
Supporting the OSGi Service Platform

with Mobility and Service Distribution

in Ubiquitous Home Environments

ABDELGADIR IBRAHIM* AND LIPING ZHAO

School of Computer Science, The University of Manchester, Kiburn Building, Oxford Road,

Manchester M13 9PL, UK

*Corresponding author: abdelgadir.ibrahim@manchester.ac.uk

The OSGi service specification defines an open service platform for service delivery, composition

and execution in networked environments. The specification, however, is limited to a single java

virtual machine (JVM) and does not define the distribution and mobility of services across different

OSGi platforms and devices. This paper first revisits the fundamentals of OSGi service distribution,

clarifies and defines a terminology for OSGi service mobility and distribution. It then proposes to

extend the current OSGi platform with service distribution and service mobility that aim to support

three important requirements on ubiquitous applications, namely, spontaneous interoperability,

mobility and software adaptability. The paper demonstrates these extensions through several pro-

totype implementations. These extensions are supported through a common framework, which

targets at ubiquitous environments and aims to facilitate the construction of OSGi applications

that span multiple OSGi platforms, multiple JVMs and multiple devices. In addition, the proposed

framework offers two special features: First, it supports automatic contextual management through

a virtual global shared space whose content is automatically and dynamically adjusted to reflect the

changes in the system and the mobile environment; Second, it supports different OSGi bundle and

service mobility paradigms. The proposed framework blurs the distinction between local and

remote services, where remote services can be accessed as if they were local, which greatly simplifies

application development. We believe existing OSGi platform distribution solutions can also be

supported by this framework.

Keywords: service-oriented systems; distributed systems; ubiquitous environments; mobility; OSGi

Received 6 July 2007; revised 27 March 2008

1. INTRODUCTION

Ubiquitous computing, also known as pervasive computing

[1–3], describes a trend towards environments in which infor-

mation and communication technology is integrated into the

environment through interactions with everyday devices.

Other terms that describe this computational paradigm

include ‘ambient intelligence’, and ‘everywhere’. In such an

environment, a user interacts with multiple, connected consu-

mer devices, instead of one single device. Thus, computation

is distributed among different connected devices in the user’s

environment. The goal of ubiquitous computing is to create

environments that are characterized by unobtrusive and

always available connectivity. Ubiquitous environments are

also characterized by mobility of users and devices, intermit-

tent network connections, diverse network protocols and

dynamic introduction and removal of devices. Together,

these characteristics complicate the development of

ubiquitous applications. This trend of ubiquitous computing

is largely fuelled by advances in consumer electronics and

wireless technologies.

Requirements on pervasive computing have been discussed

by many authors (see for example, [2–5]). According to

these authors, spontaneous interoperability, mobility and

adaptability are three interconnected requirements that are

important to pervasive computing. These three requirements

are described below.

† Spontaneous interoperability. Proliferation of networked

environments has led to increasing requirement to

connect devices in order to provide added value services

such as the ability to instruct a sound system to play

a specific song that is stored in a PC [6]. However,

connecting devices is difficult due to the heterogeneity

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on June 17, 2008 doi:10.1093/comjnl/bxn032

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

 at T
he U

niversity of M
anchester L

ibrary on O
ctober 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

of devices, networking technologies and adopted

communication protocols [7, 8]. End users, on the other

hand, are only interested in services that span device bound-

aries. This heterogeneity, especially in the connected home

domain, is likely to hold for the foreseeable future.

† Mobility. Mobility can be classified into physical mobi-

lity (the device itself physically moves from one location

to another), personal mobility (the device may be fixed

but it is the user who moves between different locations),

virtual mobility (the application is aware of the distri-

buted nature of the execution environment and is able

to locate and access such remote resources and services)

and logical mobility (it is possible to withdraw a service

in one location and reoffer it in a different location) [2].

While mobility is an important requirement on pervasive

computing, it should not affect the correct functioning of

the applications; applications should be able to adapt

accordingly.

† Adaptability. The dynamic nature of ubiquitous environ-

ments, where devices may be dynamically added or

removed, users or devices may move and network con-

nections may dynamically come and go, calls for

dynamic software architectures that facilitate self-

organization of the software accordingly. A taxonomy

of adaptation strategies, their advantages and disadvan-

tages is given in [9].

To date, most ubiquitous applications are supported by

the service-oriented paradigm [10, 11]. Technologies such

as UPnP1 and Jini2 have been used to build ubiquitous

applications. However, although these technologies are

meant to support interoperability of devices, in reality, they

only allow devices of the same protocol to interoperate. For

example, an UPnP device cannot directly communicate with

a Jini device.

An alternative, promising service-oriented technology for

ubiquitous applications is the OSGi service platform [12].

The OSGi specification is designed to complement and

enhance virtually all residential networking standards and

initiatives including BluetoothTM, CALTM, CEBusTM,

HAViTM, HomePlugTM, HomeRFTM, JiniTM and UPnPTM.

OSGi technology offers many benefits to application

development, including: security, modularity, decoupling,

portability, lightweight, architecture openness, platform

extensibility, dynamicity, potential for remote device manage-

ment, support for multiple networking technologies, multiple

devices and multiple vendors. Consequently, the OSGi

platform is becoming a universal middleware for different

applications in a variety of domains ranging from consumer

electronics to enterprise server applications. Many recent

research efforts in pervasive computing have adopted the

OSGi platform as an underlying middleware. For example,

the application of the OSGi platform as a middleware for

home environments has been described by many authors

including [6–8, 13–15]. A home network architecture and

an overview of technologies, including OSGi technology,

that aim to solve the interoperability problem are given in [16].

However, current implementations of OSGi technology

only provide limited support to the above three pervasive

requirements. For example, they are restricted to a single

java virtual machine (JVM) and subsequently do not support

remote service invocations common in distributed systems

[17]. Different extensions to the OSGi platform have been

proposed, but to our knowledge, they are still limited; their

support for adaptability and spontaneous interactions is

either limited or lacking. In addition, these extensions

mainly target fixed network settings and are not suited for

pervasive environments. The challenge in supporting adapta-

bility and spontaneous interactions lies in integrating such

support with the existing OSGi application model that is

characterized by strong modularity.

This paper proposes two extensions to the current OSGi

platform, which collectively support the aforementioned

three requirements. These two extensions are described below:

† Support for spontaneous interoperability in mobile

environments. Pervasive devices should be able to inter-

act spontaneously as they become connected which rules

out centralized architectures that many authors, e.g. [14],

have considered inadequate for home networks. Justified

by the increasing availability of OSGi-enabled devices,

we propose a peer-to-peer (P2P) model [18], where

various OSGi-enabled devices are able to spontaneously

interact by offering and using services from each other.

Consequently, this extension supports the OSGi platform

with service distribution across OSGi platforms and

devices while accommodating such P2P interactions as

well as device mobility.

Most current OSGi platform distribution extensions

use communication models that are based on remote

procedure calls (RPCs) [19], e.g. Java remote method

invocation RMI. These communication models are

inadequate for pervasive environments due to the

characteristics of mobility and intermittent connectivity.

Another limitation of using communication technologies

such as Java RMI is that it breaks OSGi platform

modularity. Other OSGi platform distribution extensions

which have developed their proprietary communication

protocols do not support spontaneous interactions. In

contrast, our extension can be configured to use the

publish–subscribe interaction style [20], which is con-

sidered as a better alternative for communication in

pervasive environments. In addition, our proposed exten-

sion supports spontaneous interactions while observing

OSGi modularity.

1www.upnp.org.
2www.jini.org.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 211

† Support for adaptability. In order to support software

adaptability, the OSGi platform must also support

logical mobility, which is currently lacking. This exten-

sion supports the OSGi platform with bundle and

service mobility across OSGi platforms and devices.

Logical mobility as manifested by mobile software

agents and other mobile abstractions is considered to

provide many benefits to software applications (see for

example, [21, 22]).

These extensions are supported through a common frame-

work, which targets at ubiquitous environments and aims to

facilitate the construction of OSGi applications that span

multiple OSGi platforms, multiple JVMs and multiple

devices. This framework is also applicable to non-pervasive

environments where OSGi technology is used. The idea is to

have an abstract mobility and distribution model from which

different instantiations can be created that target different

application domains. In the reminder of the paper, we refer

to this framework backed by the abstract mobility and distri-

bution model as the conceptual framework. This proposed

conceptual framework offers two special features: First, it sup-

ports automatic contextual management through a virtual

global shared space whose content is automatically and dyna-

mically adjusted to reflect changes in the system and the

mobile environment; Second, it supports different OSGi

bundle and service mobility paradigms. The proposed concep-

tual framework blurs the distinction between local and remote

services, where remote services can be accessed as if they

were local, which greatly simplifies application development.

We believe existing OSGi distribution solutions can also be

supported by this framework. Another contribution of this

paper is a characterization of spontaneous interactions and

logical mobility in the context of the OSGi platform.

Finally, a secondary outcome of this work, is a survey of

OSGi service distribution.

The rest of this paper is organized as follows. Section 2 pro-

vides the background to the paper. Sections 3 and 4 describe

the proposed conceptual framework and its architecture,

respectively. The design and implementation of the D-OSGi

mobility extension which realizes the proposed conceptual fra-

mework is described in Section 5. The work is evaluated in

Section 6, whereas Section 7 discusses related work. Finally,

Section 8 concludes the paper.

2. BACKGROUND

2.1. Overview of the OSGi middleware

The OSGi alliance has defined the OSGi specification for a

service platform that supports the delivery of managed ser-

vices to networked environments such as homes. The initial

focus of the OSGi specification was the market of home

service gateways that link the home network to external

service providers who can then provide remotely managed ser-

vices to the home through the gateway. Typical such services

include home security and home health care monitoring.

However, applications of the OSGi technology proved to be

much wider than service gateways and consequently the OSGi

technology scope was further extended to include any net-

worked environment, e.g. cars, that provide a mix of embedded

devices and the need to deploy services for those devices. In

other words, gateway is only one of OSGi’s application areas

which currently include industrial automation, mobile environ-

ments, automotive, desktop and server applications.

The OSGi service platform consists of two elements: the

OSGi framework and a set of standard service definitions.

The OSGi framework is a lightweight Java-based container

(fully J2ME-compatible) for deploying and executing

service-oriented applications. The OSGi framework defines

a component model, a services registry and provides the

runtime environment for handling the interactions between

services and between components. In addition, the OSGi

framework supports the remote management of the entire

application life cycle including dynamic on-the-device soft-

ware deployment and extension. The OSGi standard service

definitions are optional and can be implemented by different

vendors for inclusion in any given solution. These standard

services include among many others: an HTTP service, a

logging service, an XML parsing service, a UPnP device

service and a configuration admin service. As the specification

states ‘The primary goal of the OSGI service framework is to

use the Java programming language platform independence

and dynamic code loading capability to make development

and dynamic deployment of applications for small memory

devices easier’.

The OSGi application model combines the two approaches

of component-orientation and service-orientation resulting in

what is known as a service-oriented component model [23,

24]. In this model, a software application is viewed as a set

of collaborating components that provide and use services to

and from each other, respectively. Component collaboration

follows the service-oriented interaction pattern, where ser-

vices provided by components are published into a registry.

Client components can then dynamically discover and bind

to those published services.

A component in the OSGi service platform is known as a

bundle. Bundles are the unit of delivery and deployment.

A bundle is represented as a Java Archive File (JAR) file

that contains all resources required for the operation of the

bundle including specifications of its dependencies on the

environment and on other bundles. The OSGi platform

enables multiple applications realized as bundles to share

the same JVM with full support for modularity, where

bundles and applications are isolated from each other. A

unique and innovative characteristic of bundles is their

ability to cooperate and share Java packages, i.e. code, with

each other. The OSGi service platform defines the mechanism

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

212 A. IBRAHIM AND L. ZHAO

for code sharing and provides for its automatic management; a

process that is known as package dependency resolving. A

package can be exported by a bundle, thus making the

package available for use by other bundles. Conversely, an

exported package can be imported by other bundles thus

making the package accessible to the importing bundles. In

addition to package sharing via the import/export mechanism,

bundles can also contain private packages that are hidden from

other bundles. OSGi platform uses the Java class loader as the

mechanism to enable the sharing and hiding of packages and

classes. Each bundle is assigned a separate class loader that

loads classes using well-defined rules. This results in multiple

class spaces for the different bundles. A class space can be

defined as all reachable classes from a bundle’s class loader.

The OSGi platform supports the dynamic download,

deployment and management of bundles within a single

JVM. It provides support for installing, uninstalling, activating

(starting), deactivating (stopping), updating and refreshing of

bundles. All these activities can be performed either locally

or remotely. Together, these activities also define the

bundle’s life cycle. A bundle can only be activated if its

package dependencies are resolved. When activated, a

bundle can then offer an arbitrary number of services by pub-

lishing them through the OSGi registry. Other active bundles

can dynamically discover and bind to those published services.

An active bundle can also, at any time, withdraw a previously

published service. Clients using the withdrawn service are

automatically notified and must adapt to such change in

service availability, e.g. by searching and binding to an alterna-

tive service. When a bundle is deactivated, all its offered

services are automatically withdrawn and must also release

any other services it is currently using. Once deactivated,

a bundle re-enters the resolved state and can then be either

uninstalled or reactivated. Several commercial and open

source OSGi platform implementations exist including

Apache Felix3, Eclipse Equinox4 Knopflerfish5 and Concierge6

2.2. An introduction to code mobility

Code mobility is defined informally as ‘the capability to dyna-

mically change the bindings between code fragments and the

location where they are executed [22]’. In other words, code

mobility provides the capability to move code across nodes

in a network. In relation to logical mobility, code mobility

can be considered at a lower layer on top of which logical

mobility is built. Logical mobility deals with abstractions at

the application level such as services, agents and their used

resources.

Fuggetta et al. [22] introduce the concepts of computational

environment (CE), execution unit (EU) and State. CEs, which

are also known as locations or places [25], and as agent

servers, are abstractions for entities that provide the relocation

capabilities and maintain the identities of the hosts in which

they reside. EUs, which are also known as agents [25, 26], rep-

resent the entities which are hosted by the CEs. Resources are

the entities that are needed for EUs to perform their functions.

State comprises a data space and an execution state [22, 25].

The former represents the configuration data required by the

EU, whereas the latter represents the runtime data of the EU

such as its runtime execution stack. In mobile code systems,

all of the code, resources, execution state and the data space

of an EU can be relocated to a different CE across the network.

The authors in [22, 25] distinguish between strong and weak

mobility. In strong mobility, all the code, data space and

execution state of the EU can be relocated to a different

node where execution is resumed. In weak mobility, usually

only code can be transferred. Weak mobility may also

involve the transfer of the EU’s initialization or configuration

data but the execution state is not transferred. Subsequently,

weak mobility can to some extend mimic strong mobility by

saving, prior to relocation, all data that is needed to resume

execution from the point at which execution had stopped.

Migration and remote cloning are the two mechanisms for

realizing strong and weak mobility [22]. When migrating an

EU, it is first suspended if applicable, and physically discon-

nected and transferred before execution is started or resumed

at the destination CE. Remote cloning involves the spawning

of a copy of the EU on the remote CE.

When an EU is being transferred to a remote CE, its code

can either be fetched by the destination CE from the source

CE, or alternatively the code can be shipped by the source

CE to the destination CE—concept of direction of transfer

[22, 25]. Furthermore, the transferred code can be either self-

contained or a code fragment [22]. Self-contained code can be

used to independently instantiate and execute the EU at desti-

nation. Codes fragments must be linked with other codes

residing at the destination CE before they can be used.

Fuggetta et al. [22] model a resource as a triple (I, V, T),

where ‘I’ is the resource identifier, ‘V’ is its value and ‘T’ is

its type. Resource types determine the transferability of the

resource. For example, a resource of type hardware device

is usually not transferable while a resource of type information

is transferable. Even if a resource is transferable, it can be

designated as either fixed (disabled transferability) or free

(enabled transferability). The transferability status (fixed/

free) of transferable resources is determined by the developer

on the basis of application requirements such as performance

considerations and the nature of the resource. For example,

data resources deemed sensitive or confidential may be

marked as fixed.

When an EU is transferred (either by migration or remote

cloning), the resources it uses may also need to be transferred

along with it. This depends on the nature of the resource and the

type of link (binding) between the EU and the resource [22].

