Intergenerational Mobility in Contemporary China: 1996-2006

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy
In the Faculty of Humanities

2012

Meng Chen

School of Social Sciences
CONTENTS

ABSTRACT ... 7
DECLARATION .. 8
COPYRIGHT .. 8
ACKNOWLEDGEMENTS .. 9
Chapter 1 Introduction .. 10
 1.1 Research aims .. 10
 1.2 The historical context ... 11
 1.3 The hukou system and education in China ... 16
 1.3.1 The hukou system ... 16
 1.3.2 Education: Expansion and persistent inequality .. 19
 1.4 Thesis outline .. 21
Chapter 2 Literature review ... 23
 2.1 Introduction ... 23
 2.2 Social mobility in industrial societies: trends and variations .. 24
 2.3 Social mobility and state socialist societies ... 29
 2.4 Women and social mobility .. 32
 2.5 Social stratification and social mobility in contemporary China ... 36
 2.5.1 Social stratification and market transition .. 36
 2.5.2 Social mobility in China .. 38
 2.6 Conclusion ... 40
Chapter 3 Data, methods, and class schema .. 41
 3.1 Introduction ... 41
 3.2 The conceptual context .. 41
 3.2.1 The social hierarchical approach .. 42
 3.2.2 The class structural approach .. 43
 3.3 The class schema ... 46
 3.3.1 The Wright class schema .. 46
 3.3.2 The EGP class schema ... 48
 3.3.3 The CASS ten-class schema for social mobility in China ... 52
 3.4 Data sources .. 54
 3.4.1 The Life Histories and Social Change Survey (1996) .. 55
 3.4.2 The Chinese General Social Surveys (2005, 2006) .. 55
 3.4.3 Standardisation of key variables .. 57
 3.5 Constructing the EGP schema ... 60
 3.6 Unit of analysis .. 63
 3.7 Statistical methods ... 65
 3.7.1 Analysing absolute mobility ... 65
 3.7.2 Analysing social fluidity .. 66
 3.7.3 Analysing work-life and intergenerational mobility ... 68
 3.8 Conclusion .. 69
Appendix Chapter 3 : Key variables in the datasets ... 70
Chapter 4 Class structure and absolute mobility rates .. 71
 4.1 Introduction ... 71
 4.2 Literature review ... 72
 4.3 Class structure of origin and destination ... 74
 4.4 Absolute mobility rates: inflow rates .. 81
4.5 Absolute mobility rates: total rates ... 84
4.6 Absolute mobility rates: outflow rates ... 88
4.7 Conclusion ... 94
Appendix Chapter 4 ... 96
Chapter 5 Trends and patterns of social fluidity ... 99
 5.1 Introduction ... 99
 5.2 Literature review ... 100
 5.3 Trends in relative mobility rates ... 102
 5.4 Differences in relative mobility rates by gender and hukou origin 108
 5.5 A topological model of density level ... 112
 5.6 The core model of social fluidity ... 118
 5.7 Conclusion ... 124
Appendix Chapter 5 (I) .. 127
Appendix Chapter 5 (II): Designing a model of density levels 133
 Appendix Chapter 5 (III): The Chinese variant of the core model of social fluidity 139
Chapter 6 Work-life mobility and intergenerational mobility 145
 6.1 Introduction ... 145
 6.2 Literature review ... 146
 6.3 Descriptive analysis of the ‘three-point’ mobility ... 148
 6.4 Relative rates of the ‘three-point’ mobility ... 157
 6.5 SOR models for class position at time of survey .. 160
 6.6 Conclusion ... 174
Appendix Chapter 6 (I) .. 178
Appendix Chapter 6 (II) Stereotype ordinal regression model 186
Chapter 7 Conclusion ... 188
 7.1 Introduction ... 189
 7.2 Summary of the findings .. 189
 7.2.1 Class structure and absolute mobility rates ... 189
 7.2.2 Trends and patterns of social fluidity ... 191
 7.2.3 Work-life mobility and intergenerational mobility 193
 7.3 Contributions to knowledge .. 195
 7.3.1 Theoretical contributions ... 195
 7.3.2 Policy implications ... 198
 7.4 Reflections of the thesis ... 199
 7.4.1 Limitations ... 200
 7.4.2 Scope of future research ... 201
References .. 202

Word count: 71,063
LIST OF TABLES

Table 3.1: Basic class locations and contradictory location in the Wright schema47
Table 3.2: Class categories of the Goldthorpe schema and supposed forms of regulation of employment ... 50
Table 3.3: Socio-demographic statistics of the LHSC 1996, CGSS 2005 and 200657
Table 3.4: Deriving hukou origin for CGSS 2006 ..58
Table 3.5: Deriving hukou origin for CGSS 2005 ..59
Table 3.6: Distributions of hukou origin by year of survey60
Table 3.7: Class structure using the ten-class EGP schema (destination)63
Table 3A.1: Key variables in the datasets .. 70
Table 4.1: Index of dissimilarity and index of net difference for origin and destination classes ... 78
Table 4.2: Inflow mobility rates for men (% by column)83
Table 4.3: Inflow mobility rates for women (% by column)83
Table 4.4: Total rates and distribution of men by class of origin and destination ...85
Table 4.5: Total rates and distribution of women by class of origin and destination ..., 87
Table 4.6: Outflow mobility rates for men (% by row)90
Table 4.7: Outflow mobility rates for women (% by row)91
Table 4A.1: Distribution of parents’ and respondent’s Goldthorpe 10-way class in 1996 and 2005/6 (% by column) ... 96
Table 4A.2: Total rates of absolute mobility for men and women by age group96
Table 4A.3: Outflow mobility rates for men by hukou origin97
Table 4A.4: Outflow mobility rates for women by hukou origin98
Table 5.1: Symmetrical odds ratios for men and women separately103
Table 5.2: Symmetrical odds ratios for respondents of urban and rural hukou origins separately, aged 20-69 ... 105
Table 5.3: Results of fitting the conditional independence, constant social fluidity, and UNIDIFF models to mobility tables for men and women: origin, destination, and survey year .. 107
Table 5.4: Results of fitting the conditional independence, constant social fluidity, and UNIDIFF models to mobility tables for respondents of urban and rural hukou origin: origin, destination, and survey year 108
Table 5.5: Results of fitting the conditional independence, common social fluidity, and UNIDIFF models to mobility tables of the 1996 and 2005/6 data: origin, destination, and gender .. 110
Table 5.6: Results of fitting the conditional independence, common social fluidity, and UNIDIFF models to mobility tables of the 1996 and 2005/6 data: origin, destination, and hukou origin ... 111
Table 5.7: Levels matrix of the Hauser-type model113
Table 5.8: Parameters of density levels model (in additive form) and matrix of differences in density between levels (in multiplicative form), for pooled data114
Table 5.9: Matrices for the preferred core model of social fluidity120
Table 5.10: Results of the core social fluidity model to collapsed mobility tables for men and women .. 120
Table 5.11: Parameter estimates for the cells in the 6×6 intergenerational mobility table ... 121
Table 5A.1: Results of fitting the conditional independence, constant social fluidity, and UNIDIFF models to mobility tables for men and women in two age groups: origin, destination, and survey year ... 127
Table 5A.2: Results of fitting the conditional independence, constant social fluidity, and UNIDIFF models to mobility tables for respondents of urban and rural hukou origin in two age groups: origin, destination, and survey year 128
Table 5A.3: Results of fitting the conditional independence, common social fluidity, and UNIDIFF models to the overall, 1996, and 2005/6 sample in two age groups: origin, destination, and gender ... 129
Table 5A.4: Results of fitting the conditional independence, common social fluidity, and UNIDIFF models to the overall, 1996, and 2005/6 sample in two age groups: origin, destination, and hukou origin 130
Table 5A.5: O-D-S by birth cohort, for 1996 and 2005/6 separately .. 131
Table 5A.6: O-D-H by birth cohort, for 1996 and 2005/6 separately .. 132
Table 5A.7: Design matrices for the Hauser-type model (updated on 24th March, 2012) 134
Table 5A.8: Goodness of fit and coefficients of Models 1-3 fitted .. 137
Table 6.1: Summary rates based on three-way mobility tables by gender, respondents aged 20-69 .. 153
Table 6.2: Summary rates based on three-way mobility tables by hukou origin, respondents aged 20-69 .. 157
Table 6.3: CmSF models for gender differences in relative rates on the overall, urban and rural data .. 158
Table 6.4: Reversed classifications of the six-fold EGP class schema .. 160
Table 6.4: Selecting SOR model for class of destination .. 162
Table 6.5: Results of the SOR models of current class position .. 168
Table 6.6: Scenarios for two groups of example cases to present the effects of hukou origin, hukou upgrading and entry class positions .. 173
Table 6A.1: CmSF models for gender differences in relative rates on the overall, urban and rural data, respondents aged 41-69 .. 184
Table 6A.2: Intergenerational outflow by hukou upgrading experience, men and women of rural hukou origin ... 185
LIST OF FIGURES

Figure 1.1: Industrial distribution of the national GDP .. 16
Figure 1.2: Changes in the population by urban and rural residence, 1952-2009 18
Figure 3.1: Relation to means of production in the new Wright schema 48
Figure 3.2: The five-class CASS schema ... 53
Figure 4.1: Distributions of origin class .. 75
Figure 4.2: Distribution of destination class for men and women 79
Figure 5.1: Matrix of density levels for the six-level model, size of cells drawn to scale with the marginal proportions in the mobility table accounted for by each class, for pooled data of men and women separately ... 116
Figure 6.1: Patterns of three-point mobility by gender, respondents aged 20-69......... 150
Figure 6.2: Patterns of three-point mobility by hukou origin, respondents aged 20-69 ... 154
Figure 6.3: Scaling metrics for classes of origin and destination under three SOR models ... 164
Figure 6A.1: Patterns of three-point mobility by gender, respondents aged 41-69 178
Figure 6A.2: Patterns of three-point mobility by hukou origin, respondents aged 41-69 181
ABSTRACT

This thesis aims at systematically investigating intergenerational class mobility in contemporary China between 1996 and 2006, a period of time that largely overlaps the third decade of the country’s reform era. The study seeks answers to the following questions: 1) to what extent Chinese are found in class positions that differ from their class origins; 2) whether the amount of intergenerational mobility increased during the decade in question; 3) whether China has become a more equal society in terms of social mobility; 4) what are the overall patterns of social fluidity in China; and, 5) how mobility outcomes are affected by work-life mobility and various demographic and socioeconomic characteristics, such as gender and the household registration (hukou) background.

This research uses nationally representative survey data from three surveys – the Life Histories and Social Change Survey (1996) and the Chinese General Social Surveys (CGSS 2005 and CGSS 2006). I adopt the class structural approach and the EGP (Erikson-Goldthorpe-Protocarero) class schema. Various statistical methods are employed to explore the above issues: descriptive analysis for changes of China’s class structure, absolute rates of mobility and work-life mobility from the first job class to class of destination; log-linear and log-multiplicative analysis for trends and between-group differences in relative mobility; the Hauser-type density levels model and the core model of social fluidity for patterns of social fluidity; and the Stereotype Ordinal Regression Model for multivariate analysis of mobility outcomes.

During the decade, China has become a more ‘mobile’ society in an upgraded structural context. While the relative size of the agricultural sector contracted substantially, there is a significant increase in the non-agricultural ‘room’ for occupational attainment, especially in the routine non-manual class and manual working classes. However, the analysis of relative mobility shows that the significant increase in total mobility and upward mobility has resulted mainly from structural changes. Between 1996 and 2006, the origin-destination association net of structural effects has been largely stable. Hence, the study provides little evidence in support of a more equal Chinese society. As regards gender differences, Chinese women are less socially mobile than men, and their mobility outcomes tend to be more affected than men by their social origin.

In fitting the density levels model and the core model of social fluidity to the pooled data, I show that the highest likelihood of occurrence lies with the self-inheritance of peasants as well as small business owners. In contrast, mobility between the agricultural sector and non-manual classes displays the lowest likelihood of occurrence. While relative chances of mobility for both men and women are heavily affected the boundary between agricultural and non-agricultural sectors, women are further subject to the hierarchical effect that hinders long-range mobility. In the final part of the empirical analyses, I reveal the decisive role that the first job class plays in mobility processes in China. The results of the multivariate analysis also indicate that the institutional barriers imposed by the hukou system have a striking negative effect on mobility chances.
DECLARATION

I declare that no portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

COPYRIGHT

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual property (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf), in any relevant Thesis restriction declarations deposited in the University Library, The University Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in The University’s policy on presentation of Theses.
ACKNOWLEDGEMENTS

Throughout my PhD study and research, I have been indebted to many people. Upon the completion of this thesis, it is a pleasure to thank all those who made it possible.

First of all, I owe my supervisors, Yaojun Li and Laura Morales, a great debt of gratitude for their patient guidance, lasting inspiration, and most warm-hearted encouragement. As a student who did not step into the field of sociology until the MA course, I must give my special thanks to Yaojun Li, who has always been ready to help and trusted me to learn and grow into a good social researcher. I am also deeply grateful to Fiona Devine, who has spared her precious time to read my early drafts of the thesis. Her comments were important for my revision of the thesis.

I would like to thank the Life Histories and Social Change Survey and the Chinese General Social Surveys for providing the quality survey data for public research use. I appreciate the hard work of team members in these projects, which have made more social research on China based on large-scale national survey data possible. I am also grateful for the financial support from the Institute for Social Change (ISC) in the first three years of my study in Manchester. Without the funding, I would not have been able to concentrate on my research in a foreign city.

My thanks go to the staff members and PhD students at the ISC for the pleasant academic environment that has contributed to the completion of this thesis. I am especially thankful to Jianxun Kong, Yung-Han Chang, Jennifer Whillans and Kyung-A Kim for many pleasant chats and emails that have encouraged me to carry on. I would also like to thank Dave Cutts, Ed Fieldhouse, and Jennifer Birchall for the assistance they have given me when I had to extend my PhD study because of pregnancy.

Lastly, and most importantly, I wish to give my deep gratitude and dedicate this thesis to my family and friends. I am thankful to my husband, Qilong Jia, for his constant understanding, loving support, and having accepted my ‘self-isolation’ far away from our home in China without any complaint. After my daughter was born in the last year of my PhD research, I have received an enormous amount of help from my mother, Peiling Zheng, when I had to continue with the revision of my thesis along with the new caring responsibilities. I must also thank my nine-month-old daughter, Youhan Jia, for all the beautiful smiles she has given me.
Chapter 1 Introduction

1.1 Research aims

This thesis is an examination of intergenerational class mobility in contemporary China, focussing on the period between 1996 and 2006 which largely overlaps with the third decade of China’s economic reform launched in 1978. This study seeks to answer the following research questions: 1) to what extent the occupational (class) positions of the Chinese are similar to or different from those of their parents; 2) how the amount of intergenerational mobility changed during the decade in question; 3) whether China has become a more equal society with improved mobility chances for people of different social origins; 4) what are the overall patterns of intergenerational mobility and social fluidity in China; and finally, 5) to what extent the outcome of intergenerational mobility is affected by various demographic and socioeconomic characteristics, such as gender, the household registration (hereafter referred to as hukou) background, and first job class.

This study is an attempt to systematically examine the issue of intergenerational mobility in China using national survey data collected at different points in time. In examining the issues listed above, I find that the total mobility in China increased substantially between 1996 and 2006, mainly as a result of the rise in upward mobility. Overall, however, there is no clear evidence in support of the thesis of greater openness in mobility chances. The study shows substantial urban-rural differences in mobility chances, especially in the case of women. Meanwhile, I find that mobility outcomes of women in general are more closely associated with their class origins. In the analysis of work-life and intergenerational mobility, the results show that, for individuals of all class origins alike, direct entry plays an important role in mobility processes, while first job class significantly affects mobility outcomes. Meanwhile, hukou origin and the experience of agricultural to non-agricultural hukou conversion, or, rural to urban conversion as it is often referred to, are found to have a decisive effect on the chance of access to desirable class positions.

Despite the growing body of literature on social stratification and social mobility in China, many studies have taken the status-attainment approach (see for example Blau & Ruan, 1990; Lin & Bian, 1991), in which no knowledge of the total amount of mobility or mobility net of structural effect can be obtained. Although there have been studies that
investigate the issue of intergenerational mobility in the class structural approach, they are either not based on national survey data (Cheng & Dai, 1995) or not focused on temporal changes in the pattern of social mobility under socio-economic transformations (Wu & Treiman, 2007; Yang, 2008). This study not only contributes to the general literature of social mobility by finding little evidence of rising social fluidity in China in the course of economic transformation, but fills in the gap in mobility research by using national survey data to examine the issues with a class structural approach.

In the rest of this chapter, I introduce the historical context of social mobility in contemporary China. Following Section 1.2 is a brief review of the institutional context in China for social mobility, focusing on the historical context of the hukou system and its effects on educational and occupational mobility. Section 1.4 gives an overview of the thesis outline and key findings of each empirical chapter.

1.2 The historical context

A major feature that differentiates state socialist countries from capitalist societies is the impact of political intervention and state policies on individual life chances (Ganzeboom, DeGraaf, and Robert, 1990; Luijinx et al., 1998; Mach, 2004; Robert & Bukodi, 2004; Szelenyi & Manchin, 1987, cited in Zhou, 2005). In the past six decades, stratification dynamics in China have been affected by large-scale, often nationwide, political and economic events that were initiated by the Communist Party of China (hereafter CCP) and the Government (Zhou, 2005). To provide the historical context in which findings of this research are interpreted and understood, it is helpful to map out relevant major political and social changes that China has gone through since 1949.

The concept of ‘class’ has evolved with political twists and social development in China in the past decades. For a long period of time, particularly between the takeover of power by the CCP in 1949 and the launch of economic reform in 1978, ‘class’ had remained a concept injected merely with political implications. In official parlance, the Chinese society featured an extremely simple class structure that was composed primarily of the working class and the peasant class, with the intelligentsia affiliated with the former (Lu, 2004). Land owners, rich peasants, and private business owners were treated as exploiting
classes and largely deprived of not only political rights but chances of upward mobility into cadre positions. Such a class structure had resulted mainly from state construction following the Stalinist practice (Lu, 2004; Zhou, 2005). In the 1950s, a ‘class’ was designated by the CCP to each household and inheritable mainly along the male line. The designations would then be included in individual education and employment dossiers. The class schema consisted of the ‘good, middle, and bad’, which were then further subdivided as shown below (see for details Deng & Treiman, 1997: 394-5; Unger, 1982: 13-4, cited in Deng & Treiman, 1997).

I. Good-class origins, also known as the ‘five red kinds’ (hongwulei), with ‘red’ connoting politically trustworthiness such as being pro-CCP, pro-Government, pro-socialist system, patriotic, progressive, etc.
 a) Politically red inheritance, with the family headed by pre-Liberation (1949) CCP members, or orphans of martyrs who died in the revolutionary wars
 b) Working class

II. Middle-class origins (yiban)
 a) Non-intelligentsia middle class
 b) Intelligentsia middle class, with the family headed by pre-Liberation clerks, teachers, professionals, etc. (This category was then treated as bad class origins during the Cultural Revolution.)

III. Bad-class origins, also referred to as the ‘five black kinds’ (heiwulei)
 a) Families of former capitalists
 b) Families of ‘rightists’
 c) Families of pre-Liberation rich peasants
 d) Families of ‘bad elements’, i.e. ‘criminal’ offenders
 e) Families of counterrevolutionaries

In the pre-reform era, social mobility in China was affected intensely by political interventions. As mentioned above, class was inherited in the male line of the family, which, as an ascribed characteristic, significantly affected life chances such as occupational attainment (Parish, 1981, 1984; Whyte & Parish, 1984). As important steps to build up a centrally planned economy, the central government gradually completed its task of nationalising foreign-owned companies and collectivising private business in the 1950s. In effect, the ‘exploiting classes’ were suppressed and social classes were restructured and
‘purified’. Meanwhile, the urban labour force expanded as a result of the state emphasis upon industrialisation. Apparently, manual workers’ and peasants’ children were more likely to find mobility chances in the reshaped class structure, but individual life chances were heavily affected by political movements concomitant with shifts in state economic policies.

From the mid-1950s to the mid-1960s, people in China were faced with campaigns one after another. In regard to those that are most relevant to social mobility, they include the ‘anti-rightist’ campaign in the late 1950s and early 1960s, which involved over 3 million cadres and intellectuals,¹ the economic adjustment in response to economic contractions after the Great-Leap-Forward rushed growth strategy (1958-1960), which reduced the urban labour force by 18 million, and the ‘send-down’ policy in 1960, which mobilised more than one seventh of cadres nationwide to move to lower level localities (Zhou, 2005).² Apart from political campaigns, the hukou system was established in the form of law in the mid-1950s and is still a major boundary between urbanites and rural residents.

The last decade of the Mao era between 1966 and 1977 saw the entire society falling into political fanaticism during the Cultural Revolution that was launched by Chairman Mao Zedong. In view of the potential threat from both the old upper classes and newly engendered ‘capitalist-roaders’ who might become a ‘privileged stratum’, Mao and his radical followers set off nationwide political attacks against the emerging bureaucratic class and their elite privileges, with which the youth were heavily engaged as Red Guards (hongweibing) (Deng & Treiman, 1997). Over the decade, an estimated 100 million people were involved in political persecutions (Chen & Liu, 1991, cited in Zhou, 2005). Affected by the political intervention, the association between fathers’ socio-economic status and sons’ attainment of human capital was rather weak, and the usually strong positive effect

¹ The movement was instigated by Chairman Mao Zedong in June, 1957, with a second wave that started in 1959. Despite the absence of an officially consistent definition for the ‘rightists’, a series of campaigns were aimed at intellectuals who seemingly prefer a capitalist developmental path to a socialist one. The campaigns were confined to attacks on ‘extreme rightists’ at the outset, but soon expanded into a massive political movement. According to the official history of the CCP compiled by the Research Unit of the Party History (RUPH), over 3 million cadres and CCP members were labelled as ‘right-wing opportunists’ during the anti-rightist campaigns (RUPH, 2010). Of the penalties to the alleged ‘rightists’, the most common one was to have them re-educated through labour.

² The ‘send-down’ policy affecting cadres in 1960 is not to be confused with the ‘send-down’ movement (rustication) that started in 1968 and lasted until 1980, which affected mainly the young graduates from middle schools.
of intelligentsia and cadre origins on individual life chances were drastically reduced, as those who were from such social origins were often regarded as embracing capitalist ideology (Bernstein, 1977; Deng & Treiman, 1997). Resulting from massive political purges, large numbers of urban cadres and the intelligentsia were exposed to the adverse effects of state policies and moved downwardly to the rural areas. Nevertheless, the hukou system remained rigid, and peasants were even more seriously confined to the countryside (Lu, 2004; Wang, 2005).

In the chaos of the runaway 1966-1977 Chinese society, another important impact of the state policies upon mobility chances is that the role of education as an engine of social mobility, which was enhanced through educational reform in the early 1960s, was severely disrupted by ‘revolutions’ subsequent to Mao’s May 7th Directive. From 1966 to 1970, Chinese universities did not admit new students, whereas the postgraduate education was not resumed until 1978, which was twelve years after postgraduate enrolment was initially suspended. Moreover, three cohorts of secondary school students left school, as nearly all secondary and tertiary level schools were not functioning between 1966 and 1968. Because the government was not able to assign jobs to these ‘children of the Cultural Revolution’, between 1968 and 1979, over 17 million urban youths were sent ‘up the mountains’ or ‘down the valleys’ (Zhou & Hou, 1999). However, it is pertinent to note that a majority of these ‘sent-down’ youths had resettled in urban areas in the 1990s (Wu & Treiman, 2007).

The social context in the reform era that started in 1978 (also referred to as the post-Mao era) can be understood in two respects. First, political implications of ‘class’ faded with the end of the Cultural Revolution. From 1978 to 1981, around 98 per cent of the ‘rightists’ were rehabilitated, whereas over 20 million other ‘five black kinds’, including land owners, rich peasants, ‘bad elements’ and counterrevolutionaries, regained their legal rights as citizens. Similar policies were applied to over 700,000 small business owners and craftsmen, and 160,000 private business owners (Lu, 2004: 75). In the meantime, intellectuals were received as part of the working class after Deng Xiaoping’s talk at a national conference of scientists. With the country’s new focus upon economic growth,

3 In the summer of 1966, the Central Committee of the CCP ordered the institutions of higher education to delay admitting new students until half a year later, because the admission system in use at the time was regarded as a ‘capitalist’ one and needed reforming. The admission of higher education, however, was not resumed until in 1970 (Lu, 2004: Ch.2).
social stratification in China is increasingly based on social and economic changes rather than on the old state-constructed dichotomous (or trichotomous) political class structure.

In regard to the economic context, the post-1978 era can be further divided into two periods, the years between 1978 and 1992 and the post-1992 period. Concomitant with the vanishing old class structure, new social classes began to take shape during the first period as the country gradually recovered from disruptions by reforming economic institutions. One of the major outcomes of economic reforms in rural China is the emergence and subsequent increase of surplus labour in the countryside. While peasants were still faced with urban-rural boundaries imposed by the hukou system, some began to get involved in non-agricultural work or business.\(^4\) In regard to urban economy, the central role of the state authority over the labour market and work organisations showed signs of a gradual decline. The emergence of a market economy has led to changes that are relevant to social mobility. Firstly, political loyalty was no longer regarded as the essential criterion of upward mobility. Similarly, the criteria of political recommendation for admission to tertiary education also gave way to academic achievement, which enabled education to regain its role in mobility processes as an achieved factor. Third, both the course of industrialisation and reforms of ownership changed the structural context of social mobility, as the number of small business owners (getihu) rose drastically and opportunities of non-agricultural work also increased.

All these contextual changes continued in the post-1992 period. Subsequent to Deng’s talk on reform in Shenzhen in 1992, which reconfirmed the importance of developing a market economy, privatisation processes were accelerated and China’s industrial structure was further upgraded. As can be seen in Figure 1.1, the proportion made up by the primary industry in the national GDP continued to fall during this period, whereas the tertiary industry made an increasingly important contribution. While the data used in this study do not allow us to capture effects upon social mobility of the tertiary education expansion, which started in 1999, we will expect the changes in the industrial structure that Figure 1.1 presents to be reflected by the pattern of intergenerational mobility. For instance, numerous

\(^4\) During the first eight years of the reform era, namely between 1979 and 1987, the rural population that was involved in various non-agricultural work increased by 158.1 per cent, from 31.5 million to 81.3 million (Lu, 2004: 77).
peasants left the field for urban job opportunities, which would in turn increase rises in the total mobility of the agricultural class.

Figure 1.1: Industrial distribution of the national GDP

Note: Data in this figure are calculated at current prices.

Throughout the entire reform era, the role of the state as authority in the market has been declining. However, state policies and institutions remain crucial in determining individual life chances. In the next section, I briefly introduce the main features of the Chinese educational system and the hukou system, both of which have an effect on chances of occupational attainment.

1.3 The hukou system and education in China

1.3.1 The hukou system

A distinct feature of the institutional context for social mobility in China is the long-lasting household registration system, or, hukou system as it is more often referred to. The urban-rural divide in consequence of the system is viewed as having the most prominent effect on social mobility when it is compared with other institutional characteristics, such
as the work unit system (danwei), the CCP-centred bureaucracy (Yang, 2008). To help understand the effects of hukou on mobility chances, this section briefly reviews how the system came into being and how it evolved in the past decades, as a mobility barrier which is still operative.

Although the hukou system was initially designed for the purpose of social control, it soon evolved into a system on which resource allocation and life chances are based on (Solinger, 1995). With peasants and urbanites differentiated as ‘unbridgeable classifications’, providing services including all aspects of work and life for the urban residents was the state’s ‘direct responsibility’ for a long period of time and, as a result, urbanites enjoyed resources of various kinds, whereas rural people were institutionally excluded from life chances such as state sector employment, subsidised health care, pension, and later implemented housing benefits (Cheng & Seldon, 1994). In response to economic growth in the reform era, food rations based on hukou status were abolished in the late 1980s. Moreover, the urban-rural demarcations by the hukou system were gradually obliterated in the 1990s. As can be seen in Figure 1.2, the country has seen a continuous fall in the rural population since the 1970s. In the light of significant adaptations of the hukou system, it could no longer prevent peasants from migrating to seek urban work chances (Liu, 2007; Solinger, 1999). None the less, rural migrants who work or live in urban areas, along with their children, are still denied access to urban hukou status, and therefore excluded from a wide range of ‘urban’ resources, including education in schools for local-hukou holders, social insurance, unemployment benefits, and pensions rights.

5 While the earliest PRC hukou regulation was based on the Hukou Law of the Kuo Min Tang administration (administration of the National People’s Party, known as KMT), it was soon affected by the Stalinist propiska (resident permit) (Wang, 2005) and served the need of social and political control under the centrally planned economy. By 1958, the CCP administration had fully replaced the Provisional Regulations on Urban Hukou Management (chengshi hukou guanli zanxing tiaoli) with a permanent national hukou system, Regulations on Household (Hukou) Registration in the People’s Republic of China. Despite the short-lived freedom between 1957 and 1959, internal migration was soon curtailed, which was driven by the need not only of reserving resource privileges to urban residents but of controlling ‘hidden enemies’ or ‘questionable persons’ as targeted people (zhongdian renkou) who might threaten the regime (Wang, 2005).

6 As described by Wang (2005), hukou plays a crucial part in the attainment of various economic benefits. Until the 1990s, whereas non-agricultural hukou holders were subsidised in housing, education, and health care, the grain-ration system was adopted for rural residents to guarantee low food prices for urban residents. In the era of centrally planned economy, policies of state monopoly of the purchase and marketing of grains (tonggou tongxiao) were taken to allocate food resources on the basis of hukou registration.

7 In some cities such as Shanghai and Beijing, children of rural workers go to special schools built up merely for migrant workers’ children. Take Shanghai for example, it was not until 2010 that children of
Given the institutional exclusion from desirable life chances and various resources, attaining urban *hukou* status is widely regarded as the essential step to improving the living standard of their own or their children’s. Despite their strong motivation, however, means by which rural residents can surmount the barrier are extremely limited: attaining tertiary education as well as urban jobs, joining the military and being promoted to be military officers, and being married to urban *hukou* holders (Wang, 2005). In regard to higher education, for instance, students are not always able to attain urban *hukou* when they find urban jobs, as not all employers are willing or able to provide assistance in this regard. It is also likely that urban *hukou* status is part of requirement for job candidates. Further, exclusion from quality primary and secondary education and the income gap between urban and rural residents mean greater difficulties for rural children than for their urban peers to access tertiary education (Hannum, 1999; Lu, 2004).

Temporary Residence Permit holders began to be treated as local students, according to a government notice published on 11th February, 2010 by the Education Commission of Shanghai (ECS, 2010).

8 In China, students who enrol in higher education institutions, regardless of their original urban or rural *hukou*, migrate their *hukou* from their family *hukou* booklet to the collective *hukou*. Upon graduation, their *hukou* is returned to where they were registered before the inception of the course unless the student attains new *hukou* status with his or her occupation.
To sum up, the urban-rural division imposed by the *hukou* system calls for long-lasting endeavours to resolve, despite its historically accumulated legitimacy. While the boundary between the urban and rural population appears to be less rigid with increasing internal migration in China, the system remains a strong barrier against rural residents’ pursuit of life chances even to date. On the one hand, China’s fiscal decentralisation and dual welfare system linked with the *hukou* system prevent it from being easily abolished (Liu, 2007). On the other, urban residents and those who do manage to attain rural-urban *hukou* migration tend to be reluctant to seek changes in favour of the institutionally excluded, since their life chances are immune to the impact of rural *hukou* status (Wang, 2005). As mentioned earlier, the primary interest of this study is in the amount and patterns of intergenerational mobility rather than explaining causes of intergenerational mobility or immobility. That said, the review of the *hukou* system in this section provides us with the institutional context within which social mobility, especially that involving rural-urban migration, can be better understood.

1.3.2 Education: Expansion and persistent inequality

As in other societies, education works both as an engine of social mobility and an important mechanism of social reproduction in China (Wu & Treiman, 2007), although it is not clear whether it plays a more important part, as found in the case of many countries, in determining the outcome of intergenerational mobility than social origin. For people of disadvantaged social origins in particular, educational attainment may help them access desirable occupational positions which otherwise might not be possible. Nevertheless, despite the claim that educational attainment has become increasingly independent of family background (Boudon, 1974; Treiman, 1970; Treiman & Yip, 1989), chances and outcomes of schooling themselves depend in varying degrees on advantages and disadvantages that are associated with social origins. As revealed by cross-national research of educational inequality, the effect of social origins on educational achievement has remained stable over time in spite of the universal expansion of schooling opportunities (Shavit & Blossfeld, 1993).

In the past decades, the school system in China has also undergone waves of restructuring and expansion. However, the expansion of educational opportunities has had a highly limited impact on educational inequality. In regard to the likelihood of transition to high
school level, for instance, the long-lasting urban-rural gap was enlarged rather than reduced. Meanwhile, the effect of social origins on the rate of transition to high school level education increased rather than decreased (Wu, 2010a, 2011). Similarly, studies of inequalities in attainment of higher education also show that expansion of higher education initiated in the late 1990s has failed to narrow gender and urban-rural gaps. Instead, there is evidence of worsened urban-rural inequalities in attainment of higher education in the context of educational expansion (Li, 2010; Yang, 2006).

Since 1949, China has achieved substantial progress in terms of basic adult literacy, compulsory education, developing a dual system of both formal and non-formal education, and reform of tertiary education (Tsang & Ding, 2005). With reference to basic education, there were major expansions during the years before and during the Cultural Revolution, which were interrupted only during the 1959-1961 famine when many children could not complete basic education. Right after the country embarked upon its economic reform, the old educational system was restructured, albeit in a gradual manner, which resulted in a fall in the number of children attending schools (Tsui, 1997). In the following decades till 1998, China gradually realised the universalization of primary education and implementation of nine-year free compulsory education. However, institutional barriers of the hukou system against the rural population and inequalities in distribution of resources have resulted in increasing regional disparities and urban-rural differences in educational attainment and transitional rates (Wu, 2010a, 2011). On the one hand, heavy economic burdens and increasing opportunity costs of sending children to schools tend to stop children of peasant families from finishing compulsory education (Min, 2007, cited in Wu, 2010; Tsui, 1997). On the other hand, the shift of the responsibility of funding compulsory education to local governments, which has resulted from the fiscal decentralisation in the post-Mao era, has led to substantial disparities in educational expenditure across regions, as investment in education was low in priority for local governments (Wu, 2010a). Based on these analyses, Wu (2010a) forecasted that the role of education in mobility processes would be weakened in the long run, since the increasing educational inequality among students of different social origins and hukou backgrounds could lead further to enlarged income gaps.
1.4 Thesis outline

This section describes the organisation of this thesis by outlining the research questions that will be addressed in the following chapters.

Chapter 2 reviews the relevant literature of social mobility and stratification research. The first two sections of the chapter review theories of social mobility and mobility research of Western industrial and state socialist societies, focusing on trends of social mobility and fluidity in these societies. I then move on to look at the issue of women and social mobility. In the section that follows, I discuss major theories and empirical studies of social stratification and social mobility in contemporary China.

Chapter 3 addresses methodological issues of this study. The chapter explains the choice of the conceptual framework, i.e. why this study chooses to adopt the class structural approach (rather than the status attainment approach) and view social mobility as movement between positions in a class structure rather than in a social hierarchy. Based on this conceptual choice, I then explain the selection of the EGP (Erikson–Goldthorpe–Portocarero) schema in this research. The chapter then introduces the data sources of this study, after which the process of constructing the EGP schema is detailed. The chapter concludes with a brief overview of statistical methods that are utilised in the empirical chapters of the thesis.

The first empirical chapter in this thesis, Chapter 4 seeks to address the question of how ‘mobile’ the Chinese society is. Specifically, I present changes in the class structure in China between 1996 and 2006, absolute mobility rates and changes during the decade in question, and both inflow and outflow patterns of intergenerational mobility. The analysis shows substantive evidence of rise in the total amount of intergenerational mobility, upward mobility in particular, which has taken place in the context of changes in the class structure. The chapter also reveals gender differences in absolute mobility rates.

Chapter 5 is a follow-up of the descriptive analysis in Chapter 4. By conducting log-linear and multiplicative layer effect models, the first empirical part of the chapter examines whether China has become a more equal society between 1996 and 2006 in terms of
relative mobility. The chapter also investigates gender and urban-rural disparities in social fluidity. Based on the findings of the first two empirical sections, I apply two topological log-linear models, the Hauser-type model of density levels and the core model of social fluidity, to explore details of the pattern of social fluidity in China. The results of analysis in Chapter 5 indicate that rates of relative mobility in China have remained largely stable during the decade under study. The chapter also shows distinctive patterns of social fluidity that feature gender disparity and boundaries between agricultural and non-agricultural sectors, which are intertwined with each other.

To further understand the mobility regime, Chapter 6 extends the analysis beyond the origin-destination association by investigating intergenerational mobility from a work-life perspective. The descriptive analysis of absolute mobility of the origin to first-job-class and first-job-class to destination transitions indicate an important role of direct entry to class of destination in China, especially for women and those from rural agricultural backgrounds. In relative terms, we see a stronger net association between first job class and class of destination for women than for men. In the final empirical section of Chapter 6, I apply the stereotype ordinal regression model to examine the effects of multiple variables, such as gender, hukou origin, and first job class, on the chance of being found in class positions of ‘higher status’. The results of fitting the model confirm the significant positive effect of accessing the ‘right’ first job class, while revealing the substantial effect of hukou origin on mobility chances in China.

Chapter 7 is the concluding chapter of this thesis. It summarises the key findings of this analysis, discusses the contributions to knowledge of this thesis in both theoretical and policy terms. In the final part of the chapter, I consider the limitations of this research and suggest scope of future research.
Chapter 2 Literature review

2.1 Introduction

This chapter gives an account of the debates on social mobility and social fluidity. Since Glass’s investigation (1954) of social mobility in England and Wales, stratification and mobility research has developed into an important branch of modern sociology and undergone substantial developments.\(^9\) In a review of 40 years of developments in the field (Ganzeboom, Treiman, & Ultee, 1991), comparative research of intergenerational stratification was classified, with respect to data collection, central research concerns, analytic strategies and statistical techniques, into three generations. The classification was later revised into a four-category division (Treiman & Ganzeboom, 2000).

Despite their diverse research questions, research of the first generation (Lipset & Bendix, 1959; Lipset & Zetterberg, 1956) was primarily interested in collecting national survey data and investigating the cross-national differences in the degree of ‘openness’ that could be reflected by rates of intergenerational occupational mobility. The second generation (Blau & Duncan, 1967) shifted their major concerns to examinations of various paths of intergenerational stratification, which were enabled with sample survey data of higher quality, the generation of procedures for hierarchically scaling occupations (Duncan, 1961; Treiman, 1977), and development of multivariate statistical techniques (Blau & Duncan, 1967: Ch.5; Duncan, 1966, 1975). Featuring a return to the utilisation of intergenerational mobility tables, the third generation of mobility research, represented by the CASMIN (‘Comparative Analysis of Social Mobility in Industrial Nations’) project (Erikson & Goldthorpe, 1992a), introduced more sophisticated statistical methods such as log-linear and log-multiplicative analysis to the field, which allowed researchers to distinguish observed mobility patterns from the endogenous regime of social fluidity. Finally, the fourth generation is claimed to be returning to the primary concern of the first generation, i.e. how outcomes of social mobility are affected by various factors in individuals’ social environment (Treiman & Ganzeboom, 2000).\(^{10}\)

\(^9\) Although Glass’s study was viewed as the starting point of systematic national studies of social mobility, Sorokin’s (1959) work on social mobility is widely acknowledged as where social stratification and mobility research in modern sociology started (Heath, 1981).

\(^{10}\) See more exemplary studies for each generation of (comparative) stratification research in Ganzeboom, Treiman and Ultee (1991) and Treiman and Ganzeboom (2000).
As emphasised by the authors of the classification, different generations may not be thoroughly distinguishable from each other with respect to all dimensions of research in the field, and the emergence of one ‘generation’ does not necessarily mean the end of an earlier ‘generation’.\(^\text{11}\) In relation to this thesis, while this research is not intended to be categorised as falling into one of the four generations, my central concern is on changes in rates and pattern of intergenerational mobility in contemporary China. In view of the research problems defined in Chapter 1, this chapter is focused on the existing literature on the core questions of social mobility rather than tracing the historical stages of research in the field.

The chapter is structured as follows. To start with, Section 2.2 is a review of mobility research on trends of social mobility and cross-national variations in Western industrial societies. In the next section, I turn to look at mobility studies involving state socialist countries. Section 2.4 discusses debates around women and social mobility. Before the chapter is concluded, Section 2.5 reviews theories and studies of social stratification in China.

2.2 Social mobility in industrial societies: trends and variations

The issue of social mobility is one that incorporates macro and micro sociological elements (Erikson & Goldthorpe, 1992a). On the one hand, mobility studies examine macro social outcomes, such as rates and patterns of mobility, which may be linked to the division of labour. On the other, these outcomes may be seen as deriving from ‘the action and interaction of individuals and organisations’, which themselves interact with institutional frameworks (Breen & Luijks, 2004b: 390). Furthermore, social mobility is individuals’ movement among different positions within the structure of division of labour, which, as frameworks for individual actions, is affected by economic developments of the society. This may explain why mobility research in its early stages, and in later developments, has been committed to exploring the relation between economic development, industrialisation in particular, and rates of social mobility in the societies under study.

\(^{11}\) The classification was based on five dimensions: 1) methods of data collection, 2) measurement procedures, 3) methods of data analysis, 4) research problems, and 5) the specification of major hypotheses (Ganzeboom, Treiman, and Ultee, 1991: 278).
In regard to the effects of industrialisation on social mobility, what was at the heart of the debates is the liberal theory. Prevalent from the 1960s through to the 1980s, the theory was developed mainly under the influence of the American functionalist concern with the ‘functional coherence’ and ‘normative integration’ of social structures and systems (Crompton, 2008) and as an effort to replace the Marxist analysis of capitalist societies (Erikson & Goldthorpe, 1992a). While Marx predicted that capitalist societies would ultimately be replaced by communism through class conflicts and struggles, the liberal theorists argued that all industrial societies would see the development of liberal democracy (Kerr et al., 1960; Parsons, 1960). Despite the logic of convergent developmental paths, rates of social mobility in industrial nations would vary with their levels of economic development. According to the propositions of the liberal theory, the more industrialised a society is, the higher its rates of social mobility would be. Meanwhile, the intergenerational association in terms of occupational status would also become weaker, which indicates increased social fluidity (Treiman, 1970).

Based on the relevant literature (Blau & Duncan, 1967; Treiman, 1970), Erikson and Goldthorpe (1992a) summarised the liberalist explanations of the relations between social mobility and industrialisation as relating to three types of effects, namely structural, processual, and compositional effects. Structurally, the upward shift resulting from industrialisation, typically featuring the decline of agriculture and rise of non-manual sectors, allows more room both for total mobility and for upward mobility to prevail over downward mobility. In regard to social fluidity, the liberal theorists emphasise that the rates of ‘net mobility’ will become higher as the greater accessibility of education enables educational attainment to play an increasingly important part in social selection (Treiman, 1970). As ascription gradually gives way to individual achievement in the process of mobility, societies become more meritocratic as the level of industrialisation rises. Despite the greater influence of educational achievement on mobility in more industrialised societies (Treiman, 1970), however, compositional effects are expected to play a varying role in regard to mobility in different sectors of the social structure. Whereas the role of individual achievement becomes more significant within the expanding sectors, ascription tends to have a persistent influence on intergenerational mobility within declining sectors, such as agriculture (Erikson & Goldthorpe, 1992a).
While the liberal theory was prevalent over a long period of time, the unilinear evolutionary path of social stratification and mobility it predicted did not receive much support from empirical research. Given the ‘inconsistent and confused’ results of empirical tests (Goldthorpe, 1985), there was serious doubt on the liberal propositions of the relations between economic development and social mobility. Largely contemporaneous with the liberal theorists, Lipset and Zetterberg (1956; 1959) raised arguments that differ from those of the liberal theory. They were concerned specifically with the extent of social mobility rather than social fluidity. For Lipset and Zetterberg, the overall rates of social mobility in societies where industrialisation has reached a certain level are expected to be much the same rather than varying with levels of industrialisation (Lipset & Zetterberg, 1959). Unlike the liberal theorists, Lipset and Zetterberg regarded increases in mobility rates as a ‘threshold effect’ which occurs only when industrialisation reaches a certain level and does not persist permanently (Erikson & Goldthorpe, 1992a). Both the non-historicist position and its differentiation between structural and motivational factors in social mobility embedded in the arguments of Lipset and Zetterberg’s can be linked to Sorokin’s theory of ‘trendless fluctuation’ (1959). Like Sorokin, whose theory is critical of all developmental theories of mobility and stratification, Lipset and Zetterberg deny that high levels of mobility in modern societies are a permanent trend. Meanwhile, as Sorokin emphasises that social mobility may be affected by factors exogenous to the order of social stratification, such as political and economic upheavals that change the social structure, Lipset and Zetterberg argue that outcomes of mobility can be affected by both exogenous structural changes, such as structural changes, and individuals’ desire to reach positions of higher status and avoid being downwardly mobile (Lipset & Zetterberg, 1956: 162).

Like the liberal theory, the Lipset and Zetterberg hypothesis was hardly supported by empirical evidence. Rather than revealing evidence of similarity in high mobility rates among industrial countries, several studies showed evidence of cross-national variations (Erikson, Goldthorpe, & Portocarero, 1979, 1983; Featherman, Jones, & Hauser, 1975; Pontinen, 1983, cited in Erikson and Goldthorpe, 1992a). One decade and a half later, the hypothesis was reformulated by Featherman, Jones, and Hauser (1975), whose arguments are known as the FJH hypothesis. Although both the Lipset and Zetterberg hypothesis and the FJH hypothesis argue for the basic cross-national similarity in terms of social mobility, the FJH hypothesis emphasises the similarity in the pattern of social fluidity, rather than in the observed mobility rates, among all industrial societies with a market economy and a
nuclear family structure. In other words, it posits that such societies have basically common endogenous mobility regimes, or, that is, similar patterns of relative mobility which may not vary with effects of exogenous structural factors.

The FJH thesis not only forms a new point of reference for later comparative mobility studies, but has implications for studies of social mobility within single countries. Similar to Sorokin’s position against historicism, the FJH hypothesis entails a ‘basic scepticism about the possibility of any long-term, developmentally driven trend’ for industrial societies (Erikson & Goldthorpe, 1992a: 25). Furthermore, with an explicit distinction between mobility at the ‘phenotypical’ and ‘genotypical’ level, i.e. between absolute and relative mobility, it opposes arguments that industrial societies become increasingly open as their level of industrialisation rises. Whereas absolute mobility simply refers to movement between class origins and destinations, the analysis of relative mobility look at the relative chances of individuals of different class origins being found in one destination position rather than another (Breen, 2004: Ch.1). While rates of absolute mobility are subject to structural effects that derive from various exogenous factors, the endogenous mobility regimes, according to the FJH thesis, would eventually stabilise at a similar level (Featherman, Jones, & Hauser, 1975).

As shown above, the development of theories on trends and cross-national variations in social mobility has been concomitant with empirical tests of the various hypotheses and arguments. Whereas the liberal theory and the hypothesis of Lipset and Zetterberg are rejected by empirical results, the response to the FJH hypothesis is less than consistent among different empirical tests. The hypothesis is clearly not supported by findings in a later comparative study of European societies (Breen, 2004), but empirical evidence in the well-known CASMIN project indicates that it may be accepted as a modified version (Erikson & Goldthorpe, 1992a). Rather than showing an identical pattern of relative mobility rates, industrial societies are found to share ‘a broad cross-national commonality’. As little evidence is found to indicate systematic temporal variations in patterns of social fluidity within countries, the CASMIN project concluded, in favour of Sorokin’s theory of ‘trendless fluctuation’, that social fluidity in industrial societies is in a constant of flux, without a clearly increasing or decreasing trend of relative mobility rates. The conclusion further confirms Goldthorpe’s serious doubt about the relations between economic development and social mobility, social fluidity in particular (Goldthorpe, 1985). While
absolute mobility rates may display temporal changes and cross-national variations as a result of structural effects, relative rates of mobility across countries at different levels of economic development may show a commonality, as Sorokin would stress, when a broader historical view is taken (Sorokin, 1959, cited in Erikson & Goldthorpe, 1992a).

