Website user experience: overall summary assessments and momentary emotion

A thesis submitted to the University of Manchester for the degree of

Doctor of Philosophy

in the Faculty of Humanities

2011

Mahmood Saeed Alalawi

Manchester Business School
Table of Contents

Abstract .. 8
Declaration .. 9
Copyright statement .. 10
Acknowledgement .. 11
Chapter 1 Introduction .. 12
Chapter 2 Literature review ... 20
 2.1 User experience ... 20
 2.1.1 Forlizzi and Battarbee user-centred model .. 21
 2.1.2 Emotion on the web ... 25
 2.1.3 Real-time assessments of enjoyment ... 30
 2.2 Peak-end rule ... 35
 2.3 Web usability evaluation ... 53
Chapter 3 Experiment 1 ... 60
 3.1 Introduction .. 60
 3.2 The task .. 64
 3.3 Design and materials .. 66
 3.4 Procedure ... 74
 3.5 Results ... 75
 3.5.1 Characterizing the participants ... 76
 3.5.2 Task completion times ... 77
 3.5.3 Retrospective assessments ... 79
 3.5.4 Real-time enjoyment ratings ... 82
 3.5.5 Regression tests of the peak-end rule .. 88
Table of contents

3.6 Discussion ... 92
3.7 Summary of Experiment 1 ... 95

Chapter 4

Experiment 2 ... 97
4.1 Introduction .. 97
4.2 The task .. 99
4.3 Design and materials .. 100
4.4 Procedure ... 101
4.5 Participants .. 101
4.6 Results .. 102
 4.6.1 Descriptive ... 103
 4.6.2 Analytic ... 104
4.7 Discussion .. 111
4.8 Summary of Experiment 2 ... 112

Chapter 5

Experiment 3 ... 114
5.1 Introduction .. 114
5.2 The task ... 116
5.3 Design and materials ... 117
5.4 Procedure .. 118
5.5 Participants .. 119
5.6 Results ... 119
 5.6.1 Descriptive ... 120
 5.6.2 Analytical .. 123
5.7 Discussion ... 127
5.8 Summary of Experiment 3 ... 129

Chapter 6

Experiment 4 ... 132
6.1 Introduction .. 132
6.2 The task ... 135
6.3 Design and materials ... 135
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Procedure</td>
<td>136</td>
</tr>
<tr>
<td>6.5</td>
<td>Participants</td>
<td>137</td>
</tr>
<tr>
<td>6.6</td>
<td>Results</td>
<td>137</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Descriptive</td>
<td>137</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Analytical</td>
<td>141</td>
</tr>
<tr>
<td>6.7</td>
<td>Discussion</td>
<td>144</td>
</tr>
<tr>
<td>6.8</td>
<td>Summary of Experiment 4</td>
<td>146</td>
</tr>
<tr>
<td>6.9</td>
<td>Regression of all four experiments combined</td>
<td>148</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>General discussion</td>
<td>152</td>
</tr>
<tr>
<td>7.1</td>
<td>Peak and end enjoyment predictions</td>
<td>161</td>
</tr>
<tr>
<td>7.2</td>
<td>Changing the order of events: effect on retrospective assessment</td>
<td>164</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Preference for improvement</td>
<td>167</td>
</tr>
<tr>
<td>7.2.2</td>
<td>The effect of end enjoyment moment on retrospective assessments</td>
<td>169</td>
</tr>
<tr>
<td>7.3</td>
<td>Duration neglect</td>
<td>169</td>
</tr>
<tr>
<td>7.4</td>
<td>Research outcomes:</td>
<td>171</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Peak-end rule: implication for web experience</td>
<td>172</td>
</tr>
<tr>
<td>7.5</td>
<td>Web use and emotion</td>
<td>173</td>
</tr>
<tr>
<td>7.6</td>
<td>Future work</td>
<td>174</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
<td>180</td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Experiment 1: first questionnaire: After the first block of tasks.</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Experiment 1 second questionnaire: After the second block of tasks.</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Experiment 2: questionnaire</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Experiment 3: Phase 1 questionnaire</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Experiment 3: Phase 2 questionnaire</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Experiment 4: questionnaire</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>194</td>
</tr>
</tbody>
</table>
List of Figures

Figure 3-1 Initial-, peak- and end enjoyment of website experience on scale of 0-100 throughout browsing session... 67
Figure 3-2 Design retrospective assessment scale used in questionnaire 68
Figure 3-3 Enjoyment retrospective assessment scale used in questionnaire 68
Figure 3-4 Experiment 1 Current enjoyment tool used by participants to report real-time ratings, including task presentation... 72
Figure 3-5 Experiment 1 Current enjoyment tool without the real-time ratings slide bar, providing only task presentation ... 72
Figure 4-1 Experiment 2 current enjoyment tool used in the Brazil experiment....... 100
Figure 5-1 Experiment 3 and 4 current enjoyment tool .. 117
List of tables

Table 3-1 Characteristics of participants in the four experimental groups 76
Table 3-2 Experiment 1, the duration of easy and hard tasks, with standard deviation, for
the four groups .. 77
Table 3-3 Experiment 1 participants’ mean design and enjoyment retrospective
assessments for the four groups .. 79
Table 3-4 Pearson correlation (% predicted variance in brackets) between retrospective
assessments of design and enjoyment of easy- and hard block tasks (** = p<0.01; * =
p<0.05) .. 80
Table 3-5 Mean and standard deviation of several summary aspects of real time rating
in groups 1 and 3 .. 82
Table 3-6 Correlation matrix showing the relationship between the various
characteristics of the moment-by-moment ratings of the easy task blocks of Groups 1
and 3 .. 84
Table 3-7 Correlation matrix showing the relationship between the various
characteristics of the moment-by-moment ratings of the hard task blocks of Groups 1
and 3 .. 85
Table 3-8 Regression from simple and comprehensive models- tasks retrospective
assessment of easy and hard tasks .. 89
Table 3-9 Experiment 1: easy block tasks - standardized Beta coefficients of the two
models as predictors .. 90
Table 3-10 Experiment 1: hard block tasks - standardized Beta coefficients of the two
models as predictors ... 91
Table 4-1 Experiment 2: characteristics of participants, and real-time and retrospective
assessments ... 104
Table 4-2 Experiment 2: correlation matrix between retrospective assessments and
initial-, peak- end-, average-, and total real-time enjoyment ratings; and duration of the
procedure .. 106
Table 4-3 Experiment 2 predicting participants’ memories from combination of real-
time measures ... 107
Table 4-4 Experiment 2: standardized Beta coefficients of the two models as predictors
.. 108
Table 4-5 Experiment 2 predicting participants’ memories from combination of real-
time measures after adding the low peaks ... 109
Table 4-6 Experiment 2: standardized Beta coefficients of the two models as predictors after adding the low peaks to both models ... 110
Table 4-7 Experiment 2 Spearman correlation of procedure duration with design and enjoyment assessments .. 110
Table 5-1 Experiment 3 characteristics of participants and procedure 121
Table 5-2 Group 1 and Group 3 real-time enjoyment (mean and standard deviation) 122
Table 5-3 Experiment 3: correlation matrix between retrospective assessments and real-time measurements *= < 0.05, **= <0.01 .. 123
Table 5-4 Experiment 3: predicting participants’ memories from combination of real-time measures .. 125
Table 5-5 Experiment 3: standardized Beta coefficients of the two models as predictors ... 126
Table 5-6 Experiment 3: Spearman correlation between overall procedure duration and retrospective assessments of enjoyment ... 126
Table 6-1 Experiment 4 characteristics of participants and duration of procedure 138
Table 6-2 peak-, initial-, end-, average- and total real-time enjoyment in addition to retrospective assessment of enjoyment (mean and standard deviations of Groups 1, 2 and 3) ... 139
Table 6-3 Experiment 4 correlation matrix between retrospective assessments of enjoyment and real-time enjoyment moments, and duration of the procedure 140
Table 6-4 Experiment 4 predicting participants’ memories by a combination of real-time measures .. 142
Table 6-5 Experiment 4: standardized Beta coefficients of the two models as predictors ... 143
Table 6-6 Experiment 4: Spearman correlation between overall procedure duration and retrospective assessments of enjoyment ... 144
6-7 predicting participants’ memories using a combination of real-time measures of all four experiments .. 149
6-8 Standardized Beta coefficients of the two models as predictors for all four experiments .. 151
7-1 Summary of the results of the four experiments .. 159

New number of words 39,499
Abstract

Four experiments were conducted to test whether peak-end rule replicates in the web environment. The *current enjoyment tool* (CET) was developed to capture real-time enjoyment ratings. Experiment 1 mainly tested the effect of the task order and the tool on retrospective assessments. The results showed that the tool did not influence participants’ judgments. Using the number of links to determine task difficulty was not found to be a very effective measure of enjoyment. Experiment 2 further tested the peak-end rule using a free-browsing style. The results showed that peak and end enjoyment moments were relatively low predictors of retrospective assessment, compared with the combination of a wider range of moments. The E2 results also demonstrated that duration did not correlate with either the real-time enjoyment moments or retrospective assessment of enjoyment. Experiment 3 focused on the effect of manipulating the order of selected sections of a website on retrospective assessments of enjoyment. This experiment was performed in two phases, and succeeded in controlling the flow of enjoyment; at least end enjoyment. The results indicated that increasing enjoyment towards the end would result in correspondingly higher retrospective assessment ratings of enjoyment; the converse being the case when decreasing enjoyment towards the end. Peak- and end real-time enjoyment were found to be good predictors of the retrospective assessment of enjoyment. The fourth experiment further investigated this *end effect* on retrospective assessments. Its design succeeded in manipulating the creation of *low*, *medium* and *high* end real-time enjoyment. The results showed that the high-end group recorded higher enjoyment retrospective assessments than the low-end and medium-end groups. Peak and end real-time enjoyment moments, as well as other real-time enjoyment moments (initial-, average-, and total-) in addition to procedure duration, resulted in a low prediction of retrospective assessment.
Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.
Copyright statement

The author of this thesis owns any copyright in it (the “Copyright”) and he has given The University of Manchester the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes.

Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the John Rylands University Library of Manchester. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made.

The ownership of any patents, designs, trade marks and any and all other intellectual property rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of copyright works, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions.

Further information on the conditions under which disclosure, publication and exploitation of this thesis, the Copyright and any Intellectual Property Rights and/or Reproductions described in it may take place is available from the Head of the Manchester Business School (or the Vice-President).
Acknowledgement

I would like to thank my parents, my beloved father and mother; for their generous continuous support.

I would also like to thank Professor Stephen Payne for his guidance and supervision as well as Dr. Oscar de Bruijn for his supervision and support.

I would like to thank all and sundry; those that made this work happen!

Special thanks to:

Saeed Mustafa Alalawi
My mother
Stephen Payne
Oscar de Bruijn
Stephen Kalaher
Layla Goharian
Aleksandra Bardon
Dermot Lynott
Usability testing of interactive products, such as websites, is a crucial technique for generating practical designs. When websites are evaluated, a typical procedure is to assign a range of representative tasks to participant-users and to measure various aspects of their performance. Increasingly, evaluators are also interested in the users’ subjective reactions to their design, for example, the feelings of satisfaction or frustration that the design engenders.

In the early days of website design, web developers did not consider the user’s needs, which resulted in the web being filled with websites that failed to meet basic user-friendly standards. Some of these websites may leave the users very frustrated; for example, an online shopping experience, in which the payment failure leaves the user extremely dissatisfied.

Jesse James Garret told a joke in his speech in the Information Architect A1 Summit 2009 (Garrett 2009). He named the only two industries which refer to their customers as ‘users’, and they are, funnily enough, technology and drug dealing. Are technology practitioners, Garret asked, causing their ‘users’ as much pain as drug dealers?
Introduction

The web is full of websites that can leave their users frustrated or satisfied, upset or happy, bored or entertained. A man won $10,000 while playing poker on-line; a woman could not watch her favourite show on the Internet, because the video did not work. What was their experience? Will the Internet user come back to the website that left him incredibly happy or totally frustrated?

Many UX researchers, usability designers and information architects operating at present, such as Don Norman, Jesse James Garret, Lazar, Hassenzahl, Tractinsky (among others) have indicated the importance of considering human emotion in the design process of any product or service; including websites. Don Norman, (Norman 2011) as well as Hassenzahl and Tractinsky (2006) have for instance suggested designing for pleasure, rather than for the absence of pain, in order to improve the quality of human life. Researchers in the past had focused on the negative emotions that resulted from various experiences. The avoidance of frustration and dissatisfaction has long been discussed in the field of user experience. The trend in human-computer interaction these days is more focused on positive emotion. This thesis tries to understand the momentary emotion of enjoyment in web experience. The creation of emotional outcomes such as joy, fun and pride is getting more and more attention from UX researchers (Hassenzahl and Tractinsky 2006).

This research follows the positive emotion trend by recording web-browsers real-time enjoyment, and statistically tests the relationship between peak- and end enjoyment and the average of all real-time enjoyment, with retrospective assessments of enjoyment. In
an attempt to understand the influence of peak- and end enjoyment on people’s retrospective assessments, this research specifically aims to determine whether these two moments would predict people’s judgments better than the average of all real-time moments. Also, it tries to test whether increasing enjoyment towards the end of a browsing experience would result in the experience being viewed more favourably retrospectively than with deteriorating enjoyment. At the same time, it tries to test whether the duration of a browsing experience would influence retrospective assessment.

In a typical usability trial, subjective aspects such as satisfaction will be assessed retrospectively, by means of a questionnaire administered after an episode of task performance.

A recent and growing literature in psychology has shown that in many domains and for many kinds of performance, such retrospective evaluations bear an interesting relationship with the real-time experience during the episode of interest. For example Redelmeier and Kahneman (1996) asked patients undergoing a colonoscopy to report how much pain they were in every 60 seconds of the operation. Then, after the operation, they asked each patient to make retrospective judgment of the experience (Redelmeier and Kahneman 1996). They found that the retrospective evaluation could be predicted by the peak pain experience combined with the end experience (i.e. the reported pain at the end of the procedure).
This so called *peak-end rule* has been shown to predict retrospective judgments in other contexts too, such as watching series of movie footage, listening to aversive sounds and medical procedure (Redelmeier and Kahneman 1996; Ariely and Carmon 2003).

Much of the literature on this topic was reviewed by Ariely and Carmon (2003). They pointed out that one important implication is that the order of real-time experiences during an episode greatly affects to the retrospective evaluation of that episode. If the experiences improve during the episode, it will be judged much more favourably than if they deteriorate, *even if the overall sum of the experiences is the same* (Ariely and Carmon 2003).

This would appear to have important implications for usability testing. Imagine that the series of tasks during an evaluation test were ordered in such a way as to be more and more satisfying. According to the peak-end rule this would result in a relatively favourable retrospective judgment. Therefore, a usability tester needs to pay close attention to the order of tasks or experiences during any evaluation.

This thesis examines how website users evaluate website experiences; it demonstrates the relationship between real-time enjoyment and retrospective assessments and looks at the following points:

1. Whether retrospective assessments of enjoyment can be predicted more accurately by peak- and end enjoyment, than by the mean of all real-time ratings.
2. Effect of task order on retrospective assessments of enjoyment.

This thesis attempts to identify whether there are practical implications of peak-end rule on website user experience. Addressing the above points could help usability testers and website designers and evaluators to better understand how people evaluate website experience; by identifying the important moments that affect people’s retrospective assessments; which are predicted in this research as being the peak- and end enjoyment moments, based on peak-end rule.

A substantial amount of research has examined summary evaluations of various experiences, and by now peak-end theory is widely accepted, although some researchers have criticised it. Although the peak-end rule has been tested in different environments and surroundings, this thesis attempts to extend the peak-end rule to website experiences. In particular, it aims to look into real-time ratings, within a pleasurable experience. According to Ariely and Carmon (2003) the major tenet of peak-end rule is that humans do not combine the individual components (i.e. real-time ratings in this thesis), when they form their summary assessments of experiences. Much of the research conducted on this matter demonstrates that neither the sum-, nor the average of experience, relate closely to overall assessments. Therefore, Ariely and Carmon suggest that the study of experience profiles must not focus just on their components, but also on the rules that people follow, when incorporating profile components into overall evaluations.
Imagine if the peak-end rule applies to website experiences. What would be the implications on usability evaluation methods? Who would benefit from them?

According to ISO 924-11 (1998) “Usability is the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use”. Usability is considered to be an important quality factor of any website (Avouris, Tselios et al. 2003). However, the term usability means different things to different people. Some people perceive it as being the practice of testing designs with representative users, while others look at it as adopting specific development methodology. Regardless of the approach, the core concept is the user’s need for usable products. To better understand user need, it is necessary to know that the field of user research is mainly dedicated to the identification of user need, in order to provide a satisfying experience. Surveys, interviews and focus groups are all means of gathering users’ general attitudes, in addition to their prediction. A more specific approach to understanding user interaction with a certain website would be user testing or field studies (Garret 2003).

This research focuses more on retrospective assessments reported in the questionnaire methods of user tests; it aims to understand how people shape their retrospective assessments in web experiences. According to the peak-end rule, when people judge experiences they refer to the peak and end moments. Do web browsers follow the same rule? Or do they simply integrate all browsing moments? The fact that it is difficult for the human mind to recall every single moment of a browsing experience makes it
Introduction

possible to argue that he is more likely to refer to certain moments. Therefore, one can suggest that these moments could be very valuable for designers and usability testers. This research tries to identify the key moments, in order to facilitate the communication between web designers, usability testers and their users; and create a more satisfying web experience. It is hoped that the research will develop better usability tests.

Additionally, the task order, or the sequence of experimental events within the procedure, is investigated. It is believed that understanding the effect of altering the sequence of events in a web experience will help usability testers, web designers and customer retention officers to craft better experiences, and facilitate communication between these parties and web users.

The effect of the duration of the browsing experience is also monitored in this thesis. It will test the relationship between the duration of the procedure, or browsing experience, and retrospective assessments of enjoyment. The examination of this relationship is likely to be of value to testers the web, and helping them to understand the impact of time on web users’ judgments.

In order to carry out the research, it was necessary to identify a method of recording real-time ratings of website users during a browsing task, and compare the ratings at these moments with retrospective evaluation. There were established methods to follow, such as eye-tracking and biometric recording of participants’ satisfaction level throughout, a browsing task; however, such methods could influence participants’
judgments and could be very distracting; and at this stage were considered to be neither practical nor cost-effective. Therefore, it was decided to develop an application using a *visual studio*\(^1\). The *Current enjoyment tool* (CET) was designed and modified according to the requirements of each experiment. It consisted of a sliding bar marked with *low*, *medium* and *high*. Participants were asked to use the bar to record their changing enjoyment level while browsing a certain website.

The thesis is structured as follows:

Chapter 2 consists of a literature review which is divided into three parts. The first part mainly discusses user experience, the second focuses on peak-end rule, and the final part provides a proposal of an application of this theory to website user experience, and discusses its possible implications.

Chapters 3, 4, 5 and 6 outline the experiments carried out using CET to capture participants’ real-time ratings, and compare them with their retrospective judgment of design and enjoyment.

Chapter 7 contains a general discussion. It attempts to sum up the results of the four experiments, and form a response to the main research questions, using the findings.

\(^1\) Visual studio version 5.0 university version license was used to develop the current enjoyment tool.
This chapter is divided into three main parts. Firstly, it discusses the term *user experience*. It examines the issues involved in the evaluation of the emotional impact on website users.

Secondly, it presents the *peak-end rule* as proposed by Daniel Kahneman and his colleagues, who conducted a number of experiments in various environmental settings in an attempt to substantiate the theory. There is a comparison made with work done by other researchers who have attempted to replicate peak-end theory in their respective fields.