3http://felix.apache.org.
4www.eclipse.org/equinox/.
5www.knopflerfish.org/.
6http://concierge.sourceforge.net/.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 213

In addition, different applications may have different require-

ments with respect to resource transferring. There are essen-

tially three possible types of bindings between an EU and a

resource: by identifier, by value and by type [22]. Binding by

value indicates that the EU always requires the same resource

instance for its execution. Binding by identifier indicates that

only the type and value of the resource matters. Binding by

type indicates that only the type of the resource matters

(irrespective of the value).

Fuggetta et al. [22] summarize the problems of EU

migration as follows:

† Resource relocation. The question is whether and how

the required resources are migrated?

† Binding reconfiguration. The question is how can the

binding between the EU and the resource be

re-established after the EU is migrated?

Depending on the nature of the binding, Fuggetta et al. [22]

identify the following strategies:

† Migration by move. The resource is transferred along

with the EU. In other words, the binding between the

EU and the resource is not modified. However, this sol-

ution can only be employed when the resource is both

transferable and free.

† Use of network references. The resource is not migrated

along with the EU. At destination, the EU establishes a

remote reference back to the resource residing in the

source CE. This solution is useful when the resource is

either not transferable or is fixed. However, performance

issues and potential network failures may affect the oper-

ations of the EU if this strategy is used.

† Migration by copy. In this case, a copy of the resource is

packaged along with the EU. At destination, the EU

rebinds to this copy.

† Rebinding. When the EU is migrated, it simply searches

for a resource of the same type. If found, the EU rebinds

to this found resource.

At the application design level, Fuggetta et al. [22] dis-

tinguish between: code components (the know-how), compu-

tational components and resource components (data or

devices). Based on these concepts, the authors in [22, 27,

28] identify the following paradigms of mobile applications:

† Client–Server. Clients request the services offered by a

potentially remote server. The server hosts both the

know-how and the resources required for providing

the service. In addition, it is the server who executes

the service according to the know-how. Client–server

applications are typically implemented using some

form of RPCs.

† Remote evaluation (REV). A computational component

may know how to perform a particular task but lacks

the resources. In this case, it may choose to migrate to

a remote location where the resources are thought to be

available. Once there, the computational component per-

forms the task and then delivers (or brings back) the

results to the original location.

† Code on demand (COD). A computational component

may have access to resources required for a specific task

but lacks the know-how to manipulate these resources.

In this case, it may request such know-how (the code)

from a remote location which is then delivered.

† Mobile agents (MAs). Griss and Pour [29] define an agent

as ‘a proactive software component that interacts with its

environment and other agents as a surrogate for its user,

and reacts to significant changes in the environment’. A

distinction is often made between strong and weak

agents (see, for example, [25]). Both agent types are

characterized by autonomy, collaboration, persistence

and mobility [29, 30]. In addition, strong agents are

also knowledgeable and adaptable. In order for agents

to be able to communicate and understand each other,

they must adhere to a common interaction standard

[29]. Several agent communication languages (ACLs)

have been proposed in the literature that provide a stan-

dard mechanism for information exchange between

agents. A description of the concepts underpinning

ACLs and an overview of some ACLs are given in

[31]. Further details about agent concepts, agent design

and applications of agent technology is provided in [29,

30]. Additional references for mobile and software

agents organized by topic can be found in [32].

A computational component (i.e., an agent) may possess the

know-how and some of the required resources. It starts

execution on the source location. When additional resources

are required, it migrates along with the code, data space,

execution state and the intermediate results to a remote

location where the extra resources are available. Once there,

the computational component simply resumes executions.

An MA paradigm can be modelled using either REV or

COD. For example, REV may be used to model MAs that

initiate migration to remote nodes.

Two criteria that differentiate between the above mobile

application paradigms are the initiator of interaction or mobi-

lity and the direction of transfer. In terms of establishing a

binding between a client and a server, it is either the server

who pushes its services (or location information) to clients

or alternatively it is the clients who search for a suitable

server from which required services can be used (pull). REV

is characterized by push style of mobility, where a compu-

tational unit is pushed to a remote node where execution

takes place. COD is characterized by pull style of mobility,

where a required computational unit is requested from

remote nodes which is then delivered.

It must be noted that no single paradigm is optimal for all

applications [22, 27, 28]. Therefore, these different paradigms

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

214 A. IBRAHIM AND L. ZHAO

should be evaluated by developers on application-by-

application basis according to application requirements. For

example, in order to reduce network traffic in an application

that computes a summary from data obtained from large

remote database, it may be best to apply an REV paradigm

wherein the computational unit moves into the remote server

next to the large database in order to compute the summary

at the server and thus avoid sending large amounts of data

over the network. Furthermore, the actual technology to

implement the chosen design paradigm must be evaluated on

individual application basis because some technologies are

more suited for certain design paradigms [22]. Baldi and

Picco [33] provide an evaluation of these different mobile

code design paradigms in the context of network management

and identify the conditions under which they should be used.

Further details about these design paradigms and their trade-

offs are given in [22, 27, 33].

Finally, a number of issues arise when using code mobility

which include:

† Security. How can the transferred unit be safely inte-

grated in the receiving node. A mobile unit may pose a

security threat to the receiving node or alternatively it

may be faulty in which case it could disrupt the operation

of the receiving node.

† Compatibility. Unless the nodes have compatible archi-

tectures with respect to the used CE, operating system

and hardware, a mobile unit may not work in the receiv-

ing node. For example, a mobile unit may have some

dependencies on a lower-layer functionality that is pro-

vided by the operating system. Such mobile unit may

not work when it is moved to a node that uses a different

operating system. The virtual machine concept, e.g.

JVM, is often used to address this issue of compatibility.

In this paper, we do not address the security issue directly

but instead use the security mechanisms inherent in the

OSGi platform. In addition, the paper focuses on OSGi

bundle and service mobility across OSGi-enabled nodes.

Therefore, the compatibility issue does not arise in terms of

integrating the received mobile unit in the destination node.

However, the mobile bundle or service may still fail to

resolve if its dependencies on the underlying platform and

other entities are not satisfied at destination.

3. A CONCEPTUAL FRAMEWORK FOR OSGI
MOBILITY AND DISTRIBUTION

This section describes a conceptual framework for weak mobi-

lity of OSGi bundles and services across OSGi nodes. This fra-

mework adapts the concept of global virtual data structures

(GVDSs) [34] for OSGi mobility and service distribution.

GVDSs describe a meta-model for coordination in mobile

environments that is characterized by the following [34]:

† Distributed. Each node owns and stores parts of the data

structure.

† Constructive. For any given node, its local view of the

GVDS is formed by combining the individual data struc-

tures residing in all reachable nodes.

† Scope. Operations performed on data structures residing

in remote nodes appear to be local to the invoking client.

Our choice of weak mobility is motivated by the following

observations. First, as stated by Baude et al. [35], ‘there exists

no implementation of strong migration in Java that does not

break the Java model or require user instrumentation of the

code’. Specifically, supporting strong migration in OSGi plat-

form may not be possible because bundle activation can only

be done via the start(BundleContext bc) method which,

as the name implies, will restart the bundle causing the loss of

its execution state. In addition, a bundle’s state may depend on

other bundles’ states which further complicates strong

migration. Our choice of a weak mobility model is further

influenced by two factors: (1) At the application level, it is

possible to some extent mimic strong mobility by explicitly

saving, prior to relocation, all data that is needed by the

bundle or service to resume execution in the destination

node. (2) Many applications do not need support for strong

mobility where weak mobility will suffice.

3.1. Terminology for OSGi mobility and distribution

The process of supporting OSGi bundle and service mobility

across OSGi framework instances can be considered in its

roots as an exercise in code mobility. This section maps the

above mobility terminology to OSGi concepts and entities.

An OSGi framework represents the CE, whereas bundles

represent the EUs. A bundle may use a set of resources

which can include, for example, required bundles, imported

packages, native libraries, required execution environment

and other contextual dependencies. Configuration information

can be considered as the bundle’s data space. Basically, a

resource is any entity required by the bundle in order for the

bundle to be successfully deployed and executed. The aim

of the proposed conceptual framework is to support relocation

of bundles and services across OSGi framework instances.

The conceptual framework defines a node as an OSGi frame-

work instance. This means that multiple nodes could be

hosted in the same physical device. The proposed conceptual

framework supports OSGi service distribution and mobility

across OSGi nodes independent of the system or network

configuration.

Migrating a bundle means that it is uninstalled from the

current node, physically transferred to a remote node where

it is reinstalled and started. Migration can be either stateless

or stateful. Bundle cloning means a copy of the bundle is

installed and started in a different node. For remote cloning,

a bundle can either be replicated or non-replicated.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 215

Replication means that the original bundle remains active in

the source node. Note that although the current OSGi specifi-

cation defines mechanisms for the download of bundles from

remote locations, such download can only be done in a single

direction (fetching).

At a different level of granularity, it may be required to

support the mobility of individual services as opposed to

whole bundles. We draw a logical distinction between the

two concepts of service distribution and service mobility.

Service distribution corresponds to a client–server interaction

paradigm, whereas service mobility corresponds to either

COD, REV or MA paradigm. Service migration means the

service is withdrawn from the current framework and

re-offered in a different node. Remote service cloning means

a copy of the service is offered with a different node (either

replicated or non-replicated).

Bundles and services can be transferable or non-

transferable. For transferable bundles and services, they can

be further designated as either free or fixed.

At the application design level, a client–server paradigm

means that the bundle or service and all required resources

are hosted by the source node. Clients in remote nodes can

access the services using a form of RPCs (irrespective of the

actual implementation technology).

When REV is employed, the bundle or service is physically

migrated or cloned in a remote node where execution takes

place. Results can then be delivered, or brought back along

with the mobile entity, to the source node.

A COD design paradigm means that the bundle or service

can request the download of required entities (bundle or

service) from a remote node. The downloaded entity can

then be linked with existing code in the destination node and

executed.

An MA design paradigm means that it is possible for a

bundle or service to start execution in one framework instance

and finish it in a different instance.

Implementing remote invocations in a client–server para-

digm implies that the formal parameters of remote services

must be serializable which raises the question ‘How to recon-

struct (deserialize) the invocation arguments (or return values)

when they are received in the provider or client nodes, respect-

ively’. In other words, ‘How to locate the classes required for

deserializing the received invocation arguments or return

values’. Note that method arguments and return values can

be one of three types: primitive, standard (e.g. java.*) or

non-standard (all other types). A non-standard type could

have been imported from a bundle which is not available (or

available but not accessible) to the receiving entity in the

receiving node. In this case, it is not possible to reconstruct

the arguments or return values from the serialized stream.

Also note that this problem only concerns non-standard

types. For standard types, the default OSGi class loading

delegation process will eventually use the parent/system

class loader to locate the required types. Consequently, in

terms of resource availability and resource binding, we

distinguish between the following scenarios.

Scenario 1. A bundle or service is migrated, distributed (for

services) or cloned to a remote node but required resources,

e.g. declared dependencies, are unavailable in the destination

node.

Because such dependencies are considered as environ-

mental dependencies that must be resolved at the OSGi

module layer, migration in this case should fail unless the

dependencies are satisfied. A mobility extension may

provide support to dynamically identify, locate and install

such unsatisfied dependencies, e.g. using the Apache Felix

bundle repository bundle7 (formerly known as the Oscar

Bundle Repository Bundle), which provides an OSGi service

for dynamically deploying repository bundles and the transi-

tive closure of their deployment dependencies into an execut-

ing OSGi framework. In addition, the latest release 4.1 of the

OSGi specification introduces a standard Deployment Admin

Service to assist in deployment of bundles and related

resources. The Deployment Admin service enables the man-

agement of a bundle life cycle together with its required

resources as a single unit. For example, using the Deployment

Admin service, it is possible to install/update a bundle, set up

configuration objects and configure permission objects all in a

single atomic transaction. A deployment package groups a set

of resources and actions that must be treated as a single unit. A

mobility extension may therefore utilize deployment packages

to integrate mobile entities together with their interlinked

resources at the destination node.

Scenario 2. Remote invocation of a method defined by a dis-

tributed service requires a resource that is available to the

calling service but not the called service.

In order not to violate the OSGi application model and to

link to its resource and class loading delegation model,

required resources should be fetched through the correspond-

ing bundle. In this scenario, a mobility extension should dyna-

mically attempt to fetch and download the resource (if

transferable) from the bundle of the calling service (which

may in turn link to other bundles in the client node).

Scenario 3. Remote invocation of a method defined by a dis-

tributed service requires a resource that is available to the

called service but not the calling service. For example,

when the type of a return argument is inaccessible to the

calling service.

Again, such resource should be dynamically fetched from

the bundle of the called service (which may then delegate to

other bundles in the server node).

As mentioned previously, support for the different client–

server, REV, COD and MA mobility strategies depends on

the nature of the application, its domain and its requirements.

Hence, not all the above mobility strategies may be required

7www.felix.apache.org.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

216 A. IBRAHIM AND L. ZHAO

for all applications and consequently may not be supported by

a specific mobility extension implementation.

3.2. Requirements and overview

We have identified the following requirements on the pro-

posed conceptual framework and its instantiations:

† Spontaneous interactions. It should be possible to feder-

ate a set of nodes spontaneously. No pre-configuration or

special provisions other than the mobility extension

should be needed.

† Flexibility. The OSGi platform is being used in a variety

of domains, network models and devices ranging from

mobile devices to enterprise servers. Therefore, the sol-

ution should be lightweight and flexible so that it can

be used in all areas and devices supported by the OSGi

platform, and be independent of the adopted network

model and communication protocol.

† Mobility paradigms. As discussed previously, different

applications will use different mobility paradigms. An

OSGi mobility extension should therefore support all

the aforementioned mobility paradigms. Different appli-

cations can then use the most suitable mobility paradigm

for their needs.

The proposed conceptual framework which is illustrated in

Fig. 1 provides a flexible solution to OSGi bundle and service

mobility that aims to address all the aforementioned application

paradigms of client-server, REV, COD and MA. A mobility

extension manifested as a mobility bundle is used to realize

bundle and service mobility as well as service distribution

across OSGi nodes. The following sections provide a descrip-

tion of elements comprizing this conceptual framework.

3.3. Connectivity and transient sharing

In adapting the concepts of GVDS to OSGi distribution and

mobility, the proposed conceptual framework considers an

OSGi registry as a structure whose content (services) will be

shared with all the available structures (other OSGi registries).

When two or more nodes become connected either directly or

transitively, their local services are transparently shared

between all the connected nodes. Only services that have

been explicitly marked for remote access are shared. Concep-

tually, transient sharing results in the formation of a logical

group across the connected nodes that represents a logical fed-

erated OSGi registry. Such federated registry allows bundles

and services residing in different OSGi nodes to interact as

if they were all residing in the same node. Management of con-

nectivity and transient sharing is transparent to individual

bundles and services. Bundles and services only have to inter-

act with their local registry if they wish to search for remote

services, invoke those remote services, find about reachable

nodes (i.e. connected nodes) and to request migration to a

reachable node.

The proposed conceptual framework considers connectivity

at a high level of abstraction. Two nodes are considered

connected, and therefore are able to form a logical group if

they become within communication range and are able to

communicate. Note that it is possible for two nodes to be

within communication range but unable to communicate; for

example, when the cost of communication is high or when

the quality of communication is low. The meaning of connec-

tivity and the interpretation of the clause ‘within communi-

cation range’ is left to the specific conceptual framework

instantiation. In other words, the conceptual framework does

not prescribe any specific group formation policy or protocol.

For example, an instantiation of the conceptual framework

FIGURE 1. Conceptual OSGi framework.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 217

may use the global positioning system to manage connectivity

between physical nodes, where connectivity may be specified

to correspond to a certain distance or distance range within

which communication is possible or is permitted. A different

conceptual framework instantiation may use a multicasting

protocol to recognize as a group all nodes that have subscribed

to the corresponding multicast address. Various discovery pro-

tocols such as simple service discovery protocol, Jini and the

service location protocol (SLP) can all be used to detect and

establish a node’s connectivity status, where both wired and

wireless connectivity are supported. Furthermore, the concep-

tual framework does not prescribe any specific communication

model such as RPCs or event-based communication. The

conceptual framework is also independent of any specific

communication protocol. Different instantiations of the

conceptual framework may use different communication

protocols based on network setup and communication

requirements. For example, an instantiation may use simple

object access protocal (SOAP) over HTTP to exchange infor-

mation between nodes, while a different instantiation may use

binary messages over TCP or UDP. The conceptual frame-

work is therefore independent of the underlying transport

layer. These properties of the conceptual framework make it

suitable for a variety of application scenarios and network

setups such as fixed and ad-hoc networks.

