Based Cryp-

tography with Cryptographically Generated Addresses in Mobile IPv6,” in

ICCSA’07: Proceedings of the International Conference on Computational

Science and Its Applications, pp. 514–525, Springer-Verlag, 2007.

[39] C. Vogt, R. Bless, M. Doll, and T. Kuefner, “Early Binding Updates for Mo-

bile IPv6,” in Wireless Communications and Networking Conference, 2005

IEEE, vol. 3, pp. 1440–1445, March 2005.

[40] C. Vogt, “Credit-Based Authorization for Concurrent IP-Address Tests,”

Tech. Rep. TM-2005-3, Institute of Telematics, University of Karlsruhe, Ger-

many, June 2005.

[41] S. Bradner, A. Mankin, and J. Schiller, “A Framework for Purpose Built

Keys (PBK),” Expired Internet-Draft: draft-bradner-pbk-frame-06.txt, June

2003.

[42] S. M. Faccin and F. Le, “Dynamic Diffie Hellman based Key Distribution

for Mobile IPv6,” Expired Internet-Draft: draft-le-mobileip-dh-01.txt, De-

cember 2001.

[43] W. Haddad, F. Dupont, L. Madour, S. Krishnan, and S. Park, “Optimizing

MIPv6 (OMIPv6),” Expired Internet-Draft: draft-haddad-mipv6-omipv6-

01.txt, February 2004.

[44] W. Haddad, L. Madour, J. Arkko, and F. Dupont, “Applying Cryptograph-

ically Generated Addresses to Optimize MIPv6 (CGA-OMIPv6),” Expired

Internet-Draft: draft-haddad-mip6-cga-omipv6-04.txt, May 2005.

188

BIBLIOGRAPHY

[45] J. Arkko, C. Vogt, and W. Haddad, “Enhanced Route Optimization for

Mobile IPv6.” RFC 4866 (Proposed Standard), May 2007.

[46] C. Perkins, “Securing Mobile IPv6 Route Optimization Using a Static Shared

Key.” RFC 4449 (Proposed Standard), June 2006.

[47] F. Dupont and J.-M. Combes, “Care-of Address Test for MIPv6 using a

State Cookie,” Expired Internet-Draft: draft-dupont-mipv6-rrcookie-06.txt,

June 2008.

[48] H.-S. Yoon, R.-H. Kim, S.-B. Hong, and H.-Y. Youm, “PAK-based Binding

Update Method for Mobile IPv6 route optimization,” in ICHIT ’06: Proceed-

ings of the 2006 International Conference on Hybrid Information Technology,

(Washington, DC, USA), pp. 617–623, IEEE Computer Society, 2006.

[49] V. Boyko, P. MacKenzie, and S. Patel, “Provably secure password-

authenticated key exchange using diffie-hellman,” in EUROCRYPT’00: Pro-

ceedings of the 19th international conference on Theory and application of

cryptographic techniques, (Berlin, Heidelberg), pp. 156–171, Springer-Verlag,

2000.

[50] J. D. Koo, J. Koo, and D. C. Lee, “A New Authentication Scheme of Bind-

ing Update Protocol on Handover in Mobile IPv6 Networks,” in Emerging

Directions in Embedded and Ubiquitous Computing, vol. 4097, pp. 972–978,

Springer Berlin / Heidelberg, 2006.

[51] F. Bao, R. Deng, Y. QIU, and J. Zhou, “Certificate-based Binding Up-

date Protocol (CBU),” Expired Internet-Draft: draft-qiu-mip6-certificated-

binding-update-03.txt, March 2005.

[52] R. H. Deng, J. Zhou, and F. Bao, “Defending Against Redirect Attacks in

Mobile IP,” in CCS ’02: Proceedings of the 9th ACM conference on Computer

and communications security, (New York, NY, USA), pp. 59–67, ACM, 2002.

[53] J.-D. Koo and D.-C. Lee, “Extended Ticket-Based Binding Update (ETBU)

Protocol for Mobile IPv6 (MIPv6) Networks,” IEICE transactions on com-

munications, vol. 90-B, no. 4, pp. 777–787, 2007.

[54] H.-C. Chao and C.-Y. Huang, “Micro-Mobility Mechanism for Smooth Hand-

offs in an Integrated Ad-Hoc and Cellular IPv6 Network Under High-Speed

189

BIBLIOGRAPHY

Movement,” IEEE Transactions Vehicular Technology, vol. 52, pp. 1576 –

1593, November 2003.

[55] J. Arkko, T. Aura, J. Kempf, V.-M. Mäntylä, P. Nikander, and M. Roe, “Se-

curing IPv6 Neighbor and Router Discovery,” in WiSE ’02: Proceedings of

the 1st ACM workshop on Wireless security, (New York, NY, USA), pp. 77–

86, ACM, 2002.

[56] R. H. Deng, J. Zhou, and F. Bao, “Defending Against Redirect Attacks in

Mobile IP,” in CCS ’02: Proceedings of the 9th ACM conference on Computer

and communications security, (New York, NY, USA), pp. 59–67, ACM, 2002.

[57] P. Nikander, “Denial of Service, Address Ownership, and Early Authen-

tication in the IPv6 World (Transcript of Discussion),” in Revised Papers

from the 9th International Workshop on Security Protocols, (London, UK),

pp. 22–26, Springer-Verlag, 2002.

[58] M.-S. Hwang, C.-C. Lee, and S.-K. Chong, “An improved address ownership

in mobile IPv6,” Computer Communications, vol. 31, no. 14, pp. 3250–3252,

2008.

[59] S. Gunderson, “Global IPv6 Statistics - Measuring the current state of IPv6

for ordinary users.” A study by Google, reported in November 2008, http:

//www.ripe.net/.

[60] K. Perset, “Internet Addressing: Measuring Deployment of IPv6,” OECD

Digital Economy Papers 172, OECD, Directorate for Science, Technology

and Industry, 2010.

[61] P. Nikander, “An Address Ownership Problem in IPv6,” Expired Internet-

Draft: draft-nikander-ipng-address-ownership-00.txt, February 2001.

[62] G. Anastasi, M. Conti, E. Gregori, and A. Passarella, “802.11 power-saving

mode for mobile computing in wi-fi hotspots: limitations, enhancements and

open issues,” Wireless Netw., vol. 14, no. 6, pp. 745–768, 2008.

[63] Z. Li, L. Li, and Y. Huang, “Research on Handover in Hierarchical Mobile

IPv6 Based on the Fast DAD Mechanism in Visual Domain,” in International

Symposium on Computer Science and Computational Technology (ISCSCT

’08), vol. 2, pp. 277 –280, December 2008.

190

BIBLIOGRAPHY

[64] N. I. of Standards and Technology, “Advanced Encryption Standard (AES),”

2001. Federal Information Processing Standard Publication 197.

[65] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” Commun. ACM, vol. 21, no. 2,

pp. 120–126, 1978.

[66] N. I. of Standards and Technology, Secure Hash Standard. 2002. Federal

Information Processing Standard Publication 180-2.

[67] C. A. Meadows, “Formal Verification of Cryptographic Protocols: A Sur-

vey,” in Advances in Cryptology ASIACRYPT’94, vol. 917 of Lecture Notes

in Computer Science, pp. 133–150, Springer Berlin / Heidelberg, 1995.

[68] R. M. Needham and M. D. Schroeder, “Using Encryption for Authentication

in Large Networks of Computers,” Communications of the ACM, vol. 21,

no. 12, pp. 993–999, 1978.

[69] G. Lowe, “An Attack on Needham-Schroeder Public-Key Authentication

Protocol,” Information Processing Letters, vol. 56, no. 3, pp. 131–133, 1995.

Elsevier North-Holland, Inc., Amsterdam, The Netherlands.

[70] G. Lowe, “Breaking and Fixing the Needham-Schroeder Public-Key Pro-

tocol Using FDR,” in Proceedings of the International Workshop on Tools

and Algorithms for the Construction and Analysis of Systems - TACAS ’96,

vol. 1055, pp. 147–166, LNCS, Springer-Verlag, London, UK, 1996.

[71] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic, “A Derivation System for

Security Protocols and its Logical Formalization,” pp. 109 – 125, jun. 2003.

[72] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic, “A Derivation System and

Compositional Logic for Security Protocols,” 2005.

[73] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell, “A Modular

Correctness Proof of IEEE 802.11i and TLS,” in CCS ’05: Proceedings of

the 12th ACM conference on Computer and communications security, (New

York, NY, USA), pp. 2–15, ACM, 2005.

[74] A. Datta, A. Derek, J. Mitchell, and B. Warinschi, “Computationally sound

compositional logic for key exchange protocols,” pp. 321 – 334, 2006.

191

BIBLIOGRAPHY

[75] A. W. Roscoe and P. J. Broadfoot, “Internalising Agents in CSP Protocol

Models,” in Proceedings of WITS 2002, 2002.

[76] B. Padmanabhan, “Modeling and Analysis of Security Protocols using

CASPER,” Master’s thesis, Master’s thesis, Syracuse University, August

2003.

[77] I.-G. Kim, H.-S. Kim, J.-Y. Lee, and J.-Y. Choi, “Analysis and Modification

of ASK Mobile Security Protocol,” pp. 79 –83, jul. 2005.

[78] H.-S. Kim, J.-H. Oh, J.-Y. Choi, and J.-W. Kim, “The Vulnerabilities Anal-

ysis and Design of the Security Protocol for RFID System,” pp. 152 –157,

sep. 2006.

[79] C. A. R. Hoare, Communicating Sequential Processes. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc., 1985.

[80] A. W. Dent and C. J. Mitchell, User’s Guide To Cryptography And Stan-

dards. Norwood, MA, USA: Artech House, Inc., 2004.

[81] Gollmann, Dieter, Computer Security. New York, NY, USA: John Wiley &

Sons, Inc., 1999.

[82] Stallings, William, Cryptography and Network Security: Principles and Prac-

tice. Pearson Education, 2002.

[83] N. Ferguson and B. Schneier, Practical Cryptography. Wiley Publishing, Inc.,

2003.

[84] D. Eastlake, J. Schiller, and S. Crocker, “Randomness Requirements for

Security.” RFC 4086 (Best Current Practice), June 2005.

[85] R. Rivest, “The MD5 Message-Digest Algorithm.” RFC 1321 (Informa-

tional), Apr. 1992.

[86] N. I. of Standards and Technology, Secure Hash Standard. 1995. Federal

Information Processing Standard Publication 180-1.

[87] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography. CRC Press, 1996.

192

BIBLIOGRAPHY

[88] N. I. of Standards and Technology, Data Encryption Standard (DES). 1999.

Federal Information Processing Standard Publication 46-3.

[89] X. Lai, J. L. Massey, and S. Murphy, “Markov Ciphers and Differential

Cryptanalysis,” in Advances in Cryptology – EUROCRYPT’91, pp. 17–38,

Springer-Verlag, 1991.

[90] “Information Security: Advances and Remaining Challenges to Adoption of

Public Key Infrastructure Technology.” United States General Accounting

Office report GAO-01-277, February 2001.

[91] D. O’Mahony, M. Peirce, and H. Tewar, Electronic Payment Systems. Artech

House, Boston, 1997.

[92] A. O. Freier, P. Karlton, and P. C. Kocher, SSL - Secure Socket Layer 3.0

Specification. Netscape Communications Corporation - Transport Layer Se-

curity Working Group, November 1996.

[93] M. Ergen, “OPNET Tutorial.” http://wow.eecs.berkeley.edu/ergen/

docs/OPNET.pdf.

[94] CryptoSysTM, CryptoSys API and CryptoSys PKI Toolkits. Available at

http://www.cryptosys.net/.

[95] N. I. of Standards and Technology, Data Encryption Standard. 1977. Federal

Information Processing Standard Publication 46.

[96] B. Schneier, “Description of a New Variable-Length Key, 64-bit Block Cipher

(Blowfish),” in Fast Software Encryption, Cambridge Security Workshop,

(London, UK), pp. 191–204, Springer-Verlag, 1994.

[97] R. L. Rivest, The RC4 encryption algorithm. RSA Data Security, Inc., Mar.

12, 1992.

193

Appendix A

Cryptographic Building Blocks

This appendix presents an overview of the basic cryptographic techniques. These

techniques include random numbers, one-way hash functions, secret-key and

public-key cryptosystems, Public Key Infrastructure (PKI), and Diffie-Hellman

(DH) key exchange. It makes use of the following cryptographic jargon. Plain-

text or cleartext denotes a message in its original form. Message encryption is

a process of transforming a plaintext message into a coded message, and the re-

sulting message is known as ciphertext. Message decryption is a reverse process

of transforming a ciphertext into its original (plaintext) form. Encryption and

decryption are performed through the use of a cryptographic algorithm, called a

cipher, and a cryptographic key.

A.1 Basic Security Services

Security is one of the most important requirements for the exchange of users’

private data over an insecure public network (e.g. Internet). A lack of security

could result in an intruder being able to impersonate a user, eavesdrop on data,

or change data. A security service is a processing or communication service

that gives a specific kind of protection to private data. Basic security services

include authentication, authorization, confidentiality, integrity, anti-replay, and

non-repudiation.

• Authentication

Authentication is a process of verifying the identity of an entity and making sure

that data originates from that entity. There are two types of authentication:

194

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

unilateral authentication and mutual authentication. The function of unilateral

authentication is to assure the recipient that the data is from the source that

it claims to be. Mutual authentication enables the communicating entities to

verify the identity of each other. Authentication is important in preventing im-

personation attacks and hence ensuring authenticity of the data. Authentication

is achieved through several cryptographic techniques, such as secret-key encryp-

tions, message authentication codes, or digital signatures [80].

• Authorization

Authorization is the process of specifying whether a user has the authority to

conduct a particular action. Authorization is related to the existence of a security

policy, which is a set of rules that specify what types of activities, resources, or

services an authenticated user is permitted to perform [81].

• Confidentiality

Confidentiality is the prevention of the unauthorised disclosure of data, i.e. data

cannot be viewed by an unauthorised entity. Confidentiality is provided by en-

cryption, and it is important in protecting against eavesdropping attacks [81].

• Integrity

The integrity service is the detection of any unauthorised alteration of transmit-

ted data, i.e. data is not alterable without detection. Alteration types include

insertion, deletion, or change of transmitted data. When data authenticity and

integrity are preserved, the data is called reliable. Entities can be relatively

certain that they are viewing data created by a legitimate source and that no

unauthorised alterations have been made. Integrity is achieved through several

cryptographic techniques, such as checksums, message authentication codes, or

digital signatures [81, 82].

• Anti-Replay

Anti-replay service is the detection of any replay of the transmitted data, i.e.

the recipient can detect and reject old or duplicated data, which protects against

replay attacks. Anti-replay is provided through several ways, such as using a

one-time token, a random number, a sequence number, or a timestamp.

195

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

• Non-Repudiation

Non-repudiation is the prevention of a sender or receiver from denying transmitted

data. Non-repudiation provides protection against false denials that particular

data has not been sent or received by one of the participants involved in a com-

munication. There are two types of non-repudiation: non-repudiation of origin

and non-repudiation of receipt [82]. The former provides the recipient of the data

with evidence of the origin. This evidence will protect against any subsequent

attempt by the sender to falsely deny sending the data. The latter proves to the

sender that the data was received by the specified recipient.

To provide the basic security requirements discussed above, the following sec-

tions present the essential cryptographic techniques that have been used in the

design of the proposed home and correspondent registration protocols.

A.2 Random Numbers

A random number can be informally defined as a number that is “unpredictable

to an attacker” [83]. Computers make use of pseudorandom number generators

(PRNGs) to generate random numbers for cryptographic applications. A PRNG

is a deterministic algorithm for generating a sequence of numbers that approxi-

mates the properties of random numbers.

Random numbers are used in network security protocols to provide freshness

for protocol messages and to prevent replay attacks [82]. In addition, they are

used for a number of computer security purposes, such as generating public-key

pairs and producing secret keys [84].

A.3 One-Way Hash Functions

A hash function, also called a message digest function, is a one-way function that

is relatively easy to compute but significantly hard to reverse. A hash function

takes a variable-length message M as input and produces a fixed-length output,

referred to as a hash value H(M). The hash value H(M) is a function of all the

bits of the message M. Therefore, any change to M will result in a change to

H(M). Two widely used hash functions are Message-Digest Algorithms, such as

MD5 [85], and Secure Hash Algorithms, such as SHA-1 [86] and SHA-512 [66].

196

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

Hash functions are used in network security protocols to provide data integrity

and data authenticity services. These services guarantee the message receiver

that the message has not been tampered with in transit and that the message

was originated from the claimed sender. One way of achieving this is to combine

the use of a hash function with a secret key, which is known only to the sender and

the receiver, to compute a message authentication code. Hash functions are also

used in digital-signature generation. When digitally signing a message, instead

of applying cryptographic processing to the whole message, it is applied to the

message’s hash value. This is much more efficient as hash values have a fixed and

relatively small length.

A.4 Secret-Key (Symmetric) Cryptosystems

In a secret-key cryptosystem [82], also referred to as symmetric, the sender and

the receiver use the same secret key. Secret-key cryptosystems include secret-key

encryptions and message authentication codes.

A.4.1 Secret-Key Encryptions

In a secret-key encryption (also known as symmetric cipher), the sender uses a

secret key to encrypt a message into ciphertext and the receiver uses the same

secret key to decrypt the ciphertext into the original message. This process is

illustrated in Figure A.1.

Figure A.1: Secret-key encryption/decryption scheme

Secret-key encryptions can be classified into stream and block ciphers [82],

according to the way in which the plaintext is processed. A stream cipher pro-

cesses the plaintext in bit-wise or byte-wise manner. A block cipher breaks up

the plaintext into groups of bits (called blocks) of a fixed length and processes

197

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

one block at a time [87]. The latter is the more secure and more commonly used.

Most widely used secret-key block ciphers are the Triple Data Encryption Stan-

dard (3DES [88]), the International Data Encryption Standard (IDEA [89]), and

the Advanced Encryption Standard (AES [64]).

Secret-key encryptions are widely used in network security protocols to provide

message confidentiality and to assure message authenticity. This is due to the

fact that the only entities capable of enciphering and deciphering the message

are those that know the key. Therefore, the sender keeps the message unreadable

by anyone other than the intended receiver, and the receiver is assured that the

message has originated from that sender.

A.4.2 Message Authentication Codes

The second type of secret-key cryptosystems is the Message Authentication Code

(MAC), also referred to as the keyed one-way hash function. The MAC combines

the use of a hash function with a shared secret key and can be used to provide

integrity and authenticity of a message. A sender applies a hash function over

a message M and a secret key K to produce a MAC value H(K, M). The sender

then sends both M and H(K, M) to the receiver. Once these are received, the

receiver can use the same secret key to re-compute a MAC value and compare it

with the received MAC value. This operation is illustrated in Figure A.2.

Figure A.2: The use of a MAC for message integrity and authenticity checking

Secret-key cryptosystems, i.e. secret-key encryptions and message authentica-

tion codes, are efficient and commonly used for message confidentiality, message

integrity, and message authenticity. However, they need an effective and secure

key management system for generating and distributing secret keys. They also

198

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

require a large number of keys; for a secret-key cryptosystem with n users, since

each user has to possess n-1 keys, the required total number of keys can grow

to n*(n-1)/2. Finally, secret-key cryptosystems cannot provide non-repudiation

of origin or non-repudiation of receipt security services, as a message sender and

receiver can later deny sending and receiving the message. These limitations have

led to the advent of public-key cryptosystems [90] .

A.5 Public-Key (Asymmetric) Cryptosystems

A public-key cryptosystem, also referred to as asymmetric, uses a pair of keys;

a public key, which can be known to anyone, and a private key known only

to its owner. The public key and the private key are mathematically related

so that data encrypted with either key can only be decrypted using the other.

However, the private key cannot feasibly be derived from the public key. A

public-key cryptosystem depends on one or more trusted third parties, known

as certification authorities, to securely bind a public key to its rightful owner.

Public-key cryptosystems include public-key encryptions and digital signatures.

A.5.1 Public-Key Encryptions

Public-key encryptions (also known as asymmetric ciphers) use public keys for

encryption and private keys for decryption. As only the owner of a private key

can decrypt a message, public-key encryptions can be used to provide message

confidentiality. Figure A.3 shows the process of public-key encryption.

Figure A.3: Public-key encryption/decryption scheme

Public-key encryptions can provide message confidentiality, but they are not

normally used for bulk-message encryption as they are much slower in compar-

ison to secret-key encryptions (up to 100 times in software implementation and

199

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

10,000 times in hardware implementation [91]). Therefore, public-key encryption

is typically combined with secret-key encryption to get the advantages of both

encryptions. At the beginning of a communication session, the sender and the

receiver use public-key encryption to establish a secret key. They then use the

secret key to provide integrity, authenticity, and confidentiality to all subsequent

messages using MAC and secret-key encryption. Well-known Internet security

protocols, such as SSL [92] and IPSec [25], use this hybrid approach.

Figure A.4: Digital signature generation and verification processes

A.5.2 Digital Signatures

A digital signature of a message can be defined as a cryptographic transformation

of the message using a secret known only to the signer (signer’s private key). A

digital signature scheme consists of two main components: namely, a signature

generation algorithm and a signature verification algorithm. The signature gener-

ation algorithm takes the signing entity’s private key and the message that needs

to be signed as input, and then produces output as a digital signature for that

message. The signature verification algorithm takes the message, the signature

and the signer’s public key as input, and outputs an indication as to whether or

not the signature on the message is valid. For example, if a sender wished to

send a digitally signed message to a receiver, the sender would first apply a hash

function to the message to produce a shorter message digest. The digest would

then be encrypted with the sender’s private key to produce a digital signature on

the message. The signature would then be appended to the original message and

200

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

sent together as a digitally signed message to the receiver. Once the signed mes-

sage was received, the receiver would verify the signature by first decrypting the

signature with the sender’s public key to obtain a message digest. The receiver

would then apply the same hash function to the received message to generate a

fresh message digest. If the two digest values matched, then the signature would

be positively verified. Figure A.4 shows the signature generation and verification

processes.

Digital signatures can be used to provide data integrity, data authenticity, and

non-repudiation of origin services [87]. Since the sender uses his/her own private

key to generate the signature, a digital signature guarantees that the message

must have come from the claimed sender. Thus, the sender cannot later deny

that he/she generated and signed the message. The signature also assures that

any changes made to data cannot go undetected.

A.6 Digital Certificates and PKI

An important security issue associated with the use of public-key cryptosystems

is how to assure other entities that a public key is authentic, i.e. indeed belongs

to a particular entity. A well-known way to provide such assurance is through

the use of public-key certificates provided by Public-Key Infrastructure (PKI).

A public-key certificate is a structured data record issued and signed by a

trusted entity, called the Certification Authority (CA). The certificate contains a

number of data entries, including the public key that is being certified, the identity

of the public-key owner, the validity period of the certificate, the identity of the

issuer (the CA), and the CA’s signature on the certificate. The CA maintains a

list of all revoked certificates, known as the Certificate Revocation List (CRL).