Despite the rich literature on social mobility in industrial societies, debates on trends in social mobility in industrial societies, both cross-nationally and within national countries, are still ongoing. Take Britain for example, different approaches to intergenerational mobility have led to differing conclusions in regard to the issue. On the one side of the debate, economists’ research using the British data reveals a declining trend of intergenerational mobility (Blanden et al., 2004; Blanden, Gregg, & Macmillan, 2007, 2008). So far as mobility studies within the field of sociology is concerned, particularly those that adopt class structural approach and distinguish relative mobility from absolute mobility, Goldthorpe and his colleagues carry on the thesis of constant social fluidity (Erikson & Goldthorpe, 1992a; Goldthorpe, 1987; Goldthorpe & Jackson, 2007; Goldthorpe & Mills, 2004, 2008; Marshall, 1988). Two points are central to their arguments. First, while absolute rates of mobility show variations both over time and across national countries, the variations are overwhelmingly attributable to structural effects rather than changes in endogenous mobility regimes (Goldthorpe, 2007). Second, the findings of ‘no trend’ in social fluidity reflect a ‘self-reinforcing quality’ of inequality in relative mobility chances (Breen, 2004: 6). The relative stability in social fluidity is the outcome of mobility being conditioned by their social backgrounds and families pursuing various mobility strategies by recourse to various socio-economic-cultural resources at their disposal to maximise educational attainment and social positions (Erikson & Goldthorpe, 1992a; Goldthorpe, 2007: Ch.7). It is noteworthy that the theory of constant social fluidity is not ‘universally’ accepted by sociologists studying social mobility in Britain, as different conclusions on trends in social fluidity have been drawn in cross-national comparative studies. There are studies that raise the thesis of partial increases in openness of the British society (Heath, 1981; Heath & Payne, 2000; Li & Devine, 2011). In the more recent findings of studies that focus on the minority ethnic groups, social fluidity is found to be at different levels for the mainstream white population and minority ethnic groups (Li, 2010; Li & Heath, 2010).
It is relevant to note that, both in the case of Britain and in that of other countries, much of the disagreement in conclusions on trends in social mobility is rooted in differences in methodology, prime concerns of the researchers or even data used for the analysis. For instance, while economists are interested in intergenerational income mobility, sociologists are more concerned with class mobility between generations or in the life course (Li, 2002). Without precisely defining whether intergenerational mobility refers to class mobility or income mobility, it is extremely difficult to discuss findings across studies. In other words, it would seem reasonable to understand the conclusions in a particular study as deriving from particular methodologies applied to particular data to address particular research questions. In their more recent research, Erikson and Goldthorpe (2010) tried to reconcile the two approaches of economists and sociologist and suggest that the economists’ finding of decreasing mobility in Britain may be attributed to the inadequacy of income variables in the data. This conclusion, however, is rejected by economists (Blanden, Gregg, & Macmillan, 2011) and therefore does not lead to the agreement on the two approaches.

2.3 Social mobility and state socialist societies

For scholars of social mobility, state socialist societies serve as natural laboratories that provide opportunities for examinations of the possible institutional effects on rates and patterns of social mobility. While state socialist regimes have made endeavours to reduce social inequality at certain periods of time in their history, typically during the ‘socialist reconstruction period’ (Parkin, 1969), the long-term consequences of these endeavours in social mobility are often at debate. Such debates are especially highlighted in discussions of cross-national variations in social mobility.

Among arguments that emphasise the positive effect of political intervention on social mobility in state socialist societies, those of Parkin’s (1969, 1972) may be the most referred to. Socialist countries have long-term ideological and institutional characteristics that differ from those in capitalist industrial societies, such as the reduced likelihood of intergenerational transmission of property and wealth, and the increased permeability of social strata that are viewed as upper stratum in the Western societies. For Parkin, these characteristics would eventually give societies under socialist rule a greater degree of openness, with higher rates of long-range mobility, a narrower gap in aspiration between
individuals of different social origins (Parkin, 1972), and political interventions such as reverse/positive discrimination in educational and occupational attainment (Marshall, 1997).

Parkin’s argument, however, is not widely accepted. It is not supported by empirical evidence, as comparative studies that include both socialist and capitalist industrial societies show stronger evidence in support of cross-national commonality rather than variations (Erikson & Goldthorpe, 1992a; Grusky & Hauser, 1984). It is true that there is evidence of a sharp rise in upward mobility into salariat class positions in the ‘socialist reconstruction period’ of some state socialist countries, but the phenomenon was not found among the younger cohorts (Erikson & Goldthorpe, 1992a). Furthermore, where there are signs of increasing social mobility, more is attributed to the demand of industrialisation per se centrally deployed by the state rather than the effects of socialist ideology (Markiewicz-Lagneau, 1987; Marshall, 1997: 206). Such a position is close to Ossowski’s argument (1957, cited in Marshall, 1997: 162) that the effect of socialist revolutions on social mobility, if any, would lie in the exigencies of industrialisation rather than the transformation of values. This is not to say, however, that the role of political intervention in conditioning the rates and patterns of social fluidity in state socialist countries does not exist. As Breen and his colleagues found, direct political intervention may work as one of the means by which social fluidity in a society may change, but it is pertinent to note that it is not the only means (Breen & Luijkx, 2004b)12.

Despite the fundamental institutional changes and early claims of the greater openness in state socialist countries (see for example in Marshall, 1997: Ch.7), many mobility studies, both within national countries and of a comparative kind, reveal that relative mobility chances in state socialist countries are similar to those in capitalist industrial countries. In the case of Hungary, different studies are not consistent with each other in regard to social fluidity in Hungary. In Robert and Bukodi’s examination (2004) of intergenerational mobility in Hungary between 1973 and 2000, social fluidity increased after Hungary’s least fluid period in the 1970s, but then displayed a significant fall after 1992. According to Andorka’s summary (2007) of some of the existing analyses of Hungarian survey data, however, the country shows a degree of openness similar to Western European societies.

12 For Breen and his colleagues, direct political intervention may be associated with high social fluidity a society can reach.
The similarity between state socialist countries and Western capitalist countries in social fluidity was also found in Marshall’s comparison (1997: Ch.10) between the former German Democratic Republic (GDR) and Federal Republic of Germany (FRG). Whilst the mobility regimes in some countries display characteristics that are unique to them, such as Poland, where unusual fluidity is found between service class and working class positions (Mach, 2004), yet the degree of social fluidity in state socialist societies are generally indistinguishable from that of Western capitalist countries.

In regard to absolute mobility, state socialist countries display generally high rates of absolute mobility, which, however, do not distinguish them from their capitalist counterparts. While little difference is found in rates and patterns of social fluidity either between socialist and capitalist countries or among socialist countries themselves, variations in absolute mobility rates may be explained by structural differences. As the most mature industrial and socialist economy, socialist Russia’s (at that time called the Soviet Union) distinctive class structure has generated a ‘unique mobility profile’ (Marshall, 1997: 151). Although the agricultural classes in the former Soviet Union were on the decline, as found in other European societies, it had a salariat class that was larger even than its Western counterparts. Moreover, the working class in the country also showed a propensity to decline. In most state socialist societies where the industrial economy was established in a relative short period of time, such as Hungary, Poland and Czechoslovakia, there is evidence of increases in both total mobility and upward mobility, albeit to varying extents (Andorka, 2007; Erikson & Goldthorpe, 1992a; Mach, 2004). It is worth noting that intergenerational mobility in some state socialist countries, such as Hungary and the German Democratic Republic, features a high level of long-range mobility from agricultural origins to non-agricultural positions, manual work in particular (Andorka, 2007; Erikson & Goldthorpe, 1992a; Marshall, 1997), although as mentioned above, it is not really associated with changes in the degree of the society’s openness.

In sum, it is important to be aware of the influence of institutional differences on the rates and patterns of social mobility in state socialist countries. Whilst cultural differences between societies may also affect the outcome of social mobility at the macro level, the effect of political interventions has often been found to be more direct than cultural effects. That said, as emphasised by Erikson and Goldthorpe (1992a), the effect of political actions varies from one socialist country to another, as political interventions per se may take
different forms in different countries. Despite the substantial evidence of difference in absolute mobility rates between state socialist countries and their Western capitalist counterparts, much can be explained by structural characteristics of each country rather than being associated with differences in endogenous regimes of mobility. Political interventions in state socialist countries, therefore, are likely to be an important source of variation, rather than the only source, that interplays with other factors, such as the level of economic development. Indeed, although some important political actions in the early stage of state socialism may have changed the mobility profiles of the socialist countries, little real progress was achieved towards the egalitarian goal (Marshall, 1997). While the debate on social mobility and state socialism may continue, one thing may be certain, i.e. there is not a generic pattern of social mobility for state socialist countries, which differ from each other in institutional and historical contexts of social mobility.

2.4 Women and social mobility

Research of social mobility has a long convention of focussing exclusively on the mobility of men. As Heath described, it seems to be the ‘usual fate’ of women to be ‘conspicuous by their absence’ (Heath, 1981: 107). Despite the charge of intellectual sexism of the research area, various difficulties have been cited to justify the long-lasting omission of women in research of stratification and mobility. In the first place, women in the Western societies used to show a low rate of participation in the labour market, which naturally led to women’s economic dependence on their husbands (or other family members). Although some women did work in the labour market, the number was too small to change the ‘peripheral’ role of female workers in the class system (Giddens, 1973: 288, cited in Heath, 1981). In consequence of the relative lack of survey data, women tend to be excluded from mobility research, which is an area that is heavily dependent on large-scale survey data.\(^{13}\) The gender disparity in the labour market, as well as the wider society, has formed the grounds of the conventional view regarding women’s class positions. Women were located in the class structure through the positions of the male partner so as to reflect their general situation of dependence (Goldthorpe, 1987).

\(^{13}\) It is worth noting that the absence of women is not always because of the lack of survey data. In the British case, the General Household Survey (GHS) has data on women from 1972 onwards. The data have in more recent times been used by Goldthorpe and Mills (2004, 2008). The National Child Development Survey (BCDS) and British Cohort Study (BCS) also have the data as shown in Goldthorpe and Jackson (2007).
Goldthorpe’s treatment of the issue of women’s social mobility is the basis of the conventional approach towards the measurement of women’s class positions (Britten & Heath, 1983; Erikson & Goldthorpe, 1992b; Goldthorpe, 1983). Given the definition of class structure as based on ‘occupations whose incumbents will typically share in broadly similar market and work situations’ (Goldthorpe, 1987: 39), classes are ‘collectivities with distinctive life-chances and life styles, patterns of association, and socio-political orientations, and modes of action’ (Goldthorpe & Payne, 1986: 532). Under such a guideline, it is natural for the family to be the basic unit of class. And those who do not occupy a class position that is defined by market and work situations would be assigned to positions derived through their relationship with family members who do occupy class positions. In this sense, children’s class positions are derived from that of their parents, whereas married women who are not engaged in any occupation are assigned to positions occupied by their husbands.

A key to the conventional approach, nevertheless, is that the class positions of members in a family are represented by that of only one person, i.e., the ‘head of household’ (Erikson & Goldthorpe, 1992b). In a society where most families have only one ‘breadwinner’, researchers in favour of this approach might have been exempt from accusation of being sexist to treat all individuals within a household as occupying a singular class position. However, with the changes taking place regarding family structure and women’s involvement with the labour market, they would have to respond to increasing challenges regarding women and social mobility and the accusation of ‘precluding the sexual stratification’ in the stratification system (Goldthorpe, 1983; McRae, 1990; Stanworth, 1984).

Other approaches to the basic unit of class analysis emerged as alternatives to the ‘conventional’ male-centred ‘head-of-household’ view, albeit in close relation to it (Erikson, 1984; Heath & Britten, 1984). As regards the approach of ‘joint classification’ to women and social stratification suggested by Heath and Britten (1984), Goldthorpe (1983) expressed his doubts about the validity of the approach and pointed out the danger of producing problematic results because of the existence of ‘cross-class families’. Although powerful responses were supplied by Heath and Britten, the ‘joint classification’ measure of the class position of the family is rejected by Goldthorpe on the grounds of the potential risks of incurring frequent changes of the class positions of families as well as the
Spuriously high mobility (Erikson & Goldthorpe, 1992a; Goldthorpe, 1983, 1984). Compared with the ‘joint classification’ measure, an alternative, raised by Erikson (1984), to the conventional androcentric way of class assignment within the conjugal family is better received (Goldthorpe, 1984). Like the conventional view, the ‘dominance approach’ maintains that the nuclear family is the basic unit of the class structure, treating family members as individuals sharing life conditions such as consumption levels. However, due to the infeasibility of using the average of the individual positions, which apparently would be an ideal measure, the ‘dominance approach’ assumes that within the conjugal family, a certain member’s class position is more consequential than that of the others in its association with the life chances of the whole family.

As Goldthorpe implied in defence of his application of the ‘conventional’ approach, the pursuit of approaches that represent equal treatment of women and men within class analysis must be based on a ‘clear recognition’ (Goldthorpe, 1983: 469) of the gender inequalities in the broader social context. With regard to the basic unit of class structure while analysing women’s social mobility, it should not be denied that it is easier to recognise the ignorance of gender stratification and the implicit or explicit androcentrism of a particular approach than developing constructive ideas. In this sense, it is the more feasible way of conceptualisation in empirical research that has assigned Erikson’s ‘dominance approach’ a higher value of utility than other alternatives such as the ‘joint classification’ (Britten & Heath, 1983; Heath & Britten, 1984), the ‘individual’ approach (see for example Acker, 1973; Stanworth, 1984) and the work-time approach (Erikson, 1984; Erikson & Goldthorpe, 1992a: Ch.7, 1992b; Goldthorpe, 1984; Stanworth, 1984).\footnote{In the ‘individual’ approach, class positions are assigned to all individuals by reference solely to their own occupations, whereas the ‘joint classification’ approach proposes that the class of position of conjugal families be determined by reference to the employment of both. It is worthy of note that Goldthorpe has in recent years ‘changed’ his position. For class of origin, he uses father’s class, but for class of destination, he uses both the individual and the dominance approach, the latter of which is shown in the so-called ‘complete tables’ if married. (Goldthorpe and Mills, 2004, 2008). As will be explained in Chapter 3 and like Li and Devine (2011), this study uses the dominance approach for parental class, namely class of origin.}

Some recent studies conducted in the Western advanced societies have shown evidence for the changes of women’s class positions. In the British case, it is pointed out that women are gaining a greater share within the salariat class and there is an increasing convergence between men and women in terms of access to salariat class positions (Li & Devine, &

Heath, 2008; Li & Heath, 2010). This has been taken as a likely explanation with regard to the decreasing rate of upward mobility shown by men into higher-level positions (Goldthorpe & Jackson, 2007). The implications of such findings for mobility studies are that it is worth re-examining whether women are still ‘largely peripheral to the class system’ (Giddens, 1973, cited in Goldthorpe, 1983: 468). Similar empirical generalisations implying a reduced gender gap can also be found in regard to inequality in educational attainment. So far as the British society is concerned, optimistic conclusions are drawn that while class differentials still call for attention, the waning effect of gender on educational attainment is helping women to catch up with men, or even in the hope of leaving men behind (Goldthorpe, 2007).

Apart from the comparisons made between the mobility rates of women and men, attention was also drawn to the different patterns of married women and single women (Heath, 1981). By examining the mobility of single women and married women separately, Heath found that the former enjoyed less inequality than the latter. As a result, it was argued that single women were more likely to seize the opportunity of mobility than married women and were also ‘more committed to preventing themselves from downward mobility’, although marrying a good husband could also effectively prevent downward mobility if the ‘dominance approach’ is adopted. Whereas comparisons between the mobility rates of single women and married women suggested the possibility for marriage to be a ‘dilemma’ for women in terms of class mobility, findings of different studies produced by comparing women and men indicated greater effects of marriage on women’s intergenerational mobility than on men’s (Goldthorpe & Payne, 1986).

Although studies on women and social mobility have a relatively small body of literature, the importance of stratification and social mobility of women lies in its role in shaping an un-gendered overall picture of the society studied. Moreover, an adequate study on women’s mobility would also entail the examination of inequality among women (Heath, 1981).
2.5 Social stratification and social mobility in contemporary China

2.5.1 Social stratification and market transition

In this final section of the chapter, I review the existing literature on stratification and mobility in contemporary China. Compared with the abundant literature in the West and the post-socialist countries, research of stratification and mobility in China has a much shorter history, which has mainly been a consequence of data shortage. To reiterate what is mentioned in the Introduction, few empirical studies have directly addressed the issue of intergenerational mobility in China. Research of stratification and social mobility is scattered mainly in three areas of interest, i.e. status attainment, career mobility, and the part social networks play in occupational processes (see for example Bian, 2002: 104-8). However, since the mid-1980s, increasing scholarly interest has been shown to various aspects of social stratification during China’s economic transition.

Central to the theoretical debates is the ‘market transition theory’ raised by Nee in the late 1980s and revised in the following years (Nee, 1989, 1991, 1996; Nee & Cao, 1999; Nee & Matthews, 1996). Starting from Polanyi’s concept of redistribution and nonmarket trade, which Szelenyi applied in his analyses of state socialism, the theory of market transition argues that, as the socialist economies are gradually reformed, the state controlled redistributive system would give way to market coordination. As a result, sources of power and privileges are transferred, albeit not completely, from redistributors to direct producers. Nee further illustrated the argument with three theses: the market power thesis, the market incentive thesis, and the market opportunity thesis. According to Nee (1989), in the course of marketisation, the power of the socialist redistributive mechanism would decline as it is replaced by market allocation. With the market incentive thesis, exponents of the market transition theory stress that more incentives are generated in markets than by redistributive economies, which in turn would stimulate individuals to pursue socioeconomic upward mobility. Meanwhile, the market transition is also viewed as a process of changing the structure of opportunities in various aspects.

According to the market transition theory, the transformation of the planned economy to a market economy has changed the ‘determinants of socioeconomic attainment and therefore the sources of power and privilege’ (Nee, 1989). Thus, one of Nee’s major hypotheses,
which was further justified by his later research (Cao & Nee, 2000), was the decline in the value of political capital, reflected in the reduced returns on the cadre status. To be more specific, the power of redistributive positions as well as the advantages of political power and connections will decline following the immediate transition period (Nee, 1989). Centred on the hypothesis, Cao and Nee argued in a later application of the theory that the majority of the political elite would lose out, while the dichotomy shown earlier between socialist elite and others (Walder, Li, & Treiman, 2000) had captured ‘only a small part of China’s increasingly complex class structure’ (Cao, 2004; Cao & Nee, 2000: 456).

However, as Nee admitted, the market transition theory was developed on the basis of the ‘partial reforms’, emphasising the social changes that happened in China’s rural areas (Nee, 1989, 1991). On the other hand, while it is confirmed that the shift to markets in state socialist societies is likely to result in decreasing social inequality structured by redistributive processes (Szelenyi & Manchin, 1987, cited in Nee, 1989, 1991), it is to be further investigated on the new inequalities brought about by the same shift. Although Nee and his associates appear to be aware of the possibility for new inequalities to be generated by the economic reform, to expect the decline in the association between political capital and social mobility may nonetheless be an optimistic prediction, albeit probably not a wishful thinking.

As to whether China will become a meritocracy, more empirical evidence is required, and the answer is likely to be that the market transition per se may not be sufficient to reduce social inequalities to a satisfactory level. On the one hand, although it is claimed that the finding of the rising meritocracy is ‘beyond dispute’ (Cao, 2004: 436), the explanations for such tendency differ from one another. Some researchers appeal to the power generated from the interaction between the market and politics, and view the tendency of meritocracy as a result of the party and state’s attempt to promote functional efficiency and economic development (Bian & Logan, 1996). In contrast, there are also researchers who attributed the tendency to the cultural influences from outside China. According to exponents of such arguments, the organisational changes in support of the rise of meritocracy should be understood as the ‘importation of Western normative standards rather than results solely of the attempt to improve efficiency’ (Guthrie, 1999, cited in Cao, 2004). On the other, as mentioned in Chapter 1, institutional effects, such as that of hukou, are found to persist in
the reform era, with particular reference to the urban-rural divide in individual attainment of life chances (Wu & Treiman, 2004, 2007).

2.5.2 Social mobility in China

With the improvement in data availability, an increasing number of empirical studies have been conducted in regard to various channels of social mobility in China, such as the role of educational credential and political capital in the attainment of elite status (Li & Walder, 2001; Walder, 1995; Walder et al., 2000) and in attaining life satisfaction (Appleton & Song, 2008), institutional effects of systems of work unit (danwei in Chinese) and household registration (hukou) on social mobility or earnings (Bian, 1994; Lin & Bian, 1991; Wu & Treiman, 2007; Xie, Lai, & Wu, 2009), and the influence of dynamics of state politics upon individual life chances (see for example Davis, 1992; Parish, 1984; Zhou & Hou, 1999). So far as the issue of social mobility per se is concerned, relatively more attention has been drawn to work-life mobility or stratification of job promotion and earnings than intergenerational mobility (see for example Cao, 2001; Cao & Hu, 2007; Davis, 1992; Wu, 2010b).

Although empirical evidence is rare as regards intergenerational mobility, however, there are a few studies that have addressed the issue. While scholars within China have recently conducted studies dedicated to social stratification and social mobility (Li, 2005; Lu, 2004), the studies have omitted analyses of social fluidity and dealt with class structure and absolute mobility only. The review in this section, therefore, is focused on two studies that incorporate analyses of both absolute mobility and relative mobility in China.

Using data collected in 1988 in two municipalities and four provinces, Cheng and Dai’s study (1995) is the earliest examination of intergenerational mobility among both urbanites and rural residents of contemporary China. In regard to rates of absolute mobility, they found that both men and women in China show a lower level of total mobility (33 per cent of men and 30 per cent of women) than their counterparts in the Western industrial societies. The discrepancy between total mobility rates in China and the West was viewed as being closely associated with agricultural class positions. On the one hand, the class structure in China, both of origins and of destinations, is highly skewed towards positions of agricultural work. On the other, the bottom-end of the class structure shows a high
degree of self-recruitment. Through cohort analysis, the researchers indicated that total mobility in China has been subject to the effect of structural changes. Whilst a high level of total mobility may be related to the socialist revolution and early industrialisation, the subsequent relocation of rural labourers is regarded as reducing the total mobility, which was then followed by the markedly high mobility rates in the economic reform era. So far as absolute mobility is concerned, Cheng and Dai concluded that the empirical evidence of their study did not support the theory of industrialisation, according to which increases in both total mobility and upward mobility would be expected.

As regards social fluidity, Cheng and Dai (1995) reported gender differences in terms of relative mobility chances, which reinforce the gender differences found in absolute terms. Despite the stability of relative mobility across cohorts in the case of men, there were signs of reduction in the net association between origin and destination classes for women. That said, the association between origin class and destination class for women was found to be stronger than for men. Although the researchers viewed these results as implying the need for more achievement-based job selection for women, they also expressed their pessimism regarding the issue of gender inequality in mobility chances.

Findings in the more recent study by Yang (2008), which is based on national data collected in 1996, are in line with what Cheng and Dai indicated in terms of both temporal changes in social fluidity and gender disparity in net association between class origin and destination. The class structure in China features a contracting but still important peasant class, relatively stable manual working classes, and an expanding non-manual sector. Yang’s study shows a rising trend in total mobility across age cohorts. However, the gender gap persists across age cohorts in terms of upward mobility, which is constantly higher for men than for women. Whilst urban residents enjoy relatively equal mobility opportunities for men and women, the gender gap is found to be persistent in the rural area. This, again, is consistent with Cheng and Dai’s (1995) observation that opportunities of upward mobility from agricultural work to manual work in the urban areas are more for men than women.

With reference to trends in social fluidity, the study provides further supportive evidence to the ‘no trend’ thesis, as there is no sign of increasing openness for either men or women across age cohorts. To further explore the patterns of social fluidity, the results of Yang’s
analysis stress barriers against movement between positions of different hierarchical levels as well as the profound boundaries between agricultural and non-agricultural sectors. Yang’s study reveals different highlights for men and women. While men are mainly subject to effects of hierarchy that are net of structural changes in class origin and destination, sectoral effect that identifies agricultural/non-agricultural divide is the chief barrier against women’s mobility chances. This finding calls for attention not only to the gender gap between relative mobility chances but also to urban-rural divide in social fluidity. To conclude, Yang finds that the general patterns of mobility regime in China are becoming similar to what has been observed in industrial societies.

2.6 Conclusion

So far, this chapter has reviewed the existing literature on issues that are relevant to this study, i.e. theoretical debates on trends and variations in social mobility in the Western industrial societies, social mobility in state socialist countries, social mobility of women, and, finally, research of stratification and mobility in China. Despite the decades of debate and contributions from numerous empirical studies, many important views and hypotheses in regard to social mobility are open for test in the case of China. With China still in its course of economic reform, the first question we need to look at will be that of changes in the structural context of social mobility. Before we move on to the empirical part of this thesis, the next chapter illustrates the choice of the conceptual framework, survey data, and statistical strategies that are used in this study.
Chapter 3 Data, methods, and class schema

3.1 Introduction

In this chapter, I introduce the data and statistical methods that are used in this study. The aim of the chapter is to provide a rationale for the methodological choice of this research, upon which the empirical analyses are based, and illustrate the construction of the EGP class schema for the Chinese case. Researchers of social mobility conduct their studies in different conceptual contexts. In the Chinese case, there have also been attempts to devise class schemas geared to the characteristics of the Chinese society by local social scientists (Li, 2005; Li, 2003; Lu, 2004). However, the conceptualisation behind schemas is not always provided clearly in these studies. In fact, the choice of conceptual framework has been of central concern to mobility researchers. This chapter, therefore, discusses the conceptual choice and brings to light the methodological considerations before the substantive work is presented and discussed.

In the rest of the chapter, I first review the different conceptualisations of social mobility research, and discuss why the class structural approach is chosen over the hierarchical approach in this study. Following is a review of different class schemas, after which I explain why the EGP schema is the most appropriate class schema for the research questions of this study. I then introduce the data that are used in the following chapters. In the next section, details are provided with respect to recoding of class variables in order to adapt the EGP schema to mobility research of China. The final section gives a summary of the statistical methods and techniques that are employed for analyses in Chapters 4-6.

3.2 The conceptual context

As mentioned in the previous chapter, the existing literature on social mobility contains extensive debates on the choice of conceptual context within which a mobility study is framed, which in turn has also led to arguments concerning the class schema used by researchers. While the choice of conceptual framework is always determined by particular research interests, two main traditions in the field of social mobility remain at the heart of the debate, the social hierarchical approach and class structural approach. Measurements of
class devised in the former perspective can be further divided into ‘common-sense’ hierarchical scales and subjective hierarchical scales, whereas the latter are linked to theoretical ‘relational’ class schemas (Crompton, 2008). In the class structural approach, different class schemas have been devised with influences of different class theories. Either the social hierarchical approach or the class structural approach tends to be the dominant paradigm, but mobility studies are not always clearly demarcated by the choice of conceptual context. That is to say, the domination of one paradigm does not necessarily mean the exclusion of the other (Erikson & Goldthorpe, 1992a).

3.2.1 The social hierarchical approach

In terms of origin, the social hierarchical approach can be traced back to John Stuart Mill’s argument (1848, cited in Erikson & Goldthorpe, 1992a: Ch.2) of the loosening barriers of social mobility in the mid-nineteenth-century England. According to Mill, industrialisation had brought about social competition to individuals from those of lower social grades (see for more detail in Erikson & Goldthorpe, 1992a: 29, Note 2). The approach can also be related to the paradigm of normative functionalism in sociology (Crompton, 2008). According to Crompton, the application of the social hierarchical approach is often associated with societies where the importance of social solidarity and functional interdependence relating to the division of labour is stressed. One example is Blau and Duncan’s work (1967) in the post-war United States on individual chances of ‘status attainment’ on the basis of a status hierarchy.

From the perspective of the social hierarchical approach, social mobility takes place as individual movement in the vertical space of the social hierarchy. The entire social hierarchy is defined as a scale of occupational prestige or social-economic status, where mobility is between aggregates that are ranked in the context of the hierarchy. That is to say, individuals who are mobile are viewed as having moved either upwardly or downwardly on the social ladder. Thus a typical research question behind the choice of the social hierarchical approach is to what extent a society allows individuals to attain higher social status, and what the chance of moving downwardly is. Meanwhile, researchers can explore reasons of social ascent or social descent.
It is true that the paradigm enables researchers to answer questions regarding social openness in terms of mobility chances, but it fails to distinguish between ‘structural’ and ‘exchange’ mobility. While ‘structural’ mobility refers to ‘inevitable’ movement out of origin classes because of the asymmetry in the marginal total of origin and destination classes in the mobility table, ‘exchange’ mobility is the difference between the total amount of mobility and structural mobility (Heath, 1981: 256-7). While the way individuals are distributed in the cells of a mobility table reflects the difference between total mobility and structural mobility, which may be calculated from the difference between the row and column totals (Heath, 1981), it is impossible to trace effects of structural changes on mobility chances. As occupations in close proximity to each other on the social hierarchy are likely to be found in widely different locations in the division of labour, they may show drastic differences in terms of expansion or decline, reflecting influences from various factors ranging from market demand to policies. As a result, structural influences tend to be concealed in analyses of social mobility using the hierarchical approach (Erikson & Goldthorpe, 1992a: 30-1). Meanwhile, as mobility identified in hierarchical scales is either upward or downward, it is difficult to examine mobility that is of a ‘non-vertical’ kind. As a result, adopting the hierarchical approach would narrow down the definition of social mobility to movement in a ‘vertical’ sense, whereas actual social experiences include mobility between class positions at similar levels of prestige or ‘social status’ (Erikson & Goldthorpe, 1992a).

In reviewing the criticism, we can find that the social hierarchical approach does not match well the aim of this study, which is to explore changes in mobility rates, of both ‘vertical’ and ‘non-vertical’ kinds, and patterns in a key stage of China’s social transformation. To this end, it is important to choose a conceptual framework that allows us to include in the analyses structural influences on individual mobility chances. In addition, given the rapid social changes, including changes in the labour market, it is extremely difficult to generate a trustworthy hierarchical scale based on social status or prestige of occupations.

3.2.2 The class structural approach

Like the social hierarchical approach, the tradition of class structural approach is also traceable to the nineteenth century. According to Marx (1958, cited in Erikson &
Goldthorpe, 1992a: Ch.2), it was the high rate of mobility that prevented classes in the mid-nineteenth century American society from taking shape. As aforesaid, the social hierarchical approach is viewed as incapable of reflecting the conception of class in theoretical terms. In contrast, ‘relational’ class schemas devised by class analysts taking up the structural approach are regarded as ‘theoretical’ schema which attempt to provide class divisions which reflect the ‘kinds of class groupings described by Marx and Weber’ in their class theory (Crompton, 2008: 63). Moreover, the structural class schemas, such as the Goldthorpe schema and Wright’s schema, also show an awareness of the cleavage and potential of conflicts between occupational aggregations, which has been emphasised in the development of the structural approach (Crompton, 2008: 58). While it is not the aim of this study to investigate class conflicts or class action, it is helpful to understand individuals of different class origins as competitors against each other in terms of mobility chances.

By their nature, class structures are constructs of social scientists by means of which the population of a society is divided into unequally rewarded groups (Crompton, 2008). Despite the differences among various approaches in terms of theoretical roots, occupation is commonly employed as a powerful indicator of ‘life chances’ in modern societies (Blau & Duncan, 1967). Thus class structures are constructed on the basis of occupational positions occupied by individuals, whereas social classes may be viewed as aggregates of individuals and families in the occupational structure who would be comparable in various respects, such as economic resources, economic prospects, their location within the systems of authority and control, and their degree of autonomy in performing their occupational roles (Goldthorpe, 1987). For researchers who choose the class structural approach, social mobility of individuals takes place between class positions that are defined by the relationships between occupations within labour markets and production units. In other words, it is regarded as movements between social positions in a class structure rather than on a social hierarchical scale.

In contrast to the hierarchical approach, the class structural approach enables researchers to extend the concept of social mobility to mean more than movement in a ‘vertical’ sense. What is of central concern is the ‘relational changes’ reflected by mobility in the class
structure (Erikson & Goldthorpe, 1992a: 31). Mobility analyses in the class structural context enable researchers to examine not only individual chances of social ascent and descent, but also instances of mobility that are of a relatively more ambiguous nature and cannot be captured by a ‘vertical’ perspective. One example of the latter kind is mobility of peasants and small farmers and of their offspring to semi-/unskilled jobs in the social context of industrialised countries. Erikson and Goldthorpe (1992a: 33) also cited the instances of transition from self-employed or rank-and-file positions to supervisory positions, which is labelled as horizontal mobility in our analyses of absolute mobility rates. Moreover, as social classes in the structural perspective are aggregates of individuals sharing similar work and market situations in the occupational structure (Lockwood, 1989), the structural approach allows researchers to expand the field of concern to encompass issues of effects of structural changes on mobility rates and patterns, which in turn enables the possibility of discussing connections between social mobility and economic development.

To recapitulate, neither of the two conceptualisations discussed in the foregoing is theoretically superior to the other. In this study, it is out of the central research interest that we choose to set it in a structural conceptual framework. While a hierarchical perspective is of relevance when the issue of status attainment is of central concern, it does not serve the purpose of this study. Taking up the structural approach, we are able to systematically investigate, through analyses of mobility tables, changes in mobility rates, in both absolute and relative terms, and endogenous mobility patterns in China, while considering the effects of temporal changes in the class structure. That said, as indicated by Erikson and Goldthorpe (1992a: Ch.2), many mobility studies have a conceptual framework that shows characteristics of both the hierarchical and structural approach, although one of the two would play a dominant role. As exponents of scales of social status would create ‘class-like’ categories of status scores, as a response to criticism regarding the heterogeneity of occupations found at the same hierarchical level (Blau & Duncan, 1967; Featherman & Hauser, 1978), researchers who adopt the structural perspective do not deny the relatively hierarchical dimensions of their class schemas (Goldthorpe, 1987; Erikson & Goldthorpe, 1992a; Goldthorpe & Jackson, 2007). As will be shown in Chapter 4, however, hierarchical divisions of class schemas in a class-structural perspective are employed in a limited way in analyses of absolute mobility rates.
3.3 The class schema

Having explained the choice of the class structural context, this section reviews some options of class schemas that enable us to operationalise the class-structural perspective of mobility research. Mobility scholars, including those dedicated to issues of social mobility in China, have reached consensus on neither the concept of class nor the ways to construct class categories in stratification research. At the centre of the debate are two class schemas that have drawn more attention than others from stratification researchers: the Marxist class schema devised by Wright, and the Goldthorpe schema, which is described as a ‘neo-Weberian’ or ‘left-Weberian’ one.\(^{15}\)

As reviewed in Chapter 2, the traditional Marxist and Weberian concepts of class and class classification differ profoundly from each other. In the Marxist approach, class relations are a form of relations of production, which are determined by the ownership of means of production, whereas the Weberian approach views that individual life chances are determined by their situations in the market (Gerth & Mills, 1948). However, lines of demarcation between the two approaches have been more or less blurred as each evolved. As a response to the then ‘theoretical criticisms and practical exigencies’, both Wright’s class schema and the Goldthorpe schema are attempts to establish social classes that correspond to the groupings depicted by the class theory of Weber and Marx and view social mobility as changes in relational changes in the occupational structure (Crompton, 2008).

3.3.1 The Wright class schema

The most prominent Marxist feature of Wright’s class schema is its emphasis on the notions of control and exploitation within the social relations of production. As is shown in Table 3.1, it is the ‘rights and powers with respect to a resource deployed in production’ (Wright, 2005: 10) that differentiates capitalists, i.e. the bourgeoisie, from the other social classes, whereas the working class have to sell their labour because they are deprived of the means of production. Compared with these two poles of the class structure, some class

\(^{15}\) As pointed out in Erikson and Goldthorpe (1992), the label of ‘neo-Weberian’ has not gained the authors’ agreement, who emphasised the consequences of a conceptual context rather than antecedent conceptions.
locations, such as those of managers, become contradictory locations as their members are simultaneously found both as the exploited and exploiters. In a more recent version in response to criticism, as presented in Figure 3.1, Wright (1997) increased the number of class categories from six to twelve, which are distinguished from each other by asset typology. The addition of elements such as possession of expertise and skills, which replaced the element of work autonomy in the original version, is often regarded as a change that draws the Wright schema, albeit ‘Marxist in disposition’ and not to be admitted by Wright himself (Marshall, 1988: 31), closer to the Weberian side.

Table 3.1: Basic class locations and contradictory location in the Wright schema

<table>
<thead>
<tr>
<th>Class Location</th>
<th>Domination</th>
<th>Appropriation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dominant</td>
<td>Subordinate</td>
</tr>
<tr>
<td>Bourgeoisie</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Top managers</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lower managers and supervisors</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Workers</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Semi-autonomous employees</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Small employers</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
1. ‘+’ = criterion present; ‘-’ = criterion absent
2. Bold italic = contradictory class locations within class relations of production

Source: Classes (Wright, 1985:50), Table 2.2.

Both the Wright schema and the ‘asset theory’ (Savage et al., 1992) deriving from Wright’s approach are found less robust than the Goldthorpe schema and his ‘employment relation theory’ (Li, 2002; Marshall, 1988). Apart from the empirically demonstrated weakness of the schema (see for detail Marshall, 1988: Ch.3), a major problem regarding its application in the Chinese case may emerge in a more straightforward fashion. As the neo-Marxist schema has been designed for class analysis in capitalist societies, the sharp contrast between capitalists and the exploited will become much less powerful as an approach of class analysis in a state-socialist country, where ownership of private property...
has been suppressed until recently and a large proportion of its urban population work in state-owned organisations or economic entities.

Figure 3.1: Relation to means of production in the new Wright schema

<table>
<thead>
<tr>
<th>Number of employees</th>
<th>Owner</th>
<th>Employees</th>
<th>Managers</th>
<th>Supervisors</th>
<th>Non-management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many</td>
<td>Capitalists</td>
<td>Expert managers</td>
<td>Skilled managers</td>
<td>Non-skilled managers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expert supervision</td>
<td>Skilled supervisors</td>
<td>Non-skilled supervisors</td>
<td></td>
</tr>
<tr>
<td>Few</td>
<td>Small employers</td>
<td>Experts</td>
<td>Skilled workers</td>
<td>Non-skilled workers</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Petty bourgeoisie</td>
<td>Experts</td>
<td>Skilled workers</td>
<td>Non-skilled workers</td>
<td></td>
</tr>
</tbody>
</table>

Source: Classes (Wright, 1997:25), Figure 1.3.

3.3.2 The EGP class schema

Widely adopted in mobility studies, the Goldthorpe schema is known by various names (Goldthorpe, 2007). While it is known as the ‘Goldthorpe schema’ in a British context (see for example Goldthorpe, 1987; Goldthorpe & Mills, 2008; Li, 2002; Marshall, 1988), its name is changed to the EGP schema in an international context (Breen, 2004; Ishida, Muller, & Ridge, 1995). As the schema was employed in the CASMIN (Comparative Analysis of Social Mobility in Industrial Societies) project, it is also known as the CASMIN schema. Since 2000, NS-SEC (National Statistics Socio-Economic Classification), a new instantiation of the schema has been used as the social classification of the British official statistics (Erikson & Goldthorpe, 1992a; Goldthorpe, 2007; Rose & O’Reilly, 1997; Rose & Pevalin, 2003).

Like the Wright schema, the Goldthorpe schema has been revised since it was initially devised. Although the earlier description of the schema emphasised the classification by reference to work situation and market situation (Goldthorpe, 1987) – namely, concepts borrowed from Lockwood’s work on clerical workers (1989) – the two notions have been replaced by social relations of exchange and ‘employment relations’ in more recent
illustrations of the conceptual basis (Erikson & Goldthorpe, 1992a: Ch.2; Goldthorpe, 1997, 2007: Ch.5; Goldthorpe & McKnight, 2006). Despite the starting point of the threefold division among employers, the self-employed, and employees, the class schema was modified and further elaborated in order to reflect the developments in the modern industrial societies, i.e. the increasingly important role of corporate forms of property, the predominance of employees in the original threefold division, and changes in the forms of employer-employee relations resulting from increasing bureaucratization of employing organisations (Erikson & Goldthorpe, 1992a: 40).

The Goldthorpe schema adopts and adapts principles of differentiation derived from both Marx and Weber, for both of whom employment relations are an important element in the construction of the class structure (Erikson & Goldthorpe, 1992a). Nevertheless, in regard to the contrast between employers and employees, Goldthorpe explicitly takes up an intermediate position between the Marxist emphasis on ‘exploitation’ and the stress on ‘efficiency’ by organisational and personnel economists and transaction-cost economists, from whom he has drawn the rational action theory to treat the issue of typology of employment contracts (Goldthorpe, 2007). According to Goldthorpe, the interests of employers and employees are ‘fundamentally’ neither in harmony nor in conflict with each other (2007: 106).

Based on this initial division, employees are further differentiated by reference to type of employment contracts, i.e. between those under the ‘labour contract’ and those in the ‘service relationship’ with an employer or employing organisations (Goldthorpe, 2007: 103-6). While the ‘labour contract’ refers to the exchange of labour typically by manual and lower-grade non-manual workers, the ‘service relationship’ is typically associated with professional and managerial occupations (see further discussion in Goldthorpe, 1982, 1995, 2007), the incumbents of which provide service in return for ‘compensation’ in the form of salary and various prerequisites as well as ‘prospective elements’ such as salary increments, assurance of continuing employment, and career opportunities (Goldthorpe, 1997: 42). Further, there are occupational positions where employment regulation may be found in modified or mixed forms, which can be linked to the ‘intermediate’ position between bureaucratic structures and rank-and-file workforces, including those of routine

Table 3.2: Class categories of the Goldthorpe schema and supposed forms of regulation of employment

<table>
<thead>
<tr>
<th>Class</th>
<th>Forms of regulation of employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Professionals and managers, higher grade</td>
</tr>
<tr>
<td>II</td>
<td>Professional and managers, lower grade; technicians, higher grade</td>
</tr>
<tr>
<td>IIIa</td>
<td>Routine non-manual employees, higher grade</td>
</tr>
<tr>
<td>IIIb</td>
<td>Routine non-manual employees, lower grade</td>
</tr>
<tr>
<td>IVa</td>
<td>Small proprietors and employers with employees</td>
</tr>
<tr>
<td>IVb</td>
<td>Small proprietors and employers without employees</td>
</tr>
<tr>
<td>IVc</td>
<td>Farmers and smallholders; other self-employed workers in primary production</td>
</tr>
<tr>
<td>V</td>
<td>Technicians, lower-grade supervisors of manual workers</td>
</tr>
<tr>
<td>VI</td>
<td>Skilled manual workers</td>
</tr>
<tr>
<td>VIIa</td>
<td>Non-skilled manual workers (other than in agriculture)</td>
</tr>
<tr>
<td>VIIb</td>
<td>Agricultural workers</td>
</tr>
</tbody>
</table>

Source: Goldthorpe (1997: 41) Table 3.1; Goldthorpe (2007: 104) Table 5.1

Table 3.2 presents Goldthorpe’s summary of the class schema resulting from the division described above. The table also presents the nature of the employment regulation of each class category. Specifically, at the two ends of the class schema are the salariat class (also known as the service class), labelled as Classes I+II, and the manual working class, labelled as Classes VI, VIIa, and VIIb. With respect to dimensions of employment relations, positions covered by the former are supposed to require high human assets and entail high difficulty of monitoring for employers. In contrast, manual working class jobs
are typically regulated by labour contracts, need low levels of human assets, and incumbents of such positions are relatively easier for employers to monitor (Goldthorpe, 2007).

As regards the ‘intermediate’ classes, the division of Class IIIa and Class IIIb distinguishes the higher grade of routine non-manual positions from those of clerical, sales, or personal-service work. Lower-grade technicians and supervisory staff, who work closely with manual workers, are allocated to Class V in the light of differences between the two groups in human assets and degree of difficulty of monitoring. Compared with Classes I+II, typical positions covered by Class IIIa call for relatively lower level of human assets, such as educational qualifications, yet entail the similar level of difficulty of monitoring as salariat positions. Conversely, lower-grade technician and supervisory work requires relatively high levels of human assets, but is not supposed to involve difficulty of monitoring. At the operational level, the subdivision of Class III into IIIa and IIIb may be problematic to analyses that require relatively fewer class categories. The subdivision, according to Erikson and Goldthorpe (1992a: 241), is supposed to be used only in analyses involving women’s mobility, because the routine and very low-skilled non-manual positions covered by Class IIIb are more often than not occupied by women. As conditions of employment of such positions are usually similar to those of semi-/unskilled manual workers, Class IIIb is, as is suggested, to be collapsed with Class VIIa where necessary, for men and women alike.

In explanations of the schema, it is often stressed that class categories in the Goldthorpe schema do not contain a strictly inherent hierarchical order (Erikson & Goldthorpe, 1992a, 2002; Goldthorpe, 1997). Nonetheless, as mentioned in Section 3.1, it is not denied that there are hierarchical aspects in the class structural approach, although they are pursued only in a rather limited way. In analyses of absolute mobility rates, the Goldthorpe schema is usually collapsed into a simpler version from which rates of immobility, upward, downward and horizontal mobility are derived. Since the schema is not constructed as a fully hierarchical one, horizontal mobility is recognised in certain cells of the mobility table (see for example Goldthorpe & Jackson, 2007). While the complete Goldthorpe schema is composed of eleven class categories, the schema is collapsible to versions of
seven or fewer classes, as is often required to apply specific statistical methods. While the Wright schema started with a central objective to ‘generate a concept capable of mapping in a nuanced way concrete variations in class structures across capitalist societies’ (Wright, 1989: 274), the Goldthorpe schema, or, the EGP schema, is aimed to provide ‘an instrumental de travail’ rather than ‘a definitive map of the class structures of individual societies’ (Erikson & Goldthorpe, 1992a: 46). Thus there is not an exact answer to the question of ‘how many classes there are’ (Runciman, 1990). As the choice of conceptual context is determined by the specific interest or questions of research projects, the number of classes of the class schema depends on the analytical purposes of the research and practical considerations.

3.3.3 The CASS ten-class schema for social mobility in China

As mentioned earlier in Chapters 1 and 2, it was not until the late 1980s that sociologists within China restarted stratification research. Although both the Wright schema and the EGP schema were applied to the Chinese case by social scientists both within and outside China (see for example Bian, 2002; Li, 2001; Wu & Treiman, 2007), there have been attempts to construct class schemas particularly for use of stratification research in China. Among various occupation-based class schemas (Li, 2003, cited in Li, 2005; Yang, 2000; Zhu, 1998), the ten-class schema devised by the CASS (Chinese Academy of Social Sciences) has risen to prominence since 2002 (Lu, 2002, 2004).

The ten-class CASS schema is based on the data collected by national surveys of the Social Structural Changes of China project. While the project has drawn inspiration from both class analysis of Wright and Goldthorpe, key indicators of class classification are based on subjective perceptions of social stratification captured by surveys and in-depth interviews (Li, 2005: 99). From the basis of the interview data, ownership of economic resources, authority (or organisational resources), and cultural resources are derived as indicators of individual socio-economic status.\footnote{16 By definition, economic resources refer to ownerships of and rights to deploy the means of production; organisational resources are administrative or political power to control and deploy social resources, including human resources; cultural resources refer to human capital acquired via education or occupational training.}
Figure 3.2: The five-class CASS schema

<table>
<thead>
<tr>
<th>Socio-economic status</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>State and social administrators</td>
</tr>
<tr>
<td></td>
<td>Managerial class</td>
</tr>
<tr>
<td>Upper-intermediate</td>
<td>Private entrepreneurs</td>
</tr>
<tr>
<td></td>
<td>Professionals</td>
</tr>
<tr>
<td>Intermediate</td>
<td>The clerical class</td>
</tr>
<tr>
<td></td>
<td>Small business owners (getihu)</td>
</tr>
<tr>
<td>Lower-intermediate</td>
<td>Sales and personal service workers</td>
</tr>
<tr>
<td></td>
<td>Industrial workers</td>
</tr>
<tr>
<td>Low</td>
<td>Peasants</td>
</tr>
<tr>
<td></td>
<td>The unemployed or semi-unemployed</td>
</tr>
</tbody>
</table>

Source: Lu (2004)

In operational terms, four types of social relations are considered, namely, division of labour, authority-based division, relations of production, and institutional division. The ten classes constructed out of combined and complex considerations of these indicators are: 1) state and social administrators, 2) managerial class, 3) private entrepreneurs, 4) professionals, 5) the clerical class, 6) small business owners (*getihu*), 7) sales and personal service workers, 8) industrial workers, 9) peasants, and 10) the unemployed or semi-unemployed. In addition, the ten-class is supposed to fall into five strata of socio-economic status. As we can see in Figure 3.2, most of the ten class categories correspond to more than one level of socio-economic status, some to three levels. In practical terms, the five-stratum classification is very difficult to operationalise, even if researchers are ready to take up the hierarchical approach. As an alternative, Yang (2008) collapsed the ten-class CASS schema into a four-class version, with her focus on the ‘new middle class’ at the top of the schema. The four classes in Yang’s collapsed version are the

17 According to the CASS, key variables covered by the divisions of labour include employment status, occupational classification, occupational grading, such as higher white collar and manual blue collar, and the industry occupations fall in. As regards authority-based division, administrative titles, managerial levels, and number of people under management are considered. Variables used to indicate relations of production are employment situation, i.e. whether individuals are employed, self-employed, or employers, and the number of employees in the final case. Institutional division are associated with the ownership of work units (*danwei*) and whether the type of work units (Li Chunling, 2005:107).
new middle class, non-manual class, manual class, and peasants. Neither this over-simplified version nor the original version of the CASS schema serves the purpose of this study. While the local-born nine-class categorisation\(^{18}\) has its merits when it is used as a descriptive instrument, it is unpractical to base analyses of mobility rates on cumbersome 9x9 mobility tables. Moreover, it is worth noting that neither the CASS publications nor later research using the CASS schema has included analyses of relative mobility (Li, 2005; Lu, 2002, 2004), which is essential for a systematic and thorough examination of social mobility in China.