Finally, there is a proposal for extending the *peak-end rule* to website user experience, and an outlining of possible implications. There is a discussion on the questionnaire method used in evaluating web experience, and the tools used to record real-time emotion.

2.1 User experience

ISO 9241-210 defines user experience as "a person's perceptions and responses that result from the use or anticipated use of a product, system or service". Therefore, user
experience is *subjective* and *focuses* on the use (ISO 2009). The word `experience` in the field of design refers to many things, for example, products, retail spaces and online content; it can be anything and everything. According to Battarbee (2003) experiences are *private* and *subjective*; therefore, `contexts for experience` need to be designed. In other words, the design can allow for an experience that is specific to the individual (Battarbee 2003). Relating this to the current research, the main challenge is the subjective variation between participants, who would attempt to quantify their emotional response, emotion, in particular their level of `enjoyment`, during their interaction with a certain website. This matter will be further discussed in the review of emotion on the web (Section 2.1.1).

Experiencing is described by Sanders and Dandavate (1999) as *constructive activity*. The concept of user experience (UX) is elusive, and has been described differently by diverse researchers, approaching it from varying viewpoints. The lack of a shared definition of UX disturbs customers of certain products or services, and weakens the effectiveness of the UX research process (Sanders and Dandavate 1999).

2.1.1 Forlizzi and Battarbee user-centred model

Forlizzi and Battarbee (2004) proposed a framework to explain experience in interacting systems. At first they grouped existing approaches into three models: *product-centred*, *user-centred*, and *interaction-centred*. Since this research is trying to understand user
enjoyment on the web, as users interact with websites, the review of their framework will focus (more) on the user-centred model.

The user-centred model proposed by Forlizzi and Battarbee in their framework (2004), uses an approach that helps designers and developers to better understand people’s actions while interacting with a product. This model relates to current research, and would give an overall view of different web experience factors, especially those subjective aspects that occur when web experiences take place.

Forlizzi and Battarbee mainly focused on an interaction-centred perspective within a social context; examining the role the product plays in reducing the gap between its designer and its user (Forlizzi and Battarbee 2004). They look at the interaction between the individual and the product, and the outcome of this interaction. They suggested that interactive experiences could be fluent, cognitive or expressive.

The fluent user-product interaction is described by Forlizzi and Battarbee as the most automatic and the well-learned one; it helps us (people) to focus on the ongoing activity. For instance, drinking coffee and reading at the same time, or riding a bicycle, are good examples of fluent user product interaction. Web user experience could be said to be fluent when a web user, for instance, checks regularly the latest world news on a specific website. After frequently visiting a single website she would be able to reach information as quickly as she could her coffee on the table. This example shows how it
is possible to compare the fluent interactions proposed in the model, with web experience interactions.

The *cognitive* user-product interactions focus (more) on the product itself. Good examples of such experiences would be: encountering toilets, taps or kitchen devices abroad. In the website world, this could be visiting a foreign website (for example, an English person who browses *Bahraini* website shopping for a new car; only to find it a totally different experience to using a car website from the UK).

Expressive user-product interactions were described in the model as interactions that help users establish a relationship with a certain product. They enable users to modify or even personalize their experience, aiming to create a better *fit* between people and *products*. Such interactions are usually expressed in the form of stories about product relationships. For instance, an old sofa or armchair in the living room, a customised racing car, or a website that a user frequently visits to order parts for his car. `Amazon.com` and `ebay.com` are both examples of how *people* and *products* *fit*, especially when a web user sits on his old sofa browsing his favourite website!

As explained earlier, the focus of this research is to investigate the *real-time* enjoyment that a web user experiences while interacting with a website; by monitoring and studying participants’ *real-time enjoyment*, and comparing it to their *retrospective assessment of web enjoyment*. The Forlizzi and Battarbee interaction-centred model helped to understand web experiences as they occur and allow one to argue that those
experiences could be *fluent, cognitive* or *expressive* when people and websites fit, snug as an old sofa.

Understanding that web experiences could be *fluent*, helped with the realisation that people who are familiar with a specific website might find information faster than those who use it for the first time. Therefore, it is important to consider the participants’ level of familiarity or involvement with a certain website, during the process of experimental design. The level of involvement will be further explained with regards to the web-shopping and holiday-making experiences in section 2.2.2 Task/content order: effect on retrospective assessment of enjoyment. That section discusses the issues faced in testing the second research question of the current research, (concerning the change in intensity for better or worse in web experience) and how the level of involvement relates to enjoyment on the web.

The *cognitive* web experience, explained above, giving the example of an English person attempting to buy a new car using a website from another country, helped to realise that it is possible to use the fact that it is a totally new practice for *him or her* to control the level of familiarity of the experience. This was used in the design process of the first experiment, when all 40 participants were asked to perform a set of health-information search tasks on the American National Institute of Health website (www.nih.com) rather than the UK NHS website (www.nhs.co.uk) in order to reduce the possibility of familiarity with the website, among participants.
The framework proposed by Forlizzi and Battarbee (2004) looks at user experience in general. It does not consider web user experience specifically; although this model helps to develop a better understanding of the different types of web experiences.

Design research in the field of user experience mainly focuses on the relationship between people and products, and the experience resulting from such an interaction. This thesis research tries to understand the relationship between people’s reaction during the website browsing experience and their retrospective assessments. Understanding experience is a complex task; making the design of interactive systems equally so. Many aspects need to be considered when designing a product or website, such as: physical, sensual, cognitive, emotional and aesthetic (Forlizzi and Battarbee 2004). Understanding the user is crucial to the design process; that is being aware of the cognitive and emotional reactions resulting from the interaction with the product or website. Emotion is at the heart of human experience, and considered as important part of user product interaction and in the field of user experience (Forlizzi and Battarbee 2004).

2.1.2 Emotion on the web

Emotion plays a big role in our daily life. There is a plethora of websites containing essays dealing with human emotion. In general, theories regarding emotion seek to describe the way that human beings are disposed to act, react or interact; and to observe the physical reactions associated with emotional arousal. Psychologists describe emotion as having three basic functions: the first is to shape plans and intentions, the second,
carry out procedures in accordance with the plans; and the third, to evaluate the outcome (Carlson 1997). From a design point of view, emotion fills the gap between people and products; in the current research, the people are web users, and the products are websites. Emotion influences the way that people plan to interact with a certain product; how they actually interact with it; and how they perceive the outcome of such an interaction. Hence, the knowledge of emotional response is a valuable resource in the field of user experience. It facilitates communication.

This research focuses on emotions, (enjoyment in particular), that are momentary events in a website browsing experience. It tries to understand the web users' enjoyment and the way they evaluate the experience.

The following looks at the assessment of emotion, in particular enjoyment. It focuses on web experiences and discusses subjective factors that might exert an influence on user enjoyment. Also, it discusses momentary emotions. It begins with Halvorson's (a web content strategy expert) vision on emotion on the web (Wall-E) story.

Kristina Halvorson, in her book: Content Strategy for the Web, illustrates the mess in the web industry, by using the science-fiction movie character; the robot ‘Wall-E’. The humans left him along with other robots behind to clean up the waste they (i.e. humans) had produced throughout the years. Among the machines, only Wall-E survives, and spends his days going around in the pile of junk, and finding things to emotionally interact with. Ironically, Kristina Halvorson compares the web users’ search for valuable
information, to the robot’s hunt in the mess for valuable objects. Web users are experiencing the similar problems in their daily search task (Halvorson 2010).

The story continues: the humans send another robot to check on his older ‘brothers’, only to find them all dead. She meets Wall-E and the social interaction between them begins. Wall-E starts showing her the beautiful things he has found in the pile of junk. This movie footage was compared to the social computer interaction when a person finds valuable information on the web. Moreover, website contents are compared to the waste in the movie (Halvorson 2010).

Lazar et al. (2006) stated that ‘Frustration occurs when there is an inhibiting condition, which interferes with or stops the realization of a goal’. The level of frustration varies, depending on the conditions that produce the frustrating experience, and persons involved (Lazar, Jones et al. 2006). User frustration is aroused when the computer operates in an unexpected way, causing annoyance to the user, and stopping him from completing a specific task. There are a number of causes of frustration for users: for example, the crash of the software application, an unclear error message, the appearance of pop-up advertisements, or a confusing interface. In general, frustration with technology occurs when users cannot achieve their task or goal (Lazar, Jones et al. 2006). Indisputably, frustration is the most reported complaint, by users who have a negative computer experience. Almost every computer user has encountered at least one situation that is frustrating, such as the ordeal of a program crash, resulting in the wasting of the last hours of work, or maybe finding difficulty in downloading an email
attachment. Human-computer interaction can predict that frustration will continue to be a major reaction for users, when a computer or program fails to accomplish a specific task (Bessière, Newhagen et al. 2006). This thesis did not look in detail at the literature regarding frustration: it rather focused on the `positive` emotion of *enjoyment*.

Seligman and Csikszentmihalyi (2000) have argued for a *positive* approach in what they call the `new millennium of psychology’. They have suggested paying more attention to human strength, and the promotion of well being, rather than creating designs which are geared to human weakness. (Seligman and Csikszentmihalyi 2000)

The concept of *flow*, as suggested by Mihaly Csikszentmihalyi (1975) could be defined as being `as psychological state in which an individual feels cognitively efficient, motivated, and happy (Csíkszentmihályi 1975).

Chen and Wigand et al. (1999) conducted a study that investigated web user *optimal flow* experiences. They employed the concept of *flow* to test whether some positive aspects of web experiences could be linked to other media; thereby enhancing web design, and improving user experience. They analysed the content of procedures, and the responses to open-ended questionnaires by 304 web users, who perceived that they had experienced flow on the web. Of their respondents 81 % reported that they had experienced enjoyment. Information retrieval and news groups were found to be the two main activities which generated the feelings of enjoyment. These two activities in particular were found to rate highly in terms of interactivity and communication on the
Literature review

web. To illustrate, they found that in the activity of web information retrieval, the causes of enjoyment were linked to ‘Information found’, ‘Discovering new things’ and ‘Tracking information’. Additionally, 9.8% of respondents referred to the source of enjoyment on the web: “as the activity itself of utilizing the web or browsing the web” (Chen, Wigand et al. 1999). These finding give weights to the fundamental assumption of my thesis: that web experience engenders varying levels of enjoyment.