In this way, an entity can verify the authenticity of a public key by checking both

the CA’s signature contained in the certificate associated with the public key and

the CA’s most recent CRL.

PKI is a hierarchical structure of CAs that perform the issuance and man-

agement of public-key certificates for the purpose of the wide-scale deployment

of public-key cryptosystems. The root CA issues public-key certificates to CAs

at a level immediately below, these in turn issue certificates to CAs at the next

level down, and so on, until the leaf nodes where the certificates are issued to

organizations and individuals.

201

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

A.7 Diffie-Hellman (DH) Key Exchange

The Diffie-Hellman (DH) key exchange [82] is a cryptographic protocol that en-

ables two entities without a previous security association to establish a shared

secret key over an insecure public network. The shared key can then be used to

authenticate and/or encrypt subsequent communications using a secret-key cryp-

tosystem. A description of the protocol is shown in Figure A.5 and is summarised

as follows:

Figure A.5: A Diffie-Hellman key exchange

• Alice and Bob agree on p and g, where p is a large prime number and g is a

primitive root (mod p) of the prime number p.

• Alice chooses a random private number ‘a’, i.e. a < p, and computes and sends

a public value ‘A’ to Bob, i.e. A = ga mod p.

• Bob chooses a random private number ‘b’, i.e. b < p, and computes and sends

a public value ‘B’ to Alice, i.e. B = gb mod p.

• Alice computes the key K = (B)a mod p = (gb mod p)a mod p = gba mod p.

• Bob computes the key K = (A)b mod p = (ga mod p)b mod p = gab mod p.

Both Alice and Bob are now in possession of the shared secret key K, because

gab and gba are equal mod p. In addition, perfect forward secrecy is achieved,

202

APPENDIX A. CRYPTOGRAPHIC BUILDING BLOCKS

as the secret numbers ‘a’ and ‘b’ are discarded at the end of the session. The

established shared secret key could be used to protect subsequent data exchanged

between Alice and Bob.

The DH key exchange is vulnerable to a man-in-the-middle attack. In this

attack, an attacker establishes two distinct DH key exchanges, masquerading as

Alice to Bob and vice versa. When Alice transmits her public value ‘A’, the

attacker intercepts it and sends his/her own public value to Bob. The attacker

intercepts Bob’s public value ‘B’ and sends his/her own public value to Alice.

The attacker then decrypts any messages sent out by Alice or Bob (and reads

and possibly modifies them), and re-encrypts and transmits the messages to the

other entity. One possible solution to this vulnerability is to use PKI and digital

signatures for the authentication of the exchanged public keys.

203

Appendix B

Existing Correspondent

Registration Protocols

This appendix presents a more detailed description of the existing correspondent

registration protocols mentioned in Chapter 3.

B.1 EBU Protocol

• The MN initiates a proactive home address test, which is technically the same

as a standard home address test, by sending a HoTI message to the CN. The

CN responds by returning a HoT message containing a secret home keygen

token (Token1). The MN needs to run the test at most every 3.5 minutes as

this is the lifetime of a home keygen token [5]. Alternatively, the MN may

be able to run the test just before the current link breaks if its link layer can

trigger the indication.

• After moving to a foreign link, the MN sends an Early Binding Update (EBU)

message to the CN for CoA registration. The EBU is authenticated using a

binding management key (KBM) that is generated based on the home keygen

token received during the proactive home address test, i.e. KBM = SHA1

(Token1). The MN also initiates a concurrent care-of address test, which is

technically the same as a standard care-of address test, by sending a CoTI

message to the CN as soon as it has sent the EBU message.

204

APPENDIX B. EXISTING PROTOCOLS

• Upon receiving the EBU message, the CN verifies the MN’s reachability at the

HoA using KBM , and infers the MN’s new CoA. Therefore, the CN creates/up-

dates a Binding Cache entry, stores the binding between the MN’s HoA and

CoA at the entry and, optionally, returns an Early Binding Acknowledgement

(EBA) message for confirmation. The CN also sends subsequent packets des-

tined for the MN to its new CoA. However, as the CN is not yet able to verify

the MN’s reachability at the CoA, the CN sets the entry in an unconfirmed

state and limits the amount of data sent to the CoA by using a Credit-Based

Authorisation technique [39, 40]. The CN also responds to the concurrent care-

of address test by returning a CoT message containing a secret care-of keygen

token (Token2).

• When the MN receives the CoT message, it sends a BU message to the CN.

The BU is authenticated using a key (KBM) that is generated based on both

the home and care-of keygen tokens, i.e. KBM = SHA1 (Token1 || Token2).

• Upon receiving the BU message, the CN verifies the authenticity of the message,

and then changes the status of the CoA to be confirmed. In addition, the CN

optionally returns a BA message to the MN for confirmation.

B.2 PBK Protocol

Initialisation:

• The MN generates a temporary public/private key pair, which is known as a

Purpose-Built Key (PBK) pair.

• The MN generates a Purpose-Built ID (PBID) by performing a cryptographic

one-way hash of the public key of the PBK pair.

• When the MN initiates a new connection with a CN, it sends the PBID as

well as the public key of its PBK pair along with the initial packets in the

connection.

• When the CN receives the initial packets, it verifies that the received public

key hashes to the received PBID. The CN then stores the PBID, the public

key and the source address of the packets, i.e. the MN’s HoA.

205

APPENDIX B. EXISTING PROTOCOLS

Correspondent registrations:

• The MN initiates a correspondent registration by sending a request message

to the CN. The MN includes the PBID in the message and signs it with the

private key of the PBK pair.

• When the CN receives the request message, it verifies the digital signature using

the stored public key associated with the PBID. If the verification succeeds,

the CN will generate and send a random number as a challenge to the MN’s

CoA.

• Upon receiving the challenge, the MN encrypts the random number and the

binding information with the private key of the PBK pair to create a response.

The MN then sends the response and the PBID to the CN.

• Upon receiving the response, the CN decrypts and verifies it using the stored

public key. If the verification succeeds, the CN will accept the binding infor-

mation and the current correspondent registration will conclude.

B.3 UDHBU Protocol

Initial correspondent registration:

• The MN initiates the protocol by sending Message1 to the CN; Message1 =

{Src=CoA, Des=CN, HoA, NI , gm}, where NI is a fresh random nonce and

gm is a DH public value from a well-known DH group. The nonce NI is to

protect the MN against replay attacks and to enable the MN to reuse gm while

ensuring that the resulting session key will be different.

• When the CN receives Message1, it checks the DH group chosen by the MN;

if it is not acceptable, the CN will reply indicating the accepted DH groups.

Otherwise, the CN will reply by sending Message2 to the MN’s HoA; Message2

= {Src=CN, Des=HoA, NI , NR, gc, key-identifier, authenticator}, where NR

is a fresh random nonce; gc is a DH public value from the same DH group

chosen by the MN; key-identifier is an identifier for the public value gc; and

the authenticator is calculated using a keyed hashing MAC from a secret KCN

known only to the CN, i.e. authenticator = HMAC (KCN , (CN || HoA || CoA

|| NI || NR || gm || gc)).

206

APPENDIX B. EXISTING PROTOCOLS

• When the MN receives Message2, it verifies that the given nonce, i.e. NI ,

matches the nonce sent by the MN to this CN in Message1. The MN next

computes a DH session key (KS) based on the two nonces, its DH private

value, and the CN’s DH public value. The MN then sends Message3 to the

CN, which includes a BU that is authenticated using the key KS; Message3 =

{Src=CoA, Des=CN, NI , NR, gm, key-identifier, authenticator, Authenticated

BU (KS)}.

• When the CN receives Message3, it first checks on the validity of the nonce

NR. It next validates the received authenticator; the CN calculates a fresh

authenticator and compares it to the received one. If the validations succeed,

the CN will compute KS and verify the authenticity of the BU. If the BU

authentication succeeds, the CN will create a Binding Cache entry and store

the binding between the MN’s HoA and CoA as well as the value of KS at the

entry. It also optionally sends Message4 to the MN, where Message4 is a BA

message that is authenticated using the key KS.

Subsequent correspondent registrations:

• In subsequent correspondent registrations, the MN and the CN use the shared

session key, i.e. KS, directly in authenticating BUs and BAs.

B.4 CGA-OMIPv6 Protocol

Initial correspondent registration:

• An MN and a CN run a modified RR procedure, which establishes a shared

secret (KBM) between the two nodes. The modified RR procedure combines the

HoTI and the CoTI messages in one message called the HoTI&CoTI message.

Apart from this, the modified and the original RR procedures are identical.

• Immediately after a successful running of the modified RR procedure, the MN

sends a normal BU message, but includes the MN’s public key and signature

as well as the CGA auxiliary parameters that are used to generate the HoA

cryptographically (see Section 3.1). The BU message is authenticated using

the KBM established from the modified RR procedure.

• Upon receiving the BU message, the CN verifies the authenticity of the message

using KBM . It next runs the CGA-based address verification algorithm (see

207

APPENDIX B. EXISTING PROTOCOLS

Figures 3.2 in Section 3.1) to verify the MN’s HoA. The CN then checks on the

validity of the signature. If the address and signature verifications succeed, the

CN generates a fresh session key (KSESSION) and encrypts it with the MN’s

public key. The CN also creates a Binding Cache entry and stores the binding

between the MN’s HoA and CoA as well as the value of KSESSION at the entry.

Finally, the CN sends a BA message to the MN. The BA message includes the

encrypted session key and is authenticated using the KBM established from the

modified RR procedure.

• Upon receiving the BA message, the MN uses KBM to verify the authenticity

of the message. The MN then decrypts the session key and records it for

subsequent correspondent registrations.

Subsequent correspondent registrations:

• The MN initiates a subsequent correspondent registration by performing a care-

of address test; the MN and the CN exchange a CoTI and a CoT message. The

CoT message sent by the CN to the MN includes a secret care-of keygen token

(Token2).

• The MN and the CN then exchange a BU and a BA message, which they

authenticate using a one-time session key (KBMPERM). The two nodes generate

KBMPERM by hashing the shared session key with the care-of keygen token,

i.e. KBMPERM = HMAC SHA1 (KSESSION , Token2).

B.5 ERO-MIPv6 Protocol

Initial correspondent registration:

• The MN initiates the initial correspondent registration by running a proactive

home address test with the CN as in the EBU protocol, which results in sharing

a home keygen token (Token1).

• After moving to a foreign link, the MN sends an EBU&CoTI message to the CN.

The EBU&CoTI message is a merging of the EBU and the CoTI messages from

the EBU protocol but includes the CGA auxiliary parameters and the MN’s

public key and signature as in the CGA-OMIPv6 protocol. The EBU&CoTI

message is authenticated using a key (KBM) that is generated based on the

208

APPENDIX B. EXISTING PROTOCOLS

home keygen token received during the proactive home address test as in the

EBU protocol (i.e. KBM = SHA1(Token1)).

• Upon receiving the EBU&CoTI message, the CN generates KBM and validates

the message. The CN next runs the CGA-based address verification algorithm.

It then verifies the signature, generates a fresh session key (KSESSION), and

encrypts the session key with the MN’s public key, as in the CGA-OMIPv6

protocol. It also utilises the Credit-Based Authorisation technique to limit the

amount of data sent to the MN’s unconfirmed CoA, as in the EBU protocol.

Finally, the CN sends an EBA&CoT message to the MN. The EBA&CoT mes-

sage is a merging of the EBA and the CoT messages from the EBU protocol but

also includes the encrypted session key as in the CGA-OMIPv6 protocol. The

EBA&CoT message is authenticated using the KBM as in the EBU protocol.

• Upon receiving the EBA&CoT message, the MN knows the session key and the

care-of keygen token. The MN and the CN next exchange normal BU and BA

messages. The BU and BA messages are authenticated with a key (KBM−new)

that is generated based on the shared session key and the fresh care-of token.

Subsequent correspondent registrations:

• Subsequent correspondent registrations are identical to the initial correspon-

dent registration, but the home address ownership and reachability proofs are

omitted. Specifically, there is no proactive home address test, i.e. the MN and

the CN do not exchange HoTI and HoT messages. In addition, the EBU&CoTI

message does not contain the CGA auxiliary parameters, the MN’s public key,

or the MN’s signature. Furthermore, the EBA&CoT message does not contain

the encrypted session key.

B.6 TBU Protocol

Initial correspondent registration:

• The MN initiates a correspondent registration by sending a BU message (Messa-

ge1) to the HA, i.e. Message1 = {Src=CoA, Des=HA, HoA, CoA, CN, NMN ,

TSMN , LTBReq}, where NMN is a fresh nonce; TSMN is the MN’s timestamp;

and LTBReq is a binding lifetime request. Message1 is reversed tunnelled from

the MN to the HA through the IPSec ESP secure tunnel.

209

APPENDIX B. EXISTING PROTOCOLS

• Upon receiving Message1, the HA first validates timestamp TSMN . It then

generates a nonce (NHA) and sends Message2 to the CN on behalf of the MN.

Message2 is a request for ticket creation and correspondent registration execu-

tion between the MN and CN. Message2 = {Src=HoA, Des=CN, CoA, NMN ,

NHA, TSHA, LTBReq}, where TSHA is the HA’s timestamp. Message2 is also

sent to the CN via the IPSec ESP secure tunnel.

• Upon receiving Message2, the CN first validates timestamp TSHA. It next

generates a nonce (NCN) and creates a ticket key KMN−CN = HMAC (KHA−CN ,

(NMN || NCN || NHA)), where KHA−CN is the IPSec secret key shared between

HA and CN. The CN also creates a ticket TcKMN−CN = ENCKCN
[HoA || NCN

|| TSCN || LTTcK || KMN−CN], where KCN is a secret random value only known

by the CN; TSCN is the CN’s timestamp; and LTTcK is the ticket’s lifetime.

The CN also creates a Binding Cache entry for HoA and CoA. Finally, the

CN sends Message3 to the MN’s HoA, i.e. Message3 = {Src=CN, Des=HoA,

NHA, NCN , TSCN , LTBGrant, TcKMN−CN}, where LTBGrant is a granted binding

lifetime set by CN.

• The HA intercepts Message3 and checks on the validity of nonce NHA and times-

tamp TSCN . The HA next creates KMN−CN like CN, and sends Message4 to the

MN through the IPSec ESP secure tunnel. Message4 = {Src=HA, Des=CoA,

HoA, CN, NMN , TSHA, LTBGrant, TcKMN−CN , KMN−CN}.

• When the MN receives Message4, it checks on the validity of nonce NMN , and

then it securely stores values of TcKMN−CN and KMN−CN in its Binding Update

List entry for that CN. At this point, the initial correspondent registration

concludes and a secret key as well as a ticket are distributed between the MN

and the CN.

Subsequent correspondent registrations:

• In subsequent correspondent registrations, the MN sends a BU message directly

to the CN to register its new CoA, i.e. BU = {Src=CoA, Des=CN, HoA, NMN ,

TSMN , LTBReq, TcKMN−CN , MACKMN−CN
(BU)}, where NMN is a fresh nonce,

TSMN is the MN’s timestamp; and MACKMN−CN
(BU) is a keyed hash value

for the BU message using the ticket key KMN−CN .

• Upon receiving the BU message, the CN checks on the validity of timestamp

TSMN . It next verifies the validity of the ticket TcKMN−CN by decrypting and

210

APPENDIX B. EXISTING PROTOCOLS

checking the MN’s HoA as well as the ticket lifetime LTTcK included in the

ticket. The CN then verifies the MAC using the ticket key KMN−CN . Finally,

the CN sends a BA message to the MN for confirmation, i.e. BA = {Src=CN,

Des=CoA, HoA, NMN , TSCN , LTBGrant, MACKMN−CN
(BA)}.

• Upon receiving the BA message, the MN checks the validity of nonce NMN ,

and then verifies the MAC using the ticket key KMN−CN .

B.7 CBU Protocol

• The MN initiates a correspondent registration by sending a route optimization

request (REQ) message to the HA, i.e. REQ = {Src=CoA, Des=HA, HoA,

CoA, CN, N0}, where N0 is a nonce value used to match the reply message.

The REQ message is ‘reversed tunnelled’ from the MN to the HA through the

IPSec ESP secure tunnel.

• Upon receiving the REQ message, the HA generates a cookie (C0) and sends

COOKIE0 message to the CN on behalf of the MN, i.e. COOKIE0 = {Src=HoA,

Des=CN, C0}.

• Upon receiving the COOKIE0 message, the CN generates a nonce N1 and a

cookie C1, and sends COOKIE1 message to the MN’s HoA, i.e. COOKIE1 =

{Src=CN, Des=HoA, C0, C1, N1}.

• The HA intercepts the COOKIE1 message and checks on the validity of C0.

The HA next generates a nonce N2 and a DH private value ‘x’, and computes

its DH public value gx. The HA then sends EXCH0 message to the CN on

behalf of the MN. The EXCH0 = {Src=HoA, Des=CN, C0, C1, N1, N2, gx,

SIGH [H (HoA || CN || gx || N1 || N2)], CertH}, where SIGH [] denotes the

home link’s signature using the private key SKH , and CertH is the public key

certificate of the home link.

• When the CN receives the EXCH0 message, it validates the cookies, the home

link’s public key certificate, and the signature. If all the validations are posi-

tive, the CN is confident that the MN’s HoA is authorised by its home link and

the DH public value gx is freshly generated by the MN’s home link. Therefore,

the CN generates a DH private value ‘y’ and computes its DH public value

gy. The CN next computes a DH key KDH = (gx)y and a session key KBM

211

APPENDIX B. EXISTING PROTOCOLS

= HMAC (KDH , (N1 || N2)). The CN also creates a Binding Cache entry for

the HoA and stores the value of KBM for authenticating subsequent correspon-

dent registrations from the MN. Finally, the HA sends EXCH1 message to the

MN’s HoA, i.e. EXCH1 = {Src=CN, Des=HoA, C0, C1, gy, MACKBM
(gy ||

EXCH0)}.

• Again, the HA intercepts the EXCH1 message, validates the cookies, and calcu-

lates the DH key KDH as well as the session key KBM . The HA next validates

MACKBM
(gy || EXCH0). If all the validations are positive, the HA sends a

REP message to the MN through the IPSec ESP secure tunnel, i.e. REP =

{Src=HA, Des=CoA, HoA, CN, N0, KBM}.

• Upon receiving the REP message, the MN verifies that N0 is the same as the

one it sent out in the REQ message. If the verification succeeds, the MN

proceeds by exchanging normal BU and BA messages with the CN, where the

messages are protected using the key KBM .

• In subsequent correspondent registrations, the MN and the CN use the shared

session key, i.e. KBM , directly in authenticating BUs and BAs.

B.8 HCBU Protocol

The protocol is divided into three steps. The first step consists of three messages

and is initiated by the MN when it realises an imminent handover. The MN

generates a fresh nonce Nm and sends Message1 to the HA, i.e. Message1 =

{Src=CoA, Des=HA, HoA, CoA, CN, Nm}. The HA (on behalf of the MN) and

the CN then exchange Message2 and Message3 to prepare for the coming binding

update. Message2 passes the fresh nonce Nm, MN’s HoA, and a DH public value

gx to the CN, i.e. Message2 = {Src=HoA, Des=CN, Nm, gx}. In reply, Message3

passes CN’s fresh nonce Nc and DH public value gy to the HA. Message3 also

contains a cookie CookieCN that is created using CN’s secret key KCN . Message3

= {Src=CN, Des=HoA, Nm, Nc, gx, gy, CookieCN}, where CookieCN = HMAC

(KCN , Message3). At this point, the CN does not create a state for the protocol,

which protects the CN against resource exhaustion DoS attacks. However, the

HA needs to record the values of Nm, Nc, gx, gy, and CookieCN .

The second step consists of three messages and is initiated by the MN when

it roams to a foreign link and is configured a new CoA. The MN first obtains the

212

APPENDIX B. EXISTING PROTOCOLS

foreign link’s signature on the binding of (HoA, CoA), i.e. SIGH ’ [H (HoA || CoA

|| Validity)]. The MN then sends Message4 to the HA for proving its ownership

of CoA, i.e. Message4 = {Src=CoA, Des=HA, HoA, CoA, Validity, CN, SIGH ’

[H (HoA || CoA || Validity)], CertH ’}, where CertH ’ is the public key certificate

of the foreign link. Upon receiving Message4, the HA first checks the validity of

the certificate and verifies the signature contained in the message, which assures

the correctness of the MN’s CoA. Next, the HA computes a DH key KDH =

(gx)y, and a session key KBM = HMAC (KDH , (Nm || Nc)). The HA then sends

Message5 to the MN for delivering the session key, i.e. Message5 = {Src=HA,

Des=CoA, HoA, CN, Nm, KBM}. At the same time, the HA also sends Message6

to the CN for proving the MN’s ownership of both the HoA and CoA. Message6

= {Src=HoA, Des=CN, CoA, Nm, Nc, gx, gy, CookieCN , Validity, SIGH [H (HoA

|| CoA || Validity || CN || KDH || Nm || Nc)], CertH}. When the CN receives

Message6, it first validates the cookie CookieCN . It next checks the validity of

the certificate. It then computes KDH and verifies the signature contained in

the message. If all validations succeed, the CN is confident that both the MN’s

HoA and CoA are indeed correct. Finally, the CN computes KBM and creates a

Binding Cache entry for HoA, CoA, and KBM . However, the CN initialises this

entry in an inactive state, indicating that a final confirmation from the CoA is

required.

The third step consists of two messages, i.e. normal BU and BA messages, and

is initiated immediately by the MN when it receives Message5 from the HA. The

MN exchanges normal BU and BA messages with the CN, where the messages

are protected using the KBM . As a result, the CN changes the state of the entry

to active and sends subsequent traffic directly to the CoA.

In subsequent correspondent registrations, the MN obtains the foreign link’s

signature on the binding of (HoA, CoA). The MN then sends a BU message that

contains the foreign link’s signature and public key certificate to the CN. The BU

message is also protected using KBM .

B.9 ETBU Protocol

Initial correspondent registration:

• The MN generates a fresh nonce (NMN), a fresh session key (KMN−CN), and a

ticket TcKMN−CN = ENCKMN
[CN || TSMN || LTTcK || KMN−CN], where KMN

213

APPENDIX B. EXISTING PROTOCOLS

is a secret random value only known by MN; TSMN is MN’s timestamp repre-

senting the issue time of the ticket; and LTTcK is the ticket’s lifetime. The MN

next sends a BU request message (Message1) to its home agent, i.e. Message1

= {Src=CoA, Des=HA, HoA, CoA, CN, NMN , SeqMN , LTBReq, TcKMN−CN ,

KMN−CN}, where SeqMN is an initial sequence number; and LTBReq is a bind-

ing lifetime request. Message1 is reversed tunnelled from the MN to the HA

through the IPSec ESP secure tunnel.

• Upon receiving Message1, the HAMN generates a nonce (NHAMN
) and sends a

BU request forwarding message (Message2) to the CN on behalf of the MN.

Message2 = {Src=HoA, Des=CN, NHAMN
, SIGHAMN

[NHAMN
|| LTBReq ||

TcKMN−CN || TSHAMN
|| SeqMN], ENCPKHACN

[NHAMN
|| HAMN || CoA ||

KMN−CN]}, where TSHAMN
is HAMN ’s timestamp and ENCPKHACN

denotes

encryption using the CN’s home link public key.