Given the above discussions and the particular research purpose of this thesis, this study has chosen to use the EGP schema. To be consistent with the practice of mobility studies using the schema, it will be known as the EGP schema in the rest of this thesis unless otherwise explained. In view of the fact that the schema has been designed for Western societies, I make necessary modifications—as will be explained in Section 3.5—to the original version of the schema in order to adapt it to the aim of this study. Before doing so, the next section discusses the data that are used in this study.

3.4 Data sources

Part of the reasons for the scarcity of systematic mobility research in China is the absence of quality survey data. Until recently, national survey data for examinations of trends in mobility rates and patterns had been hardly available for public use. As a result, some researchers have chosen to limit their studies to the urban China. The data sets to be used in this study are from three national cross-sectional surveys, the Life Histories and Social Change Survey (LHSC)\(^ {19}\) and two Chinese General Social Surveys (CGSS)\(^ {20}\). The former was carried out in 1996 and the latter respectively in 2005 and 2006. To the best of my knowledge, they are the first and best available data that meet the criteria of mobility research.

\(^{18}\) The unemployed and semi-unemployed class is excluded from mobility analysis in both the CASS reports and later research by Li Chunling (2005).

\(^{19}\) The data and documentation can be downloaded from http://www.sscnet.ucla.edu/issr/da/

\(^{20}\) The data of the surveys are publicly available on the Chinese Social Science Data Archive (CSSDA) upon the request of researchers via a formal application. The website of the CSSDA is http://www.cssod.org/search.php?key=CGSS.
3.4.1 The Life Histories and Social Change Survey (1996)

The 1996 LHSC survey was a joint project by Donald J. Treiman and Andrew Walder in collaboration with the People’s University of China. The project was conducted during June-October, 1996, and included a national probability sample of 3,000 urban cases and 3,000 rural cases. In regard to the sample design, identical procedures were employed to create the urban and rural samples. The sampling units in the primary state were an array of county-level (xian) units, which were further divided into 25 strata. In the second stage, two counties were randomly selected with probability proportionate to the size of the population. Thirdly, a list of townships (xiang of townships for the rural sample, and zhen or jiedao weiyuan hui of cities for the urban sample) within each county was constructed, from which one township-level unit was selected at random, again, with probability proportionate to the size of the population. Next, an array of village-level units in each township was constructed for the rural sample in order to randomly draw two village-level units, whereas for the urban sample a list of neighbourhood committees (jumin weiyuan hui) was created for two units at this level to be drawn at random. In the final stage, a list of permanent residents with local hukou and a list of temporary migrants were obtained from each selected village or neighbourhood committee, from which 40 addresses for the rural sample and 45 for the urban sample were then sampled randomly to ensure 30 completed interviews. In each household selected, a single adult was selected for interviewing. 26 provincial-level units were covered in the fieldwork stage of the survey, which led to 6,090 interviews successfully completed.21

3.4.2 The Chinese General Social Surveys (2005, 2006)

Led by Yanjie Bian and Lulu Li and conducted jointly by the Hong Kong University of Science and Technology and People’s University of China, the CGSS survey was initiated in 2003 and thence conducted on an annual basis, except in 2007. By the time I started the empirical analyses for this thesis, three data sets of the CGSS surveys were available for public access – the 2003, 2005, and 2006 surveys, but the 2003 survey was conducted only for the urban sample because of financial reasons.

21 In total, 6,840 interviews were attempted, with 750 failed ones. In addition, the survey included a special sample of 383 village leaders, which is not used for the analysis in this study.
Like the 1996 LHSC survey, the CGSS surveys are designed to cover sampling units in four stages, which include districts (qu) of cities and counties (xian) as primary sampling units, townships (zhen) and street committees (jiedao) as secondary sampling units, villages (cun) and neighbourhood committees (jumin weiyuan hui) for the third stage, and households in the fourth stage. In the first stage, five PUSs were drawn randomly from each of the three municipalities.

With regard to the sampling frame, the 2,801 county-level and district-level units were divided into 5 strata, which include 44 city districts of the three municipalities (zhixiaoshi -- Beijing, Tianjin, and Shanghai), 175 city districts of 26 provincial capitals (shenghui chengshi), 611 counties and city districts in the eastern region, 1,136 counties and city districts in the central region, and 835 counties and city districts in the western region. Out of these 5 strata, 125 counties and city districts were selected as PSUs, from each of which 4 townships or street committees were selected as the secondary sampling units. Further, 2 neighbourhood committees and villages were drawn from each selected township or street committee, which served as the basis for selection of 10 households. In total, the sample of the CGSS surveys covered 28 provinces, autonomous regions, and municipalities in China. The 2005 CGSS survey has a sample of 10,372 respondents, whereas the 2006 CGSS has an overall sample of 10,151 cases.

In using three data sets for the analyses, the first operational necessity is to standardise the variables. While all these three data sets contain variables that are required for mobility research, extra caution is needed with regard to the way in which the corresponding question was worded and whether recoding is needed. In Appendix I, important procedures of standardisation of key variables are provided, except the construction of class variables, which are discussed in detail in the next section. Before we move on to the construction of the class schema, Table 3.3 reports the socio-demographic profile of the three surveys. As above mentioned, the CGSS surveys follow the same sampling design and sampling frame. Given that the transition between the two years had not seen any major changes in economic and political terms to potentially affect the results of the later statistical analysis of occupational attainment, the 2005 and 2006 data are collapsed into a single data set.
Table 3.3: Socio-demographic statistics of the LHSC 1996, CGSS 2005 and 2006

<table>
<thead>
<tr>
<th></th>
<th>1996</th>
<th>2005</th>
<th>2006</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>51.6</td>
<td>46.7</td>
<td>48.2</td>
<td>48.5</td>
</tr>
<tr>
<td>Female</td>
<td>48.4</td>
<td>53.3</td>
<td>51.8</td>
<td>51.5</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41/69</td>
<td>50.3</td>
<td>53.9</td>
<td>54.0</td>
<td>53.1</td>
</tr>
<tr>
<td>20/40</td>
<td>49.7</td>
<td>46.2</td>
<td>46.0</td>
<td>47.0</td>
</tr>
<tr>
<td>Current hukou status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>28.5</td>
<td>48.2</td>
<td>37.7</td>
<td>39.4</td>
</tr>
<tr>
<td>Rural</td>
<td>71.5</td>
<td>51.8</td>
<td>62.3</td>
<td>60.7</td>
</tr>
<tr>
<td>Hukou status at 14/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>16.1</td>
<td>24.5</td>
<td>22.7</td>
<td>21.9</td>
</tr>
<tr>
<td>Rural</td>
<td>83.9</td>
<td>75.5</td>
<td>77.3</td>
<td>78.1</td>
</tr>
<tr>
<td>Educational</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>3.4</td>
<td>8.4</td>
<td>8.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Vocational schools</td>
<td>4.6</td>
<td>6.6</td>
<td>7.8</td>
<td>6.6</td>
</tr>
<tr>
<td>High school</td>
<td>7.6</td>
<td>14.2</td>
<td>11.1</td>
<td>11.4</td>
</tr>
<tr>
<td>Lower secondary</td>
<td>30.6</td>
<td>31.5</td>
<td>34.5</td>
<td>32.4</td>
</tr>
<tr>
<td>Prim/None</td>
<td>53.9</td>
<td>39.4</td>
<td>38.7</td>
<td>42.6</td>
</tr>
<tr>
<td>Total</td>
<td>6,090</td>
<td>9,487</td>
<td>9,836</td>
<td>25,413</td>
</tr>
</tbody>
</table>

Note: Weighted analysis and unweighted N.

3.4.3 Standardisation of key variables

Age

The three data sets differ in range of age. While the sample of the LHSC 1996 is limited to adults aged 20-69, the CGSS data show a wider range of age, 18-94 for the 2005 data and 18-70 for the 2006 data. Throughout this study, age is limited to 20-69.

Hukou origin

Some of the past studies of social stratification in China have highlighted the important role hukou origin plays in mobility processes in China (Wu, 2011; Wu & Treiman, 2004, 2007). In this study, I emphasise that where the analysis entails comparison between urban and rural individual chances of mobility it is *hukou* origin rather than *hukou* status at time of survey that matters, because the respondent’s ‘current’ *hukou* status is more of a consequence of social mobility than of a starting point that differentiate rural residents from urban residents in terms of mobility chances. By definition, *hukou* origin refers to
respondent’s hukou status at age 14 or 18. However, as shown in Table 3A.1, while the LHSC 1996 data provide straightforward information for respondent’s hukou at age 14, the variable for 2005 and 2006 has to be derived from other information in the CGSS data.

Table 3.4: Deriving hukou origin for CGSS 2006

<table>
<thead>
<tr>
<th>Parents’ hukou status at R’s age 18</th>
<th>Respondent’s hukou origin</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>Both urban</td>
<td>3,437</td>
<td></td>
</tr>
<tr>
<td>Urban father and rural mother</td>
<td></td>
<td>394</td>
</tr>
<tr>
<td>Rural father and urban mother</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>Both rural</td>
<td></td>
<td>6,139</td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>Total</td>
<td>33.9</td>
<td>60.5</td>
</tr>
<tr>
<td>N</td>
<td>3,437</td>
<td>6,139</td>
</tr>
</tbody>
</table>

Until 1998, parents were not allowed to choose their children’s hukou status at time of birth, which was generally inherited from their mothers. Moreover, it is extremely rare for individuals, once they have attained urban hukou status, to change back into rural status. In view of information of parents’ hukou status at the respondent’s age 18 in the CGSS 2006 data, the task can be easily done. As presented in Table 3.4, parents are divided into four categories by reference to their hukou status at respondent’s age 18. As the mother’s rural status at respondent’s age 14 or 18 generally suggests the respondent’s rural hukou status in teen years, the hukou origin of children of urban father and rural mother is categorised as rural.

Turning to the 2005 data, the circumstances more complicated, as the survey provides parents’ hukou status at time of survey rather than at respondent’s age 14/18. Information was drawn from both questions regarding parents’ current hukou status and those with respect to the type of their work units (danwei) at respondent’s age 14. The relevant questions in the survey are:

QA5-2/3. What is your father's/mother’s hukou status?
QC1C-1/2. What was your father’s/mother’s occupation when you were 14 years old?

QC1D-1/2. What type of work unit did your father/mother work for when you were 14 years old?

What is of value is that interviewers of the survey were instructed not to ask QC1D-1/2 if the answer to QC1C-1/2 was that the respondent’s father/mother was a peasant at his/her age 14. Given data of these variables, we can reasonably conclude parents’ hukou status at respondent’s age 14. In the case when QC1D-1/2 was not asked, the father/mother is viewed as peasants at respondent’s age 14, who would have had rural hukou status. Nevertheless, if QC1D-1/2 was asked but the data of QA5-2/3 show that the father/mother was registered as rural at the time of survey, I categorise the father/mother as having rural hukou status at respondent’s age 14 on the grounds of the extreme rarity of hukou migration from urban status to rural status. In taking these two procedures, we can generate the same three-category variable for parents’ hukou status at respondent’s age 14, and further derive the respondent’s hukou origin. The result is shown in Table 3.5 and Table 3.6 shows the overall distribution of hukou origin when the three data sets are pooled.

Table 3.5: Deriving hukou origin for CGSS 2005

<table>
<thead>
<tr>
<th>Parents’ hukou status at R’s age 18</th>
<th>Respondent’s hukou origin</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>Both urban</td>
<td>3,063</td>
<td></td>
</tr>
<tr>
<td>Urban father and rural mother</td>
<td></td>
<td>707</td>
</tr>
<tr>
<td>Rural father and urban mother</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>Both rural</td>
<td></td>
<td>6,486</td>
</tr>
<tr>
<td>Total</td>
<td>29.5</td>
<td>62.5</td>
</tr>
<tr>
<td>N</td>
<td>3,063</td>
<td>6,486</td>
</tr>
</tbody>
</table>
Table 3.6: Distributions of hukou origin by year of survey

<table>
<thead>
<tr>
<th>Parents’ hukou status at R’s age 18</th>
<th>Year of survey</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1996</td>
<td>2005</td>
</tr>
<tr>
<td>Urban</td>
<td>22.6</td>
<td>29.5</td>
</tr>
<tr>
<td>Rural</td>
<td>65.0</td>
<td>62.5</td>
</tr>
<tr>
<td>Missing</td>
<td>12.4</td>
<td>7.9</td>
</tr>
<tr>
<td>N</td>
<td>6,090</td>
<td>10,372</td>
</tr>
</tbody>
</table>

Education

Information concerning the respondent’s level of education is directly provided in the raw data sets in the form of both categorical variables, i.e. highest educational qualification accomplished, and continuous variables, i.e. years of schooling. However, there is no variable for years of schooling in the CGSS 2005 data. A continuous variable of education is generated on the basis of the categorical education variable in the CGSS 2005 data and is standardised with corresponding variables in the 1996 and 2006 data.

First employment

While the class position at entry into the labour market is not a key variable in the majority of our analyses, to generate and standardise the variable of respondent’s first job class requires no less complicated procedures than variables of class origins and destinations. While the recoding procedures are largely the same as described in Section 3.4 for origin and destination classes, entry class positions are derived from occupational information at respondent’s age 16, which is generally, despite the possibly earlier entry of some people in rural areas, the age of labour market entry in China. In the case that no occupational information is available for the age of 16, that of the nearest age is used.

3.5 Constructing the EGP schema

For the purpose of mobility research, three sets of class variables need to be constructed, namely class of origin, class of destination, and class upon entry into the labour market. As these variables are not readily available in the raw data, they need to be derived from information on respondent’s or parents’ occupations at the relevant point in time. The
variable for class of origin is based on parents’ occupations at respondent’s age 14 or 1822, whereas the variable for class of destination and entry class position are derived respectively from respondent’s occupation at time of survey or last main employment and respondent’s first employment.

The recoding of the class variables are assisted with the conversion procedures between the International Standard Classification of Occupation (ISCO) and the EGP schema provided by Ganzeboom and his collaborators (Ganzeboom, Graaf, & Treiman, 1992; Ganzeboom & Treiman, 1996). To standardise the ISCO variables, ISCO68 codes provided by the LHSC data are converted into ISCO88 codes which are given in the CGSS data sets. It must be noted that, in practical terms, the recoding incorporates far more complicated procedures than merely converting ISCO88 codes to the relevant category in the EGP schema. For instance, unlike parents’ occupations, both respondent’s first employment and occupation at time of survey are derived variables rather than being readily available in the raw data. Due to the limited space of the chapter, I choose to focus on the construction of the EGP class schema rather than dwell upon details of the data cleaning process.

Despite the standard conversion procedures between ISCO88 codes and the EGP schema, the process of recoding class variables is not a straightforward one23. Although the correspondence serves a general guide for the conversion, modifications are necessary to adapt the schema to the Chinese data. For instance, according to the original correspondence, astrologers and fortune-tellers (ISCO88 codes = 5150/5152) are allocated by Ganzeboom and his colleagues to Class II positions, i.e. the lower-grade professional positions in the salariat class, which does not make sense in China’s situation. To modify, the same ISCO88 codes are allocated to Class IIIb in this study. As the LHSC project included an additional set of codes to the ISCO classification for particular cadre occupations in China (codes = 2040/2082), new coding is added to the LHSC converting programme to translate them to EGP classes. As these additional codes represent ‘leading

22 While in the LHSC 1996 and CGSS 2005 surveys respondents were asked about their parents’ information when they were at the age of 14, the corresponding age in the CGSS 2006 is 18.

23 Details of Ganzeboom’s conversion programmes are available at \url{http://home.fsw.vu.nl/~ganzeboom/pisa/}.
cadres’ at various levels, they are largely allocated to Classes I and II positions (see more detail Treiman, 1998).

In Table 3.7, we can see the distributions of destination class, separately of men and women, across the ten-class EGP schema that has been adapted to the Chinese case. From the table, we can see a few features that are worth special attention. Firstly, consistent with the EGP class structure shown in Yang’s study (2008), Table 3.7 shows a virtually empty Class IVc in China. As illustrated by Erikson and Goldthorpe (1992a: Ch.2), the EGP schema identifies with Class IVc and Class VIIb the sectoral division for proprietors and wage-workers in agricultural and other primary production. In their Chinese case, however, peasants do not have ownership of the farming field and were obliged to meet the quota of public grain as well as agricultural tax till 2006. There is, therefore, little point in differentiating among individuals who are engaged in farm-related work, since few would fall within the western definition of Class IVc. Secondly, converting the ISCO codes to the EGP classes, our data shows a nearly empty Class V. Although Class V identifies lower technician occupations and supervisory work over manual workers, the life chances and employment relations relating to the incumbents of such positions are often in close proximity to those of skilled manual labour who are classified as Class VI (Erikson & Goldthorpe, 1992: Ch.2). In the analyses of this study, Class V is collapsed with Class VI. Thirdly, as regards the afore-mentioned subdivision of Class III into IIIa and IIIb, Table 3.7 shows gender differences in the percentages being found in Class IIIb positions. At both points in time, the percentage of women found in lower-grade routine manual (sales and service) work is around twice that of men. In the following statistical analyses of this study, I collapse Class IIIb, as suggested by Erikson and Goldthorpe for mobility research involving women, with Class VIIa (Erikson & Goldthorpe, 1992a: 241).
Table 3.7: Class structure using the ten-class EGP schema (destination)

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Higher-grade salariat class</td>
<td>3.2</td>
</tr>
<tr>
<td>II</td>
<td>Lower-grade salariat class</td>
<td>11.2</td>
</tr>
<tr>
<td>IIIa</td>
<td>Higher-grade routine non-manual employees</td>
<td>2.2</td>
</tr>
<tr>
<td>IIIb</td>
<td>Lower grade routine non-manual employees</td>
<td>1.3</td>
</tr>
<tr>
<td>IVa+b</td>
<td>Small proprietors</td>
<td>11.3</td>
</tr>
<tr>
<td>IVc</td>
<td>Farmers, smallholders, and other self-employed workers in primary production</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Technicians, lower-grade supervisors of manual workers</td>
<td>0.1</td>
</tr>
<tr>
<td>VI</td>
<td>Skilled manual workers</td>
<td>8.7</td>
</tr>
<tr>
<td>VIIa</td>
<td>Non-skilled manual workers (other than in agriculture)</td>
<td>9.7</td>
</tr>
<tr>
<td>VIIb</td>
<td>Peasants</td>
<td>52.4</td>
</tr>
<tr>
<td>N</td>
<td>3,049</td>
<td>8.707</td>
</tr>
</tbody>
</table>

Notes:
1. Weighted percentages and unweighted Ns for respondents aged 20-69.
2. The analysis includes cases for which parents’ occupational information is missing.

3.6 Unit of analysis

While the EGP schema has been widely employed with its tested validity (Evans, 1992), it has also been subject to considerable criticism, particularly from feminist social scientists. The criticism forms an organic part of the overall feminist criticism towards the long-term neglect of women in social mobility as a research area (Dale, Gilbert, & Arber, 1985; Payne & Abbott, 1990). Meanwhile, the exclusion of women from mobility research has been described as ‘self-deceiving intellectual gymnastics’ by qualitative researchers (Thompson, 1997). Focussing on the EGP schema per se, the debate was most heated during, but not limited to, the second half of the 1980s (Britten & Heath, 1983; Erikson, 1984; Erikson & Goldthorpe, 1992b; Goldthorpe, 1983, 1984; Goldthorpe & Payne, 1986; Heath & Britten, 1984; Stanworth, 1984). Conceived in an era of low participation of
women in the labour market, the EGP schema tends to be viewed as depicting the contours of men’s occupational structure, whereas its capacity to analyse women’s social mobility has been held in doubt (Britten & Heath, 1983; Crompton, 2008; Goldthorpe, 1985). Such doubt has led to empirical assessment of the cross-gender validity of the schema (Evans, 1996), the conclusion of which proves to be in favour of the EGP schema. According to Evans (1996), likely problems regarding applications of the schema to the case of women are rooted in the reality of occupational gender aggregation rather than the logic of the conceptualisation of class of the schema per se. Thus the EGP schema (‘Goldthorpe schema’ in Evans’ paper) can be used, and has been used, in mobility research of both men and women (Goldthorpe & Jackson, 2007; Goldthorpe & Mills, 2004, 2008).

The issue of the unit of analysis in class analysis emerged as the academic interest in women’s mobility increased. In the conventional approach to mobility research, the family is treated as the unit of analysis, and class positions of household members are typically determined by the class position of the male head of household. As a result, the class of origin is derived from the husband/father’s occupation. Although Goldthorpe (1984) made a forceful response to defend the conventional approach, the sole reliance upon the class of the male head of household to determine class positions of family members becomes increasingly unacceptable. As an alternative, Erikson (1984) developed the ‘dominance approach’ to resolve the problem, which was later adopted in the CASMIN project. Briefly, in families where both husband and wife have full-time occupations it is the more desirable or advantaged class position that is used to represent the class of the family. At the empirical level, however, it is still the male partner’s class position that is usually taken as the primary earner’s (family) class in Western societies.

As mentioned in Chapter 2, women in China, particularly urban women, have shown high participation in the labour market, which is partly a consequence of state protection in the pre-reform era. Thus I would expect Chinese women’s class positions to be less affected by the intermittent nature of women’s career path (Goldthorpe, 1984). In other words, married women’s class position in China is viewed as determined by their occupation rather than attributable to that of their husband. Therefore, while there is no question that class positions of women in terms of individual class mobility are determined by their own
occupation, as with men, I take up the ‘dominance approach’ for class of origin in the analysis of intergenerational mobility. Specifically, the more advantaged class position of either the father or the mother is used to impute the family class position at respondent’s age 14/18. In so doing, I may also be able to avoid reducing the sample size for those cases where the father’s class information is unavailable or the father’s class position is less advantaged than the mother’s but where the mother’s occupational information is available.

3.7 Statistical methods

Mobility research has become a subject area that presents increasingly sophisticated statistical techniques. However, a firm standpoint taken by this study is that, applications of particular statistical methods are determined solely by the needs arising from research questions. In this section, I provide a brief overview of the analytical techniques that are employed in each empirical chapter. Full details of the statistical models are given in the corresponding chapters where they are employed (or in their Appendices).

3.7.1 Analysing absolute mobility

In Chapter 4, I examine temporal changes in the class structure and absolute mobility rates using the six-fold EGP class schema that is reclassified on the basis of the ten-fold one previously presented.24 With reference to the class structure, the chapter adopts the index of dissimilarity (often referred to as Δ or DI) and the index of net differences (also known as ND) to compare each pair of class distributions where necessary, including the structural changes over time, gender disparity, urban-rural differences in the structural context of class mobility, and differences between the distributions of origin and destination classes.

While the DI is often used in mobility studies to compare any two-class distributions with the same number of class categories (Breen, 2004; Erikson & Goldthorpe, 1992a), this study uses both the DI and ND since the latter gives information that is not captured by DI. Suppose there are two class distributions – A and B. By comparing A and B with the DI,

24 See Table 4.1.
we can tell the percentage of cases that would have to be reallocated to different class positions in order to make the two distributions identical. That said, the measure does not give any information on which class distribution is preferable to the other, nor does it consider the source of differences between A and B as residing in the localised concentrations (Johnson, 1973; Lieberson, 1976). Turning to the ND, we find that the measure represents the difference between two opposing probabilities: the probability that the class position of a randomly selected case in A will be more advantaged than that of a case randomly selected from B, and the reverse probability\(^{25}\). With NDs, we are able to tell the general direction in which one class structure is different from the other so as to answer questions such as ‘Is the 2005/6 class structure in China an upgrading compared with that in 1996?’.

In the rest of Chapter 4, absolute mobility rates, including total mobility, upward mobility, downward mobility and horizontal mobility, are calculated on the basis of 6×6 mobility tables, which by their nature are cross-tabulations of origin and destination classes. With the mobility tables, the chapter also reports inflow and outflow rates. Whilst the entries of an outflow table sum to 100 per cent along each row of the table, those in an inflow table sum to 100 per cent along each column. The former gives a general impression of how individuals of various class origins are distributed across classes of destination, whereas the latter informs us of where members of each social class are from.

3.7.2 Analysing social fluidity

Chapter 5 looks at relative mobility (or social fluidity) using various statistical methods, including odds ratios, log-linear and uniform multiplicative layer effect (or UNIDIFF) models, the Hauser-type levels model, and the core model of social fluidity.

As basic elements of relative mobility analysis, odds ratios are measures of the chance of an individual from one origin class being found in a particular destination class rather than

\(^{25}\) The possible value of an ND ranges from -1.0 (if all cases in Distribution B are in more advantaged class positions than cases in Distribution A) to 1.0 (if all A cases are in more advantaged class positions than cases in B). The value will be nil when the two above mentioned probabilities are identical with each other. See Liberson (1975) for details regarding the measure and computational procedures.
another, relative to those from a different origin class being found in the same destination class rather than another. Suppose Classes A and B are classes of destination, whilst Classes C and D are classes of origin. For individuals originated in C, relative to the chance of individuals originated in D, their chance of being found in A rather than B is computed from a four-cell mobility table as below (Breen, 2004: Ch.2):

\[
\text{Odds ratio} = \frac{F_{CA}}{F_{CB}} \div \frac{F_{DA}}{F_{DB}}
\]

where \(F_{CA}\) refers to the number of cases in A who originated in C, \(F_{CB}\), the number of cases in B who originated in C, and so on. In this example, if the odds ratio equals one, then individuals of the two different origin classes are under perfect mobility. However, this is not expected to happen with real cases.

To investigate the trends of social fluidity, I adopt what is viewed as standard practice in research of social fluidity: the conditional independence model as a base-line model, the constant social fluidity model (CnSF), and the UNIDIFF model (or log-multiplicative model). Briefly, with the conditional independence model, we assume that there is no association between class of origin and class of destination, while the structure of both origin and destination classes alters over time. The CnSF model allows class of origin to be associated with class of destination yet assumes that the strength of association does not vary with a third variable, i.e. year of survey in the analysis of this chapter. The UNIDIFF model, on top of structural changes of origin and destination classes and the association postulated in the CnSF model, further allows the coefficient for the association to vary across mobility tables of the two points in time (see for full details Erikson & Goldthorpe, 1992a: Ch.3; Xie, 1992). As regards differences in relative mobility across gender and hukou origin, the common social fluidity model (CmSF) and the UNIDIFF models will be fitted. Similar to the CnSF model, the CmSF model assumes associations between classes of origin and destination, but does not allow the association to vary with gender or hukou origin.

As regards the Hauser-type levels model and the model of core social fluidity, both are sophisticated topological log-linear models. However, I have chosen to fit both to seek answers to different research questions, although both are used to explore the endogenous patterns of intergenerational mobility that are independent of structural influence. Under
the ‘Hauser-type’ levels model, entries in the entire mobility table are allocated to different
density levels, the number of which is normally but not always limited not to exceed the
number of classes in the mobility table (Erikson, Goldthorpe, & Portocarero, 1982;
Goldthorpe, 1987; Hauser, 1978, 1980). On the basis of the fitting of the model, density levels are visualised in order to reveal which cells show greater propensity for occurrence than others.

Unlike the ‘Hauser-type’ levels model, which is based on a single matrix, the core model of social fluidity is designed as a multi-matrix levels model and was initially applied in comparative studies to capture the ‘common’ or ‘core’ pattern of social fluidity across countries (Breen, 2004; Erikson & Goldthorpe, 1992s). By allocating cells in the mobility table to eight effects of four types, i.e. effects of hierarchy, inheritance, sector, and (dis)affinity, we are able to shed light into the details of the generic pattern of social fluidity in China. As with other log-linear analyses, the core model calls for relatively larger cell values in the mobility table. The Chinese variant of the core model is developed with collapsed data of 1996 and 2005/6 for men and women separately.

3.7.3 Analysing work-life and intergenerational mobility

Chapter 6 focuses on the role of the respondent’s entry class position on the outcome of intergenerational mobility. Three sets of analytical techniques are applied in this chapter. In the descriptive section, overall patterns of ‘three-point’ outflow, i.e. from origin class to entry class position, and from entry position to destination class, and their variations across gender and hukou origins are presented. For the sake of both practicality and validity for the present purpose of research, a fourfold version is applied, in which Classes IIIa, IVa+b, and V+VI are collapsed into the Intermediate classes.

In the second part of the empirical analysis of Chapter 6, CmSF and UNIDIFF models are applied to examine the gender differences in social fluidity of two transitions – the transition from class of origin to first employment, and thence from class of first employment to class of destination.

The final empirical section of the chapter employs the Stereotype Ordinal Regression (SOR) model to further analyse intergenerational mobility by including various covariates.
It is out of the need to carry out multivariate analysis and incorporate all the covariates that are of interest into one single model fitting that multinomial conditional logistic (MCL) models (DiPrete, 1990; Hendrickx, 2000; Lunt, 2001; Wu & Treiman, 2007) are selected for the current analysis. The details of the model are given in the Appendix to Chapter 6.

3.8 Conclusion

To sum up, this chapter has introduced the data and statistical methods that are used in this study, along with a thorough review of relevant class schemas for mobility research of China and a detailed description of the construction of the class schema that is to be used in the empirical chapters. As stated in Chapter 1, the central concern of this study is the amount of intergenerational mobility, temporal changes and patterns of social fluidity within China, using data of three national representative surveys that were collected respectively in 1996, 2005 and 2006. To this end, I choose to adopt the class structural approach, which allows us to examine both absolute and relative mobility within the society. In the next chapter, I start with descriptive analysis that brings to light changes in the structural context of intergenerational mobility, total rates of absolute mobility, inflow and outflow rates.
Appendix Chapter 3: Key variables in the datasets

Table 3A.1: Key variables in the datasets

<table>
<thead>
<tr>
<th></th>
<th>LHSC 1996</th>
<th>CGSS 2005</th>
<th>CGSS 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social mobility variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father’s class at R age 14/18</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mother’s class at R’s age 14/18</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>R’s class at time of survey</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>R’s class upon entry into the labour market</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R’s education</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>R’s employment status</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Institutional effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R’s Hukou at 14/18</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R’s Hukou now</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Father’s hukou at R’s age 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother’s hukou at R’s age 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father’s hukou at time of survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother’s hukou at time of survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R’s CCP party membership</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father’s CCP party membership</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at R’s age 14/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother’s CCP party membership at R’s age 14/18</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Father’s work unit (danwei) at R’s age 14/18</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mother’s work unit (danwei) at R’s age 14/18</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>R’s work unit (danwei) at time of survey</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Demographic variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Gender</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>N</td>
<td>6,090</td>
<td>10,372</td>
<td>10,151</td>
</tr>
</tbody>
</table>

Notes:

1. ‘R’ = respondent
2. ‘Class’ in this panel refers to occupational information from which class variables can be derived.
Chapter 4 Class structure and absolute mobility rates

4.1 Introduction

This chapter starts the empirical analysis of this study by examining the class structure and absolute mobility rates in contemporary China, using the six-fold EGP class schema introduced in Chapter 3. It is aimed to provide a descriptive basis on which we can further explore changes and patterns of social fluidity. As explained in the preceding chapter, all analysis is conducted separately on the 1996 and 2005/6 data. From here on, the 2005 and 2006 CGSS data are combined for most analyses.26

The chapter is organized as follows. After a brief literature review, it first provides an account of the class structure of men and women in China and structural differences between 1996 and 2005/6. I then look at the inflow of each class category, i.e. the composition of origin classes of individuals who are distributed to each of the six class categories. Following the understanding of the structural context, the next section discusses the absolute mobility rates of men and women that are derived from 6×6 mobility tables. The final section turns to the outflow patterns of men and women, i.e. to what destination class positions individuals of each origin class are distributed across the six-fold class schema.

Very briefly, the chapter shows substantive evidence of structural upgrading in China during the decade in question, which features the substantial contraction of the proportion agricultural destinations make up in the class structure. In terms of absolute mobility rates, both men and women are found more mobile in 2005/6 than in 1996, mainly because of significant changes in upward mobility. The structural upgrading is also reflected by significant increases in the outflow of both men and women from agricultural origins to most non-agricultural destinations. Finally, results in all the above aspects indicate gender differences.

26 All three datasets are combined for part of analyses in Chapter 5 and Chapter 6.
4.2 Literature review

In concluding the eleven-country comparative study of social mobility in Europe, Breen and Luijkx (2004a) described a developmental path for countries in transitions from an agricultural society to an industrial one, and from an industrial society to a post-industrial one. In the former process, the size of farm-related social classes tends to decrease, whereas the other social classes, manual working classes in particular, tend to expand in response to the economic development. In contrast, the transition from an industrial to post-industrial society would result in the contraction of manual working classes and the growth of non-manual classes, such as salariat jobs and routine non-manual work. Such a developmental path not only is reflected by the pattern of structural changes of capitalist countries in the afore-mentioned transitions, but is also confirmed by the empirical evidence relating to the class structure in state socialist countries. As in other European societies, research based on data collected in the early 1990s indicates that agricultural classes in Russia contracted at a rapid rate and the society had a relatively advanced industrial occupational structure (Marshall, 1997: Ch.7).

It is worth noting that changes in structural context of social mobility are sometimes more than consequences of economic development. As can be seen in the existing mobility literature, the class structure in a country is also subject to effects of political intervention. For instance, the fall of the proportion of agricultural classes in the state socialist Russia (the former Soviet Union) and Hungary has mainly resulted from collectivisation and nationalisation of agricultural under the socialist regime (Erikson & Goldthorpe, 1992a; Marshall, 1997). Meanwhile, the combined force of the state socialist polity and its considerable level of industrialisation also made an unusually large proportion of white-collar employment.

As reviewed in Chapter 2, research that directly addresses the issue of social mobility in China is scanty. Nonetheless, there are studies from which we can learn about its class structure and absolute mobility rates. In regard to the structural context of social mobility, scholars within China emphasised the substantial upgrading of the occupational structure in the society. According to the 2004 study conducted by the CASS (Lu, 2004), the economic development since the late 1970s has resulted in a more ‘advanced’ occupational
structure, showing the trend that has been found in industrialised nations. Using the census data collected during 1982 – 2000 and a ten-fold class schema, the study indicates that an increasingly upgraded occupational structure has opened up more room for upward mobility.27

What has promoted the upgrading, however, is the expansion of occupations at the lower-middle level, such as clerical jobs and work at sales and services, rather than those at the upper-middle level or at the top. For instance, while the proportion of state and social administrators’ make up in the overall occupational structure rose during the 1980s, the following decade witnessed its negative growth. Likewise, the relative size of professional and technician jobs in the class structure is reported to expand much slower than that of non-agricultural jobs at lower levels (Lu, 2004: 106). Thus the developmental path suggested by Breen and Luijkx seems inapplicable, at least not in a direct fashion, to describe changes in the Chinese class structure. In other words, although there are signs of an upward shift of the occupational structure in China, it is likely that the outflow from the reduced agricultural class is absorbed more by non-agricultural manual classes than by non-manual classes.

As regards absolute mobility rates, an important message conveyed in earlier research on social mobility in China is that the Chinese society is less mobile than Western countries. Using the 1988 data collected in two municipalities and four provinces, Cheng and Dai (1995) found that both Chinese men and women are evidently less mobile than people in Western societies and socialist countries whose total mobility is examined in the CASMIN project (Erikson & Goldthorpe, 1992a).28 While the lowest total mobility rates in the CASMIN study, which are found only with the oldest cohort in Poland and Ireland, are above 40 per cent, less than 40 per cent of individuals of most cohorts in Cheng and Dai’s study are in different class positions than their parents’. Similar findings emerge from later studies. Dividing the 1996 LHSC data into three age groups, Yang (2008) reveals that less than 35 per cent of men and less than 25 per cent of women in destination classes different from their parents’. Further, a comparative mobility study of three East Asian countries indicates that men’s total mobility rate in China is lower than in both Japan and Korea.

27 See Figure 3.2 for the ten class categories in the CASS class schema.
28 The two municipalities are Beijing and Shanghai, and the four provinces include Liaoning, Shandong, and Hebei, which are all in northern China, and Guizhou, a south-western province.
(Takenoshita, 2007). Despite the differences in data and class schemas adopted for the analyses, explanations given by researchers of these studies are consistent with each other in that the highly skewed class structure and lack of intergenerational movement from agricultural sectors to non-agricultural destination positions are regarded as the main reasons of low mobility rates in China.

Another aspect that is worth noting in the existing literature is gender disparity with reference to absolute mobility rates in China. According to Cheng and Dai, total mobility rates of women in different cohorts are relatively stable, whereas the effect of structural changes is found evident on the total mobility rates of men. In this sense, economic reform has a greater force to push up men’s total mobility, rather than women’s, to ‘historically high levels’ (1995: 23). Yang’s research (2008) confirms that Chinese men, at a national level, are more upwardly mobile than women. Further on the basis of cohort analysis, Yang reveals a more profound gender gap in upward mobility. For all three cohorts in the analysis, men show a considerable higher level of upward mobility than women. That said, this is mainly because of the lack of mobility of rural women. Comparing these findings with gender differences in absolute mobility rates in former state socialist countries, we see that women in Russia, Poland, and Hungary actually experienced equally high or even higher total mobility than men (Gerth & Hout, 2004; Mach, 2004; Marshall, 1997; Robert & Bukodi, 2004). Given these results, gender disparity in absolute mobility rates between 1996 and 2006, a decade during which China experienced rapid social and economic changes, remains an interesting issue to explore. Thus in the following sections, I conduct most analysis on the 1996 and 2005/6 data separately for men and women.

4.3 Class structure of origin and destination

From the class-structural approach, social mobility refers to individuals’ movement between class positions. To be more specific for intergenerational mobility, we look at differences between individuals’ origin and destination class positions. In this sense, the class structure may be understood as an opportunity structure that serves as the context of social mobility. That is to say, the relative size of a particular destination class means how much ‘room’ there is for those who seek access to positions in it. In a temporal perspective, individuals’ opportunities of social mobility are affected by changes in the relative size of
classes in the overall structure (Breen, 2004; Goldthorpe, 1987). In this section, I examine the class structure in China in order to understand how the structural context of intergenerational mobility has evolved for Chinese men and women. To examine the differences between structures, I present both descriptive statistics with figures and results of comparison using the index of dissimilarity (hereafter DI or Δ) and the index of net difference (hereafter ND).

Figure 4.1: Distributions of origin class

Notes:
1. The value for each bar refers to the percentage of people from the particular origin class makes up in the total sample. For example, 7.0 above the first bar in the far left means men of Classes I+II origin account for 7.0 per cent in the 1996 male sample.
3. * p<0.05; ** p<0.01; *** p<0.001 (the same below). All asterisk symbols refer to the significance level of the difference between 1996 and 2005/6. For example, ‘9.0**’ above the second bar of the
‘I+II’ group means that the difference between the 1996 and 2005/6 percentages of men from Classes I+II origin is significant at p<0.01 level.

Note: N for 1996 urban is 2,831, 2005/6 urban 9,764, 1996 rural 2,915, and 2005/6 rural 7,864.

To briefly recapitulate the introduction of DI and ND in the preceding chapter, both measures can be used to compare any two class distributions in mobility research as long as they have the same number of class categories. While the DI indicates the percentage of cases that would need to be ‘reallocated’ to other class positions to make the two distributions identical, it does not tell us which distribution is more preferable to the other or the source of differences (Johnson, 1973; Lieberson, 1976). As a supplementary measure in this section, the ND tells us the probability that the class position of a randomly selected case in one distribution will be more advantaged than that of a case randomly selected from the other distribution. In other words, it not only tells us how different two
distributions are from each other, but also informs us of whether one class structure is more upgraded than the other.29

Figure 4.1 presents changes in distributions of origin and destination classes separately for men and women, and for the urban and rural sample. To best visualise the temporal changes and distinguish the male distribution from women’s, and urban distribution from the rural, each class category in both figures starts on the left with two bars showing the percentage of cases in the overall class structure respectively for 1996 and 2005/6 male and urban sample, whereas the two bars on the right indicate the percentage respectively for the 1996 and 2005/6 female and rural sample. Asterisks are given beside the 2005/6 values that are significantly different from the corresponding 1996 values. Not surprisingly, the male structure of origin class does not seem to differ much from the female structure of origin class. Furthermore, the ND values in Table 4.1, which are negative but close to nil, indicate that the origin structures of both men and women (ND = -0.04 for both) are merely slightly upgraded between 1996 and 2006. Thus our interest would be in general characteristics of all distributions presented in Figure 4.1.

The most striking feature of the origin structure is that it is extremely skewed towards agricultural sectors, where nearly three quarters of men and women come from Class VIIb background. This may provide a possible explanation to earlier findings of the extremely high homogeneity of social background among peasants, i.e. randomly chosen cases among those in agricultural destination positions are highly likely to be from the same origin class (Yang, 2008). According to Yang, this finding, along with the relatively high homogeneity among respondents in salariat positions, implies high rates of immobility at the two ends of occupational structure. Turning to the lower figure in Figure 4.1, we can see the sharp contrast between the urban and rural distributions of origin class. Although around 4 out of 10 urban respondents are of agricultural origin, which may be explained by the high level of concentration of class background in agricultural sectors, the urban sample shows a relatively more balanced distribution across all origin classes. In contrast, around 90 per cent of rural respondents are from agricultural background. As non-agricultural occupational opportunities make up a tiny proportion among jobs in rural

29 Suppose there are Distribution A and Distribution B of social classes. As explained in Chapter 3, the value of ND would be -1.0 if all cases in A are in more advantaged class positions than those in B, whereas the value would be 1.0 if it is the reverse case. When the two probabilities are identical with each other, the value of ND would be nil.
areas, this implies that a majority of rural respondents from agricultural background are likely to be in agricultural work as their parents are.

Table 4.1: Index of dissimilarity and index of net difference for origin and destination classes

<table>
<thead>
<tr>
<th></th>
<th>Δ</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin vs. origin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men: 1996 v. 2005/6</td>
<td>5.0</td>
<td>-0.04</td>
</tr>
<tr>
<td>Women: 1996 v. 2005/6</td>
<td>4.6</td>
<td>-0.04</td>
</tr>
<tr>
<td>Destination vs. destination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men: 1996 v. 2005/6</td>
<td>13.3</td>
<td>-0.04</td>
</tr>
<tr>
<td>Women: 1996 v. 2005/6</td>
<td>13.6</td>
<td>-0.11</td>
</tr>
<tr>
<td>1996: men v. women</td>
<td>12.7</td>
<td>0.13</td>
</tr>
<tr>
<td>2005/6: men v. women</td>
<td>8.6</td>
<td>0.07</td>
</tr>
<tr>
<td>Origin vs. destination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men: 1996</td>
<td>20.9</td>
<td>-0.22</td>
</tr>
<tr>
<td>Men: 2005/6</td>
<td>24.7</td>
<td>-0.23</td>
</tr>
<tr>
<td>Women: 1996</td>
<td>10.4</td>
<td>-0.09</td>
</tr>
<tr>
<td>Women: 2005/6</td>
<td>19.1</td>
<td>-0.16</td>
</tr>
</tbody>
</table>

Note: ‘Δ’ refers to the index of dissimilarity and ‘ND’ to the index of net difference.

As regards distributions of destination classes, first of all, significant differences between 1996 and 2005/6 are found for both men and women. It is clear in Figure 4.2 that the percentage of both men and women in agricultural work decreased significantly during the decade. While more than half of men and nearly two thirds of women are peasants in the 1996 data, a substantially higher percentage of men and women are engaged in non-agricultural work in 2005/6. Given the relatively stable percentage of respondents from agricultural background, the contraction of Class VIIb implies the rise in upward mobility from this most disadvantaged class and the possibility of general upgrading of the class structure. While the former issue will be examined in later sections, we see different results for men and women in relation to the latter possibility. The second panel of Table 4.1 shows the Δ and ND values of the class distributions at the two ends of the decade. For both men and women, over 13 per cent of cases would be required to have different class positions in order to make the two distributions identical, but different stories emerge from the ND values. In the case of men, the ND value of -0.04 by no means indicates sharp differences between the two points in time in structural terms. Despite the contraction of
the agricultural class, growth is found mainly at the relatively lower end of the non-agricultural part of the class structure, whereas the expansion of the routine non-manual class is significant but limited and the relative size of the salariat class, or, that is, the service class, actually slightly decreased rather than increased.

Figure 4.2: Distribution of destination class for men and women

![Figure 4.2: Distribution of destination class for men and women](image)

Looking at Figure 4.1 and 4.2, it is Class IIIa that increased. This may be explained by the special situation during the reform, especially after Deng’s 1992 speech, that some parents and respondents withdrew from salariat positions to ‘go down to sea’ (entering the commercial/business world where they do not necessarily become self-employed but may set up various companies by themselves or with others. In the case of the latter, they might not be working as cadres as in the usual sense but not small business owners (getihu) either, hence as ‘clerks’ (zhijiyuan) and coded as in Class IIIa.

30 Looking at Figure 4.1 and 4.2, it is Class IIIa that increased. This may be explained by the special situation during the reform, especially after Deng’s 1992 speech, that some parents and respondents withdrew from salariat positions to ‘go down to sea’ (entering the commercial/business world where they do not necessarily become self-employed but may set up various companies by themselves or with others. In the case of the latter, they might not be working as cadres as in the usual sense but not small business owners (getihu) either, hence as ‘clerks’ (zhijiyuan) and coded as in Class IIIa.
In comparison, the ND value of -0.11 in the case of women shows a higher degree of structural upgrading, mainly because of a greater degree of reduction in the percentage of peasants and relatively more rapid growth of the routine non-manual class. Unlike the male sample, the minor decrease in the percentage of salariat women is not statistically significant. If we further inspect structural changes using the ten-fold EGP schema, as shown in Table 4A.1 in the Appendix, a significant larger proportion of both men and women are found in higher-level salariat positions in 2005/6 than in 1996. Hence, the apparent contraction of the male salariat class actually results from the reduced percentage of men engaged in lower salariat occupations. While this reminds us of Lu’s observation of the diminished role of state and social administrative occupations in the overall class structure after the 1980s (Lu, 2004: Ch.3), another possible explanation would be the inclusion of an extra group of occupations in the 1996 raw data that were specific to China, most of which are administrative and managerial jobs and fall into the category of Class II (Treiman & Walder, 1998: B.46).31

From Table 4.1 and Figure 4.2, it is also of interest that, the comparison between the class structure of men and women displays a pattern of gender differences in employment that is different from what is found in Western societies. Using the data of national samples from five European countries, Erikson and Goldthorpe (1992a: Ch.7) indicated that women, whatever nation they are from, tend to be over-represented in routine non-manual and non-skilled manual work, but to be under-represented in skilled manual employment.32 Within the salariat class, women tend to be under-represented in higher salariat occupations. As to the Δs, the CASMIN study reported that a quarter to two-fifths of employed women would need to be in different class positions in order to make the female class distribution the same as the male distribution. In the Chinese case, we see less salient differences than those revealed in Western societies. On the one hand, women, in both the 1996 sample and the 2005/6 one, are substantially over-represented in the agricultural sector (Class VIIb), and under-represented in salariat occupations (Class I+II). On the other, only minor variations are found in the percentages of men and women in routine non-manual and non-skilled manual work. In general, a relatively larger proportion of men

31 Typical occupations in this extra group include leading cadres of government organisations of various levels, leading cadres of Party organisations of various levels, leading cadres of enterprises and institutions, and political functionaries.
32 The five nations in the CASMIN study of women’s social mobility are France, the Federal Republic of Germany (FRG), Hungary, Poland, and Sweden.
are engaged in both skilled and non-skilled manual work, whereas the significant rise in women’s involvement with routine non-manual jobs brings about a higher percentage of women in Class IIIa than men.

Further, the Δs (12.7 in 1996 and 8.6 in 2005/6) and NDs (0.13 in 1996 and 0.07 in 2005/6) in Table 4.1 indicate that, as a consequence of the different temporal changes in class structure, the gender difference in 2005/6 is less marked than a decade ago. Nevertheless, this is not to say that the opportunity structure has become equally favourable for women and men. If we separate the salariat class, as seen in Table 4A.1 in the Appendix, women are under-represented in higher salariat occupations. In spite of the significant expansion in both male and female Class I, the growth in the relative size of Class I for women is very limited. In other words, the growth of the non-agricultural female labour force is absorbed more by manual work and lower ‘white-collar’ jobs.