As new nodes and services join and leave, the federated

logical registry is automatically adjusted to reflect the

changes. A service joins the federated shared registry when

its parent bundle is started in its local node and leaves when

the parent bundle is stopped. Only services that have been

explicitly marked for remote access will be considered for

transient sharing. In addition, a remote service can only join

if its parent node has joined. A node joins when it becomes

connected and leaves when it is disconnected. Joining of a

node implies the joining of all remote services within that

node. Conversely, a node leaving implies the disjoining of

all previously joined services that reside in the departing node.

3.4. Controlled visibility and service identification

A ubiquitous environment will typically comprise many

devices. The proposed conceptual framework may therefore

result in a large number of services that are made visible to

individual nodes. In this case, service programming may

become more complex because developers are required to

sift through and interact with a large number of services. In

addition, certain devices may have certain resource limitations

and should not be overwhelmed with services. Furthermore,

some nodes may only be interested in using a specific type

of services, while other nodes may only be interested in

using services that are provided by specific nodes. Therefore,

conceptual framework instantiations should support controlled

visibility at two levels. First, at the node level, it should be

possible to control visibility through the ability to hide

certain nodes from certain other nodes. Second, at the

service level, it should also be possible to hide certain services

from certain other services. If a node is invisible, then all ser-

vices originating from that node are also invisible. Conversely,

if a service is visible, then its source node must also be visible.

There is also a need for a global naming scheme that uniquely

identifies mobile entities across the federated nodes. The OSGi

specification already identifies services within a single OSGi

framework instance through a unique Service.ID property

which is automatically assigned by the framework imple-

mentation to every newly registered service. Bundles are also

identifiable in the scope of a single framework instance

through a unique Bundle-SymbolicName manifest header.

Instantiations of the conceptual framework may extend these

identification schemes to cover the federated nodes. Alterna-

tively, instantiations may provide their own naming schemes,

for example, using randomly generated identifiers.

3.5. Mobility bundle

A mobility bundle implements the conceptual framework.

It uses the communication infrastructure to transparently

manage the transient sharing of services across nodes. A mobi-

lity bundle also offers a mobility service that provides an API

for bundle and service mobility supporting both migration and

remote cloning.

3.6. Mobility paradigms

3.6.1. Service distribution

The mobility bundle monitors the local OSGi registry.

Bundles wishing to offer services that are enabled for

remote access should explicitly mark them for remote

access. The mechanism for marking these potentially remote

services is implementation dependent; for example, by

setting a specific REMOTE_CANDIDATE property of the

service in question or by implementing and registering it

under a java.rmi.Remote interface. The mobility bundle

automatically and transparently shares these remote services

so that they become accessible to all OSGi nodes that are con-

nected. For example, in Fig. 1, Bundle2 is able to use a remote

service ‘S7’ that is offered by Bundle5 as if Bundle5 was

residing in the same Node A. However, the mobility bundle

should not completely hide from clients the distributed

nature of remote services because certain considerations

such as performance and security may be important for the

client bundles and services (see Section 4.3). For example,

Bundle2 in the figure should be aware of the distributed

nature of service S7 so that Bundle2 can decide whether and

how to use the service S7.

3.6.2. Other mobility paradigms

It is also possible to instruct the mobility bundle to migrate a

specific service to a specific remote node. In this case, the

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

218 A. IBRAHIM AND L. ZHAO

service is first withdrawn from the source node before

re-offering it in the destination node. Remote cloning is also

supported, where a copy of the service is offered in the speci-

fied destination node. Mobile entities can only be moved/

cloned between connected nodes. Migration and remote

cloning work in both directions where a bundle or service

can either be sent or retrieved from a remote node. The

service ‘S9’’ in Fig. 1 is an example of service migration

from ‘Node A’ to ‘Node B’, whereas service ‘S10’ represents

a remotely cloned service.

3.7. Synchronous versus asynchronous mobility

and invocations

Some communication infrastructures such as publish-

subscribe are asynchronous by nature, which means that

support for mobility on top of them is also asynchronous,

i.e. an initiator of service migration will not block waiting

for the service to reach destination. In certain scenarios,

support for synchronous mobility on top of an inherently asyn-

chronous communication infrastructure may also be required.

It is possible to use the Half-Sync/Half-Async design pattern

[36] to efficiently integrate both the synchronous and asyn-

chronous models. This pattern allows for high-level tasks to

use a synchronous communication model on top an asynchro-

nous model wherein communication between entities in the

synchronous and asynchronous layers is mediated through

an intermediary queue. Such use of the Half-Sync/Half-Async

pattern facilitates the implementation of synchronous mobility

operations such as synchronous migration and cloning on top

of the inherently asynchronous communication infrastructure.

Alternatively, the Future idiom [37] can be used to provide

a similar support for synchronous interaction on top of an

asynchronous communication model. A future is a place

holder for a result that will eventually become available after

completing the asynchronous operation. When a method is

invoked, it immediately returns a place holder, i.e. a future

object instead of the real result. The underlying asynchronous

communication infrastructure is then used to satisfy the call.

Eventually when a result is returned, it is put inside the

future. The client can issue the synchronous call, get the

future object and do something else until the real result is

required at which point it tries to obtain it from the returned

future. If the asynchronous computation had ended by then, a

result would be available from the future. Otherwise, the

client will be blocked by the future until the result is available.

Walker et al. [38] describe an RPC execution facility that

adopts the future pattern and adds support for managing replies.

The proposed conceptual framework does not prescribe any

specific synchronization model with respect to bundle and

service mobility. Instantiations can support either synchronous

or asynchronous mobility according to application require-

ments. In synchronous mobility, an initiator of service

migration typically blocks waiting for the mobile entity to

reach its destination. Typical instantiations should support

both synchronization models in order to be useful for the

widest possible range of applications.

4. A SERVICE DISTRIBUTION AND MOBILITY
ARCHITECTURE

An architecture for the proposed conceptual framework is

depicted in Fig. 2 where a mobility extension is responsible

for exporting OSGi services that are marked for remote

access in the source node and their subsequent import at the

destination node. In addition, a mobility extension provides

an API that can be utilized by applications to send and

receive OSGi bundles and services between OSGi nodes.

The proposed architecture distinguishes between service

discovery and interaction protocols. For instance, Jini and

SLP8 are examples of discovery protocols, whereas Java

RMI [39, 40] and SOAP9 are examples of interaction proto-

cols. A client wishing to use a remote service must discover

the exported service using the relevant discovery protocol

and interact with the discovered service using the relevant

interaction protocol. Conceptual framework instantiations

may support different protocols for discovery and interaction.

A mobility extension design may utilize the Whiteboard [41]

and Factory [42] design patterns to dynamically select

appropriate exporters/importers. In such design, factories are

registered with the local OSGi registry and dynamically

discovered by the mobility extension to obtain a suitable

exporter/importer. Bridges between discovery protocols

where a service is discovered using a different protocol from

the one used to publish the service as well as interprotocol

collaboration could potentially be supported (see for

example, [43, 44] and the Device Access Specification’s

Driver Bundles [12]) but we do not discuss them further.

The details of the export and import mechanisms are depen-

dent on the specific conceptual framework instantiation but

follows a common approach which can be summarized as

follows. Each marked service is exported in a protocol specific

way. For example, a service could be exported by making it

discoverable through SLP or Jini and accessible through either

the SOAP protocol or Java RMI. In the destination node, such

exported services are discovered using the relevant discovery

protocol and a stub or proxy is automatically generated for

accessing the remote service using the relevant interaction

protocol (export-side proxy generation may also be supported,

see Section 4.4.3). Messages are exchanged between nodes to

convey service availability events, invoke remote operations

or to request migration of an OSGi entity, as few examples.

Depending on the specific conceptual framework

instantiation, subcomponents of the mobility extension may be

implemented as separate bundles. A mobility extension is

8http://tools.ietf.org/html/rfc2608.
9http://www.w3.org/TR/soap/.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 219

responsible for managing the connectivity between nodes and

the transient sharing of exported structures. It is also responsible

for communicating exchanged messages between connected

nodes and for establishing and managing a communication

channel between the connected nodes. Trust and security

aspects including privacy of communication, for example,

through encryption techniques, can be supported but no assump-

tions are made about the supported trust and security aspects.

The communication infrastructure between nodes may be

configured differently depending on the application require-

ments and the support provided by the underlying communi-

cation infrastructure implementation. For example, in a

centralized configuration, a single communication server is

responsible for routing messages between connected nodes.

In a distributed configuration, nodes connect to multiple

access points that are connected to each other forming a

coherent distributed system.

4.1. Deployment bundles

The OSGi platform uses a bundle as the unit of delivery and

deployment. Consequently, mobile bundles can be readily

deployed on arrival at the destination node. Mobile services,

however, must be packaged as bundles before they can be

deployed in the destination node. When transferring individual

services, the mobility extension automatically packages them

into bundles for subsequent deployment. This packaging of

mobile services into deployment bundles can happen either

at the source node or on arrival at the destination node.

4.2. Push and pull mobility styles

In a push style of mobility, e.g. REV, an initiator of migration

or cloning resides in the source node. The initiator can be

either the mobile entity itself or a third party. On initiation

of a move, the mobile entity is first uninstalled (in the case

of migration) and a corresponding message is constructed

and published via the communication infrastructure. The des-

tination node detects and interprets the message and then

installs and starts the corresponding deployment bundle

which offers a new service as opposed to a proxy service.

In a pull style of mobility, the initiator resides in the receiv-

ing node. The initiator uses the mobility extension to request

the migration or cloning of a specific service from a remote

node. In response, the mobility extension publishes a corre-

sponding request via the communication infrastructure. The

mobility extension in the source node responds by pushing

the required entity using the communication infrastructure.

When received in the destination node, the response

message is used to install and start a corresponding deploy-

ment bundle as described above.

4.3. A note on implementing the proposed conceptual

framework

At an implementation level, there are essentially two mobility

mechanisms that have been adopted by MA systems: middle-

ware technologies such as Java RMI and network sockets [30].

The relationship between MA systems and middleware tech-

nologies such as CORBA, DCOM and Java RMI is that such

middleware technologies offer low-level primitives for mobi-

lity that are used by MA systems [32]. Java RMI is the most

widely used mobility mechanism especially for Java-based

agent systems. Using network sockets, a source node directly

serializes the agent and its resources which are then com-

municated through sockets to the destination node. Although

the use of Java RMI for inter-node communication has the

advantage that it supports automatic class loading, a number

FIGURE 2. OSGi mobility and distribution architecture.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

220 A. IBRAHIM AND L. ZHAO

of authors have argued against using Java RMI for MA

migration. For example, according to [45, 46], Java RMI

does not provide the programmer with control over the strat-

egy for class relocation. There is also no way to relocate a

set of needed classes in a single operation which counters

the benefit of MAs in terms of reducing network overhead

and communication costs. Specifically, ‘the impossibility to

specify dynamically the constraints on relocation of classes

and to limit dynamic linking hampers a full exploitation of

MA paradigm [45]’. Furthermore, RPC distribution technol-

ogies such as Java RMI are often synchronous in nature

where both client and server need to be available at the time

of communication. The characteristics of ubiquitous environ-

ments in terms of device mobility, variable network topology

and frequent unannounced disconnections mean that an asyn-

chronous interaction style may be more desirable for agent

migration and internode communication. For example, a

client may connect to a service provider, make a request,

disconnect (either voluntarily or involuntarily) and later

reconnect to collect the results. Asynchronous interaction

styles are considered as a more appropriate communication

model particularly for mobile environments (see for

example, [20, 47–50]). Our conceptual framework based on

the GVDS concept supports certain levels of decoupling in

both time and space where nodes can exchange information

indirectly through the shared structure (or the asynchronous

communication infrastructure if one is used).

Many distributed systems attempt to unify the object model

by making distributed computing more like local computing

with the aim of simplifying distributed computing. Kendall

et al. [51] discuss the nature of distributed computing and

the importance of recognizing the fundamental differences

between distributed and local computing. They argue that

developing a distributed system requires awareness of

latency and the different model of memory access. In addition,

it requires the programmer to explicitly consider the issues of

concurrency and partial failures. The same authors argue that

unifying the object model by designing all interfaces as if they

were remote or by designing all interfaces as if they were local

are both flawed and counter-productive. Ignoring the differ-

ences between distributed and local computing can and will

cause performance, robustness and reliability problems, and

therefore distributed systems that attempt to paper over these

differences are deemed to failure. These highlighted issues

were the motivation behind the development of Java RMI as

a technology for distributed computing. The same authors

suggest that these highlighted issues are more significant in

p2p-distributed object-oriented applications as the case in

the target domain of this paper. However, Rellermeyer et al.

[52] and despite their agreement with the above arguments

argue that the OSGi application model is fundamentally

different from the pure object-oriented application types

originally targeted by [51]. These differences largely stem

from the characteristics of service-orientation, specifically:

(1) location independence; (2) substitutability; (3) higher

granularity. Rellermeyer et al. [52] propose a simple and

pragmatic alternative OSGi-specific solution which is to map

network failures and (latency, partial failures and concurrency

non-determinism) to local unplug events by withdrawing the

corresponding proxy service in the client node. The assump-

tion is that all OSGi applications are written with no guarantee

as to the continuous availability of used services (which

follows from the nature of the OSGi application model

itself) and that guards are put in code to detect and react to

such service departure events. Hence, by mapping network

failures to service departure events that are already handled

by client applications, clients will simply react appropriately,

e.g. by searching and binding to a replacement service. Note

that remote servers could still raise non-network exceptions

and these must not be hidden from the local clients. We in

turn agree with those arguments by [52] but add that service

location, cost, reliability and other similar information can

be very important for certain clients, for example, clients

wishing to use specific resources which can not be easily

relocated, e.g. hardware resources. Another example is

sensitive and confidential information which should not be

exposed to or processed by non-local services. Therefore,

we do not desire absolute transparency. To address these

concerns, location, cost and other similar information can be

attached to proxy services in the form of service properties

for inspection by clients during service selection and invoca-

tion. Implementations of our proposed conceptual framework

should consider the above issues when distributing OSGi

services through transient sharing.

The above discussion only concerns client–server inter-

actions when sharing the OSGi services. Other mobility para-

digms are unaffected because the programmer is explicitly

aware of the location where computation takes place. To sum-

marize, our proposed conceptual framework does not preclude

the use of traditional RPC technologies such Java RMI for

communication between connected nodes. Asynchronous

communication infrastructures can also be used to provide

decoupling in time and space. In particular, the provisioning

of location aware primitives to GVDS may subsume the

traditional client–server paradigm as a special case of

GVDS [34]. In the following section, we describe a mobility

mechanism that is the result of adapting the mCode mobility

toolkit [45] for OSGi bundle and service mobility.

4.4. Briefcases for service and bundle mobility

In addition to its code, a mobile entity may also be associated

with a set of resources that may need to be transferred along

with the entity. The purpose of a briefcase is to act as a con-

tainer that can be filled arbitrary with entities and resources

(or information about where they can be found) for shipment

to the remote node as a single unit. The concept of a briefcase

was first proposed in [53] and is also adopted by [45] who call

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 221

it a group. A briefcase provides an API for populating and

inspecting the briefcase’s content. The proposed architecture

considers a briefcase as the minimum unit of mobility that is

communicated to peer nodes as part of the exchanged

message. The benefits of using the briefcase abstraction can

be summarized as follows:

(i) It provides the developer with a single API for bundle

and service mobility irrespective of the chosen mobi-

lity paradigm.

(ii) A briefcase is the container for the transferred code

and resources. Depending on application require-

ments, it is possible to create different briefcase

implementations with different capabilities. For

example, although the granularity of the briefcase

content is left to the application developer, a briefcase

implementation may enforce the semantics that a brief-

case can only be used to transfer a single bundle or

service at a time along with their used resources.

Other briefcase implementations may exclusively

support specific resource relocation strategies such as

rebinding or remote references.