• The CN’s home agent (HACN) intercepts Message2 and checks on the validity of

the signature and then decrypts the message using its private key. If the valida-

tion succeeds, HACN then sends a BU request verification message (Message3)

to the CN through the IPSec ESP secure tunnel. Message3 = {Src=HoA,

Des=CN, NHACN
, CoA, SeqMN , TcKMN−CN , KMN−CN}, where NHACN

is a

fresh nonce.

• Upon receiving Message3, the CN creates a Binding Cache entry for the HoA

and CoA, and stores the value of SeqMN in it. It also securely stores the

values of TcKMN−CN and KMN−CN . The CN next generates a fresh session key

(KCN−MN) and a ticket (TcKCN−MN) as the MN, but uses its own secret value

(KCN). The CN then sends a BA respond message (Message4) to the HACN

through the IPSec ESP secure tunnel. Message4 = {Src=CN, Des=HACN ,

HoA, SeqMN , NCN , TSCN , LTBGrant, TcKCN−MN , KCN−MN}.

• Upon receiving Message4, the HACN sends Message5 to the MN on behalf

of the CN. Message5 = {Src=CN, Des=HoA, NHAMN
, SIGHACN

[NHAMN
||

LTBGrant || TcKCN−MN || TSHACN
|| SeqMN], ENCPKHAMN

[NHAMN
|| HACN ||

KCN−MN]}, where TSHACN
is the CN’s home link timestamp and ENCPKHAMN

denotes encryption using the MN’s home link public key.

• After intercepting Message5, the HAMN checks on the validity of the nonce

NHAMN
. It next decrypts the message using its private key and then checks

214

APPENDIX B. EXISTING PROTOCOLS

on the validity of the signature. If the validation succeeds, HAMN will send

Message6 to the MN through the IPSec ESP secure tunnel. Message6 =

{Src=HA, Des=CoA, HoA, CN, NMN , SeqMN , LTBGrant, TcKCN−MN , KCN−MN}.

• When the MN receives Message6, it checks on the validity of nonce NMN and

sequence number SeqMN . It then securely stores values of TcKCN−MN and

KCN−MN in its Binding Update List for that CN. At this point, the initial

correspondent registration concludes and two secret keys as well as two tickets

are distributed between the MN and the CN.

Subsequent correspondent registrations:

• When the MN roams to a new foreign link, it first generates a fresh nonce NMN .

The MN then sends a BU message to the CN, i.e. BU = {Src=CoA, Des=CN,

HoA, NMN , SeqMN , LTBReq, TcKCN−MN , PKMN , MACKCN−MN
(BU)}, where

PKMN is the MN’s self-generated public key that is used in generating both

the HoA and the CoA; and MACKCN−MN
(BU) is a keyed hash value for the

BU message using the ticket key KCN−MN . If the CN is currently located in

its home link, it will receive the BU message directly. Otherwise, the HACN

will intercept and forward the messages to the CN’s current CoA via a secure

tunnel. If the CN simultaneously moves to a new CoA, the message is further

intercepted by an HA existing in the CN’s previous link and is forwarded to

the CN’s new CoA.

• Upon receiving the BU message, the CN verifies the validity of the MN’s

HoA and CoA by running the CGA-based address verification algorithm us-

ing PKMN (see Figures 3.2 in Section 3.1). The CN next decrypts the ticket

TcKCN−MN using its secret KCN , and then verifies the validation periods and

the HoA included in the ticket. Finally, the CN uses the ticket key KCN−MN

contained in the ticket to verify the MACKCN−MN
(BU). If all verifications

succeed, the CN updates its Binding Cache entry and sends a BA message

to the MN, i.e. BA = {Src=CN, Des=CoA, HoA, NMN , SeqMN , LTBGrant,

MACKCN−MN
(BA)}.

• Upon receiving the BA message, the MN first checks the validity of nonce NMN

and sequence number SeqMN , and then verifies the MACKCN−MN
(BA) using

the ticket key KCN−MN .

215

Appendix C

OPNET Modeler and CryptoSys

Toolkit

C.1 OPNET Modeler

Simulations modelling presented in this thesis use the OPNETTM simulation pack-

age [13]. OPNET Modeler is an event driven simulator and provides a powerful

graphical tool to display simulation statistics. It uses hierarchically linked do-

mains to denote a network design, namely the process domain, the node domain,

and the network domain. Figure C.1 demonstrates the model hierarchy from an

example model [93].

At the lowest level, protocols and applications are defined as process models.

A process model is represented as a state transition diagram (STD). Each state

in the model has an Enter and Exit execution block where C/C++ coded proce-

dures are entered. OPNET Modeler uses various pre-written kernel procedures

to simplify simulation modelling by implementing key functions such as sending

and receiving messages. Transitions between states have associated condition

macros. The flow of control in the process is determined by interrupt events such

as packet arrivals or timer expirations. There are two types of state used; the

forced state and the un-forced state. The process will remain in the unforced

state until the next interrupt event occurs after which it will move to the next

state determined by the state-flow diagram. The process will move immediately

from a forced state once the executive blocks have been processed.

The next level in OPNET Modeler’s simulation model hierarchy is node mod-

elling. A node model is built from a number of process models that are connected

216

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

together using message flows. Network nodes, such as workstations and routers,

are defined as node models. Node models are used at the next level to create

network models. A network model consists of a number of network nodes that

are connected using network links. Sub-networks can also be used to represent

an entire network topology.

Figure C.1: OPNET modelling hierarchy [93]

OPNET Modeler has a large library of pre-implemented protocols, applica-

tions, nodes, and statistics. The basic Mobile IP protocols (MIPv4 and MIPv6)

have been implemented as part of the standard models library. This is one of the

main incentives for choosing OPNET as a simulator tool because the author is not

required to implement the basic functionalities of MIPv6 prior to the integration

of the proposed protocols.

C.2 Mobile IPv6 in OPNET Modeler

The implementation of the Mobile IPv6 protocol in the OPNET Modeler version

14.5 is based upon two process models: mipv6 mgr and mipv6 mn. The former

performs the operations for home agents and correspondent nodes. The latter

performs the operations for mobile nodes. Also, the former is responsible for

217

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

creating the latter; the mipv6 mgr process model is the parent process model

that creates the mipv6 mn process model.

The mipv6 mgr process model is depicted in Figure C.2. It consists of two

states: ‘init’ state and ‘idle’ state. The ‘init’ state initializes the mipv6 mgr

process and reads the Mobile IPv6-related attributes such as ‘node type’ and

‘route optimization status’. A different set of attributes is expected for every

different node type. This state is also responsible for creating and invoking the

child process model ‘mipv6 mn in case this node type is a mobile node. The

‘idle’ state is responsible for handling any incoming mobility message. This state

evaluates the mobility header in the incoming message to determine the message

type. Upon determining the message type, the state either processes it or sends

it to the mipv6 mn process. An HA and/or a CN will process mobility messages

in the current mipv6 mgr process.

Figure C.2: mipv6 mgr process model

The mipv6 mn process model is depicted in Figure C.3. It consists of six

states: ‘init’ state, ‘home’ state, ‘ha bind’ state, ‘away’ state, ‘route test’ state,

and ‘cn bind’ state. The ‘init’ state initializes the mipv6 mn process and its

state variables. In addition, it reads the node’s home address, sets the node’s

care-of address to invalid (i.e. no care-of address is set yet), and registers the

node’s local and global statistics.

The home state sets some flags to indicate that the node (MN) is currently

located at its home link. In addition, it evaluates the current invocation of the

mipv6 mn process by executing the mipv6 mn invocation process function

(which will be explained later in greater detail).

The ‘ha bind’ state is responsible for sending a BU message to an HA. This

218

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

state first checks the MN’s current location, i.e. whether the MN is at the home

network or at a foreign network. It then sends a BU message that requests the

HA to either remove its Binding Cache entry or update it with the MN’s current

CoA. Finally, this state executes the mipv6 mn invocation process function

to evaluate all of the invocations of the current mipv6 mn process.

The ‘away’ state sets some flags to indicate that the MN is away from its home

network. The state also executes the mipv6 mn invocation process function

to evaluate all of the invocations of the current mipv6 mn process.

The ‘route test’ state is responsible for performing a route optimization pro-

cedure with CNs. This state first checks if route optimization is enabled in this

MN. If enabled, it will send both of the routability test initialization messages,

i.e. HoTI and CoTI messages, to all the CNs already in the MN’s Binding Update

List.

The ‘cn bind’ state is responsible for sending a BU message to a CN. This state

checks the MN’s current location, and then sends a BU message that requests the

CN to either remove its Binding Cache entry or update it with the MN’s current

CoA.

The mipv6 mn invocation process function evaluates all of the invoca-

tions of the current mipv6 mn process as follows. It first checks the invocation

mode; if the invocation mode is direct, which means the current mipv6 mn

process (MN) has received a mobility message, the function will determine the

type of received mobility message, i.e. BA, HoT, or CoT. This function then

processes the message as follows:

• BA: Search for an entry in the Binding Update List that corresponds to the

source address of the BA message. If no entry is found, ignore the BA message.

Otherwise, check the status and process the BA message as follows:

1. If the status is accepted, then (1) cancel the timer associated with this

entry to stop the retransmitting of BU messages; and (2) update/remove

the current entry from the Binding Update List according to whether this

message is a response to a registration or deregistration process.

2. If the status is rejected and the message is coming from an HA, then retry

later.

3. If the status is rejected and the message is coming from a CN, do not try

to bind again with this CN.

219

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

• HoT or CoT: check if the source of this BA message already has an entry in

the Binding Update List. If no entry is found, ignore the message. Otherwise,

mark the correspondent routability test as completed and wait for the second

test. When both tests are completed, cancel the event associated to route test

retransmission and send a BU message to the source of this message.

Figure C.3: mipv6 mn process model

When the invocation mode is direct, which means an interrupt has hap-

pened, the mipv6 mn invocation process function first determines the in-

terrupt type, i.e. layer3 handoff interrupt, start binding interrupt, bind-

ing update retx timer interrupt, or route test rtex timer interrupt. The

function then processes the interrupt as follows:

• layer3 handoff : This interrupt means that the MN received a router adver-

tisement message from a new router. The interrupt indicates that the MN

has roamed to a different domain. This interrupt is processed by executing

layer3 handoff process function. This function first checks whether the new

router is same as the current router. If they are the same, then it is a false

alarm, hence ignore it. Otherwise, a new router is detected; then it checks

220

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

whether the MN returned to the home network or roamed to a foreign net-

work. In the former case, start the deregistering procedure. In the latter

case, obtain a CoA that corresponds to the new network prefix and start the

registering procedure.

• start binding: This interrupt means that the MN needs to start a binding

procedure with a CN. The function obtains the address of the CN through the

interrupt and starts the route optimization procedure with that CN.

• binding update retx timer: This interrupt means that the binding update

retransmission timer is expired; hence, the MN needs to retransmit a BU mes-

sage. Therefore, the function obtains the address of the HA/CN through the

interrupt and retransmits the BU message.

• route test rtex timer: This interrupt means that the routability test re-

transmission timer is expired; hence, the MN needs to retransmit a HoTI

and/or CoTI message. Therefore, the function obtains the address of the CN

through the interrupt and retransmits the corresponding routability test ini-

tialization message.

C.3 CryptoSys Cryptography Toolkit

CryptoSys is a cryptographic toolkit that is developed by D.I. Management Ser-

vices Pty Limited [94]. It provides a large library of cryptography tools for

developers using VB6/VBA, C/C++, C#, VB.NET and VBScript/COM/ASP.

It runs on all Win32 operating system: 95/98/NT4/2K/XP/2003/Vista/W7. A

Linux and Win64 versions are also available.

CryptoSys includes two major products: CryptoSys API and CryptoSys PKI.

The CryptoSys API provides symmetrical encryption. It provides: (1) four of the

major block cipher algorithms: AES [64], DES [95], Triple DES [88] and Blow-

fish [96]; (2) a stream cipher algorithm compatible with RC4[97]; key wrap with

AES and Triple DES; (3) secure message digest hash algorithms SHA-1, SHA-

224, SHA-256, SHA-384, SHA-512, MD2 and MD5; (4) the HMAC and CMAC

message authentication algorithms; (5) data compression and decompression al-

gorithms; (6) a secure random number generator; and (7) password-based key

derivation function (PBKDF).

221

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

The CryptoSys PKI provides asymmetrical public key encryption and digital

signatures. It provides: (1) RSA public and private keys generation; (2) X.509

certificates creation; (3) RSA public key encryption and signing; (4) encryption

with symmetrical block ciphers Triple-DES and AES-128/192/256; (5) secure

message digest hash algorithms SHA-1, SHA-224, SHA-256, SHA-384, SHA-512,

MD2 and MD5; (6) HMAC message authentication algorithms; and (7) a secure

random number generator.

The author chooses CryptoSys because of its features as it has a large library of

cryptography tools, runs on Win32 operating system, uses C/C++ programming

language (compatible with OPNET), and is so easy to use.

C.4 OPNET Simulation Model Validation - EHR

Model Debugging

HA’s Address = [2005:0:0:9:0:0:0:1]

MN’s HoA = [2005:0:0:9:C00:0:0:2]

- -

Mobile IPv6 Mobility Detection: Moving away; MN performs layer-3 handoff process.

New router address = [3015:0:0:AA:0:0:0:1]

MN configures a new CoA using the symmetric CGA-based generation algorithm:

1- MN uses RNG NonceDataHex to generate 128-bits fresh Modifier

Modifier = 211DB539DCFDF210

2- Subnet Prefix of the foreign link = 3015:0:0:AA

3- Data1 = (Modifier || Supnet Prefix) = 211DB539DCFDF210301500AA

4- MN uses SHA1 Hmac to generate 160-bits Digest1

Digest1 = f2723619a4def3d13ab922f9bbcb1fec376c97fe

5- First 64-bits of Digest1 = f2723619a4def3d1

6- MN sets M/S=1, H/C=0, U/L=0, and I/G=0 to perform interface identifier (ID)

ID = f8723619a4def3d1

7- New CoA = [3015:0:0:AA:F872:3619:A4DE:F3D1]

MN sends a BU message to the HA located at address [2005:0:0:9:0:0:0:1]

Value of Modifier included in the BU message is 211DB539DCFDF210

Total Size of the BU message in bits is < 848 >

- -

HA at address [2005:0:0:9:0:0:0:1] received a BU message from an MN

222

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

MN’s HoA = [2005:0:0:9:C00:0:0:2]

MN’s CoA = [3015:0:0:AA:F872:3619:A4DE:F3D1]

Value of Modifier received = 211DB539DCFDF210

HA verifies the CoA using the symmetric CGA-based verification algorithm:

1- Subnet Prefix of the received CoA = 3015:0:0:AA

2- Data1 = (Modifier || Supnet Prefix) = 211DB539DCFDF210301500AA

3- HA uses SHA1 Hmac to generate 160-bits Digest1

Digest1 = f2723619a4def3d13ab922f9bbcb1fec376c97fe

4- First 64-bits of Digest1 = f2723619a4def3d1

5- HA sets M/S=1, H/C=0 U/L=0, and I/G=0 to perform interface identifier (ID)

ID = f8723619a4def3d1

6- HA calculates the ID part of MN’s CoA as [F872:3619:A4DE:F3D1]

The claimed CoA is valid, It passed the symmetric CGA-based verification algorithm.

HA uses SHA1 Hmac to generate 64-bits fresh CoT

1- Data2 = (MN’s HoA || MN’s CoA) = 2005009C00002301500AAF8723619A4DEF3D1

2- Digest2 = 915b8e1799890c0cdb92b64aac253c46d9809cdb

3- Generated CoT = First 64-bits of Digest2 = 915b8e1799890c0c

HA sets binding status as ‘Accepted for limited period’

HA sets binding lifetime to MIN BU LIIFETIME

HA sends a BACoT message to MN at Address [3015:0:0:AA:F872:3619:A4DE:F3D1]

Value of CoT included in the BACoT is 915b8e1799890c0c

Value of index (I) included in the BACoT is 0

Total Size of the BACoT message in bits is < 672 >

- -

MN at address [3015:0:0:AA:F872:3619:A4DE:F3D1] received a BACoT message from an HA

HA address [2005:0:0:9:0:0:0:1]

Status of the received BACoT messag is ‘Accepted for limited period’

Value of CoT received = 915b8e1799890c0c

Value of index (I) received = 0

MN sends a BUCoT message to HA at address [2005:0:0:9:0:0:0:1]

Value of CoT included in the BUCoT is 915b8e1799890c0c

Value of index (I) included in the BUCoT is 0

Total Size of the BUCoT message in bits is < 800 >

- -

HA at address [2005:0:0:9:0:0:0:1] received a BUCoT message from an MN

MN’s HoA = [2005:0:0:9:C00:0:0:2]

223

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

MN’s CoA = [3015:0:0:AA:F872:3619:A4DE:F3D1]

Value of CoT received = 915b8e1799890c0c

Value of index (I) received = 0

HA uses SHA1 Hmac to regenerate the CoT

Data2 = (MN’s HoA || MN’s CoA) = 2005009C00002301500AAF8723619A4DEF3D1

Digest2 = 915b8e1799890c0cdb92b64aac253c46d9809cdb

Regenerated CoT = First 64-bits of Digest2 = 915b8e1799890c0c

Regenerated CoT = Received CoT

HA sets binding status as ‘Accepted’

HA sets binding lifetime to BU LIIFETIME

HA sends a BA message to MN at Address [3015:0:0:AA:F872:3619:A4DE:F3D1]

Total Size of the BA message in bits is < 576 >

- -

MN at address [3015:0:0:AA:F872:3619:A4DE:F3D1] received a BA message from an HA

HA address [2005:0:0:9:0:0:0:1]

Status of the received BA message is ‘Accepted’

Table C.1: Model debugging - EHR protocol

C.5 OPNET Simulation Model Validation - SK-

based Model Debugging

HA’s Address = [2005:0:0:9:0:0:0:1]

MN’s HoA = [2005:0:0:9:C00:0:0:2]

CN’s Address = [5035:0:0:8:0:0:0:2]

- -

Mobile IPv6 Mobility Detection: MN performs layer-3 handoff process.

New router address = [3015:0:0:AA:0:0:0:1]

- -

MN runs the enhanced home registration protocol (EHR) with HA as specified in Table C.1.

MN’s current CoA = [3015:0:0:AA:C818:96A7:BC59:1ABD]

- -

MN at address [3015:0:0:AA:C818:96A7:BC59:1ABD] received traffic from CN located at address

[5035:0:0:8:0:0:0:2] via HA tunnel.

1- MN uses RNG NonceDataHex to generate 64 bit fresh cookie; cookie = 98148493.

2- MN at address [3015:0:0:AA:C818:96A7:BC59:1ABD] sends a CoTI mobility message to CN lo-

cated at address [5035:0:0:8:0:0:0:2].

Value of cookie included in the message = < 98148493 >

224

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

Total Size of the message in bits = < 448 >

- -

CN at address [5035:0:0:8:0:0:0:2] received a CoTI mobility message from MN located at address

[3015:0:0:AA:C818:96A7:BC59:1ABD]

Value of cookie received in the message = < 98148493 >

1- CN uses SHA1 HMAC to generate 64 bit token; token = f8e9fcc1.

2- CN at address [5035:0:0:8:0:0:0:2] sends a CoT mobility message to MN located at address

[3015:0:0:AA:C818:96A7:BC59:1ABD]

Value of cookie included in the message = < 98148493 >

Value of token included in the message = < f8e9fcc1 >

Value of token index included in the message = < 0 >

Total Size of the message in bits = < 512 >

- -

MN at address [3015:0:0:AA:C818:96A7:BC59:1ABD] received a CoT mobility message from CN

located at address [5035:0:0:8:0:0:0:2]

Value of cookie received in the message = < 98148493 >

Value of token received in the message = < f8e9fcc1 >

Value of token index received in the message = < 0 >

1- MN checks received cookie. The received and stored cookies are matched.

2- MN at address [3015:0:0:AA:C818:96A7:BC59:1ABD] sends a BReq mobility message to HA

located at address [2005:0:0:9:0:0:0:1]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 3015:0:0:AA:C818:96A7:BC59:1ABD >

Value of CN’s Address included in the message = < 5035:0:0:8:0:0:0:2 >

Value of token included in the message = < f8e9fcc1 >

Value of token index included in the message = < 0 >

Value of sequence number included in the message = < 0 >

Total Size of the message in bits = < 928 >

- -

HA at address [2005:0:0:9:0:0:0:1] received a BReq mobility message from MN located at address

[3015:0:0:AA:C818:96A7:BC59:1ABD].

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 3015:0:0:AA:C818:96A7:BC59:1ABD >

Value of CN’s Address included in the message = < 5035:0:0:8:0:0:0:2 >

Value of token included in the message = < f8e9fcc1 >

Value of token index included in the message = < 0 >

Value of sequence number included in the message = < 0 >

1- HA checks received HoA. There is a Binding Cache entry for that address, i.e. the HA is serving

as a home agent for that MN’s HoA.

2- HA checks received CoA. The MN claimed CoA matches with its CoA registered at the HA.

3- HA uses RNG NonceDataHex to generate 64 bit nonce NHA1; NHA1 = 256FCD39.

4- HA uses RNG NonceDataHex to generate 64 bit nonce NHA2; NHA2 = 10CC448A.

225

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

5- HA uses SHA2 HMAC to generate 256 bit KBC1 and KBC2 keys

KBC1 = 0B1268C5430A7A8145E17E5C21C092D9

KBC2 = 4498942CF8BDBCBF721259E2EAC1B9BF

6- HA at address [2005:0:0:9:0:0:0:1] sends a BRep mobility message to MN located at address

[3015:0:0:AA:C818:96A7:BC59:1ABD]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of CN’s Address included in the message = < 5035:0:0:8:0:0:0:2 >

Value of sequence number included in the message = < 0 >

Value of KBC1 included in the message = < 0B1268C5430A7A8145E17E5C21C092D9 >

Total Size of the message in bits = < 944 >

7- HA at address [2005:0:0:9:0:0:0:1] sends an EBC mobility message to CN located at address

[5035:0:0:8:0:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 3015:0:0:AA:C818:96A7:BC59:1ABD >

Value of NHA1 included in the message = < 256FCD39 >

Value of NHA2 included in the message = < 10CC448A >

Value of sequence number included in the message = < 0 >

Value of token included in the message = < f8e9fcc1 >

Value of token index included in the message = < 0 >

Value of MACKBC2
(EBC) included in the message = < 5AFC9A310F9A >

Total Size of the message in bits = < 848 >

- -

MN at address [3015:0:0:AA:C818:96A7:BC59:1ABD] received a BRep mobility message from HA

located at address [2005:0:0:9:0:0:0:1]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of CN’s Address included in the message = < 5035:0:0:8:0:0:0:2 >

Value of sequence number included in the message = < 0 >

Value of KBC1 included in the message = < 0B1268C5430A7A8145E17E5C21C092D9 >

- -

CN at address [5035:0:0:8:0:0:0:2] received an EBC mobility message from HA located at address

[2005:0:0:9:0:0:0:1]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 3015:0:0:AA:C818:96A7:BC59:1ABD >

Value of NHA1 included in the message = < 256FCD39 >

Value of NHA2 included in the message = < 10CC448A >

Value of sequence number included in the message = < 0 >

Value of token included in the message = < f8e9fcc1 >

Value of token index included in the message = < 0 >

Value of MACKBC2
(EBC) included in the message = < 5AFC9A310F9A >

1- CN checks received token. The received and regenerated tokens are matched.