Finally, the last panel of Δ and ND values in Table 4.1 further indicate the structural changes in China. Unlike most Western countries, where structural differences between origin and destination classes are declining or stable over time (Breen & Luijkkx, 2004b), the 2005/6 Δs and NDs of both men and women are larger in value than those in 1996, particularly in the case of women. Turning back to the class distributions in Figure 4.1 and 4.2, this is mainly driven by the contraction of the agricultural sector, which means that a considerable proportion of non-agricultural classes are contributed by the inflow from the agricultural sector. In the next section, I examine the inflow rates for men and women in order to understand class formation in contemporary China.

4.4 Absolute mobility rates: inflow rates

A set of percentages that sum to 100 per cent along each column of the table, an inflow mobility table informs us of the composition of each destination class in terms of the class background of its members. Table 4.2 and 4.3 present the inflow tables for men and women respectively in the 1996 and 2005/6 sample. For better visual effects, the rows for the 2005/6 data are shaded light grey, and the non-shaded rows indicate results based on the 1996 data.
As discussed at the end of the preceding section, the considerable difference between the percentages of peasants in the origin distribution and destination distribution suggests the important role of inflow from Class VIIb in the composition of non-agricultural classes. Two points of interest regarding the class of peasants emerge from Table 4.2 and 4.3. Firstly, respondents of agricultural origin form the predominant source of inflow for all non-agricultural classes. In the case of men, sons of peasants make up at least two fifths of non-agricultural classes. For small business owners in particular, the inflow from the agricultural sector seems even more important, with over three fifths of its members from agricultural background. During the decade, only a minor rise is shown in men’s inflow from agricultural origin to manual working classes and the petty bourgeoisie, whereas the routine non-manual class actually sees a significant decline in such inflow. In comparison with men, the proportions daughters of peasant families make up in all non-agricultural classes, except Class IV, are substantially smaller, with particular reference to non-manual classes. However, women from agricultural background are becoming a significantly bigger source of inflow in manual working classes. In 1996, around two fifths of women in Class IIIb+VIIa and slightly more than that in Class V+VI are from agricultural background, but by 2006 the proportions have risen to about half for both classes. Such changes are consistent with increasing labour migration from rural to urban areas during the reform era, with increased opportunities of manufacturing and service jobs in urban areas.

Secondly, Class VIIb displays extreme homogeneity in terms of its members’ class origin, which is in line with what is summarised in Breen (2004) that declining classes tend to be less diverse in terms of class origins. The composition of the class of peasants in China is extremely reliant on the recruitment within Class VIIb. While respondents of agricultural origin account for nearly three quarters of the total sample, about nine out of ten peasants are sons and daughters of peasant families. Moreover, as the percentage of Class VIIb in the origin structure declines over the decade, there is a significant rise, albeit slightly, in the proportion of self-recruitment in the agricultural sector.

33 According to the Chinese National Bureau of Statistics (NBSC, 2011), the total number of migrant workers in China has exceeded 250 million.
Table 4.2: Inflow mobility rates for men (% by column)

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>All (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td>19.7</td>
<td>14.9</td>
<td>7.5</td>
<td>10.5</td>
<td>10.3</td>
<td>1.9</td>
<td>7.0</td>
<td>295</td>
</tr>
<tr>
<td>IIIa</td>
<td>3.7</td>
<td>3.3</td>
<td>2.3</td>
<td>4.3</td>
<td>2.9</td>
<td>0.4</td>
<td>1.8</td>
<td>73</td>
</tr>
<tr>
<td>IVa+b</td>
<td>7.1</td>
<td>10.2</td>
<td>4.0</td>
<td>3.7</td>
<td>5.7</td>
<td>0.8</td>
<td>3.5</td>
<td>368</td>
</tr>
<tr>
<td>V+VI</td>
<td>2.3</td>
<td>4.1</td>
<td>7.8</td>
<td>2.8</td>
<td>2.6</td>
<td>0.4</td>
<td>2.0</td>
<td>158</td>
</tr>
<tr>
<td>N</td>
<td>584</td>
<td>89</td>
<td>367</td>
<td>359</td>
<td>416</td>
<td>1,113</td>
<td>2,928</td>
<td>8,428</td>
</tr>
</tbody>
</table>

Notes:
1. Weighted analysis with unweighted N’s (the same below).
2. The upper figure of each pair refers to the 1996 survey, and lower figure, shaded in light grey, to the 2005/6 surveys (the same below).

Table 4.3: Inflow mobility rates for women (% by column)

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>All (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td>28.4</td>
<td>14.5</td>
<td>10.5</td>
<td>12.0</td>
<td>16.1</td>
<td>2.8</td>
<td>8.0</td>
<td>318</td>
</tr>
<tr>
<td>IIIa</td>
<td>32.3</td>
<td>25.1</td>
<td>9.3</td>
<td>13.3</td>
<td>11.3</td>
<td>3.3</td>
<td>9.9</td>
<td>1,114</td>
</tr>
<tr>
<td>IVa+b</td>
<td>6.7</td>
<td>5.3</td>
<td>1.9</td>
<td>4.3</td>
<td>4.9</td>
<td>1.1</td>
<td>2.4</td>
<td>88</td>
</tr>
<tr>
<td>V+VI</td>
<td>9.4</td>
<td>13.2</td>
<td>4.5</td>
<td>5.0</td>
<td>6.0</td>
<td>0.9</td>
<td>3.9</td>
<td>437</td>
</tr>
<tr>
<td>N</td>
<td>404</td>
<td>72</td>
<td>254</td>
<td>216</td>
<td>496</td>
<td>1,376</td>
<td>2,818</td>
<td>9,200</td>
</tr>
</tbody>
</table>

Next, in inspecting non-agricultural sectors in Table 4.2 and 4.3, we can see that self-recruitment plays a dominant role not only in the class of peasants, but also in the salariat class and manual working classes. For both men and women in these classes, members from within form the second largest source next to inflow from Class VIIb. In the case of the salariat class, respondents of salariat origins make up one fifth up to nearly a third of all members, which are in sharp contrast to the small proportions salariat parents account for in the overall structure of origin classes that are shown by row margins.
Likewise, if we were to combine Class V+VI and Class IIIb+VIIa, about one third of the manual working class as a whole are from manual working class background.

Finally, it is worth noting that respondents of salariat origins form a larger proportion in all non-agricultural classes than would be expected from ‘perfect mobility’. This implies the downward mobility from the salariat class, which will be observed in the analysis of outflow tables. Focusing on the inflow rates, a major point of interest is the particular importance of salariat origins in the routine non-manual class. For both men and women, around 15 per cent of members in Class IIIa are from salariat families. By 2006, the proportion has risen significantly to nearly one fifth for men and one quarter for women, which substantially exceed the proportion self-recruited members from within Class IIIa make up.

To sum up this section, although children of peasants make up the largest proportion of all social classes, the class formation in China – except that of the routine non-manual class and the petty bourgeoisie – shows a considerable degree of self-recruitment. Second, findings regarding the class of peasants should be highlighted. As Class VIIb declines between 1996 and 2006, its rate of self-recruitment increases rather than decreases. This indicates that the role of the agricultural sector as the source of outflow mobility rather than the destination of inflow mobility. In relation to the proportion that respondents of agricultural origin make up in non-agricultural classes, the significant increase in manual classes and decrease in non-manual classes imply the likely reinforced barriers against access from agricultural background to non-manual occupations. Finally, in comparing sons and daughters of peasants, we see that women of agricultural origins are particularly under-represented in the salariat class. Based on these observations, I proceed to the total rates of mobility for men and women.

4.5 Absolute mobility rates: total rates

To review the definitions provided in Chapter 3, the total mobility rate, or, TMR, tells us the proportion cases off the main diagonal of a mobility table make up in the total sample. The counterpart of TMR is the total immobility, i.e. the percentage of respondents who are found on the main diagonal. The total upward mobility rate, or TU, refers to the percentage
of respondents who are in class positions that are more advantaged than their origin classes, whereas the total downward mobility rate, or TD, is the percentage of respondents who are found in the opposite situation. Lastly, the horizontal mobility is used to describe movement between class positions that are of similar resources and desirability.

Table 4.4: Total rates and distribution of men by class of origin and destination

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td></td>
<td>2.8</td>
<td>0.3</td>
<td>0.9</td>
<td>0.9</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 ***</td>
<td>0.9 **</td>
<td>0.7 †</td>
<td>1.5</td>
<td>1.9 †</td>
<td>1.4</td>
</tr>
<tr>
<td>IIIa</td>
<td></td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9</td>
<td>0.5 *</td>
<td>0.3</td>
<td>0.4</td>
<td>1.0 †</td>
<td>0.4</td>
</tr>
<tr>
<td>IVa+b</td>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3 ***</td>
<td>0.2 **</td>
<td>0.6</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>V+VI</td>
<td></td>
<td>1.1</td>
<td>0.2</td>
<td>1.1</td>
<td>1.5</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.5 **</td>
<td>0.5 **</td>
<td>1.8 *</td>
<td>1.7 †</td>
<td>0.6 ***</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td></td>
<td>1.5</td>
<td>0.3</td>
<td>1.6</td>
<td>1.5</td>
<td>1.9</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4</td>
<td>0.8 *</td>
<td>0.7 ***</td>
<td>1.8</td>
<td>3.5 ***</td>
<td>0.7 †</td>
</tr>
<tr>
<td>VIIb</td>
<td></td>
<td>7.2</td>
<td>1.3</td>
<td>6.8</td>
<td>4.1</td>
<td>5.6</td>
<td>48.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>2.0 **</td>
<td>4.4 ***</td>
<td>6.0 ***</td>
<td>9.6 ***</td>
<td>42.4 ***</td>
</tr>
</tbody>
</table>

- Immobility - Upward mobility - Downward mobility - Horizontal mobility

Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>1996</th>
<th>2005/6</th>
<th>2005/6-1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mobility (TMR)</td>
<td>44.2</td>
<td>48.7</td>
<td>4.5***</td>
</tr>
<tr>
<td>Upward mobility (TU)</td>
<td>32.4</td>
<td>34.9</td>
<td>2.5*</td>
</tr>
<tr>
<td>Downward mobility (TD)</td>
<td>9.5</td>
<td>11.6</td>
<td>2.1**</td>
</tr>
<tr>
<td>Horizontal mobility (TH)</td>
<td>2.3</td>
<td>2.2</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Notes:
1. Cell values as percentages of total sample, upper figure of each pair is derived from the 1996 data, and lower figure from the 2005/6 data.
2. N for the 1996 data is 2,928, and 8,428 for the 2005/6 data.

Table 4.4 and 4.5 present the origin-by-destination distributions for men and women respectively in the 1996 and 2005/6 sample. Unlike inflow or outflow tables, cell values here are percentages of the total sample of cases respectively in the 1996 and 2005/6 surveys. To differentiate between upward and downward mobility, cells representing the former are shaded light grey, whereas cells of downward mobility are shaded dark grey. Cells on the main diagonals are shaded black to indicate immobility. As explained in Chapter 3, Classes IIIa-VI are treated as ‘intermediate classes’ in the analysis of total rates.
Thus cells indicating movement across these class categories are referred to as horizontal mobility and left non-shaded. In the lower panel of each table, total rates and changes between 1996 and 2006 are provided.

First we focus on the summary statistics in the case of men. In the lower panel of Table 4.4, we can see a significant rise in the total mobility rate from 44.2 per cent to 48.7 per cent between 1996 and 2006. When the total mobility is decomposed into upward mobility, downward mobility, and horizontal mobility, it can be further seen that both upward and downward mobility show a significant increase. Meanwhile, horizontal mobility of men is virtually unchanged. Thus the rise in TMR for men is the net outcome of increases in both upward and downward mobility over the decade in question.

To obtain details of the pattern of absolute mobility, we turn to cell values in Table 4.4. Looking at the main diagonal, we can easily see that immobility of peasants, despite its substantial decline over the decade, forms the predominant source of total immobility. Among non-agricultural classes, the salariat class and non-skilled manual workers are found less mobile than other class categories. While the former shows a significant decrease in immobility, immobility of Class IIIb+VIIa is found more important to the total immobility rate. Nevertheless, these changes are small enough to be regarded as basically negligible. Left to the main diagonal, mobility from agricultural origins to non-agricultural destinations contributes the most to the total upward mobility of men, which displays greater importance in the 2005/6 sample. That said, increase is found mainly with mobility from agricultural origins to manual work destinations, i.e. upward mobility that is of a short-range kind. On the right side off the main diagonal, it is less straightforward to identify which cells make the greatest contribution to the total downward mobility. It is worth noting, however, that a modest significant increase is found from salariat origins to routine non-manual occupations.

In the case of women, Table 4.5 shows substantially lower total mobility rates than men’s at both time points (35.2 per cent and 43.0 per cent). Nevertheless, women’s total mobility rate shows a significant increase by 7.8 percentage points, which is more marked than

34 The presentation of Table 4.4 and 4.5 is based on corresponding tables in Goldthorpe and Jackson (2007) and Li and Devine (2011).
35 Although increases are also found in downward mobility from Class I+II, Class IIIa, and Class V+VI to Class IIIb+VIIa, these changes are marginally significant at the 0.1 level.
The disaggregation of total mobility reveals that the major source of its rise is the significant rise in upward mobility and slight decreases in downward mobility and horizontal mobility, the former of which changes is actually not significant.

Table 4.5: Total rates and distribution of women by class of origin and destination

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td></td>
<td>2.6</td>
<td>0.3</td>
<td>0.7</td>
<td>0.7</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.8</td>
<td>1.7 ***</td>
<td>0.6 †</td>
<td>1.2 †</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>IIIa</td>
<td></td>
<td>0.6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>0.9 ***</td>
<td>0.3</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5 **</td>
</tr>
<tr>
<td>IVa+b</td>
<td></td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.2 †</td>
<td>0.4 †</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2 **</td>
</tr>
<tr>
<td>V+VI</td>
<td></td>
<td>1.3</td>
<td>0.3</td>
<td>0.5</td>
<td>1.0</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8 *</td>
<td>0.9 ***</td>
<td>0.4</td>
<td>1.5 *</td>
<td>1.8</td>
<td>0.5 ***</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td></td>
<td>1.1</td>
<td>0.3</td>
<td>0.7</td>
<td>1.1</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1</td>
<td>1.0 ***</td>
<td>0.6</td>
<td>1.5</td>
<td>2.9</td>
<td>1.1 **</td>
</tr>
<tr>
<td>VIIb</td>
<td></td>
<td>3.4</td>
<td>0.7</td>
<td>4.6</td>
<td>2.4</td>
<td>4.6</td>
<td>58.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.8</td>
<td>2.1 ***</td>
<td>3.9</td>
<td>4.6 ***</td>
<td>8.4 ***</td>
<td>48.5 ***</td>
</tr>
</tbody>
</table>

- Immobility
- Upward mobility
- Downward mobility
- Horizontal mobility

Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>1996</th>
<th>2005/6</th>
<th>2005/6-1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mobility (TMR)</td>
<td>35.2</td>
<td>43.0</td>
<td>7.8***</td>
</tr>
<tr>
<td>Upward mobility (TU)</td>
<td>21.0</td>
<td>27.9</td>
<td>6.9***</td>
</tr>
<tr>
<td>Downward mobility (TD)</td>
<td>12.7</td>
<td>12.8</td>
<td>-0.1</td>
</tr>
<tr>
<td>Horizontal mobility (TH)</td>
<td>1.5</td>
<td>2.4</td>
<td>-0.9**</td>
</tr>
</tbody>
</table>

Notes:
1. Cell values as percentages of total sample, upper figure of each pair is derived from the 1996 data, and lower figure from the 2005/6 data.
2. N for the 1996 data is 2,818, and 9,200 for the 2005/6 data.

In examining cells values in Table 4.5, our observations are somewhat similar to what is revealed in the case of men. First of all, immobility in the class of peasants plays the most important role in the total immobility, whereas its substantial decline pushes up the total mobility of women over the decade in question. Next, it can be seen in the lower left side of the table that both mobility into ‘intermediate classes’ (Class IIIa and Class V+VI) and mobility into the lower manual working class (Class IIIb+VIIa) from agricultural origins increased over the decade. However, as with men from agricultural background, the more substantial change is found in short-range mobility among daughters of peasant to
non-skilled manual work. As to downward mobility, while the change in the rate of total downward mobility is not significant, increases of minor degrees are found from salariat origins to the ‘intermediate’ destinations (Class IIIa-V+VI).

Overall, the analysis of total rates shows increased mobility in China. To reconfirm, total rates of absolute mobility are calculated on the basis of two age groups. As seen in Table 4A.2 in the Appendix, total mobility rates show a rising tendency for both men and women. Again, the increase in TMR is largely the outcome of increases in upward mobility, to a greater extent for the younger age group. Despite gender disparity in the levels of total rates, common features are found in the origin-by-destination distributions for men and women. On the one hand, the upgrading of the overall class structure is accompanied by the decline in immobility of the class of peasants, which in turn pushes up the total mobility rates, with particular reference to upward mobility, of both men and women. On the other, increases in upward mobility from agricultural background are found more in movement of a short-range rather than long-range kind. In the next section, I turn to outflow rates using the same data as in the previous tables.

4.6 Absolute mobility rates: outflow rates

Table 4.6 and 4.7 present the outflow rates for men and women respectively from the 1996 and 2005/6 sample. As the counterpart to the inflow table, an outflow mobility table tells us how individuals of different class origins are distributed across various destination classes. An outflow table differs from the inflow table in that its cell values add up to 100 per cent along each row of the table, whereas the column marginal distributions indicate the overall class distribution of the sample. In a comparative study, the normal practice of starting with column marginal distributions in outflow analysis can thus inform us of changes in the structural context (see for example Goldthorpe & Jackson, 2007; Li & Devine, 2011). Since we have analysed the structural changes in Section 4.3, this section focuses on cell values of the outflow tables.

Concentrating on the main diagonals in Table 4.6 and 4.7 first, we can see in the 1996 data that all class categories, except the female petty bourgeoisie and the routine non-manual class for both men and women, display a considerable degree of self-inheritance. With
nearly two thirds of men and four fifths of women from agricultural background found in agricultural work, Class VIIb shows profound intergenerational immobility. Over the ten-year period, the most important changes in intergenerational immobility are found in the class of peasants, the routine non-manual class, and manual working classes, which are all in line with structural changes that are revealed in the column marginal distributions. While there is a substantial drop in intergenerational immobility of peasants, both the routine non-manual class and skilled manual working class are found more stable in terms of intergenerational immobility. These changes are significant for men and women alike, but it should be noted that the increase in self-inheritance of routine non-manual occupations is to a greater extent in the case of women than men. It is also worthy of attention that the intergenerational stability of manual working classes may be found stronger if Class V+VI and Class IIIb+VIIa were combined. For both men and women, more than two fifths of respondents from Class V+VI background are found in manual work, and the proportion is even greater for respondents from non-skilled manual work background.36

36 If the outflow analysis were conducted on the basis of a five-fold class schema which combines Class V+VI and Class IIIb+VIIa, the immobility rate of the combined manual working class is 43.3 per cent in the 1996 data and 58.4 per cent in the 2005/6 for men. In the case of women, the corresponding immobility rate is 46.5 per cent in 1996, and 54.3 in 2005/6.
Turning our attention now away from the main diagonals, we see distributions of ‘mobile’ respondents from various class origins across the destination classes. In most cases, changes in outflow rates between the two time points simply reflect the structural changes that have been discussed in Section 4.3, albeit to varying extent and mostly non-significant.

In the case of men from Class VIIb, more than a quarter of those who managed to leave their agricultural origin are found in salariat occupations (9.8 per cent out of 33.9 per cent in 1996 and 8.5 per cent out of 39.8 per cent in 2005/6), which reflect the relatively larger size of the salariat class in the non-agricultural sectors of the class structure. A different story is revealed, however, when we look at the rates of outflow from non-agricultural classes to salariat positions.

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td>I+II</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>28.0 ***</td>
<td></td>
</tr>
<tr>
<td>IIIa</td>
<td>I+II</td>
<td>949</td>
</tr>
<tr>
<td></td>
<td>10.3 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>IVa+b</td>
<td>I+II</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.5 *</td>
<td></td>
</tr>
<tr>
<td>V+VI</td>
<td>I+II</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>13.8 ***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1 **</td>
<td></td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>I+II</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>VIIb</td>
<td>I+II</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.7 *</td>
<td></td>
</tr>
<tr>
<td>All (%)</td>
<td>I+II</td>
<td>5,329</td>
</tr>
<tr>
<td></td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.1 **</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>I+II</td>
<td>8,428</td>
</tr>
<tr>
<td></td>
<td>584</td>
<td></td>
</tr>
<tr>
<td></td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

Note: The upper figure of each pair refers to the 1996 survey, and lower figure, shaded in light grey, to the 2005/6 surveys (the same below).
Table 4.7: Outflow mobility rates for women (% by row)

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td>33.0</td>
<td>3.2</td>
<td>9.0</td>
<td>8.6</td>
<td>23.6</td>
<td>22.6</td>
<td>318</td>
</tr>
<tr>
<td>IIIa</td>
<td>26.2</td>
<td>4.0</td>
<td>5.4</td>
<td>10.4</td>
<td>24.1</td>
<td>29.9</td>
<td>88</td>
</tr>
<tr>
<td>IVa+b</td>
<td>23.0</td>
<td>3.0</td>
<td>7.2</td>
<td>12.1</td>
<td>25.4</td>
<td>11.7</td>
<td>437</td>
</tr>
<tr>
<td>V+VI</td>
<td>13.2</td>
<td>2.6</td>
<td>11.9</td>
<td>10.0</td>
<td>23.9</td>
<td>38.4</td>
<td>86</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>17.1</td>
<td>9.8</td>
<td>21.5</td>
<td>7.6</td>
<td>30.7</td>
<td>13.3</td>
<td>174</td>
</tr>
<tr>
<td>VIIb</td>
<td>20.6</td>
<td>5.2</td>
<td>7.6</td>
<td>17.0</td>
<td>28.0</td>
<td>21.6</td>
<td>237</td>
</tr>
<tr>
<td>All (%)</td>
<td>13.9</td>
<td>15.7</td>
<td>6.8</td>
<td>25.2</td>
<td>30.6</td>
<td>7.9</td>
<td>775</td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>4.4</td>
<td>9.3</td>
<td>15.0</td>
<td>32.8</td>
<td>23.5</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>1.0</td>
<td>6.2</td>
<td>3.3</td>
<td>6.2</td>
<td>78.8</td>
<td>1,807</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>3.0</td>
<td>5.5</td>
<td>6.5</td>
<td>12.0</td>
<td>69.0</td>
<td>5,732</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>1.8</td>
<td>6.9</td>
<td>5.7</td>
<td>11.6</td>
<td>64.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.6</td>
<td>6.8</td>
<td>6.2</td>
<td>9.4</td>
<td>16.5</td>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>404</td>
<td>72</td>
<td>254</td>
<td>216</td>
<td>496</td>
<td>1,376</td>
<td>2,818</td>
</tr>
<tr>
<td></td>
<td>1,037</td>
<td>810</td>
<td>616</td>
<td>1,006</td>
<td>1806</td>
<td>3,925</td>
<td>9,200</td>
</tr>
</tbody>
</table>

Compared with men from agricultural origins, men from various non-agricultural backgrounds display considerably higher rates of outflow into salariat occupations. Moreover, it is those of non-manual origins who show better chances of access to salariat destinations. In the case of women, the contrast in access to salariat positions between peasants’ daughters and women from non-agricultural backgrounds is even sharper. While more than a fifth of women from Class IIIa background are found in salariat occupations, the percentage of women from Class VIIb found in salariat positions is lower than 5 per cent at both time points. Low rates of outflow from Class VIIb are revealed in terms of not only access to salariat positions but access to routine non-manual occupations. As outflow from almost all non-agricultural classes to routine non-manual occupations increases significantly at a speed similar to or even greater than the rate at which the routine non-manual class expanded over the decade in question, increases in outflow of both men and women from Class VIIb to Class IIIa are highly limited.

In general, upward mobility from the class of peasants is more of a short-range kind, which is concentrated in manual work at different levels. In total, in the 1996 sample, around 13 per cent of men and 9.5 per cent of women from agricultural background are found in manual work of either skilled or non-skilled kind. As both Class V+VI and Class IIIb+VIIa
expanded between 1996 and 2006, outflow from agricultural origin to manual working classes increased substantially for men and nearly doubled for women.

In the far right columns of the outflow matrices, another point of interest is the downward mobility from non-agricultural class origins to agricultural work. So far as respondents of non-manual class origins are concerned, more than 14 per cent of men from salariat origins and slightly fewer men of routine non-manual origins are found as peasants. Looking to women, we find even higher downward mobility rates from non-manual origins to agricultural work. Likewise, respondents from manual working classes and petty bourgeoisie origins also display a fairly large amount of downward mobility into the agricultural sector, which is particularly the case for women.

The finding of unusually high downward mobility to agricultural work is consistent with what is revealed by some earlier studies (Wu & Treiman, 2007; Yang, 2008). Wu and Treiman’s research, however, also reveals a deeper picture regarding the issue when the national sample is split by hukou origin, which indicates basically no experience of downward mobility into agricultural work for men of urban hukou origins. This is confirmed by further explorations if we repeat the outflow analysis using sub-samples of urban and rural hukou origin. As shown in Table 4A.3 and 4A.4, although there is still downward mobility from to agricultural occupations among respondents of urban origins, the relevant outflow rates turn out to be close to negligible. In other words, downward mobility to agricultural occupations that are found in Table 4.6 and 4.7 mostly occurs to respondents of rural origins, while such urban-rural disparity is even more profound for women.

Restricting our attention to non-agricultural classes, cell values in Table 4.6 and 4.7 also indicate that manual work occupations in general are important destinations for respondents of all class origins alike. In the 1996 sample, if we combine Class V+VI and Class IIIb+VIIa, around 30 per cent or more respondents from non-manual and the petty bourgeoisie origins are found in manual work positions. In the 2005/6 sample, the percentages become even higher for both men and women, though the changes are mostly non-significant. That said, more men tend to be found in skilled manual work, whereas

37 Wu and Treiman’s research is based on the 1996 LHSC data, which is restricted to the male sample.
more women tend to move into non-skilled work. This may be explained by the inclusion of sales and service work in Class IIIb+VIIa, which are more likely to be taken by women rather than men.

Finally, it is of interest that gender disparity is also displayed by respondents of petty bourgeoisie origin in terms of outflow. In the case of men, most sons of small business owners in the 1996 sample tend to be found either in the same class positions as their parents or in salariat occupations, while the main outflow of women from the same class origin is found in non-skilled non-manual and agricultural work. Over the decade, men of Class IV origin display a significant decline in access to salariat positions, which is a sensitive response to the modest contraction of the salariat class, but proportionately more sons of small business owners than daughters are able to secure positions in non-agricultural classes. Meanwhile, non-skilled manual work remains the most important destination of outflow for daughters of small business owners, despite a marginally significant rise in intergenerational immobility and a non-significant increase in their access to salariat occupations.

To sum up the main results of the outflow analysis, what we need to highlight are differences between respondents of agricultural origin and non-agricultural origin and differences between men and women. Concerning the former issue, the class of peasants in China are found strikingly immobile. Despite the contraction of Class VIIb between 1996 and 2006, its intergenerational immobility has not been reduced at a similar rate. Further, those who manage to leave the land are more likely to be found in manual work and under-represented in non-manual occupations. With regard to gender differences in outflow, both immobility and under-representation in non-manual positions are more widespread for women than men. Moreover, differences between men and women are also indicated in terms of urban-rural differences in downward mobility into agricultural work, access to different levels of manual work, and chances for respondents of small business owners to secure non-agricultural positions. In all these aspects, women are more likely to face a less favourable situation.
4.7 Conclusion

This chapter has described the class structure and absolute mobility in China, which is essential for our further understanding of the issue of social fluidity in Chapter 5. Analyses have been conducted in terms of class structure and changes in the structural context, inflow mobility rates, total rates of absolute mobility, and outflow mobility rates. In each section, comparisons are made between 1996 and 2006, and between men and women.

With respect to structural changes, the Chinese society displays an upgraded class structure when we compare the structure of parents’ classes and that of respondents’ classes. So far as destination classes are concerned, the class structure of both men and women has been upgraded between 1996 and 2006, which features the substantial contraction of the class of agricultural workers. In addition, there have been expansions for both the routine non-manual class and manual working classes in general. Linking this finding to Breen and Luijkkx’s observation of two broad paths for most societies undergoing industrialisation and post-industrialisation (2004a), the shrinking agricultural sector and expanding working class represent a Chinese society in the process of industrialisation. It must be noted, however, that the ‘opportunity structure’ may not be as upgraded as it appears to be. Indeed, in the case of men, the measure of ND indicates that the net difference in structural context is actually of a limited degree.

The analysis of class structure also reveals gender differences in that women are evidently more over-represented in the agricultural sector and under-represented in salariat occupations. In the sections that follow, the issue of gender differences keep coming back. Firstly, as far as total rates of absolute mobility are concerned, women remain less mobile than men, despite the more rapid increase in women’s total mobility rate, which is contrary to the finding of similar or even higher total mobility rates for women in some former state socialist countries (Mach, 2004; Marshall, Sydorenko, & Roberts, 1995; Robert & Bukodi, 2004). Secondly, for all the increase in upward mobility, women of less desirable class origins, such as agricultural origin, are evidently under-represented at the top of the class structure. Nevertheless, these findings call for more complex analysis in order to find out whether this is attributable to gender disparity in educational attainment, which is required for access to salariat occupations (Solotaroff, 2005).
The chapter also shows profound differences between the class of peasants and non-agricultural classes. On the one hand, the results in the analysis of total rates and outflow mobility confirm the comment in previous studies that the low total mobility in China has resulted mainly from the severe intergenerational immobility of the peasant class (Cheng & Dai, 1995; Takenoshita, 2007). On the other, children of peasant families who are able to leave their agricultural background are still likely to face barriers against access to more advanced class positions. The analysis of outflow rates indicates that, for those of rural hukou origin, chances of downward mobility into agricultural occupations are high, even though they are from non-agricultural origins. Finally, it is worth noting that the issue of agricultural/non-agricultural difference and that of gender disparity are often intertwined, as the former tends to be more profound in the case of women.

The analysis in this chapter is conducted on the basis of an understanding that absolute mobility provides only part of the story of social mobility. So far, the chapter has not attempted to find out how individuals from different class origins differ from each other in terms of their chances of being found in one destination position rather than another. As stressed in Chapter 3, we need to explore the relative mobility chances in order to truly understand whether a society has become more open with increased social fluidity. In the next chapter, I will investigate temporal changes in relative mobility in China between 1996 and 2006. Considering findings of gender disparity and urban-rural differences in absolute mobility rates, Chapter 5 also examines whether there are differences in relative mobility between men and women, and between respondents of urban and rural origins.
Appendix Chapter 4

Table 4A.1: Distribution of parents’ and respondent’s Goldthorpe 10-way class in 1996 and 2005/6 (% by column)

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Origin</td>
<td>Destination</td>
<td>Origin</td>
<td>Destination</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>2005/6</td>
<td>1996</td>
<td>2005/6</td>
</tr>
<tr>
<td>I</td>
<td>1.6</td>
<td>3.4 ***</td>
<td>3.1</td>
<td>4.6 **</td>
</tr>
<tr>
<td>II</td>
<td>5.4</td>
<td>5.6</td>
<td>11.0</td>
<td>7.5 ***</td>
</tr>
<tr>
<td>IIIa</td>
<td>1.8</td>
<td>3.5 ***</td>
<td>2.2</td>
<td>5.0 ***</td>
</tr>
<tr>
<td>IIIb</td>
<td>2.6</td>
<td>2.8</td>
<td>1.3</td>
<td>4.8 ***</td>
</tr>
<tr>
<td>IVa+b</td>
<td>2.7</td>
<td>2.0 *</td>
<td>11.3</td>
<td>7.1 ***</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>7.0</td>
<td>6.0 †</td>
<td>8.6</td>
<td>11.8 ***</td>
</tr>
<tr>
<td>VIIa</td>
<td>5.1</td>
<td>6.2 *</td>
<td>9.6</td>
<td>13.4 ***</td>
</tr>
<tr>
<td>VIIb</td>
<td>73.8</td>
<td>70.4 **</td>
<td>52.9</td>
<td>44.8 ***</td>
</tr>
<tr>
<td>IVc</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>2,928</td>
<td>8,428</td>
<td>2,928</td>
<td>8,428</td>
</tr>
</tbody>
</table>

Note: † p<0.1; * p<0.05; ** p<0.01; *** p<0.001 (the same below).

Table 4A.2: Total rates of absolute mobility for men and women by age group

<table>
<thead>
<tr>
<th></th>
<th>20-40</th>
<th></th>
<th>41-69</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total mobility (TMR)</td>
<td>48.1</td>
<td>54.9</td>
<td>6.8***</td>
<td>40.6</td>
</tr>
<tr>
<td>Upward mobility (TU)</td>
<td>31.7</td>
<td>37.5</td>
<td>5.8**</td>
<td>33.1</td>
</tr>
<tr>
<td>Downward mobility (TD)</td>
<td>13.3</td>
<td>14.6</td>
<td>1.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Horizontal mobility (TH)</td>
<td>3.1</td>
<td>2.9</td>
<td>-0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total mobility (TMR)</td>
<td>38.5</td>
<td>48.1</td>
<td>9.6***</td>
<td>31.5</td>
</tr>
<tr>
<td>Upward mobility (TU)</td>
<td>21.3</td>
<td>31.6</td>
<td>10.3***</td>
<td>20.7</td>
</tr>
<tr>
<td>Downward mobility (TD)</td>
<td>15.2</td>
<td>13.9</td>
<td>-1.3</td>
<td>10.0</td>
</tr>
<tr>
<td>Horizontal mobility (TH)</td>
<td>2.0</td>
<td>2.7</td>
<td>0.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Table 4A.3: Outflow mobility rates for men by hukou origin

Men of urban *hukou* origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I+II</td>
<td>I+II</td>
</tr>
<tr>
<td>I+II</td>
<td>44.9</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>32.1</td>
<td>11.6</td>
</tr>
<tr>
<td>IIIa</td>
<td>28.6</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>27.7</td>
<td>16.8</td>
</tr>
<tr>
<td>IVa+b</td>
<td>33.0</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
<td>11.5</td>
</tr>
<tr>
<td>V+VI</td>
<td>20.0</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>17.0</td>
<td>9.2</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>20.7</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>15.7</td>
<td>10.0</td>
</tr>
<tr>
<td>VIIb</td>
<td>31.5</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>11.9</td>
<td>9.7</td>
</tr>
<tr>
<td>All (%)</td>
<td>29.6</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>21.2</td>
<td>11.1</td>
</tr>
<tr>
<td>N</td>
<td>203</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>531</td>
<td>269</td>
</tr>
</tbody>
</table>

Men of rural *hukou* origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I+II</td>
<td>I+II</td>
</tr>
<tr>
<td>I+II</td>
<td>30.1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>8.4</td>
</tr>
<tr>
<td>IIIa</td>
<td>30.3</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>18.6</td>
<td>9.9</td>
</tr>
<tr>
<td>IVa+b</td>
<td>19.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>15.2</td>
<td>7.3</td>
</tr>
<tr>
<td>V+VI</td>
<td>9.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>5.0</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>11.2</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>17.1</td>
<td>5.5</td>
</tr>
<tr>
<td>VIIb</td>
<td>8.8</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td>2.8</td>
</tr>
<tr>
<td>All (%)</td>
<td>9.9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>9.7</td>
<td>3.3</td>
</tr>
<tr>
<td>N</td>
<td>281</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>669</td>
<td>228</td>
</tr>
</tbody>
</table>

97
Table 4A.4: Outflow mobility rates for women by hukou origin

Women of urban *hukou* origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I+II</td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>43.4</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
<td>818</td>
</tr>
<tr>
<td>IIIa</td>
<td>32.1</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>25.9</td>
<td>346</td>
</tr>
<tr>
<td>IVa+b</td>
<td>11.9</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>20.4</td>
<td>121</td>
</tr>
<tr>
<td>V+VI</td>
<td>29.7</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>643</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>19.4</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>730</td>
</tr>
<tr>
<td>VIIb</td>
<td>13.8</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>129</td>
</tr>
<tr>
<td>All (%)</td>
<td>29.2</td>
<td>622</td>
</tr>
<tr>
<td></td>
<td>20.9</td>
<td>2,787</td>
</tr>
</tbody>
</table>

Women of rural *hukou* origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I+II</td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>19.4</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>20.6</td>
<td>296</td>
</tr>
<tr>
<td>IIIa</td>
<td>18.7</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>91</td>
</tr>
<tr>
<td>IVa+b</td>
<td>6.1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>53</td>
</tr>
<tr>
<td>V+VI</td>
<td>6.4</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>15.3</td>
<td>132</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>7.3</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>230</td>
</tr>
<tr>
<td>VIIb</td>
<td>4.1</td>
<td>1,591</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>5,593</td>
</tr>
<tr>
<td>All (%)</td>
<td>5.2</td>
<td>1,917</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>6,395</td>
</tr>
</tbody>
</table>

N

<table>
<thead>
<tr>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>41</td>
<td>61</td>
<td>89</td>
<td>221</td>
<td>17</td>
<td>622</td>
</tr>
<tr>
<td>638</td>
<td>514</td>
<td>179</td>
<td>523</td>
<td>863</td>
<td>70</td>
<td>2,787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>41</td>
<td>61</td>
<td>89</td>
<td>221</td>
<td>17</td>
<td>622</td>
</tr>
<tr>
<td>638</td>
<td>514</td>
<td>179</td>
<td>523</td>
<td>863</td>
<td>70</td>
<td>2,787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>41</td>
<td>61</td>
<td>89</td>
<td>221</td>
<td>17</td>
<td>622</td>
</tr>
<tr>
<td>638</td>
<td>514</td>
<td>179</td>
<td>523</td>
<td>863</td>
<td>70</td>
<td>2,787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>41</td>
<td>61</td>
<td>89</td>
<td>221</td>
<td>17</td>
<td>622</td>
</tr>
<tr>
<td>638</td>
<td>514</td>
<td>179</td>
<td>523</td>
<td>863</td>
<td>70</td>
<td>2,787</td>
</tr>
</tbody>
</table>
Chapter 5 Trends and patterns of social fluidity

5.1 Introduction

In Chapter 4, I investigated temporal changes in class structures and intergenerational mobility rates in absolute terms in China. In accordance with changes in the country’s industrial structure over the decade between 1996 and 2006, there is evidence of upgrading of China’s class structure for both men and women, albeit to a smaller extent for the former. With more room in non-agricultural sectors of the class structure, both men and women in the early 21st century are more mobile than those in the mid-1990s. In particular, a greater proportion of men and women from the 2005/6 samples, including those from peasant families, are found to be in class positions that are more desirable than those occupied by their parents. However, as found in other societies, changes in absolute mobility rates are only part of the story and may not mean temporal changes in the ‘endogenous mobility regime’ (Erikson & Goldthorpe, 1992a; Goldthorpe & Jackson, 2007; Goldthorpe & Mills, 2004, 2008). In other words, it is unclear whether the different absolute mobility rates and outflow patterns we observe in Chapter 4 have occurred merely at the ‘phenotypical’ level and have been driven essentially by changes in class structures as well as those in demand and supply in the labour market.

In this chapter, I explore trends and patterns of social fluidity, namely relative mobility in China. On the basis of the findings in Chapter 4, the chapter is aimed to answer three questions. Firstly, I look at whether the Chinese society has become a more equal one in terms of relative mobility chances during the period in question. Next, following the gender difference and urban-rural disparity uncovered in Chapter 4, we examine whether the net association between class origin and class destination vary with gender and hukou origin. Thirdly, two topological log-linear models are applied to reveal patterns of social fluidity in contemporary China. Overall, the Chinese case provides new evidence of the ‘constant flux’ thesis (Erikson & Goldthorpe, 1992a), with relative mobility rates remaining largely stable over the decade under study. As regards gender and urban-rural disparity in relative mobility chances, women are more likely to depend on their class of origin than men in terms of occupational attainment. The chapter also shows patterns of social fluidity that differentiate China from both Western industrialized countries and other post-socialist societies such as Hungary and Poland. Before we look into the empirical
findings, it is vital to briefly recapitulate the theoretical context of research on social fluidity, which has been reviewed in detail in Chapter 2.

5.2 Literature review

Discussions on social fluidity often start off with the FJH hypothesis (Featherman, Jones, & Hauser, 1975), which is based on but differs from the liberal theory raised by Lipset and Zetterberg (1956, 1959). According to the liberal theory, societies are expected to become more equal with increasing mobility rates, and similarities in absolute mobility rates are expected to be found across countries that are at similar levels of industrialization. While the FJH hypothesis also expects similarity in social mobility rates across countries, such similarity is regarded as existing across all societies with market economies and nuclear family systems rather than being limited to societies that are industrialized to certain levels. Moreover, it is relative mobility rates rather than absolute mobility rates, according to the FJH reformulation of the liberal theory, that are basically the same across all these societies.

For all the rich literature of social mobility in both Western capitalist societies, there is little evidence that is favourable to the validation of the liberal theory, whereas the FJH hypothesis is accepted in a modified version (Breen & Luijkx, 2004b; Erikson & Goldthorpe, 1992a; Goldthorpe, 1987; Goldthorpe & Jackson, 2007; Goldthorpe & Mills, 2004, 2008). In regard to temporal changes in relative mobility rates, Erikson and Goldthorpe (1992a) compare European nations and find considerable stability of social fluidity across these societies as no evidence has been found of changes in any consistent direction. The finding is echoed by empirical evidence in several other studies. If we focus on Britain, for instance, the society is depicted as one with constant social fluidity by scholars who provide evidence of trendless fluctuations and the ‘absence of any large or directional change’ (Erikson & Goldthorpe, 1992a; Goldthorpe & Jackson, 2007; Goldthorpe & Mills, 2004, 2008; Marshall, 1988). It is pertinent to note, however, that the thesis of ‘constant flux’ is not the sole voice with regard to trends in social fluidity. Some mobility studies do argue that there are signs of increasing fluidity in comparative and single-nation mobility research (Breen & Luijkx, 2004b; Ganzeboom, Luijkx, & Treiman, 1989; Heath & Payne, 2000; Li & Devine, 2011).
Compared with the empirical evidence in advanced industrial societies, trends and patterns of social fluidity in post-socialist societies are less clear. Each of such countries as Poland, Russia, and Hungary shows its own temporal changes or stability, and patterns, of relative mobility rates, but there is no evidence depicting a picture of social fluidity that is generic to state socialist societies (Ganzeboom, Degraaf, & Robert, 1990; Luijkx et al., 1998, 2002; Mach, 2004; Robert & Bukodi, 2004). That said, mobility chances in all these societies are subject to the effects of political interventions. The differences in patterns of social fluidity in the former state socialist societies may be explained by the uncertain effects of political interventions on social mobility (Kelley & Klein, 1977, 1981; Robert & Bukodi, 2004) where social inequalities increase in its post-socialist period. Moreover, the association between industrialisation and social fluidity (Treiman, 1970) in state socialist countries cannot be so far clearly defined. Despite the evidence from Robért and Bukodi (2004) of the link between industrialisation and increases in social fluidity in the Hungarian case, there are no similar findings in other former socialist nations.

To reiterate what is discussed both in Chapter 2 and Chapter 4, little empirical research on social stratification in China has been directed at addressing the issue of intergenerational mobility, essentially as a result of data shortage. In relation to the research questions in this chapter, the consequence is that evidence is scarcely available in the literature in terms of patterns of and changes in social fluidity. On the basis of cohort analysis for both men and women using data collected from the late 1980s, Cheng and Dai (1995) conclude that the Chinese society did not show trends of increasing openness in terms of relative mobility rates. In addition, the net association between women’s class origin and class destination is found to be stronger than that in the case of men. A later attempt to systematically explore social mobility in China, Yang (2008) shows findings that are in line with what Cheng and Dai indicate both in terms of temporal changes in social fluidity and in gender disparity of net association between class origin and destination. Finally, as regards patterns of social fluidity, early applications of a Chinese variant of the core social fluidity model stress the importance of the role of hierarchical effects as well as sectoral effect (Cheung, 1997, cited in Yang, 2008; Yang, 2008). In Yang’s study, different highlights are revealed for men and women. While men are mainly subject to effects of hierarchy that are net of structural changes in class origin and destination, the sectoral effect that identifies agricultural/non-agricultural divide is the chief barrier against women’s mobility chances.
This finding calls for attention not only to the gender gap between relative mobility chances but also to urban-rural divide in social fluidity.

5.3 Trends in relative mobility rates

To start with, this chapter examines changes in social fluidity in China between 1996 and 2006 when the country was on its fast track of industrialisation and marketisation. Before moving to the results of modelling, the chapter first provides a snapshot of changes in relative mobility rates represented by odds ratios. To briefly review the relevant definition given in Chapter 3, odds ratios represent relative chances for individuals from one particular class of origin rather than the other to access one particular class of destination rather than the other. As odds ratios are not affected by differences in marginal distributions, we can capture the underlying pattern of net associations between class of origin and destination of a mobility table by calculating a complete set of odds ratios based on the cell frequencies.

Table 5.1 presents symmetrical odds ratios derived from national mobility tables that are based on the six-fold EGP schema we used in Chapter 4, respectively of men and women from the 1996 and 2005/6 surveys. For each odds ratio, the corresponding origin and destination are treated as both classes of origin and classes of destination being competed for, while the ratio indicates the relative chance of individuals from one of the two origin classes rather than the other being found in one of the two destination classes rather than the other.\(^\text{38}\)

\(^{38}\) For instance, the odds ratio in the far left of the first row means that sons of Classes I&II parents in 1996, compared with those of Class IIIa parents, are 1.2 times more likely to be found in Classes I+II destinations rather than Class IIIa destinations. Conversely, men originating in Class IIIa have a 1.2 greater chance than those originating in Classes I+II of being found in Class IIIa destinations rather than Classes I+II destinations. If we look at the entry in the IIIb+VIIa cell in the last row of the female panel, we see that daughters of semi-/non-skilled manual workers in 2005/6 have nearly 20 times greater the chance of peasants’ daughters of being found in semi-/non-skilled work rather than agricultural work.
Table 5.1: Symmetrical odds ratios for men and women separately

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>1.2</td>
<td>2.2</td>
<td>4.2</td>
<td>3.3</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>7.4*</td>
<td>3.0</td>
<td>3.2</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>IIIa</td>
<td>5.8</td>
<td>4.4</td>
<td>2.2</td>
<td>12.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVa+b</td>
<td>4.9</td>
<td>2.8</td>
<td>1.9</td>
<td>18.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V+VI</td>
<td>6.5</td>
<td>5.9*</td>
<td>31.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>1.6</td>
<td>4.1</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>2.1</td>
<td>20.4†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>1.5</td>
<td>3.3</td>
<td>3.2</td>
<td>3.0</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>6.1</td>
<td>4.0</td>
<td>4.1</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>IIIa</td>
<td>3.4</td>
<td>1.3</td>
<td>1.2</td>
<td>10.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVa+b</td>
<td>7.0</td>
<td>3.0</td>
<td>2.7</td>
<td>45.3*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V+VI</td>
<td>2.7</td>
<td>1.8</td>
<td>1.3</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.6†</td>
<td>3.2</td>
<td>20.1**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>1.3</td>
<td></td>
<td></td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.8</td>
<td></td>
<td></td>
<td>17.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Upper figure in each pair (compared vertically) is derived from the 1996 data, lower figure the 2005/6 data (the same in Table 5.2).
2. † p<0.1; * p<0.05; ** p<0.01; *** p<0.001 (the same below).
With regard to the magnitude of odds ratios, it is not surprising that the highly unequal competitions are found between children of peasants and those of non-manual origins. Yet, the competition between children of salariat origins and of peasant origins is not the one that appears the most unequal in the case of either men or women. To interpret, this can be linked to the unusually high rates of downward mobility from salariat origins to agricultural destinations because of various reasons, such as the confinement of the hukou status and political interventions imposed during certain periods of the country’s history (Cheng & Dai, 1995; Wu & Treiman, 2007). Finally, we may note greater inequality in the competition between Classes I+II and Class VIIb for women than for men.

For both the 1996 and 2005/6 samples, daughters of salariat parents have a chance over 25 times greater than women from peasant families of being found in salariat occupations rather than in agricultural work, whereas the corresponding odds ratios at both time points are smaller than 20 in the case of men. Its implication for the remainder of the analysis is that gender difference in relative mobility chances, if there is any, is more likely to be found at the bottom end of the class structure.