(iii) The concept of a briefcase and its API simplifies the

process of finding the relevant resources when the

mobile entities arrive in the destination node which

in turn facilitates the generation of the corresponding

deployment bundles (see Sections 4.1 and 4.4.3).

(iv) Additional features could also be supported by brief-

case implementations. For example, a briefcase could

be made responsible for automatically calculating the

transferable code as classes and resources are added

to the briefcase.

When a bundle or service is to be migrated or transferred for

REV or remote cloning, its byte code is packaged into a brief-

case that is sent over the network to the remote node. At the

destination node, the byte code is processed and loaded into

the running system. The next section describes how the trans-

ferred byte code is calculated in the source node, while Section

4.4.2 describes how it is processed and loaded in the destina-

tion node. These solutions to calculating the transferred code

and its subsequent integration in the receiving node are

based on approaches described in [45] and [54], respectively.

4.4.1. Automatic calculation of the transferred code

If the developer wishes to transfer a whole bundle, the

bundle’s byte code is read and packaged into a briefcase in

accordance with the chosen mobility paradigm, e.g. cloning

or migrations. If the developer wishes to transfer only a

specified service, then the transferable code is automatically

calculated by analysing the service interface(s). For each

implemented interface, the analysis mechanism automatically

determines all the classes that must be transferred in order

to offer the service with the remote node under the given

interface. This automatic calculation of the transferred

code is very powerful and greatly simplifies application

development.

In our current prototype implementations, calculating the

transferable code is the responsibility of the briefcase which

has some intelligence built-in. For example, when a class is

added to the briefcase, the briefcase automatically computes

and adds the full closure of the class. To prevent certain

classes or whole packages from being automatically added,

they can be programmatically specified as ubiquitous.

Ubiquitous classes and packages are assumed to be available

in every node and hence will not be transferred. By default,

system classes (java.* and their subpackages), OSGi

runtime (org.osgi.* and their subpackages), and the

mobility extension packages (which may vary depending on

the specific implementation) are all considered ubiquitous. The

list of ubiquitous packages contributes to the Import-Package

header of the deployment bundle at the destination node.

The current briefcase implementation uses the following

algorithm for calculating the transferred code:

† Include all interfaces under which the service was regis-

tered with the OSGi registry and their full class closures,

i.e. recursively include all reachable classes and inter-

faces, subject to the ubiquity specifications (see below).

† For each explicitly added class (explicit injections),

include both the class and its full class closure.

† Interfaces and classes defined by packages java.*,

org.osgi.*, and the mobility extension packages are

not included—they are assumed to be available at the

destination node(s).

† Interfaces and classes that are explicitly specified as ubi-

quitous are not included. Our prototype implementations

provide several methods for specifying class ubiquity at

different levels of granularity. For example, specifying

a package as ubiquitous automatically considers all

classes within that package as ubiquitous. If the

package name ends with ‘.*’, then all the subpackages

are made ubiquitous too. Alternatively, ubiquity can

also be specified on class by class basis.

† For explicitly added serializable objects, their whole

object graph is serialized automatically. In order to

reconstruct these objects at the destination node, the

involved classes are automatically included, subject to

the ubiquity specifications.

† Our prototypes also automatically calculate the deploy-

ment bundle’s Import-Package header based on the

above steps.

4.4.2. Integration of the transferred code in the receiving

node

When a whole bundle is transferred, it is simply installed

and started on arrival in the destination node. For service

mobility, the mobility extension automatically generates, in

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

222 A. IBRAHIM AND L. ZHAO

the destination node, a deployment bundle that encapsulates

the transferred service. A deployment bundle is needed in

order to integrate the transferred service with the local OSGi

framework in the destination node (see below). The mobility

extension dynamically generates, installs and starts this

deployment bundle which then offers the encapsulated

transferred service.

Deployment bundles are required for integrating the

transferred code in the destination node. When a service is

transferred, the mobility extension includes all interfaces

and classes that are required in order to offer the service in

the destination node. A remote service candidate may be

using interfaces and classes from different bundles (imported

packages). Such imported packages are considered as environ-

ment dependencies and hence must not be transferred, which

is the default briefcase behaviour. At the destination node,

these package dependencies are simply reimported, i.e.

resource binding by type. Different briefcase implementations

may change this default behaviour, e.g. by enforcing dynamic

remote linking policy. The mobility extension must ensure

that these package and class dependencies are satisfied at the

destination node. The OSGi specification defines a depen-

dency resolving process which ensures that package and

other environment dependencies are satisfied before a

bundle can be allowed to start. This dependency resolving is

automatically performed by the OSGi framework after a

bundle is installed but before it is started. This means that at

the destination node, there is a need to integrate the transferred

service at the module layer [54]. The only mechanism

available in the OSGi platform for triggering this resolving

process is by installing and starting a bundle which causes

the resolving of that bundle. Therefore, the deployment

bundle approach seems to be the only way currently available

for achieving such integration at the OSGi module layer.

4.4.3. Generating the deployment bundle in the source node

In certain scenarios it may be more efficient to generate

the proxy bundle on the exporting source node as opposed to

the destination, for example, in order to preserve resources

in importing devices with limited resources. The current

prototype implementations can be customized to generate

deployment bundles in either the destination or source

nodes. In the latter case, a deployment bundle is pre-generated

in the source node before it is shipped to remote nodes where it

can be directly installed and started.

4.5. Supporting controlled visibility and uniform

resource identification

As discussed in Section 3.4 there is a need to support con-

trolled visibility. At the node level, different instantiations

of the conceptual framework can define different rules for

connection and disconnection which provides them with

control over node visibility. In addition, our current mobility

extension prototype supports the two concepts of import

filters and views which are described below.

An import filter is any object of type IImportFilter that

implements a single method public boolean accept(String

serviceURI, Dictionary properties). When associated with the

mobility extension implementation, the filter is called when-

ever a remote service is about to be imported. Only if the

accept method returns true then the service is imported. This

is a straightforward use of the strategy design pattern [42] to

encapsulate the filtering logic. The current prototypes come

with three default filter implementations:

† UniversalImportFilter. This is the filter that is used by

default which imports all available services.

† ImportByHostFilter. This is a filter that selectively

imports bundles and services from certain nodes which

are specified when the filter is instantiated.

† ImportByServiceTypeFilter. This is a filter which filters

services based on their service types.

It should be possible to build on import filters to support

the notion of an acquaintance list that represents a set of

neighbouring nodes within communication range which this

node considers interesting. It is expected that developers

will provide their own filter implementations based on

application requirements. For example, developers can

create filter implementations that filter out services based on

specific service properties in which they are interested.

Service-oriented systems (SOSs) are usually composed of

several inter-dependent services. Service providers may

choose to offer or withdraw their services at any time

whereas clients are free to use any available service at

runtime (substitutability). Accordingly, SOS need to

compose and adapt to services dynamically [11]. However,

programming service dependency management (SDM)

especially in ubiquitous contexts is complex and error prone

task because [8]: (1) Developers may have to deal with large

number of communication protocols (2) Typical current

middleware does not provide adequate support for SDM.

A number of OSGi SDM mechanisms have been proposed

in the literature (see for example, the Service Tracker [12] ,

Xenotron [55], Declarative Services [12], iPOJO10 and

Service-Binder [23]) that aim to simplify OSGi application

development through support for constant monitoring and

measures for adaptation. Essentially, an SDM mechanism

mediates between a component and the services registry to

(1) manage the component’s dependencies on other services

available in the registry; (2) manage the component’s provided

services by automatically handling their registration in the

registry. The specification of provided services and required

dependencies is implementation dependent and can be

defined either programmatically or using XML description

files. The SDM mechanism is responsible for tracking required

10http://cwiki.apache.org/FELIX/ipojo.html.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 223

dependencies which are then injected into their respective

dependent services. If instructed, the SDM mechanism can

also handle the registration of provided services with the

OSGi registry on behalf of the component. The SDM mechan-

ism can manage the life cycle of the provided service by ensur-

ing that it is activated only when its required dependencies are

satisfied. An active service means that: (1) all its required

dependencies are satisfied according to the dependencies

specification; (2) the service has been registered with the

services registry and can therefore be used by other clients

and services.

To support controlled visibility at the service level, we have

created an innovative service dependency manager with

support for views as in database systems. This dependency

manager supports the definition of a view as a projection

over the OSGi registry which is then associated with specific

dependent services. Once associated with a service, that

service can only track and use other services that are visible

through the view. Views can be merged, intersected, and dif-

fered as in set theory. In addition, they can be changed dyna-

mically for any given service and the dependency manager is

responsible for automatically adapting to changes in the new

view. Views provide basic support for services scoping and

grouping which is useful for predictable service composition.

Our architecture also supports a simple resource identifi-

cation scheme. Every node is associated with a name consist-

ing of the tuple (’urn:d-osgi’, hostIPAddress,

dosgiPortNumber) which uniquely identifies a node in

the federation, i.e. it describes a placeID. Subsequently,

every service can be uniquely identified across the federation

through the tuple (placeID, Service.ID). However, this

approach has the limitation that the Service.ID property is

not persistent across OSGi framework restarts. Consequently,

stateful service interactions across OSGi framework restarts

cannot be supported. It is possible to overcome this limitation

by using the standard OSGi Service.PID property which

describes a persistent service identifier across OSGi frame-

work restarts. However, unlike the Service.ID property

which is automatically generated and assigned by the OSGi

framework implementation to every registered service, the

Service.PID property must be generated and assigned by

the application developer at bundle deployment time.

5. DESIGN AND IMPLEMENTATION OF THE

D-OSGI MOBILITY EXTENSION

This section describes the design and implementation of the

D-OSGi bundle which realizes the proposed conceptual frame-

work and architecture using the Lime middleware [56] as an

underlying GVDS implementation. We used version 2 of

Lime (called LimeII [57]), which is a complete re-engineering

of the original Lime implementation. LimeII differs from the

original Lime implementation in various aspects that can be

categorized as: (1) Improved support for mobile ad-hoc

environments; (2) Support for unannounced disconnections;

(3) Improved reliability and fault-tolerance; and (4) Design

improvements in terms of flexibility and modularity. Our

D-OSGi extension realizes the proposed conceptual frame-

work supporting the four design paradigms client–server,

COD, REV and weak MA. The section also describes vari-

ations of the D-OSGi implementation that demonstrate the

flexibility and portability of the proposed conceptual frame-

work and architecture.

The Lime middleware adapts the tuple space concept popu-

larized by the Linda coordination middleware [58] to mobile

environments by partitioning the shared tuple space into a

number of tuple spaces. Each of these tuple spaces is called

an interface tuple space (ITS). Each ITS is then permanently

and exclusively associated with a single process. An ITS rep-

resents the single point of interaction for the owning process.

A process uses normal tuple space operations to add and

retrieve tuples to/from its ITS. The data in an ITS is the

only data available to the owning process while the process

is alone. When two or more processes (or hosts) are connected,

the content of all the individual ITSs are shared to form a

single shared tuple space. Our D-OSGi implementation

adapts Lime to OSGi service distribution by associating a

single ITS with each node which is then transiently shared

when the nodes are connected.

5.1. D-OSGi components

The main components of the Lime-based D-OSGi mobility

extension are shown in Fig. 3. It adopts a modular design

consisting of four main stationary software agents with well

defined roles, which are described below.

5.1.1. Exporting agent

This is a singleton (per D-OSGi bundle) agent that is respon-

sible for distributing remote service candidates to reachable

nodes according to the client–server paradigm. An exporting

agent monitors the local OSGi registry for remote service can-

didates. When the agent detects the registration of a remote

service candidate, it automatically maps the service into an

ExportTuple that is inserted in the ITS. Similarly, when

the agent detects deregistration of a remote service candidate,

it automatically propagates this information to reachable

nodes by inserting a ServiceWithdrawnTuple which

will be detected by other importing nodes and the appropriate

action will be taken. In addition, the Exporting Agent detects

property updates of remote service candidates and automati-

cally inserts corresponding PropertiesUpdateTuple(s)

in the ITS in order to propagate the updates to reachable nodes.

Another responsibility of this agent is to launch and maintain a

response sender request receiver agent for every exported

service (see Section 5.1.4 for details).

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

224 A. IBRAHIM AND L. ZHAO

5.1.2. Importing agent

This singleton agent (per D-OSGi bundle) continuously moni-

tors the ITS for ExportTuple(s) and maps them to proxy

services which are subsequently registered with the local

OSGi registry (subject to import filter specifications).

Another responsibility of the Importing Agent is to monitor

the ITS for PropertiesUpdateTuple(s) and update the

properties of the corresponding proxy services. It also

detects the departure of exporting nodes and unimports all ser-

vices previously imported from those departing nodes. Finally,

it detects when previously imported services are withdrawn,

by monitoring the ITS for ServiceWithdrawnTuple(s),

and automatically unimports those withdrawn services. A

service is unimported by stopping and uninstalling its corre-

sponding proxy bundle. Client bundles using the withdrawn

proxy service will then be notified by the OSGi eventing

mechanism and, based on the OSGi application model,

should react accordingly, e.g. by searching and binding to

alternative services. If a remote client D-OSGi bundle does

not unimport a withdrawn service, it is considered as a

programming error. All calls on such unreleased but

withdrawn services (i.e. stale references) will fail returning a

ServiceUnavailableException. The client D-OSGi

bundle may catch such exceptions and force un-importing of

the corresponding service.

In comparison, garbage collection in Jini relies on leases to

grant access to offered objects on a time basis. It is the client’s

responsibility to renew the lease before the current one expires

otherwise the offered object is discarded by the lookup

service. A client is not expected to use an object whose

lease has expired. The need to frequently renew leases may

place additional load or burden on clients, e.g. when the cost

of connection is high. Jini introduces the Lease Renewal

Service specification to try overcome this limitation.

5.1.3. Request sender response receiver agent

This is a client side agent that is responsible for forwarding

invocation requests on the proxy services to the remote node

hosting the original service and for receiving the responses.

A different instance of this agent is assigned to each proxy

service in the importing node. The justification for having

multiple instances of this agent is that method invocation is

synchronous where a client must wait for the result to be

returned. If there was a single agent instance for handling all

the proxy services, then all invocations on any of those

proxy services will have to compete with each other for the

agent’s attention where the agent has to forward each invoca-

tion and wait for its reply before handling another invocation.

This is clearly unacceptable because it can greatly degrade

performance. By assigning each proxy service a separate

agent instance, each proxy service effectively will have its

own thread of control for forwarding invocation requests

and receiving replies.

FIGURE 3. D-OSGi components.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 225

A proxy service may be invoked concurrently by multiple

clients. In this case, if one of the invoked methods blocks or

slows considerably in returning a result, the request sender

response receiver agent for that proxy service must still be

able to handle the other concurrent method invocations on

the proxy service while waiting for the current slow invocation

to return. The current D-OSGi implementation uses the active

object design pattern [59] to meet this requirement and to

decouple method invocations from their subsequent execution

by the request sender response receiver agent. The decoupling

is achieved by transparently and automatically converting

method invocations into method request objects that are then

passed to a different thread of control. The implementation

uses a queue for storing these method request objects. A sche-

duler continuously runs in the other thread of control to

dequeue and process method request objects.

5.1.4. Response sender request receiver agent

This is a server side agent that is responsible for receiving

service invocation requests from client nodes and sending

back the responses. A different instance of this agent is

assigned to each exported service in the offering node. The

justification for having multiple instances of this agent is

similar to that of request sender response receiver Agent; if

there was a single agent instance for handling all the exported

services, then all received invocations on any of those

exported services will have to compete with each other for

the agent’s attention. In such case, the agent has to invoke

the received invocation request on the exported service and

send back the reply before handling another received request

which is clearly unacceptable because it can greatly degrade

performance. By assigning each exported service a separate

agent instance, each exported service effectively will have

its own thread of control for receiving requests and sending

replies. Similar to the request sender response receiver

agent, an active object design pattern is used to decouple

method invocations from their execution.

Use of the request sender response receiver and response

sender request receiver agents supports concurrency at two

levels. First, at the service level, each service is given its

own thread of control. Second, at methods level, invocations

are decoupled so that they do not get in each other’s way.

Such decoupling enables the D-OSGi implementation to effi-

ciently scale up as the number of services and methods

increase. It also improves the end-to-end quality of service

for both clients and servers. Furthermore, the two agents

encapsulate the RPC mechanism and its implementation (see

Section 5.2).