2- CN uses SHA2 HMAC to generate 256 bit KBC1 and KBC2 keys

226

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

KBC1 = 0B1268C5430A7A8145E17E5C21C092D9

KBC2 = 4498942CF8BDBCBF721259E2EAC1B9BF

3- CN checks received MACKBC2
(EBC). The received and calculated MACs are matched.

4- CN uses RNG NonceDataHex to generate 256 bit fresh session key (KMN−CN).

KMN−CN = 1423F477EB588C9777D69F48046E0BB4

5- CN encrypts key KMN−CN using AES256 HexMode CBC symmetric encryption with KBC1.

ENCKBC1
[KMN−CN] = < 6BDF4439DF4E4C250B31D03AC3AEAD1B >

6- CN at address [5035:0:0:8:0:0:0:2] sends an EBA mobility message to MN located at address

[3015:0:0:AA:C818:96A7:BC59:1ABD]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 0 >

Value of ENCKBC1
[KMN−CN] included = < 6BDF4439DF4E4C250B31D03AC3AEAD1B >

Value of MACKMN−CN
(EBA) included in the message = < 842A53F8DF4A >

Total Size of the message in bits = < 912 >

- -

MN at address [3015:0:0:AA:C818:96A7:BC59:1ABD] received an EBA mobility message from CN

located at address [5035:0:0:8:0:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 0 >

Value of ENCKBC1
[KMN−CN] included = < 6BDF4439DF4E4C250B31D03AC3AEAD1B >

Value of MACKMN−CN
(EBA) included in the message = < 842A53F8DF4A >

1- MN decrypts value of ENCKBC1
[KMN−CN] received using AES256 HexMode CBC symmetric

decryption with KBC1. KMN−CN = < 1423F477EB588C9777D69F48046E0BB4 >

2- MN checks received MACKMN−CN
(EBA). The received and calculated MACs are matched.

3- MN at address [3015:0:0:AA:C818:96A7:BC59:1ABD] sends a BCC mobility message to CN lo-

cated at address [5035:0:0:8:0:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 3015:0:0:AA:C818:96A7:BC59:1ABD >

Value of sequence number included in the message = < 1 >

Value of MACKMN−CN
(BCC) included in the message = < 30A72B6C9331 >

Total Size of the message in bits = < 810 >

- -

CN at address [5035:0:0:8:0:0:0:2] received a BCC mobility message from MN located at address

[3015:0:0:AA:C818:96A7:BC59:1ABD]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 3015:0:0:AA:C818:96A7:BC59:1ABD >

Value of sequence number included in the message = < 1 >

Value of MACKMN−CN
(BCC) included in the message = < 30A72B6C9331 >

1- CN checks received MACKMN−CN
(BCC). The received and calculated MACs are matched

2- CN at address [5035:0:0:8:0:0:0:2] sends a BA mobility message to MN located at address

[3015:0:0:AA:C818:96A7:BC59:1ABD]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

227

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

Value of sequence number included in the message = < 1 >

Value of MACKMN−CN
(BA) included in the message = < 0D5D29E76552 >

Total Size of the message in bits = < 576 >

- -

MN at address [3015:0:0:AA:C818:96A7:BC59:1ABD] received a BA mobility message from CN lo-

cated at address [5035:0:0:8:0:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 1 >

Value of MACKMN−CN
(BA) included in the message = < 0D5D29E76552 >

1- MN checks received MACKMN−CN
(BA). The received and calculated MACs are matched.

- -

- -

Mobile IPv6 Mobility Detection: MN performs layer-3 handoff process.

New router address = [4025:0:0:12:0:0:0:1]

- -

MN runs the enhanced home registration protocol (EHR) with HA as specified in Table C.1.

MN’s current CoA = [4025:0:0:12:E852:5EAF:F52D:5C00]

- -

1- MN uses SHA1 HMAC to generate KBM key; KBM = EB3F874922BBBF9B5AB8

2- MN calculates Authenticator using AES256 HexMode CBC symmetric encryption with

KMN−HA. Authenticator =

< CEFA1CC8B8F5C55A2E991C982AFF39A91953B2BEDB9E757F985F32C568AAB514 >

3- MN at address [4025:0:0:12:E852:5EAF:F52D:5C00] sends a BU mobility message to CN located

at address [5035:0:0:8:0:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 4025:0:0:12:E852:5EAF:F52D:5C00 >

Value of sequence number included in the message = < 2 >

Value of Authenticator included in the message =

< CEFA1CC8B8F5C55A2E991C982AFF39A91953B2BEDB9E757F985F32C568AAB514 >

Value of MACKBM
(BU) included in the message = < 8FD8FF720AC8 >

Total Size of the message in bits = < 1072 >

- -

CN at address [5035:0:0:8:0:0:0:2] received a BU mobility message from MN located at address

[4025:0:0:12:E852:5EAF:F52D:5C00]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 4025:0:0:12:E852:5EAF:F52D:5C00 >

Value of sequence number included in the message = < 2 >

Value of Authenticator included in the message =

< CEFA1CC8B8F5C55A2E991C982AFF39A91953B2BEDB9E757F985F32C568AAB514 >

Value of MACKBM
(BU) included in the message = < 8FD8FF720AC8 >

1- CN uses SHA1 HMAC to generate KBM key; KBM = EB3F874922BBBF9B5AB8

228

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

2- CN checks received MACKBM
(BU). The received and calculated MACs are matched

3- CN uses RNG NonceDataHex to generate 64 bit nonce NCN ; NCN = 121B70BD

4- CN uses SHA1 HMAC to generate KBC key; KBC = F4E0992F4CD9482FD082

5- CN at address [5035:0:0:8:0:0:0:2] sends a BCReq mobility message to HA located at address

[2005:0:0:9:0:0:0:1]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 4025:0:0:12:E852:5EAF:F52D:5C00 >

Value of Authenticator included in the message =

< CEFA1CC8B8F5C55A2E991C982AFF39A91953B2BEDB9E757F985F32C568AAB514 >

Value of NCN included in the message = < 121B70BD >

Value of MACKBC
(BCReq) included in the message = < 2329B8159BB2 >

Total Size of the message in bits = < 960 >

- -

HA at address [2005:0:0:9:0:0:0:1] received a BCReq mobility message from CN located at address

[5035:0:0:8:0:0:0:2].

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 4025:0:0:12:E852:5EAF:F52D:5C00 >

Value of Authenticator included in the message =

< CEFA1CC8B8F5C55A2E991C982AFF39A91953B2BEDB9E757F985F32C568AAB514 >

Value of NCN included in the message = < 121B70BD >

Value of MACKBC
(BCReq) included in the message = < 2329B8159BB2 >

1- HA checks received HoA. There is a Binding Cache entry for that address, i.e. the HA is serving

as a home agent for that MN’s HoA.

2- HA checks received CoA. The MN claimed CoA matches with its CoA registered at the HA.

3- HA uses SHA1 HMAC to generate KBC key; KBC = F4E0992F4CD9482FD082

4- HA checks received MACKBC
(BCReq). The received and calculated MACs are matched

5- HA decrypts value of Authenticator received using AES256 HexMode CBC symmetric decryption

with KMN−HA.

Decrypted value = 2005009C0000240250012E8525EAFF52D5C00503500800020808080808080808

6- HA at address [2005:0:0:9:0:0:0:1] sends a BCRep mobility message to CN located at address

[5035:0:0:8:0:0:0:2].

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 4025:0:0:12:E852:5EAF:F52D:5C00 >

Value of NCN included in the message = < 121B70BD >

Value of MACKBC
(BCRep) included in the message = < C22BBE8A4072 >

Total Size of the message in bits = < 688 >

- -

CN at address [5035:0:0:8:0:0:0:2] received a BRep mobility message from HA located at address

[2005:0:0:9:0:0:0:1]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 4025:0:0:12:E852:5EAF:F52D:5C00 >

Value of NCN included in the message = < 121B70BD >

229

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

Value of MACKBC
(BCRep) included in the message = < C22BBE8A4072 >

1- CN checks received MACKBC
(BCRep). The received and calculated MACs are matched

2- CN at address [5035:0:0:8:0:0:0:2] sends a BA mobility message to MN located at address

[4025:0:0:12:E852:5EAF:F52D:5C00]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 2 >

Value of MACKBM
(BA) included in the message = < BED4F31F2D64 >

Total Size of the message in bits = < 640 >

- -

MN at address [4025:0:0:12:E852:5EAF:F52D:5C00] received a BA mobility message from CN located

at address [5035:0:0:8:0:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 2 >

Value of MACKBM
(BA) included in the message = < BED4F31F2D64 >

1- MN checks received MACKBM
(BA). The received and calculated MACs are matched

- -

- -

Mobile IPv6 Mobility Detection: MN performs layer-3 handoff process.

New router address = [2005:0:0:9:0:0:0:1]

- -

MN runs the enhanced home registration protocol (EHR) with HA as specified in Table C.1.

- -

1- MN uses SHA1 HMAC to generate KBM key; KBM = < FBFF6D9E461A48E1D3DE >

2- MN at address [2005:0:0:9:C00:0:0:2] sends a BU mobility message to CN located at address

[5035:0:0:8:0:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 3 >

Value of MACKBM
(BU) included in the message = < 57004BE9D252 >

Total Size of the message in bits = < 800 >

- -

CN at address [5035:0:0:8:0:0:0:2] received a BU mobility message from MN located at address

[2005:0:0:9:C00:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of MN’s CoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 3 >

Value of MACKBM
(BU) included in the message = < 57004BE9D252 >

1- CN uses SHA1 HMAC to generate KBM key; KBM = < FBFF6D9E461A48E1D3DE >

2- CN checks received MACKBM
(BU). The received and calculated MACs are matched

3- CN at address [5035:0:0:8:0:0:0:2] sends a BA mobility message to MN located at address

[2005:0:0:9:C00:0:0:2]

230

APPENDIX C. OPNET MODELER AND CRYPTOSYS TOOLKIT

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 3 >

Value of MACKBM (BA) included in the message = < C7187F29D67B >

Total Size of the message in bits = < 480 >

- -

MN at address [2005:0:0:9:C00:0:0:2] received a BA mobility message from CN located at address

[5035:0:0:8:0:0:0:2]

Value of MN’s HoA included in the message = < 2005:0:0:9:C00:0:0:2 >

Value of sequence number included in the message = < 3 >

Value of MACKBM (BA) included in the message = < C7187F29D67B >

1- MN checks received MACKBM
(BA). The received and calculated MACs are matched

Table C.2: Model debugging - SK-based protocol

231

Appendix D

Proposed Correspondent

Registration Protocols

This appendix presents a more detailed description of the proposed correspondent

registration protocols mentioned in Chapter 5.

D.1 Detailed CRE-SK Phase Description

Step S1-SK

The MN initiates the creation phase by creating a Binding Update List entry

for the CN and setting the entry in a Route Pending state. The MN then sends

message M1-SK to the CN (as shown in Figure D.1) requesting a care-of keygen

token. The MN includes a 64-bit random number (Cookie) in the message. The

MN stores the Cookie at the list entry for the CN and compares it later with

the response from that CN; the Cookie is used to protect the MN against replay

attacks.

If the MN does not receive a matching response within a retransmission inter-

val of one second, the MN will resend the message with a new Cookie value. The

MN doubles the retransmission interval upon each retransmission in the same

way, as specified in the base specification of the MIPv6 protocol ([5], see also

Section 2.5).

Step S2-SK

Upon receiving message M1-SK, the CN uses its own secret (KCN) to generate a

care-of keygen token (Token2) as in the RR procedure (see Section 2.5). The CN

232

APPENDIX D. PROPOSED PROTOCOLS

Figure D.1: Step S1-SK and message M1-SK (CoTI)

then sends the Cookie, J, and Token2 to the MN’s CoA in message M2-SK (as

shown in Figure D.2), where J is an index that identifies the care-of nonce (NJ)

used in generating Token2. Token2 will be returned to the CN later to prevent

replay attacks. The CN generates a new nonce NJ at regular intervals, which

allows the CN to check the freshness of any received token; if the token enclosed

in a message is generated using a fresh nonce, then the message is fresh.

Figure D.2: Step S2-SK and message M2-SK (CoT)

Step S3-SK

When the MN receives message M2-SK, it uses the CN’s address as an index

to search its Binding Update List. If a list entry is found with a Route Pending

status, the MN will perform Verification MN1-SK to confirm that the received

Cookie is identical to the Cookie that was sent in message M1-SK.

Verification MN1-SK: The MN verifies that Cookie’ equals Cookie, where

Cookie’ is enclosed in message M2-SK and Cookie is stored at the matched

233

APPENDIX D. PROPOSED PROTOCOLS

list entry in the MN. This verification is to detect replay attacks.

If no list entry is found, if the matched list entry is not in a Route Pending sta-

tus, or if Verification MN1-SK fails, the MN will discard message M2-SK

without any further action. Otherwise, the MN will change the status of the

list entry to Creation Pending indicating that the return of a session key and an

acknowledgement are expected. Then, the MN will send CoA, LTBRem, CN, Seq,

LTBReq, J, and Token2 to the HA in message M3-SK (as shown in Figure D.3)

requesting binding creation with a specific CN. LTBRem is the current remaining

lifetime for the binding of HoA and CoA at both the MN and the HA. LTBRem is

used as a timestamp to protect the HA against replay attacks. The value of CN

enclosed in the message is to inform the HA of the CN’s address. Seq and LTBReq

are the initial sequence number and binding lifetime request, respectively. It is

recommended that the MN requests the maximum permitted binding lifetime to

reduce the number of redundant binding refreshes. Message M3-SK is sent via

an IPSec ESP secure tunnel; it is encrypted using the secret key KMN−HA shared

between the MN and the HA.

Figure D.3: Step S3-SK and message M3-SK (BReq)

Step S4-SK

Upon receiving message M3-SK, the HA uses the MN’s HoA as an index to

search its Binding Cache. If a cache entry is found, the HA will decrypt the mes-

sage using key KMN−HA, and then perform Verification HA1-SK (as shown in

Figure D.4) to confirm the freshness of the message.

Verification HA1-SK: The HA checks if (LTBRem - tvalid)≤ LTBRem’≤ (LTBRem

234

APPENDIX D. PROPOSED PROTOCOLS

+ tvalid), where LTBRem’ is enclosed in message M3-SK; LTBRem is the remaining

binding lifetime stored locally at HA in Binding Cache entry for the HoA when

message M3-SK is received; and tvalid is the validity period agreed upon priorly

between the MN and HA (Assumption A3). This verification is to detect replay

attacks.

Figure D.4: Verification HA1-SK

If Verification HA1-SK fails (or if no cache entry is found), the HA will dis-

card the message without any further action. Otherwise, the HA will perform

Verification HA2-SK to confirm the correctness of the claimed care-of address.

Verification HA2-SK: The HA checks if CoA’ equals CoA, where CoA’ is the

MN’s care-of address enclosed in message M3-SK and CoA is the MN’s care-of

address stored locally at HA in the Binding Cache entry for the HoA enclosed in

the message.

A positive outcome of Verification HA2-SK assures the HA that the MN is

not cheating the CN with a fake CoA. If the verification fails, the HA will send

a binding error message to the MN indicating that the claimed CoA is not yet

registered at the HA, and thus, the HA cannot help registering it at the CN. If

both Verifications HA1-SK and HA2-SK are successful, the HA will perform

Verification HA3-SK to confirm that the binding lifetime requested by the MN

(LTBReq) is not greater than the remaining lifetime (LTBRem) for the binding of

HoA and CoA at the HA.

235

APPENDIX D. PROPOSED PROTOCOLS

Verification HA3-SK: The HA checks if LTBReq ≤ LTBRem, where LTBReq is

the binding lifetime request enclosed in message M3-SK and LTBRem is the re-

maining binding lifetime stored locally at HA in the Binding Cache entry for the

HoA when message M3-SK is received. This verification is to ensure that the

MN is not requesting a binding lifetime greater than the remaining binding life-

time at the HA. If the verification fails, the HA will use value of LTBRem instead

of LTBReq in message M5-SK sent to the CN.

After Verification HA3-SK, the HA generates two keys (KBC1 and KBC2) based

on the secret key shared with the CN (KHA−CN) and two fresh nonces (NHA1 and

NHA2); KBC1 = HMAC SHA1 (KHA−CN , (HoA || CoA || CN || NHA1) and KBC2

= HMAC SHA1 (KHA−CN , (HoA || CoA || CN || NHA2). The HA then sends

the CN, Seq, and KBC1 to the MN in message M4-SK via an IPSec ESP secure

tunnel (as shown in Figure D.5). At the same time, the HA sends the CoA, idHA,

NHA1, NHA2, Seq, LTBReq, J, Token2, and MACKBC2
(EBC) to the CN in message

M5-SK (as shown in Figure D.6), where:

• idHA is the home link’s public identity, for example the URL of the home link’s

website or the 64-bit subnet prefix of the home link’s address.

• MACKBC2
(EBC) is a keyed hash value used to ensure the integrity and au-

thenticity of message M5-SK; MACKBC2
(EBC) = First (96, HMAC SHA1

(KBC2, (HoA || CoA || idHA || NHA1 || NHA2 || Seq || LTBReq))).

Figure D.5: Step S4-SK, message M4-SK (BRep), and Step S5-SK

Step S5-SK

When the MN receives message M4-SK, it decrypts the message using key

KMN−HA, and then uses the CN’s address as an index to search its Binding

236

APPENDIX D. PROPOSED PROTOCOLS

Figure D.6: Step S4-SK and message M5-SK (EBC)

Update List. If a list entry is found with a Creation Pending status, the MN will

perform Verification MN2-SK to confirm the freshness of the message.

Verification MN2-SK: The MN verifies that Seq’ equals Seq where Seq’ is the

sequence number enclosed in the message and Seq is the sequence number stored

at the matched list entry in the MN. This verification is to detect replay attacks.

If no list entry is found, if the matched list entry is not in a Creation Pending

status, or if Verification MN2-SK fails, the MN will discard message M4-SK

without any further action. Otherwise, the MN will store key KBC1 enclosed in

the message at the matched list entry.

Step S6-SK

When the CN receives message M5-SK, it performs Verification CN1-SK (as

shown in Figure D.7) to confirm the freshness of the message and reachability of

the MN at the CoA.

Verification CN1-SK: The CN verifies that Token2 equals First (64, HMAC SHA1

(KCN , (CoA || NJ || 1))), where Token2 and CoA are enclosed in message M5-

SK, and the value of NJ is retrieved based on value of J enclosed in the message.

This verification is to detect replay attacks.

If Verification CN1-SK fails, the CN will discard message M5-SK without

any further action. Otherwise, the CN will generate KBC1 and KBC2 based on

its address, the secret key shared with the home link (KHA−CN), and the items

237

APPENDIX D. PROPOSED PROTOCOLS

Figure D.7: Verification CN1-SK

enclosed in the message (HoA, CoA, NHA1, and NHA2). The CN then performs

Verification CN2-SK (as shown in Figure D.8) to confirm the integrity and

authenticity of message M5-SK.

Verification CN2-SK: The CN verifies that MACKBC2
(EBC) equals First (96,

HMAC SHA1 (KBC2, (HoA || CoA || idHA || NHA1 || NHA2 || Seq || LTBReq))),

where MACKBC2
(EBC), HoA, CoA, idHA, NHA1, NHA2, Seq, and LTBReq are

enclosed in message M5-SK.

A positive outcome of Verification CN2-SK assures the CN that message M5-

SK is coming from the home link of the MN and has not been altered in transit.

Otherwise, i.e. if Verification CN2-SK fails, the CN will discard the message.

After successful verifications, the CN first generates a fresh session key KMN−CN .

The CN then creates a Binding Cache entry, and stores the binding between the

MN’s HoA and CoA as well as the values of Seq, LTBReq, and KMN−CN at the

entry. In addition, the CN sets the granted binding lifetime (LTBGrant) between

the MN’s HoA and CoA to a MIN BINDING LIFETIME value to handle the

case of the MN roaming to a new CoA while the HA and the CN are running

the protocol. The CN also sends subsequent packets destined for the MN to its

new CoA for as long as the lifetime is granted for the binding. Finally, the CN

sends Seq, LTBGrant, ENCKBC1
[KMN−CN], and MACKMN−CN

(EBA) to the MN

238

APPENDIX D. PROPOSED PROTOCOLS

Figure D.8: Verification CN2-SK

in message M6-SK (as shown in Figure D.9) for acknowledging the binding of

the CoA, where:

• ENCKBC1
[KMN−CN] is the encryption of key KMN−CN using key KBC1.

• MACKMN−CN
(EBA) is a keyed hash value used to ensure the integrity and au-

thenticity of message M6-SK; MACKMN−CN
(EBA) = First (96, HMAC SHA1

(KMN−CN , (HoA || CoA || CN || Seq || LTBGrant))).

Figure D.9: Step S6-SK and message M6-SK (EBA)

Step S7-SK

When the MN receives message M6-SK, it uses the CN’s address as an index to

239

APPENDIX D. PROPOSED PROTOCOLS

search its Binding Update List. If a list entry is found, the MN will repeat Ver-

ification MN2-SK (see Step S5-SK) to confirm the freshness of the message.

After Verification MN2-SK, the MN will decrypt the coded session key en-

closed in message M6-SK using KBC1; DECKBC1
[ENCKBC1

[KMN−CN]] = {KMN−CN}.
The MN then performs Verification MN3-SK (as shown in Figure D.10) to con-

firm the integrity and authenticity of the message.

Verification MN3-SK: The MN verifies that MACKMN−CN
(EBA) equals First

(96, HMAC SHA1 (KMN−CN , (HoA || CoA || CN || Seq || LTBGrant))), where

MACKMN−CN
(EBA), HoA, CoA, CN, Seq, and LTBGrant are enclosed in message

M6-SK.

Figure D.10: Verification MN3-SK

If Verification MN2-SK or MN3-SK fails (or if no list entry is found), the

MN will discard message M6-SK without any further action. Otherwise, the

MN will update the value of KBC1 with the value of KMN−CN and will store the

value of LTBGrant at the matched list entry. As LTBGrant indicates a small binding

lifetime, the MN sends the HoA, CoA, Seqnew, LTBReq, Ack, and MACKMN−CN

(BCC) to the CN in message M7-SK (as shown in Figure D.11), requesting a

greater binding lifetime, confirming the receipt of KMN−CN , and showing the

existence at the CoA, where:

• Ack is an acknowledge bit that may be set to request the return of a binding

acknowledgement message.