With reference to entries in Table 5.2 separately for respondents of urban and rural hukou origin, we can see more unequal competitions between the class of peasants and non-manual classes in the urban panel. Meanwhile, the corresponding relative mobility rates in the far right column of the rural panel are in general smaller than what are found in Table 5.1. However, as we need relatively large cell frequencies in mobility tables to assess relative mobility rates with odds ratios, these results must be interpreted with caution. On the one hand, cells involving movement between non-agricultural classes and the peasant class in the rural sample tend to have small values, especially in the case of the 1996 survey, since individuals originating in urban hukou status are highly unlikely to move downwardly from non-agricultural origins to agricultural occupations. On the other, the rural samples show substantially lower odds ratios in relation to competitions between non-agricultural classes and the peasant class, which apparently indicates a more equal mobility regime in rural China. Yet the weaker net association between class of origin and destination can be linked to the wide difference between urban and rural structures of origin classes. Among individuals starting off as rural hukou holders, only a minor proportion are of non-agricultural class of origin, many of whose parents hold rural hukou
as well. Although we lack systematic empirical evidence with reference to work-life mobility of rural residents who are in non-agricultural positions, it is likely that they are, for a certain period of time in their work-life, rural teachers, nurses at a village clinic, and even village cadre, but are later found in agricultural work. For children of parents who were in non-agricultural occupations only at a certain point in their lives, downward mobility into the peasant class is to some extent similar to immobility, as their non-agricultural class origin has been set in the overall rural context.

Table 5.2: Symmetrical odds ratios for respondents of urban and rural hukou origins separately, aged 20-69

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>1.3</td>
<td>7.2</td>
<td>3.2</td>
<td>3.0</td>
<td>53.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>8.5</td>
<td>3.6</td>
<td>3.7</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>1.3</td>
<td>1.2</td>
<td>8.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.9</td>
<td>3.8</td>
<td>2.7</td>
<td>33.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVa+b</td>
<td>5.5</td>
<td>2.3</td>
<td>4.4</td>
<td>85.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>1.6</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V+VI</td>
<td>1.8</td>
<td>4.6</td>
<td>3.0</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>4.4</td>
<td>5.0</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>89.7</td>
<td>1.3</td>
<td>2.7</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>4.7</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>4.2</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In the 1996 outflow tables, the cells of IVa+b-VIIb, V+VI-VIIb for the urban sample and the IVa+b-IIIA cell for the rural sample are empty. As a result, odds ratios of these cells are not available for comparison with the 2005/6 data.

39 For respondents who held rural hukou status in teen years, 86.3 per cent in the 1996 sample and 87.7 per cent in the 2005/6 sample are of peasant class origin.
A striking feature of Table 5.1 and 5.2 is that few of the differences in the odds ratios within each pair of 1996 and 2005/6 entries are statistically significant. To further examine temporal changes in social fluidity in China, we now turn to statistical modelling. As in the afore-discussed tables, analyses are conducted for men and women separately, and for respondents of urban and rural origin separately. Considering the mostly non-significant ‘local’ differences in odds ratios between the two time points, we would expect no clear direction of changes to be indicated by results of statistical models that are applied to explore generalised patterns of social fluidity. In each set of the analyses, three models are applied, which are widely adopted and viewed as standard practice in research on social fluidity: the conditional independence model as a base-line model, the constant social fluidity model (hereafter CnSF), and the UNIDIFF model (or log-multiplicative layer effect model). Briefly, with the conditional independence model we assume that there is no association between class of origin and destination, while the structure of both origin and destination classes alters over time. The CnSF model allows class of origin to be associated with class of destination yet assumes that the strength of association does not vary with a third variable, i.e. year of survey in the analysis of this chapter. The UNIDIFF model, on top of structural changes of origin and destination classes and the association postulated in the CnSF model, further allows the coefficient for the association to vary across mobility tables of the two points in time in a uniform way.

Table 5.3 reports the results of applying the three models separately to mobility tables of the overall sample, men, and women. Not surprisingly, the CnSF model greatly improves the fit of the baseline model in every case. Although the CnSF models do not meet the conventional 5 per cent p-value criterion, the lack of fit indicated by values of the Δ measure is very small. Indeed, the model performs fairly well, as in each fitting, merely slightly more than 1 per cent of cases are misclassified. At the same time, the rG^2 statistic indicates that the CnSF model accounts for nearly 99 per cent of the association between class of origin and destination that is not captured by the conditional independence model. Having said this, our primary interest is in whether the coefficient for the origin-destination association changes over time. As can be seen in the last row of each panel, with one degree of freedom, the UNIDIFF model does show a significant improvement in fit over the CnSF model, but this occurs only to the overall and female samples. Moreover, it must be noted that, for both the overall sample and women, the estimated parameter for 2005/6 is respectively 0.013 and 0.023, indicating increases in origin-destination association that
are close to negligible. In other words, results of the models shown in Table 5.3 do not provide powerful evidence of generalised change in relatively mobility chances.\footnote{As supplementary analysis, the same models are also fitted separately to the mobility tables of respondents aged 20-40 and 41-69 respectively from the 1996 and 2005/6 data, which is to differentiate the occupationally mature sub-sample from those who are relatively young for their career life. Table 5A.1 reports the results, from which we can see that the UNIDIFF model gives a significant improvement in fit over the CnSF model only in the case of women aged 41-69, although neither model is acceptable according to the conventional criterion. Again, the estimated parameter for the occupational mature women in the 2005/6 sample (0.030) is rather small.}

Table 5.3: Results of fitting the conditional independence, constant social fluidity, and UNIDIFF models to mobility tables for men and women: origin, destination, and survey year

<table>
<thead>
<tr>
<th>Model</th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>(N=23,436)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cond. ind.</td>
<td>6416.3</td>
<td>50</td>
<td>0.00</td>
<td>21.3</td>
<td>5913.2</td>
</tr>
<tr>
<td>2</td>
<td>CnSF</td>
<td>69.3</td>
<td>25</td>
<td>0.00</td>
<td>98.9</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>UNIDIFF</td>
<td>64.0</td>
<td>24</td>
<td>0.00</td>
<td>99.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2-3</td>
<td>β= 0.013</td>
<td>5.3</td>
<td>1</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>(N=11,587)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cond. ind.</td>
<td>2879.2</td>
<td>50</td>
<td>0.00</td>
<td>20.1</td>
<td>2411.3</td>
</tr>
<tr>
<td>5</td>
<td>CnSF</td>
<td>51.9</td>
<td>25</td>
<td>0.00</td>
<td>98.2</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>UNIDIFF</td>
<td>51.8</td>
<td>24</td>
<td>0.00</td>
<td>98.2</td>
<td>1.3</td>
</tr>
<tr>
<td>5-6</td>
<td>β= -0.003</td>
<td>0.1</td>
<td>1</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>(N=11,821)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cond. ind.</td>
<td>3694.8</td>
<td>50</td>
<td>0.00</td>
<td>22.6</td>
<td>3225.9</td>
</tr>
<tr>
<td>8</td>
<td>CnSF</td>
<td>45.8</td>
<td>25</td>
<td>0.01</td>
<td>98.8</td>
<td>1.3</td>
</tr>
<tr>
<td>9</td>
<td>UNIDIFF</td>
<td>38.5</td>
<td>24</td>
<td>0.03</td>
<td>99.0</td>
<td>1.1</td>
</tr>
<tr>
<td>8-9</td>
<td>β= 0.023</td>
<td>7.3</td>
<td>1</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. 1996 is the reference time point in the UNIDIFF model.
2. \(\Delta\) = percentage of misclassification by a particular model (the same below).
3. \(rG²\) = percentage of the association between class of origin and destination a particular model accounts for compared with the baseline model (the same below).

Results shown in Table 5.4 further confirm that there is no strong evidence of temporal changes in social fluidity in China between 1996 and 2006. As with the fitting presented in Table 5.3, the CnSF and UNIDIFF models both fit well both the urban and rural data, albeit with unsatisfactory p-values. However, the latter fails to give a significant improvement over the former.\footnote{Similar results are found when the models are fitted to the urban and rural sub-samples of respondents in two age groups. In none of the four cases shown in Table 5A.2, i.e. occupationally mature and relatively immature respondents respectively of urban and rural origin, the UNIDIFF model gives a better fit of the data.}
Table 5.4: Results of fitting the conditional independence, constant social fluidity, and UNIDIFF models to mobility tables for respondents of urban and rural hukou origin: origin, destination, and survey year

<table>
<thead>
<tr>
<th>Model</th>
<th>Overall (N=22,853)</th>
<th>Urban (N=4,499)</th>
<th>Rural (N=18,330)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G²</td>
<td>df</td>
<td>p</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cond. ind.</td>
<td>6306.2</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>CnSF</td>
<td>60.5</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>UNIDIFF</td>
<td>56.9</td>
<td>24</td>
</tr>
<tr>
<td>2-3</td>
<td>β= 0.011</td>
<td>3.6</td>
<td>1</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cond. ind.</td>
<td>677.6</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>CnSF</td>
<td>43.2</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>UNIDIFF</td>
<td>40.6</td>
<td>24</td>
</tr>
<tr>
<td>5-6</td>
<td>β= 0.021</td>
<td>2.6</td>
<td>1</td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cond. ind.</td>
<td>1055.4</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>CnSF</td>
<td>61.0</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>UNIDIFF</td>
<td>60.6</td>
<td>24</td>
</tr>
<tr>
<td>8-9</td>
<td>β= 0.005</td>
<td>0.4</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: For the 1996 data, the values in empty cells, IV-VIIb and V+VI-VIIb in the urban mobility table and IV-IIIa in the rural mobility table, have been replaced as 1 to enable the model fitting.

Overall, this section reports little evidence of differences between 1996 and 2006 in the ‘endogenous regime’ of intergenerational mobility in China. While the UNIDIFF model apparently improves the fit to the national data of women, the effect is a modest one. When we look to men, the sub-samples of urban and rural origins, it is more straightforward that relative mobility chances have remained largely the same over the decade in question.

5.4 Differences in relative mobility rates by gender and hukou origin

One of the aims of this section is to inspect whether the gender disparity in absolute mobility rates revealed in Chapter 4 results merely from structural differences between men and women. Meanwhile, the preceding chapter also shows substantial differences between the agricultural sector and non-agricultural sectors in terms of total rates and rates of outflow to non-agricultural class positions. As individuals of agricultural origins are
mostly of rural hukou origin, this section also examines whether relative mobility chances vary with hukou origin.42

By reference to the conditional independence model, I assess in both cases how much of the association between class of origin and destination is explained by the model of common social fluidity (hereafter CmSF model). Like the CnSF model, the CmSF model assumes the association between class of origin and destination. Whereas the strength of the association does not differ across gender or hukou origin under the CmSF model, the β parameters under the UNIDIFF model indicate the direction in which the strength of the origin-destination association varies with gender or hukou and the magnitude of the difference. In terms of gender differences, for instance, the association between classes of origin and destination is defined as a baseline in order to assess whether and to what extent the association in the case of women is stronger or weaker. Likewise, the origin-destination association for respondents of urban origin is set as the baseline, by reference to which we can examine whether and to what extent the association for respondents of rural origin is stronger or weaker.

Table 5.5 presents results of fitting the CmSF and UNIDIFF models separately to the 1996 and 2005/6 data to examine gender disparity in social fluidity. As expected, the CmSF model gives an improvement over the baseline model, showing fairly satisfactory Δ values and rG^2 statistics for both the 1996 and 2005/6 data. Nonetheless, given the p-values in all three panels of the table, it is likely that the model has concealed differences in social fluidity across gender. Indeed, for the overall and the 2005/6 samples, the UNIDIFF model gives a better fit to the overall data as well as the 2005/6 data. According to the positive values of β parameters, the net association between origin and destination classes is significantly stronger for women than men, albeit a slight difference. Hence, a general conclusion can be drawn that social fluidity in China differs between sexes, but chiefly in the early 21st century rather than in the mid-1990s.43

42 For the data at both points in time, around 98 per cent of respondents who are of agricultural origin (Class VIIb) were registered with rural hukou at the age of 14 or 18.

43 Results of fitting the same models on the 1996 and 2005/6 samples in two age groups are shown in Table 5A.3. Whilst the UNIDIFF model does not improve the fit for either the 20-40 or the 41-69 sub-samples of the 1996 sample, it gives a significant improvement in fit over the CmSF model for both age groups of the 2005/6 data. For both ‘occupational mature’ and relatively immature respondents in the 2005/6 data, the estimated parameters for women show a stronger association between origin and destination class.
Overall, these findings are in line with the empirical evidence in the literature regarding gender inequality in the course of China’s economic transformation (Bian, Logan, & Shu, 2000; Cao & Hu, 2007; Cao & Nee, 2000; Shu & Bian, 2002, 2003; Tang & Parish, 2000). As the role of the state in promoting gender equality weakened and the part of employers’ decision-making strengthened (Honig, 2000; Honig & Hershatter, 1988; Lee, 1995; Tang & Parish, 2000), women are exposed to a greater extent to emergent discriminatory labour market practices, especially in private sectors. However, these observations may not be adequate to explain why the significantly stronger connections for women between class of origin and destination is found only in the case of the 2005/6 data. The gender disparity in mobility chances may reflect the greater reliance of women than men on various resources that families can utilise for good results of educational and occupational attainment.

Table 5.5: Results of fitting the conditional independence, common social fluidity, and UNIDIFF models to mobility tables of the 1996 and 2005/6 data: origin, destination, and gender

<table>
<thead>
<tr>
<th>Model</th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (N=23,440)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cond. ind.</td>
<td>6494.3</td>
<td>50</td>
<td>0.00</td>
<td>21.5</td>
<td>5991.2</td>
</tr>
<tr>
<td>2</td>
<td>CmSF</td>
<td>85.1</td>
<td>25</td>
<td>0.00</td>
<td>98.7</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>UNIDIFF</td>
<td>60.2</td>
<td>24</td>
<td>0.00</td>
<td>99.1</td>
<td>1.3</td>
</tr>
<tr>
<td>2-3</td>
<td>β= 0.024</td>
<td>24.9</td>
<td>1</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 (N=5,761)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cond. ind.</td>
<td>1465.0</td>
<td>50</td>
<td>0.00</td>
<td>20.0</td>
<td>1032.0</td>
</tr>
<tr>
<td>5</td>
<td>CmSF</td>
<td>45.4</td>
<td>25</td>
<td>0.01</td>
<td>96.9</td>
<td>2.1</td>
</tr>
<tr>
<td>6</td>
<td>UNIDIFF</td>
<td>45.4</td>
<td>24</td>
<td>0.01</td>
<td>96.9</td>
<td>2.1</td>
</tr>
<tr>
<td>5-6</td>
<td>β= 0.002</td>
<td>0.0</td>
<td>1</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/6 (N=17,647)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cond. ind.</td>
<td>5109.0</td>
<td>50</td>
<td>0.00</td>
<td>21.8</td>
<td>4620.1</td>
</tr>
<tr>
<td>8</td>
<td>CmSF</td>
<td>68.7</td>
<td>25</td>
<td>0.00</td>
<td>98.7</td>
<td>1.9</td>
</tr>
<tr>
<td>9</td>
<td>UNIDIFF</td>
<td>39.1</td>
<td>24</td>
<td>0.03</td>
<td>99.2</td>
<td>1.2</td>
</tr>
<tr>
<td>8-9</td>
<td>β= 0.030</td>
<td>29.6</td>
<td>1</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As regards the urban-rural divide, we use the urban sample as the reference and find similar results under the UNIDIFF model. Judged by the estimated parameter in the first panel of Table 5.6, the net association between class of origin and destination is slightly weaker for respondents of rural origin in the fitting on the national sample. Moving on to
the lower panels, we can see that this turns out to be the consequence of a weaker net
association for the 2005/6 rural sample only rather than.\footnote{The conclusion is somewhat reconfirmed when the same models are fitted for the two age groups within each survey year. As shown in Table 5A.4 in the Appendix, the UNIDIFF model improves the fit of the model at a significant level only for the 2005/6 41-69 sub-sample.}

Table 5.6: Results of fitting the conditional independence, common social fluidity, and UNIDIFF models to mobility tables of the 1996 and 2005/6 data: origin, destination, and hukou origin

<table>
<thead>
<tr>
<th>Model</th>
<th>G^2</th>
<th>df</th>
<th>p</th>
<th>rG^2</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (N=22,855)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Cond. ind.</td>
<td>1634.6</td>
<td>50</td>
<td>0.00</td>
<td>8.2</td>
<td>1132.7</td>
<td></td>
</tr>
<tr>
<td>2 CmSF</td>
<td>138.4</td>
<td>25</td>
<td>0.00</td>
<td>91.5</td>
<td>1.2</td>
<td>-112.5</td>
</tr>
<tr>
<td>3 UNIDIFF</td>
<td>128.5</td>
<td>24</td>
<td>0.00</td>
<td>92.1</td>
<td>1.3</td>
<td>-112.4</td>
</tr>
<tr>
<td>2-3 β= -0.025</td>
<td>9.9</td>
<td>1</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall (N=5,234)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Cond. ind.</td>
<td>476.1</td>
<td>50</td>
<td>0.00</td>
<td>8.7</td>
<td>47.9</td>
<td></td>
</tr>
<tr>
<td>5 CmSF</td>
<td>82.6</td>
<td>25</td>
<td>0.00</td>
<td>82.6</td>
<td>2.2</td>
<td>-131.4</td>
</tr>
<tr>
<td>6 UNIDIFF</td>
<td>81.6</td>
<td>24</td>
<td>0.00</td>
<td>82.9</td>
<td>2.3</td>
<td>-123.9</td>
</tr>
<tr>
<td>5-6 β= -0.017</td>
<td>1.0</td>
<td>1</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall (N=17,595)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Cond. ind.</td>
<td>1256.9</td>
<td>50</td>
<td>0.00</td>
<td>8.1</td>
<td>768.2</td>
<td></td>
</tr>
<tr>
<td>8 CmSF</td>
<td>85.8</td>
<td>25</td>
<td>0.00</td>
<td>93.2</td>
<td>1.1</td>
<td>-158.6</td>
</tr>
<tr>
<td>9 UNIDIFF</td>
<td>74.0</td>
<td>24</td>
<td>0.00</td>
<td>94.1</td>
<td>1.2</td>
<td>-160.6</td>
</tr>
<tr>
<td>8-9 β= -0.032</td>
<td>11.8</td>
<td>1</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: For the 1996 mobility table, the values in empty cells, IV-VIIb and V&VI-VIIb for the urban respondents, and IV-IIIa for the rural, have been replaced as 1 to enable the model fitting.

To re-emphasise what is explained in Chapter 3, the analysis of the urban-rural differences in social fluidity is based on the differentiation by hukou origin rather than respondents’ hukou status at time of survey on the grounds that my interest is mainly in whether individuals from the real ‘rural’ background are faced with different relative chances from those from urban backgrounds. As aforesaid, individuals of urban hukou origin show a more diverse structure in terms of class origins, but nearly all respondents of rural hukou origin are mostly from the class of peasants. In this sense, we cannot interpret the weaker association between class origin and destination for rural respondents than for those of urban origin as more equal relative mobility chances for the former. As will be discussed in Chapter 6, such a result may be linked to the unusually high rate of downward mobility from salariat origins to agricultural work and the considerable amount of long-range upward mobility from agricultural background to salariat occupations by those who
accessed higher education and manage to convert their *hukou* status (Wu & Treiman, 2007).

5.5 A topological model of density level

The results revealed in Section 5.3 indicate that there is no powerful evidence of changes in the endogenous mobility regime in China between 1996 and 2006. To further investigate the pattern of relative mobility, this section applies the model of density levels, or, the Hauser-type levels model (Erikson, Goldthorpe, & Portecarero, 1982; Goldthorpe, 1987; Hauser, 1980) to the male and female data separately.

Unlike the complete sets of odds ratios presented earlier, which contain a large amount of information for interpretation, the Hauser-type levels model treats cells in a mobility table as assigned to a few density levels so that the information is condensed. Briefly, each of the density levels takes its own parameter. To avoid difficulties of interpretation, the number of density levels is usually limited not to exceed the number of classes in the mobility table, i.e. six in this study. In fitting the model, my aim is to reveal, by differentiating relative mobility from absolute mobility, a) the pattern of social fluidity underlying intergenerational mobility in China and whether the pattern varies with gender; b) which cells in the mobility table show higher propensity for occurrence than others; and, c) differences between different density levels.

In order to save space, procedures taken to produce a design of the model and subsequent modifications are provided in Appendix II of this chapter. Table 5.7 presents the levels matrix of the preferred model design, in which the cells in the 6×6 mobility table are assigned to six levels of density. Cells involving mobility between the class of peasants and non-manual classes are allocated to level 6, i.e. the lowest density level, whereas cells representing immobility within the agricultural sector and the petty bourgeoisie are allocated to level 1, the highest level. In other words, mobility between Class VIIb and Classes I-IIIa is most unlikely to occur, whereas intergenerational immobility of peasant and small business owners’ families is expected to show the greatest likelihood of occurrence.
Table 5.7: Levels matrix of the Hauser-type model

<table>
<thead>
<tr>
<th></th>
<th>I+II</th>
<th>IIIa</th>
<th>IV</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>IIIa</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>V+VI</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>VIIb</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

From the upper panel of Table 5.8, we can see that the model fits neither the male sample nor the female sample well, if we judge by the conventional p-value criterion. However, as with the ‘global’ examinations in Section 5.3, the small Δ and large rG^2 statistics indicate that the differences between observed cell values and the values generated under the model are highly limited. The lower panel of the table reports parameters estimated by the levels model in additive form, i.e. effects on logged cell frequencies. The main relevance of these parameters is that they inform us of the differences between density levels. In other words, we may understand to what extent density at one level is stronger or weaker than at another level. Moreover, we can also learn how variable the differences between the density levels are.

If we look at the column in the far left of the panel of the overall data, we find the greatest difference between the parameter estimates of level 1 and level 2, whereas the difference becomes almost negligible between level 5 and level 6. Moving to the right, the story is clearer. For instance, from the off-diagonal entries in the first row, we know that density at level 1 (or propensity for mobility or immobility) is four times greater than that at level 2, more than five times greater than that at level 3, over seven times greater than at level 4, and so on. Compared with level 6, density at level 1 is nearly ten times greater. To apply the reading to specific entries in the mobility table, this means, for example, that the children of peasants are nearly ten times as likely to be found in agricultural work, which is represented as level 1, as moving upwardly into salariat positions, which is identified as level-6 mobility. As regards the difference between level 1 and level 2, the first off-diagonal entry in the first column tells us that density at level 2 is a quarter that at level 1.
Table 5.8: Parameters of density levels model (in additive form) and matrix of differences in density between levels (in multiplicative form), for pooled data

<table>
<thead>
<tr>
<th>Model</th>
<th>G^2</th>
<th>df</th>
<th>p</th>
<th>rG^2</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>6376.8</td>
<td>25</td>
<td>0.00</td>
<td>21.5</td>
<td>6125.2</td>
<td></td>
</tr>
<tr>
<td>Levels model</td>
<td>130.5</td>
<td>20</td>
<td>0.00</td>
<td>98.0</td>
<td>2.0</td>
<td>-70.8</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>2835.8</td>
<td>25</td>
<td>0.00</td>
<td>20.2</td>
<td>2601.8</td>
<td></td>
</tr>
<tr>
<td>Levels model</td>
<td>80.6</td>
<td>20</td>
<td>0.00</td>
<td>97.2</td>
<td>2.2</td>
<td>-106.6</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>3658.4</td>
<td>25</td>
<td>0.00</td>
<td>22.7</td>
<td>3424.0</td>
<td></td>
</tr>
<tr>
<td>Levels model</td>
<td>84.7</td>
<td>20</td>
<td>0.00</td>
<td>97.7</td>
<td>2.2</td>
<td>-102.8</td>
</tr>
<tr>
<td>Additive parameters</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4.01</td>
<td>5.31</td>
<td>7.10</td>
<td>8.67</td>
</tr>
<tr>
<td>-1.39</td>
<td>2</td>
<td>0.25</td>
<td>1</td>
<td>1.32</td>
<td>1.77</td>
<td>2.16</td>
</tr>
<tr>
<td>-1.67</td>
<td>3</td>
<td>0.19</td>
<td>0.76</td>
<td>1</td>
<td>1.34</td>
<td>1.63</td>
</tr>
<tr>
<td>-1.96</td>
<td>4</td>
<td>0.14</td>
<td>0.57</td>
<td>0.75</td>
<td>1</td>
<td>1.22</td>
</tr>
<tr>
<td>-2.16</td>
<td>5</td>
<td>0.12</td>
<td>0.46</td>
<td>0.61</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td>-2.27</td>
<td>6</td>
<td>0.10</td>
<td>0.41</td>
<td>0.55</td>
<td>0.73</td>
<td>0.90</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3.53</td>
<td>4.57</td>
<td>6.05</td>
<td>7.39</td>
</tr>
<tr>
<td>-1.26</td>
<td>2</td>
<td>0.28</td>
<td>1</td>
<td>1.30</td>
<td>1.72</td>
<td>2.10</td>
</tr>
<tr>
<td>-1.52</td>
<td>3</td>
<td>0.22</td>
<td>0.77</td>
<td>1</td>
<td>1.32</td>
<td>1.62</td>
</tr>
<tr>
<td>-1.80</td>
<td>4</td>
<td>0.17</td>
<td>0.58</td>
<td>0.76</td>
<td>1</td>
<td>1.22</td>
</tr>
<tr>
<td>-2.00</td>
<td>5</td>
<td>0.14</td>
<td>0.48</td>
<td>0.62</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td>-2.04</td>
<td>6</td>
<td>0.13</td>
<td>0.46</td>
<td>0.59</td>
<td>0.79</td>
<td>0.96</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2.80</td>
<td>3.46</td>
<td>5.26</td>
<td>6.75</td>
</tr>
<tr>
<td>-1.03</td>
<td>2</td>
<td>0.36</td>
<td>1</td>
<td>1.23</td>
<td>1.88</td>
<td>2.41</td>
</tr>
<tr>
<td>-1.24</td>
<td>3</td>
<td>0.29</td>
<td>0.81</td>
<td>1</td>
<td>1.52</td>
<td>1.95</td>
</tr>
<tr>
<td>-1.66</td>
<td>4</td>
<td>0.19</td>
<td>0.53</td>
<td>0.66</td>
<td>1</td>
<td>1.28</td>
</tr>
<tr>
<td>-1.91</td>
<td>5</td>
<td>0.15</td>
<td>0.41</td>
<td>0.51</td>
<td>0.78</td>
<td>1</td>
</tr>
<tr>
<td>-2.25</td>
<td>6</td>
<td>0.11</td>
<td>0.30</td>
<td>0.36</td>
<td>0.55</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Note: Additive parameter values in the upper triangle = $D(i)/D(j)$, while values in the lower triangle = $D(j)/D(i)$. For example, the value of the first off-diagonal entry in the first row of the male panel is $D(i)/D(j) = e^{0.2(1.26)} = 3.53$, whereas the value of the first off-diagonal entry in the last row of the male panel is $D(j)/D(i) = e^{-2.04-0} = 0.13$.

Turning to the male and female panels, we see different patterns of social fluidity for men and women. Two major points of interest emerge. On the one hand, the difference in density between level 1 and level 2 is clearly smaller for women than for men. As level 1 is found only in the IV-IV and VIIb-VIIb cells and level 2 in the other cells on the main diagonal, this is to say, for women of various class origins, the chance of being found immobile is less differentiated than men. On the other hand, the difference in density between the highest level and the lowest level is much greater for women than men. While the density of level 1 is less than eight times as strong as level 6 for men, density of level 1 is nearly ten times as strong as level 6 in the case of women. Since density of level 6 is expected in cells involving mobility between Class I+II and Class VIIb and cells representing interactions between Class IIIa and Class VIIb, this results shows greater distance between non-manual sectors and the agricultural sector for women than for men.

Figure 5.1 provides the graphic representation of the pattern of social fluidity under the density levels model by shading each cell in the outflow tables according to the density level it is allocated to. First, it is rather straightforward that cells on the main diagonals show the strongest density, which indicates the higher likelihood of occurrence of immobility than intergenerational mobility of other kinds. In contrast, the lowest density level is that for the cells involving movement between non-manual class positions and agricultural work, i.e. the I+II-VIIb, IIIa-VIIb, VIIb-I+II, and VIIb-IIIa cells. The greatest difference in density, therefore, is found between the density of immobility within the less advantaged part of the class structure, including the agricultural sector and the petty bourgeoisie, and the density of long-range upward mobility from agricultural origins to non-manual positions as well as downward mobility from non-manual origins to agricultural positions.45 As shown in Table 5.8, for men and women from agricultural background, the relative chance of being found in agricultural work is respectively 7.69 and 9.49 times the chance of being found in non-manual occupations.

45 By reference to Table 5A.9, however, it must be noted that immobility of Class IVa+b is overestimated under the present levels model, for men and women alike.
Figure 5.1: Matrix of density levels for the six-level model, size of cells drawn to scale with the marginal proportions in the mobility table accounted for by each class, for pooled data of men and women separately

Men (N=12,018)
From Figure 5.1, we can also see the affinity between classes within the non-manual sectors and between classes within the manual working class. While immobility of all classes, except Class IVa+b and Class VIIb, is identified as level 2, for children of salariat and routine non-manual origins, the density of mobility between Class I+II and Class IIIa is merely one level lower than the density of immobility within these two classes. Similarly, the density of movement between Class V+VI and Class IIIb+VIIa is one level lower than the density of immobility within the two classes. As shown in Table 5.8, the difference in density between level 2 and level 3 is limited for both men and women.\(^{46}\) That is to say, the relative chance of accessing non-manual occupations is rather high for individuals of salariat and routine non-manual origins if they are not found in the same class positions as

\(^{46}\) Density at level 2 is 1.3 times as strong as density at level 2 for men, and 1.23 times for women.
their parents, whereas children of skilled and semi-/unskilled manual workers are almost as likely to be found in manual work at other level if they have not ‘inherited’ their parents’ class positions.

From the inflow perspective, it is also worth noting that individuals of less advantaged class origins show higher relative chances of being found in the class of the petty bourgeoisie. While density of mobility from Class I+II and Class IIIa to Class IVa+b is identified at level 5, mobility from Class IIIb+VIIa and Class VIIb to Class IVa+b shows density of level 3. For sons of semi-/unskilled manual workers and peasants, this means that their relative chance of being found in small business is around 1.6 times that of men of non-manual origins, while for daughter of semi-/unskilled manual workers, they are nearly twice as likely to be found in small business as those of non-manual origins.

To summarise findings of the Hauser-type levels model, three features are apparent. Firstly, the role of inheritance in mobility processes is confirmed, as high levels of density, i.e. level 1 and level 2 are found only on the main diagonal of the mobility table. Secondly, in addition to the disparity between agricultural and non-agricultural classes, the graphic representation of the model suggests borderlines between non-manual and manual classes. Finally, the results of the model indicate the undesirability of the petty bourgeoisie class (getihu) in the Chinese society, which may find its root in historical reasons such as state suppression of small private business. To gain further insight, the next section fits the core model of social fluidity to investigate various effects in the mobility processes.

5.6 The core model of social fluidity

Unlike the model of density levels, which is based on a single matrix, the core model of social fluidity is designed as a multi-matrix levels model. By allocating cells in the mobility table to eight effects of four types, i.e. HI1 and HI2 for effects of hierarchy, IN1, IN2 and IN3 for inheritance effects, SE for sectoral effect, and AF1 and AF2 for (dis)affinity effects, we are able to bring to light more details of the generic pattern of social fluidity in China. As introduced in Appendix III, the HI1 effect identifies mobility between class positions of different hierarchical levels, including both long-range and short-range hierarchical mobility, whereas the HI2 effect is expected to affect long-range
mobility across two levels. The inheritance effects are expected to be found in cells on the main diagonal. While the IN1 matrix differentiates all cells on the main diagonal of the mobility table from those off the main diagonal, IN2 and IN3 are effects that raise the likelihood of individuals from certain class background being found in their parents’ class positions. With the sectoral effect, lower likelihood of movement is expected between the class of peasants and class positions in all non-agricultural sectors. As this may be particularly the case for individuals of agricultural origin who seek mobility into salariat occupations, AF1 is included so that potential barriers against the long-range upward mobility of peasants’ children are recognised. Finally, AF2 identifies affinity between salariat and routine non-manual class positions, positions of skilled and semi-/un-skilled manual work, agricultural work and small business, and affinity between the class of peasants and semi-/un-skilled manual occupations.

As regards parameter estimates, we would expect negative coefficients for HI1, HI2, SE, and AF1, and positive coefficients for all inheritance effects and AF2. The original core model, however, fails to fit the Chinese data well and produces positive parameter for HI1 and non-significant parameter for HI2. Moreover, it automatically drops IN3 and gives non-significant coefficient for IN2. After essential modifications are applied to the original model, the Chinese variant used in this study, which is presented in Table 5.10, includes five rather than eight matrices. Briefly, the HI2 matrix is removed from the model, whereas inheritance effects are combined into a three-level matrix in which immobility of Class I+II, Class IVa+b and Class VIIb is identified as level 3 and immobility of all other classes is identified as level 2.
Table 5.9: Matrices for the preferred core model of social fluidity

<table>
<thead>
<tr>
<th></th>
<th>HI1</th>
<th>IN1</th>
<th>SE</th>
<th>AF1</th>
<th>AF2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>122222</td>
<td>311111</td>
<td>111112</td>
<td>111111</td>
<td>121111</td>
</tr>
<tr>
<td></td>
<td>2111112</td>
<td>121111</td>
<td>1111112</td>
<td>111111</td>
<td>121111</td>
</tr>
<tr>
<td></td>
<td>211111</td>
<td>113111</td>
<td>1111112</td>
<td>111111</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>2111112</td>
<td>111211</td>
<td>111112</td>
<td>111111</td>
<td>111121</td>
</tr>
<tr>
<td></td>
<td>2111112</td>
<td>111121</td>
<td>1111112</td>
<td>111111</td>
<td>111121</td>
</tr>
<tr>
<td></td>
<td>222221</td>
<td>1111113</td>
<td>222221</td>
<td>211111</td>
<td>112121</td>
</tr>
</tbody>
</table>

Table 5.10 shows results of fitting the core model. In comparison with the profound hierarchical effects for both men and women revealed by Yang’s application (2008) of the core model using the 1996 LHSC data, the parameter for HI1 turns out to be non-significant under the present model. Similarly, only women are significantly affected by the barriers against long-range upward mobility from agricultural background to salariat class positions, which is captured by AF1. Nonetheless, the distance between the agricultural sector and non-agricultural classes in relative mobility chances is not restricted to the female sample. Like the inheritance effect, the sectoral effect captured by the SE parameter is significant for both men and women and shows equally strong magnitude. As a last point of interest, women also show stronger affinity relations within non-manual sectors, manual working classes, and greater propensity of mobility from agricultural background to small business or semi-/unskilled manual work.

Table 5.10: Results of the core social fluidity model to collapsed mobility tables for men and women

<table>
<thead>
<tr>
<th></th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. Ind.</td>
<td>2835.8</td>
<td>25</td>
<td>0.00</td>
<td>98.1</td>
<td>20.2</td>
<td>2601.8</td>
</tr>
<tr>
<td>Core model</td>
<td>54.8</td>
<td>19</td>
<td>0.00</td>
<td></td>
<td>1.6</td>
<td>-123.0</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. Ind.</td>
<td>3658.4</td>
<td>25</td>
<td>0.00</td>
<td></td>
<td>22.7</td>
<td>3424.0</td>
</tr>
<tr>
<td>Core model</td>
<td>108.0</td>
<td>19</td>
<td>0.00</td>
<td>97.1</td>
<td>2.4</td>
<td>-70.2</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI1</td>
<td>-0.04</td>
<td>(0.08)</td>
<td>-0.18*</td>
<td></td>
<td>(0.08)</td>
<td></td>
</tr>
<tr>
<td>IN1-level 2</td>
<td>0.61**</td>
<td>(0.06)</td>
<td>0.62**</td>
<td></td>
<td>(0.06)</td>
<td></td>
</tr>
<tr>
<td>IN1-level 3</td>
<td>0.56**</td>
<td>(0.13)</td>
<td>0.42**</td>
<td></td>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>-0.88**</td>
<td>(0.05)</td>
<td>-0.88**</td>
<td></td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>AF1</td>
<td>0.09</td>
<td>(0.09)</td>
<td>-0.42**</td>
<td></td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>AF2</td>
<td>0.29**</td>
<td>(0.04)</td>
<td>0.42**</td>
<td></td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.19**</td>
<td>(0.14)</td>
<td>5.38**</td>
<td></td>
<td>(0.14)</td>
<td></td>
</tr>
</tbody>
</table>
In Table 5.11, I report the sum of postulated effects under the core model in each cell of the 6×6 mobility table. In Table 5.11-A, the information in the six matrices of the core model is integrated so as to show all effects in each individual cell. Where the corresponding parameter estimate is non-significant, the effect is removed from the cell, whereas cells to which no effect applies are shaded grey to be differentiated from the other cells. Interactions in these grey cells are viewed as where we identify ‘neutral fluidity’, as intergenerational mobility is more likely to be driven by forces of structural effects in relation to classes of origin and destination (Erikson & Goldthorpe, 1992a). To provide information in a straightforward manner, the table also presents odds ratios for each possible cell.

Table 5.11: Parameter estimates for the cells in the 6×6 intergenerational mobility table

A. Postulated effects in the mobility table

<table>
<thead>
<tr>
<th></th>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VII a</th>
<th>VIIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>IN1</td>
<td>AF2</td>
<td></td>
<td></td>
<td></td>
<td>SE</td>
</tr>
<tr>
<td>III</td>
<td>AF2</td>
<td>IN1</td>
<td></td>
<td></td>
<td></td>
<td>SE</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>IN1</td>
<td></td>
<td></td>
<td></td>
<td>SE</td>
</tr>
<tr>
<td>V+VI</td>
<td></td>
<td></td>
<td>IN1</td>
<td>AF2</td>
<td></td>
<td>SE</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td></td>
<td></td>
<td>AF2</td>
<td>IN1</td>
<td></td>
<td>SE</td>
</tr>
<tr>
<td>VIIb</td>
<td>SE</td>
<td>SE</td>
<td>SE+AF2</td>
<td>SE</td>
<td>SE+AF2</td>
<td>IN1</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>IN1</td>
<td>H1+AF2</td>
<td></td>
<td>H1</td>
<td>H1+SE</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>H1+AF2</td>
<td>IN1</td>
<td></td>
<td>H1</td>
<td>H1+SE</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>H1</td>
<td></td>
<td>IN1</td>
<td>H1+SE</td>
<td>H1+SE</td>
<td></td>
</tr>
<tr>
<td>V+VI</td>
<td>H1</td>
<td></td>
<td></td>
<td></td>
<td>H1+SE</td>
<td></td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>H1</td>
<td></td>
<td></td>
<td></td>
<td>H1+SE</td>
<td></td>
</tr>
<tr>
<td>VIIb</td>
<td>H1+SE+AF1</td>
<td>H1+SE</td>
<td>H1+SE+AF2</td>
<td>H1+SE</td>
<td>H1+SE+AF2</td>
<td>IN1</td>
</tr>
</tbody>
</table>
B. Parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>1.17 (3.22)</td>
<td>0.29 (1.34)</td>
<td>0.61 (1.84)</td>
<td>0.61 (1.84)</td>
<td>0.29 (1.34)</td>
<td>-0.88 (0.42)</td>
</tr>
<tr>
<td>IIIa</td>
<td>-0.29 (1.34)</td>
<td>0.61 (1.84)</td>
<td>0.29 (1.34)</td>
<td>0.61 (1.84)</td>
<td>-0.88 (0.42)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>1.17 (3.22)</td>
<td></td>
<td>-0.88 (0.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V+VI</td>
<td></td>
<td></td>
<td>0.61 (1.84)</td>
<td>-0.88 (0.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td></td>
<td></td>
<td>0.61 (1.84)</td>
<td>-0.88 (0.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIIb</td>
<td>-0.88 (0.42)</td>
<td>-0.88 (0.42)</td>
<td>-0.59 (0.55)</td>
<td>-0.88 (0.42)</td>
<td>-0.59 (0.55)</td>
<td>1.17 (3.22)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I+II</th>
<th>IIIa</th>
<th>IVa+b</th>
<th>V+VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>1.04 (2.83)</td>
<td>0.24 (1.27)</td>
<td>-0.18 (0.84)</td>
<td>-0.18 (0.84)</td>
<td>-0.18 (0.84)</td>
<td>-1.06 (0.35)</td>
</tr>
<tr>
<td>IIIa</td>
<td>-0.18 (0.84)</td>
<td>0.62 (1.86)</td>
<td>0.62 (1.86)</td>
<td>0.42 (0.04)</td>
<td>-1.06 (0.35)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>1.04 (2.83)</td>
<td></td>
<td>0.42 (0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V+VI</td>
<td>-0.18 (0.84)</td>
<td></td>
<td>0.62 (1.86)</td>
<td>-1.06 (0.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td></td>
<td></td>
<td>0.62 (1.86)</td>
<td>-1.06 (0.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIIb</td>
<td>-1.48 (0.23)</td>
<td>-1.06 (0.35)</td>
<td>-0.64 (0.53)</td>
<td>-1.06 (0.35)</td>
<td>-0.64 (0.53)</td>
<td>1.04 (2.83)</td>
</tr>
</tbody>
</table>

Notes:
1. — — — — — = hierarchical divisions (shown vertically); ----------- = sectoral divisions (shown horizontally).
2. Cells of ‘neutral’ fluidity are shaded grey and cells shaded black represent intergenerational immobility.
3. Odds ratios are provided in the brackets.

To start with, it is helpful to identify the area in the mobility table where ‘neutral fluidity’ prevails, i.e. cells that are shaded grey. In the case of men, we see a symmetrical grey area that covers mobility between non-manual classes and the petty bourgeoisie as well as manual working classes and mobility between manual working classes and the petty bourgeoisie. As a result of the ‘neutral’ fluidity that prevails in these cells, generalised structural effects are the only factors that determine intergenerational mobility in this area of the mobility table. In the case of women, a similar but smaller zone of neutral fluidity emerges. For women, the movement between the salariat class and the petty bourgeoisie and the movement between the salariat class and manual working classes are subject to hierarchical effects. As shown in Table 5.11-B, the propensity for mobility between the salariat class and manual working classes as well as the petty bourgeoisie is around 85 per cent that would be if neutral fluidity prevailed.

Looking at cells that contain association parameters, we are able to map out the contours of the endogenous driving forces proposed by the core model. First of all, for men and women alike, a majority of the positive interaction parameters are found on the main diagonals of the mobility tables. Immobility of Class I+II, Class IVa+b, and Class VIIb is over three times for men and nearly three times it would be in the absence of inheritance.
effect, whereas immobility of the other classes is nearly twice it would be if neutral fluidity prevailed.

As regards negative interaction parameters, different stories emerge for men and women. In the case of men, the sectoral effect is found to be the sheer source of barriers to mobility between the agricultural class and non-agricultural classes. In almost all cells that involve mobility between the class of peasants and non-agricultural classes, the likelihood of occurrence is less than half it would be in the case of neutral fluidity. As the only exceptions, the sectoral effect is weakened in the VIIb-IV and VIIb-IIIb+VIIa cells by the positive affinity effect (AF2).

In the case of women, the sectoral effect operates jointly with the hierarchical effect, which reinforces the barriers against upward mobility from agricultural background to non-agricultural positions and reduces the likelihood of the reverse downward mobility from non-agricultural origins to agricultural destinations. With particular reference to the VIIb-I+II cell, the likelihood of long-range upward mobility from agricultural origins to salariat positions is further reduced by disaffinity between the salariat class and the class of peasants. As we see in the female panel of Table 5.11-B, the odds of such long-range upward mobility is less than a quarter of what would be if there were no sectoral effect, hierarchical effect, or disaffinity effect.

As far as results of fitting the core model are concerned, a major difference between men and women in the pattern of social fluidity relative mobility is the apparent absence of hierarchical effects in the case of men. However, as Erikson and Goldthorpe (1992) proposed, sectoral divisions can be understood as hierarchical divisions between agricultural and non-agricultural classes. Therefore, it is hierarchical effects between non-agricultural classes rather than hierarchical effects in a general sense that are truly absent in the case of men. In contrast, the combined force of sectoral effect and hierarchical effect in the case of women can be understood as dual hierarchical effects that form barriers against mobility away from agricultural origins and reduce the reverse propensity for downward mobility into agricultural work. For daughters of peasants who seek salariat occupations in particular, the barriers facing them are even stronger because of disaffinity between Class I+II and Class VIIb.
5.7 Conclusion

The four sections in this chapter examine temporal changes of relative mobility, urban-rural and gender differences in relative mobility, and patterns of social fluidity under the density levels model and the core model of social fluidity. In relation to trends in social fluidity, the log-linear analysis shows no compelling evidence in favour of changes in relative mobility rates during the 1996-2006 period of time, although the association between classes of origin and destination is found to have slightly strengthened in the case of women. As I discussed in Chapter 4, China’s economic transformation has resulted in rapid changes in its industrial structure, which in turn has led to changes in the class structure in the society. On the grounds of the finding that there is no powerful evidence of directional changes in relative mobility, we can reasonably conclude that the substantial changes in absolute mobility rates revealed earlier in this study are overwhelmingly consequences of changes in the class structure. On the one hand, we may view the finding as new evidence to support the thesis of ‘constant flux’ (Erikson & Goldthorpe, 1992a; Goldthorpe & Mills, 2004, 2008). On the other, the temporal stability in social fluidity means, as Goldthorpe and Mills (2004: 223) pointed out in the British case, that trends in absolute mobility rates in China can be understood more in historical than theoretical terms. While mobility studies focusing on intergenerational mobility in absolute terms may provide empirical evidence of increasing mobility rates in the course of economic growth (see for example Li, 2005; Lu, 2004), it does not necessarily point to a more ‘open’ Chinese society.

Although social fluidity is found stable in general, it is undeniable that the association of class origin and destination has become slightly stronger for women over the decade. In addition, while relative mobility rates are not significantly different between men and women in 1996, the net association between class of origin and destination is mildly stronger for women than men in the 2005/6 sample. As regards the urban-rural disparity in social fluidity, the net association between classes of origin and destination is found weaker for people of rural hukou origins than those of urban origins, which is mainly because of the much less diverse class structure of the rural sample. Nonetheless, to better understand the gender and urban-rural disparity in the endogenous regime of intergenerational mobility, we need to turn to the results of the two topological models.
Based on the results of the density levels model and the core model, we are able to see the contours of the pattern of fluidity in China. First of all, the pattern of social fluidity in China features clear boundaries between agricultural and non-agricultural sectors. While inheritance plays an important part in the general process of intergenerational mobility of all classes, it is immobility of Class VIIb that shows the greatest density under the density levels model, which forms a sharp contrast with mobility between non-manual classes and the peasant class that is at the lowest density level. Similarly, the relative mobility of both men and women under the core model is found to be affected most by the sectoral effect, which implies the difficulty of crossing the boundary between the agricultural and non-agricultural sectors.

It must be noted, however, that the effect of the boundaries between the agricultural and non-agricultural sectors varies between sexes. While the propensity for men of agricultural origins to be found in agricultural work is clearly stronger than the likelihood of moving into non-manual class positions, the corresponding difference is even greater in the case of women. Moreover, unlike men, women are subject to the hierarchical effect that reduces the likelihood of movement between class positions of different hierarchical levels. For women from agricultural background in particular, the distance to salariat occupations is even further because of the disaffinity between Class I+II and Class VIIb.

As afore-discussed, while patterns of social fluidity in state-socialist societies are found to be deviant from the core pattern in Western industrial societies, they do not show features generic to such societies, except the common existence of political and institutional interventions upon mobility processes. In the Chinese case, the astonishing sectoral effect and inheritance effects that form obstacles in mobility processes of the agricultural class can be linked to the long-time operation of the hukou system. Unlike previous findings derived from the fitting of the core model (Cheung, 1997, cited in Yang, 2008; Yang, 2008), this study finds that the hierarchical effect, which does not operate in the case of men, is apparently far from being the most important source of barriers of intergenerational mobility. Nevertheless, as mentioned in Section 5.5, intergenerational mobility of both men and women of agricultural origins is still subject to the effect of a hierarchical division supported by the hukou system, if we understand the sectoral effect as hierarchical effects de facto between agricultural and non-agricultural sectors.
In line with the findings revealed in Chapter 4, the gender disparity in relative mobility shown in this chapter is largely intertwined with the unequal relative chances of mobility for descendants of peasant families. While women of relatively more advantageous social contexts, like men from the same background, benefit from their non-manual class origins in seeking desirable class positions, women of agricultural background lag behind men in seeking room at the top of the class structure. Although it is reasonable to expect the gender gap in general to widen in the initial stages of economic development (Boserup, 1989, cited in Hannum, 2005), women of agricultural origins, given their lack of social and economic resources, are faced with even greater difficulties to benefit from new opportunities produced by economic development and achieve long-range upward mobility.