5.1.5. Relocating and relocating handler agents

The relocating agent is responsible for service mobility in

terms of migration and remote cloning. Both push and pull

style mobility are supported. The relocating handler agent in

the destination node responds by creating new services that

are installed and started locally. These created services are

different from the proxy services created by the Importing

Agent in that they do not forward method calls to the remote

providing node but rather execute the calls locally. The relo-

cating agent and the relocating handler agent are essentially

a design and implementation choice. For example, it is poss-

ible to merge them with the exporting and importing agents

respectively.

5.1.6. Clean-up agent

This optional singleton agent (per D-OSGi bundle) is respon-

sible for cleaning up expired tuples that were inserted by the

parent node. For example, when the properties of an exported

service are updated, a corresponding PropertiesUpdate-

Tuple is inserted in the ITS. This inserted PropertiesUp-

dateTuple will be detected by importing nodes which will

subsequently update their corresponding proxy services.

After all importing nodes had updated their corresponding

proxy services, the tuple is no longer needed. New property

updates will result in new PropertiesUpdateTuple(s)

being inserted in the ITS. ServiceWithdrawnTuple(s)

are another example of tuples that should be eventually

cleaned. For performance and efficiency reasons and in

order to prevent the tuple space from growing very large,

this agent automatically cleans up those expired tuples. The

need to insert new PropertiesUpdateTuple(s) and for

ServiceWithdrawnTuple(s) is a result of the limitation

of Lime’s reaction semantics [56], which we use to monitor

the ITS. Lime’s reactions can only fire in response to the

insertion of new tuples as opposed to the withdrawal or

modification of existing tuples. Enhancing the semantics of

Lime’s reactions will allow us to reuse the same tuple to

propagate new information and will obviate the need for the

clean-up agent. Alternatively, some tuple space implemen-

tations readily support tuples that can be associated with a

time-to-live parameter which is used to automatically

remove the tuple when this time period expires.

5.2. D-OSGi variations

The Lime middleware supports the extended out[l] operation

which takes a location parameter (l) specifying the target

destination of an inserted tuple. Location parameters make it

possible to exclusively communicate migration and clone

messages to specific remote nodes. Further description of the

semantics of the out[l] operation is given in [56]. In a first

D-OSGi prototype (Prototype A), we successfully used the

underlying tuple space and the out[l] operation to forward

method invocation requests and responses between the proxy

services and the original services in the source node. This

exercise backed the claim by [34] who suggested that the

provisioning of location aware primitives to GVDS may

subsume the traditional client–server paradigm as a special

case of GVDS. Despite use of location parameters, exchanged

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

226 A. IBRAHIM AND L. ZHAO

messages are still shared with all connected nodes which raises

security and privacy issues. To overcome this limitation, the

concept of a communication session [25] could be supported.

Although not currently implemented in our prototype, a

session could be supported via a temporary and uniquely

identified ITS that is used to securely exchange request and

response tuples. Communicating nodes may exchange a

potentially encrypted session ID which, after decryption, can

be used to create the uniquely named ITS. Tuples exchanged

through these uniquely named ITSs will only be visible to

those nodes with access to the session ID and the decryption

key. In addition, MAs interacting with agents from remote

nodes may continue the same conversation by simply carrying

along the unique session name/ID and using it to create a new

ITS at the new destination node. Alternatively, the session

may be terminated implicitly when one of the participating

agents moves.

We also created a second prototype (Prototype B) that uses

direct socket-based communication for remote invocations. A

transient TCP channel (whilst the two nodes are connected) is

automatically created, maintained and managed by D-OSGi.

The flexibility of the D-OSGi design meant that changes

were largely confined to the request sender response receiver

and the response sender request receiver agents. Similarly,

migration and remote cloning can be supported via either

the tuple space or socket-based communication and changes

will be confined to the Relocating and Relocating Handler

agents.

In a third prototype (Prototype C), we used Java RMI to

implement remote invocations between client and server

nodes. In the source node, D-OSGi detects all services that

are registered under the java.rmi.Remote interface and

automatically exports them via Java RMI registry. The

unique identifier of the exported service along with the

location information of the Java RMI registry are then commu-

nicated via the ITS to all connected nodes. In the destination

nodes, D-OSGi uses the received information to create a

finder proxy service that is registered with the local OSGi

registry. Client bundles use this finder proxy service to

obtain the exported service’s identifier and Java RMI registry

location information which they then use to locate an Java

RMI proxy (the remote reference) for invoking the original

service using Java RMI mechanisms.

Use of a finder service is a compromize to integrate Java

RMI and support automatic contextual management. We

tried to get the D-OSGi bundle in the destination node to

obtain the RMI proxy on behalf of client bundles and to regis-

ter this RMI proxy as a service with the local OSGi registry for

direct use by client bundles. Note that an RMI proxy obtained

via Registry.lookup(name) method implements all

the interfaces of the original service and can therefore be

registered with the OSGi registry under these interfaces.

However, we encountered a ClassCastException when-

ever a client bundle attempts to cast the RMI proxy service

into one of the implemented interfaces. This is because on the

unmarshalling side (in this case the destination node), Java

RMI runtime creates a new classloader with the classloader

of the calling class as the parent. Since, the OSGi platform

associates different bundles with different class loaders, it is

only possible to correctly cast the returned RMI proxy if the

bundle performing the cast is the one who obtained the same

RMI proxy via the Registry.lookup(name) method.

A fourth prototype (Prototype D) successfully used the

Siena publish–subscribe system [60] to export/import remote

services. However, ubiquitous environments are characterized

by ad-hoc and frequent (dis)connections and therefore published

messages representing service (un)availability events will not be

seen by nodes that were disconnected at the time of publication.

In order to support such scenarios, the used publish–subscribe

implementation should also support message buffering

where published messages are buffered for subsequent delivery

to connecting nodes. A reconciliation functionality may also be

needed to prevent duplicate messages and to guarantee message

delivery and order. Many publish-subscribe implementations

have been adapted for mobile environments through message

buffers that hold published messages on a subscriber’s behalf

while it is disconnected (see for example, [47, 61–63]). Other

typical extensions to the publish–subscribe interaction model

include message sequence detection, queuing, and message

persistence. Eugster et al. [20] suggest that ‘message passing,

remote invocations, notifications, shared spaces and message

queuing do all constitute alternative communication paradigms

to the publish–subscribe scheme’. The same authors describe

the commonalities between these alternative communication

models and the publish–subscribe interaction style. The

results of this comparison emphasize the inability of these

alternative communication models to fully decouple the

interaction between the participants. However, some modern

implementations of these alternative communication models,

e.g. Lime, do support the full decoupling along the three

dimensions of time, space and synchronization. Johanson and

Fox [64] discuss the nature of the tuple space model and

argue its suitability for communication and coordination

in interactive workspaces and ubiquitous environments in

general. The same authors propose a set of extensions to the

basic tuple space model that facilitate their use for purposes

of coordination and communication in ubiquitous environments.

Further discussion about the nature and benefits of the publish–

subscribe interaction model as well as classification models and

comparisons of publish–subscribe implementations can be

found in [20, 47, 65, 66].

6. EVALUATION

6.1. Spontaneous interactions

The main benefit of Java RMI is dynamic class loading

when such classes are unavailable in the target node. When

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 227

marshalling a serialized object, Java RMI annotates the serial-

ized stream with the codebase of the classes that are inside the

stream. If the class loader is of type URLClassloader that

contains a global URL, that URL is used, otherwise the

stream will be annotated with the value of the system property

java.rmi.server.codebase. The OSGi platform does not use

class loaders of type URLClassLoader and therefore devel-

opers need to specify the codebase property. However, setting

the codebase property violates the main benefit of OSGi

modularity and bypasses OSGi class loading and delegation

model. Other OSGi distribution solutions such as R-OSGi

(see Section 7) do not support spontaneous interactions.

For client–server interactions, D-OSGi supports Scenario 2

and Scenario 3 described in Section 3.1. In D-OSGi, the serial-

ized stream is annotated with the uniform resource identifiers

(see Section 4.5) of both the invoking and target services

which are then used to dynamically load required additional

resources, e.g. classes, from the relevant bundle in the other

node. Consequently, D-OSGi observes OSGi modularity and

supports true spontaneous interaction that obviates the need

for setting a codebase property.

6.2. Performance

Based on a quantitative study and analysis, Baldi and Picco

[33] investigate the use of the mobile code paradigm and

its effectiveness in reducing network traffic in the domain of

network management. They suggest that the decision of

when to use a mobile code design paradigm in place of a

traditional client–server architecture is dependent on the

following two aspects: (1) the model of the management

functionality to be implemented and the information about

the managed network; (2) a precise quantitative description

of the management protocols and the mobile code system

used for the implementation. Similarly, the performance of

our proposed conceptual framework implementation will

depend on many factors including the chosen communication

model and protocol.

Wu et al. [14] provide a qualitative performance analysis of

three architectures: client–server, P2P-SOA and P2P-SOA with

use of MAs. Their analysis show that the total computation load

of both the client and the service provider is the same in all para-

digms although the service provider’s computation load

increases slightly when a P2P-SOA with MAs is adopted.

According to the same authors, the main difference is in the

client’s computation load which is highest for client–server

and least for P2P-SOA with MAs. As for network traffic, a

MA paradigm helps decrease the number of sent messages by

encapsulating all the messages in a single MA that is sent

instead. However, the actual size of traffic actually increases

because the size of the MA is larger than the combined size

of individual messages. On the other hand, use of MAs shortens

the time needed to maintain an open connection between

the communicating nodes which could significantly decrease

connection costs. Further details about the performance analysis

between the different architectures is given in [14].

Hagimont and Ismail [67] describe a comparative evalu-

ation of the client–server and MAs models. The comparison

was based on Java RMI, the Aglets MA toolkit, and a third

proprietary agent tool kit implemented by the same authors.

They conclude that significant performance improvements

can be obtained using the MA model. Another performance

model is given in [68] for evaluating the cost of MA inter-

actions where either RPC or agent migration can be used to

interact with agents in different places. When applied to a

typical mobile computing scenario, the proposed performance

model showed that optimal performance is achieved when a

mixture of RPC and agent migration is used as opposed to

pure RPC or pure agent migration. Chia and kannapan [69]

describe a framework that enables the analysis of alternative

mobility policies based on application characteristics. Their

analysis also show that pure mobile- and pure stationary-based

interactions are both sub-optimal. A similar conclusion is

also reached by [28] who suggest that the choice of a specific

interaction paradigm must be performed on a case-by-case

basis, according to the type of application.

To evaluate the performance of our D-OSGi prototype, we

adapted the benchmark described in [70] which is a benchmark

for comparing the performance of Java RMI implementations.

For comparison, we implemented the benchmark as OSGi

service that we then distributed using Java RMI, R-OSGi and

D-OSGi. The experiments were carried on two machines:

(1) 3.0 GHz Pentium 4 PC, hyperthreading enabled, running

Windows XP and Sun’s J2SE 1.5.14, with 1 GB RAM;

(2) 1.66 GHz Intel Core 2 Duo T5500 laptop, running

Windows XP and Sun’s J2SE 1.5.14, with 1 GB RAM. We

used Eclipse Equinox as the OSGi platform implementation

which is installed in both machines. The two machines were

isolated from the LAN but connected to each other via Ethernet.

The PC played the role of the server node exporting the

benchmark service while the laptop played the role of the

client importing and invoking those exported services.

6.2.1. Binding time

Our first experiment compared the binding time of D-OSGi

with that of Java RMI. For D-OSGi, we measured the total

time from D-OSGi detecting the registration of the remote

service in the OSGi registry of the source node to the time

that service’s corresponding proxy bundle is received/

created in the destination node but excluding proxy bundle

install/start time. Hence, the binding time includes the time

spent analysing the service’s interface and creating the

proxy bundle. It also includes the time for launching and

setting up the corresponding request sender response receiver

and response sender request receiver agents. For this experi-

ment, we adopted an export-side proxy generation strategy.

For Java RMI, binding time is the time needed to establish

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

228 A. IBRAHIM AND L. ZHAO

the connection to the source node and download the stub from

the codebase.

As shown in Table 1, D-OSGi’s performance is consider-

ably slower than Java RMI. The reason for this poor perform-

ance is that the used Lime implementation makes extensive

use of default Java serialization which greatly degrades

performance. For example, upon a tuple read or take, Lime

must find a match tuple that is then returned. Because a

tuple must not be removed from the tuple space on read

operations, Lime makes and returns a deep copy of the

tuple in question. Deep copying in Lime is implemented by

serializing the tuple and then immediately deserializing it to

obtain the deep copy. Worst still, all match operations return

deep copies of found tuples, which means that tuples are

deep copied even for take operations, i.e. a take operation

deep copies the tuple before removing the tuple and returning

the deepcopy. Similarly, ReactionEvent(s) wrap a deep

copy of the triggering tuple. We have found default Java

serialization to be a major performance bottleneck. For

example, in an earlier D-OSGi prototype that used sockets

to communicate with peer nodes, we relied on default Java

serialization to deserialize and discover the types of received

message requests and replies. Although our RPC implemen-

tation used socket-based communication, performance was

very poor. Through simple and straightforward serialization

optimizations e.g., by encoding type information, we managed

to reduce the communication overhead by a minimum of

63.76% for ping int[25600] and a maximum of 99.8% for

ping void and return int. These results are consistent with

those of [70] who suggest that Java object serialization

represents at least 25% of the cost of a remote invocation. We

therefore believe it is possible to greatly improve the system’s

performance by overcoming Lime’s serialization bottleneck.

The current D-OSGi prototypes use a publish–subscribe

communication model to announce service availability

events to all connected nodes. The publish–subscribe inter-

action style is anonymous where publishers do not have to

know the consumers, and multicasting in nature where it is

possible to send an event to multiple consumers in a single

publish() operation [20]. These two characteristics differ-

entiate the publish–subscribe style from other interaction

schemes such as: message passing and RPC [20]. Resulting

benefits include potential for scalability and support for

dynamic adaptation [20]. Padovitz et al. [71] discuss the use

of publish–subscribe for communication in multiagent and

MA applications. They argue for the usefulness of the

publish–subscribe model for this domain and report their

experience adapting an existing publish–subscribe infrastruc-

ture for MA applications.

6.2.2. Service invocation

Our second set of experiments measured D-OSGi’s cost of

service invocation in comparison with both R-OSGi and

Java RMI. In the tests, the client node calls various methods

of the remote service using different arguments of varying

size and complexity. Each recorded time value is the

average of at least 100 invocations. The round trip time

between the two machines in the experiment setup is measured

as less than 1 ms (using command line ping). Table 2 shows

the experiment results for the case when the invocation

parameters are of primitive or standard types. The results

show that while R-OSGi improves on the performance of

Java RMI, D-OSGi (prototype B) performs marginally better

than both Java RMI and R-OSGi.

We also measured the time cost of service invocation when

the invocation arguments are objects of non-standard types.

We set up the experiment so that the types of these arguments

are available in the destination importing node but not the

exporting source node. For Java RMI, these types were

made remotely accessible from the source node via a light-

weight fast web server, AnalogX Simple Server11 which we

installed in the destination node. Table 2 shows the results

of this experiment. Note that Prototype A implements

synchronous interactions over the asynchronous tuple space

using the Future idiom (see Section 3.7) and hence calculation

of its invocation times is similar to the other systems—we start

the timer just before the invocation and stop it when the result

(actual result not the future object) is received. As shown in

Table 2, The invocation cost of D-OSGi (Prototype B) is

slightly higher than that of Java RMI which is a small price

to pay considering the added support for spontaneous inter-

action and conformance to the OSGi application model. The

cost of D-OSGi (Prototype A) is an order of magnitude

larger than the other systems which follows from the overhead

of using the underlying tuple space for internode interaction.

More optimized tuple space implementations (see Section 7)

promise much better performance. On the other hand, use

of the tuple space paradigm provides decoupling in time,

space and synchronization which is better suited to the

characteristics of pervasive environments. Although the

current response time of Prototype A is high in comparison

with the other systems, it is still perceptually instantaneous

[64]. As cited by [64], studies have shown that a user would

perceive a response as instantaneous when the response time

is between 10 ms to 1 s depending on the type of user

action. With the exception of certain commands with very

large arguments, the measured response time for Prototype

A is well under the threshold of 100 ms; the point at which

TABLE 1. Binding times.