240

APPENDIX D. PROPOSED PROTOCOLS

• Seqnew is a new sequence number that is greater than the Seq sent by the MN

in message M3-SK.

• MACKMN−CN
(BCC) is a keyed hash value used to ensure the integrity and au-

thenticity of message M7-SK; MACKMN−CN
(BCC) = First (96, HMAC SHA1

(KMN−CN , (HoA || CoA || Seqnew || LTBReq || Ack))).

The MN also changes the status of the list entry. Specifically, if the MN sets

the Ack bit, then it will change the status to a Binding Pending indicating that

it is waiting for an acknowledgement; otherwise, it will change the status to a

Binding Complete indicating the binding creation is complete.

Figure D.11: Step S7-SK and message M7-SK (BCC)

Step S8-SK

Upon receiving message M7-SK, the CN uses the HoA enclosed in the message

to find a matched cache entry. The CN then performs Verification CN3-SK

to confirm the freshness of the message.

Verification CN3-SK: The CN verifies that Seqnew is greater than Seq, where

Seqnew is the sequence number enclosed in the message and Seq is the sequence

number stored at the matched cache entry in the CN (received in message M5-

SK). This verification is to detect replay attacks.

After a successful verification, the CN next performs Verification CN4-SK (as

shown in Figure D.12) to confirm the integrity and authenticity of the message.

241

APPENDIX D. PROPOSED PROTOCOLS

Verification CN4-SK: The CN verifies that MACKMN−CN
(BCC) equals First

(96, HMAC SHA1 (KMN−CN , (HoA || CoA || Seqnew || LTBReq || Ack))), where

MACKMN−CN
(BCC), HoA, CoA, Seqnew, LTBReq, and Ack are enclosed in mes-

sage M7-SK.

Figure D.12: Verification CN4-SK

If Verification CN3-SK or CN4-SK fails, the CN will discard the message

without any further action. Otherwise, the CN will perform Verification CN5-

SK to confirm that the binding lifetime requested by the MN (LTBReq) is not

greater than the binding lifetime request received in message M5-SK.

Verification CN5-SK: The CN checks if LTBReq’ ≤ LTBReq, where LTBReq’ is

the binding lifetime request enclosed in message M7-SK and LTBReq is the bind-

ing lifetime request stored at the CN from message M5-SK. If the verification

fails, the CN will use the value of LTBReq instead of LTBReq’ while setting the

value of granted binding lifetime (LTBGrant).

After Verification CN5-SK, the CN updates the matched cache entry by stor-

ing the value of Seqnew enclosed in the message and by setting the granted binding

lifetime (LTBGrant) to a value that is less than or equal to LTBReq’ (or LTBReq).

Finally, the CN checks the Ack bit enclosed in message M7-SK. If the MN

has requested an acknowledgement, the CN will send Seqnew, LTBGrant, and

MACKMN−CN
(BA) to the MN in message M8-SK (as shown in Figure D.13)

to acknowledge the binding of the CoA, where:

• MACKMN−CN
(BA) is a keyed hash value used to ensure the integrity and

242

APPENDIX D. PROPOSED PROTOCOLS

authenticity of message M8-SK; MACKMN−CN
(BA) = First (96, HMAC SHA1

(KMN−CN , (HoA || CoA || CN || Seqnew || LTBGrant))).

Figure D.13: Step S8-SK, message M8-SK (BA), and Step S9-SK

Step S9-SK

Upon receiving message M8-SK, the MN uses the CN’s address to find a matched

list entry, and then confirms the freshness of the message by checking the value

of Seqnew enclosed in it, as in Verification MN2-SK. After a successful verifi-

cation, the MN performs Verification MN4-SK (as shown in Figure D.14) to

confirm the authenticity of the message.

Verification MN4-SK: The MN verifies that MACKMN−CN
(BA) equals First

(96, HMAC SHA1 (KMN−CN , (HoA || CoA || CN || Seqnew || LTBGrant))), where

MACKMN−CN
(BA), HoA, CoA, CN, Seqnew, and LTBGrant are enclosed in mes-

sage M8-SK.

If no matched list entry is found for that CN, or if Verification MN2-SK or

MN4-SK fails, the MN will discard the message without any further action.

Otherwise, the MN will update the status of the list entry to Binding Complete

indicating that the binding has been acknowledged. In addition, the MN adjusts

the remaining binding lifetime depending on the given granted binding lifetime.

The creation phase for the SK-based protocol in the stationary CN case is now

complete.

If the MN continues to receive data from the CN via its home link, the MN will

restart the creation phase by running Step S1-SK and sending message M1-SK

to the CN. If the creation retries fail, the MN will stop the SK-based protocol

243

APPENDIX D. PROPOSED PROTOCOLS

Figure D.14: Verification MN4-SK

and record in its Binding Update List entry that future binding creations should

not be tried with this CN. However, such a list entry is removed after a period

of time in order to allow for retrying route optimization as specified in the base

specification of the MIPv6 protocol [5].

D.2 Detailed CRE-PK Phase Description

Steps S1-PK, S2-PK, and S3-PK

Steps S1-PK, S2-PK, and S3-PK are identical, respectively, to Steps S1-SK,

S2-SK, and S3-SK mentioned in Section D (see Figures D.1 and D.2), but the

MN sends the value of KBM instead of Token2 to the HA in message M3-PK (as

shown in Figure D.15). Specifically, when the MN receives message M2-PK, it

hashes Token2 to generate a binding management key KBM , i.e. KBM = SHA1

(Token2). The MN then includes KBM instead of Token2 in message M3-PK

sent to the HA.

Step S4-PK

The first part of Step S4-PK is identical to the first part of Step S4-SK. Specif-

ically, upon receiving message M3-PK, the HA uses the MN’s HoA as an index

to search its Binding Cache. If a cache entry is found, the HA will decrypt the

message using key KMN−HA, and then perform Verifications HA1-PK, HA2-

PK, and HA3-PK, which are identical to Verifications HA1-SK, HA2-SK,

and HA3-SK, respectively. Verification HA1-PK is to confirm the freshness

of message M3-PK. Verification HA2-PK is to confirm the correctness of the

244

APPENDIX D. PROPOSED PROTOCOLS

Figure D.15: Step S3-PK and message M3-PK (BReq)

claimed care-of address. Verification HA3-PK is to confirm that the binding

lifetime requested by the MN (LTBReq) is not greater than the remaining lifetime

(LTBRem) for the binding of HoA and CoA at the HA.

After successful verifications, the HA sends the CoA, NHA, Seq, LTBReq, J,

MACKBM
(EBC), SIGH , and CertH to the CN in message M4-PK (as shown in

Figure D.16) where:

• NHA is a fresh nonce to protect the HA against replay attacks.

• MACKBM
(EBC) is a keyed hash value used to ensure the freshness of message

M4-PK and the reachability of the MN at the CoA; MACKBM
(EBC) = First

(96, HMAC SHA1 (KBM , (HoA || CoA || NHA || Seq || LTBReq))) and KBM is

the key received from the MN in message M3-PK.

• SIGH is the HA’s digital signature, where SIGH = ENCSKH
[SHA1 (HoA ||

CoA || NHA || Seq || LTBReq)] and SKH is the home link’s private key.

• CertH is the public key certificate of the home link.

The HA also temporarily stores the value of NHA (generated by itself) and the

value of KBM (enclosed in message M3-PK) to verify the freshness and authen-

ticity of the response from that CN.

Step S5-PK

When the CN receives message M4-PK, it performs Verification CN1-PK (as

shown in Figure D.17) to confirm the freshness of the message and reachability

245

APPENDIX D. PROPOSED PROTOCOLS

Figure D.16: Step S4-PK and message M4-PK (EBC)

of the MN at the CoA.

Verification CN1-PK: The CN uses the value of J enclosed in message M4-

PK to generate Token2, and then hashes Token2 to generate KBM . The CN next

verifies that MACKBM
(EBC) equals First (96, HMAC SHA1 (KBM , (HoA || CoA

|| NHA || Seq || LTBReq))), where MACKBM
(EBC), HoA, CoA, NHA, Seq, and

LTBReq are enclosed in message M4-PK.

Figure D.17: Verification CN1-PK

246

APPENDIX D. PROPOSED PROTOCOLS

A positive outcome of Verification CN1-PK assures the CN that message M4-

PK is fresh, as the key KBM is generated using unexpired token Token2. It also

assures the CN that message M4-PK is coming from a node that is reachable

at the CoA, which provides some assurance of the MN’s honesty before perform-

ing heavy computations. This verification is to protect the CN against replay

attacks and resource exhaustion DoS attacks. After a successful verification, the

CN next performs Verification CN2-PK to confirm the integrity and authen-

ticity of message M4-PK.

Verification CN2-PK: The CN verifies the HA’s signature (SIGH) as shown in

Figure D.18. The CN first decrypts SIGH using PKH ; DECPKH
[SIGH] = SHA1

(HoA || CoA || NHA || Seq || LTBReq). The CN then checks if the decrypted value

equals the one freshly computed from the received items.

Figure D.18: Verification CN2-PK

A positive outcome of Verification CN2-PK assures the CN that message

M4-PK is indeed from the home link of the MN and has not been altered in

transit. If Verification CN1-PK or CN2-PK is negative, the CN will discard

message M4-PK without any further action. Otherwise, the CN will generate

fresh session keys (KMN−CN and KHA−CN), create a Binding Cache entry, and

store the binding between the MN’s HoA and CoA, as well as the values of

Seq, LTBReq, KMN−CN , and KHA−CN at the entry. In addition, the CN sets

the granted binding lifetime (LTBGrant) between the MN’s HoA and CoA to a

MIN BINDING LIFETIME value to handle the case of the MN roaming to a

new CoA while the HA and the CN are running the protocol. The CN also sends

subsequent packets destined for the MN to its new CoA for as long as the lifetime

247

APPENDIX D. PROPOSED PROTOCOLS

is granted for the binding. Finally, the CN sends NHA, Seq, LTBGrant, ENCPKH

[KMN−CN || KHA−CN], and MACKBM
(EBA) to the MN’s HoA in message M5-

PK (as shown in Figure D.19), where:

• ENCPKH
[KMN−CN || KHA−CN] is the encryption of KMN−CN and KHA−CN

using public key PKH .

• MACKBM
(EBA) is a keyed hash value used to ensure the integrity and authen-

ticity of message M5-PK; MACKBM
(EBA) = First (96, HMAC SHA1 (KBM ,

(NHA || Seq || LTBGrant || ENCPKH
[KMN−CN || KHA−CN]))).

Figure D.19: Step S5-PK and message M5-PK (EBA)

Step S6-PK

The HA intercepts message M5-PK and performs Verification HA4-PK to

confirm the freshness, integrity, and authenticity of the message.

Verification HA4-PK: The HA checks if NHA’ equals NHA, where NHA’ is the

nonce enclosed in message M5-PK and NHA is the nonce sent by the HA in

message M4-PK. This check is to protect the HA against replay attacks. After a

successful verification, the HA uses KBM to verify the integrity and authenticity

of the received message (as shown in Figure D.20). Specifically, the HA verifies

MACKBM
(EBA) equals First (96, HMAC SHA1 (KBM , (NHA || Seq || LTBGrant ||

ENCPKH
[KMN−CN || KHA−CN]))), where MACKBM

(EBA), NHA, Seq, LTBGrant,

and ENCPKH
[KMN−CN || KHA−CN] are enclosed in message M5-PK. If Ver-

ification HA4-PK fails, the HA will discard the message without any further

action.

248

APPENDIX D. PROPOSED PROTOCOLS

Figure D.20: Verification HA4-PK

A positive outcome of Verification HA4-PK assures the HA that message M5-

PK is from a node that knows the key KBM and is reachable at the CN’s address,

which provides some assurance of the CN’s honesty before performing a heavy

public-key operation. After a successful verification, the HA next decrypts the

coded session keys enclosed in message M5-PK using the home link’s private key

SKH ; DECSKH
[ENCPKH

[KMN−CN || KHA−CN]] = {KMN−CN || KHA−CN}. The

HA then sends CN, Seq, LTBGrant, and KMN−CN to the MN in message M6-PK

via an IPSec ESP secure tunnel (as shown in Figure D.21). The HA also stores

the value of KHA−CN and discards the values of NHA and KBM that it has stored

while running the protocol with the CN.

Figure D.21: Step S6-PK and message M6-PK (BRep)

Step S7-PK

When the MN receives message M6-PK, it decrypts the message using key

KMN−HA, and then uses the CN’s address as an index to search its Binding

Update List. If a list entry is found with a Creation Pending status, the MN will

249

APPENDIX D. PROPOSED PROTOCOLS

perform Verification MN2-PK to confirm the freshness of the message. Other-

wise, i.e. if no entry is found (or if the matched entry is not in a Creation Pending

status), the MN will discard the received message without any further action.

Verification MN2-PK: The MN verifies that Seq’ equals Seq, where Seq’ is the

sequence number enclosed in the message and Seq is the sequence number stored

at the matched list entry in the MN. This verification is to detect replay attacks.

If Verification MN2-PK fails, the MN will discard the message without any

further action.

After Verification MN2-PK, the MN stores the values of KMN−CN and LTBGrant

enclosed in the message at the matched list entry. As LTBGrant indicates a small

binding lifetime, the MN sends message M7-PK to the CN requesting a greater

binding lifetime, confirming the receipt of KMN−CN , and showing the existence at

the CoA. Message M7-PK is identical to message M7-SK shown in Figure D.11.

Steps S8-PK and S9-PK

Steps S8-PK and S9-PK are identical, respectively, to Steps S8-SK and S9-

SK mentioned in Section D (see Figures D.12, D.13, and D.14).

D.3 Detailed CRE-INF Phase Description

Steps S1-INF

Step S1-INF is identical to Step S1-SK and Step S1-PK, but the MN’s HoA

is enclosed in message M1-INF sent from the MN to the CN as shown in Fig-

ure D.22. The MN sends message M1-INF to request home keygen and care-of

keygen tokens, and thus, the MN includes its HoA in the message.

Step S2-INF

Upon receiving message M1-INF, the CN performs Verification CN1-INF to

confirm that the HoA and CoA enclosed in the message belong to different net-

works.

Verification CN1-INF: The CN checks that the subnet prefix part of the HoA

is not equal to the subnet prefix part of the CoA.

250

APPENDIX D. PROPOSED PROTOCOLS

Figure D.22: Step S1-INF and message M1-INF (HoTI&CoTI)

Figure D.23: Step S2-INF and message M2-INF (HoT)

A positive outcome of Verification CN1-INF assures the CN that the two mes-

sages it will send as a response will not be routed to the same network, and thus,

the CN is not involved in an amplification attack against a particular network.

If Verification CN1-INF fails, the CN will discard the message without any

further action. Otherwise, the CN will reply to the MN’s request as in the RR

procedure (see Section 2.5). Specifically, the CN generates a home keygen token

(Token1) and a care-of keygen token (Token2). The CN then sends the Cookie, I,

and Token1 to the MN’s HoA in message M2-INF. The HA intercepts message

M2-INF and forwards it to the MN’s registered CoA via an IPSec ESP secure

tunnel (as shown in Figure D.23). At the same time, the CN sends the Cookie,

J, and Token2 to the MN’s CoA in message M3-INF (as shown in Figure D.24).

I and J are indices that identify home nonce (NI) and care-of nonce (NJ) used in

generating Token1 and Token2, respectively.

251

APPENDIX D. PROPOSED PROTOCOLS

Figure D.24: Step S2-INF and message M3-INF (CoT)

Step S3-INF

When the MN receives message M2-INF or message M3-INF, it uses the CN’s

address as an index to search its Binding Update List. If a list entry is found

with a Route Pending status, the MN will perform Verification MN1-INF

to confirm that the received cookie (Cookie) equals the cookie that was sent in

message M1-INF. Verification MN1-INF is identical to Verification MN1-

SK mentioned in Section D.

If no list entry is found, if the matched list entry is not in a Route Pending

status, or if Verification MN1-INF fails, the MN will discard the received

message without any further action. Otherwise, the MN will record the given

keygen token and nonce index in the list entry and wait for the second mes-

sage. When the MN receives both of message M2-INF and message M3-INF,

it hashes the two tokens together to form a binding management key KBM ; KBM =

SHA1 (Token1 || Token2). The MN then sends CoA, LTBRem, CN, Seq, LTBReq,

I, J, KBM , Modifier, and Collision-Count to the HA in message M4-INF (as

shown in Figure D.25) requesting binding creation with a specific CN. Modi-

fier and Collision-Count are the values of the modifier and the collision-count,

respectively, which are used in generating the MN’s CGA-based HoA. Message

M4-INF is sent via an IPSec ESP secure tunnel; it is encrypted using the secret

key KMN−HA shared between the MN and the HA. Finally, the MN changes the

status of the list entry to Creation Pending indicating that the return of a session

key and an acknowledgement are expected.

Step S4-INF

Step S4-INF is identical to Step S4-PK, but the HA concatenates the values of

252

APPENDIX D. PROPOSED PROTOCOLS

Figure D.25: Step S3-INF and message M4-INF (BReq)

Modifier, Subnet Prefix, and Collision-Count to form the CGA parameters used

in generating the MN’s HoA. Specifically, upon receipt of message M4-INF, the

HA performs Verifications HA1-INF, HA2-INF, and HA3-INF, which are

identical to Verifications HA1-SK, HA2-SK, and HA3-SK, respectively. If

Verification HA1-INF or HA2-INF fails, the HA will discard message M4-

INF without any further action. If Verifications HA3-INF fails, the HA will

use the value of LTBRem instead of LTBReq in message M5-INF sent to the CN.

Figure D.26: Step S4-INF and message M5-INF (EBC)

After Verification HA3-INF, the HA concatenates from left the values of Mod-

ifier, Subnet Prefix, and Collision-Count to form the CGA parameters used in

generating the MN’s HoA, where Modifier and Collision-Count are enclosed in

message M4-INF, and Subnet Prefix is the home link subnet prefix. The HA

then sends message M5-INF (shown in Figure D.26) to the CN to request bind-

ing creation on behalf of the MN. Message M5-INF is identical to message

M4-PK shown in Figure D.16, but the CGA parameters and the home link’s

253

APPENDIX D. PROPOSED PROTOCOLS

self-generated public key are included in the message. The HA also temporar-

ily stores the value of KBM enclosed in message M4-INF and the value of NHA

to verify the authenticity and freshness of the response from that CN, respectively.

Step S5-INF

When the CN receives message M5-INF, it first performs Verification CN2-

INF (as shown in Figure D.27) to confirm the freshness of the message and

reachability of the MN at both the HoA and the CoA.

Verification CN2-INF: The CN uses the values of I and J enclosed in mes-

sage M5-INF to generate Token1 and Token2, respectively, and then hashes the

two tokens to generate KBM as in the RR procedure (see Section 2.5). The CN

next verifies that MACKBM
(EBC) equals First (96, HMAC SHA1 (KBM , (CoA

|| NHA || Seq || LTBReq))), where MACKBM
(EBC), CoA, NHA, Seq, and LTBReq

are enclosed in message M5-INF.

Figure D.27: Verification CN2-INF

A positive outcome of Verification CN2-INF assures the CN that message

M5-INF is fresh, as the key KBM is generated using unexpired tokens. It also

assures the CN that message M5-INF is coming from a node that is reachable at

both the HoA and the CoA, which provides some assurance of the MN’s honesty

before performing heavy computations. This verification is to protect the CN

254

APPENDIX D. PROPOSED PROTOCOLS

against replay attacks and resource exhaustion DoS attacks. After a successful

verification, the CN next performs Verification CN3-INF.

Verification CN3-INF: The CN runs the CGA-based address verification al-

gorithm (see Figures 3.2 in Section 3.1) to confirm the authenticity of HoA.

If the outcome of Verification CN3-INF is positive, the CN is assured that the

HoA and PKH enclosed in message M5-INF are bound. The CN then performs

Verification CN4-INF to confirm the authenticity of message M5-INF.

Verification CN4-INF: The CN verifies the correctness of HA’s signature in

message M5-INF. Verification CN4-INF is identical to Verification CN2-

PK shown in Figure D.18.

A positive outcome of Verification CN4-INF assures the CN that message

M5-INF is indeed from a node that knows the private key corresponding to the

public key used in generating the HoA.

If Verification CN2-INF, CN3-INF, or CN4-INF is negative, the CN will

discard message M5-INF without any further action. Otherwise, the CN will

perform as in Step S5-PK. Specifically, the CN will generate KMN−CN and

KHA−CN , create a Binding Cache entry, and store the binding between the MN’s

HoA and CoA, as well as the values of Seq, LTBReq, KMN−CN and KHA−CN at the

entry. In addition, the CN sets the granted binding lifetime LTBGrant between

the MN’s HoA and CoA to a MIN BINDING LIFETIME value. Finally, the CN

sends message M6-INF to the HA. Message M6-INF is identical to message

M5-PK shown in Figure D.19.

Steps S6-INF, S7-INF, S8-INF, and S9-INF

Steps S6-INF, S7-INF, S8-INF, and S9-INF are identical, respectively, to

Steps S6-PK, S7-PK, S8-PK, and S9-PK mentioned in Section D.

255

APPENDIX D. PROPOSED PROTOCOLS

D.4 Detailed UPD Phase Description

Step S1-UPD

The MN generates a fresh key KBM = HMAC SHA1 (KMN−CN , (HoA || CoA

|| CN || Seqnew)), where KMN−CN is the shared session key established between

the MN and the CN in the creation phase, and Seqnew is a new sequence number

that is greater than the previous sequence number sent to that CN. The MN then

sends HoA, CoA, Seqnew, LTBReq, Ack, Authenticator, and MACKBM
(BU) to the

CN in message M1-UPD (as shown in Figure D.28), where:

• Ack is an acknowledge bit that may be set to request the return of a binding

acknowledgement message.

• Authenticator is a coded value used to protect the MN’s HA against replay

attacks. Authenticator = ENCKMN−HA
[HoA || CoA || CN || LTBRem], where

KMN−HA is the secret key shared between the MN and the HA (Assumption

A2), and LTBRem is the current remaining lifetime for the binding of HoA and

CoA at both the MN’s Binding Update List entry for the HA and the HA’s

Binding Cache entry for the MN. Authenticator will be forwarded by the CN

to the HA in message M3-UPD to convenience the HA that the message is

fresh.

• MACKBM
(BU) is a keyed hash value used to ensure the integrity and authen-

ticity of message M1-UPD; MACKBM
(BU) = First (96, HMAC SHA1 (KBM ,

(HoA || CoA || Seqnew || LTBReq || Ack || Authenticator))).

Figure D.28: Step S1-UPD and message M1-UPD (BU)

The MN also changes the status of the list entry. Specifically, if the MN sets

the Ack bit, then it will change the status to a Binding Pending indicating that

256

APPENDIX D. PROPOSED PROTOCOLS

it is waiting for an acknowledgement; otherwise, it will change the status to a

Binding Complete indicating the binding update is complete.