The above examples are enough to prove that emotions and specifically enjoyment occurs in the website world, and that web-designers have to pay more attention to the emotional state of each user, especially at the time that the website browsing activity takes place. It is necessary to keep track of these emotional states, and record them, in order to gain a better understanding of user experience, and create a more satisfying experience. Nowadays, neuron marketing technology uses mind-scan devices, to scan the brain of potential users, for any indication of a signal; which will be acted on. Have any web designers considered the usefulness of such techniques? This was the principle question posed by Garret in his seminar (Garrett 2009).
2.1.3 Real-time assessments of enjoyment

Early writing in the field of user experience suggested that productivity and the extent to which a thing is learnable are not the primary factors in the creation of usability. What is primary is peoples’ experience at the moment experienced. (Whiteside and Wixon 1987) Does this mean that web users follow the same rule? If so, then web user experience at the moment experienced is of crucial importance.

The first impression of a website has been measured by many researchers. Most studies suggest that the initial impact on users will happen in twenty to ten seconds. One of the first group of researchers that investigated the aesthetics judgments looked into how quickly people formed a visual judgment about a web page. They found that people would form their visual judgment of a website in 500 milliseconds. (Lindgaard, Fernandes et al. 2006)

This very limited amount of time needed to gain a first impression demonstrates the necessity for very careful design of the first page of a website, to attain user satisfaction; otherwise users will seek their information somewhere else (Hodge 2006). The research connected with this thesis did not investigate the importance of the first impression, although initial moments of enjoyment, along with peak and end enjoyment moments, as well as the average- and total enjoyment of all real-time moments, were recorded. This current thesis focuses (more) on the peak and end enjoyment moments in comparison with the average of all real-time moments; but the initial moment of
enjoyment will be monitored, being recognised as significant, and perhaps laying the foundation for future research within the field of web enjoyment, and as opposed to that of the first impression, as conducted by Hodge (2006).

Barrett (1997) investigated the relationship between momentary emotional experiences, personality descriptions, and retrospective ratings of emotion. The study aimed to test whether memory-based ratings were more greatly influenced by participants’ description of their own emotionality, than the summary of their momentary emotion ratings. Self report measures of neuroticism and extraversion were completed by participants, along with the momentary ratings of their emotions, over a period of 90 days. Towards the end of their study, participants were asked to recall the emotion they experienced during the course of the study. The findings showed that retrospective ratings of emotion contained accurate information about the participants’ momentary emotion reports: also, that retrospective ratings were influenced by each participant’s description of their own personality. This means that people who considered themselves to be neurotic remembered experiencing more negative emotion than they had reported at the time; whereas those who described themselves as being extravert recalled more positive emotions than they had reported on the momentary basis (Barrett 1997). This result is crucial for the current thesis, as it strongly suggests that subjective factors might well influence web users’ judgments. Therefore, it was necessary to look at these factors that had the potential to influence on the interactions and judgments of web users.
Wang, Hawk et al. (2000) designed a study with the aim of observing the way that users search for factual information on the Web. The study looked at the difference in the individual which might affect interactions. They proposed a model which consisted of three components: user, interface and World Wide Web. They used a process-tracing technique of their own design, to capture the user interaction. Participants reported their web experience as well as measuring affective states. Participants were asked to find the answers to two factual questions on the web. They recorded participants in video-audio, synchronized with their concurrent verbalization of thoughts. The research team stated that their findings provided rich information in terms of user behaviour in relation to interfaces and the web. These three elements form the components of the multidimensional model they proposed (Wang, Hawk et al. 2000).

The following passage focuses more on the term user, especially the subjective aspects of the web user.

There are a number of dynamic situational factors that influence the user dimension, for example, the particular task, the information needed and the knowledge held by the user. There are a number of things that must be considered when designing a website, such as user profile, the interaction with the website, information accuracy and entertainment level (Palmer and Griffith 1998). It is important to realize customers’ expectations and how they feel about the website interaction (Ping, Dran et al. 2001). Additionally, there are specific individual affective states before and during interaction, although, in a series of three experiments, Ariely and Loewenstein et al. (2006) found that people do
not have a pre-existing sense of the quality of an experience, even after they have encountered a sample of it (Ariely, Loewenstein et al. 2006).

Wang, Hawk et al. (2000) proposed that the user experience includes all domains of human behaviour; thoughts, search strategies, problem solving, decisions, and mental models; the element of all cognitive functioning. They are suggesting that all aspects of behaviour may be relevant to understanding user experience. This could mean that all aspects of behaviour maybe relevant to understanding user experience. Age can also be a factor. Chadwick-Dias and McNulty et al. (2003) found that older subjects experienced significantly more difficulty using websites than younger users (Chadwick-Dias, McNulty et al. 2003).

The affective state of an individual is likely to change because of the interaction. The findings of the research of Wang, Hawk et al. (2000) suggest that web designers need to understand mental models, that an effective interface must provide great affordance and facilitate correct mental models development, by providing appropriate message and being context sensitive, according to user behaviour. They suggest that while browsing the web it is difficult to develop appropriate mental models because of the diversity of web organization (Wang, Hawk et al. 2000). Looking at this from a positive standpoint it is already known from the emotion review (above) that people experience enjoyment on the web. What about the subjective aspects? What did this study do to control them? It is difficult to predict and control people’s thoughts in a web environment. The best possible solution at this stage was to standardise the experimental procedure, and control
the conditions of the experiment. Using (student in this study) would help reduce the gap between the hidden mental factors; it is, however, still not guaranteed that all participants would think the same. Subjective aspects of participants are an ongoing issue in the field of emotion. The pros and cons of having a controlled experiment will be further explained towards the end of this literature; within the laboratory experiments review.

The experience of pleasure, and its influence on product design, was discussed by Jordan (1999). User self image, social grouping, personal ideology and senses can influence the way that a product is experienced (Jordan 1999)). The current research attempted to test the peak-, end- and average enjoyment relationship with retrospective assessments of enjoyment. The social grouping influence will be controlled by asking participants to perform the experimental procedure individually. This research did not test for user self image, personal ideology and senses; it rather tried to understand the connection between momentary enjoyment and retrospective assessment.

Regardless of the increasing number of models or theories regarding information systems that focus on the cognitive and behavioural aspects of human decision-making processes, and individual-level reactions in various contexts, still the influence of affect (mood, emotion, and feeling) is often neglected (Hwang and Kim 2007). Affect is defined as: the feeling of joy, elation, pleasure, depression, disgust, displeasure, or hate associated by an individual with a particular act (Triandis 1980).
2.2 Peak-end rule

Researchers have sought an understanding of summary evaluations of different experiences, for a number of reasons. Firstly, overall evaluations of pain and pleasure are associated with a diversity of experiences, and constitute important input of information for future decision-making. Secondly, the way in which a person recalls an experience is a key determinant as to whether they will choose to repeat it in the future, and whether or not they will choose to recommend it to others. Thirdly, retrospective summary assessments can help determine the way that people recall memories of a certain experience, in the future. For example, a short holiday can induce fond memories, which a person could enjoy long after that experience is over (Ariely and Carmon 2003).

On the other hand, prospective evaluations are also considered to be important. For instance, they can evoke feelings such as anticipation and dread, before the experience even takes place, which could influence the decision as to whether or not to pursue an experience (Ariely and Carmon 2003). Taking the lottery ticket as an example, Ariely and Carmon (2003) suggest that often tickets are bought, not so much because people expect to win a prize, but because they offer the buyer a chance to fantasize for several days on how it might feel to win the money.

Some researchers argue that peak (the most intense) real-time emotion determines recall-based ratings (Hodges, Jandorf et al. 1968) Other findings suggest that the average of real-time emotion experiences are more important (Parkinson, Briner et al.
1995). Still other findings suggest that the end (final) moment has a small but significant relationship with the retrospective assessment of emotion (Holmberg and Holmes 1994; Parkinson, Briner et al. 1995).

This research focuses more on the peak-end rule in the web environment, and tries to demonstrate whether it is possible to replicate, and benefit from the theory.

The field of psychology is diverse, and considerably older and more profoundly rooted than that of computing (Green, Payne et al. 1983). The following section presents the peak-end rule from a psychology perspective, as proposed by Daniel Kahneman. Giving an overview of the theory, it discusses various experiments, and looks at the conclusions drawn from them.

Peak-end rule was proposed by Kahneman, Fredrickson et al. (1993) on retrospective evaluation. The theory is an example of the rule of weighted averaging. It assumes a zero (or near-zero) effect of all moments, except the most extreme and final moments (Fredrickson and Kahneman 1993).

Kahneman and his colleagues performed several experiments to test the peak-end rule: on the medical procedures of colonoscopy and lithotripsy (Redelmeier and Kahneman 1996); cold pressure (cold-water endurance study) (Kahneman, Fredrickson et al. 1993); on aversive sounds (Schreiber and Kahneman 2000); and on pleasant and unpleasant film clips (Fredrickson and Kahneman 1993). These experiments will be outlined in the following section.
In their work on patients’ memories of painful medical treatments, Redelmeier and Kahneman (1996) recorded real-time and retrospective evaluations. They recorded in real-time the pain intensity experienced by 154 patients undergoing colonoscopy, and 133 having lithotripsy. They also recorded the patients’ retrospective ratings of total pain at the end of each procedure. The findings showed that a patient’s judgment of total pain correlated strongly with the peak pain intensity, and the ratings in the last 3 minutes (end ratings). They suggested that a patient’s memory of a painful procedure reflects the intensity of pain at the worst part and the final part of the experience (Redelmeier and Kahneman 1996).