Binding time (ms)

D-OSGi 20 656.565 (734 000 for the very first run)

Java RMI 8590 (266 000 for the very first run)

Recorded values are averaged over 100 runs.

11www.analogx.com.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 229

the system will be perceived by the user as sluggish [64].

Furthermore, although we have not tested it in our current

experiments, based on the findings of [52], we speculate that

use of the tuple space paradigm for internode communication

would perform better than XML-based protocols such as

UPnP and SOAP over HTTP due to the verbosity and over-

head of XML parsing.

6.3. Portability

The portability of our conceptual framework stems largely

from the properties of the underlying GVDS concept whose

instantiations can differ in any of the following aspects [34]:

(1) the chosen data structure; (2) the supported operations on

that data structure; (3) the rules for dividing and merging the

individual data structures. Together, these characteristics

make the GVDS concept applicable to a wide range of distrib-

uted environments and application domains including large,

wired, wireless and ad-hoc environments [34]. In addition,

the proposed conceptual framework provides flexibility in

terms of the chosen interaction model and communication pro-

tocol. The D-OSGi variations described in Section 5.2 demon-

strate the feasibility and portability of the proposed conceptual

framework.

6.4. Adaptability

Our conceptual framework and architecture target pervasive

environments characterized by device and user mobility.

Pervasive applications will need to adapt to changes in

resource availability and network topology. Adaptability is

needed at two levels: (1) at the individual node level, for

TABLE 2. Remote method invocation times (m)

Primitive and standard argument types

Remotely Invoked Method Java RMI R-OSGi D-OSGi (Prototype B) D-OSGi (Prototype A)

ping void 964.506+ 47.162 972.894+13.128 632.469+5.288 12231.429+ 214.305

ping int 988.536+ 9.977 770.696+96.107 652.280+10.435 11 953.750+ 108.736

return int 980.625+ 12.922 775.887+51.835 658.240+8.109 12 611.429+ 161.283

ping (int,int) 948.226+ 61.515 974.619+8.999 664.197+7.959 11 872.857+ 141.997

ping byte[100] 1161.905+ 30.537 1054.922+56.141 772.644+7.379 12 226.250+ 462.167

ping byte[200] 1221.591+ 23.646 1161.364+16.389 846.024+10.715 11 920.000+ 72.899

ping byte[800] 1685.877+ 91.161 1647.530+16.352 1313.636+11.929 11 962.857+ 77.591

ping byte[102400] 114 415.000+ 355.106 114 172.857+390.374 112 988.750+686.321 14 2401.250+ 2242.663

ping int[100] 1397.500+ 16.073 1317.308+13.370 1005.128+13.241 11 762.857+ 67.763

ping int[200] 1738.245+ 23.511 1642.045+ ? 1315.962+0.893 11 785.714+ 78.895

ping int[25600] 113 304.286+ 446.410 113 260.000+444.136 113 928.571+611.776 15 4130.000+ 2658.136

ping float[100] 1386.796+ 0.914 1322.051+1.256 1014.382+12.463 11 852.857+ 132.634

ping float[200] 1725.531+ 39.518 1660.227+22.268 1321.978+1.269 11 859.000+ 46.573

ping float[25600] 112 498.571+ 648.326 112 744.286+623.054 113 907.143+488.166 15 7030.000+ 5639.080

ping double[100] 1759.384+ 23.667 1655.096+1.407 1330.038+19.045 11 875.714+ 85.667

ping double[12800] 112277.143+ 373.773 112 500.000+368.743 110 715.714+431.537 18 3528.571+ 7423.725

ping null 887.370+ 91.329 980.171+12.019 644.266+0.569 11 648.889+ 79.505

Non-standard argument types

ping DMatrix (1024, 1024) 9216571.429+ 73744.457 not supported 9134000.000+27578.460 10328000.000+ 175468.353

ping DMatrix (2048, 2048) 36843857.143+ 85435.738 not supported 36390428.571+109556.062 40476625.000+ 343571.294

ping Obj4 1148.662+ 25.494 not supported 1184.615+29.171 13728.571+ 716.069

ping (Object)IObj4 1115.359+ 70.439 not supported 1598.169+1.412 16562.857+ 977.967

ping Obj32 1494.475+ 63.761 not supported 1479.482+20.564 14801.429+ 1233.015

ping Tree(1) 1175.644+ 53.051 not supported 1282.051+0.000 13838.571+ 746.371

ping Tree(3) 1538.935+ 81.372 not supported 1559.659+15.109 13682.857+ 484.995

ping Tree(9) 28505.714+ 274.427 not supported 27855.714+198.915 177745.714+ 4935.260

The argument DMatrix has a double[][] array of the given dimensions. Obj32 is an object that has 32 int values, whereas Obj4 has 4 int

values. IObj4 extends Obj4 without any additional attributes. Tree is a balanced binary tree of the given number of objects each of which

holds four ints. The non-standard types of object invocation parameters were only made available in the calling (importing) node. The called

(exporting) node dynamically downloads these types to deserialize the received arguments.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

230 A. IBRAHIM AND L. ZHAO

example, in response to resource shortage or changed user pre-

ferences; (2) at the network level in response to topological

changes such as device mobility or a network disconnection.

The proposed conceptual framework and its instantiation

supports adaptability at these two levels of abstraction. First,

at the level of individual devices, OSGi technology provides

a dynamic application model that allows an application to

adapt by changing both its structure and logic. This capability

follows from the two service-oriented properties of dynamicity

(a service provider can offer or withdraw a service at any

time and likewise a client can bind or unbind to a service

at any time) and substitutability (contract-based relations

allowing service substitution as long as contract is satisfied)

[10]. Second, at the network level, the conceptual framework

supports different logical mobility paradigms that allow an

application to adapt to changes in network topology.

6.5. OSGi platform as an agent platform

In supporting OSGi service and bundle mobility, we have

taken the first but major step towards service-oriented

OSGi-based MA platforms. New agent systems can be built

and existing ones modified to take advantage of the OSGi

platform’s benefits which include:

† Safety and privacy. An MA platform must ensure that a

hostile agent will not compromize the running system.

By utilizing OSGi platform’s modularity, security, and

access control mechanisms, MAs can be safely integrated

in the destination host.

† Interoperability, interaction and communication. A

number of efforts have been undertaken on the inter-

operability of MA platforms to allow agents developed

for a certain platform to be migrated and executed in a

different platform (see for example, MASIF [72] and

Kalong [46]). We suggest that adopting the OSGi

middleware as an agent platform and runtime will help

address this interoperability issue. It will also bring

many benefits, e.g. modularity, to both the agent plat-

form implementations and the agents themselves. For

example, considering a bundle as an agent packaging

mechanism will provide a well defined life cycle model

for such agents and will also simplify agent integration

in the destination nodes. Regarding agent interaction

and communication, we argue that the service-oriented

properties underpinning the OSGi platform make it

ideal choice for agent interaction and resource finding.

Thus, the OSGi registry plays the role of the Directory

Facilitator as defined by the Foundation for Intelligent

Physical agents (FIPA)12. FIPA is an IEEE Computer

Society standards organization promoting agent-based

technology and has defined many standards covering

various aspects of MA technology. Service-orientation

promotes decoupling and substitutability which are

very useful for agent interaction. This does not preclude

the use of ACLs on top of service-oriented interaction

patterns where it is possible to use service-orientation to

locate other agents then use an ACL to communicate

with those agents. In particular, we suggest that the

service-oriented interaction pattern offers a practical

solution to the open channel problem [32] which is

concerned with the question ‘what happens to the open

channel between two communicating agents when one of

the agents decide to migrate’. Adopting a service-oriented

interaction model, each agent is implemented with the

assumption that the other agent can be withdrawn/depart

at any time. Therefore, the channel can be safely closed

and it is then the agents’ responsibility to reopen the

channel when communication resumes.

† Agent autonomy. To realize the autonomy property, many

agent system implementations, e.g. JADE13 [73] run each

agent in its own thread of control. Agents in our con-

ceptual framework can be implemented as OSGi bundles

which provides them with their own thread of execution

that is consistent with other agent systems.

† Generality. OSGi technology is being used in a wide range

of devices from resource constrained to large enterprise

servers. Adopting the OSGi platform as an gent platform

brings opportunities for agents that can migrate and com-

municate across these different and diverse devices.

† Flexibility. Silva et al. [32] suggest that an MA system

must be protocol independent where agent migration

can be accomplished using TCP/IP, HTTP or any other

transport protocol. Unlike many existing MA systems,

our proposed OSGi-based mobility platform together

with the flexibility of the conceptual framework

provide such protocol independence.

In general, an OSGi-based MA platform will benefit from all

the characteristics of the OSGi middleware in terms of, for

example, security and access control, modularity, robustness,

portability, service-orientation benefits, support for remote

agent management and the ability to ensure that all the

agent’s dependencies including dependencies on the execution

platform are satisfied before the agent is allowed to execute.

Recently, FIPA has undertaken a number of activities with

the aim of moving standards for agents and agent-based

systems into the wider context of software development.

FIPA suggests that agent technology needs to work and

integrate with non-agent technologies. In particular, FIPA is

currently investigating the combination of agent technology

with service-oriented architectures and has set up the Agent

and Web Services Interoperability (AWSI) Working Group to

oversee this effort. FIPA suggests that agents and multi-agent

12www.fipa.org/. 13http://jade.tilab.com/.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 231

systems can benefit from this combination where agents can be

used for web service discovery, consumption, composition and

implementation. They also suggest that web services and mul-

tiagent systems bear certain similarities, such as a component-

like behaviour, that can help to make their integration much

easier. We believe that our work in supporting agent concepts

on top the service-oriented OSGi platform represents a useful

contribution to this research area especially in conjunction

with tools like Apache Axis (see Section 7).

7. RELATED WORK

7.1. Distributed OSGi solutions

Wu et al. [14] describe a P2P smart home architecture based

on OSGi technology and MAs. Their proposed architecture

supports the migration of MAs between OSGi-enabled

devices to automate and perform tasks. The idea is to

encode the agent’s plans, behaviour and used resources into

a special XML-based scripting documents called MASML

that can be pushed and pulled between OSGi devices via

Web Services. MASML documents use European Computer

Manufacturers Association14 (ECMA) scripts to encode an

agent’s logic. A Web Services bundle is pre-installed in

each OSGi device to advertise available agents. When an

agent document is received by an OSGi device, a special

interpreter is used to interpret the encoded tasks and execute

them. Execution results are then written back to the same

MASML document which can then be returned to the original

source device or alternatively it can be migrated to a third

device if further tasks need to be performed. This approach

does not address service distribution where it is not currently

possible to invoke services remotely from connected OSGi

devices (although it can be potentially supported via the

same web services approach). Our proposed conceptual

framework and architecture supports a similar P2P inter-OSGi

interaction via MAs that are manifested as OSGi services

and bundles. In addition, the conceptual framework supports

service distribution and mobility between OSGi nodes

both within and across devices. Furthermore, our approach

is more consistent with the OSGi application model and

does not require special encoding and interpretation steps

that complicate application development.

R-OSGi [52, 54, 74] is a research project that aims to

provide a lightweight solution to distributed OSGi services.

R-OSGi uses the SLP to discover and advertise remote

OSGi services. Using SLP, a device is able to search its

environment for advertised services. The motivation behind

using the SLP protocol for service advertisement and dis-

covery is described in [54]. R-OSGi supports weak mobility

of bundles and services but does not support the software

agent abstraction and does not distinguish between migration

and remote cloning. In addition, only a pull style of mobility is

supported. At the application design level, R-OSGi supports

the client–server paradigm. When a service proxy is offered

with the destination OSGi device, it forwards all calls to the

original service in the source device. For efficiency, these

remote calls are modelled using R-OSGi specific messaging

protocol although they behave just like any call to a local

service. A limited form of REV is supported via the concept

of a smart proxy which is a normal abstract Java class that is

transferred to the destination device as part of the exchanged

service properties. All abstract methods of this abstract class

are treated as remote method calls and forwarded to the original

service in the source device whereas all non-abstract methods

are treated as local and invoked on the destination device.

R-OSGi supports a resource rebinding strategy wherein a

mobile entity can search for and rebind to required resources

that are present in the destination device. We argue that dif-

ferent applications will have different requirements and there-

fore a distribution extension must be flexible to support the

different mobility models and resource relocation strategies

based on application requirements (customizability). Unlike

our proposed solution, R-OSGi lacks such customizability.

As of R-OSGi’s latest release 0.6.5, R-OSGi provides

limited support for method invocation arguments and return

values of non-standard types. If a type is reachable from the

remote service’s interface (i.e. it belongs to the class closure

of the service interface), that type will be injected and trans-

ferred to the destination node. However, reachable types that

are imported from other bundles will not be injected. This

behaviour is justified because these imported types are con-

sidered as part of the required environment and therefore

should not be injected for transfer. However, if these types

are missing in the destination node, the service can not be

offered at destination and hence distribution fails. In addition,

R-OSGi does not address the case when the argument type is

available in the destination node but not the source node, for

example, when the type of invocation argument is a subtype

of that of the formal method parameter (R-OSGi type injection

is always from source node to destination node). From our

experience with R-OSGi and based on a study of its source

code, R-OSGi does not support remote invocation arguments

and return values of non-standard types even when such

types are available in the target node. In our experiments we

noticed that R-OSGi is unable to deserialize arguments of

non-standard types. R-OSGi gracefully catches the thrown

ClassNotFoundException to return a null object that

is then passed as argument to the remote method. Hence,

remote methods taking non-standard types as arguments are

always invoked with null as argument, and therefore

R-OSGi does not support spontaneous interactions.

The P2Pcomp component model [75] builds on the OSGi

platform and the JXTA15 P2P middleware to support and

14www.ecma-international.org. 15https://jxta.dev.java.net/.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

232 A. IBRAHIM AND L. ZHAO

simplify the development of pervasive computing applications

based on spontaneous interaction of mobile peers. Com-

ponents in P2Pcomp are represented as OSGi bundles offering

and using services from each other. P2Pcomp uses the concept

of port, represented as a Java interface, as an end-point for

communication with other components whether they are

local or remote. Thus, P2Pcomp provides a unified and trans-

parent approach for component interaction both within and

across OSGi frameworks. P2Pcomp distinguishes between

three port types: provides, access, and uses ports. Provides

ports are used to advertise services that are offered by a

P2Pcomponent. Uses ports are used by clients to connect

and access the offered services (both local and remote). In

other words, both provides and requires ports correspond to

the service interface but from the perspectives of the provider

and client respectively. Access ports represent the bridges that

are used to connect to remote OSGi frameworks. Access ports

are protocol independent where any available communication

technology can be used. Consequently, both synchronous and

asynchronous communication can be supported. P2Pcomp

provides two implementations based on JXTA and a proprie-

tary XML-based messaging over UDP/TCP for communi-

cation between OSGi framework instances. In the client

node, P2Pcomp uses Java’s dynamic proxy class to dynami-

cally generate stub objects that implement the required Java

interface. In the server node, P2Pcomp interprets the received

protocol specific message and uses Java reflection to invoke

the appropriate method on the respective service. In compari-

son with our work, P2Pcomp provides support for OSGi

service distribution but not service or bundle mobility. In

addition, P2Pcomp does not support spontaneous interactions.

We also believe it is possible to use JXTA as an underlying

P2P communication infrastructure in a conceptual framework

instantiation, a subject for future work.

The service component architecture16 (SCA) defines a set of

specifications for component creation and assembly across

programming languages. SCA promotes a service-oriented

approach where a component’s functionality is offered and

consumed through service-oriented interfaces. SCA defines a

common XML-based assembly mechanism for combining

SCA components independent of their implementation

technology. SCA does not address dynamic availability

or manage dynamic compositions. Consequently, the open

service oriented architecture (OSOA) collaboration, which

oversees the SCA and other related specifications, considers

SCA, OSGi technology and Spring as complementary tech-

nologies [76]. The same white paper discusses ways in

which the three technologies can be combined and the

resulting benefits of such combination. Of particular relevance

to our proposed conceptual framework and architecture is the

Newton17 Project which provides an SCA implementation on

the OSGi platform that targets dynamic environments.

Newton supports composite SCA components (currently

limited to Java-based OSGi components backed by OSGi

bundles) that combine components from different JVMs.