If the MN sends message M1-UPD to the CN in which the Ack bit is set and

does not receive a matching response within a retransmission interval of one sec-

ond, the MN will resend the message with a new sequence number that is greater

than the value of the sequence number used for the previous transmission of this

message. The MN doubles the retransmission interval upon each retransmission

in the same way, as specified in the base specification of the MIPv6 protocol ([5],

see also Section 2.5).

Step S2-UPD

Upon receiving message M1-UPD, the CN uses HoA enclosed in the message to

find a matched cache entry. The CN then performs Verification CN1-UPD to

confirm the freshness of the message.

Verification CN1-UPD: The CN verifies that Seqnew is greater than Seq, where

Seqnew is the sequence number enclosed in the message and Seq is the sequence

number stored at the matched cache entry in the CN. This verification is to detect

replay attacks.

After a successful verification, the CN generates key KBM based on key KMN−CN

shared with the MN and on items enclosed in the message. The CN then performs

Verification CN2-UPD (as shown in Figure D.29) to confirm the integrity and

authenticity of the message.

Verification CN2-UPD: The CN verifies that MACKBM
(BU) equals First (96,

HMAC SHA1 (KBM , (HoA || CoA || Seqnew || LTBReq || Ack || Authenticator))),

where MACKBM
(BU), HoA, CoA, Seqnew, LTBReq, Ack, and Authenticator are

enclosed in message M1-UPD.

If Verification CN1-UPD or CN2-UPD fails (or if no cache entry is found),

the CN will discard the message without any further action. Otherwise, the CN

will register and use the new CoA while concurrently requesting home network’s

confirmation of that CoA. Specifically, the CN updates the matched cache entry

with the values of CoA, Seqnew, and Ack enclosed in message M1-UPD. The CN

257

APPENDIX D. PROPOSED PROTOCOLS

Figure D.29: Verification CN2-UPD

also sets the entry in an unconfirmed state and limits the amount of data sent to

the CoA by setting the granted binding lifetime to a MIN BINDING LIFETIME

value. In addition, the CN sends subsequent packets destined for the MN to

the unconfirmed CoA for as long as the lifetime is granted for the binding. The

CN then generates a fresh key KBC = HMAC SHA1 (KHA−CN , (HoA || CoA

|| CN || NCN)), where KHA−CN is the shared session key established between

the MN’s home network and the CN in the creation phase, and NCN is a fresh

nonce. Finally, the CN sends CoA, LTBReq, Authenticator, NCN , and MACKBC

(BCReq) to the MN’s HoA in message M2-UPD (as shown in Figure D.30) to

request home network’s confirmation of the MN’s claimed CoA, where MACKBC

(BCReq) is a keyed hash value used to ensure the integrity and authenticity of

message M2-UPD; MACKBC
(BCReq) = First (96, HMAC SHA1 (KBC , (HoA

|| CoA || LTBReq || Authenticator || NCN))).

Figure D.30: Step S2-UPD and message M2-UPD (BCReq)

258

APPENDIX D. PROPOSED PROTOCOLS

The CN limits the number of M1-UPD messages that could be received from

unconfirmed CoAs. Normally, the MN’s HA intercepts packets on the home link

destined for the MN’s HoA. Therefore, when the CN sends message M2-UPD

to the MN’s HoA, it is expecting that the message will be intercepted by the HA.

However, the MN could return to its home link and cheat the CN with a fake CoA

in message M1-UPD. In this case, the MN would receive and ignore message

M2-UPD sent by the CN and would continue to send message M1-UPD. By

limiting the number of M1-UPD messages received from unconfirmed CoAs, the

CN can prevent the MN from bypassing the confirmation request by continuously

sending M1-UPD message without involving the request.

Step S3-UPD

The HA intercepts message M2-UPD and generates KBC based on KHA−CN

shared with the CN and on items enclosed in the message. The HA then performs

Verification HA1-UPD (as shown in Figure D.31) to confirm the integrity and

authenticity of the message.

Verification HA1-UPD: The HA verifies that MACKBC
(BCReq)’ equals First

(96, HMAC SHA1 (KBC , (HoA’ || CoA’ || LTBReq’ || Authenticator’ || NCN ’))),

where MACKBC
(BCReq)’, HoA’, CoA’, LTBReq’, Authenticator’, and NCN ’ are

enclosed in message M2-UPD.

Figure D.31: Verification HA1-UPD

A positive outcome of Verification HA1-UPD assures the HA that message

M2-UPD is coming from the CN and has not been altered in transit. After

259

APPENDIX D. PROPOSED PROTOCOLS

a successful verification, the HA performs Verification HA2-UPD to confirm

that the Authenticator enclosed in the message is freshly generated by the MN;

Verification HA2-UPD is to confirm the freshness of message M2-UPD.

Verification HA2-UPD: The HA decrypts the Authenticator enclosed in mes-

sage M2- UPD using key KMN−HA shared with the MN; DECKMN−HA
[Au-

thenticator] = {HoA” || CoA” || CN” || LTBRem”}. The HA then checks if the

decrypted values equal the values enclosed in the message. That is to confirm

that HoA” equals HoA’, CoA” equals CoA’, and CN” equals CN’, where HoA”,

CoA”, and CN” are the decrypted items, and HoA’, CoA’, and CN’ are the

items enclosed in the message. The HA also checks whether or not LTBRem” is

fresh. That is, if (LTBRem - tvalid) ≤ LTBRem” ≤ (LTBRem + tvalid) then it is

fresh, where LTBRem is the remaining binding lifetime stored locally at HA in

Binding Cache entry for the HoA when message M2-UPD is received; and tvalid

is the validity period agreed upon priorly between MN and HA (Assumption A3).

A positive outcome of Verification HA2-UPD assures the HA that the Au-

thenticator is generated using a fresh timestamp (LTBRem”) for that particular

CN, and therefore message M2-UPD is fresh. After a successful verification,

the HA performs Verification HA3-UPD to confirm that CoA’ enclosed in the

message matches the MN’s current location.

Verification HA3-UPD: The HA checks if CoA’ equals CoA, where CoA’ is

the MN’s care of address enclosed in message M2-UPD and CoA is the MN’s

care-of address stored locally at HA in the Binding Cache entry for the HoA

enclosed in the message.

A positive outcome of Verification HA3-UPD assures the HA that: (1) the

CN already knows the current location of the MN; and (2) the MN is not cheating

the CN with a fake CoA. After a successful verification, the HA performs Veri-

fication HA4-UPD to confirm that the binding lifetime requested by the MN

(LTBReq’) is not greater than the remaining lifetime (LTBRem) for the binding of

HoA and CoA at the HA.

260

APPENDIX D. PROPOSED PROTOCOLS

Verification HA4-UPD: The HA checks if LTBReq’ ≤ LTBRem, where LTBReq’

is the binding lifetime request enclosed in message M2-UPD and LTBRem is the

remaining binding lifetime stored locally at HA in Binding Cache entry for the

HoA when message M2-UPD is received. This verification is to confirm that the

binding lifetime requested by the MN is not greater than the remaining lifetime

for the binding of HoA and CoA at the HA. If the verification fails, the HA will

use the value of LTBRem instead of LTBReq’ in message M3-UPD sent to the CN.

If Verification HA1-UPD, HA2-UPD, or HA3-UPD fails, the HA will dis-

card message M2-UPD without any further action. Otherwise, the HA will send

CoA, LTBReq, NCN , and MACKBC
(BCRep) to the CN in message M3-UPD (as

shown in Figure D.32) for confirming the claimed CoA, where MACKBC
(BCRep)

is a keyed hash value used to ensure the integrity and authenticity of message

M3-UPD; MACKBC
(BCRep) = First (96, HMAC SHA1 (KBC , (HoA || CoA ||

LTBReq || NCN))).

Figure D.32: Step S3-UPD and message M3-UPD (BCRep)

Step S4-UPD

Upon receiving message M3-UPD, the CN uses the HoA enclosed in the message

to find a matched cache entry. The CN then performs Verification CN3-UPD

to confirm the freshness, integrity, and authenticity of the message.

Verification CN3-UPD: The CN checks if NCN ’ equals NCN , where NCN ’ is

the nonce enclosed in message M3-UPD and NCN is the nonce sent by the CN in

message M2-UPD. This check is to protect the CN against replay attacks. After

261

APPENDIX D. PROPOSED PROTOCOLS

a successful verification, the CN uses KBC to verify the integrity and authenticity

of the received message (as shown in Figure D.33). Specifically, the CN verifies

that MACKBC
(BCRep) = First (96, HMAC SHA1 (KBC , (HoA || CoA || LTBReq

|| NCN))), where MACKBC
(BCRep), HoA, CoA, LTBReq, and NCN are enclosed

in message M3-UPD. If Verification CN3-UPD fails, the CN will discard the

message without any further action.

Figure D.33: Verification CN3-UPD

After a successful verification, the CN updates the matched cache entry by

changing its status to be confirmed and by setting the granted binding lifetime

(LTBGrant) to a value that is less than or equal to LTBReq enclosed in message

M3-UPD. Finally, the CN checks the Ack bit of the matched cache entry. If

the MN has requested an acknowledgement, the CN will send Seqnew, LTBGrant,

and MACKBM
(BA) to the MN in message M4-UPD (as shown in Figure D.34)

for acknowledging the binding of the CoA, where MACKBM
(BA) is a keyed

hash value used to ensure the integrity and authenticity of message M4-UPD;

MACKBM
(BA) = First (96, HMAC SHA1 (KBM , (HoA || CoA || CN || Seqnew

|| LTBGrant))).

Step S5-UPD

Upon receiving message M4-UPD, the MN uses the CN’s address to find a

matched list entry, and then performs Verification MN1-UPD to confirm the

freshness, integrity and authenticity of the message.

262

APPENDIX D. PROPOSED PROTOCOLS

Figure D.34: Step S4-UPD, message M4-UPD (BA), and Step S5-UPD

Verification MN1-UPD: The MN verifies that Seqnew’ equals Seqnew, where

Seqnew’ is the sequence number enclosed in message M4-UPD and Seqnew is the

sequence number stored at the matched list entry in the MN. This verification is to

detect replay attacks. After a successful verification, the MN uses KBM to verify

the integrity and authenticity of the received message (as shown in Figure D.35).

Specifically, the MN verifies that MACKBM
(BA) equals First (96, HMAC SHA1

(KBM , (HoA || CoA || CN || Seqnew || LTBGrant))), where MACKBM
(BA), HoA,

CoA, CN, Seqnew, and LTBGrant are enclosed in message M4-UPD.

Figure D.35: Verification MN1-UPD

If no matched list entry is found for that CN, or if Verification MN1-UPD

fails, the MN will discard the message without any further action. Otherwise, the

MN will update the status of the list entry to Binding Complete indicating that

the binding has been acknowledged. In addition, the MN adjusts the remaining

binding lifetime depending on the given granted binding lifetime. The update

phase for the protocols in the stationary CN case is now complete.

263

APPENDIX D. PROPOSED PROTOCOLS

D.5 Detailed DEL Phase Description

Step S1-DEL

Step S1-DEL is identical to Step S1-UPD, but the Authenticator is not en-

closed in message M1-DEL sent from the MN to the CN. In addition, the MN

sets the CoA equal to its HoA and the binding lifetime request (LTBReq) to ‘zero’

as shown in Figure D.36.

Figure D.36: Step S1-DEL and message M1-DEL (BU)

Step S2-DEL

The first part of Step S2-DEL is identical to the first part of Step S2-UPD.

Specifically, the CN uses the MN’s HoA as an index to search its Binding Cache.

If a cache entry is found, the CN will perform Verifications CN1-DEL and

CN2-DEL, which are identical to Verifications CN1-UPD and CN2-UPD,

respectively. Verification CN1-DEL is to confirm the freshness of message

M1-DEL; and Verification CN2-DEL is to confirm the authenticity of the

message.

If Verification CN1-DEL or CN2-DEL fails (or if no cache entry is found),

the CN will discard the message without any further action. Otherwise, the CN

will delete the Binding Cache entry for the MN and, if requested, will send Seqnew

and MACKBM
(BA) to the MN in message M2-DEL (as shown in Figure D.37)

for acknowledging the deletion of the binding, where MACKBM
(BA) is a keyed

hash value used to ensure the integrity and authenticity of message M2-DEL;

MACKBM
(BA) = First (96, HMAC SHA1 (KBM , (HoA || CN || Seqnew))).

264

APPENDIX D. PROPOSED PROTOCOLS

Figure D.37: Step S2-DEL, message M2-DEL (BA), and Step S3-DEL

Step S3-DEL

Step S3-DEL is identical to Step S5-UPD, but after Verification MN1-

DEL, which is identical to Verification MN1-UPD, the MN will delete the

Binding Update List entry for the CN. The deletion phase for the protocols in

the stationary CN case is now complete.

265

Appendix E

Protocol Composition Logic

(PCL)

E.1 Programming Language

names N ::= X̂ name.

threads P ::= X thread.

keys K ::= k basic key.

k inverse key.

nonce n ::= n nonce.

numbers i ::= i number.

i1 ::= succ(i2) i1 > i2.

terms t ::= x variable term.

name(N) name.

thread(P) thread.

key(K) key.

nonce(n) nonce.

number(i) number.

t1,...,i2 tuple of terms.

ENCk{t} encrypted term.

HASHk{t} keyed hash term.

HASH{t} hashed term.

SIGk{t} signed term.

266

APPENDIX E. PROTOCOL COMPOSITION LOGIC (PCL)

actions a ::= send t send a term t.

receive x receive into var x.

new x generate a new term.

isLess i1,i2 check that i1 < i2.

hash m hash m.

hash m,k hash m using k.

enc m,k encrypt m using k.

dec m,k decrypt m using k.

sign m,k sign m using k.

verify m,k verify the signature.

match t1/t2 match a term.

E.2 Syntax of the Logic

Action formulas:

a::= Send(X,m) principal X̂ has sent message m.

Receive(X,m) principal X̂ has received message m.

New(X,t) principal X̂ has generated new term t.

SymEnc(X,t,k) principal X̂ has computed encrypted term t using symmetric key k.

PkEnc(X,t,k) principal X̂ has computed encrypted term t using public key k.

SymDec(X,t,k) principal X̂ has computed decrypted term t using symmetric key k.

PkDec(X,t,k) principal X̂ has computed decrypted term t using its private key k.

Sign(X,t,k) principal X̂ has signed term t using its private key k.

Verify(X,t,k) principal X̂ has verified signed term t using public key k.

Hash(X,t,k) principal X̂ has computed hashed term t using key k.

Hash(X,t) principal X̂ has computed hashed term t.

IsLess(i1,i2) number i1 is less than number i2.

Formulas:

φ::= a any action formula.

a1 < a2 both actions have happened and action a2 has happened after action

a1.

φ1 ∧ φ2 both formula φ1 and formula φ2 hold

267

APPENDIX E. PROTOCOL COMPOSITION LOGIC (PCL)

¬ φ formula φ is false

∃x.φ formula φ exists in thread X

3 φ formula φ holds in some state in the past.

	 φ formula φ holds in the previous state.

Has(X,t) principal X̂ possesses term t. This is because it has generated

t, has received t in the clear, or has received t under encryption

where the decryption key is known.

Start(X) principal X̂ starts a new thread X; X̂ did not execute any actions

in the past in this thread.

Contains(t1,t2) term t1 contains term t2 as a sub-term.

Fresh(X,t) term t generated by principal X̂ is fresh in the sense that no

one else has seen any term containing t as a sub-term.

Gen(X,t) X is the originating thread of the term t.

FirstSend(X,t,m) principal X̂ has sent the term t for the first time when X̂ has

sent the message m.

Computes(X,t) principal X̂ possesses enough information to compute term t.

Honest(X̂) principal X̂ assumes a particular role of the protocol and does

exactly the actions prescribed by that role.

SafeMsg(m,s,k) every occurrence of secret s in message m is protected by key k.

SendsSafeMsg(X,s,k) ≡ ∀m.(Send(X,m) ⊃ SafeMsg(m,s,k)), all messages sent by

thread X are ‘Safe’.

SafeNet(s,k) ≡ ∀X.SendsSafeMsg(X,s,k), all messages sent by all threads are

‘Safe’.

KeyHonest(K) ≡ ∀X.∀k.∈K.(Has(X,k)⊃Honest(X̂)), a thread generating a se-

cret belong to honest principals.

OrigHonest(s) ≡ ∀X.(New(X,s)⊃Honest(X̂)), all threads with access to a rel-

evant key belong to honest principals.

KOHonest(s,K) ≡ KeyHonest(K) ∧ OrigHonest(s), the conjunction of the two

predicates.

Modal formulas:

Ψ::= θ [a]X φ this means starting from a state where formula θ is true, after

actions ‘a’ are executed by the principal X̂, the formula φ is

true in the resulting state.

268

APPENDIX E. PROTOCOL COMPOSITION LOGIC (PCL)

E.3 Proof System

Axioms for protocol actions:

AA1 φ [a]X 3 a if X̂ has executed an action in some role, then

the corresponding predicate asserting that the

action has occurred in the past is true.

AA2 Start(X) [a]X ¬ a(X) at the start of a thread any action predicate

applied to the thread is false.

AA3 ¬Send(X,t) [b]X ¬Send(X,t), if

σSend(X,t) 6= σb for all substi-

tutions σ

the predicate asserting thread X has not sent

the term t remains false after any action that

does not send a term that unified with t.

AA4 φ [a1,...,ak]X a1 < ... < ak after thread X does actions a1, ..., ak in se-

quence, the action predicates corresponding to

the actions are ordered in the same sequence.

AN1 New(X,t) ∧ New(Y,t) ⊃ X̂=Ŷ a particular nonce is generated by a unique

thread.

AN2 φ [new t]X Has(Y,t) ⊃ Ŷ=X̂ if thread X generates a new nonce t, and does

no further actions, then no one else knows t.

AN3 φ[new t]X Fresh(X,t) if a thread generates a new value, then this

value is fresh.

AN4 Fresh(X,t) ⊃ Gen(X,t) if a fresh value t is known to a thread X, then

X is the originating thread of t.

AR1 Receive(X,p(t1)) [match p(t1) as

p(t2)]X Receive(X,p(t2))

it is used to model obtaining information about

structure of terms as they received.

AR2 a(x) [verify x,t,k]X a(SIGk{t}) it is used to model appropriate substitution of

signature verification inside the action predi-

cate a.

AR3 a(x) [m’ := dec x,t,k]X

a(ENCk{t})
it is used to model appropriate substitution of

decryption inside the action predicate a

Preservation axioms:

P1 Persist(X,t) [a]X Persist(X,t) for

Persist ∈ {Has, FirstSend, a<b,

a}

certain predicates continues to hold after fur-

ther actions.

P2 Fresh(X,t) [a]X Fresh(X,t) where

t 6⊆ a

freshness of a term holds across actions that do

not send out some term containing it.

269

APPENDIX E. PROTOCOL COMPOSITION LOGIC (PCL)

Possession axioms:

ORIG 3New(X,t) ⊃ Has(X,t) principal X̂ possesses term t if X̂ freshly gen-

erated it.

REC 3Receive(X,t) ⊃ Has(X,t) principal X̂ possesses term t if X̂ received it in

some message.

TUP Has(X,t1) ∧ Has(X,t1) ⊃
Has(X,(t1,t2))

principal X̂ can construct a tuple if the parts

are known.

PROJ Has(X,(t1,t2)) ⊃ Has(X,t1) ∧
Has(X,t1)

principal X̂ can decompose a tuple into its com-

ponents.

Temporal ordering axioms:

FS1 Fresh(X,t) [send m]X

FirstSend(X,t,m)

where t ⊆ m

if X̂ generated a fresh term t and sent it out

in message m, then this is the first such send

event.

FS2 FirstSend(X,t,m) ∧ a(Y,t’) ⊃
Send(X,t) < a(Y,t’) where X 6=
Y and t ⊆ t’

if Ŷ did some action with a term t’, which con-

tains a term t that first sent inside a message m

by X̂ as a sub-term, then that send must have

occurred before Ŷ ’s action.

Hash axioms:

HASH1 Computes(X,HASHk{t})⊃
Has(X,k) ∧ Has(X,t)

if a principal has hashed term t using key k, then

the principal possesses both t and k.

HASH2 Computes(X,HASHk{t})⊃
Has(X,HASHk{t})

if a principal can hash term t using key k, then

the principal possesses the hashed term.

HASH3 Receive(X,HASHk{t})⊃
∃Z,m.Computes(Z,HASHk{t})
∧Send(Z,m)∧
Contains(m,HASHk{t})

if X̂ has received a hashed term, then there must

be another principal Ẑ that hashed and sent the

term in the past.

HASH4 Has(X,HASHk{t})⊃
Computes(X,HASHk{t})∨
∃Z,m.Computes(Z,HASHk{t})
∧Send(Z,m)∧
Contains(m,HASHk{t})

if X̂ possesses a hashed term, then either X̂

hashed the term or another principal Ẑ hashed

and sent the term in the past.

270

APPENDIX E. PROTOCOL COMPOSITION LOGIC (PCL)

Encryption and signature axioms:

Where: Enc ∈ {SymEnc,PKEnc} and Dec ∈ {SymDec,PKDec}

SEC Honest(X̂) ∧ PkDec(Y,ENCk{t},k) ⊃ Ŷ=X̂ a principal needs to possess the

private key in order to decrypt

a term encrypted with the corre-

sponding public key.

VER Honest(X̂) ∧ Verify(Y,SIGk{t},k) ∧ X̂ 6= Ŷ ⊃
∃X.Send(X,m) ∧ Contains(m,SIGk{t})

a principal can not deny signing

a term (unforgeability of signa-

tures).

ENC0 [t’ := enc t,k;]X Enc(X,t,k) if a principal has encrypted term

t using key k in some role, then

the corresponding predicate as-

serting that the encryption has

occurred is true

ENC1 Has(X,t)∧Has(X,k)⊃ Computes(X,ENCk{t})
⊃ Has(X,ENCk{t})

principal X̂ can encrypt a term t

using a key k if the term and the

key are known.

ENC2 π(X,t,k) [a]X π(X,t,k), for π ∈ {Enc,¬Enc},
where either a 6= enc or a = (enc q,k’) such

that (q,k’) 6= (m,k)

the predicate asserting thread X

has (not) encrypted term t using

key k remains true after any ac-

tion that does not encrypt a term

using a key that unified with t

and k respectively.

ENC3 Computes(X,ENCk{t}) ⊃ Has(X,ENCk{t}) ⊃
Has(X,k) ∧ Has(X,t)

if a principal has encrypted term

t using key k, then the principal

possesses both t and k.

ENC4 SymDec(X,ENCk{t},k) ⊃ ∃Y.Send(Y,m) ∧
Contains(m,ENCk{t})

If X̂ can decrypt a term that

is encrypted using a secret key

shared with Ŷ , then it must be Ŷ

that encrypted and sent the term

in the past.

PENC PKDec(X,ENCk{t},k) ⊃ ∃Z.Send(Z,m) ∧
Contains(m,ENCk{t})

if X̂ can decrypt a term using

its private key, then there must

be another principal Ẑ that en-

crypted and sent the term in the

past.