Finally, for men and women alike, this chapter also confirms the boundaries between the non-manual and manual sectors in terms of relative mobility. It is true that inheritance is found as one of the most important effects that operate in the endogenous regime of intergenerational mobility in China, immobility in a broader sense within the ‘white-collar’ non-manual sectors and the sectors of manual work plays an undeniably important part in the overall pattern of fluidity.

So far I have discussed intergenerational mobility with full details in both absolute and relative terms. However, the traditional analysis of social mobility has two limitations. First, while the association between classes of origin and destination is thoroughly analysed, the role that work-life mobility is likely to play in processes of intergenerational mobility is omitted. Second, with the standard practice of mobility analysis, which I present in Chapter 4 and Chapter 5, we are not able to include covariates that are likely to impose effects on individuals’ attainment of their class positions at time of survey. In the following chapter, by introducing the entry class positions and other covariates, including education and *hukou* origin, investigates to what extent the outcome of intergenerational mobility is affected by one’s first occupation and the covariates that are included.
Appendix Chapter 5 (I)

Table 5A.1: Results of fitting the conditional independence, constant social fluidity, and UNIDIFF models to mobility tables for men and women in two age groups: origin, destination, and survey year

<table>
<thead>
<tr>
<th>Model</th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men 41-69 (N=6,404)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cond. ind.</td>
<td>1515.7</td>
<td>50</td>
<td>0.00</td>
<td>18.8</td>
<td>1077.4</td>
</tr>
<tr>
<td>2</td>
<td>CnSF</td>
<td>29.8</td>
<td>25</td>
<td>0.23</td>
<td>98.0</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>UNIDIFF</td>
<td>29.8</td>
<td>24</td>
<td>0.19</td>
<td>98.0</td>
<td>1.1</td>
</tr>
<tr>
<td>2-3</td>
<td>β= 0.001</td>
<td>0</td>
<td>1</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women 41-69 (N=5,951)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cond. ind.</td>
<td>1888.0</td>
<td>50</td>
<td>0.00</td>
<td>22.0</td>
<td>1453.5</td>
</tr>
<tr>
<td>5</td>
<td>CnSF</td>
<td>49.5</td>
<td>25</td>
<td>0.00</td>
<td>97.4</td>
<td>1.7</td>
</tr>
<tr>
<td>6</td>
<td>UNIDIFF¹</td>
<td>44.1</td>
<td>24</td>
<td>0.01</td>
<td>97.7</td>
<td>1.6</td>
</tr>
<tr>
<td>5-6</td>
<td>β= 0.030</td>
<td>5.4</td>
<td>1</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men 20-40 (N=5,145)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cond. ind.</td>
<td>1370.9</td>
<td>50</td>
<td>0.00</td>
<td>20.6</td>
<td>943.7</td>
</tr>
<tr>
<td>8</td>
<td>CnSF</td>
<td>38.7</td>
<td>25</td>
<td>0.04</td>
<td>97.2</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td>UNIDIFF¹</td>
<td>36.1</td>
<td>24</td>
<td>0.05</td>
<td>97.4</td>
<td>1.9</td>
</tr>
<tr>
<td>8-9</td>
<td>β= -0.019</td>
<td>2.6</td>
<td>1</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women 20-40 (N=5,836)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Cond. ind.</td>
<td>1859.8</td>
<td>50</td>
<td>0.00</td>
<td>22.7</td>
<td>1426.2</td>
</tr>
<tr>
<td>11</td>
<td>CnSF</td>
<td>57.8</td>
<td>25</td>
<td>0.00</td>
<td>96.9</td>
<td>2.2</td>
</tr>
<tr>
<td>12</td>
<td>UNIDIFF¹</td>
<td>56.0</td>
<td>24</td>
<td>0.00</td>
<td>97.0</td>
<td>2.3</td>
</tr>
<tr>
<td>11-12</td>
<td>β= 0.015</td>
<td>1.8</td>
<td>1</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5A.2: Results of fitting the conditional independence, constant social fluidity, and UNIDIFF models to mobility tables for respondents of urban and rural hukou origin in two age groups: origin, destination, and survey year

<table>
<thead>
<tr>
<th>Model</th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>∆</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban 41-69 (N=2,135)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cond. ind.</td>
<td>364.6</td>
<td>50</td>
<td>0.00</td>
<td>13.9</td>
<td>-18.8</td>
</tr>
<tr>
<td>2</td>
<td>CnSF</td>
<td>37.4</td>
<td>25</td>
<td>0.05</td>
<td>89.7</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>UNIDIFF</td>
<td>36.1</td>
<td>24</td>
<td>0.05</td>
<td>90.1</td>
<td>2.9</td>
</tr>
<tr>
<td>2-3</td>
<td>β= 0.026</td>
<td>1.3</td>
<td>1</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural 41-69 (N=9,669)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cond. ind.</td>
<td>406.9</td>
<td>50</td>
<td>0.00</td>
<td>4.9</td>
<td>-51.9</td>
</tr>
<tr>
<td>5</td>
<td>CnSF</td>
<td>25.4</td>
<td>25</td>
<td>0.44</td>
<td>93.8</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>UNIDIFF¹</td>
<td>24.6</td>
<td>24</td>
<td>0.43</td>
<td>94.0</td>
<td>0.6</td>
</tr>
<tr>
<td>5-6</td>
<td>β= 0.012</td>
<td>0.8</td>
<td>1</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban 20-40 (N=2,334)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cond. ind.</td>
<td>340.2</td>
<td>50</td>
<td>0.00</td>
<td>14.1</td>
<td>-47.5</td>
</tr>
<tr>
<td>8</td>
<td>CnSF</td>
<td>25.2</td>
<td>25</td>
<td>0.45</td>
<td>92.6</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>UNIDIFF¹</td>
<td>24.8</td>
<td>24</td>
<td>0.42</td>
<td>92.7</td>
<td>3.0</td>
</tr>
<tr>
<td>8-9</td>
<td>β=-0.012</td>
<td>0.4</td>
<td>1</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural 20-40 (N=8,630)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Cond. ind.</td>
<td>650.7</td>
<td>50</td>
<td>0.00</td>
<td>8.4</td>
<td>197.5</td>
</tr>
<tr>
<td>11</td>
<td>CnSF</td>
<td>51.8</td>
<td>25</td>
<td>0.00</td>
<td>92.0</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>UNIDIFF¹</td>
<td>51.8</td>
<td>24</td>
<td>0.00</td>
<td>92.0</td>
<td>1.2</td>
</tr>
<tr>
<td>11-12</td>
<td>β=-0.002</td>
<td>0</td>
<td>1</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5A.3: Results of fitting the conditional independence, common social fluidity, and UNIDIFF models to the overall, 1996, and 2005/6 sample in two age groups: origin, destination, and gender

<table>
<thead>
<tr>
<th>Model</th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996 41-69 (N=2,835)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cond. ind.</td>
<td>608.6</td>
<td>50</td>
<td>0.00</td>
<td>16.6</td>
<td>211.1</td>
</tr>
<tr>
<td>2</td>
<td>CmSF</td>
<td>25.9</td>
<td>25</td>
<td>0.41</td>
<td>1.7</td>
<td>-172.9</td>
</tr>
<tr>
<td>3</td>
<td>UNIDIFF</td>
<td>25.9</td>
<td>24</td>
<td>0.36</td>
<td>1.7</td>
<td>-164.9</td>
</tr>
<tr>
<td>2-3</td>
<td>β= 0.002</td>
<td>0</td>
<td>1</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 20-40 (N=2,890)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cond. ind.</td>
<td>911.6</td>
<td>50</td>
<td>0.00</td>
<td>22.4</td>
<td>513.1</td>
</tr>
<tr>
<td>5</td>
<td>CmSF</td>
<td>46.1</td>
<td>25</td>
<td>0.01</td>
<td>3.2</td>
<td>-153.1</td>
</tr>
<tr>
<td>6</td>
<td>UNIDIFF</td>
<td>45.7</td>
<td>24</td>
<td>0.00</td>
<td>3.2</td>
<td>-145.5</td>
</tr>
<tr>
<td>5-6</td>
<td>β= -0.009</td>
<td>0.4</td>
<td>1</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/6 41-69 (N=9,520)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cond. Ind.</td>
<td>2795.1</td>
<td>50</td>
<td>0.00</td>
<td>21.5</td>
<td>2337.1</td>
</tr>
<tr>
<td>8</td>
<td>CmSF</td>
<td>57.3</td>
<td>25</td>
<td>0.00</td>
<td>2.1</td>
<td>-171.7</td>
</tr>
<tr>
<td>9</td>
<td>UNIDIFF</td>
<td>40.0</td>
<td>24</td>
<td>0.02</td>
<td>1.3</td>
<td>-179.9</td>
</tr>
<tr>
<td>8-9</td>
<td>β= 0.033</td>
<td>17.3</td>
<td>1</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/6 20-40 (N=8,091)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Cond. ind.</td>
<td>2319.2</td>
<td>50</td>
<td>0.00</td>
<td>21.5</td>
<td>1869.3</td>
</tr>
<tr>
<td>11</td>
<td>CmSF</td>
<td>53.7</td>
<td>25</td>
<td>0.00</td>
<td>2.4</td>
<td>-171.3</td>
</tr>
<tr>
<td>12</td>
<td>UNIDIFF</td>
<td>42.5</td>
<td>24</td>
<td>0.01</td>
<td>2.1</td>
<td>-173.5</td>
</tr>
<tr>
<td>11-12</td>
<td>β= 0.027</td>
<td>11.2</td>
<td>1</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The IIIa-VIIb cell in the 1996 male 41-69 mobility table and the IV-IIIa cell in the 1996 female 20-40 table are empty, and the value is replaced to be 1.
Table 5A.4: Results of fitting the conditional independence, common social fluidity, and UNIDIFF models to the overall, 1996, and 2005/6 sample in two age groups: origin, destination, and hukou origin

<table>
<thead>
<tr>
<th>Model</th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996 41-69 (N=2,312)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>194.0</td>
<td>50</td>
<td>0.00</td>
<td>6.8</td>
<td>-193.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>44.1</td>
<td>25</td>
<td>0.01</td>
<td>77.3</td>
<td>2.4</td>
<td>-149.5</td>
</tr>
<tr>
<td>3</td>
<td>42.1</td>
<td>24</td>
<td>0.01</td>
<td>78.3</td>
<td>2.3</td>
<td>-143.8</td>
</tr>
<tr>
<td>2-3</td>
<td>β = -0.037</td>
<td>2.0</td>
<td>1</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 20-40 (N=2,895)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>302.9</td>
<td>50</td>
<td>0.00</td>
<td>10.3</td>
<td>-95.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>47.7</td>
<td>25</td>
<td>0.00</td>
<td>84.3</td>
<td>2.3</td>
<td>-151.6</td>
</tr>
<tr>
<td>6</td>
<td>47.0</td>
<td>24</td>
<td>0.00</td>
<td>84.5</td>
<td>2.1</td>
<td>-144.3</td>
</tr>
<tr>
<td>5-6</td>
<td>β = 0.019</td>
<td>0.7</td>
<td>1</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/6 41-69 (N=9,492)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>577.4</td>
<td>50</td>
<td>0.00</td>
<td>6.5</td>
<td>119.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>70.7</td>
<td>25</td>
<td>0.00</td>
<td>87.8</td>
<td>1.5</td>
<td>-158.3</td>
</tr>
<tr>
<td>9</td>
<td>59.5</td>
<td>24</td>
<td>0.00</td>
<td>89.7</td>
<td>1.4</td>
<td>-160.3</td>
</tr>
<tr>
<td>8-9</td>
<td>β = -0.044</td>
<td>11.2</td>
<td>1</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/6 20-40 (N=8,069)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>688.0</td>
<td>50</td>
<td>0.00</td>
<td>9.4</td>
<td>238.2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>50.3</td>
<td>25</td>
<td>0.00</td>
<td>92.7</td>
<td>1.4</td>
<td>-174.6</td>
</tr>
<tr>
<td>12</td>
<td>47.9</td>
<td>24</td>
<td>0.00</td>
<td>93.0</td>
<td>1.5</td>
<td>-168.0</td>
</tr>
<tr>
<td>11-12</td>
<td>β = -0.021</td>
<td>12.4</td>
<td>1</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. In the mobility tables of the 1996 41-69 cohort, eight cells are empty, which are I+II-VIIb, IV-VIIb, V&VI-VIIb cells for the urban sample, and IIIa-IV, IIIa-V&VI, V&VI-IIIa, and IIIb+VIIa-IIIa cells for the rural sample. The value in these cells is replaced to be 1.
2. In the mobility tables of the 2005/6 20-40 cohort, the IV-VIIb cell is empty, and the value is replaced to be 1.
Table 5A.5: O-D-S by birth cohort, for 1996 and 2005/6 separately

<table>
<thead>
<tr>
<th>Model</th>
<th>G^2</th>
<th>df</th>
<th>p</th>
<th>rG^2</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996 41-69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>600.9</td>
<td>50</td>
<td>0.00</td>
<td>16.5</td>
<td>203.5</td>
<td></td>
</tr>
<tr>
<td>CmSF</td>
<td>23.0</td>
<td>25</td>
<td>0.58</td>
<td>96.2</td>
<td>1.9</td>
<td>-175.7</td>
</tr>
<tr>
<td>UNIDIFF</td>
<td>22.8</td>
<td>24</td>
<td>0.53</td>
<td>96.2</td>
<td>1.9</td>
<td>-168.0</td>
</tr>
<tr>
<td>1996 20-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>937.4</td>
<td>50</td>
<td>0.00</td>
<td>22.6</td>
<td>539.0</td>
<td></td>
</tr>
<tr>
<td>CmSF</td>
<td>43.6</td>
<td>25</td>
<td>0.01</td>
<td>95.3</td>
<td>3.0</td>
<td>-155.6</td>
</tr>
<tr>
<td>UNIDIFF</td>
<td>43.5</td>
<td>24</td>
<td>0.01</td>
<td>95.4</td>
<td>3.0</td>
<td>-147.7</td>
</tr>
<tr>
<td>2005/6 41-69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>2809.0</td>
<td>50</td>
<td>0.00</td>
<td>21.6</td>
<td>2350.0</td>
<td></td>
</tr>
<tr>
<td>CmSF</td>
<td>64.5</td>
<td>25</td>
<td>0.00</td>
<td>97.7</td>
<td>2.2</td>
<td>-164.5</td>
</tr>
<tr>
<td>UNIDIFF</td>
<td>46.6</td>
<td>24</td>
<td>0.00</td>
<td>98.3</td>
<td>1.3</td>
<td>-173.2</td>
</tr>
<tr>
<td>2005/6 20-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>2253.9</td>
<td>50</td>
<td>0.00</td>
<td>21.5</td>
<td>1804.0</td>
<td></td>
</tr>
<tr>
<td>CmSF</td>
<td>57.9</td>
<td>25</td>
<td>0.00</td>
<td>97.4</td>
<td>2.5</td>
<td>-167.1</td>
</tr>
<tr>
<td>UNIDIFF</td>
<td>55.7</td>
<td>24</td>
<td>0.00</td>
<td>97.5</td>
<td>2.5</td>
<td>-160.2</td>
</tr>
</tbody>
</table>

Notes:
1. Setting male=0, the log odds for female are 0.007(0.015) for the 1996 41-69, -0.005(0.014) for the 1996 20-40, 0.032(0.008)*** for the 2005/6 41-69, and 0.011(0.008) for the 2005/6 20-40.
Table 5A.6: O-D-H by birth cohort, for 1996 and 2005/6 separately

<table>
<thead>
<tr>
<th>Model</th>
<th>G²</th>
<th>df</th>
<th>P</th>
<th>rG²</th>
<th>∆</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996 41-69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>184.4</td>
<td>50</td>
<td>0.00</td>
<td>6.3</td>
<td>-202.7</td>
<td></td>
</tr>
<tr>
<td>CmSF</td>
<td>50.1</td>
<td>25</td>
<td>0.00</td>
<td>72.8</td>
<td>2.5</td>
<td>-143.4</td>
</tr>
<tr>
<td>UNIDIFF</td>
<td>48.5</td>
<td>24</td>
<td>0.00</td>
<td>73.7</td>
<td>2.5</td>
<td>-137.3</td>
</tr>
<tr>
<td>1996 20-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>311.4</td>
<td>50</td>
<td>0.00</td>
<td>10.4</td>
<td>-87.1</td>
<td></td>
</tr>
<tr>
<td>CmSF</td>
<td>48.3</td>
<td>25</td>
<td>0.00</td>
<td>84.5</td>
<td>2.1</td>
<td>-150.9</td>
</tr>
<tr>
<td>UNIDIFF</td>
<td>48.2</td>
<td>24</td>
<td>0.00</td>
<td>84.5</td>
<td>2.1</td>
<td>-143.0</td>
</tr>
<tr>
<td>2005/6 41-69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>497.9</td>
<td>50</td>
<td>0.00</td>
<td>6.4</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td>CmSF</td>
<td>38.5</td>
<td>25</td>
<td>0.04</td>
<td>92.3</td>
<td>1.0</td>
<td>-190.2</td>
</tr>
<tr>
<td>UNIDIFF</td>
<td>35.1</td>
<td>24</td>
<td>0.07</td>
<td>92.9</td>
<td>0.9</td>
<td>-184.5</td>
</tr>
<tr>
<td>2005/6 20-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. ind.</td>
<td>605.2</td>
<td>50</td>
<td>0.00</td>
<td>8.7</td>
<td>164.9</td>
<td></td>
</tr>
<tr>
<td>CmSF</td>
<td>30.9</td>
<td>25</td>
<td>0.16</td>
<td>94.9</td>
<td>1.2</td>
<td>-184.7</td>
</tr>
<tr>
<td>UNIDIFF</td>
<td>30.1</td>
<td>24</td>
<td>0.15</td>
<td>95.0</td>
<td>1.2</td>
<td>-176.6</td>
</tr>
</tbody>
</table>

Notes:

1. Setting male=0, the log odds for female are -0.032(0.025) for the 1996 41-69, -0.007(0.025) for the 1996 20-40, 0.028(0.015) for the 2005/6 41-69, and -0.014(0.015) for the 2005/6 20-40.

Appendix Chapter 5 (II): Designing a model of density levels

The initial design of the model of density levels is based on theoretical grounds relating to the relative desirability of each class as a class of destination, the relative advantage of each class as a class of origin, and relative barriers facing individuals in the course of movement to different class positions (Goldthorpe, 1987, 2007). Meanwhile, I refer to the strength of parameters of the interaction between origin and destination classes under the CnSF model fitted on the collapsed data of 1996 and 2005/6, since there is no strong evidence of temporal changes of social fluidity.

Table 5A.7 gives levels matrices of the initial design of the model (Model 1) and two modifications (Model 2 and Model 3) based on it. To produce the initial design, it is helpful to consider which cells are expected to show the greatest density and which the lowest density, which are respectively defined as level 1 and level 6. As indicated in Chapter 4, strikingly high rates of immobility are found in China’s class of peasants for both men and women. Therefore, it is reasonable to allocate the VIIb-VIIb cell to level 1. While rates of immobility in non-agricultural classes are also high, they are expected not to surpass that of Class VIIb. I then assign the five other cells on the main diagonal to level 2 rather than level 1. Given peasants’ lack of resources in economic, social, and cultural terms, alongside the institutional barriers as a result of the hukou system, upward mobility from agricultural origins to non-manual class positions in general is expected to be rare. Thus the corresponding VIIb-I+II and VIIb-IIIa cells are allocated to level 6. Conversely, the I+II-VIIb and IIIa-VIIb cells are also expected to show the lowest density and are also allocated to level 6.
Table 5A.7: Design matrices for the Hauser-type model (updated on 24th March, 2012)

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I+II</td>
<td>IIIa</td>
<td>IVa+b</td>
<td>V+VI</td>
</tr>
<tr>
<td>I&II</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>IIIa</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>IVa+b</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>V+VI</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>VIIb</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Having considered the highest and lowest density levels, we can now move on to the levels in between the ends of the scale by doing it neatly in a row-by-row manner. While Class IIIa positions are obviously less desirable than salariat occupations, they are nevertheless more attractive as non-manual destination positions than those in Classes IV-IIIb+VIIa. For this reason, the I+II-IIIa cell is assigned to level 3. As for the rest of the cells in the row, the I+II-V+VI cell is expected to show greater density than the cells of I+II-IV and I+II-IIIb+VIIa, given the higher desirability of skilled manual occupations. I thus allocate the former to level 4, whereas the latter cells are allocated to level 5.

In regard to outflow from Class IIIa, I put the IIIa-I+II at level 3 on the grounds of the desirability of salariat positions and the relatively easier access to salariat occupations for individuals of non-manual origins that may be associated with their parents’ social resources. Although movement between Class IIIa, Class IV and Class V+VI is described as ‘horizontal mobility’ in Chapter 4, manual work in Class V+VI and Class IIIb+VIIa is relatively less desirable for children of routine non-manual origins. Likewise, as a
consequence of the long-time suppression under state socialism of the petty bourgeoisie, lower density is expected from the IIIa-IV cell, because Class IV positions are more often than not undesirable as class of destination in China. Nevertheless, for those who experience downward mobility from routine non-manual background to manual work, they are expected to be more likely to move into Class IIIb+VIIa rather than Class V+VI occupations, because of the less skill requirement in such work. It is therefore reasonable to allocate the IIIa-IIIb+VIIa cell to level 4, i.e. a higher level than the IIIa-V+VI cell.

In the row of Class IV, most cells are expected to show density levels that are similar to their counterparts in the row of Class IIIa. However, access to salariat positions is expected to be harder for small business owners’ children than for those of routine non-manual origin. For this reason, the IV-I+II cell is assigned to level 4, a lower level than the IIIa-I+II cell. Similarly, individuals of Class IV origins are less likely than those of Class IIIa origins to access routine non-manual occupations. As such mobility is expected to be no easier than movement from petty bourgeoisie origin to skilled manual work, the IV-IIIa is assigned to the same level as the IV-V+VI cell, namely level 5. What is also allocated to level 5 in this row is the IV-VIIb cell. While downward mobility from all non-agricultural origins to agricultural work is rare, it is expected to be more likely for individuals of the petty bourgeoisie and manual work origins than those of non-manual origins.

In the case of Class V+VI and Class IIIb+VIIa as classes of origin, I expect mobility from manual work origins to salariat positions to show the same level of density as the IV-I+II cell, which is lower than what the IIIa-I+II cell is allocated to. On the other hand, children of manual workers are thought to be less likely than children of salariat parents and more likely than children of small business owners to be found in routine non-manual occupations. Thus I allocate both V+VI-IIIa and IIIb+VIIa-IIIa cells to level 4. As to cells involving mobility between Class V+VI and Class IIIb+VIIa, a higher level of density is expected than the IIIa-IV cell. However, children of semi-/un-skilled manual workers may be more likely than those of skilled manual workers to move into small business positions. The V+VI-IV and IIIb+VIIa cells, therefore, are assigned respectively to level 4 and level 3. Finally, while Class V+VI and Class IIIb+VIIa, if seen as a whole, show a relatively high rate of immobility, individuals from each of the two classes are more likely to stay within their class of origin rather than move into positions in the other class. The
V+VI-IIIb+VIIa and IIIb+VIIa-V+VI cells are thus allocated to level 3, which is slightly higher than cells of immobility for the two classes.

In the last row of the mobility table, only three cells remain unassigned. While all these cells are expected to show greater density than mobility between the class of peasants and non-manual classes, individuals from Class VIIb background may be more likely to be found in small business as a result of the relatively easier access to such class positions. It is on such grounds that the cell of VIIb-IV is allocated to level 3. Likewise, the VIIb-IIIb+VIIa cell is allocated to a higher level than the VIIb-V+VI, considering the greater accessibility of semi-/un-skilled manual work in Class IIIb+VIIa.

From Table 5A.8, we can see that this initial model (Model 1) does not fit the overall data satisfactorily according to the p-value criterion. Nonetheless, the lack of fit of the model is not large if we look at the other goodness of fit statistics. Overall, since the initial design has fallen ‘on broadly the right lines’, these results indicate that proper modifications may lead to better fitting of the model (Goldthorpe, 1987). Moreover, the parameters under Model 1 fall into our expected order, i.e. level 1 shows the largest value, and that for each subsequent level becomes smaller. When fitted on the male and female data separately, however, the parameter estimate of level 5 is more negative than that of level 6 in the case of men. That is to say, although level 6 is defined to show the lowest density, mobility at level 5 is more likely to occur.

By reference to disparity between observed and expected cell values under Model 1, modifications are made to produce the design matrix for Model 2. Residuals, which are represented by the natural log of the difference between the observed and expected value, that are beyond the range of ‘-2.0/+2.0’ are treated as underestimation or overestimation that call for modification of the relevant density level in the levels matrix (Hauser, 1978). Nonetheless, as the primary guideline to modifications is that they do not incur theoretical objections. As seen in Table 5A.7, the V+VI-IIIa cell is reallocated to level 3 considering the greater propensity for children of skilled manual workers to move into routine non-manual occupations.
Table 5A.8: Goodness of fit and coefficients of Models 1-3 fitted

<table>
<thead>
<tr>
<th></th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>Δ</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. Ind.</td>
<td>6376.8</td>
<td>25</td>
<td>0.00</td>
<td>21.5</td>
<td>6125.2</td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>76.7</td>
<td>20</td>
<td>0.00</td>
<td>98.8</td>
<td>1.4</td>
<td>-124.6</td>
</tr>
<tr>
<td>Model 2</td>
<td>67.0</td>
<td>20</td>
<td>0.00</td>
<td>98.9</td>
<td>1.3</td>
<td>-134.2</td>
</tr>
<tr>
<td>Model 3</td>
<td>130.5</td>
<td>20</td>
<td>0.00</td>
<td>98.0</td>
<td>2.0</td>
<td>-70.8</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. Ind.</td>
<td>2835.8</td>
<td>25</td>
<td>0.00</td>
<td>20.2</td>
<td>2601.8</td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>45.2</td>
<td>20</td>
<td>0.00</td>
<td>98.4</td>
<td>1.5</td>
<td>-142.0</td>
</tr>
<tr>
<td>Model 2</td>
<td>46.1</td>
<td>20</td>
<td>0.00</td>
<td>98.4</td>
<td>1.4</td>
<td>-141.1</td>
</tr>
<tr>
<td>Model 3</td>
<td>80.6</td>
<td>20</td>
<td>0.00</td>
<td>97.2</td>
<td>2.2</td>
<td>-106.6</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cond. Ind.</td>
<td>3658.4</td>
<td>25</td>
<td>0.00</td>
<td>22.7</td>
<td>3424.0</td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>66.7</td>
<td>20</td>
<td>0.00</td>
<td>98.2</td>
<td>1.7</td>
<td>-120.8</td>
</tr>
<tr>
<td>Model 2</td>
<td>54.5</td>
<td>20</td>
<td>0.00</td>
<td>98.5</td>
<td>1.6</td>
<td>-133.1</td>
</tr>
<tr>
<td>Model 3</td>
<td>84.7</td>
<td>20</td>
<td>0.00</td>
<td>97.7</td>
<td>2.2</td>
<td>-102.8</td>
</tr>
</tbody>
</table>

Estimated parameters						
Density level	Overall					
1						
2	-1.39** (0.06)	-1.38** (0.06)	-1.15** (0.06)			
3	-1.67** (0.06)	-1.66** (0.06)	-1.38** (0.05)			
4	-1.96** (0.05)	-1.97** (0.05)	-1.74** (0.05)			
5	-2.16** (0.05)	-2.16** (0.05)	-1.95** (0.04)			
6	-2.27** (0.04)	-2.26** (0.04)	-2.13** (0.04)			
Men						
1						
2	-1.52** (0.09)	-1.52** (0.09)	-1.26** (0.08)			
3	-1.84** (0.09)	-1.85** (0.08)	-1.52** (0.07)			
4	-2.07** (0.08)	-2.07** (0.08)	-1.80** (0.07)			
5	-2.24** (0.07)	-2.25** (0.07)	-2.00** (0.06)			
6	-2.19** (0.06)	-2.19** (0.06)	-2.04** (0.06)			
Women						
1						
2	-1.26** (0.09)	-1.24** (0.09)	-1.03** (0.08)			
3	-1.51** (0.08)	-1.48** (0.08)	-1.24** (0.07)			
4	-1.85** (0.08)	-1.86** (0.08)	-1.66** (0.07)			
5	-2.10** (0.07)	-2.09** (0.07)	-1.91** (0.06)			
6	-2.38** (0.06)	-2.36** (0.06)	-2.25** (0.06)			

Note: Estimates for constant is omitted for all models.

Again, Model 2 does not fit the overall data well if we judge merely by the p-value criterion. However, the statistics other than the p-value of the model show a better fit than Model 1. With the same number of degree of freedom, Model 2 further reduces the values of Δ and G² and result in more satisfactory BIC and rG² values. That said, like Model 1, the
model gives a more negative parameter estimate to density level 5 than level 6. As immobility of Class IVa+b is under-estimated, the density level of the IV-IV cell is raised to level 1 in Model 3. Despite the apparently less satisfactory goodness-of-fit statistics, the model now gives reasonable parameter estimates not only when it is fitted on the overall data, but when it is fitted for men and women separately. The analysis and discussion of density levels in this chapter, therefore, is based on results of Model 3.
Appendix Chapter 5 (III): The Chinese variant of the core model of social fluidity

The core model of social fluidity was initially devised to provide a theoretically informed account of the pattern of social fluidity in England and France (Breen, 2004; Erikson & Goldthorpe, 1992a). With eight matrices based on the sevenfold EGP class schema, the core model is used to explore various aspects of the endogenous regime of intergenerational mobility. In the original core model, the HI1 matrix captures effects that work on all mobility between class positions of different hierarchical levels, whereas the HI2 effect is expected on mobility that crosses more than one hierarchical level. As regards inheritance effects, the IN1 matrix captures the generally higher likelihood of immobility of all classes in the mobility table, whereas the IN2 matrix captures the higher likelihood of immobility within the salariat class, the petty bourgeoisie, and the farming class. As the immobility propensity of the farming class is expected to be even stronger than that of any other class, the core model includes the IN3 matrix. With the sectoral effect, the agricultural sector and non-agricultural sectors are differentiated, which results in lower likelihood of mobility between each other. Finally, the core model includes the AF1 matrix to capture disaffinities, and the AF2 matrix for affinities, between particular classes.

As with other ‘national variants’ of the model, the application of the model to the Chinese case calls for adjustments to the original core model. While Class VIIa and Class VIIb are classified into one category according to the hierarchical division in the original core model, semi-/unskilled manual work (and sales and service work), often found as urban work, is viewed as falling onto different hierarchical levels in the Chinese case. The hierarchical division is accordingly adjusted as:

1) Class I+II;
2) Class IIIa – Class V+VI;
3) Class IIIb+VIIa;
4) Class VIIb.
As a result of the adjustment, the two hierarchical matrices are modified as:

\[
\begin{array}{c|ccccc}
 & \text{HI1} & & & & \\
\hline
\text{I+II} & 1 & 2 & 2 & 2 & 2 \\
\text{IIIa} & 2 & 1 & 1 & 1 & 2 \\
\text{IVa+b} & 2 & 1 & 1 & 1 & 2 \\
\text{V+VI} & 2 & 1 & 1 & 1 & 2 \\
\text{IIIb+VIIa} & 2 & 2 & 2 & 1 & 1 \\
\text{VIIb} & 2 & 2 & 2 & 2 & 1
\end{array}
\quad
\begin{array}{c|ccccc}
 & \text{HI2} & & & & \\
\hline
\text{I+II} & 1 & 1 & 1 & 1 & 2 \\
\text{IIIa} & 1 & 1 & 1 & 1 & 1 \\
\text{IVa+b} & 1 & 1 & 1 & 1 & 1 \\
\text{V+VI} & 1 & 1 & 1 & 1 & 1 \\
\text{IIIb+VIIa} & 2 & 1 & 1 & 1 & 1 \\
\text{VIIb} & 2 & 1 & 1 & 1 & 1 \\
\end{array}
\]

As regards the matrices that stand for inheritance effects, the sectoral effect, and (dis)affinity effects, most adjustments are made on the grounds of the absence of farming class. First, the special treatment in the IN2 and IN3 matrices for high likelihood of immobility within the agricultural sector is given to Class VIIb rather than Class IVc. Likewise, the SE matrix is simplified to highlight mobility between non-agricultural classes and Class VIIb. Next, affinities between Class IVc and Class IVa+b as well as Class VIIa are removed from the AF2 matrix. Finally, considering the relatively limited social and cultural resources of the petty bourgeoisie in the Chinese context, we would not expect affinities between Class IVa+b and Class I+II.
In Table 5A.9, I report results of fitting Model 1 and modified versions of the core model on the national data. While Model 1 is not a good fit according to the p-value criterion, it shows a small lack of fit. However, the model falls short of our expectation if we move on to the parameter estimates it generates. While the coefficient of HI2 is non-significant, the HI1 effect turns out to be positive. This suggests higher propensity for mobility across hierarchical boundaries than being immobile or moving to positions at the same hierarchical level as their parents’. Further modifications, therefore, are required to obtain the appropriate ‘national variant’ of the core model.

In Model 2, as shown in Table 5A.10, I further modify the class structure into three levels by including all non-agricultural and non-manual classes into the ‘intermediate level’:

1) Class I+II;
2) Class IIIa – Class IIIb+VIIa;
3) Class VIIb.

As a result, the HI1 and HI2 are modified not to include the movement between Class I+II and Class IIIb+VIIa as level 2. In addition, the VIIb-IVa+b cell is labelled as level 2 in the AF2 matrix to capture the potential affinity between the class of peasants and small business in either urban or rural contexts. Like Model 1, Model 2 shows unsatisfactory parameter estimates for HI1 and HI2, though both are non-significant.
Table 5A.9: Results of the core model of social fluidity fitted on the national data

<table>
<thead>
<tr>
<th></th>
<th>G^2</th>
<th>df</th>
<th>p</th>
<th>rG^2</th>
<th>BIC</th>
<th>\Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond. Ind.</td>
<td>6376.8</td>
<td>25</td>
<td>0.00</td>
<td>6125.2</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>196.9</td>
<td>18</td>
<td>0.00</td>
<td>96.9</td>
<td>15.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Model 2</td>
<td>124.1</td>
<td>19</td>
<td>0.00</td>
<td>98.1</td>
<td>-67.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Model 3</td>
<td>125.4</td>
<td>19</td>
<td>0.00</td>
<td>98.0</td>
<td>-65.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Model 4</td>
<td>125.4</td>
<td>19</td>
<td>0.00</td>
<td>98.0</td>
<td>-65.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Parameter estimates

<table>
<thead>
<tr>
<th>Parameter estimates</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI1</td>
<td>0.16**</td>
<td>0.04</td>
<td>-0.11*</td>
<td>-0.11*</td>
</tr>
<tr>
<td>HI2</td>
<td>0.02</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN1</td>
<td>0.77**</td>
<td>0.62**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN1-2</td>
<td></td>
<td></td>
<td>0.62**</td>
<td>0.62**</td>
</tr>
<tr>
<td>IN1-3</td>
<td></td>
<td></td>
<td>0.48**</td>
<td>0.48**</td>
</tr>
<tr>
<td>IN1-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN2</td>
<td>0.08</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>-0.80**</td>
<td>-0.89**</td>
<td>-1.12**</td>
<td>-0.88**</td>
</tr>
<tr>
<td>AF1</td>
<td>-0.03</td>
<td>-0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF2</td>
<td>0.35**</td>
<td>0.37**</td>
<td>0.36**</td>
<td>0.36**</td>
</tr>
</tbody>
</table>
Table 5A.10: Matrices for the core model of social fluidity

<table>
<thead>
<tr>
<th></th>
<th>HI1</th>
<th>HI2</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>SE</th>
<th>AF1</th>
<th>AF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>122222</td>
<td>111122</td>
<td>211111</td>
<td>211111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>121111</td>
</tr>
<tr>
<td></td>
<td>211122</td>
<td>111111</td>
<td>121111</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>211111</td>
</tr>
<tr>
<td></td>
<td>211122</td>
<td>111111</td>
<td>112111</td>
<td>112111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211122</td>
<td>111111</td>
<td>111211</td>
<td>111211</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>222211</td>
<td>211111</td>
<td>111121</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>222211</td>
<td>211111</td>
<td>111112</td>
<td>111112</td>
<td>111112</td>
<td>222221</td>
<td>211111</td>
<td>111112</td>
</tr>
<tr>
<td>Model 2</td>
<td>122222</td>
<td>111112</td>
<td>211111</td>
<td>211111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>121111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>111111</td>
<td>121111</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>211111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>111111</td>
<td>112111</td>
<td>112111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>111111</td>
<td>111211</td>
<td>111211</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>111111</td>
<td>111121</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>222221</td>
<td>211111</td>
<td>111112</td>
<td>111112</td>
<td>111112</td>
<td>222221</td>
<td>211111</td>
<td>111112</td>
</tr>
<tr>
<td>Model 3</td>
<td>122222</td>
<td>311111</td>
<td>111111</td>
<td>111111</td>
<td>111111</td>
<td>111111</td>
<td>111111</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>121111</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>211111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>113111</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>112111</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>111121</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>222221</td>
<td>111114</td>
<td>222221</td>
<td>211111</td>
<td>111112</td>
<td>111112</td>
<td>111112</td>
<td>111112</td>
</tr>
<tr>
<td>Model 4</td>
<td>122222</td>
<td>311111</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111111</td>
<td>111111</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>121111</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>211111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>113111</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>112111</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>211112</td>
<td>111211</td>
<td>111112</td>
<td>111111</td>
<td>111111</td>
<td>111112</td>
<td>111112</td>
<td>111111</td>
</tr>
<tr>
<td></td>
<td>222221</td>
<td>111113</td>
<td>222221</td>
<td>211111</td>
<td>111112</td>
<td>111112</td>
<td>111112</td>
<td>111112</td>
</tr>
</tbody>
</table>

Given the non-significant HI2 coefficients generated by both Model 1 and Model 2, the HI2 matrix is omitted from Model 3. In addition, as the IN3 effect is automatically dropped in the two preceding fittings and the IN2 matrix gives non-significant coefficients, I draw from Yang (2008) and combine the three inheritance matrices into a single four-level matrix which proposes that the strongest inheritance effect at level 4 for Class VIIb, along with level 3 for Class I+II and Class IVa+b and level 2 for the other classes. Considering the relatively high rates of downward mobility from salariat origins to agricultural work revealed in Chapter 4, the I+II-VIIb cell is removed from level 2 in the AF1 matrix.

As seen in Table 5A.9, for all the similarity between the goodness-of-fit of Model 2 and Model 3, the coefficient of HI1 becomes significantly positive. Nevertheless, it must be noted that the fourth level of the IN matrix is automatically dropped. To sort out the problem, I make a final modification to the model by changing the IN matrix into a three-level one, which allocates the immobility of Class I+II, Class IVa+b, and Class VIIb to level 3.
With goodness-of-fit statistics similar to those of Model 3, Model 4 shows reasonable parameter estimates for all remaining effects, though the coefficient of AF1 is still non-significant. Model 4 is therefore selected as the preferred model for the application of the core model of social fluidity in this chapter. In Section 5.6, Model 4 is fitted on the male and female data separately.
Chapter 6 Work-life mobility and intergenerational mobility

6.1 Introduction

The primary purpose of this chapter is to explore to what extent the outcome of intergenerational mobility is affected by class positions individuals acquire at the starting point of their work life, along with other factors, such as gender and hukou origin. I continue with the examination of intergenerational class mobility in China but look at the issue from the standpoint of work-life mobility. While the standard mobility tables, on which the analysis in the two preceding chapters are based, include children’s and parents’ class positions only, intergenerational mobility is viewed in this chapter as a process that is composed of two transitions, i.e. transition between class of origin and entry class positions, and transition between entry positions and class of destination.

After a brief literature review, I report, in Section 6.3, descriptive findings of absolute mobility rates based on three-way mobility tables that cover the two transitions mentioned above. When observed from the work-life perspective, I reveal that the association between class origins and class positions upon entry into the labour market plays an important part, for women and those of agricultural origins seeking access to salariat positions in particular, in the intergenerational mobility processes in China. With log-linear analysis, Section 6.4 explores the relative rates in the origin-destination, origin-entry, and entry-destination transitions. The finding of a stronger net association between entry positions and class destinations for women than men, contributes to our understanding of the gender disparity in intergenerational mobility. In Section 6.5, I confirm, by fitting the stereotype ordinal regression model, the significant positive effects of non-agricultural entry positions on access to more advantaged class destinations. In addition, both being a woman and having held agricultural hukou at the age 14/18, especially the latter, have negative effects on chances of moving to more desirable destination positions, whereas experience of hukou transitions from agricultural to non-agricultural status substantially helps raise such mobility chances. Section 6.6 concludes the chapter.
6.2 Literature review

For researchers of social mobility, it is standard practice to base findings on intergenerational mobility tables, namely cross-tabulations of origin classes and individuals’ class positions at the time of enquiry. The use of standard mobility tables, however, has been challenged by exponents of the life-course approach. A primary argument against complete dependence on standard tables is that, with aggregated class information of two generations, they are not capable of providing accurate temporal information relating to career trajectories (Sørensen, 1986). As the occupational ‘destinations’ reported in standard tables are class positions in which respondents happen to be found at time of survey, immobility observed in standard tables may not mean a total absence of intergenerational mobility, whereas mobility does not necessarily indicate that the respondents have permanently moved out of their class of origin.

As an alternative to the standard practice, critics of standard tables suggest that analyses of intergenerational mobility be derived from work-history data so that moves between classes can be observed from a life-course perspective. In regard to attempts to seek a more adequate ‘life-course’ basis of mobility analysis than standard tables, there are studies which generate complex ‘cumulative’ mobility tables out of complete work-history data and focus on the temporal aspects of intergenerational mobility. As these mobility tables focus on the number of moves between class positions, they tend to reveal higher rates of mobility and greater fluidity than what standard tables would indicate. Moreover, with complete work-history information, cumulative tables are claimed to show greater differences in comparative studies than standard tables (Erikson & Goldthorpe, 1992a).

The shortcomings in terms of temporal information are also considered by users of standard mobility tables themselves. In examining the ‘buffer zone’ thesis and the ‘counter-balance’ thesis using the British data, Goldthorpe (1987: Ch.2) admitted that the picture of intergenerational mobility based on standard tables was likely to be a distorted one if there existed recurrent processes of work-life mobility. Instead of utilising complete work-histories, Goldthorpe’s ‘three-point’ mobility analysis and the later CASMIN project (Erikson & Goldthorpe, 1992: Ch.8) consider intergenerational mobility in terms of two transitions, i.e. from class origins to entry class positions, and from entry class positions to
class destinations. For all the challenges formed by the life-course approach, it is stressed in these studies that both standard tables and the life-course approach merit applications to serve different research questions. Whereas the life-course approach emphasises work-life trajectories in processes of intergenerational mobility, the aim of using standard tables is to provide ‘mobility rates and patterns understood as societal attributes’ (Erikson & Goldthorpe, 1992a: 306).

Turning to the case of China, most mobility research has not been affected by the debates over standard tables and the life-course approach. On the one hand, although the social status of individuals’ first occupations is found to be positively associated with their social status at time of survey (Zhang, 2004), there has been no attempt to incorporate entry class positions in analyses of intergenerational mobility by scholars who adopt the class structural approach and utilise standard tables (Cheng & Dai, 1995; Li, 2005; Lu, 2004; Yang, 2008). On the other, the scholarly interest in mobility trajectories of individuals is mostly found in studies of work-life mobility rather than those of the interplay between intergenerational and intra-generational mobility.

In contrast to the limited amount of research on mobility rates and patterns, the topic of career mobility has been approached from various perspectives by studies of stratification in China. Inspecting the existing literature, we can see that much attention is paid to three aspects of the issue: effects of human and political capital on mobility chances, the institutional effects of the hukou registration system, and gender differences.

Human capital and political capital, which are respectively measured by education and the Party membership, are two main factors that are considered in research of career mobility. Although both are positively associated with chances of upward job mobility, education and the Party membership are indicated by several studies to affect mobility into different destinations. As far as the effect of education is concerned, educational credentials are a required criterion for access to professional positions of high social prestige, but have a limited effect on access to administrative elite positions (Walder, 1995; Walder et al., 2000). Moreover, the strength of the association between education and career mobility varies with types of organisations for which individuals work (Cao, 2001, 2004). Similarly, the positive effect of the CCP membership is also limited to the attainment of administrative occupations (Walder, 1995; Walder et al., 2000).
In terms of gender gaps relating to job mobility, inconsistent findings are revealed in studies based on different data and of various research designs. An early study of career mobility by Lin and Bian (1991) finds that men have better chance of upward mobility from first jobs to more desirable working-unit sectors. In addition, they benefit more than women from social networks in processes of job search. In relation to trends in gender gaps in employment and earnings, some researchers find that discrimination against women has increased in both state and non-state sectors in the reform era, which is accompanied by the lowering status of women (Honig & Hershatter, 1988). This observation, however, is in contrast to the finding of relatively stable gender gaps in earnings and other statuses from the 1950s to the 1990s (Bian, Logan, & Shu, 2000). With particular reference to rural women, while there is evidence of increasing off-farm employment opportunities for women brought about by market transitions (Entwisle et al., 1995; Matthews & Nee, 2000), women are left in agricultural work when men are involved in the development and expansion of household businesses (Entwisle et al., 1995; Matthews & Nee, 2000). To provide details of differences among women themselves, more recent studies indicate that gender differences in employment, earnings, and work-life mobility are explained more by family status than by disadvantages in human and political capital (Cao & Hu, 2007; Zhang, Hannum, & Wang, 2008).

Compared with gender gaps, findings concerning the negative impact of rural hukou origin and the positive effect of hukou upgrading from agricultural to non-agricultural status on mobility chances are much more consistent in different studies (Lu, 2008; Wu & Treiman, 2007). According to Wu and Treiman (2007), men of rural origin are highly likely to achieve desirable professional occupations once they manage to leave their rural background. That said, from the life-course standpoint, they would be faced with new disadvantages, resulting from the lack of social capital, when seeking upward mobility into positions of higher social prestige (Liang, 2006).

6.3 Descriptive analysis of the ‘three-point’ mobility

As stated in Section 6.1, this chapter investigates the role of first occupation classes in mobility processes rather than taking sides in the debate over whether standard tables are
adequate methods. By including entry class positions into the analysis, I explore further
details of the mobility regime in China and examine whether the overall picture of
intergenerational mobility I have so far revealed is distorted, to any extent, by overlooking
the life-course aspects of the mobility processes. As the primary interest of this chapter is
not in temporal changes and no strong evidence has so far been revealed in favour of
changing social fluidity, all analyses hereafter are derived from the pooled data of the 1996
and 2005/6 surveys.\footnote{The same analyses have been conducted separately for the 1996 and 2005/6 data, which show similar results.}

In this section, I report the findings of absolute rates based on two sets of three-way
mobility tables, one for men and women separately, and the other for respondents of urban
and rural \emph{hukou} origins separately. Figure 6.1 presents the ‘two-stage’ outflow of men and
women, from origin classes to classes of first occupations, and thence to destination
classes.\footnote{Given the small Ns in certain cells of the three-way mobility tables, cell values smaller than 2 per
cent are omitted, which explains the discrepancy in the column percentage totals between the columns
of entry class position and class of destination.} For the sake of simplicity, Classes IIIa, IVa+b and V+VI are combined into the
‘intermediate class’ so that the six-fold class structure is reclassified into four categories, as
with the analysis of total rates in Chapter 2.

