Supporting Information

Fenton-Like Oxidation of 4–Chlorophenol: Homogeneous or Heterogeneous?

Chung-Chi Kuan,† Sin-Yuen Chang,† Sven L. M. Schroeder*,‡§,¦

†School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.
‡School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.
§(Present address) Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire OX11 0QX, United Kingdom.
¦(Present address) School of Chemical and Process Engineering, Faculty of Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.

*Email: s.l.m.schroeder@leeds.ac.uk

Figure S1. Powder XRD patterns of the calcined and uncalcined CuFe₂O₄ powder measured using a Siemens D500 Kristalloflex Diffractometer. The step size was 0.02°.
Figure S2. Blank test using 0.48 mM 4-CP only showing negligible 4-CP loss due to volatilization at 60°C. The spectra between 0 to 8 h were omitted for clarify.

Figure S3. Blank test using 16 mM H₂O₂ without the presence of FeOₓ/TiO₂ compared to reaction in the presence of FeOₓ/TiO₂ catalyst (16 mM H₂O₂, 1 g L⁻¹ FeOₓ/TiO₂ with 1 wt% Fe calcined at 300°C).
Figure S4. 4-CP degradation using FeO$_x$/TiO$_2$ catalysts. (a) The solid phase catalyst FeO$_x$/TiO$_2$ (1 wt% Fe) and the solution phase catalyst 9.0×10^{-4} mM [Fe$_2$(SO$_4$)$_3$]. (b) FeO$_x$/TiO$_2$ (10 wt% Fe) catalyst. (c) FeO$_x$/TiO$_2$ (1 wt% Fe) catalyst in a solution buffered at pH 7.4. All initial reactant solutions contained 16 mM H$_2$O$_2$ and 0.48 mM 4-CP.
Figure S5. The glass reactor system.