Ariely and Carmon (2003) mentioned that for reasons of practicality, research tended to investigate brief unpleasant experiences, rather than pleasant-, or a mixture of pleasant- and unpleasant experiences. Certainly, it is not obvious as to how peak-end rule could be applied to a mixture of experiences. The aim of the current research is to test peak-end rule in a pleasant web experience. The literature review of emotion on the web, however, has shown that people reported moments of enjoyment on the web, but would the peak- and end enjoyment be reflected in retrospective assessment, or would the average of all real-time enjoyment hold better ground? There are still other possibilities: that either the peak (highest reported enjoyment) itself, or the end (enjoyment reported at the end of experience) would be replicated in the web user’s retrospective judgment. This current research aims to elucidate which of these rules applies, and whether the peak-end rule would be replicated on the web.
In their work on ‘determinants of the remembered utility of aversive sounds’ Schreiber and Kahneman (2000) asked 36 students from the University of California, for their *instant* ratings, and *overall* ratings, of sets of aversive sound clips. Results found by Schreiber and Kahneman (2000) show a strong correlation between peak and end ratings, and the overall level of (un)pleasantness. But would the peak end rule be replicated in web experience... or would the average of all real-time ratings be a better way of predicting retrospective assessment? This is the main question of the current research.

The studies of Kahneman and his colleagues show that broad evaluations of the effect on a single sense in a number of different types of episode were reasonably predicted by peak intensity moments and end moments. However, it is quite certain that the peak-end rule does not eliminate other factors that determine a general evaluation. Other variables could be important in influencing retrospective evaluation; for example: the velocity of change for the better or -worse, or the presence of anticipatory emotions such as hope or fear. The work on retrospective evaluation had barely begun. Understanding the process of retrospective assessments is important, because what people think of the past, often determines what they do in the future (Fredrickson and Kahneman 1993).

The methods used by Daniel Kahneman and his colleagues in their investigation of peak and end moments, varied. Those used in three of the studies are outlined as follows:
In the water pressure study, participants were asked to immerse both of their hands (on two occasions) in cold water. The participants were provided with what was called a "discomfort meter", to report their real-time discomfort ratings. The meter consisted of a potentiometer and a linear array of 15 light-emitting diodes (LEDs). A single green LED remained lit at one end of the display at all times. Participants were asked to adjust the potentiometer, the value of which was recorded. The computer kept a record of the water temperature as well as the discomfort values reported by each of the subjects, which could range between 0 and 14 (Kahneman, Fredrickson et al. 1993).

In the study that was conducted on aversive sounds, participants were asked to use computerised software to report their real-time experience of pleasantness or unpleasantness, while listening to various noises. Three sets of experiments were conducted. The participants provided their real-time ratings while listening to each stimulus, by using the mouse to adjust the length and direction of a horizontal bar on a computer screen. The bar was inside a box which was labelled "extremely unpleasant" on the left, and "neutral" at the centre, and "extremely pleasant" on the right. The computer kept a record of the time rated in seconds, as well as the real-time pain of each user. The horizontal bar ranged from: -250 (extremely pleasant) to 250 (extremely unpleasant) (Schreiber and Kahneman 2000).

Patients’ real-time experiences during the painful medical treatments were recorded using the Gottman Levenson method for measuring emotional response. A computer screen had a marker that was controlled by a hand-held device. The screen had a 19-cm
visual analogue scale, with "no pain" at one end, and "extreme pain" at the other. The patients were requested to rate every 60 seconds. The computer kept a record of the real-time ratings on a scale that ranged between 0 and 10; the lower the number, the less the pain. In this experiment, the 53 colonoscopy patients were not required to record their own ratings: this was done by a research assistant (Redelmeier and Kahneman 1996).

As has been suggested, the methods used to gather real-time responses from subjects varied due to the nature of the each experiment, but they all made use of a tool to keep track of the real-time experiences. In the water pressure study, the subjects were provided with the LED lights. The study of the painful medical treatment procedure made use of a hand-held device. In the study of aversive sounds, participants were able to rate their experience using the sliding bar which appeared on a screen. It is fair to say that the series of experiments is very well thought out, in that it had used the different senses of hearing and feeling (touch): incidentally, in the case of the film-clips... sight.

During the course of the PhD study, the writer attended a seminar, in May 2009, given by his core supervisor, Stephen Payne. At this seminar, Payne asked participants to browse the web, with the intention of planning a holiday to Brazil. The initial idea was to provide each user with the Current Enjoyment Tool (CET) developed at that time, but due to some technical difficulties related to compatibility of the developed CET at that time, and because of the software and security version used by the University; the participants were not able to use the tool. Therefore, Payne asked them to keep track of their real-time enjoyment level, on paper. The fact that participants were able to report
their enjoyment on a scale of 1 to 10 (with 1 representing the least enjoyment and 10 the highest enjoyment) led to the conclusion that it might be possible for people to rate their hidden emotion; such as enjoyment in this case.

Earlier, in the experiment conducted in his MSc, the writer asked people to report their real-time enjoyment on a sheet of paper. That study involved several tasks, which were also printed and presented to each user (Alalawi 2006).

The current research developed over the years, and made use of an automated tool; as detailed in each of the experiments. The use of the current enjoyment tool (CET) ensured the involvement of the participant, and their assessment of the nature of the web experience in the four experiments. The work done in the current research could be compared with the procedures of the three experiments conducted on aversive sounds, water pressure and painful medical treatments. However, the CET enabled participants to keep track of their own progress, without having to constantly report to a third party.

In the work done for this research, the experimenter observed the participants, and made sure that they followed the right procedure, whilst being vigilant in not influencing their real-time assessments. The experimenter was in a position to prompt the subjects to assess, in the instances where there was the risk of the neglect of the real-time ratings (after 2 or 3 minutes had passed) but he did not apply any pressure on the user to rate.

Naturally, an appealing way to summarise experience would be to integrate or total the intensities of the subjective states contained within that experience. Up till now, it is
clear from hedonic integration research findings, that when people summarise experiences, they do not integrate or summarise the transient states experienced as the events unfold.

A number of researchers have conducted experiments testing peak-end rule in other domains. The next section presents and discusses some of this work.

2.2.1 Peak-end rule in other domains

One study that demonstrated peak-end rule in another field was conducted by Kemp and Burt et al. (2008) Forty-nine students, who went on vacation for an average of seven days, were asked to report their daily (over the previous 24 hours) happiness level, through text messages. Subsequently, they were asked to report their overall happiness. Additionally, they were asked to recall the daily record of their happiness. Results showed that the duration of the vacation had no effect on overall evaluations and that the participants were not able to recall the details of the daily fluctuations in their level of happiness (Kemp, Burt et al. 2008). Their findings concluded that peak-end rule was not an outstandingly good predictor of retrospective assessments.

Another study that tested the theory in another area was conducted by Talya Shatz (2009) investigating the way that people evaluate their days. The research, based on peak-end rule, looked at whether people’s evaluations were an aggregation of feelings, or based on peaks and feelings towards the end of the day. Results indicated that the retrospective evaluation of a complex series of events (which in this case was daily a life
routine) depends on the averaging of emotion ratings. The feelings at the end did not have such a dominant role, nor did the presence of low peaks affect the evaluation. Shatz (2009) encourages further extending peak-end rule to other elaborate scenarios, looking at content goals and emotionality (Shatz 2009).

Hassenzahl and Sandweg (2004) conducted a study that explored: “how the intensity of experience relates to summary assessments of software product quality”. This study is very close to this thesis research in terms of the nature of the experiences. Their experiment was performed using a software application. The current research focuses on web experience. Both experiences share a similar level of involvement, and are related to computers. This makes their findings very valuable for this research (Hassenzahl and Sandweg 2004).

They found that the end of the previous experience seems to determine how people construct their summary assessment of a product. They related their findings to memory effect, or what they called recency effect. They added that people’s summary assessment tends to be based on what they remember from an event they just experienced. It means that it is easier for an individual to recall the more recent detail than to remember an incident that happened in the distant past. Therefore, powerful intellectual effort towards the end of an experience, seems to be very significant in terms of a subsequent summary assessment (Hassenzahl and Sandweg 2004).
These findings raise the question of the usefulness of the common practice of gathering retrospective assessments based on experiential episodes; especially the questionnaires that are geared to gathering a subjective assessment of emotion (such as enjoyment) in web evaluation. This matter will be further examined in the section on usability evaluation.

The experiments presented (above) show that the peak-end rule is not always replicated in various spheres of human experience. This could be due to the difference in the nature of the experiences. The study conducted on people’s evaluation of days showed that sometimes retrospective ratings can be more related to the averaging of the ratings emotion rather than concentrating on peak and end emotion (Shatz 2009). The study conducted on the software application, which might be considered to be very close to the current research in terms of the nature of experience, has shown that the end moment strongly influenced retrospective assessment (Hassenzahl and Sandweg 2004). In the vacation study, the peak-end rule was not found to be a good predictor of retrospective assessment; although it is worth noting that duration had little or no effect on people’s retrospective assessments (Kemp, Burt et al. 2008).

2.2.2 Task / content order: effect on retrospective assessment of enjoyment

Ariely (1998) conducted two experiments in which moderate levels of pain were inflicted on individuals, one using a heat probe, and the other, squeezing their fingers in
a vice. The experiences varied in terms of the duration and pain intensity over time (pain intensity increased then decreased, or vice versa). Towards the end of the experiment, participants gave their assessments of the overall pain they experienced. The results indicated that participants showed considerable sensitivity in the way that they experienced changes in intensity. The scenario of increasing pain intensity was perceived as being more painful than that of decreasing pain intensity, even though the sum momentary pain was equivalent. Furthermore, the participants preferred the improvement to take place later rather than earlier, in the sequence.

Watching a movie or listening to sound clips is not comparable to using an interactive system. The context of the browsing experience is more complex, and involves more factors. For instance, the level of physical interaction in a web-browsing experience is far greater than that when watching a film. A person that browses a website has to perform certain actions to maintain the flow of his web navigation. Along the way, the browser’s emotion would change for better or worse, depending on the situation. The complexity of the browsing experience makes it difficult to test for the perceived change in intensity for better or worse.