In comparison with individuals from other class background, those originating within the
salariat class are most widely dispersed to the four entry classes, though the majority of
them started in salariat occupations and jobs in the ‘intermediate’ classes. In contrast, those
from the agricultural background are highly concentrated in Class VIIb, with over 70 per
cent of men and nearly 80 per cent of women starting their work-life in agricultural work.
That said, it may be noted that, when it comes to work-life mobility, direct entry stands out
as the most important route of mobility for individuals of all class origins alike. In other
words, most people started in the same class positions as their destination positions rather
than reaching the destination positions \emph{via} work-life mobility. In particular relation to
downward mobility, two points are worth noting. On the one hand, mobility out of salariat
origins, especially mobility into agricultural destinations, occurs mainly at the outset of the
work-life in the case of both men and women. On the other, most of downward mobility to
agricultural work also happens at the entry level rather than \emph{via} work-life mobility, regardless of respondents’ class of origin.
Figure 6.1: Patterns of three-point mobility by gender, respondents aged 20-69

A. Salariat origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>I+II</td>
<td>26.4</td>
<td>I+II</td>
</tr>
<tr>
<td></td>
<td>25.1</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>32.2</td>
<td>IIIa-VI</td>
</tr>
<tr>
<td></td>
<td>27.5</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.3 ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>20.1</td>
<td>IIIb+VIIa</td>
</tr>
<tr>
<td></td>
<td>22.9</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>21.4 ↑</td>
<td>VIIb</td>
</tr>
<tr>
<td></td>
<td>24.5 ↑</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Notes:
1. Outflows of less than 2% are omitted (the same below).
2. An upward or downward arrow indicates an increase in the percentage of 5 percentage points or more, if the analysis is conducted for respondents aged 41-69 (the same below).
B. Intermediate class origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>14.0</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>13.9</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>37.4</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>17.2</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>22.2</td>
<td>20.3</td>
</tr>
<tr>
<td>All (%)</td>
<td>100.1</td>
<td>96.0</td>
</tr>
<tr>
<td>N</td>
<td>1,578</td>
<td>1,578</td>
</tr>
</tbody>
</table>

C. Unskilled or semi-skilled working class origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td></td>
<td>12.2</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33.4</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>24.4</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>24.8</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>20.1</td>
<td>25.0</td>
</tr>
<tr>
<td>All (%)</td>
<td>100</td>
<td>100.1</td>
</tr>
<tr>
<td>N</td>
<td>1,179</td>
<td>1,179</td>
</tr>
</tbody>
</table>
D. Agricultural origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>11.0</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>8.6</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>73.3</td>
<td>79.9</td>
</tr>
<tr>
<td>All (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N</td>
<td>7,205</td>
<td>7,517</td>
</tr>
</tbody>
</table>

A further observation we can make in Figure 6.1 is that while there are gender differences in both transitions, the strength of the differences vary with the respondent’s class of origin. For men and women of salariat origins, the differences are actually close to negligible. Not only similar percentages of men and women are found in each broad class category at the entry level, but can we find the ‘resemblance’ in the patterns of transition between class of first occupation and class of destination. For both men and women, about a fifth of all those from Class I+II background entered into salariat positions at the outset of their work-life and remained within them at the time of enquiry. Similarly, the differences between men and women in the percentages of counter-mobility to salariat positions are merely minor ones. In fact, even for respondents of intermediate and semi-/un-skilled manual working class origins, the percentages of men and women who accessed salariat occupations and subsequently remain in such positions are rather close to each other.

Turning to respondents from less advantaged class background, we see a wider gender gap in the patterns of ‘three-point’ mobility that are shown up. Compared with their brothers of the same class origins, women of Class IIIb+VIIa origin show a much lower total percentage of movement into salariat positions via work-life mobility. Conversely, women are evidently more likely to remain in Class VIIb positions once they start off in agricultural work, whereas proportionately more men whose work-life started in agricultural work. We may then say that, so far as access to salariat occupations is concerned, women of non-agricultural origins are apparently not affected by gender disparity as long as they set off in occupations ‘at the top’.
To understand the differences between men and women in the ‘three-point’ absolute rates, we can look at the summary provided in Table 6.1 derived from the same data as in Figure 6.1. First of all, we can confirm that men and women of salariat origins are about equally mobile after entering the labour force. Moving from the left to the right of the first two panels, however, the gender gap turns increasingly wide, with men being more likely to move into new class positions than women. From Table 6.1, we can also see the rates of counter-mobility to each class of origin, i.e. mobility back to the class of origin after having taken different class positions. As can be seen, counter-mobility back to salariat positions, with little disparity between men and women, makes up less than one third of the total work-life mobility of men and women from salariat background, which, on the other hand, also suggests the limited importance of counter-mobility in accounting for the intergenerational stability of the salariat class. From the final panel of Table 6.1, we find a weaker tendency for individuals of Class IIIb+VIIa and Class VIIb origins to move upwardly into salariat positions via work-life mobility. Nonetheless, the likelihood for women to accomplish such long-range upward mobility during their work-life is even lower than men from the same background. For women of agricultural origin in particular, it is almost impossible to access salariat positions if they did not enter to Class I+II occupations at the beginning of their work-lives.

Table 6.1: Summary rates based on three-way mobility tables by gender, respondents aged 20-69

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>I+II</th>
<th>IIIa-VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Work-life mobility</td>
<td>29.5</td>
<td>31.8</td>
<td>34.0</td>
<td>20.7</td>
<td>23.8</td>
</tr>
<tr>
<td>Female Work-life mobility</td>
<td>27.9</td>
<td>26.7</td>
<td>27.5</td>
<td>14.3</td>
<td>18.0</td>
</tr>
<tr>
<td>Male Work-life immobility</td>
<td>70.5</td>
<td>68.3</td>
<td>66.0</td>
<td>79.3</td>
<td>76.2</td>
</tr>
<tr>
<td>Female Work-life immobility</td>
<td>72.1</td>
<td>73.3</td>
<td>72.5</td>
<td>85.7</td>
<td>82.1</td>
</tr>
<tr>
<td>Male Counter-mobility</td>
<td>9.6</td>
<td>13.7</td>
<td>11.2</td>
<td>1.7</td>
<td>4.5</td>
</tr>
<tr>
<td>Female Counter-mobility</td>
<td>8.4</td>
<td>11.5</td>
<td>8.7</td>
<td>0.9</td>
<td>3.4</td>
</tr>
<tr>
<td>Male Work-life upward mobility to Class I+II</td>
<td>8.7</td>
<td>8.3</td>
<td>3.6</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Female Work-life upward mobility to Class I+II</td>
<td>6.1</td>
<td>4.5</td>
<td>1.4</td>
<td>2.1</td>
<td></td>
</tr>
</tbody>
</table>

Note: Counter-mobility to Class I+II positions is excluded from the panel of ‘work-life upward mobility to Class I+II’.
In Figure 6.2, we see the absolute rates of ‘three-point’ mobility for the urban and rural data separately. Apparently, individuals of urban and rural hukou origins differ from each other not merely in terms of the distribution of first employment, but when it comes to patterns of entry-destination transition. As far as individuals of non-agricultural class origins are concerned, urbanites are largely found in non-agricultural occupations at the entry level, whereas nearly half of individuals of rural hukou origin from salariat backgrounds took agricultural work as their first employment. It is true that a small proportion of urban respondents started their work-lives doing agricultural work, but most have moved back to non-agricultural sectors by the time of the enquiry. In contrast, around a third of individuals who are of rural hukou but non-agricultural class origins remain in Class VIIb at time of survey. Compared with their urban counterparts, rural respondents from salariat background show a lower rate of counter-mobility in their work-lives.

Figure 6.2: Patterns of three-point mobility by hukou origin, respondents aged 20-69

A. Salariat origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>I+II</td>
<td>29.2</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>I+II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I+II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I+II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIIa-VI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIIb+VIIa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIIb+VIIa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIIb+VIIa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIIIb</td>
<td></td>
</tr>
<tr>
<td>All (%)</td>
<td>100.1</td>
<td>100</td>
</tr>
<tr>
<td>N</td>
<td>1,819</td>
<td>710</td>
</tr>
</tbody>
</table>
B. Intermediate class origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>Urban</td>
<td>15.3</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>42.9</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33.7</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>45.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (%)</td>
<td>100.1</td>
<td>100</td>
</tr>
<tr>
<td>N</td>
<td>2,373</td>
<td>779</td>
</tr>
</tbody>
</table>

C. Unskilled or semi-skilled working class origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>Urban</td>
<td>12.9</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>35.5</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N</td>
<td>1,704</td>
<td>590</td>
</tr>
</tbody>
</table>
D. Agricultural origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>11.0</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>24.3</td>
<td>7.8</td>
</tr>
<tr>
<td>VIIIb</td>
<td>43.0</td>
<td>77.3</td>
</tr>
</tbody>
</table>

Looking at the summary rates in Table 6.2, however, we can find that the real gap in work-life mobility between urban and rural respondents exists for those of agricultural class origin and when it comes to mobility into salariat positions. While urban and rural individuals of non-agricultural class origins are nearly as ‘mobile’ as each other in their work-lives, rural respondents of Class VIIb origin show a substantially lower propensity for general work-life mobility than their rural counterparts. Meanwhile, they are also less likely to access salariat positions via work-life mobility. On the other hand, urban respondents of salariat origins are more likely to move back into Class I+II positions, if having not started off in them, than those of salariat class origin but rural hukou origin. Overall, we find the rural salariat class to be less stable than its rural counterpart in terms of intergenerational mobility when work-life mobility is taken into consideration.
Table 6.2: Summary rates based on three-way mobility tables by hukou origin, respondents aged 20-69

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>I+II</th>
<th>IIIa-VI</th>
<th>IIIb+VIIa</th>
<th>VIIb</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>30.0</td>
<td>29.3</td>
<td>29.6</td>
<td>30.9</td>
<td>29.7</td>
</tr>
<tr>
<td>Rural</td>
<td>26.8</td>
<td>28.1</td>
<td>31.6</td>
<td>17.2</td>
<td>18.5</td>
</tr>
<tr>
<td>Work-life mobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>70.1</td>
<td>70.7</td>
<td>70.4</td>
<td>69.1</td>
<td>70.3</td>
</tr>
<tr>
<td>Rural</td>
<td>73.2</td>
<td>71.9</td>
<td>68.5</td>
<td>82.9</td>
<td>81.5</td>
</tr>
<tr>
<td>Work-life immobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>10.2</td>
<td>12.7</td>
<td>9.4</td>
<td>1.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Rural</td>
<td>6.9</td>
<td>12.2</td>
<td>11.4</td>
<td>1.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Counter-mobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>7.6</td>
<td>6.3</td>
<td>4.7</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>6.4</td>
<td>6.2</td>
<td>2.4</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

Note: Counter-mobility to Class I+II positions is excluded from the panel of ‘work-life upward mobility to Class I+II’.

6.4 Relative rates of the ‘three-point’ mobility

To further inspect gender differences from the work-life perspective, now in terms of relative rates, I apply CmSF and UNIDIFF models separately on three sets of mobility tables, namely the standard tables of intergenerational mobility from class of origin to class of destination, the tables of mobility from class of origin to class of first employment, and the ones of work-life mobility from entry class to class of destination. In the light of the urban-rural differences that are shown in previous analyses, the analysis in this section is conducted separately on the overall data, the urban and the rural data.

Table 6.3 presents the results of fitting the CmSF and UNIDIFF models on the three sets of mobility tables that are involved. For each dataset, we first see the results of analysis when the models are fitted to mobility tables representing the standard tables of intergenerational mobility (O→D), and then to the tables of intergenerational transition at the entry level (O→E) and those representing work-life mobility (E→D).

Firstly, none of the CmSF models fits satisfactorily when they are applied to the complete data of respondents aged 20-69, but the Δ values and rG² statistics indicate small deviations from the data. Meanwhile, the UNIDIFF models give clearly better fits than the CmSF.
models and show significantly positive parameter estimates for all three transitions that are considered. In other words, it can be reasonably concluded that women are more dependent than men on class background not only in the intergenerational O→D transition but also upon entering the labour force. Moreover, the results also suggest gender disparity when the patterns of fluidity are considered from the ‘life-course’ perspective, as women’s relative chance of work-life mobility, in comparison that of men’s, is more closely associated with their first employment.

Table 6.3: CmSF models for gender differences in relative rates on the overall, urban and rural data

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>G²</th>
<th>df</th>
<th>p</th>
<th>rG²</th>
<th>Δ</th>
<th>BIC</th>
<th>G²/df</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O→D</td>
<td>Cond. Ind.</td>
<td>6461.8</td>
<td>50</td>
<td>0.00</td>
<td>21.4</td>
<td>21.4</td>
<td>5959.4</td>
<td>129.2</td>
<td></td>
</tr>
<tr>
<td>O→E</td>
<td>Cond. Ind.</td>
<td>6439.3</td>
<td>50</td>
<td>0.00</td>
<td>21.8</td>
<td>21.8</td>
<td>5937.0</td>
<td>128.8</td>
<td></td>
</tr>
<tr>
<td>E→D</td>
<td>Cond. Ind.</td>
<td>26568.6</td>
<td>50</td>
<td>0.00</td>
<td>41.5</td>
<td>41.5</td>
<td>26066.3</td>
<td>531.4</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O→D</td>
<td>Cond. Ind.</td>
<td>658.0</td>
<td>50</td>
<td>0.00</td>
<td>13.4</td>
<td>13.4</td>
<td>239.6</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>E→D</td>
<td>Cond. Ind.</td>
<td>4851.9</td>
<td>50</td>
<td>0.00</td>
<td>45.1</td>
<td>45.1</td>
<td>4433.5</td>
<td>97.0</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O→D</td>
<td>Cond. Ind.</td>
<td>1087.4</td>
<td>50</td>
<td>0.00</td>
<td>6.9</td>
<td>6.9</td>
<td>597.0</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>E→D</td>
<td>Cond. Ind.</td>
<td>16,033.9</td>
<td>50</td>
<td>0.00</td>
<td>32.3</td>
<td>32.3</td>
<td>15,543.5</td>
<td>320.7</td>
<td></td>
</tr>
</tbody>
</table>

In the rest of Table 6.3, however, different messages emerge when the same models are fitted separately to the urban and rural data. In the urban case, we see that the CmSF and UNIDIFF models fit very well when they are applied to the tables representing the O→D and O→E transitions. Nevertheless, the UNIDIFF model hardly improves the fit. We
therefore cannot deny the commonality of the pattern of fluidity between men and women. Moving on to the analysis of E→D, however, we then see that the net association between entry class and class of destination is found significantly stronger for women than men. It is worth noting that when the analysis is confined to the sub-sample of ‘occupational mature’ respondents aged 41-69, as shown in Table 6A.1 in the Appendix, the gender differences in fluidity patterns of any transition are no longer significant.

Turning to the rural case, both CmSF and UNIDIFF models produce unsatisfactory p values, yet the lack of fit is small if we look at the other statistics of goodness-of-fit. For all three transitions, the fit of the UNIDIFF model is clearly better, which gives a significant parameter in each case. It is reasonable to understand the result as indicating prevalent gender disparity in social fluidity against women. When the models are fitted on the sub-sample of older respondents aged 41-69 only, the parameters under the UNIDIFF models for the O→D and O→E transitions are no longer significant, yet the gender gap in the relative chance of work-life mobility turns even wider than what is shown in Table 6.3. This would lead us to expect that, for women of rural hukou origin, it is especially vital to have a ‘right’ career start upon entering the labour force in order to access more advantageous class positions.

To sum up, the analysis in this section indicates that the pattern of fluidity in terms of both intergenerational and work-life mobility does vary with gender if we derive our conclusions from the mobility tables combining the urban and rural samples. In addition, the gender differences in the relative chance of intergenerational mobility can be explained not only by gender disparity in the relative chance of accessing first employment, but by that in the fluidity of work-life mobility. Compared with men, women are apparently more confined by their class of origin at the outset of their career lives and entry class positions in the subsequent work-life mobility. When separate urban and rural mobility tables are utilised in the analysis, however, the gender differences prevail mainly in terms of work-life mobility, which are particularly so for those of rural hukou origin. Whereas we cannot deny the commonality between urban men and women in relation to relative rates of the two stages of intergenerational mobility, namely the O→E and E→D transitions, first employment plays a particularly important role in rural women’s intergenerational mobility because of their lower relative rates of work-life mobility.
6.5 SOR models for class position at time of survey

This section further explores to what extent access to destination class positions is affected by first employment. In addition, in the light of analyses of absolute and relative rates in the preceding sections, we would also expect that hukou origin plays a key part in mobility processes. In order to treat multiple covariates, I apply the stereotype ordinal regression model (hereafter SOR model) which allows us, with one single model fitting, to inspect the effects of covariates such as gender, hukou origin, and entry class position while analysing the association between class of origin and class of destination.

As explained in Appendix II, the SOR model, by its nature, is a type of multinominal conditional logistic (MCL) models (DiPrete, 1990; Hendrickx, 2000; Lunt, 2001), which contains the Row and Columns model 2 (Anderson, 1984; Diprete, 1990; Goodman, 1979) as special designs using the MCL approach and incorporating both linear and multiplicative effects. The model allows the categories of origin and destination classes to be ordered by estimating a scaling metric for each, which is based on the effects of independent variables (Hendrickx, 2000). However, it does not assume a specific ordering across these categories, which well suits our analysis where the class schema is a semi-ordered one. In terms of interpretation of the parameters, the larger the difference between the scaling metrics of two class categories, the more the outcome of the model is subject to the effects of the covariates. To fit the SOR model, the order of the class categories of the six-fold EGP class schema is reversed as presented in Table 6.4.

Table 6.4: Reversed classifications of the six-fold EGP class schema

<table>
<thead>
<tr>
<th>I+II</th>
<th>Classification in Chapters 4 and 5</th>
<th>Classification in this chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIIa</td>
<td>Salariat classes</td>
<td>I</td>
</tr>
<tr>
<td>IVa+b</td>
<td>Routine non-manual classes</td>
<td>2</td>
</tr>
<tr>
<td>V+VI</td>
<td>Small business owners</td>
<td>3</td>
</tr>
<tr>
<td>V+VI</td>
<td>Lower technicians and skilled</td>
<td>4</td>
</tr>
<tr>
<td>V+VI</td>
<td>manual workers</td>
<td>Semi- and unskilled manual workers</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td></td>
<td>Peasants</td>
</tr>
</tbody>
</table>

As illustrated in Appendix II, we look at four sets of results when fitting the SOR model. In addition to the scaling metrics of the class variables, the model estimates the effects of a range of covariates as well as the overall association between class of origin and class of
destination, the latter of which can be set to vary with one or more covariates. Moreover, it allows restrictions that enable us to distinguish rates of immobility from that of mobility. We can thus obtain parameter estimates for the likelihood of immobility within each class. As restrictions can be imposed to make the two class variables have equal scaling metrics, we can also constrain the immobility rates to be identical for certain classes. The complete model can thus be written as:

\[
\log \frac{\pi_j}{\pi_{j'}} = \alpha_j - \alpha_{j'} + \sum_{i=1}^{l} \gamma_i d_i (\phi_j - \phi_{j'})(\mu_0 + \sum_{j=1}^{r} \mu_j X_i) \sigma_i + (\phi_j - \phi_{j'}) \sum_{k=1}^{K} \beta_k X_k
\]

where Y is the respondent’s current class position with j categories (j=1 to 6); \(\bar{j} \) and \(j' \) are different categories of Y; \(\alpha_j \) represents the intercept parameters with certain constraints; \(\phi_j \) represents the scaling metric for respondent’s class position, and \(\sigma_i \) for that of respondent’s class of origin; \(X_k \) represents covariates incorporated in the model; and \(\beta_k \) are the parameters of the covariates.\(^49\) While the parameter \(\mu_0 \) represents the overall association between the respondent’s class position and their class of origin, \(\mu_i \) represents the effect of covariates \(X_i \) on the association. As regards the differentiation between rates of immobility and mobility rates, the value of \(d_i \) is 1 if \(i=j \) and 0 otherwise; and \(\gamma_i \) are parameters for log odds of immobility.

Table 6.4 presents the goodness-of-fit statistics of the SOR models that are fitted to the pooled data of the 1996 LHSC and 2005/6 CGSS surveys. In the baseline model (Model 1), scaling metrics are estimated separately for class of origin and class of destination. Further, immobility is specified for each class category. On the grounds of gender disparity and urban-rural differences revealed in the preceding analyses, the baseline model includes gender, hukou origin, and hukou transfer from agricultural to non-agricultural status as main covariates and allows the overall association between class of origin and class of destination to vary with both gender and hukou origin. To simplify, the analysis is confined to the most basic variables that are relevant to occupational attainment in China and therefore does not include the CCP membership as a covariate. As the time at which the

\(^49\) In order to identify the model, two restrictions are placed on the scaling metric \(\phi_j \), setting the first value to 0 and the last value to 1. When the model outcomes are reported, the scaling metric is normalized. Therefore, the actual restriction is: \(\sum \phi_j = 0 \), and \(\sum \phi_j^2 = 1 \)
respondent entered the labour force is expected to have an effect on chances of mobility, the model also includes entry year and entry age. Considering the possible curvilinear effect of entry age on attainment of class positions, I add the quadratic form of entry age as one of the covariates.

Table 6.4: Selecting SOR model for class of destination

<table>
<thead>
<tr>
<th>Model specification</th>
<th>Log likelihood</th>
<th>L^2 vs. M 1</th>
<th>df</th>
<th>df vs. M1</th>
<th>BIC</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>-27785.0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>1.51***</td>
</tr>
<tr>
<td>Covariates = gender + entry year + entry age + entry age squared + hukou origin + hukou change; Association (μ) varying with gender and hukou origin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>-27788.8</td>
<td>7.6</td>
<td>20</td>
<td>-7.6</td>
<td></td>
<td>1.51***</td>
</tr>
<tr>
<td>Equal metrics for Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>-27800.1</td>
<td>30.2</td>
<td>16</td>
<td>4</td>
<td>-17.1</td>
<td>1.47***</td>
</tr>
<tr>
<td>Model 2 + equal immobility for non-agricultural classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>-27794.7</td>
<td>19.4</td>
<td>18</td>
<td>2</td>
<td>-4.3</td>
<td>1.39***</td>
</tr>
<tr>
<td>Model 2 + equal immobility for intermediate classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model specification</td>
<td>Log likelihood</td>
<td>L^2 vs. M 3</td>
<td>df</td>
<td>df vs. M3</td>
<td>BIC</td>
<td>μ</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>M5</td>
<td>-26981.5</td>
<td>1637.1</td>
<td>17</td>
<td>1</td>
<td>-1625.3</td>
<td>0.05</td>
</tr>
<tr>
<td>Model 3 + years of schooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>-23959.8</td>
<td>7680.6</td>
<td>22</td>
<td>6</td>
<td>-7609.6</td>
<td>0.81</td>
</tr>
<tr>
<td>Model 5 + entry class position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The models are fitted on the pooled data.
2. BIC is defined as $L^2-(df)ln(N)$, where the likelihood ratio statistic $L^2=2x(log$ likelihood of unrestricted model $- log$ likelihood of restricted model).
3. M3-M2: $L^2=22.6$, BIC = -24.7, df difference = 4, p=0.000.
4. M4-M2: $L^2=11.8$, BIC = -11.9, df difference = 2, p=0.003.
5. M4-M3: $L^2=10.8$, BIC = 12.8, df difference = 4, p=0.005.
6. M5-M3: $L^2=1637.1$, BIC = -1625.3, df difference = 1, p=0.000.
7. M6-M5: $L^2=6043.4$, BIC = -5984.3, df difference = 5, p=0.000.

In addition to the baseline model, three other versions of the model are fitted to the same data. In Model 2, the scaling metrics for origin and destination classes are set to be equal. Given the strikingly high immobility within the agricultural sector, Model 3 singles out immobility of Class VIIb, on the basis of Model 2, from that of non-agricultural classes. Finally, as an alternative, Model 4 specifies immobility for each class category, but

50 By forcing the two scaling metrics to be identical, I replace the RC2 model contained in the SOR model with the EQRC2 model and thus save 4 degrees of freedom (Goodman, 1979; Hendrickx, 2000).
constrains the immobility rates to be identical for the ‘intermediate classes’, or, that is, Classes IIIa-VI. To compare the models, I combine the L^2 criterion and the Bayesian Information Criterion (BIC) statistics, which are used to assess contrasting models (Hendrickx & Ganzeboom, 1998; Wong, 1994).51

Whereas Model 2 and Model 4 fit slightly better than the baseline model, Model 3 is preferred, as it shows the best fit, by both the L^2 and BIC criteria, while saving four degrees of freedom. The model is thus taken as the baseline model (renamed as Model A) for the analysis.

Table 6.5 reports the results of fitting Model A and two alternative versions of the model – Model B and Model C. In Model B, I include years of schooling as a measure of the respondents’ educational level, given the decisive role of education in mobility processes that has so far been revealed (Walder et al., 2000; Wu & Treiman, 2007). In Model C, I add the covariate that is of primary interest in this chapter – entry class position. The table contains five sets of parameters estimated under each of the three models. The top panel of the table presents the scaling metrics for the respondents’ class origins and destinations, i.e. the ϕ and σ values in the equation of the model which are now constrained to be identical. The table then gives the parameter estimates of the log odds of immobility, which differentiate immobility of the peasant class from that of non-agricultural classes. In the panel that follows, we see coefficients of the covariates that are included in the models, i.e. the β values in the model equation. These coefficients, together with the difference between the relevant scaled scores ($\phi_j - \phi_j'$), indicate the strength of the effect of a covariate on the relative chances of mobility into occupations in the higher-status one of any two class categories. We can then find estimates for the association between class origin and destination, namely the parameter for the overall association (μ_0) and parameters for the effects of covariates on the origin-destination association (μ_t). To save space, the intercepts (α_j) under each model are omitted.

51 The likelihood ratio L^2 statistic can be calculated as $2(ll2 - ll1)$, where $ll2$ is the log-likelihood of the baseline model and $ll1$ is the log-likelihood of the model with restrictions. The L^2 statistic has a chi-square distribution with its number of degrees of freedom equal to the numbers of parameters that are dropped by the constraints imposed on the more parsimonious model. In terms of calculation, $\text{BIC} = L2 - df^*\ln(N)$, where N is the sample size. The more negative the BIC statistic is for a model, the more preferable it is in comparison with the baseline model.
To provide a visual effect of the distance between each pair of class categories under the effect of the included covariates, the scaling metrics estimated for the six classes of destination (and origins) are further presented in Figure 6.3. As previously mentioned, the scaling metrics estimated under the SOR model show the relative status of each class in the overall class structure. The higher the scaled score is for a class category, the ‘higher’ the status of occupations it covers in comparison with those covered by a class category with a lower score. However, as the scaling metrics are estimated on the basis of the effects of covariates, it is pertinent to note that the distance between two classes varies when different covariates are included. A larger difference between the scores for a pair of class categories represents a greater effect of a covariate on the log odds for the respondent of being found in the more desirable class position of the two (Wu & Treiman, 2007: 432).

Figure 6.3: Scaling metrics for classes of origin and destination under three SOR models

Notes:
1. All three models estimate equal scaling metrics for origin and destination classes, distinguish immobility of peasants from that of non-agricultural classes, and allow the off-diagonal association between origin and destination classes to vary with gender and hukou origin.
2. Model B controls for education in addition to the covariates in Model A, and Model C includes first job class as a covariate.
Looking at Figure 6.3, it is of no surprise for us to see that Class VIIb is of the lowest status under all three versions of the SOR model. Regardless of the effects of covariates, the class of peasants shows a clear distance from non-agricultural classes. In comparison with occupations of non-agricultural classes, agricultural work undoubtedly has the lowest status, its scaled score the most negative under all three models, which also shows that the distance from the agricultural sector is clearly greater than that between any two non-agricultural class positions in terms of intergenerational mobility. Turning to the non-agricultural classes, however, different results emerge under the three models. Whilst the non-manual classes ‘constantly’ show higher scaled scores than those of the other non-agricultural classes, Class I+II has an apparently lower status than Class IIIa under the baseline model (Model A). That is to say, when the effects of education and first employment are not taken into account, the distance from agricultural work to routine non-manual occupations is larger than that to salariat occupations in terms of mobility.

This result is consistent with what has been revealed in Wu and Treiman’s application of SOR analysis (2007). Using the 1996 LHSC data but restricting the analysis to male respondents and their father’s occupational information, the study finds that routine non-manual jobs show ‘higher’ status than salariat occupations when education, measured with years of schooling, is not controlled for. According to Wu and Treiman (2007), the result is related to the strong propensity for educationally successful men of rural hukou origin and agricultural class background to access salariat positions while upgrading their hukou status to urban status. Indeed, if we look at the relevant data in this study, of respondents from rural hukou and tertiary educational background, around two thirds of men and over half of women are found in salariat occupations at time of survey. It is worth noting that for both men and women, over 80 per cent of these cases had started their career lives in salariat positions. The seemingly shorter distance between Class I+II and Class VIIb in terms of mobility in Model A, therefore, may be explained by the higher likelihood for mobility, via educational attainment, from the lower end of the class structure to salariat positions than to routine non-manual occupations via education. As seen in Figure 6.3, the ranking order of Class I+II and Class IIIa is reversed when the effect of education is controlled for in Model B and remains so under Model C. The

52 These percentages are lower than what is revealed in Wu and Treiman’s analysis (2007), which shows that 86 per cent of men of rural hukou origin and tertiary education were in salariat occupations at the time of enquiry.
introduction of education and first employment into the model also results in changes in the distance between non-manual classes and manual work in general. When education is controlled for, the distance between non-manual occupations and manual work turns larger than in the baseline model, which indicates stronger effects of the covariates on the log odds of being in non-manual positions.

Also in line with Wu and Treiman’s findings is the low status of the petty bourgeoisie reflected by the scaling metric. If we restrict our attention to the non-agricultural sectors, small business is the most distant from the salariat class under Model A and Model B, the status of which is ‘higher’ only than semi-/unskilled manual work under Model C. Whilst the status of the petty bourgeoisie is viewed as falling in between skilled manual and routine non-manual occupations in the Western societies (Ganzeboom, Luijkkx, & Treiman, 1989) and the petty bourgeoisie, along with the routine non-manual and skilled manual working classes, is referred to as ‘intermediate classes’ (Goldthorpe & Jackson, 2007), small private business has been an undesirable occupational destination in state socialist societies because of the long-standing suppression from the state (Erikson & Goldthorpe, 1992; Gerber & Hout, 2004).\footnote{By ‘intermediate classes’, Goldthorpe and Jackson (2007) refer to Class IVb+c, Class III and Class V, while combining Class IVa, large private business owners, with Class II.} The changed ranking order of Class IVa+b and Class IIIb+VIIa under Model C suggests the higher likelihood of work-life mobility into desirable positions.

In the light of findings in previous analyses regarding the class of peasants, we would expect notable differences in immobility between the agricultural sector and non-agricultural sectors. As the second panel of Table 6.5 shows, the parameter for immobility of Class VIIb, under Model A and Model C, is nearly twice that of the non-agricultural classes (0.889 vs. 0.486 in Model A and 0.749 vs. 0.401 in Model C), both statistically significant. It is worth noting that Model B, which controls for education, shows an even wider gap between the peasant class and non-agricultural classes in immobility, the parameter for the former about three times that of the non-agricultural classes. The more substantial agricultural/non-agricultural differentiation in tendency of immobility under Model B may be linked to the important role educational attainment plays in increasing the general intergenerational outflow from the agricultural class. In a separate analysis, we would find that only a very small fraction of people (less than 10 per
cent of men and less than 4 per cent of women) who are from peasant families and themselves found in agricultural work have received tertiary education. On the contrary, of those who are from agricultural background and have received education of high school level or above, 68.6 per cent of men and 73.8 per cent of women are found in non-agricultural class positions.
Table 6.5: Results of the SOR models of current class position

<table>
<thead>
<tr>
<th>Equal origin-destination scaling metric (ψ)</th>
<th>Model A</th>
<th>SE</th>
<th>Model B</th>
<th>SE</th>
<th>Model C</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salarit: I+II</td>
<td>0.305</td>
<td></td>
<td>0.505</td>
<td></td>
<td>0.404</td>
<td></td>
</tr>
<tr>
<td>Routine non-manual: IIIa+b</td>
<td>0.382</td>
<td></td>
<td>0.377</td>
<td></td>
<td>0.315</td>
<td></td>
</tr>
<tr>
<td>Small business owners: IVa+b</td>
<td>-0.104</td>
<td></td>
<td>-0.171</td>
<td></td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>Skilled manual workers: V+VI</td>
<td>0.134</td>
<td></td>
<td>0.028</td>
<td></td>
<td>0.089</td>
<td></td>
</tr>
<tr>
<td>Semi- and unskilled manual workers: IIIb+VIIa</td>
<td>0.130</td>
<td></td>
<td>0.017</td>
<td></td>
<td>-0.003</td>
<td></td>
</tr>
<tr>
<td>Peasants: VIIb</td>
<td>-0.846</td>
<td></td>
<td>-0.757</td>
<td></td>
<td>-0.853</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immobility (γ)</th>
<th>Model A</th>
<th>SE</th>
<th>Model B</th>
<th>SE</th>
<th>Model C</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-agricultural classes: I-VIIa</td>
<td>0.486***</td>
<td>0.025</td>
<td>0.451***</td>
<td>0.027</td>
<td>0.401***</td>
<td>0.027</td>
</tr>
<tr>
<td>Peasants: VIIb</td>
<td>0.889***</td>
<td>0.138</td>
<td>1.391***</td>
<td>0.084</td>
<td>0.749***</td>
<td>0.173</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stereotype ordered effects of covariates (β)</th>
<th>Model A</th>
<th>SE</th>
<th>Model B</th>
<th>SE</th>
<th>Model C</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>-0.202**</td>
<td>0.075</td>
<td>0.086</td>
<td></td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>Year of LM entry</td>
<td>0.038***</td>
<td>0.002</td>
<td>-0.005**</td>
<td>0.002</td>
<td>0</td>
<td>0.002</td>
</tr>
<tr>
<td>Entry age</td>
<td>0.340***</td>
<td>0.025</td>
<td>0.138***</td>
<td>0.027</td>
<td>-0.216***</td>
<td>0.034</td>
</tr>
<tr>
<td>Entry age squared</td>
<td>-0.005***</td>
<td>0.000</td>
<td>-0.001</td>
<td></td>
<td>0.004***</td>
<td>0.001</td>
</tr>
<tr>
<td>Rural hukou at 14 or 18</td>
<td>-3.999***</td>
<td>0.091</td>
<td>-3.461***</td>
<td>0.082</td>
<td>-2.720***</td>
<td>0.106</td>
</tr>
<tr>
<td>Rural to urban hukou upgrading</td>
<td>3.585***</td>
<td>0.061</td>
<td>3.522***</td>
<td>0.066</td>
<td>2.737***</td>
<td>0.070</td>
</tr>
<tr>
<td>Years of schooling</td>
<td>0.327***</td>
<td>0.008</td>
<td>0.172***</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry position</th>
<th>Model A</th>
<th>SE</th>
<th>Model B</th>
<th>SE</th>
<th>Model C</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-/unskilled manual workers: IIIb+VIIa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled manual workers: V+VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small business owners: IVa+b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine non-manual: IIIa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salarit: I+II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin-destination association (μ)</th>
<th>Model A</th>
<th>SE</th>
<th>Model B</th>
<th>SE</th>
<th>Model C</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall association</td>
<td>1.471***</td>
<td>0.152</td>
<td>0.046</td>
<td></td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>Association * female</td>
<td>0.502***</td>
<td>0.098</td>
<td>0.461***</td>
<td>0.094</td>
<td>0.110</td>
<td>0.114</td>
</tr>
<tr>
<td>Association * rural adolescent hukou</td>
<td>-1.728***</td>
<td>0.132</td>
<td>-0.916***</td>
<td>0.135</td>
<td>-1.153***</td>
<td>0.153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model fit statistics</th>
<th>Model A</th>
<th>SE</th>
<th>Model B</th>
<th>SE</th>
<th>Model C</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>135,660</td>
<td></td>
<td>135,660</td>
<td></td>
<td>135,660</td>
<td></td>
</tr>
<tr>
<td>LI</td>
<td>-27800.1</td>
<td></td>
<td>-26981.5</td>
<td></td>
<td>-23959.8</td>
<td></td>
</tr>
<tr>
<td>LR chi2</td>
<td>25423.2</td>
<td></td>
<td>27060.3</td>
<td></td>
<td>33103.7</td>
<td></td>
</tr>
<tr>
<td>Df</td>
<td>16</td>
<td></td>
<td>17</td>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
Notes:
1. Parameters for the intercepts have been omitted to conserve space.
2. No standard errors are produced for the scaling metrics.
3. * p<0.05; ** p<0.01; *** p<0.001

As mentioned above, the panel of ‘origin-destination association’ reports values of μ_0 and μ_t in the model equation. Whereas μ_0 stands for the overall off-diagonal origin-destination association, the parameter μ_t indicates how the association varies with the value of covariate X_t. In all the three models, the off-diagonal origin-destination association is allowed to vary with both hukou origin and gender. Regarding the gender effect, the β parameter indicates that being female has a significant negative effect on the likelihood of mobility into ‘high-status’ occupations. In addition, the significant positive parameter for being female under the baseline model and Model B confirm our early finding that women’s mobility outcomes are more closely associated with their parents’ class positions, regardless of whether or not the effect of education is controlled for. Turning to Model C, we can see that the gender gap in the origin-destination association becomes non-significant, which suggests that occupational attainment is affected by class origins via work-life mobility. The finding also reminds us of the result of my previous analysis that, given a good starting point in their career lives, urban women may fare equally well as men.

Compared with the gender effect, the significant effect of hukou origin on the association is straightforward to see but not as easy to interpret. Under all three models, the off-diagonal association is actually negative for respondents of rural hukou origin. According to Wu and Treiman (2007), the anomalous effect of class background on occupational attainment for individuals of rural hukou origin may be explained by two sides of the effect of the hukou system on intergenerational mobility. On the one hand, those who can manage to ‘upgrade’ their hukou registration into urban status tend to achieve long-range upward mobility to the top of the class structure. On the other, for children of rural parents who are engaged in urban jobs, the chance of leaving the fields remains confined by their rural hukou. As shown in Table 6A.2 in the Appendix, with the analysis based on the combined data in this study, long-range upward mobility of rural respondents via hukou upgrading is actually of a lesser extent than what is depicted in Wu and Treiman’s study. Nonetheless, it is undeniable that the majority of those who have remained in rural hukou status since teen years are found in agricultural work regardless of
their class origins. Therefore, it is reasonable to link the unusual origin-destination association in the rural case to the institutional effect of the hukou system.

In the panel of parameter estimates for the covariates, we can see that rural hukou origin has a strong significant effect on the chance of accessing a ‘high-status’ occupation, whereas upgrading one’s rural hukou into urban status substantially improves the odds of mobility into more desirable class positions. It is interesting to find that in the three different versions of the SOR model, the magnitude of the negative effect of rural hukou origin and that of the positive effect of hukou upgrading from agricultural to non-agricultural status are about to offset each other. In other words, while coming rural background significantly diminishes one’s chance of attaining desirable occupations, such odds would be substantially improved through rural-to-urban, or, agricultural-to-non-agricultural hukou conversion. Nevertheless, it is pertinent to note that occupational attainment itself may be the cause of hukou upgrading rather than its consequence.

Looking at the coefficients of the other covariates, it is not surprising to see that the inclusion of years of schooling and entry class positions not only affects the off-diagonal association as well as its interaction with gender and hukou origin, but has a direct effect upon the chance of accessing higher-status occupations. In line with the universally recognised role of education in processes of occupational attainment, the coefficient for years of schooling indicates that higher educational level significantly increases the chance of mobility into more advantageous class positions. However, in comparison with the negative effect of rural hukou origin (-3.461 in Model B) and the positive effect of agricultural→non-agricultural hukou upgrading (3.522 in Model B), education plays a limited part in mobility processes (0.327 in Model B). When the effect of first employment is controlled for in Model C, the effect of education remains significant but turns weaker. I suspect that this may be explained by its possible effect on the attainment of entry class positions.

For peasants’ children who are of rural hukou origin but have managed to upgrade their household registration into urban status, 29.3 per cent of men and 16.4 per cent of women are found in salariat occupations of either higher or lower level. In contrast, in the case of those who are of non-agricultural class origin but have remained in rural hukou status, more than half of all, regardless of class origins except sons of small business owners and semi-/un-skilled workers, have moved downwardly into agricultural work.
Considering the limited amount of work-life mobility shown in the preceding analysis of absolute rates, we would expect that first employment has a significant positive effect on access to class destinations of higher status. As expected, the coefficients for entry class positions in Model C indicate that the starting point of career lives clearly shape paths of intergenerational mobility. Compared with individuals setting off in agricultural work, those starting in non-agricultural occupations enjoy substantially higher likelihood to reach higher-status positions rather than lower-status ones. Suppose there are three respondents – A, B, and C, having started respectively in agricultural work, a routine non-manual job, and a salariat occupation. Computing with the scaled scores and coefficients for the respondent’s entry position, we can see that, compared with A, the relative odds of being in a Class IIIa occupation rather than a Class VIIb one is over 30 times greater for B and over 40 times greater for C.\(^{55}\)

To provide a concrete sense of how the chance of intergenerational mobility is affected by key covariates such as hukou origin, agricultural→non-agricultural hukou upgrading and entry class positions, I combine the effects of relevant covariates on two groups of example cases. For one group, I look into the relative odds that the child of agricultural workers, of different hukou origin and under various hukou upgrading circumstances, would be found in a salariat occupation rather than semi-/un-skilled manual work. To see the differences between cases, I substitute the corresponding coefficients generated in Model B into the model equation but omit the components that are common to the cases. For the other group, I consider the relative odds that the child of agricultural workers, also of various hukou scenarios, would be found as a professional or manager rather than a routine non-manual worker, but now I set different first employment scenarios for the cases. Similar computations are conducted, but now with the coefficients produced under Model C.

Table 6.6 presents the information of each case and reports the relative odds that are considered. In order to examine gender differences, the relative odds are computed separately for men and women under the same scenarios. Focusing on the upper panel of the table, our first impression may be that for all the three kinds of hukou conditions, men

\(^{55}\) The computation is \(31.7 = e^{(0.315-(-0.853))}(9.848)\) for the former and \(42.2 = e^{(0.315-(-0.853))}(13.116)\) for the latter, in which 0.315 and -0.853 are respectively the scaling metric score for Class IIIa and Class VIIb. 9.848 and 13.116 are respectively the coefficient for entry in Class IIIa and Class I+II occupations.
are slightly more likely to access salariat occupations rather than semi-/un-skilled manual work.56 Compared with children of peasants and urban origin, which is rare,57 the odds of those who are of rural origin and have retained their rural status are only about a quarter as great. However, it is those coming as rural but having subsequently their hukou status upgraded into non-agricultural who show the highest odds of being found in salariat rather than semi-/un-skilled occupations. For both men and women with such converted hukou status, the odds of accessing Class I+II rather than being found in Class IIIb+VIIa are over four times greater than the odds for those who have always been in rural status.

56A=1.000=\text{exp}\((0.505-0.017)*(0.461*0.916*0)*(-0.757))\)*exp\((0.505-0.017)*(-3.461*0+3.522*0))
B=0.843=\text{exp}\((0.505-0.017)*(0.461*1-0.916*0)*(-0.757))\)*exp\((0.505-0.017)*(-3.461*0+3.522*0))
C=1.445=\text{exp}\((0.505-0.017)*(0.461*0-0.916*1)*(-0.757))\)*exp\((0.505-0.017)*(-3.461*1+3.522*1))
D=1.219=\text{exp}\((0.505-0.017)*(0.461*1-0.916*1)*(-0.757))\)*exp\((0.505-0.017)*(-3.461*1+3.522*1))
E=0.259=\text{exp}\((0.505-0.017)*(0.461*0-0.916*1)*(-0.757))\)*exp\((0.505-0.017)*(-3.461*1+3.522*0))
F=0.219=\text{exp}\((0.505-0.017)*(0.461*1-0.916*1)*(-0.757))\)*exp\((0.505-0.017)*(-3.461*1+3.522*0))

Relating the computation to the relevant part of the model equation, the odds result is

\[\text{exp}\((\phi_j-\phi_j')*(-0.757))\] gives the difference between scaled scores of Class I+II and Class IIIb+VIIa in Model B;

(0.461*0-0.916*0) stands for the sum of the overall origin-destination association and the coefficients for the effects of gender and hukou origin on the association; (-0.757) is the scaled score of Class VIIb as class of origin; and, (-3.461*1+3.522*0) represents the sum of coefficients for the effect of rural hukou origin and rural-to-urban hukou upgrading.

57Of children of peasants, less than 2 per cent of men and slightly more than 2 per cent of women are from urban origins.
Table 6.6: Scenarios for two groups of example cases to present the effects of hukou origin, hukou upgrading and entry class positions

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Gender</th>
<th>Hukou origin</th>
<th>Hukou upgrading</th>
<th>Relative odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Male</td>
<td>Urban</td>
<td>No</td>
<td>1.000</td>
</tr>
<tr>
<td>B</td>
<td>Female</td>
<td>Urban</td>
<td>No</td>
<td>0.843</td>
</tr>
<tr>
<td>C</td>
<td>Male</td>
<td>Rural</td>
<td>Yes</td>
<td>1.445</td>
</tr>
<tr>
<td>D</td>
<td>Female</td>
<td>Rural</td>
<td>Yes</td>
<td>1.219</td>
</tr>
<tr>
<td>E</td>
<td>Male</td>
<td>Rural</td>
<td>No</td>
<td>0.259</td>
</tr>
<tr>
<td>F</td>
<td>Female</td>
<td>Rural</td>
<td>No</td>
<td>0.219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2</th>
<th>Gender</th>
<th>Hukou origin</th>
<th>Hukou upgrading</th>
<th>Entry position</th>
<th>Relative odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Male</td>
<td>Rural</td>
<td>Yes</td>
<td>I+II</td>
<td>3.513</td>
</tr>
<tr>
<td>H</td>
<td>Female</td>
<td>Rural</td>
<td>Yes</td>
<td>I+II</td>
<td>3.451</td>
</tr>
<tr>
<td>I</td>
<td>Male</td>
<td>Urban</td>
<td>No</td>
<td>I+II</td>
<td>3.213</td>
</tr>
<tr>
<td>J</td>
<td>Female</td>
<td>Urban</td>
<td>No</td>
<td>I+II</td>
<td>3.157</td>
</tr>
<tr>
<td>K</td>
<td>Male</td>
<td>Rural</td>
<td>Yes</td>
<td>IIIb+VIIa</td>
<td>2.626</td>
</tr>
<tr>
<td>L</td>
<td>Female</td>
<td>Rural</td>
<td>Yes</td>
<td>IIIb+VIIa</td>
<td>2.580</td>
</tr>
<tr>
<td>M</td>
<td>Male</td>
<td>Urban</td>
<td>No</td>
<td>IIIb+VIIa</td>
<td>2.402</td>
</tr>
<tr>
<td>N</td>
<td>Female</td>
<td>Urban</td>
<td>No</td>
<td>IIIb+VIIa</td>
<td>2.360</td>
</tr>
</tbody>
</table>

Notes:
1. All individuals are of Class VIIb origin.
2. Relative odds for Group 1 refers to the relative odds of the respondent being found in a Class I+II position rather than one in Class IIIb+VIIa.
3. Relative odds for Group 1 refers to the relative odds of the respondent being found in a Class I+II position rather than one in Class IIIa.

For Group 2, I confine the analysis to those who have been in urban hukou status and those who upgraded their hukou from agricultural status to non-agricultural, or, that is, from rural to urban. In the lower panel of Table 6.6, again, we find only mild difference between
men and women under the same scenarios, though men are constantly more likely to be found as a professional or manager rather than a routine non-manual worker than women. As with Group 1, hukou conversion increases the relative odds of reaching more desirable class positions, albeit to a lesser extent than what is revealed for cases in Group 1. It is clear that entry class positions now play a more important part in determining the odds. Other things being equal, having entered Class I+II at the very beginning clearly leads to greater odds of being found in salariat vs. routine non-manual positions than those who started in Class IIIa occupations.

To briefly sum up, with the relative odds of the example cases, we clearly see the ‘power of hukou conversion’ in the mobility regime in China, as revealed by Wu and Treiman (2007: 436). Even when education is controlled for, for those who come from rural background in particular, rural hukou origin and failure to convert hukou status from agricultural to non-agricultural have a detrimental effect on the chance of mobility into a higher-status occupation rather than a lower-status one, whereas successful upgrading of hukou status may substantially raise the odds of accessing more desirable occupations to a level that is even higher than those of urban origins. However, the strong evidence of the determining role of entry class positions confirms that it is highly important, including those from rural origins, to enter into the ‘right’ class so as to reach a desirable class position.

6.6 Conclusion

This chapter treats intergenerational mobility as a ‘two-stage’ process, or, a ‘three-point’ one that is composed of the transition from class of origin to class of first employment, and thence that from entry class to class of destination. In the three empirical sections, I have examined the ‘three-point’ absolute rates using three-way mobility tables, investigated gender disparity in relative rates of the O→D, O→E, and E→D transitions, and looked into the effects of a range of covariates on the chance of mobility into a ‘high-status’ class position rather than a disadvantaged one.

\[N = 2.360 = \exp((0.404 - 0.315) \times (-1.153) \times (-0.853)) \times \exp((0.404 - 0.315) \times (-0.198 \times 1 - 2.720 \times 0 + 2.737 \times 0 + 9.848 \times 1)) \]
While this chapter is not aimed to replace the traditional approach of research on intergenerational mobility with the ‘three-point’ analysis, it sheds light on the complex relations among origin class, first employment, and destination class. Moreover, in the light of evidence provided in this chapter, I would argue that the association between class of origin and class of first employment is worth due attention to the association between class of origin and class of first employment would seem necessary for researchers who are interested in intergenerational mobility. In general, the amount of work-life mobility in China is found to be rather limited, whereas direct entry plays a highly important part in processes of intergenerational mobility. In other words, it is reasonable to argue that the pattern of intergenerational mobility in China, to a great extent, reflects the pattern of mobility from class of origin to first employment.