271

APPENDIX E. PROTOCOL COMPOSITION LOGIC (PCL)

Secrecy axioms:

SAF1 SafeMsg(m0.m1,s,k) ≡ SafeMsg(m0,s,k) ∧ SafeMsg(m1,s,k)

SAF2 SafeMsg(ENCk{m},s,k) ≡ SafeMsg(m,s,k) ∨ k ∈ K

SAF3 SafeMsg(ENCk{m},s,k) ≡ SafeMsg(m,s,k) ∨ k ∈ K

SAF4 SafeMsg(HASH{m},s,k)

SAF5 SafeMsg(HASHk{m},s,k)

SAF6 SafeMsg(SIGk{m},s,k)

SH0 Safe(m’,HASHk{m}) , m’ is an atomic term different from m

SH1 Safe(m’.m”,HASHk{m}) ≡ Safe(m’,HASHk{m}) ∧ Safe(m”,HASHk{m})

SH2 Safe(SIGk′{m’},HASHk{m}) ≡ Safe(m’,HASHk{m})

SH3 Safe(ENCk′{m’},HASHk{m}) ≡ Safe(m’,HASHk{m})

SH4 Safe(HASHk′{m’},HASHk{m}) ≡ k6=k’ ∨ m’ 6=m

SH5 Safe(ENCk′{m’},HASHk{m}) ≡ Safe(m’,HASHk{m})

HPOS SafeNet(HASHk{m}) ∧ Has(X,HASHk{m}) ⊃ Has(X,k)

Induction rule:

NET ∀p ∈ Q.∀P ∈ BS(p).

SafeNet(s,k) [P]X Honest(X̂) ∧ φ ⊃ SendsSafeMsg(X,s,k)

Q ` KOHonest(s,k) ∧ φ ⊃ SafeNet(s,k)

NET0 SafeNet(s,k) []X SendsSafeMsg(X,s,k)

NET1 SafeNet(s,k) [receive m]X SafeMsg(m,s,k)

NET2 SendsSafeMsg(X,s,k) [a]X SendsSafeMsg(X,s,k), where a is not a send.

NET3 SendsSafeMsg(X,s,k) [send m]X SafeMsg(m,s,k) ⊃ SendsSafeMsg(X,s,k)

POS SafeNet(s,k) ∧ Has(X,m) ∧ ¬SafeMsg(m,s,k)⊃ ∃k ∈ K.Has(X,k) ∨ New(X,s)

POSL ψ ∧ SafeNet(s,k) [P]X SendsSafeMsg(X,s,k) ∧ Has(Y,m) ∧ ¬SafeMsg(m,s,k)

ψ ∧ SafeNet(s,k) [P]X ∃k ∈ K.Has(Y,k) ∨ New(Y,s)

, where P is any basic sequence of actions

Honesty rule:

HON Start(X) []X φ ∀ p ∈ Q.∀ P ∈ BS(p).φ [P]X φ

Honest(X̂) ⊃ φ

, where P is any basic sequence of actions

272

Appendix F

Formal Verification using PCL

F.1 CRE-SK Phase.

This section presents a formal correctness proof of the CRE-SK phase using the

PCL method. It first models the CRE-SK phase using a simple “protocol pro-

gramming language”. It then formulates the security properties that the phase

ought to satisfy from the CN’s point of view. Finally, it proves the correctness of

the phase.

Modelling the CRE-SK phase

SK : MobileNode = (MN, ĤA, ĈN , LTBRem, LTBReq , HoA, CoA, CNA, Ack, KMN−HA)

[new Cookie; msg1 := CoA, Cookie; send M̂N , ĈN , msg1;

receive ĈN , M̂N , msg2; match msg2/Cookie, J, Token2; match Cookie/Cookie;

new seq; ENC3 := enc HoA || CoA || LTBRem || CNA || seq || LTBReq || J || Token2, KMN−HA;

msg3 := ENC3; send M̂N , ĤA, msg3;

receive ĤA, M̂N , msg4; match msg4/ENC4; DEC4 := dec ENC4, KMN−HA;

match DEC4/CNA, Seq, KBC1; match seq/seq;

receive ĈN , M̂N , msg6; match msg6/seq, LTBGrant, ENC6, macEBA; match seq/seq;

KMN−CN := dec ENC6, KBC1;

match macEBA/hash(HoA || CoA || CNA || seq || LTBGrant, KMN−CN);

new seqnew such that seqnew := succ(seq);

macBCC := hash(HoA || CoA || seqnew || LTBReq || Ack, KMN−CN);

msg7 := HoA, CoA, seqnew, LTBReq , Ack, macBCC ; send M̂N , ĈN , msg7;

receive ĈN , M̂N , msg8; match msg8/seqnew, LTBGrant, macBA; match seqnew/seqnew;

match macBA/hash(HoA || CoA || CNA || seqnew || LTBGrant, KMN−CN);

]MN

273

APPENDIX F. FORMAL VERIFICATION USING PCL

SK : HomeAgent = (HA, idHA, LTBRem, HoA, CoA, KMN−HA, KHA−CN)

[receive M̂N , ĤA, msg3; match msg3/ENC3; DEC3 := dec ENC3, KMN−HA;

match DEC3/HoA, CoA, LTBRem, CNA, seq, LTBReq , J, Token2;

match HoA/HoA; match CoA/CoA; match LTBRem/LTBRem; isLess(LTBReq , LTBRem);

new NHA1; KBC1 := hash(HoA || CoA || CNA || NHA1, KHA−CN);

new NHA2; KBC2 := hash(HoA || CoA || CNA || NHA2, KHA−CN);

ENC4 := enc CNA || seq || KBC1, KMN−HA; msg4 := ENC4; send ĤA, M̂N , msg4;

macEBC := hash(HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq , KBC2);

msg5 := HoA, CoA, idHA, NHA1, NHA2, seq, LTBReq , J, Token2, macEBC ; send ĤA, ĈN , msg5;

]HA

SK : CorrespondentNode = (CN, CNA, LTBGrant, KCN , idHA, KHA−CN)

[receive M̂N , ĈN , msg1; match msg1/CoA, Cookie;

new J; new NJ ; Token2 := hash(CoA || NJ || 1, KCN);

msg2 := Cookie, J, Token2; send ĈN , M̂N , msg2;

receive ĤA, ĈN , msg5; match msg5/HoA, CoA, idHA, NHA1, NHA2, seq, LTBReq , J, Token2, macEBC ;

match Token2/hash(CoA || NJ || 1, KCN);

KBC1 := hash(HoA || CoA || CNA || NHA1, KHA−CN);

KBC2 := hash(HoA || CoA || CNA || NHA2, KHA−CN);

match macEBC/hash(HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq , KBC2);

new KMN−CN ; ENC6 := enc KMN−CN , KBC1;

macEBA := hash(HoA || CoA || CNA || seq || LTBGrant, KMN−CN);

msg6 := seq, LTBGrant, ENC6, macEBA; send ĈN , M̂N , msg6;

receive M̂N , ĈN , msg7; match msg7/HoA, CoA, seqnew, LTBReq , Ack, macBCC ;

match HoA/HoA; match CoA/CoA; isLess(seq, seqnew);

match macBCC/hash(HoA || CoA || seqnew || LTBReq || Ack, KMN−CN);

macBA := hash(HoA || CoA || CNA || seqnew || LTBGrant, KMN−CN);

msg8 := seqnew, LTBGrant, macBA; send ĈN ,M̂N , msg8;

]CN

Table F.1: CRE-SK phase written in PCL language

274

APPENDIX F. FORMAL VERIFICATION USING PCL

Security Properties

(1) Session Authentication for the CN

φSK,CN−auth ::= Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA) ⊃

∃(M̂N ∧ ĤA).ActionsInOrder(

Receive(CN, M̂N , ĈN , msg1), Send(CN, ĈN , M̂N , msg2),

Receive(MN, ĈN , M̂N , msg2), Send(MN, M̂N , ĤA, msg3),

Receive(HA, M̂N , ĤA, msg3), Send(HA, ĤA, M̂N , msg4),

Send(HA, ĤA, ĈN , msg5),

(Receive(MN, ĤA, M̂N , msg4) ∧ Receive(CN, ĤA, ĈN , msg5)),

Send(CN, ĈN , M̂N , msg6), Receive(MN, ĈN , M̂N , msg6),

Send(MN, M̂N , ĈN , msg7), Receive(CN, M̂N , ĈN , msg7),

Send(CN, ĈN , M̂N , msg8))

(2) Key Secrecy for the CN

φSK,CN−sec ::= Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA) ∧ Has(Ẑ, KMN−CN)) ⊃

Ẑ = ĈN ∨ Ẑ = M̂N ∨ Ẑ = ĤA

CN Security Guarantee (Session Authentication and Key Secrecy)

ΓSK1 ∧ ΓSK2 ∧ θSK1 ∧ θSK2 `[SK : CorrespondentNode]CN Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA)

∧ ĈN 6= M̂N 6= ĤA ⊃ φSK,CN−auth ∧ φSK,CN−sec

θSK1 := (Honest(M̂N) ∧ Honest(ĤA) ∧ Has(Ẑ, KMN−HA)) ⊃ Ẑ = M̂N ∨ Ẑ = ĤA

θSK2 := (Honest(ĈN) ∧ Honest(ĤA) ∧ Has(Ẑ, KHA−CN)) ⊃ Ẑ = ĈN ∨ Ẑ = ĤA

ΓSK1 := Computes(Ẑ, HASH(Ẑ, HoA || CoA || CNA || NHA1, KHA−CN)) ⊃
¬(Send(Ẑ, m) ∧ Contains(m, HASH(Ẑ, HoA || CoA || CNA || NHA1, KHA−CN)))

ΓSK2 := Computes(Ẑ, HASH(Ẑ, HoA || CoA || CNA || NHA2, KHA−CN)) ⊃
¬(Send(Ẑ, m) ∧ Contains(m, HASH(Ẑ, HoA || CoA || CNA || NHA2, KHA−CN)))

Table F.2: CRE-SK phase preconditions and invariants

275

APPENDIX F. FORMAL VERIFICATION USING PCL

Proof of Session Authentication for the CN

AA1, AR1,

AA4

[SK : CorrespondentNode]CN Receive(CN, M̂N , ĈN , msg1) < Send(CN, ĈN , M̂N ,

msg2) < Receive(CN, ĤA, ĈN , msg5) < Send(CN, ĈN , M̂N , msg6) < Receive(CN, M̂N ,

ĈN , msg7) < Send(CN, ĈN , M̂N , msg8)

(1)

AN3 [new NJ ; Token2 := hash(CoA || NJ || 1, KCN);]CN Fresh(CN, Token2)

(2)

(2), FS1, P1 [new J; new NJ ; Token2 := hash(CoA || NJ || 1, KCN); msg2 := Cookie, J, Token2; send

ĈN , M̂N , msg2;]CN FirstSend(CN, Token2, msg2)

(3)

(1), (3), FS2 [new J; new NJ ; Token2 := hash(CoA || NJ || 1, KCN); msg2 := Cookie, J, Token2; send

ĈN , M̂N , msg2;]CN Receive(MN, ĈN , M̂N , msg2) ∧ M̂N 6= ĈN ⊃ Send(CN, ĈN ,

M̂N , msg2) < Receive(MN, ĈN , M̂N , msg2)

(4)

AR1,

HASH3,

ΓSK2

θSK2 [receive ĤA, ĈN , msg5; match msg5/HoA, CoA, idHA, NHA1, NHA2, seq, LTBReq ,

J, Token2, macEBC ; match Token2/hash(CoA || NJ || 1, KCN); KBC1 := hash(HoA

|| CoA || CNA || NHA1, KHA−CN); KBC2 := hash(HoA || CoA || CNA || NHA2,

KHA−CN); match macEBC/hash(HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq ,

KBC2);]CN Receive(CN, ĤA, ĈN , HoA, CoA, idHA, NHA1, NHA2, seq, LTBReq , J,

Token2, HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq} ⊃

(∃X.Has(X, HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq}) ∧

Send(X, HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq})) ∧ (Send(X,

HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq}) < Receive(CN, ĤA,

ĈN , msg5))

(5)

(5), HASH4 Has(X, HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq}) ⊃ Computes(X,

HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq}) ∨ ∃Y,m.Computes(Y,

HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq}) ∧ Send(Y, m) ∧

Contains(m, HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq})

(6)

(6), HASH1 Computes(Z, HASHkBC2
{HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq}) ⊃ Has(Ẑ,

KBC2) ∧ Has(Ẑ, HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq)

(7)

(7), ΓSK2 θSK2 [receive ĤA, ĈN , msg5; match msg5/HoA, CoA, idHA, NHA1, NHA2, seq, LTBReq ,

J, Token2, macEBC ; match Token2/hash(CoA || NJ || 1, KCN); KBC1 := hash(HoA ||
CoA || CNA || NHA1, KHA−CN); KBC2 := hash(HoA || CoA || CNA || NHA2, KHA−CN);

match macEBC/hash(HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq , KBC2);]CN

Honest(ĈN) ∧ Honest(ĤA) ∧ Has(Ẑ, KBC2) ⊃ Ẑ = ĈN ∨ Ẑ = ĤA

(8)

(5), (8) θSK2 [receive ĤA, ĈN , msg5; match msg5/HoA, CoA, idHA, NHA1, NHA2, seq, LTBReq ,

J, Token2, macEBC ; match Token2/hash(CoA || NJ || 1, KCN); KBC1 := hash(HoA ||
CoA || CNA || NHA1, KHA−CN); KBC2 := hash(HoA || CoA || CNA || NHA2, KHA−CN);

match macEBC/hash(HoA || CoA || idHA || NHA1 || NHA2 || seq || LTBReq , KBC2);]CN

Honest(ĈN) ∧ Honest(ĤA) ⊃ Send(HA, ĤA, ĈN , msg5) < Receive(CN, ĤA, ĈN , msg5)

(9)

276

APPENDIX F. FORMAL VERIFICATION USING PCL

AN3, ΓSK1 [new KMN−CN ; ENC6 := enc KMN−CN , KBC1;]CN Fresh(CN, ENC6)

(10)

(10), FS1, P1 [new KMN−CN ; ENC6 := enc KMN−CN , KBC1; macEBA := hash(HoA || CoA || CNA ||
seq || LTBGrant, KMN−CN); msg6 := seq, LTBGrant, ENC6, macEBA; send ĈN , M̂N ,

msg6;]CN FirstSend(CN, ENC6, msg6)

(11)

(1), (11), FS2 [new KMN−CN ; ENC6 := enc KMN−CN , KBC1; macEBA := hash(HoA || CoA || CNA ||
seq || LTBGrant, KMN−CN); msg6 := seq, LTBGrant, ENC6, macEBA; send ĈN , M̂N ,

msg6;]CN Receive(MN, ĈN , M̂N , msg6) ∧ M̂N 6= ĈN ⊃ Send(CN, ĈN , M̂N , msg6)

< Receive(MN, ĈN , M̂N , msg6)

(12)

AR1,

HASH3,

ΓSK1

θSK1 ∧ θSK2 [receive M̂N , ĈN , msg7; match msg7/HoA, CoA, seqnew, LTBReq ,

Ack, macBCC ; match HoA/HoA; match CoA/CoA; isLess(seq, seqnew); match

macBCC/hash(HoA || CoA || seqnew || LTBReq || Ack, KMN−CN);]CN Receive(CN,

M̂N , ĈN , HoA, CoA, seqnew, LTBReq , Ack, HASHkMN−CN
{HoA || CoA || seqnew ||

LTBReq || Ack} ⊃

(∃X.Has(X, HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ∧ Send(X,

HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack})) ∧ (Send(X, HASHkMN−CN

{HoA

|| CoA || seqnew || LTBReq || Ack}) < Receive(CN, M̂N , ĈN , msg7))

(13)

(13), HASH4 Has(X, HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ⊃ Computes(X,

HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ∨ ∃Y,m.Computes(Y,

HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ∧ Send(Y, m) ∧ Contains(m,

HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack})

(14)

(14), HASH1 Computes(Z, HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ⊃ Has(Ẑ,

KMN−CN) ∧ Has(Ẑ, HoA || CoA || seqnew || LTBReq || Ack)

(15)

(15),

φSK,CN−sec

θSK1 ∧ θSK2 [receive M̂N , ĈN , msg7; match msg7/HoA, CoA, seqnew, LTBReq ,

Ack, macBCC ; match HoA/HoA; match CoA/CoA; isLess(seq, seqnew); match

macBCC/hash(HoA || CoA || seqnew || LTBReq || Ack, KMN−CN);]CN Honest(ĈN)

∧ Honest(ĤA) ∧ Honest(M̂N) ∧ Has(Ẑ, KMN−CN) ⊃ Ẑ = ĈN ∨ Ẑ = M̂N ∨ Ẑ = ĤA

(16)

(13), (16) θSK1 ∧ θSK2 [receive M̂N , ĈN , msg7; match msg7/HoA, CoA, seqnew, LTBReq ,

Ack, macBCC ; match HoA/HoA; match CoA/CoA; isLess(seq, seqnew); match

macBCC/hash(HoA || CoA || seqnew || LTBReq || Ack, KMN−CN);]CN Honest(ĈN)

∧ Honest(ĤA) ∧ Honest(M̂N) ⊃ Send(MN, M̂N , ĈN , msg7) < Receive(CN, M̂N , ĈN ,

msg7)

(17)

(1), HON Honest(M̂N) ∧ Honest(ĤA) ⊃ Send(MN, M̂N , ĈN , msg1) < Receive(MN, ĈN , M̂N ,

msg2) < Send(MN, M̂N , ĤA, msg3) < Receive(HA, M̂N , ĤA, msg3) < Send(HA, ĤA,

M̂N , msg4) < Send(HA, ĤA, ĈN , msg5) < (Receive(MN, ĤA, M̂N , msg4) ∧ Receive(CN,

ĤA, ĈN , msg5)) < Receive(MN, ĈN , M̂N , msg6) < Send(MN, M̂N , ĈN , msg7)

(18)

277

APPENDIX F. FORMAL VERIFICATION USING PCL

(1), (4), (9),

(12), (17),

(18)

θSK1 ∧ θSK2 [CorrespondentNode]CN Honest(ĈN) ∧ Honest(M̂N) ∧
Honest(ĤA) ⊃ Receive(CN, M̂N , ĈN , msg1) < Send(CN, ĈN , M̂N , msg2) <

Receive(MN, ĈN , M̂N , msg2) < Send(MN, M̂N , ĤA, msg3) <

Receive(HA, M̂N , ĤA, msg3) < Send(HA, ĤA, M̂N , msg4) <

Send(HA, ĤA, ĈN , msg5) <

(Receive(MN, ĤA, M̂N , msg4) ∧ Receive(CN, ĤA, ĈN , msg5)) <

Send(CN, ĈN , M̂N , msg6) < Receive(MN, ĈN , M̂N , msg6) <

Send(MN, M̂N , ĈN , msg7) < Receive(CN, M̂N , ĈN , msg7) <

Send(CN, ĈN , M̂N , msg8)) ⊃ φSK,CN−auth

(19)

F.2 CRE-PK Phase.

This section presents a formal correctness proof of the CRE-PK phase using

the PCL method. It first models the CRE-PK phase using a simple “protocol

programming language”. It then formulates the security properties that the phase

ought to satisfy from the CN’s point of view. Finally, it proves the correctness of

the phase.

Modelling the CRE-PK phase

PK : MobileNode = (MN, ĤA, ĈN , LTBRem, LTBReq , HoA, CoA, CNA, Ack, KMN−HA)

[new Cookie; msg1 := CoA, Cookie; send M̂N ,ĈN , msg1;

receive ĈN , M̂N , msg2; match msg2/Cookie, J, Token2; match Cookie/Cookie;

KBM := hash(Token2); new seq;

ENC3 := enc HoA || CoA || LTBRem || CNA || seq || LTBReq || J || KBM , KMN−HA;

msg3 := ENC3; send M̂N , ĤA, msg3;

receive ĤA, M̂N , msg6; match msg6/ENC6; DEC6 := dec ENC6, KMN−HA;

match DEC6/CNA, seq, LTBGrant, KMN−CN ; match seq/seq;

new seqnew such that seqnew := succ(seq);

macBCC := hash(HoA || CoA || seqnew || LTBReq || Ack, KMN−CN);

msg7 := HoA, CoA, seqnew, LTBReq , Ack, macBCC ; send M̂N , ĈN , msg7;

receive ĈN , M̂N , msg8; match msg8/seqnew, LTBGrant, macBA; match seqnew/seqnew;

match macBA/hash(HoA || CoA || CNA || seqnew || LTBGrant, KMN−CN);

]MN

PK : HomeAgent = (HA, LTBRem, HoA, CoA, KMN−HA, skH , CertH)

[receive M̂N , ĤA, msg3; match msg3/ENC3; DEC3 := dec ENC3, KMN−HA;

match DEC3/HoA, CoA, LTBRem, CNA, seq, LTBReq , J, KBM ;

match HoA/HoA; match CoA/CoA; match LTBRem/LTBRem; isLess(LTBReq , LTBRem);

new NHA; macEBC := hash(CoA || NHA || seq || LTBReq , KBM);

278

APPENDIX F. FORMAL VERIFICATION USING PCL

SIGskH
:= sign(hash(CoA || NHA || seq || LTBReq , skH);

msg4 := HoA, CoA, NHA, seq, LTBReq , J, macEBC , SIGskH
, CertH ; send ĤA, ĈN , msg4;

receive ĈN , ĤA, msg5; match msg5/NHA, seq, LTBGrant, ENC5,macEBA;

match NHA/NHA; match macEBA/hash(NHA || seq || LTBGrant || ENC5, KBM);

keys := dec ENC5, skH ; match keys as KMN−CN || KHA−CN ;

ENC6 := enc CNA || seq || LTBGrant || KMN−CN , KMN−HA;

msg6 := ENC6; send ĤA, M̂N , msg6;

]HA

PK : CorrespondentNode = (CN, CNA, LTBGrant, KCN)

[receive M̂N , ĈN , msg1; match msg1/CoA, Cookie;

new J; new NJ ; Token2 := hash(CoA || NJ || 1, KCN);

msg2 := Cookie, J, Token2; send ĈN , M̂N , msg2;

receive ĤA, ĈN , msg4; match msg4/HoA, CoA, NHA, seq, LTBReq , J, macEBC , SIGskH
, CertH ;

Token2 := hash(CoA || NJ || 1, KCN); KBM := hash(Token2);

match macEBC/hash(CoA || NHA || seq || LTBReq , KBM);

verify SIGskH
, pkH ; new KMN−CN ; new KHA−CN ;

ENC5 := enc KMN−CN || KHA−CN , pkH ;

macEBA := hash(NHA || seq || LTBGrant || ENC5, KBM);

msg5 := NHA, seq, LTBGrant, ENC5, macEBA; send ĈN , ĤA, msg5;

receive M̂N , ĈN , msg7; match msg7/HoA, CoA, seqnew, LTBReq , Ack, macBCC ;

match HoA/HoA; match CoA/CoA; isLess(seq, seqnew);

match macBCC/hash(HoA || CoA || seqnew || LTBReq || Ack, KMN−CN);

macBA := hash(HoA || CoA || CNA || seqnew || LTBGrant, KMN−CN);

msg8 := seqnew, LTBGrant, macBA; send ĈN ,M̂N , msg8;