In the virtual world it is impossible to heat or squeeze web users’ fingers. This makes the testing of the task order effect on retrospective assessments difficult; and not as straightforward as in the two experiments conducted by Ariely. But it is known from the review of emotion (above) that people have reported moments of enjoyment on the web. The difficulty at this stage was in finding a way to test the effect of change in intensity
(for better or worse) on retrospective assessments of a web experience; precisely, how to manipulate the intensity of enjoyment and which web experience to use.

Unlike in the real-world it is not possible to physically reverse web experiences. For instance, it is irrational to ask somebody to reverse his email- or online payment experience. Using tasks or web contents seemed to be a more realistic approach. According to De-Marsico and Leviald (2005) usability evaluation methodologies are as follows: ```The first generally consider task-oriented (high-level) characteristics, the second exploit results from behavioural research, the last are mostly based on style and context-free features``` (De-Marsico and Leviald 2005).

Web closed tasks are characterized by the use of specific information that results in a single outcome (Pilgrim, Leung et al. 2005). A fixed- or closed task could be used to test the change of intensity for better or worse; although there was a necessity to identify a way of increasing and decreasing the flow of enjoyment of a browsing experience. An idea came to light which involves using the number of links required to complete a specific task as a way of manipulating task difficulty. It would then be possible to test the effect of reversing the same fixed tasks, on retrospective assessments of enjoyment on the web. It was not guaranteed that the use of the number of links would succeed in testing Ariely’s proposition regarding the change in intensity for better or worse. Due to the lack of resources, and the presence of technical issues (with regards to the variation between experiments conducted in the testing of the peak-end rule, within a web experience); using the number of links seemed to be the right thing to try at that time.
Subsequently, in late 2009 the Gwizdka paper was published. It suggested that task difficulty within a web search is related to cognitive loads, and needs to be used with caution, especially in a dual-task approach (Gwizdka 2009).

An idea that was considered in the design process of the experiment was to alter the content order; using web sections, rather than closed web tasks. An open task has a low level of goal-specificity (Pilgrim, Leung et al. 2005). One of the web’s advantages is the users’ freedom of choice and the flexibility of his movement (Benyon and Wilmes 2003). Free-, but bordered tasks give people more freedom. Allowing people to browse freely the various contents of a website, the broad browse pattern is connected to the interest of each browser.

Ping et al. (2001) defined the way that users think about the objects of the website as satisfiers or dissatisfiers according to the impact they have on the user (Ping, Dran et al. 2001). This led to thinking of using website content or sections, rather than the setting of tasks, to note the effect of increasing and decreasing the intensity of enjoyment, on the browsers retrospective assessments of a website. The fact that users think about the objects of websites as satisfiers or dissatisfiers makes it possible to argue that they might enjoy one section more than another.

What experience do people enjoy on the web that can be used to test the effect of content order on retrospective assessment?
In order for something to be personally relevant within their sphere of involvement, there must be an environment that accounts for personal motivation and need. Online shopping is capable of providing such involvement, as well as a high degree of pleasure (Jobber 1995). Website usability plays an important role in business image, and can influence customer shopping behaviour. Good usability is important to achieve customer satisfaction (Flavián, Guinalfú et al. 2006). The choice of which restaurant to dine at when on holiday can be highly involving; making the right or wrong choice might severely affect the degree of enjoyment of the dining experience. In the context of the web, in order to increase a browser’s pleasure, it is necessary to keep them personally involved and motivated. Imagine two participants involved in a web-usability test. The first was asked to perform a fixed set of tasks (as in Experiment 1) that are related to holiday making; while the second participant was given more freedom to browse the same website, she was allowed to plan her own holiday according to her desires, within the same website. The level of involvement of the second participant is higher than of the first, because she has the freedom to become personally involved, and is not forced to perform specific tasks; therefore it is assumed that her level of enjoyment would be higher.

According to Ariely (2003) there are two types of experiences. The first, he called goal-directed, such as waiting for some kind of service, or sports event. These experiences mostly derive their meanings from their outcome. The second type of experience, which Ariely called experience based, mainly derives its meaning from the event itself, and not
the outcome. Examples of such experiences include: receiving a message, watching a movie, or dining. Ariely (2003) added that various real life experiences fall somewhere in between these two types. For instance, driving a car to work, or playing a game of squash or football, are goal-directed. Simultaneously, the ongoing experience itself adds to- or contributes to the overall evaluation, in terms of the nature of the game or the driving experience.

The experience of online shopping or planning a holiday is initially in the *experienced based* category, but when the web browser buys something or books a holiday, it changes to become *goal-directed*. In this study, participants will not be asked to buy a product or book a holiday. The research aims to understand the relationship between the events of the experience and retrospective assessment. As mentioned before, *experienced based* processes derive their meaning from events themselves. This means that it is better to ask people to browse for a holiday and not book one; and shop for items and not buy any. Additionally, asking each participant to book a holiday or buy something is very costly, and considered to be unrealistic. The second experiment used the free-browsing task of planning a holiday to Brazil. The third and fourth experiment used online shopping experiences, and employed the *content order* method to test the effect of the change in the intensity of enjoyment on the retrospective assessment of enjoyment.
2.2.3 Duration neglect

The duration of an experience does not always have a significant impact on its summary evaluation (Kahneman, Wakker et al. 1997). The first workers to draw attention to this phenomenon were Varey and Kahneman (1991). They conducted an experiment in which participants provided a summary evaluation of a number of hypothetical experiences, which varied both in their duration and in their intensity over time. Varey and Kahneman (1991) as well as Fredrickson and Kahneman (1993) found that summary evaluations were influenced by the maximum- and the final intensities of experiences. They also found that duration had almost no effect on the overall evaluation (or what we refer to in this thesis as the retrospective assessment of enjoyment). Fredrickson and Kahneman (1993) named this phenomenon duration neglect.

According to Fredrickson and Kahneman (1993) duration neglect is part of the peak-end rule: that time has little- or no effect on a participant’s retrospective assessments (Fredrickson and Kahneman 1993). In their work on sound clips, Schreiber and Kahneman (2000) further tested this notion, by comparing long- and short film clips, in terms of time and retrospective assessments. The phenomenon of duration neglect was also found to hold in their experiment on the medical procedure of colonoscopy, where global retrospective evaluation did not correlate with the duration of the medical procedure (Redelmeier and Kahneman 1996; Schreiber and Kahneman 2000).
Earlier, Fredrickson and Kahneman (1993) performed two experiments on aversive- and pleasant film clips. In the first experiment, 32 participants viewed aversive- and pleasant film clips, which varied in duration and intensity. The real-time ratings of participants were recorded, along with the overall evaluation of each clip. In the second experiment, 96 participants viewed the same clips, and later evaluated the clips, in terms of the perceived levels of pleasantness or unpleasantness of each fragment of film. The findings based on the weighted snapshots, showed that the duration of a film clip had little effect on its retrospective evaluation (Fredrickson and Kahneman 1993).

Kahneman and Fredrickson et al. (1993) performed an experiment on 32 male students from the University of California. Participants were required to place their hand in a tub of cold water. In the first trial, the one hand was inserted for 60 seconds, in water at 14°C. In the second trial, the other hand was immersed for a further 30 seconds (90 seconds in all) during which time the temperature of the water was slowly raised to 15°C. They used one hand in the first trial (immersed for 60 seconds) and the other hand in the second trial (immersed for 90 seconds) (Kahneman, Fredrickson et al. 1993). The experimenters found that the participants preferred to put their hand in water for a longer time period, when the latter part of the time involved an improvement in the experience [(60 seconds at 14°C versus 90 seconds- during the last 30 seconds of which the temperature was being raised to 15°C)] (Kahneman, Fredrickson et al. 1993).

This phenomenon is described as violation of monotonicity: adding a period of diminished discomfort to unpleasant episodes will cause a better overall evaluation,
because the average peak-end is reduced. The experiments presented above, with regards to duration neglect, raised the third research question of this thesis: Would the duration of the web-browsing affect users’ retrospective assessments?

Bearing in mind the limited resources and time, this research tends to monitor duration neglect by testing for the relationship between web-browsing duration and participants’ retrospective assessments, using Spearman correlation tests. More details on Spearman correlation test are included in the following chapter which is assigned to research methods.

Watching a movie at a cinema, or visiting a theme park, is not comparable to using an interactive product. Therefore, designers may focus on creating the context for an emotion instead of the emotion itself. What are the consequences of identifying affect and creating affective responses, on people’s judgments? (Hassenzahl and Tractinsky, 2006). For instance, is it possible to understand the way beauty creates emotion? In other words, can human beings come to understand the way their emotions influence their judgment and decision making both in the instant and reflectively?

Usually, when there is a positive user experience, it is expected that users will return to a website, and will benefit a business, in terms of exposure and revenue. In contrast, a negative user experience will raise the overheads, reduce customer loyalty, lose the ‘word of mouth’ in advertising, and destroy the brand identity (Haynes 2002).
The questions now are: How do people judge web experiences? What rules would they follow in forming their retrospective assessments? Which moment would dominate or relate to their retrospective assessments? Would the order of the task or procedure have an effect on retrospective assessments? The answers to these questions would be beneficial to usability testers, as well as web designers. Also, such information might help web customer retention specialists, to encourage users to visit a website, targeting those moments that might increase the web users overall enjoyment.

The next section looks at the possible implications of the peak–end rule on standard web-evaluation methods. It focuses on retrospective assessments of web experiences, based on questionnaire evaluation. Also, it discusses the tools used in recording real-time emotion, and their possible use in the current research.

2.3 Web usability evaluation

According to Kantner and Rosenbaum (1997) “Heuristic evaluations are an expert evaluation of a product or system”. These evaluations include information systems and documentation. They are carried out by usability specialists, or domain experts, or preferably what are known as “double experts”, who consider both domain and usability experience. This research did not investigate heuristic evaluations; it examined a questionnaire method, within laboratory experiments.