For those seeking access to salariat positions and those from the agricultural class, the importance of direct entry is even more apparent. Given the relatively low rate of counter-mobility, those from both ‘within’ and ‘outside’ the salariat class, i.e. children of salariat parents and those from non-salariat families, would need to secure professional and managerial occupations at the very beginning of their career lives. This is further confirmed by the results of fitting the SOR model. When the effects of some major covariates, such as education, gender, and hukou, are controlled for, having started in any non-agricultural occupation, the strongest effect found with a professional and managerial one and the weakest found with small business, would lead to a greater chance of being found in a higher-status position than getting engaged in agricultural work at the beginning of the work-life. While salariat parents may mobilise various resources to aid their children in terms of both educational and occupational attainment, as found in both China and Western societies (Bian, 1994; Devine, 2004; Zheng & Li, 2009), those who are from modest or even disadvantaged social origins would have to find their own way to good jobs. On the other hand, for those who are from agricultural origins and wish to attain non-agricultural occupations, the chance would be higher if they manage to leave the fields upon entering the labour force, which is particularly true for daughters of peasants.

As in the preceding chapters, this chapter indicates gender disparity in social mobility in both absolute and relative terms. In general, women are less likely to attain salariat positions, but the issue of gender disparity is interwoven with the urban-rural division, as shown in the preceding chapters. Two points of interest emerge. Firstly, although evidence
discovered by previous studies indicates that women are disadvantaged in the labour market because of various complex reasons, including historically cumulated inequalities in the attainment of human and political capital, the withdrawal of state protection against gender discrimination, and family status (Cao & Hu, 2007; Zhang, 2004), this chapter shows that gender differences are not prevalent across all class origins. As Marshall found in the Russian case (1997), the gender gap is nearly negligible at the ‘top’ of the class structure as far as intergenerational class mobility is concerned, whereas those from less advantaged class backgrounds show a much wider gender gap. Having a ‘right’ start is important for both men and women, regardless of their social origins, but it would be even more important for women who are from less advantaged class background, especially those from peasant families. Secondly, from the ‘life-course’ perspective, women are significantly disadvantaged mainly in the work-life transition from class of first employment to class of destination, with particular reference to those in the rural case. That is to say, despite increasing off-farm employment opportunities, women who are from rural and agricultural origins are highly likely to be left in all-life agricultural work if they fail to get engaged in non-agricultural occupations at the outset.

The urban-rural differences in mobility chances are not only found among women. One of the most important messages that emerges from this chapter is that, compared with other factors such as gender and education, hukou origin and the experience of agricultural→non-agricultural, or, that is, rural→urban hukou upgrading have a predominant effect on the chance of mobility into desirable class positions. On the one hand, while agricultural work may turn out to last merely a period of time in the work lives of those who are from urban origins, individuals who are of rural hukou background but non-agricultural class origins are more likely than their urban counterparts to experience downward mobility into the class of agricultural workers. On the other, this chapter, in line with Wu and Treiman’s finding (2007), shows that those of rural hukou origin are even more likely than urbanites to access professional and managerial occupations once they successfully change their hukou status into an urban one. However, instead of interpreting hukou upgrading as the cause of better chances of mobility, it is pertinent to note that hukou change itself is often the consequence of occupational attainment. For those who are from rural hukou origin and finishing their tertiary education, it is more often than not that they would have to find a job before attaining urban hukou rather than finding a non-agricultural job after getting urban. This, along with the disadvantaged opportunities
of education for the rural population, may well explain why the effect of education, which is widely found as an engine of social reproduction (Shavit & Blossfeld, 1992; Treiman & Yip, 1989), is significantly positive but rather limited in the Chinese case.

To conclude, this chapter stresses the importance of entry class positions in mobility processes in China and suggests that the part first employment plays should be taken into account where appropriate in the future research of intergenerational mobility. However, it is pertinent to consider the relative absence of work-life mobility in China in the framework of class mobility rather than job mobility per se, as we may well find the Chinese society a much more mobile one if we focus on the latter. Further, as mentioned above, the analysis is not aimed to replace the traditional approach to intergenerational mobility with the analysis of mobility from class of origin to class of first employment. While information of destination classes is collected at the time of enquiry, respondents covered by surveys started their work lives in different years. Therefore, it would be extremely hard to study changes in mobility rates that result from structural changes.
Appendix Chapter 6 (I)

Figure 6A.1: Patterns of three-point mobility by gender, respondents aged 41-69

A. Salariat origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Male</th>
<th>Female</th>
<th>Class of destination</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td></td>
<td>23.0</td>
<td>21.2</td>
<td>I+II</td>
<td>20.4</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td>2.3</td>
<td>I+II</td>
<td>7.0</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.8</td>
<td>3.1</td>
<td>IIIa-VI</td>
<td>3.1</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.0</td>
<td>25.6</td>
<td>IIIa-VI</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.1</td>
<td>20.4</td>
<td>IIIa-VI</td>
<td>16.1</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>5.2</td>
<td>IIIb+VIIa</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6</td>
<td>5.6</td>
<td>IIIb+VIIa</td>
<td>4.6</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4</td>
<td>0.0</td>
<td>VIIb</td>
<td>2.4</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.6</td>
<td>2.8</td>
<td>VIIb</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.4</td>
<td>10.0</td>
<td>VIIb</td>
<td>12.4</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4</td>
<td>0.0</td>
<td>VIIb</td>
<td>2.4</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4</td>
<td>4.4</td>
<td>VIIb</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>All (%)</td>
<td></td>
<td>100</td>
<td>100.1</td>
<td></td>
<td>95.0</td>
<td>98.8</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>508</td>
<td>603</td>
<td></td>
<td>508</td>
<td>603</td>
</tr>
</tbody>
</table>

Note: Outflows of less than 2% are omitted (the same below).
B. Intermediate class origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>14.7</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>34.0</td>
<td>36.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.2</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.1</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (%)</td>
<td>100.1</td>
<td>99.9</td>
</tr>
<tr>
<td>N</td>
<td>790</td>
<td>831</td>
</tr>
</tbody>
</table>

Diagram:
- IIIa-VI to I+II: Male 14.7, Female 12.3, Male 11.6, Female 9.4
- IIIa-VI to II+II: Male 4.9, Female 2.9
- IIIa-VI to IIIa-VI: Male 2.8, Female 2.2
- IIIa-VI to IV: Male 5.4, Female 2.2
- IIIa-VI to IIIb+VIIa: Male 2.0, Female 24.6
- IIIa-VI to VIIb: Male 5.1, Female 27.9
- IIIa-VI to VIIIb: Male 8.1, Female 5.5
- IIIb+VIIa to IIIb+VIIa: Male 3.8, Female 5.9
- IIIb+VIIa to IIIb+VIIa: Male 14.0, Female 18.3
- IIIb+VIIa to VIIb: Male 3.9, Female 2.7
- VIIb to VIIb: Male 11.7, Female 13.2
C. Unskilled or semi-skilled working class origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>I+II</td>
<td>14.8</td>
<td>11.8</td>
</tr>
<tr>
<td>I+II</td>
<td>4.5</td>
<td>11.8</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>33.8</td>
<td>25.4</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>6.5</td>
<td>7.7</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>30.3</td>
<td>36.2</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>5.3</td>
<td>3.1</td>
</tr>
<tr>
<td>VIIb</td>
<td>21.1</td>
<td>26.5</td>
</tr>
<tr>
<td>VIIb</td>
<td>33.8</td>
<td>25.4</td>
</tr>
<tr>
<td>All (%)</td>
<td>100</td>
<td>99.9</td>
</tr>
<tr>
<td>N</td>
<td>618</td>
<td>652</td>
</tr>
</tbody>
</table>

D. Agricultural origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>I+II</td>
<td>7.3</td>
<td>3.5</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>8.7</td>
<td>6.3</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>6.9</td>
<td>5.6</td>
</tr>
<tr>
<td>VIIb</td>
<td>77.1</td>
<td>84.6</td>
</tr>
<tr>
<td>VIIb</td>
<td>77.1</td>
<td>84.6</td>
</tr>
<tr>
<td>All (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N</td>
<td>4,276</td>
<td>3,952</td>
</tr>
</tbody>
</table>
Figure 6A.2: Patterns of three-point mobility by hukou origin, respondents aged 41-69

A. Salariat origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>I+II</td>
<td>23.5</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>25.1</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>4.1</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>36.5</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>4.1</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>25.1</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>60.8</td>
</tr>
<tr>
<td>VIIIb</td>
<td>14.9</td>
<td>60.8</td>
</tr>
<tr>
<td>All (%)</td>
<td>100</td>
<td>100.1</td>
</tr>
<tr>
<td>N</td>
<td>786</td>
<td>289</td>
</tr>
</tbody>
</table>
B. Intermediate class origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>12.7</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (%)</td>
<td>100.1</td>
<td>100</td>
</tr>
<tr>
<td>N</td>
<td>1,190</td>
<td>779</td>
</tr>
</tbody>
</table>

C. Unskilled or semi-skilled working class origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>12.3</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N</td>
<td>959</td>
<td>240</td>
</tr>
</tbody>
</table>
D. Agricultural origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Entry class position</th>
<th>Class of destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>I+II</td>
<td>10.7</td>
<td>5.4</td>
</tr>
<tr>
<td>IIIa-VI</td>
<td>21.2</td>
<td>7.2</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>21.7</td>
<td>5.9</td>
</tr>
<tr>
<td>VIIb</td>
<td>46.4</td>
<td>81.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N</td>
<td>214</td>
<td>7,649</td>
</tr>
</tbody>
</table>
Table 6A.1: CmSF models for gender differences in relative rates on the overall, urban and rural data, respondents aged 41-69

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>G^2</th>
<th>df</th>
<th>p</th>
<th>rG^2</th>
<th>Δ</th>
<th>BIC</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O→D</td>
<td>Cond. Ind.</td>
<td>3353.8</td>
<td>50</td>
<td>0.00</td>
<td>20.4</td>
<td></td>
<td>2883.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>66.8</td>
<td>25</td>
<td>0.00</td>
<td>98.0</td>
<td>1.8</td>
<td>-168.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>50.9</td>
<td>24</td>
<td>0.00</td>
<td>98.5</td>
<td>1.3</td>
<td>-174.9</td>
<td>0.029***</td>
</tr>
<tr>
<td>O→E</td>
<td>Cond. Ind.</td>
<td>3009.9</td>
<td>50</td>
<td>0.00</td>
<td>19.2</td>
<td></td>
<td>2539.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>60.2</td>
<td>25</td>
<td>0.00</td>
<td>98.0</td>
<td>1.9</td>
<td>-175.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>43.1</td>
<td>24</td>
<td>0.01</td>
<td>98.6</td>
<td>1.4</td>
<td>-182.7</td>
<td>0.031***</td>
</tr>
<tr>
<td>E→D</td>
<td>Cond. Ind.</td>
<td>12,037.6</td>
<td>50</td>
<td>0.00</td>
<td>36.7</td>
<td>36.7</td>
<td>11,567.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>73.8</td>
<td>25</td>
<td>0.00</td>
<td>99.4</td>
<td>1.7</td>
<td>-161.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>49.5</td>
<td>24</td>
<td>0.00</td>
<td>99.6</td>
<td>1.2</td>
<td>-176.3</td>
<td>0.051***</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O→D</td>
<td>Cond. Ind.</td>
<td>379.1</td>
<td>50</td>
<td>0.00</td>
<td>14.5</td>
<td></td>
<td>-1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>33.4</td>
<td>25</td>
<td>0.12</td>
<td>91.2</td>
<td>4.2</td>
<td>-156.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>31.7</td>
<td>24</td>
<td>0.13</td>
<td>91.6</td>
<td>3.7</td>
<td>-151.0</td>
<td>0.021</td>
</tr>
<tr>
<td>O→E</td>
<td>Cond. Ind.</td>
<td>240.4</td>
<td>50</td>
<td>0.00</td>
<td>11.9</td>
<td></td>
<td>-140.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>31.1</td>
<td>25</td>
<td>0.19</td>
<td>87.1</td>
<td>4.2</td>
<td>-159.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>28.6</td>
<td>24</td>
<td>0.23</td>
<td>88.1</td>
<td>3.5</td>
<td>-154.1</td>
<td>0.024</td>
</tr>
<tr>
<td>E→D</td>
<td>Cond. Ind.</td>
<td>1,901.9</td>
<td>50</td>
<td>0.00</td>
<td>36.7</td>
<td>36.7</td>
<td>1,521.0</td>
<td>1,521.0</td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>27.2</td>
<td>25</td>
<td>0.35</td>
<td>98.6</td>
<td>-163.2</td>
<td>-163.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>27.1</td>
<td>24</td>
<td>0.30</td>
<td>98.6</td>
<td>-155.7</td>
<td>-155.7</td>
<td>0.006</td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O→D</td>
<td>Cond. Ind.</td>
<td>439.0</td>
<td>50</td>
<td>0.00</td>
<td>5.0</td>
<td></td>
<td>-19.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>39.8</td>
<td>25</td>
<td>0.03</td>
<td>90.9</td>
<td>1.0</td>
<td>-189.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>37.9</td>
<td>24</td>
<td>0.04</td>
<td>91.4</td>
<td>0.8</td>
<td>-182.1</td>
<td>0.014</td>
</tr>
<tr>
<td>O→E</td>
<td>Cond. Ind.</td>
<td>333.9</td>
<td>50</td>
<td>0.00</td>
<td>4.0</td>
<td></td>
<td>-124.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>32.1</td>
<td>25</td>
<td>0.15</td>
<td>90.4</td>
<td>0.6</td>
<td>-197.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>30.9</td>
<td>24</td>
<td>0.16</td>
<td>90.7</td>
<td>0.5</td>
<td>-189.1</td>
<td>0.012</td>
</tr>
<tr>
<td>E→D</td>
<td>Cond. Ind.</td>
<td>7,128.8</td>
<td>50</td>
<td>0.00</td>
<td>26.9</td>
<td></td>
<td>6,670.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CmSF</td>
<td>71.0</td>
<td>25</td>
<td>0.00</td>
<td>99.0</td>
<td>1.5</td>
<td>-158.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIDIFF</td>
<td>53.2</td>
<td>24</td>
<td>0.00</td>
<td>99.3</td>
<td>1.0</td>
<td>-166.8</td>
<td>0.053***</td>
</tr>
</tbody>
</table>
Table 6A.2: Intergenerational outflow by hukou upgrading experience, men and women of rural hukou origin

<table>
<thead>
<tr>
<th>Class of origin</th>
<th>Class of destination</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+II</td>
<td>I+II</td>
<td>176</td>
</tr>
<tr>
<td>IIIa</td>
<td>I+II</td>
<td>61</td>
</tr>
<tr>
<td>IVa+b</td>
<td>I+II</td>
<td>17</td>
</tr>
<tr>
<td>V+VI</td>
<td>I+II</td>
<td>106</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>I+II</td>
<td>158</td>
</tr>
<tr>
<td>VIIb</td>
<td>I+II</td>
<td>1,793</td>
</tr>
<tr>
<td>Total</td>
<td>I+II</td>
<td>5,601</td>
</tr>
<tr>
<td>Men not upgraded</td>
<td>I+II</td>
<td>229</td>
</tr>
<tr>
<td>IIIa</td>
<td>I+II</td>
<td>57</td>
</tr>
<tr>
<td>IVa+b</td>
<td>I+II</td>
<td>54</td>
</tr>
<tr>
<td>V+VI</td>
<td>I+II</td>
<td>92</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>I+II</td>
<td>169</td>
</tr>
<tr>
<td>VIIb</td>
<td>I+II</td>
<td>5,462</td>
</tr>
<tr>
<td>Total</td>
<td>I+II</td>
<td>6,063</td>
</tr>
<tr>
<td>Women not upgraded</td>
<td>I+II</td>
<td>229</td>
</tr>
<tr>
<td>IIIa</td>
<td>I+II</td>
<td>57</td>
</tr>
<tr>
<td>IVa+b</td>
<td>I+II</td>
<td>54</td>
</tr>
<tr>
<td>V+VI</td>
<td>I+II</td>
<td>92</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>I+II</td>
<td>169</td>
</tr>
<tr>
<td>VIIb</td>
<td>I+II</td>
<td>5,462</td>
</tr>
<tr>
<td>Total</td>
<td>I+II</td>
<td>6,063</td>
</tr>
<tr>
<td>Men upgraded</td>
<td>I+II</td>
<td>178</td>
</tr>
<tr>
<td>IIIa</td>
<td>I+II</td>
<td>58</td>
</tr>
<tr>
<td>IVa+b</td>
<td>I+II</td>
<td>54</td>
</tr>
<tr>
<td>V+VI</td>
<td>I+II</td>
<td>120</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>I+II</td>
<td>147</td>
</tr>
<tr>
<td>VIIb</td>
<td>I+II</td>
<td>5,044</td>
</tr>
<tr>
<td>All (%)</td>
<td>I+II</td>
<td>2,311</td>
</tr>
<tr>
<td>N</td>
<td>I+II</td>
<td>2,311</td>
</tr>
<tr>
<td>Women upgraded</td>
<td>I+II</td>
<td>181</td>
</tr>
<tr>
<td>IIIa</td>
<td>I+II</td>
<td>67</td>
</tr>
<tr>
<td>IVa+b</td>
<td>I+II</td>
<td>27</td>
</tr>
<tr>
<td>V+VI</td>
<td>I+II</td>
<td>102</td>
</tr>
<tr>
<td>IIIb+VIIa</td>
<td>I+II</td>
<td>150</td>
</tr>
<tr>
<td>VIIb</td>
<td>I+II</td>
<td>1,722</td>
</tr>
<tr>
<td>Total</td>
<td>I+II</td>
<td>2,249</td>
</tr>
<tr>
<td>Total</td>
<td>I+II</td>
<td>2,249</td>
</tr>
</tbody>
</table>
Appendix Chapter 6 (II) Stereotype ordinal regression model

As shown in Chapter 5, log-linear analysis enables researchers to cast light on the overall association between parents’ and respondents’ class positions. Moreover, log-multiplicative layer effect models allow the disaggregation of mobility patterns. That said, it is hardly possible to conduct multivariate analysis using these models. To incorporate all the covariates that are of interest into one single model fitting that multinomial conditional logistic (MCL) models (DiPrete, 1990; Hendrickx, 2000; Lunt, 2001; Wu & Treiman, 2007) are selected for the current analysis. The specific models estimated in this chapter are the SOR models that contain the Row and Columns model 2 (Anderson, 1984; DiPrete, 1990; Goodman, 1979), which are special designs using the MCL approach and incorporating both linear and multiplicative effects.

Unlike multinomial logistic regression models, the SOR model allows the categories of the dependent variable to be ordered by estimating a scaling metric for the dependent variable, which is based on the effects of independent variables (Hendrickx, 2000). However, it does not assume a specific ordering across these categories as ordinal logistic regression models do, and is thus much more flexible than the latter when the dependent variable is a semi-ordered one, such as categorical class variables. The SOR model with the respondents’ current class position as the dependent variable can be specified as:

$$\log \left(\frac{P(Y = j)}{P(Y = j')} \right) = \log \frac{\pi_j}{\pi_{j'}} = \alpha_j - \alpha_{j'} + (\phi_j - \phi_{j'}) \sum_{k=1}^{K} \beta_k X_k$$

(1)

where Y is the respondent’s current class position with j categories $j=1$ to 6; j and j' are different categories of Y; α_j represents the intercept parameters with certain constraints; ϕ_j represents the scaling metric for respondent’s class position; X_k represents covariates incorporated in the model; and β_k are the parameters of the covariates. In order to identify the model, two restrictions are placed on the scaling metric ϕ_j, setting the first value to 0 and the last value to 1. When the model outcomes are reported, the scaling metric is normalized. Therefore, the actual restriction is:

59 The SOR model can be fitted in Stata with different commands, including the – mclgen – and – mclest – commands used for analysis in this chapter. These commands were added into Stata by Hendrickx (2000). Alternatives are – slogit – command and – soreg – command. For more discussions on Stata programmes for the SOR and RC 2 models, see Hendrickx (2000) and Lunt (2001).
\[\sum \phi_j = 0, \text{ and } \sum \phi_j^2 = 1 \]

As the RC 2 model is contained in the SOR model, a scaling metric \(\sigma_i \) is estimated for the respondents’ class of origin in addition to their own class positions. A single parameter \(\mu \) represents the association between the respondent’s class position and their class of origin. Still, restrictions are imposed on both scaling metrics:

\[\sum \sigma_i = \sum \phi_j = 0, \text{ and } \sum \sigma_i^2 \sum \phi_j^2 = 1 \]

A simpler form of the SOR model containing the RC 2 model can be specified as:

\[
\log \left(\frac{P(Y = j)}{P(Y = j')} \right) = \log \left(\frac{\pi_j}{\pi_j'} \right) = \alpha_j - \alpha_{j'} + (\phi_j - \phi_{j'}) \mu \sigma_j + (\phi_j - \phi_{j'}) \sum_{k=1}^{K} \beta_k X_k \tag{2}
\]

As the association \(\mu \) is allowed to vary with one or more covariates. The model is thus specified as:

\[
\log \left(\frac{\pi_j}{\pi_j'} \right) = \alpha_j - \alpha_{j'} + (\phi_j - \phi_{j'}) (\mu_0 + \sum_{i=1}^{I} \mu_i X_i) \sigma_j + (\phi_j - \phi_{j'}) \sum_{k=1}^{K} \beta_k X_k \tag{3}
\]

where \(\mu_0 \) represents the overall association between the respondents’ class position and their class of origin; and the effects of covariates \(X_i \) on the association. In terms of interpretation of the parameters, the larger the difference between \(\phi_j \) and \(\phi_{j'} \), the more the outcome of the model is subject to the effects of the covariates, which, in the analysis of this chapter, is the logit odds of accessing class \(j \) versus \(j' \) at time of survey.

In the actual model exercise, one may wish to distinguish the chances for respondents to inherit their parents’ class position from mobility, i.e. to include parameters for the likelihood of immobility within each class. To this end, one more restriction is placed on the model.

\[
\log \left(\frac{\pi_j}{\pi_j} \right) = \alpha_j - \alpha_{j'} + \sum_{i=1}^{I} \gamma_i d_i (\phi_j - \phi_{j'}) (\mu_0 + \sum_{i=1}^{I} \mu_i X_i) \sigma_j + (\phi_j - \phi_{j'}) \sum_{k=1}^{K} \beta_k X_k \tag{4}
\]

where \(d_i = 1 \) if \(i=j \) and 0 otherwise; and \(\gamma_i \) are parameters for log odds of immobility. While large values of \(\mu \) indicate strong associations between the class of origin and class of destination for the ‘mobile’ part of the sample, large values of \(\gamma_i \) indicate higher likelihood for individuals to stay in the same position as their parents. To be flexible, the restriction for immobility can be set for particular categories of the dependent variables rather than separately for all the categories.
Chapter 7 Conclusion

7.1 Introduction

This chapter concludes this thesis in four sections. Following this introduction, in which I also review the aims of this study, Section 7.2 summarises the key findings from each of the three empirical chapters. Section 7.3 discusses the main contributions this thesis makes in both theoretical and policy terms. The last section concludes the chapter by reflecting upon the limitations of the study and suggesting promising lines of future research.

To revisit my research aim stated in Chapter 1, this thesis aimed at providing a systematic investigation of intergenerational mobility in contemporary China within the class structural frameworks. Considering the availability of quality survey data, I focus on intergenerational mobility and its changes during the period of time between 1996 and 2006. Briefly, the preceding chapters have answered the following questions: 1) How socially mobile are the Chinese? 2) Has China become a more equal society in terms of social mobility during the period of time under study? 3) How is the outcome of intergenerational mobility affected by the attainment of first employment? And, finally, 4) to what extent is the outcome of social mobility affected by gender disparity and the urban-rural divide imposed via the hukou system?

In examining the above issues, this study joins the scholarly discussions of social stratification in China, which have been fuelled by intensifying academic interest in social mobility (see for example Li, 2005; Lu, 2004) and debates on changing social inequalities during the market transition (Cao & Nee, 2000; Nee, 1989, 1991, 1996), by adding to the highly limited amount of literature that directly addresses the issue of intergenerational mobility. As China has been in a course of industrialisation and economic transformation since the late 1970s, the knowledge of its social mobility and fluidity during this period of time would also help us further understand the widely discussed issue of the relation between economic development and social mobility (Breen, 2004; Treiman, 1970). Meanwhile, this thesis contributes to the existing literature on social mobility in state-socialist and post-state-socialist countries. The thesis shows relatively stable social fluidity and persistent inequalities in social mobility in China that may be closely linked to the institutional context.
7.2 Summary of the findings

The empirical part of this thesis is composed of three chapters, Chapter 4 to Chapter 6. The first half of Chapter 4 examined the class structure in 1996 and 2005/6 respectively and brings to light the changes in the structural context of social mobility. Based on the understanding of the structural changes, the rest of Chapter 4 investigated absolute mobility rates and the changes between the two time points. In Chapter 5, I then explored temporal changes in social fluidity and gender differences in relative mobility rates in China through loglinear analysis. With topological models, the chapter also investigated the pattern of social fluidity in China. The last statistical chapter looked into how the outcome of intergenerational mobility may be affected by that of the transition from class of origin to first employment. In order to further examine the effects of key covariates, such as gender, education, hukou origin and entry class positions, on mobility outcomes, the stereotype ordinal regression model was fitted. Overall, there is substantive evidence showing an upgraded class structure and increases in total mobility as well as upward mobility. However, there is little evidence pointing to reduced inequality in China in terms of social mobility. Meanwhile, the society features gender disparity that is interwoven with inequalities created by the urban-rural divide. In the rest of this section, I review the key findings that have been revealed in the empirical chapters.

7.2.1 Class structure and absolute mobility rates

As introduced in Chapter 3, in the class structural approach, we distinguish absolute mobility rates from relative rates. While relative rates represent the net association between class of origin and class of destination, differences in absolute rates may be attributed to structural changes. The aim of Chapter 4 was to investigate the amount of absolute mobility in China and the change in it during the period under study. In the same chapter, I also examined inflow and outflow rates, i.e. the make-up of each class in terms of its members’ class origins and how individuals of each class of origin are distributed across the class structure.

In regard to structural changes, the analysis of the class structure of 1996 and 2005/6, which was conducted separately for men and women, indicates a substantial upgrading in the structural context of social mobility in China. While the class of agricultural workers
undoubtedly accounts for the largest proportion in both the male and female class structure, the contraction of its relative size between 1996 and 2006 has resulted in a significant increase in the non-agricultural ‘room’ for occupational attainment. To be more specific, the significant growth of non-agricultural classes is found mainly in the routine non-manual class and manual working classes. As over 70 per cent of the total sample is from peasant families, we would expect a substantial increase of outflow from agricultural origins to these class positions. Comparing the male and female structures, the analysis also shows that women tend to be more concentrated in agricultural work but see a structural upgrading of greater extent than men. In consequence, the structural gender difference is found narrower in the twenty-first century.

In relation to the total rates of absolute mobility, the Chinese society is clearly less mobile than many Western societies, which is in line with Cheng and Dai’s finding (1995). Overall, more than half of all people are found in the same class positions as their parents. Nevertheless, from a time perspective, both men and women have become more mobile by 2006. While women’s total mobility increased at a higher rate than men’s, a higher percentage of men are intergenerationally mobile than women. By decomposing total mobility into upward mobility, downward mobility, and horizontal mobility, I showed that the growth in total mobility results mainly from the rise in upward mobility, with particular reference to that from the agricultural class.

The descriptive examinations of inflow and outflow rates provided further details of absolute mobility. From the inflow perspective, self-recruitment and upward mobility from the agricultural sector make up the most important source of inflow for all non-agricultural classes. The results of outflow analysis, however, show that those from agricultural origin are evidently under-represented in non-manual classes, with particular reference to daughters of peasant families. Meanwhile, compared with non-agricultural classes, the immobility rate of the agricultural class is strikingly high, which has remained high in spite of the contraction of the class of peasants. Again, women from an agricultural origin show more profound immobility than their male counterparts.

Overall, a major conclusion we can draw from the analyses in Chapter 4 is that the decade between 1996 and 2006 has witnessed China becoming a more mobile society in absolute terms, with particular reference to upward movement into class positions more desirable
and advantageous than their parents’. However, what must be highlighted are the gender disparity and differences between individuals of agricultural origin and those of non-agricultural origins in terms of mobility opportunities.

7.2.2 Trends and patterns of social fluidity

In two earlier studies of intergenerational mobility in China, which were based on survey data collected respectively in the 1980s and 1996 (LHSC), no evidence has been found in support of any directional change of social fluidity in China (Cheng & Dai, 1995; Yang, 2008). In Chapter 5, I showed findings that are largely in line with these earlier conclusions with reference to trends in social fluidity in China. Little evidence of differences between 1996 and 2006 in relative mobility rates is reported in the loglinear analysis. Nevertheless, it is worth noting that there is a slight but significant increase in the net association between class of origin and class of destination for women, which in turn results in the marginally significant and minor rise in the net origin-destination association for the national population.

The gender disparity in fluidity is further confirmed by the results of fitting of the CmSF and UNIDIFF models. While no evidence is shown in support of gender differences in relative mobility when the models are applied to the 1996 data, the net origin-destination association is found significantly stronger for women than for men when the analysis is conducted on the 2005/6 data. In other words, with the economic transformation going increasingly mature, the gender gap in social fluidity is reinforced rather than being weakened. In examining the urban-rural differences in social fluidity, I showed similar results. Whilst the UNIDIFF model fails to improve the fit of the model on the 1996 data, individuals of rural hukou origin in the 2005/6 data show a relatively weaker net association between classes of origin and destination than those from urban origin. If we look at the results of fitting the SOR model, the origin-destination association for the rural ‘mobile’ people turn out to be negative when a range of covariates are controlled for.

Following the global examinations of social fluidity, the rest of Chapter 5 explored further details of the pattern of fluidity in China with topological models. Both the Hauser-type model of density levels and the core model of social fluidity showed results that are relatively close to the mobility tables based on the actual data. By fitting the density levels
model, I considered the cells in the mobility table as at six different levels of density, i.e. mobility (or immobility) in the cells differs in terms of the likelihood of occurrence. Not surprisingly, self-inheritance within the agricultural sector and small business shows the strongest density, though immobility in general is more likely to occur than mobility of any kind. Conversely, mobility that involves movement between the agricultural class and non-manual classes has the lowest density, the relative chance of which is merely one tenth that of immobility within the agricultural class and small business. Meanwhile, the results indicated affinity between classes respectively within non-manual and manual sectors. Rather than leaving for manual or agricultural destinations, individuals of non-manual origins are more likely to stay non-manual even if they are not found as members of their origin classes. Likewise, for those from working class origins, the relative chance of being found in manual work, albeit of a different level, is higher than mobility into either non-manual or less advantaged positions. If we turn to the issue of gender disparity, it is worth noting that the distance between non-manual sectors and the agricultural sector is even greater for women than for men. Further, the relative chance of being immobile for women is not as differentiated across class origins as in the case of men, which suggests the generally higher chance of immobility for women than for men.

The results of fitting the core model on the national data provided more evidence of the pattern of fluidity as well as the gender differences in this aspect. For men and women alike, the relative chance of mobility is affected by the positive effect of inheritance and affinity within the non-manual sectors as well as the manual working classes. Meanwhile, there is a negative effect that captures barriers relating to the sectoral division between agricultural and non-agricultural sectors. In the case of women, however, with particular reference to mobility involving the salariat class or the agricultural class, mobility chances are also affected by the hierarchical effect, which is non-significant in the case of men. This result is inconsistent with findings of some earlier applications of the core model of social fluidity to Chinese data, which indicated a significant role of hierarchical effect in determining people’s mobility chances (Cheung, 1997, cited in Yang, 2008; Yang, 2008). Moreover, women of agricultural origin are faced with a disaffinity effect when seeking access to salariat positions. The major difference between men and women in the pattern of fluidity, therefore, is the absence of a hierarchical effect in the case of men, even for men of agricultural origin, whereas women’s mobility chances are subject to the joint force of the hierarchical effect, the disaffinity effect, and the sectoral effect. As discussed in
Chapter 6, however, the division between the agricultural and non-agricultural sectors is, by its nature, an alternative kind of hierarchical division. In this sense, the most non-negligible feature of the fluidity pattern in China is the effect of boundaries between agricultural and non-agricultural sectors, which may be related to the power of the long-existing hukou system and turns even stronger for women than men.

7.2.3 Work-life mobility and intergenerational mobility

When the complete work-history data are not available, introducing entry class positions into the analysis is equivalent to taking a life-course approach to intergenerational mobility, albeit of a crude kind (Erikson & Goldthorpe, 1992a). As stated earlier, in Chapter 6 I considered intergenerational mobility as a ‘two-stage’ process that is composed of the transition from class of origin and first employment and thence the transition to class of destination. In this alternative approach to the ‘standard practice’ of mobility research, the chapter examined absolute rates of the ‘three-point’ mobility that covers the two transitions, furthered the investigation of gender disparity with log-linear analysis, and applied the SOR model on the relative chance of mobility into a ‘higher-status’ class position rather than a ‘lower-status’ one.

With regard to absolute rates of the origin-entry-destination (O→E→D) mobility, the results of the three-way outflow tables, which are based on a collapsed fourfold EGP class schema, showed that that the majority of the population, for men and women alike and regardless of their social origins, reached their destination class positions upon entering the labour force rather than via work-life mobility. Overall, men are more active than women in terms of work-life mobility (23.8 per cent vs. 18.0 per cent), and individuals of urban hukou origin experience a higher amount of work-life mobility than those from rural origin (29.7 per cent vs. 18.5). That is to say, the pattern of intergenerational mobility in absolute terms in China to a great extent reflects the association between class of origin and class of first employment. The high rate of direct entry also applies to access to salariat occupations. While children of salariat parents show a mild counter-mobility rate, regardless of gender and hukou origin, an even smaller percentage of those from non-salariat origins reached salariat positions via work-life mobility, the likelihood of which is unsurprisingly the lowest for those from farming families.
Meanwhile, the descriptive analysis indicated that both rates of work-life mobility vary with the respondents’ social origins. Compared with individuals of non-agricultural class background, those from peasant families are more likely to retain in their class of first employment. Such agricultural vs. non-agricultural disparity remains substantial when the analysis is confined to the rural data, but turns nearly negligible in the analysis of the urban data. Nevertheless, it is pertinent to note that the counter-mobility rates relating to the class of peasants are extremely low. In other words, once children of peasant families manage to access off-farm occupations as their first employment, it is highly likely that they will stay non-agricultural for the rest of their work lives.

As to the gender gap from the life-course standpoint, the results of descriptive analyses showed that the strength of gender disparity varies with class origins. While differences between men and women are close to negligible for those from salariat origins, the gap becomes wider when it comes to those from less advantaged social origins, with particular reference to those from peasant families. The finding is in line with what was revealed by Marshall (1997) with the Russian data that, given the same starting positions, men and women of salariat origins can fare equally well.

In the log-linear analysis that followed, it was further confirmed that the issue of gender disparity in social mobility in China is intertwined with the urban-rural division. While both urban and rural women show a significant stronger net association between class of first employment and class of destination than men, there is also evidence pointing to a significant stronger net association between class of origin and first employment for women than men in the rural case. In other words, rural women are subject to greater effect of social origins than men throughout the entire process of intergenerational mobility.

The final statistical part of the chapter re-examined the relative chance of intergenerational mobility. In order to investigate the effects of multiple covariates on the chance of mobility to class positions of ‘higher status’ rather than ‘lower status’, I applied the SOR model which incorporated gender, year and age of entry to the labour force, hukou origin, the experience of agricultural→non-agricultural hukou upgrading, education, and class of first employment. Again, the results of the model confirmed the strong inheritance effect, for the class of peasants in particular, the disadvantages facing women, and the positive effect of education on mobility chances. Furthermore, the results of the model provided evidence
in support of Wu and Treiman’s finding concerning urban-rural inequalities in mobility chances (Wu & Treiman, 2007). While coming from rural hukou origin would seriously diminish the chance of mobility to desirable occupational positions, the disadvantages imposed by rural hukou origin would be offset by the substantial positive effect of the experience of agricultural→non-agricultural hukou conversion.

In line with the findings of absolute rates, the off-diagonal association between class of origin and destination is mediated when class of first employment is controlled for, suggesting the significant role of entry class positions in mobility processes. On the other hand, while the effect of gender upon the off-diagonal association turns non-significant when entry class positions are controlled for, the negative effect of rural hukou origin persisted and remained significant. As to the effect of entry class positions directly upon the mobility chance, any non-agricultural work-life start would contribute to the relative chance of moving into more desirable occupational destinations. As expected, salariat first employment shows the effect of greatest magnitude, yet starting in small business is of least help.

7.3 Contributions to knowledge

This thesis not only makes contributions to the general literature of social mobility, but also has implications at the policy level. In this section, I discuss the contributions of this thesis under these two headings.

7.3.1 Theoretical contributions

As discussed in Chapter 1, there has been an increasing academic interest in social stratification, including the issue of social mobility, since China embarked upon economic transformation. One tradition of research on social stratification in China is to focus on the theoretical logics of institutional effects, political virtue and educational credential in mobility regimes (Bian, 1994; Li & Walder, 2001; Lin & Bian, 1991; Walder, 1995; Wu & Treiman, 2007). Following another tradition that is tied to the relations between economic development and industrialisation as well as the class structural approach, there have been attempts from scholars both within and outside China to examine mobility rates and temporal changes in the pattern of social mobility (Cheng & Dai, 1995; Li, 2005; Lu, 2004;
Yang, 2008). Nevertheless, some of these were not based on national survey data, while the others either focused on absolute mobility only or were unable to examine trends in social mobility because of the limited availability of quality data. In this sense, this thesis is the first systematic effort to analyse Chinese national survey data for examining both absolute and relative mobility and exploring temporal changes in the pattern of social fluidity in the class structural approach.

This study also added empirical evidence to the existing literature on the relationship between the level of economic development and social stratification, which have been a major concern in mobility studies of both Western capitalist societies and post-state-socialist countries. In structural terms, China falls largely on the development path of the transition from an agricultural society to an industrial one that is broadly defined by Breen and Luijkx (2004a). As a state socialist society in the course of industrialisation and economic reform, China shows lower rates of absolute mobility than were found in earlier studies of societies of the same institutional kind (Breen, 2004; Erikson & Goldthorpe, 1992a; Mach, 2004; Marshall, 1997; Robert & Bukodi, 2004), but displays substantial increases in total mobility from a historical viewpoint. In conducting the ‘standard practice’ of mobility research, the empirical analysis in this study provided evidence that is hardly in support of any directional change in social fluidity in China. Despite the increases in total mobility and upward mobility, the changes are mainly a result of structural upgrading rather than a changing endogenous mobility regime. In other words, this study sheds light on the rates and pattern of intergenerational class mobility in China and added new evidence to the thesis of ‘constant fluidity’ (Erikson & Goldthorpe, 1992a).

This is not to say, of course, that the status quo of social mobility in China should be connected with the same driving forces as in Western nations. In addition to the general knowledge of social mobility, this thesis also contributes to the understanding of social mobility in state socialist countries. As in studies of former state socialist societies, such as Russia and Hungary (Andorka, 2007; Luijkx et al., 2002; Mach, 2004; Marshall, 1997), this study reconfirms the strong role of institutional force in mobility processes. By incorporating key covariates into the statistical analysis of relative mobility chances, this thesis showed findings that are in line with Wu and Treiman’s conclusion regarding the effect of hukou origin (2007).
Another contribution of this thesis lies in what it adds to the literature on gender inequality in class mobility in China. This study is by no means the first effort to look into women’s social mobility in China. While women are often excluded from mobility research on grounds of methodological concerns and different career trajectories from men (Heath, 1981; Stanworth, 1984; Wu & Treiman, 2007), they are not always absent from mobility research of China (Cheng & Dai, 1995; Li, 2005; Lu, 2004; Yang, 2008). This study is an early attempt to incorporate women into research of intergenerational mobility using national surveys that were conducted at different points in time. Overall, the findings indicated that Chinese women are less mobile than men and more dependent on the class of origin in terms of occupational mobility. More importantly, the gender gap in class mobility is not evenly distributed across origin classes, but is found mainly among the less advantaged social groups, those from rural agricultural background in particular. The analysis of patterns of fluidity also displayed a different endogenous mobility regime for women. While hierarchical barriers are non-significant for men, women are subject to the triple barriers imposed by hierarchal effect, sectoral effect, and inheritance effect.

Finally, this thesis contributes to the literature on mobility research of China in revealing the importance of the role of class of first employment. Despite the rich literature on occupational mobility in China (see for example Bian & Ang, 1997; Cao & Hu, 2007; Liang, 2006; Lin & Bian, 1991), how outcomes of intergenerational mobility are affected by the attainment of first occupations is barely considered in mobility studies. By analysing absolute rates of the O→E→D mobility and relative mobility chances with the SOR model, the last statistical chapter of this thesis showed a close association between first job class and class of destination in China. Specifically, the former has a nearly decisive effect on the mobility outcome of most people. The finding has theoretical implications not only for research on social mobility in China, but for comparative mobility studies. As pointed out by Erikson and Goldthorpe (1992: Ch.8) in their comparative analysis of work-life and intergenerational mobility, analyses with work-life mobility taken into account would allow researchers to capture the effects of differing mobility strategies under varying institutional circumstances. The significant strong effect of entry class positions upon the outcome of intergenerational mobility in the Chinese context, for instance, has also captured the effects of various means by which individuals and families mobilise resources to secure a good start so as to lead to further desirable occupational positions.
7.3.2 Policy implications

In recent years, the rising scholarly interest in social mobility has been echoed by increasing media reports and public attention to the issue of social justice in relation to social reproduction. Terms such as ‘guan-er-dai’ (children of officials) and ‘fu-er-dai’ (children of the rich) were coined to describe those who were born into social advantages over individuals of average social origins, who are often expected to have easier access to quality education and advantaged occupational positions. Meanwhile, hukou remains as a major institutional force that affects people’s life chances. On the one hand, there are those who are from rural origins and succeeded in attaining urban hukou of Shanghai after working in the city for years and finally being awarded the title of ‘Excellent Migrant Worker in China’ (Wu, 2009) and state policies to abolish agricultural hukou and stop differentiating the agricultural population from the non-agricultural (Nangfang Weekend, 2008). On the other, however, students who enter into the national college entrance examinations are still required to take them where their hukou is registered, and children of non-local residents’ are denied entering into the National College Entrance Examinations (gaokao) because their parents are ‘temporary residents’ holding residence permits rather than urban hukou of Beijing (Guo, 2011; Shen & Zhu, 2009).

On top of its theoretical contributions, this thesis has its implications for policy makers. First of all, it is vital for policy makers to recognise the possibility for the Chinese society to be more open in terms of social mobility. While rises in absolute mobility are easier to note, it is relative mobility that shows the extent of equality of the society. In the light of findings in relation to unequal mobility chances facing individuals of urban and rural origin, an important implication for policy makers is to reduce the institutional effect of hukou status on life chances, with particular reference to educational and occupational opportunities for non-locals. As discussed in Chapter 6, while hukou upgrading from agricultural to non-agricultural status shows a significant positive effect on the outcome of intergenerational mobility, it may be a result of the reverse relationship. In other words, having an appropriate urban job may be the requirement, rather than the consequence, of

60 By August, 2012, cities that attract more migrant workers than others, such as Beijing and Shanghai, have followed the instructions of the State Council (GOSC, 2012) and announced that new policies would be ready by the end of 2012 regarding ‘non-local students taking examinations of “lower middle → high school” and “secondary → tertiary education” transitions’ (Yu, 2012).
urban hukou attainment. Weakening the connection between hukou status and occupational attainment, therefore would also contribute to increasing the openness of the society.

In terms of education, as an engine of social mobility (Shavit & Blossfeld, 1993; Shavit & Muller, 1998; Treiman & Yip, 1989), this is particularly important at the level of higher education, which is more closely linked to mobility into ‘higher-status’ professional and managerial occupations. Given the unevenly distributed educational resources, allowing students of both local and non-local hukou status would lead to fair competitions for educational opportunities, which in turn would promote equality in mobility chances. In reforming the hukou restrictions on educational attainment and transition examinations, however, there is the possibility that new thresholds are set up, such as using criteria of assets and properties to determine whether or not migrant workers’ children can gain the rights to take ‘migrant examinations’.

Two aspects of gender disparity in social mobility need policy makers’ attention. First, the closer net association between origin and destination classes for women than men imply that girls are more likely than men to be confined to their origin classes, – e.g. the peasant class, -- when their parents have limited economic and social resources. In relation to educational opportunities in particular, endeavours are called for to bring down gender inequality in compulsory education. Second, the stronger association between the first job class and class of destination for women than men suggest gender inequality in terms of work-life mobility. For women in less advantaged rural areas or from migrant workers’ families in particular, the outcomes of social mobility may reflect not only the effect of their class origins, but also the negative effect of hukou origin on educational opportunities and in turn the chance to find good first jobs. Hence, another implication of this study for policy makers is to increase the gender equality both in the first job attainment and in career mobility through encouraging policies for employers.

7.4 Reflections of the thesis

While this study is an attempt to systematically explore the issue of social mobility in contemporary China, the thesis does have its limitations that would be worth improving. Moreover, as a PhD research project, this thesis covers issues that are of the greatest...
relevance to the research topic of intergenerational mobility and has had to exclude some issues that are worthy of exploration. In this final section, I consider the limitations of the thesis and the scope for future research that this thesis may be extended to.

7.4.1 Limitations

In comparison with the literature on social mobility in Western societies, which is usually based on analyses using data covering several years, a most recognisable limitation of this thesis is the use of cross-sectional rather than panel data that would allow analyses of trends in social mobility. A main reason is the lack of panel data of social surveys in China when this study started. In consequence, what this study has focused on are differences between the two points in time under study. While some would suggest undertaking cohort analysis, pooling the three datasets and then generating cohorts is risky in itself, as it would be impossible to identify the timing of social changes revealed in the analysis. To make up for this limitation, however, supplementary analyses have been conducted, when necessary, on different age groups and the relevant results have been reported in the Appendix to each chapter.

Another major limitation is connected with the limited space of a PhD thesis. A few issues that emerged in the stage of research design were later given up in order to produce a well-structured thesis that has a clear focus. Among these ‘abandoned’ parts of this project on social mobility in China, the most important one is the relationship between class of origin, education, and class of destination, which was intended to examine to what extent the Chinese society is becoming a meritocratic one. Originally designed as a single chapter, this research question was given up as the corresponding chapter would have outgrown the size of a PhD thesis.

It is also worth mentioning, if this is a limitation, that the findings of this study must be interpreted within its theoretical and methodological frameworks. For instance, as the ‘three-way’ mobility tables used for analyses of absolute rates in Chapter 6 are based on collapsed fourfold class schema, the rates of work-life mobility may have been more or

61 It was not until this thesis was approaching the end of its empirical analysis that the Chinese Family Panel Studies was initiated by Beijing University as the first panel social survey in China.
less underestimated. Meanwhile, in interpreting the findings regarding work-life mobility, one should always distinguish class mobility, which has been investigated in this study, from job mobility. Studying the latter, we would likely find a more mobile Chinese society, yet this study focused on mobility between class positions.

7.4.2 Scope of future research

To follow up this thesis, studies in a few directions are worth considering in the future.

As shown in Chapter 6, results of the SOR model showed limited effect of education on the outcome of intergenerational mobility in China. Nevertheless, it may be too early to conclude about the complex origin-education-destination (O-E-D) relationships. In the future, a separate study of the O-E-D relationships would allow us to further understand the role of human capital and examine to what extent meritocracy affects social mobility in China.

To recapitulate, this thesis is based on cross-sectional data rather than panel data. Should new quality data be available for public use, it would be worth re-examining social mobility in China with panel data, which would allow us to look into not only the issue of trends in social fluidity, but also aspects such as period effects on social mobility.

Finally, in addition to the issue of intergenerational mobility in China, I take a particular interest in comparative studies in which we can compare patterns and trends of social mobility in mainland China with those in other Chinese societies, such as Hong Kong and Taiwan.

To conclude, this thesis has come to its end. It is hoped that the study may contribute to the continued academic interest in social mobility in China.
References

Li, Lulu. (2003). The Institutional transition and the transition of the stratification system: From "indirect re-production" to the co-existing situation of "Direct Re-Production" and "Indirect Re-Production". Sociological Studies (Shehuixue Yanjiu)(5).

Li, Y. (2010). The labour market situation of minority ethnic groups in Britain and the US. EurAmerica, 40(2), 259-309.

Treiman, D. J., & Walder, A. (1998). Life Histories and Social Change in contemporary China: Provisional Codebook. *(in collaboration with Department of Sociology, People's University, Beijing).*

Wu, J. (2009, 25th June). 40 migrant workers were awarded Shanghai hukou Dongfang Daily (dongfang zaobao).