Newton is able to dynamically manage these composites by

dynamically wiring and rewiring their service dependencies

as the constituent service offering components come and

go. Newton moves code around the network, dynamically

installing components on demand and removing them when

no longer needed. Newton makes use of OSGi platform’s

support when wiring SCA composites within a single JVM

and Jini technology when wiring SCA composites across

different JVMs. Support for dynamic wiring and rewiring of

potentially language independent composite components

across devices is of particular benefit to ubiquitous environ-

ments. Imagine a home environment where various devices

offer their functionality as services through SCA compliant

components. It is then possible to use SCA technology to

create applications that span device boundaries. Infrastruc-

tures such as Newton can automatically adapt such appli-

cations in response to device mobility, device introduction

and removal. However, Newton relies on Jini technology

which assumes the existence of a fixed infrastructure i.e. a

lookup service, and is tightly coupled to Java RMI. In addition,

Newton does not support the mobile software agent concept

or distinguish between the different mobility paradigms.

7.2. Other OSGi technology related work

The Spring18 framework is a Java EE application framework,

which integrates with many other frameworks to address the

complete Java EE application stack including the Web and

back end database layers. At the heart of the Spring framework

is an inversion of control (IoC) [77–80] container for deve-

loping loosely coupled and easily reconfigurable applications.

Spring framework, underlined by the IoC principle, aims to

simplify Java EE application development by promoting a

Plain Old Java Object (POJO)-based programming model.

Recently, the Spring framework has developed a specification

for integrating the Spring framework with the OSGi platform.

This specification aims to enable the development of

Spring-based applications that run on the OSGi platform

which supports Spring applications with OSGi modularity so

that it is possible to install, uninstall, and update Spring

application modules dynamically without the need for restart.

The OSGi Alliance has defined the standard Device

Access Specification [12] for interaction between OSGi and

non-OSGi devices. This specification adopts an import/

export model where devices and services found by native

discovery technologies such as UPnP are imported into the

OSGi platform as normal OSGi services making them fully

accessible to other OSGi entities [6, 12]. Similarly, devices
16www.osoa.org/display/Main/Home.
17http://newton.codecauldron.org/. 18www.springframework.org.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 233

and services that are registered with the OSGi platform can be

exported out of the platform so that they become discoverable

using native discovery technologies.

Bottaro et al. [8] discuss the integration of various distri-

buted technologies over the OSGi platform in the context of

home environments. They propose bridges between technol-

ogies through Discovery Base Drivers and Refinery Drivers

which are two concepts that have been previously discussed

by the standard OSGi Device Access Specification. According

to [8], a discovery base driver manifested as an OSGi bundle

runs in the device and leverages its specific protocol stack to

detect and react to network events such as device arrivals

and departures by dynamically populating the local OSGi reg-

istry with proxy services that represent the remote devices.

Service proxies registered by discovery base drivers provide

generic APIs that allow a developer to interact with the

remote device. However, developers still have to map the

device specific protocols to this API which means that such

devices can only be accessed at a very low level of transpar-

ency. Refining Drivers alleviate this problem by detecting

the registration of the generic proxy services to automatically

register new proxy services that provide higher levels of trans-

parency for accessing those remote devices. Our proposed

approach is similar in so far as it automatically generates

proxy services for interaction with remote devices but at the

same time it differs in many respects. First, the authors’

approach based on discovery and refinery drivers describes a

general solution to interaction between OSGi devices and

other non-OSGi devices but fails to mention how the same

approach can be applied for OSGi–OSGi interaction which

is the focus of our work. The two works therefore complement

each other. Second, their approach is limited to client–server

interactions whereas ours supports all the mobility paradigms.

On the other hand, it is possible to use the base discovery and

refinery drivers in implementations of our conceptual frame-

work. For example, it is possible to create drivers that

announce/detect the connectivity of OSGi devices using

specific protocols. When sharing the OSGi services, refinery

drivers can be used to transparently map the shared services

into higher level services that provide simpler and more devel-

oper friendly APIs that can also overcome the interface frag-

mentation problem [8].

Apache Axis19 is a project that aims to simplify Web

Service development. Axis implements the SOAP protocol

and shields the developer from directly dealing with SOAP

and the Web Service Description Language. For example,

Axis can automatically encode/decode web service requests

and responses to/from SOAP XML messages. Axis greatly

simplifies Web Service development where it can automati-

cally expose POJOs as Web Services. The Knopflerfish

project provides an OSGi-based Axis implementation that

can be used to expose OSGi services as Web Services. Axis

can be used as an underlying technology when realizing the

proposed conceptual framework.

The Bnd20 tool is a tool that helps create and diagnose OSGi

R4 bundles. It can wrap JAR files into OSGi bundles, create

OSGi bundles from a given Bnd specification, and verify the

validity of bundle manifest entries. Bnd recognizes Java

classes and packages using the classpath to locate, analyse,

construct and verify the generated bundle. A Bnd specification

uses attributes and directives very similar to those found in an

OSGi bundle manifest header. The Bnd specification format is

simple but powerful enough to allow fine control of bundle

generation. Thus, the Bnd tool can be useful for generating

the proxy bundles used to integrate the mobile entity in the

destination node. Although it provides a command line inter-

face for invoking the tool, Bnd currently lacks an API that can

be used for bundle generation. As future work, we plan to

investigate the use of Bnd for proxy bundle generation.

7.3. GVDS and tuple space implementations

Lime, XMIDDLE [81] and PeerWare [82] are all middleware

systems that implement the GVDS concept. These systems

differ in terms of their chosen data structure, and rules for

sharing. Lime uses a tuple space data structure that is

partitioned among the different nodes. The content of these

individual tuple spaces are then transiently shared when

their owning nodes become connected. PeerWare uses tree

data structures whose content are transiently shared by

merging them with trees from other nodes when these nodes

are connected. XMIDDLE uses XML documents as a data

structure that is transiently shared by combining them with

other XML documents from connected nodes.

Various adaptations of the original Lime middleware have

been developed that target different application domains.

For example, TinyLime [83, 84] is an extension of Lime for

sensor network environments where the basic Lime model

is adapted to allow access to sensor data. TeenyLime [85] is

another adaptation of Lime to sensor and actuator networks.

The target application area of this adaptation is wireless

sensor networks (WSN) containing both actuators and

triggering sensors. TeenyLime aims to simplify the develop-

ment of WSN applications in such scenarios. Carbunar et al.

[86] revisit the Lime model with the aim of simplifying the

model. They identify the core components of the Lime

model and factor it out into a new model which they call

CoreLime. The same authors suggest that the proposed Core-

Lime model offers fine-grained access control and can better

scale to large configurations.

Limone [87] and MESHMdl [88] are other lightweight

implementations of tuple space-based coordination middle-

ware targeting mobile devices. MESHMdl supports the

GVDS concept via what it calls a Xector model, which is

19http://ws.apache.org/axis/. 20www.aqute.biz/Code/Bnd.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

234 A. IBRAHIM AND L. ZHAO

essentially a mechanism for selectively pushing and pulling

tuples (modelled as Entries in MESHMdl) between the differ-

ent nodes. Interestingly, MESHMdl claims superior tuple

space performance (even on mobile devices) than other tuple

space implementations including Lime. As future work we

plan to investigate these alternative GVDS implementations

as basis for a D-OSGi implementation which may also

improve the performance of the current prototypes. Tuple

space systems as realized by the Lime middleware are

shown to provide useful features for communication in

mobile environments. Other tuple space systems include

TSpaces [89] and JavaSpaces [90] which are more suited to

resource rich devices in nomadic and fixed network settings

as opposed to mobile ad-hoc environments. Each of these

systems can be utilized to realize instances of the proposed

conceptual framework targeting specific domains.

7.4. Mobile agent platforms for resource constrained

devices

Of the many available agent platforms, very few are capable of

running on mobile and embedded devices (see for example,

[91]). The Lightweight and Extensible Agent Platform

(LEAP) [92] is an adaptation of the JADE agent platform

for mobile and resource constrained devices. LEAP is

deployed on the basis of profiles that match specific device

capabilities. LEAP is fully FIPA compliant and supports

different protocols for communication between agents

residing in different nodes, namely, Internet Inter-ORB

Protocol, Java RMI and a proprietary TCP/IP protocol for

wired and wireless networks. Our OSGi-based agent platform

also targets resource constrained devices but it is not currently

FIPA compliant.

8. CONCLUSION AND FUTURE WORK

This paper described two extensions to the OSGi platform: (1)

support for spontaneous interoperability between OSGi nodes

in pervasive environments; (2) support for logical mobility.

These two extensions aim to address the pervasive require-

ments of spontaneous interoperability, mobility and software

adaptability. Supporting logical mobility also facilitates the

adoption of the mobile software agent concept for home

automation, software adaptation, device interaction and

collaboration. The two extensions are supported through a

common framework which, similar to other OSGi distribution

solutions, blurs the distinction between local and remote

services. Remote services can be accessed as if they were

local which greatly simplifies application development. A

novel aspect of our approach lies in the application of the

GVDS concept to provide transparent context maintenance

for OSGi devices. The conceptual framework introduces a

virtual shared OSGi registry whose content is automatically

and dynamically adjusted to reflect changes in the system

and the mobile environment.

Instantiations of our conceptual framework facilitate inter-

device service composition in mobile ad-hoc environments.

We also believe that instantiations of our conceptual frame-

work will facilitate and simplify development of Newton

like infrastructures. A unique potential of our conceptual fra-

mework is the leveraging of agent technology and mobility

support for proactive service composition. By proactive

service composition we mean the ability to exploit agent

knowledge and beliefs to deduce and reason about service

requirements which can then be obtained on demand as

opposed to waiting for those services to become available.

In future work, we plan to investigate and adapt the ideas

put forward by [93] to OSGi technology.

An interesting future work is better integration of the

D-OSGi API into the OSGi specification by having D-OSGi

wrap the BundleContext according to the decorator

design pattern [42] to provide the bundle with a special

DOSGiBundleContext that adds an API for mobility and

distribution. For example, the decorator could define a

method public ServiceRegistration register

RemoteService(String clazz, Object service,

Dictionary properties, String remoteLocation

IPAddress) that registers the specified service with the

OSGi registry of the specified remote location. Another

interesting future work is to discuss and compare our

OSGi-based agent platform in relation to other existing MA

systems using a reference model such as that described in

[32]. A related task is supporting and complying with FIPA

specifications.

ACKNOWLEDGEMENTS

We would like to thank the four reviewers for their valuable

feedback and detailed suggestions, which have helped to

improve this paper. Our gratitude is also due to the editor

for giving us an opportunity to revise our paper. We would

also like to thank the developers in the osgi-dev@www2.

osgi.org mailing list for their help and valuable feedback.

This work is supported by EPSRC and NXP Semiconductors.

FUNDING

This work is supported by the Engineering and Physical

Sciences Research Council (EPSRC) and NXP Semiconductors.

REFERENCES

[1] Weiser, M. (1993) Some computer science issues in ubiquitous

computing. Commun. ACM, 36, 74–84.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 235

[2] Niemelä, E. and Latvakoski, J. (2004) Survey of Requirements

and Solutions for Ubiquitous Software. MUM ‘04: Proc. 3rd Int

Conf. Mobile and Ubiquitous Multimedia, College Park,

Maryland, October 27–29, pp. 71–78. ACM Press, NY, USA.

[3] Satyanarayanan, M. (2001) Pervasive computing: vision and

challenges. IEEE Pers. Commun., 8, 10–17.

[4] Da Costa, C.A., Yamin, A.C. and Geyer, C.F.R. (2008) Toward

a general software infrastructure for ubiquitous computing.

IEEE Pervasive Comput., 7, 64–73.

[5] Kindberg, T. and Fox, A. (2002) System software for ubiquitous

computing. IEEE Pervasive Comput., 1, 70–81.

[6] Dobrev, P., Famolari, D., Kurzke, C. and Miller, B. (2002)

Device and service discovery in home networks with OSGi.

IEEE Commun. Mag., 40, 86–92.

[7] Valtchev, D. and Frankov, I. (2002) Service gateway

architecture for a smart home. IEEE Commun. Mag., 40,

126–32.

[8] Bottaro, A., Gerodolle, A. and Lalanda, P. (2007) Pervasive

Service Composition in the Home Network. AINA ‘07: Proc.

21st Int. Conf. Advanced Networking and Applications,

Washington, DC, USA, May 21–23, pp. 596–603. IEEE

Computer Society.

[9] Satyanarayanan, M. (1996) Accessing information on demand

at any location: mobile information access. IEEE Pers.

Commun., 3, 26–33.

[10] Papazoglou, M. (2003) Service-oriented Computing: Concepts,

Characteristics and Directions. Proc. Fourth Int. Conf. Web

Information Systems Engineering, Rome, Italy, December

10–12 pp. 3–12. IEEE Computer Society.

[11] Hall, R. and Cervantes, H. (2004) Challenges in building

service-oriented applications for OSGi. IEEE Commun. Mag.,

42, 144–9.

[12] The OSGi Alliance, (2005) OSGi Service Platform Core

Specification and Service Compendium, Release 4.1. OSGi

Alliance. CA, USA. http://www.osgi.org/.

[13] Li, X. and Zhang, W. (2004) The design and implementation

of home network system using OSGi compliant middleware.

IEEE Trans. Consum. Electron., 50, 528–534.

[14] Wu, C.-L., Liao, C.-F. and Fu, L.-C. (2007) Service-oriented

smart-home architecture based on OSGi and mobile-agent

technology. IEEE Trans. Syst., Man Cybern. C Appl Rev., 37,

193–205.

[15] Lee, C., Nordstedt, D. and Helal, S. (2003) Enabling smart

spaces with OSGi. IEEE Pervasive Comput., 2, 89–94.

[16] Zahariadis, T. and Pramataris, K. (2002) Multimedia home

networks: standards and interfaces. Comput. Stand. Interfaces,

24, 425–35.

[17] Tanenbaum, A. and van Steen, M. (2002) Distributed Systems:

Principles and Paradigms. Prentice Hall, Upper Saddle

River, NJ.

[18] Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K.,

Pruyne, J., Richard, B., Rollins, S. and Xu, Z. (2002)

Peer-to-peer Computing. Technical Report HPL- 2002-57. HP

Laboratories, Palo Alto.

[19] Birrell, A.D. and Nelson, B.J. (1984) Implementing remote

procedure calls. ACM Trans. Comput. Syst., 2, 39–59.

[20] Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec, A.-M.

(2003) The many faces of publish/subscribe. ACM Comput.

Surv., 35, 114–131.

[21] Hayes, C.C. (1999) Agents in a nutshell—a very brief

introduction. IEEE Trans. Knowl. Data Eng., 11, 127–132.

[22] Fuggetta, A., Picco, G. and Vigna, G. (1998) Understanding

code mobility. IEEE Trans. Softw. Eng., 24, 342–61.

[23] Cervantes, H. and Hall, R. (2003) Automating Service

Dependency Management in a Service-oriented Component

Model. Proc. Sixth Component-based Software Engineering

Workshop, May, pp. 91–96. Portland, United States.

[24] Cervantes, H. and Hall, R.S. (2004) Autonomous Adaptation to

Dynamic Availability Using a Service-oriented Component

Model. ICSE ‘04: Proc. 26th Int. Conf. Software Engineering,

Washington, DC, USA, May 23–28, pp. 614–623. IEEE

Computer Society.

[25] Baumann, J., Hohl, F., Rothermel, K. and Straer, M. (1998)

Mole—concepts of a mobile agent system. World Wide Web,

1, 123–137.

[26] Pham, V.A. and Karmouch, A. (1998) Mobile software agents:

an overview. IEEE Commun. Mag., 36, 26–37.

[27] Ghezzi, C. and Vigna, G. (1997) Mobile Code Paradigms

and Technologies: a Case Study. In Rothermel, K.

and Popescu-Zeletin, R.(eds) Proc. First Int. Workshop on

Mobile Agents, Berlin, Germany, April 07–08, Lecture Notes

in Computer Science, Vol. 1219, Springer, London, pp. 39–49.

[28] Carzaniga, A., Picco, G. and Vigna, G. (1997) Designing

Distributed Applications with Mobile Code Paradigms. Proc.

19th Int. Conf. Software Engineering, Boston, Massachusetts,

United States, May 17–23, pp. 22–32. ACM, New York.

[29] Griss, M.L. and Pour, G. (2001) Accelerating development with

agent components. Computer, 34, 37–43.