Laboratory experiments have been used by human-computer-interaction (HCI) psychologists to test the user-computer interface, evaluate computer usability, and
improve the level of understanding of usability. The laboratory experiment is one of the methods of gathering usability behavioural data; others used in the HCI field can be summarized as follows (Landauer, John et al. 1989):

- Observational task analyses
- Involvement of users in redesign
- Prototype and "beta" testing – including participant observer style studies
- Field trials
- User surveys

Like any other method, the laboratory experiment has its advantages and disadvantages. Because of the high level of complexity of the HCI experiment, studies in the real environment are difficult- , and in some cases impossible to implement, therefore the main advantages of this method are the high degree of convenience and control. At the same time, lab studies are not able to capture all the factors that will influence the usability test in the real world (Landauer, John et al. 1989).

Usability evaluation of a web application is a hard task, (Danuta and Franklin 1999). Usability testing is an invaluable tool for evaluating websites, and becomes an integral part of a website’s development process, and evolution (Battleson, Booth et al. 2001). To deliver an efficient product, and increase the productivity, designers must consider user requirement during the usability test. Current approaches to web usability
evaluation are: *questionnaires, behavioural observation* and *automatic evaluation tools* (De-Marsico and Leviald 2005).

User *questionnaires* are one of the most common methods used to evaluate interfaces and web experiences. They aim to assess user perception and provide the user point of view. From a quantitative stance, it is important that questions are well formulated for the evaluation. Results based on *Likert scales* may be well managed and summarized, while answers entailing open responses could be more detailed, but harder to analyse. This research used the *Likert scale* for participants to report their *retrospective assessments of enjoyment*: a scale of -5 to 5 (De-Marsico and Leviald 2005).

Behavioural assessment techniques are being used for testing usability, based on psychological considerations. Subjective satisfaction (`enjoyment` in this research) expressed in questionnaires, could differ from that suggested by actual behaviour. The aim of this research is to better understand the variation between assessments reported in questionnaires using *Likert scales*, and the actual online browsing behaviour.

Automatic evaluation tools provide an evaluator with software support for evaluation. As discussed in the section concerned with emotion on the web, human aspects could be anything from thoughts, to perception (Wang, Hawk et al. 2000). Not all tools touch on all the possible aspects of *real-time or retrospective evaluation*. Simple tools are used to capture and record data. There are some other tools that can even perform an analysis. These tools can provide solutions to usability problems. Would a tool help in attempting
to determine whether or not there is a replication of the peak-end rule in web experience? Is it possible to record people’s emotion, using a simple automatic tool?

Zhang and Dran (2000) proposed a two-factor model of website design and evaluation, based on the Herzberg two-factor model on job satisfaction. According to their model, Zhang and Dran suggested that there are two types of website design factors, which they called hygiene and motivator. The presence of `hygiene` factors results in a functional and serviceable website; but their absence causes user dissatisfaction. `Motivator` factors are those that add value to the website by contributing to user satisfaction. Their experimental findings suggested that enjoyment, cognitive outcome and credibility were clearly identified as motivators. These factors are aligned with ``individual interaction with a website, rather than the website itself``. This supports the findings of Chen, Wigand et al. (1999) in that 81% of their respondents reported that they had experienced enjoyment. This is promising in terms of the direction of the current research; attempting to capture web user enjoyment.

Usability testing involves studying a website or interface in real life situations, while evaluators are gathering data on problems that arise during a test. Within these experiments, users were sometimes asked to perform a certain set of tasks, and at other times given an open task. Users were asked to use a simple automatic tool that had been specially designed for this research; to self-assess their level of enjoyment during the browsing experience. The tool was customised according to the design of each experiment, and was called the current enjoyment tool (CET).
2.3.1 Possible implication of peak-end rule

Most web evaluators ask their participants to report their web experiences. When website researchers and practitioners measure emotion, they ask their participants to assess their emotional experience using an open task, or set of tasks that vary according to the experimental set up. The reports are assumed to be built on an accurate recall of the experience; but are these retrospective assessments accurate?

A growing number of researchers believe that participants completing questionnaires that require global responses result in biased reports of their actual experiences. This process requires participants to remember, summarize, and integrate their past experiences. The process of recalling information is reconstructive. There is plenty of evidence within the literature, looking at cognitive structures, implicit theories and motivations related to recollection; that there is ample opportunity for imprecision (Nisbett and Ross 1980; Ross 1989; Fiske and Taylor 1991; Greenwald and Banaji 1995).

The opinion of researchers is divided, in that some believe that recall-based information is reconstructed, while others believe it is retrieved from memory. Many researchers agree on a moderate reconstructive view, that respondents depend on both processes to produce recall-based ratings (Barrett 1997). As discussed earlier, this research tests whether the peak- and end enjoyment moments would predict retrospective assessments better than the average of all real-time ratings. The answer of
the main research question of this study would help better understand the nature of web user emotion. It is believed that it would give usability evaluators a better understanding of the important momentary emotions, in particular enjoyment, which may have an influence on the retrospective assessments required in a standard questionnaire evaluation. Understanding the rules that web browsers follow when they judge their web experience is crucial for usability testers, user experience analysts and web designers.

2.3.2 Possible implication of task/content order

The effect of altering the order of the tasks/content on retrospective assessment is the second research question of this study. It was assumed that reversing set of tasks or content (to be less and more pleasurable) would alter the participants’ assessments of enjoyment. It was predicted that increasing enjoyment towards the end of a web browsing experience would be perceived as being more enjoyable overall, than decreasing enjoyment, when the experiences were equally weighted. If this process to be the case, then usability testers will need to pay more attention to the order of their experimental tasks or procedure. Furthermore, user-experience practitioners and web retention officers could use this information to increase the level of enjoyment of their participants, by simply changing the order of things; thereby increasing the chances of a browser revisiting the website.
2.3.3 Possible implication of altering the duration of a browsing experience

The nature of the relationship between the duration of a procedure and its retrospective assessment is the third research question of this study. Kahneman and his colleagues have dedicated a number of experiments the testing of *duration neglect* and *validation of dominance*. Due to the lack of resources and time, this research did not investigate violation of dominance (adding a period of pleasure to the end) and did not investigate duration in detail; rather it monitored the relationship between procedure (browsing) duration and retrospective assessment. This will help prepare the ground for future studies. It will indicate the importance of procedure duration on people’s assessments within web experiences and laboratory experiments. It assumes that if time has a significant impact on assessments, then usability testers and user-experience practitioners will have to be more careful regarding the length of a procedure, within the experiential design process.
Chapter 3 Experiment 1

3.1 Introduction

The main objective of Experiment 1 was to test for any effects of the presence of the current enjoyment tool (CET) and task order on participants’ overall assessment of design and enjoyment. The experiment was also designed to test the validity of the peak-end rule.

The experiment involved four groups. Group 1 and Group 2 participants performed the same easy-to-hard (E-H) task order; Group 1 provided real-time enjoyment ratings, but Group 2 participants did not. Group 3 and Group 4 performed the tasks in the reverse order hard-to-easy (H-E); Group 3 providing real-time ratings, and Group 4 providing only retrospective assessments of web site design quality and enjoyment. This was so designed in order to test for any influence of the CET and the task order on participants’ retrospective assessments.

Simple and comprehensive tools are used in the Human Computer Interaction field to help designers and usability testers better understand the interaction while it takes place.
In the design process of this experiment a simple tool was developed (see Chapter 3, Design and material section for more details on the current enjoyment tool (CET)) to obtain participants’ real-time enjoyment ratings. It is hard for a simple tool like the one developed here to touch on all cognitive aspects. The CET of this experiment was developed to capture the enjoyment that results from browsing experiences. At this point it was not known whether people would be able to express their emotion, and whether using the CET would alter their judgments; therefore the design of this experiment involved four groups, two of which used the tool and the other two did not, later ANOVAs tests were conducted between the four groups’ retrospective assessments to test for any tool effect.

Participants in Group 1 and in Group 3 were asked to provide real-time enjoyment ratings during the assigned web tasks. After completion of the first four tasks, which were considered to be easy for Group 1 (E-H) and hard for Group 3 (H-E), participants of both groups were asked to provide their retrospective assessment of design and enjoyment. Afterwards, the participants of each of these groups were asked to carry on with the last four tasks, and were then requested to provide their retrospective assessments of the last four tasks. This meant that each participant provided retrospective assessments of design and enjoyment twice; after the first four tasks and after the last four tasks.

For clarification, we named the first four tasks for Group 1 (E-H) and the last four tasks in Group 3 (H-E) the easy block tasks. Likewise, the last four tasks of Group 1 (E-H)
and the first four tasks of Group 3(H-E) were named hard block tasks. The easy block and hard block tasks were used to compare the real-time rating of the two groups: the correlation and regressions of real-time ratings are shown in the results section. The same easy- and hard block method was applied for Group 2 and Group 4. The only difference was that participants of these groups did not provide any real-time ratings in order to test the effect tool on participants’ judgments and time completion.

This experiment used closed tasks (a set of eight tasks) that used the number of links to reach a task answer, so as to manipulate the increasing and decreasing of enjoyment in order to test if there was any significant difference in retrospective assessments of enjoyment; using ANOVA tests. This was inspired by Ariely’s review on the peak-end rule discussed in the literature review in which he proposed that decreasing pain towards the end of experiences would result in higher overall judgments than increasing pain towards the end; when both experiences are weighted the same. This study investigated pleasure experiences on the web; it tested the effect of increasing and decreasing enjoyment on retrospective assessment.

Duration neglect is an aspect of peak-end rule that suggests that duration has little or no effect on people’s judgments. In this experiment, the relation between the set of easy tasks (less links to reach the answer) and duration is assumed to be less than for the set of hard tasks (more links to reach a task answer). This is because people might perceive easy tasks as being more enjoyable than hard tasks. It is still not clear whether the
number of links or clicks required to reach a task answer would work, but at this stage and due to the lack of resources this seemed to be the right thing to do.

The main hypotheses of this study are as follows:

H1: The current enjoyment tool would not alter participants’ judgments. There might be a time difference between those who would use the tool and others who would not.

H2: The difference between easy and hard tasks might be greater in the second block, when they are defined by a contrast with a harder or easier set of tasks.