]CN

Table F.3: CRE-PK phase written in PCL language

Security Properties

(1) Session Authentication for the CN

φSK,CN−auth ::= Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA) ⊃

∃(M̂N ∧ ĤA).ActionsInOrder(

Receive(CN, M̂N , ĈN , msg1), Send(CN, ĈN , M̂N , msg2),

Receive(MN, ĈN , M̂N , msg2), Send(MN, M̂N , ĤA, msg3),

Receive(HA, M̂N , ĤA, msg3), Send(HA, ĤA, ĈN , msg4),

Receive(CN, ĤA, ĈN , msg4), Send(CN, ĈN , ĤA, msg5),

Receive(HA, ĈN , ĤA, msg5), Send(HA, ĤA, M̂N , msg6),

Receive(MN, ĤA, M̂N , msg6), Send(MN, M̂N , ĈN , msg7),

Receive(CN, M̂N , ĈN , msg7), Send(CN, ĈN , M̂N , msg8))

279

APPENDIX F. FORMAL VERIFICATION USING PCL

(2) Key Secrecy for the CN

φPK,CN−sec1 ::= Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA) ∧ Has(Ẑ, KMN−CN) ⊃

Ẑ = ĈN ∨ Ẑ = M̂N ∨ Ẑ = ĤA

φPK,CN−sec2 ::= Honest(ĈN) ∧ Honest(ĤA) ∧ Has(Ẑ, KHA−CN) ⊃

Ẑ = ĈN ∨ Ẑ = ĤA

CN Security Guarantee (Session Authentication and Key Secrecy)

θPK `[PK : CorrespondentNode]CN Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA)

∧ ĈN 6= M̂N 6= ĤA ⊃ φPK,CN−auth ∧ φPK,CN−sec1 ∧ φPK,CN−sec2

θPK := Honest(M̂N) ∧ Honest(ĤA) ∧ Has(Ẑ, KMN−HA) ⊃ Ẑ = M̂N ∨ Ẑ = ĤA

Table F.4: CRE-PK phase preconditions

Proof of Session Authentication for the CN

AA1, AR1,

AA4

[PK : CorrespondentNode]CN Receive(CN, M̂N , ĈN , msg1) < Send(CN, ĈN , M̂N ,

msg2) < Receive(CN, ĤA, ĈN , msg4) < Send(CN, ĈN , ĤA, msg5) < Receive(CN, M̂N ,

ĈN , msg7) < Send(CN, ĈN , M̂N , msg8)

(1)

AN3 [new NJ ; Token2 := hash(CoA || NJ || 1, KCN);]CN Fresh(CN, Token2)

(2)

(2), FS1, P1 [new J; new NJ ; Token2 := hash(CoA || NJ || 1, KCN); msg2 := Cookie, J, Token2; send

ĈN , M̂N , msg2;]CN FirstSend(CN, Token2, msg2)

(3)

(1), (3), FS2 [new J; new NJ ; Token2 := hash(CoA || NJ || 1, KCN); msg2 := Cookie, J, Token2; send

ĈN , M̂N , msg2;]CN Receive(MN, ĈN , M̂N , msg2) ∧ M̂N 6= ĈN ⊃ Send(CN, ĈN ,

M̂N , msg2) < Receive(MN, ĈN , M̂N , msg2)

(4)

AR1, AR2,

VER

[receive ĤA, ĈN , msg4; match msg4/HoA, CoA, NHA, seq, LTBReq , J, macEBC ,

SIGskH
, CertH ; Token2 := hash(CoA || NJ || 1, KCN); KBM := hash(Token2); match

macEBC/hash(CoA || NHA || seq || LTBReq , KBM); verify SIGskH
, pkH ;]CN Re-

ceive(CN, ĤA, ĈN , HoA, CoA, NHA, seq, LTBReq , J, HASHkBM
{CoA || NHA || seq

|| LTBReq}, SIGskH
{CoA || NHA || seq || LTBReq} ⊃

(∃X.Send(X, SIGskH
{CoA || NHA || seq || LTBReq}) ∧ Send(X, SIGskH

{CoA || NHA ||
seq || LTBReq}) < Receive(CN, ĤA, ĈN , msg4))

(5)

(5) [receive ĤA, ĈN , msg4; match msg4/HoA, CoA, NHA, seq, LTBReq , J, macEBC ,

SIGskH
, CertH ; Token2 := hash(CoA || NJ || 1, KCN); KBM := hash(Token2);

match macEBC/hash(CoA || NHA || seq || LTBReq , KBM); verify SIGskH
, pkH ;]CN

Honest(ĈN) ∧ Honest(ĤA) ⊃ Send(HA, ĤA, ĈN , msg4) < Receive(CN, ĤA, ĈN , msg4)

(6)

280

APPENDIX F. FORMAL VERIFICATION USING PCL

AN3 [new KMN−CN ; new KHA−CN ; ENC5 := enc KMN−CN || KHA−CN , pkH ;]CN

Fresh(CN, ENC5)

(7)

(7), FS1, P1 [new KMN−CN ; new KHA−CN ; ENC5 := enc KMN−CN || KHA−CN , pkH ; macEBA

:= hash(NHA || seq || LTBGrant || ENC5, KBM); msg5 := NHA, seq, LTBGrant, ENC5,

macEBA; send ĈN , ĤA, msg5;]CN FirstSend(CN, ENC5, msg5)

(8)

(1), (8), FS2 [new KMN−CN ; new KHA−CN ; ENC5 := enc KMN−CN || KHA−CN , pkH ; macEBA

:= hash(NHA || seq || LTBGrant || ENC5, KBM); msg5 := NHA, seq, LTBGrant, ENC5,

macEBA; send ĈN , ĤA, msg5;]CN Receive(HA, ĈN , ĤA, msg5) ∧ ĤA 6= ĈN ⊃
Send(CN, ĈN , ĤA, msg5) < Receive(HA, ĈN , ĤA, msg5)

(9)

AR1,

HASH3

θPK [receive M̂N , ĈN , msg7; match msg7/HoA, CoA, seqnew, LTBReq , Ack, macBCC ;

match HoA/HoA; match CoA/CoA; isLess(seq, seqnew); match macBCC/hash(HoA || CoA

|| seqnew || LTBReq || Ack, KMN−CN);]CN Receive(CN, M̂N , ĈN , HoA, CoA, seqnew,

LTBReq , Ack, HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack} ⊃

(∃X.Has(X, HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ∧ Send(X,

HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack})) ∧ (Send(X, HASHkMN−CN

{HoA

|| CoA || seqnew || LTBReq || Ack}) < Receive(CN, M̂N , ĈN , msg7))

(10)

(10), HASH4 Has(X, HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ⊃ Computes(X,

HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ∨ ∃Y,m.Computes(Y,

HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ∧ Send(Y, m) ∧ Contains(m,

HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack})

(11)

(11), HASH1 Computes(Z, HASHkMN−CN
{HoA || CoA || seqnew || LTBReq || Ack}) ⊃ Has(Ẑ,

KMN−CN) ∧ Has(Ẑ, HoA || CoA || seqnew || LTBReq || Ack)

(12)

(12),

φPK,CN−sec1

θPK [receive M̂N , ĈN , msg7; match msg7/HoA, CoA, seqnew, LTBReq , Ack, macBCC ;

match HoA/HoA; match CoA/CoA; isLess(seq, seqnew); match macBCC/hash(HoA || CoA

|| seqnew || LTBReq || Ack, KMN−CN);]CN Honest(ĈN) ∧ Honest(ĤA) ∧ Honest(M̂N)

∧ Has(Ẑ, KMN−CN) ⊃ Ẑ = ĈN ∨ Ẑ = M̂N ∨ Ẑ = ĤA

(13)

(10), (13) θPK [receive M̂N , ĈN , msg7; match msg7/HoA, CoA, seqnew, LTBReq , Ack, macBCC ;

match HoA/HoA; match CoA/CoA; isLess(seq, seqnew); match macBCC/hash(HoA || CoA

|| seqnew || LTBReq || Ack, KMN−CN);]CN Honest(ĈN) ∧ Honest(ĤA) ∧ Honest(M̂N)

⊃ Send(MN, M̂N , ĈN , msg7) < Receive(CN, M̂N , ĈN , msg7)

(14)

(1), HON Honest(M̂N) ∧ Honest(ĤA) ⊃ Send(MN, M̂N , ĈN , msg1) < Receive(MN, ĈN , M̂N ,

msg2) < Send(MN, M̂N , ĤA, msg3) < Receive(HA, M̂N , ĤA, msg3) < Send(HA, ĤA,

ĈN , msg4) < Receive(CN, ĤA, ĈN , msg4)) < Receive(HA, ĈN , ĤA, msg5) < Send(HA,

ĤA, M̂N , msg6) < Receive(MN, ĤA, M̂N , msg6) < Send(MN, M̂N , ĈN , msg7)

(15)

281

APPENDIX F. FORMAL VERIFICATION USING PCL

(1), (4), (6),

(9), (14),

(15)

θPK [CorrespondentNode]CN Honest(ĈN) ∧ Honest(M̂N) ∧ Honest(ĤA)

⊃ Receive(CN, M̂N , ĈN , msg1) < Send(CN, ĈN , M̂N , msg2) <

Receive(MN, ĈN , M̂N , msg2) < Send(MN, M̂N , ĤA, msg3) <

Receive(HA, M̂N , ĤA, msg3) < Send(HA, ĤA, ĈN , msg4) <

Receive(CN, ĤA, ĈN , msg4) < Send(CN, ĈN , ĤA, msg5) <

Receive(HA, ĈN , ĤA, msg5) < Send(HA, ĤA, M̂N , msg6) <

Receive(MN, ĤA, M̂N , msg6) < Send(MN, M̂N , ĈN , msg7) <

Receive(CN, M̂N , ĈN , msg7) < Send(CN, ĈN , M̂N , msg8) ⊃ φPK,CN−auth

(16)

F.3 DEL Phase.

This section presents a formal correctness proof of the DEL phase using the PCL

method. It first models the DEL phase using a simple “protocol programming

language”. It then formulates the security properties that the phase ought to

satisfy from the CN’s point of view. Finally, it proves the correctness of the

phase.

Modelling the DEL phase

DEL : MobileNode = (MN, ĈN , LTBReq , HoA, CoA, CNA, Ack, seq, KMN−CN)

[new seqnew such that seqnew := succ(seq); CoA := HoA; LTBReq := 0;

KBM := hash(HoA || CoA || CNA || seqnew, KMN−CN);

macBU := hash(HoA || CoA || seqnew || LTBReq || Ack, KBM);

msg1 := HoA, CoA, seqnew, LTBReq , Ack, macBU ; send M̂N , ĈN , msg1;

receive ĈN , M̂N , msg2; match msg2 / seqnew, macBA; match seqnew / seqnew;

match macBA / hash(HoA || CNA || seqnew, KBM);

]MN

DEL : CorrespondentNode = (CN, CNA, KMN−CN)

[receive M̂N , ĈN , msg1;

match msg1 / HoA, CoA, seqnew, LTBReq , Ack, macBU ;

isLess(seq, seqnew); match CoA/HoA; match LTBReq/0;

KBM := hash(HoA || CoA || CNA || seqnew, KMN−CN);

match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack, KBM);

macBA := hash(HoA || CNA || seqnew, KBM);

msg2 := seqnew, macBA; send ĈN , M̂N , msg2;

]CN

Table F.5: DEL phase written in PCL language

282

APPENDIX F. FORMAL VERIFICATION USING PCL

Security Properties

(1) Session Authentication for the CN

φDEL,CN−auth ::= Honest(ĈN) ∧ Honest(M̂N) ⊃

∃ M̂N .ActionsInOrder(

Send(MN, M̂N , ĈN , msg1),

Receive(CN, M̂N , ĈN , msg1),

Send(CN, ĈN , M̂N , msg2))

(2) Key Secrecy for the CN

φDEL,CN−sec ::= Honest(ĈN) ∧ Honest(M̂N) ∧ Has(Ẑ, KBM) ⊃ Ẑ = ĈN ∨ Ẑ = M̂N

CN Security Guarantee (Session Authentication and Key Secrecy)

ΓDEL ∧ θDEL1 `[DEL : CorrespondentNode]CN Honest(ĈN) ∧ Honest(M̂N) ∧ ĈN 6= M̂N

⊃ φDEL,CN−auth ∧ φDEL,CN−sec

θDEL := (Honest(ĈN) ∧ Honest(M̂N) ∧ Has(Ẑ, KMN−CN)) ⊃ Ẑ = ĈN ∨ Ẑ = M̂N

ΓDEL := Computes(Ẑ, HASH(Ẑ, HoA || CoA || CNA || seqnew, KMN−CN)) ⊃
¬(Send(Ẑ, m) ∧ Contains(m, HASH(Ẑ, HoA || CoA || CNA || seqnew, KMN−CN)))

Table F.6: DEL phase preconditions and invariants

Proof of Session Authentication for the CN

AA1, AR1,

AA4

[DEL : CorrespondentNode]CN Receive(CN, M̂N , ĈN , msg1) < Send(CN, ĈN , M̂N ,

msg2)

(1)

AR1,

HASH3,

ΓDEL

θDEL [receive M̂N , ĈN , msg1; match msg1 / HoA, CoA, seqnew, LTBReq , Ack, macBU ;

isLess(seq, seqnew); match CoA/HoA; match LTBReq/0; KBM := hash(HoA || CoA ||
CNA || seqnew, KMN−CN); match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack,

KBM);]CN Receive(CN, M̂N , ĈN , HoA, CoA, seqnew, LTBReq , Ack, HASHkBM
{HoA

|| CoA || seqnew || LTBReq || Ack} ⊃

(∃X.Has(X, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack}) ∧ Send(X,

HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack})) ∧ (Send(X, HASHkBM

{HoA || CoA

|| seqnew || LTBReq || Ack}) < Receive(CN, M̂N , ĈN , msg1))

(2)

(2), HASH4 Has(X, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack}) ⊃ Computes(X,

HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack}) ∨ ∃Y,m.Computes(Y,

HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack}) ∧ Send(Y, m) ∧ Contains(m,

HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack})

(3)

(3), HASH1 Computes(Z, HASHkBM
{HoA || CoA || seqnew || LTBReq || Ack}) ⊃ Has(Ẑ, KBM) ∧

Has(Ẑ, HoA || CoA || seqnew || LTBReq || Ack)

(4)

283

APPENDIX F. FORMAL VERIFICATION USING PCL

(4),

φDEL,CN−sec

θDEL [receive M̂N , ĈN , msg1; match msg1 / HoA, CoA, seqnew, LTBReq , Ack, macBU ;

isLess(seq, seqnew); match CoA/HoA; match LTBReq/0; KBM := hash(HoA || CoA ||
CNA || seqnew, KMN−CN); match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack,

KBM);]CN Honest(ĈN) ∧ Honest(M̂N) ∧ Has(Ẑ, KBM) ⊃ Ẑ = ĈN ∨ Ẑ = M̂N

(5)

(2), (5) θDEL [receive M̂N , ĈN , msg1; match msg1 / HoA, CoA, seqnew, LTBReq , Ack, macBU ;

isLess(seq, seqnew); match CoA/HoA; match LTBReq/0; KBM := hash(HoA || CoA ||
CNA || seqnew, KMN−CN); match macBU / hash(HoA || CoA || seqnew || LTBReq || Ack,

KBM);]CN Honest(ĈN) ∧ Honest(M̂N) ⊃ Send(MN, M̂N , ĈN , msg1) < Receive(CN,

M̂N , ĈN , msg1)

(6)

(1), (6) θDEL [CorrespondentNode]CN Honest(ĈN) ∧ Honest(M̂N) ⊃ Send(MN, M̂N , ĈN , msg1)

< Receive(CN, M̂N , ĈN , msg1) < Send(CN, ĈN , M̂N , msg2))) ⊃ φDEL,CN−auth

(7)

284

Appendix G

Formal Protocol Verification

using Casper/FDR2

G.1 CRE-SK Phase.

This section presents a formal verification of the CRE-SK phase using the Casper-

/FDR2 model checker. It presents a Casper script that specifies the CRE-SK

phase and its security properties.

Free variables

mn : MNode

cn : CNode

ha : HomeAgent

hoa, coa : IPv6Address

cookie, token, nha1 : Nonce

kmnha, khacn, kmncn : SessionKey

k : SessionKey x IPv6Address x IPv6Address x Nonce → Key

kbc1 : Key

InverseKeys = (kmnha, kmnha), (khacn, khacn), (kmncn, kmncn), (kbc1, kbc1), (k, k)

HMAC : HashFunction

#Processes

MOBILENODE(mn, cn, ha, hoa, coa, cookie, kmnha) knows HMAC

CORRESNODE(cn, khacn, kmncn, token, nha1) knows HMAC, k

HOMEAGENT(ha, cn, hoa, coa, nha1, kmnha, khacn) knows HMAC, k

Protocol description

0. → mn : cn

1. mn → cn : cookie

2. cn → mn : cookie, token

3. mn → ha : {hoa, coa}{kmnha}
<kbc1 := k(khacn, hoa, coa, nha1)>

4. ha → mn : {hoa, coa, kbc1}{kmnha}
5. ha → cn : hoa, coa, nha1, HMAC(khacn, hoa, coa, nha1)

<kbc1 := k(khacn, hoa, coa, nha1)>

285

APPENDIX G. FORMAL VERIFICATION USING CASPER

6. cn → mn : hoa, coa, {kmncn}{kbc1}, HMAC(kbc1, hoa, coa)

7. mn → cn : hoa, coa, HMAC(kmncn, hoa, coa)

8. cn → mn : hoa, coa, HMAC(kmncn, hoa, coa)

Specification

Agreement(mn, cn,[hoa, coa])

Agreement(ha, cn,[hoa, coa])

Secret(cn, kmncn,[mn, ha])

Actual variables

MN, Mallory : MNode

CN : CNode

HA : HomeAgent

HoA, CoA, MalA : IPv6Address

Cookie, Token, Nha1, Nm : Nonce

Kmnha, Khacn, Kmncn, Kmala : SessionKey

Kbc1 : Key

InverseKeys = (Kmnha, Kmnha), (Khacn, Khacn), (Kmncn, Kmncn), (Kbc1, Kbc1), (Kmala, Kmala)

Functions

symbolic k

System

MOBILENODE(MN, CN, HA, HoA, CoA, Cookie, Kmnha)

CORRESNODE(CN, Khacn, Kmncn, Token, Nha1)

HOMEAGENT(HA, CN, HoA, CoA, Nha1, Kmnha, Khacn)

Intruder Information

Intruder = Mallory

IntruderKnowledge = {MN, CN, HA, Mallory, HoA, CoA, MalA, Nm, Kmala}

G.2 CRE-PK Phase.

This section presents a formal verification of the CRE-PK phase using the Casper-

/FDR2 model checker. It presents a Casper script that specifies the CRE-PK

phase and its security properties.

Free variables

mn : MNode

cn : CNode

ha : HomeAgent

hoa, coa : IPv6Address

cookie, token : Nonce

pkh : PubKey

skh : SecKey

kmnha, khacn, kmncn : SessionKey

InverseKeys = (pkh, skh), (kmnha, kmnha), (khacn, khacn), (kmncn, kmncn)

HMAC : HashFunction

Processes

MOBILENODE(mn, cn, ha, hoa, coa, cookie, kmnha) knows HMAC

CORRESNODE(cn, token, khacn, kmncn, pkh) knows HMAC

HOMEAGENT(ha, hoa, coa, kmnha, pkh, skh) knows HMAC

Protocol description

0. → mn : cn

286

APPENDIX G. FORMAL VERIFICATION USING CASPER

1. mn → cn : cookie

2. cn → mn : cookie, token

3. mn → ha : {hoa, coa, cn, token}{kmnha}
4. ha → cn : {hoa, coa, token}{skh}
5. cn → ha : hoa, coa, {khacn, kmncn}{pkh}
6. ha → mn : {hoa, coa, cn, kmncn}{kmnha}
7. mn → cn : hoa, coa, HMAC(kmncn, hoa, coa)

8. cn → mn : hoa, coa, HMAC(kmncn, hoa, coa)

Specification

Agreement(mn, cn, [hoa, coa, kmncn])

Agreement(ha, cn, [hoa, coa, khacn])

Secret(ha, khacn, [cn])

Secret(mn, kmncn, [cn])

Actual variables MN, Mallory : MNode

CN : CNode

HA : HomeAgent

HoA, CoA, MalA : IPv6Address

Cookie, Token, Nha1, Nha2, Nm : Nonce

Pkh : PubKey

Skh : SecKey

Kmnha, Khacn, Kmncn, Kmala : SessionKey

InverseKeys = (Kmnha, Kmnha),(Khacn, Khacn),(Kmncn, Kmncn),(Pkh, Skh),(Kmala, Kmala)

System

MOBILENODE(MN, CN, HA, HoA, CoA, Cookie, Kmnha)

CORRESNODE(CN, Token, Khacn, Kmncn, Pkh)

HOMEAGENT(HA, HoA, CoA, Kmnha, Pkh, Skh)

Intruder Information

Intruder = Mallory

IntruderKnowledge = {MN, CN, HA, Mallory, HoA, CoA, MalA, Nm, Kmala}

G.3 DEL Phase.

This section presents a formal verification of the DEL phase using the Casper-

/FDR2 model checker. It presents a Casper script that specifies the DEL phase

and its security properties.

Free variables

mn : MNode

cn : CNode

hoa, coa : IPv6Address

seq1 : SequenceNumber

kmncn : SessionKey

k : SessionKey x IPv6Address → Key

kbm : Key

InverseKeys = (kmncn, kmncn), (kbm, kbm)

HMAC : HashFunction

Processes

MOBILENODE(mn, cn, hoa, coa, seq1, kmncn) knows HMAC, k

CORRESNODE(cn, kmncn) knows HMAC, k

287

APPENDIX G. FORMAL VERIFICATION USING CASPER

Protocol description

0. → mn : cn

<kbm := k(kmncn, hoa) >

1. mn → cn : hoa, coa, seq1, HMAC (kmncn, hoa, coa, seq1)

<kbm := k(kmncn, hoa) >

2. cn → mn : hoa, HMAC (kmncn, hoa)

Specification

Agreement(mn, cn, [hoa, coa, kbm])

Secret(mn, kbm, [cn])

Actual variables

MN, Mallory : MNode

CN : CNode

HoA, CoA, MalA : IPv6Address

Seq1, Seqm : SequenceNumber

Kmncn, Kmala : SessionKey

Kbm : Key

InverseKeys = (Kmncn, Kmncn), (Kbm, Kbm), (Kmala, Kmala)

Functions

symbolic k

System

MOBILENODE(MN, CN, HoA, CoA, Seq1, Kmncn)

CORRESNODE(CN, Kmncn)

Intruder Information

Intruder = Mallory

IntruderKnowledge = {MN, CN, Mallory, HoA, CoA, Seqm, MalA, Kmala}

288