[30] Horvat, D., Cvetkovic, D., Milutinovic, V., Kocovic, P.

and Kovacevic, V. (2001) Mobile agents and java mobile

agents toolkits. Telecommun. Syst. Model. Anal., Des. Manag.,

18, 271–287.

[31] Labrou, Y., Finin, T. and Peng, Y. (1999) Agent communication

languages: the current landscape. IEEE Intellig. Syst., 14,

45–52.

[32] Silva, A., Romao, A., Deugo, D. and Mira da Silva, M. (2001)

Towards a reference model for surveying mobile agent systems.

Auton. Agents Multi-Agent Syst., 4, 187–231.

[33] Baldi, M. and Picco, G.P. (1998) Evaluating the Tradeoffs of

Mobile Code Design Paradigms in Network Management

Applications. Proc 20th Int. Conf. Software Engineering,

Kyoto, Japan, April 19–25, pp. 146–155. IEEE Computer

Society, Washington, DC.

[34] Murphy, A., Picco, G. and Roman, G. (2002) On global virtual

data structures. In Marinescu, D. and Lee, C. (eds) Process

Coordination and Ubiquitous Computing, pp. 11–29. CRC

Press.

[35] Baude, F., Caromel, D., Huet, F. and Vayssiere, J. (2000)

Communicating Mobile Active Objects in Java. In Bubak, M.,

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

236 A. IBRAHIM AND L. ZHAO

Williams, R., Afsarmanesh, H. and Hertzberger, L.O. (eds)

Proc. 8th Int. Conf. High-performance Computing and

Networking, May 08–10, Lecture Notes in Computer Science,

Vol. 1823. Springer, London, pp. 633–643.

[36] Schmidt, D.C. and Cranor, C.D. (1996) Halfsync/ half-async:

An Architectural Pattern for Efficient and Well-structured

Concurrent i/o. Pattern Languages of Program Design 2, pp.

437–459. Addison-Wesley Longman Publishing Co. Inc.,

Boston, MA, USA.

[37] Scott, M. (1999) Programming Language Pragmatics

pp. 20–21. Morgan Kaufmann.

[38] Walker, E., Floyd, R. and Neves, P. (1990) Asynchronous

Remote Operation Execution in Distributed Systems. Proc.

10th Int. Conf. Distributed Computing Systems, Paris, France,

May 28–June 1, pp. 253–259.

[39] Pitt, E. and McNiff, K. (2001) Java.rmi: The Remote Method

Invocation Guide. Addison-Wesley Longman Publishing Co.

Inc., Boston, MA, USA.

[40] Waldo, J. (1998) Remote procedure calls and java remote

method invocation. IEEE Concurrency (see also IEEE

Parallel & Distributed Technology), 6, 5–7.

[41] The OSGi Alliance (2004) Listeners Considered Harmful: The

Whiteboard Pattern. Technical Whitepaper, Revision 2.0.

[Online]. http://www.osgi.org/documents/osgi_technology/

whiteboard.pdf.

[42] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995)

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Longman Publishing Co. Inc.,

Boston, MA, USA.

[43] Allard, J., Chinta, V., Gundala, S. and Richard, I.G.G.

(2003) Jini Meets UPnP: An Architecture for Jini/UPnP

Interoperability. Proc. 2003 Symp. Applications and the

Internet, Orlando, FL, USA, January 27–31, pp. 268–275.

IEEE Computer Society, Washington, DC.

[44] Guttman, E. and Kempf, J. (1999) Automatic Discovery of Thin

Servers: SLP, Jini and the SLP–Jini Bridge. Proc. 25th Annual

Conf. IEEE Industrial Electronics Society (IECON’99), San

Jose, CA, USA, November 29–December 03, pp. 722–727.

[45] Picco, G.P. (1998) mcode: A Lightweight and Flexible Mobile

Code Toolkit. In Rothermel, K. and Hohl, F. (eds) Proc.

Second Int. Workshop on Mobile Agents, Berlin, Germany,

Lecture Notes in Computer Science, Vol. 1477. Springer,

London, UK, pp. 160–171.

[46] Braun, P., Trinh, D. and Kowalczyk, R. (2005) Integrating a New

Mobility Service into the Jade Agent Toolkit. In Karmouch, A.

and Pierre, S. (eds) Proc. Second Int. Workshop Mobility Aware

Technologies and Applications (MATA 2005), Montreal, Que,

Canada., October 17–19, Lecture Notes in Computer Science,

Vol. 3744. Springer, Berlin, pp. 354–63.

[47] Cugola, G., Nitto, E.D. and Fuggetta, A. (2001) The JEDI

event-based infrastructure and its application to the

development of the OPSS WFMS. IEEE Trans. Softw. Eng.,

27, 827–850.

[48] Huang, Y. and Garcia-Molina, H. (2004) Publish/subscribe in a

mobile environment. Wirel. Netw., 10, 643–652.

[49] Cugola, G. and Jacobsen, H.-A. (2002) Using publish/subscribe

middleware for mobile systems. SIGMOBILE Mob. Comput.

Commun. Rev., 6, 25–33.

[50] Mascolo, C., Capra, L. and Emmerich, W. (2002) Mobile

computing middleware. Advanced Lectures on Networking:

Networking 2002 Tutorials, Vol. 2497, pp. 20–58.

[51] Kendall, S.C., Waldo, J., Wollrath, A. and Wyant, G. (1994) A

Note on Distributed Computing. Technical Report. Sun

Microsystems Inc., Mountain View, CA, USA.

[52] Rellermeyer, J.S., Alonso, G. and Roscoe, T. (2007) ROSGi:

Distributed Applications Through Software Modularization.

Proc. ACM/IFIP/USENIX 8th Int. Middleware Conf., Newport

Beach, CA, USA, November 26–30, Lecture Notes in

Computer Science, Vol. 4834. Springer, Berlin.

[53] Johansen, D., van Renesse, R. and Schneider, F.B. (1999)

Operating system support for mobile agents. Mobility:

Processes, Computers, and Agents, pp. 557–563. ACM Press/

Addison-Wesley Publishing Co., New York, NY, USA.

[54] Rellermeyer, J.S. and Alonso, G. (2007) Services Everywhere:

OSGi in Distributed Environments. Presented in EclipseCon

2007, March 5–8, Santa Clara, C .

[55] Offermans, M. (2005) Automatically managing service

dependencies in OSGi (online). http://www.osgi.org/

news_events/documents/.

[56] Murphy, A.L., Picco, G.P. and Roman, G.-C. (2006) LIME: A

coordination model and middleware supporting mobility of hosts

and agents. ACM Trans. Softw. Eng. Methodol., 15, 279–328.

[57] di Laurea di, , T. (2004) LIME II. Phd Thesis. Politecnico Di

milano.

[58] Gelernter, D. (1985) Generative communication in linda.

ACM Trans. Program. Lang. Syst., 7, 80–112.

[59] Lavender, R.G. and Schmidt, D.C. (1996) Active Object: An

Object Behavioral Pattern for Concurrent Programming. Pattern

Languages of Program Design 2, pp. 483–499. Addison-

Wesley Longman Publishing Co. Inc., Boston, MA, USA.

[60] Carzaniga, A., Rosenblum, D. and Wolf, A. (2001) Design and

evaluation of a wide-area event notification service. ACM

Trans. Comput. Syst., 19, 332–383.

[61] Cilia, M., Fiege, L., Haul, C., Zeidler, A. and Buchmann, A.P.

(2003) Looking into the Past: Enhancing Mobile Publish/

Subscribe Middleware. Proc. 2nd Int. Workshop on

Distributed Event-based Systems (DEBS ‘03), San Diego, CA,

June 08–08, pp. 1–8. ACM, New York, NY, USA.

[62] Caporuscio, M., Carzaniga, A. and Wolf, A.L. (2003) Design and

evaluation of a support service for mobile, wireless publish/

subscribe applications. IEEE Trans. Softw. Eng., 29, 1059–1071.

[63] Muhl, G., Ulbrich, A. and Herrman, K. (2004) Disseminating

information to mobile clients using publish-subscribe. IEEE

Internet Comput., 8, 46–53.

[64] Johanson, B. and Fox, A. (2004) Extending tuplespaces

for coordination in interactive workspaces. J. Syst. Softw., 69,

243–266.

[65] Barrett, D.J., Clarke, L.A., Tarr, P.L. and Wise, A.E. (1996) A

framework for event-based software integration. ACM Trans.

Softw. Eng. Methodol., 5, 378–421.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 237

[66] Rosenblum, D.S. and Wolf, A.L. (1997) A Design Framework

for Internet-scale Event Observation and Notification.

SIGSOFT Softw. Eng. Notes, ACM, New York, NY, USA, 22,

344–360.

[67] Hagimont, D. and Ismail, L. (1999) A Performance Evaluation

of the Mobile Agent Paradigm. In Berman, A.M. (ed) Proc. 14th

ACM SIGPLAN Conf. Object-oriented Programming, Systems,

Languages, and Applications (OOPSLA ‘99), Denver,

Colorado, United States, November 01–05, pp. 306–313.

ACM, New York, NY, USA.

[68] Straber, M. and Schwehm, M. (1997) A Performance Model for

Mobile Agent Systems. In Arabnia, H. (ed) Proc. Int. Conf.

Parallel and Distributed Processing Techniques and

Applications (PDPTA97), Las Vegas, July, pp. 1132–1140.

Computer Science Research, Education, and Application

Technology (CSREA), New York, USA.

[69] Chia, T.-H. and Kannapan, S. (1997) Strategically mobile

agents. In Rothermel, K. and Popescu-Zeletin, R. (eds) Proc

First Int. Workshop on Mobile Agents (MA ‘97), London, UK,

April 07–08, Lecture Notes in Computer Science, Vol. 1219,

Springer, London, pp. 149–161.

[70] Philippsen, M., Haumacher, B. and Nester, C. (2000) More

efficient serialization and rmi for java. Concurrency Pract.

Exp., 12, 495–518.

[71] Padovitz, A., Zaslavsky, A. and Loke, S.W. (2003) Awareness and

agility for autonomic distributed systems: platform- independent

and publish-subscribe event-based communication for mobile

agents. Proc. 14th Int. Workshop on Database and Expert

Systems Applications (DEXA’03), Prague, Czech Republic,

September 1–5, pp. 669–73. IEEE Computer Society.

[72] Milojicic, D.S. et al. (1999) MASIF: The OMG Mobile Agent

System Interoperability Facility. In Rothermel, K. and Hohl,

F. (eds) Proc. Second Int. Workshop on Mobile Agents (MA

‘98), Lecture Notes in Computer Science, Vol. 1477. Springer,

London, UK, pp. 50–67.

[73] Bellifemine, F., Poggi, A. and Rimassa, G. (2001) JADE: A

FIPA2000 Compliant Agent Development Environment. Proc.

fifth Int. Conf. Autonomous Agents (AGENTS ‘01), Montreal,

Quebec, Canada, May 28–June 1, pp. 216–217. ACM,

New York, NY, USA.

[74] Rellermeyer, J.S. (2006) FlowSGi: A framework for dynamic

fluid applications. Master’s Thesis. ETH Zurich.

[75] Ferscha, A., Hechinger, M., Mayrhofer, R. and Oberhauser, R.

(2004) A light-weight component model for peer-to-peer

applications. Proc. 24th Int. Conf. Distributed Computing

Systems Workshops—W7: EC (ICDCSW’04), Hachioji, Tokyo,

Japan, March 23–24, pp. 520–527. IEEE Computer Society,

Washington, DC, USA.

[76] The Open Service Oriented Architecture (OSOA) Collaboration

(2007). Power combination: SCA, OSGi and Spring. white

paper (online). http://www.osoa.org/display/Main/SCA+

Resources.

[77] Fowler, M. (2004) Inversion of control containers and the

dependency injection pattern (online). http://www.martinfowler.

com/articles/injection.html.

[78] Mathew, S. (2005). Examining the validity of inversion of

control (online). http://www.theserverside.com/tt/articles/

article.tss?l=IOCandEJB.

[79] Johnson, R. (2005). Introduction to the spring framework

(online). http://www.theserverside.com/tt/articles/article.tss?

l=SpringFramework.

[80] Weiskotten, J. (2006) Dependency injection: designing loosely

coupled and testable objects. Dr. Dobb’s J., 31, 10–15.

[81] Mascolo, C., Capra, L., Zachariadis, S. and Emmerich, W.

(2002) XMIDDLE: a data-sharing middleware for mobile

computing. Wirel. Pers. Commun., 21, 77–103.

[82] Cugola, G. and Picco, G.P. (2002) Peer-to-peer for Collaborative

Applications. Proc. 22nd Int. Conf. Distributed Computing

Systems (ICDCSW ‘02), Vienna, Austria, July 02–05, pp.

359–364. IEEE Computer Society, Washington, DC, USA.

[83] Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L.

and Picco, G.P. (2005) Mobile data collection in sensor

networks: the tinylime middleware. Pervasive Mob. Comput.,

1, 446–469.

[84] Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L.

and Picco, G.P. (2005) Tinylime: Bridging Mobile and Sensor

Networks Through Middleware. Proc. Third IEEE Int. Conf.

Pervasive Computing and Communications (PERCOM ‘05),

Kauai Island, HI, USA, March 08–12, pp. 61–72. IEEE

Computer Society, Washington, DC, USA.

[85] Costa, P., Mottola, L., Murphy, A.L. and Picco, G.P. (2006)

Teenylime: Transiently Shared Tuple Space Middleware for

Wireless Sensor Networks. Proc. Int. Workshop Middleware

Sensor Networks (MidSens ‘06), Melbourne, Australia,

November 28–28, pp. 43–48. ACM Press, New York, NY, USA.

[86] Carbunar, B., Valente, M. and Vitek, J. (2001) Lime Revisited

(Reverse Engineering an Agent Communication Model).

Proc. 5th Int. Conf. Mobile Agents (MA 2001), December

2–4, Lecture Notes in Computer Science, Vol. 2240, pp.

54–69. Springer, Berlin/Heidelberg, Atlanta, GA, USA.

[87] Fok, C.-L., Roman, G.-C. and Hackmann, G. (2004) A

Lightweight Coordination Middleware for Mobile Computing.

In De Nicola, F.G.R. and Meredith, G. (eds) Proc. 6th Int.

Conf. Coordination Models and Languages (Coordination

2004), Pisa, Italy, February 24–27, Lecture Notes in Computer

Science, Vol. 2949, Springer, Berlin/Heidelberg, pp. 135–151.

[88] Herrmann, K., Mühl, G. and Jaeger, M.A. (2007) Meshmdl

event spaces—a coordination middleware for self-organizing

applications in ad hoc networks. Pervasive Mob. Comput., 3,

467–487.

[89] Lehman, T., Cozzi, A., Xiong, Y., Gottschalk, J., Vasudevan,

V., Landis, S., Davis, P., Khavar, B. and Bowman, P. (2001)

Hitting the distributed computing sweet spot with TSpaces.

Comput. Netw., 35, 457–472.

[90] Freeman, E., Hupfer, S. and Arnold, K. (1999) JavaSpacesTM

Principles, Patterns, and Practice. Addison-Wesley, Reading,

MA.

[91] Tarkoma, S. and Laukkanen, M. (2002) Supporting Software

Agents on Small Devices. Proc. First Int. Joint Conf.

Autonomous Agents and Multiagent Systems: Part 2 (AAMAS

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

238 A. IBRAHIM AND L. ZHAO

‘02), Bologna, Italy, July 15–19, pp. 565–566. ACM,

New York, NY, USA.

[92] Bergenti, F. and Poggi, A. (2002) LEAP: A FIPA platform for

handheld and mobile devices. In Meyer, J.C. and Tambe,

M.(eds) Intelligent Agents VIII: Revised Papers from the

8th Int. Workshop on Agent Theories, Architectures, and

Languages (ATAL 2001), Seattle, WA, USA, August 01–03,

2001, Lecture Notes in Computer Science, Vol. 2333,

Springer, London, UK, pp. 436–446.

[93] Kalasapur, S., Kumar, M. and Shirazi, B.A. (2007) Dynamic

service composition in pervasive computing. IEEE Trans.

Parallel Distrib. Syst., 18, 907–918.

THE COMPUTER JOURNAL, Vol. 52 No. 2, 2009

SUPPORTING OSGI PLATFORM WITH MOBILITY AND SERVICE DISTRIBUTION 239