H3: The retrospective assessments of enjoyment would be higher for Group 3 and Group 4 that perform the tasks in (H-E) task order than for Group 1 and Group 2 (E-H).

H4: Duration of experimental procedure might affect judgments; time matters more in hard tasks than easy tasks; assuming people would enjoy easy tasks more.

The experiment was task-oriented and participants had to perform the tasks assigned to them. The order of the tasks and CET use was manipulated, as explained earlier, to better understand the effect of task order, as well as that of CET presence or absence on participants’ retrospective assessments of website enjoyment.

This experiment tested whether enjoyment could be controlled by manipulation of the order of task difficulty. The method used to manipulate task difficulty was based on the number of links required to reach a task answer. This method enabled the testing of the correlation between the number of links, and task difficulty. If the task answer required
one or two links, it was considered to be an *easy* task. If the answer required three or four links, it was considered to be a *medium difficulty* task; and if the answer required five or more links, it was considered to be a *hard* task.

Task difficulty was related to task completion time; and it was assumed that tasks which took time were more difficult than those that were conducted in less time.

This chapter is organised as follows:

- introduction of the eight tasks of this experiment
- presentation of the design and materials, in term of the groups and statistical tests performed
- outline of the procedure of the experiment
- discussion of the finding
- summary of the experiment

3.2 The task

The study used a set of eight information-seeking tasks, each consisting of a question: the answer to which could be found on the Website of the American National Institute of Health (NIH: *http://www.nih.gov/*). The site was considered to be similar to the Website of the UK National Health Service, and was chosen in order that there should be a high likelihood of the participants sharing the same level of prior experience with
the specific site; in other words, working on the assumption that participants had not used this website before.

During the process of designing the tasks of this experiment, the challenge was to find a way to define the level of difficulty of each task. The method used was based on the number of links which the participant had to go through, in order to reach each task answer. That is, the fewer the links; the easier the task.

The tasks were:

1. Find the NIH mission
 http://www.nih.gov/about/index.html#mission

2. Find the NIH contact link
 http://www.nih.gov/about/contact.htm

3. Find the NIH events calendar

4. Find the NIH budget statement
 http://officeofbudget.od.nih.gov/ui/HomePage.htm

5. Find the NIH virtual career centre
 http://www.training.nih.gov/careers/careercenter/

6. Find the NIH online journals.
http://nihlibrary.nih.gov/ResearchTools/default.htm?srchType=OnlineJournals

7. Find the calendar of all upcoming SIG meetings
 http://tango01.cit.nih.gov/sig/schedule.taf

8. Find Smith Jonathan (contractor) email address.

According to the definition outlined earlier, the first four tasks were classified as easy (E), while the last four tasks were classified as hard (H).

3.3 Design and materials

The participants in each of the four experiments used the CET to monitor the level of real-time enjoyment experienced on the websites. In Experiments 1, 2, 3 and 4, there were respectively 20-, 40-, 20- and 30 participants, providing real-time enjoyment ratings. All of the participants in Experiment 1 provided retrospective assessments of design and enjoyment, but not real-time ratings. The Tool was programmed to record participants’ enjoyment ratings in text file in the university P drive directory\(^2\). The file was named `values.txt`, and included participant enjoyment value, and the system time in which it occurred.

`Excel` was used to identify initial-, peak-, end-, average- and total enjoyment moments and record the duration of the procedure for each of the participants of the four

\(^2\) P drive is the university of Manchester virtual hard desk allocated to students. This was used to store real-time enjoyment ratings.
Experiments. As illustrated in Figure 3-1, initial enjoyment was considered to be the first enjoyment rating; peak enjoyment was identified using the `MAX` formula in Excel; and the last enjoyment rating was set to be end enjoyment: therefore it was not included in the peak formula moment. Further, average enjoyment moments were identified using the average formula command in Excel, while total enjoyment moments were simply identified using the sum formula command in Excel of all real-time ratings provided by each participant.

Figure 3-1 Initial-, peak- and end enjoyment of website experience on scale of 0-100 throughout browsing session

The overall experiment procedure duration was calculated, using Excel. It was assumed that:

\[
\text{Overall procedure duration} = \text{End system time} - \text{Start system time}
\]

[Equation 1]

Furthermore, it was assumed that:

\[
\text{Enjoyment rating time} = \text{enjoyment value} - \text{system time} - \text{system start time}
\]

[Equation 2]
Participants were asked retrospectively to give their opinion of the design of the website, and note the level of enjoyment they experienced. They were each given a questionnaire, which requested the giving of a rating, on a scale of -5 to +5, as shown below in Figures 3-2 and 3-3. But first, they were asked to provide general information, and in some cases they were asked simple questions about the website, as a deliberate means of separating the browsing period from the retrospective assessment. (See copy of experiments questionnaire in Appendix A)

1. Could you give your opinion about the design of the website?

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-2 Design retrospective assessment scale used in questionnaire

2. To conclude could you please rate the overall enjoyment you experienced with the website:

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-3 Enjoyment retrospective assessment scale used in questionnaire
Spearman correlation coefficient tests were performed, to test the relationship between real-time enjoyment moments, and retrospective assessment. It was assumed that the data was non-parametric. Furthermore, two-way tests between subjects, `ANOVA`, were conducted, to test the difference between the groups in experiments 1, 2 and 4. A t-test was performed, to assess the difference between the groups in experiment 3.

Multi-linear regressions were performed, to test peak-end rule adequacy for all 4 experiments. Two models were used; simple and comprehensive. The simple model included only peak- and end enjoyment, as predictors of retrospective assessments. On the other hand, comprehensive models included 4 additional predictors; initial-, average- and total enjoyment; in addition to duration. Adjusted R^2 of each model was reported as model success and the significant difference between the two models was reported, in the cases where it occurred. This method was performed by Daniel Kahneman and his colleagues in their study on medical procedures. This research tried to replicate the method, in terms of website user experience.

This research investigates the relationship between a real-time web browsing experience and its overall assessment. In theory the way that such an experience is perceived could be strongly influenced by any single moment. The browsing experience is dynamic, which makes this a complex field of study. In order to avoid the disruption of an experimental procedure, the number of times that a person should be required to make a real-time rating needs to be reduced to a workable minimum. With this in mind, for the
purposes of this research, the assessment was divided into six factors: initial-, average-, peak-, end-, and total enjoyment; as well as the duration of the procedure.

Looking at the influence of the initial moment on the overall assessment of an experience is not new. This phenomenon has been studied and discussed extensively, so it was felt important to include this factor, in order to test its effect in the web environment. The continuous debate between summary evaluation researchers as to whether the average of every single moment of a certain experience is a better predictor than the peak and end moments was the main motive for including the average of all real-time enjoyment moments in the comprehensive model. The measures of peak and end enjoyment were included in the comprehensive model, due to the increasing amount of research highlighting their efficacy as predictors of retrospective assessment. The total or sum of all real-time moments was the fifth factor. This factor was of benefit in comparing the whole and varied experiences of the participants; within an homogeneous environment. The effect of duration on people’s assessments of the web procedure was considered to be important, in order to see whether or not the notion of duration neglect would hold within a web experience; and to form a better understanding of time and flow in this environment. These factors are widely recognized in the field of psychology and have been much used in the measure of experience, following the seminal work of Redelmeier and Kahneman (1996).
At first it was necessary to test whether providing real-time ratings would alter participants’ experience; in other words the *null hypothesis*. Therefore, another version of the tool was developed; however, it did not include the real-time rating slide-bar (see Figure 3-4 and Figure 3-5). In this experiment, Group 1 and Group 3 reported real-time ratings, while Groups 2 and 4 performed the same procedure, without providing real-time ratings. Groups were selected by the experimenter at the beginning of the experiment.

The tool also included tasks to be performed by participants according to the task order (easy-to-hard or hard-to-easy (E-H or H-E)) and real-time rating availability (with the tool or without the tool). For instance, if a participant was conducting the easy-to-hard (E-H) order with the tool (which was a Group 1 condition) the participant was instructed to press the start button, to begin the task search. Once the task was completed, she was monitored and instructed to proceed to the next task, by pressing on the next button. After the first 4 tasks, she was asked to fill in the first questionnaire, to provide retrospective assessment of the design and level of enjoyment of the completed series. On completion of the series the participant was required to press the finish button to terminate the use of the enjoyment tool, and proceed to the second questionnaire, in order to provide retrospective assessment of the design and enjoyment; again, considering the second series of four tasks performed3.

3 Note that this is an example of experiment procedure performed by a participant on the nih.com experiment. Please refer to Chapter 4 Experiment 1 Procedure section (below) for more details.
A 2×2 between-subjects design was used, with tool use and task order as between-subjects variables.

Group 1 and Group 2 performed tasks in the easy-to-hard (E-H) order, but only group 1 used the current enjoyment tool (CET) to record their real-time enjoyment ratings. Group 3 and Group 4 performed the tasks in the hard-to-easy (H-E) order, but only Group 3 used the CET to record their real-time enjoyment ratings. In this way, the
effects of the task order and the use of the CET, on the retrospective assessments of both the hard and easy tasks, could be tested.

The retrospective assessments of enjoyment and website design quality of the `easy` tasks were obtained after the first block of tasks for Group 1 and Group 2 (E-H), but after the second batch of tasks for Group 3 and Group 4 (H-E); the same was the case for the assessment following the `hard` tasks, but in reverse order for the respective group pairs.

In addition, initial, peak, end, total and average enjoyment ratings were obtained from the real-time ratings, provided by the participants who used the CET (in Groups 1 and 3) during their information-seeking tasks. The fact that participants provided their retrospective assessment of enjoyment and design after each block of tasks, necessitated the identification of real-time ratings in each instance; as each participant had experienced two peak enjoyment moments; within the easy-, and the hard task block. Similarly, each participant would have two real-time end-, initial-, total and average moment ratings. (In addition, a note was made of the completion times for the hard and easy tasks).

The easy and hard real-time ratings would later be used in the results section, to compare real-time ratings and retrospective assessments; and to assess the validation of the peak-end rule using regression analysis.

Participants were assigned to one of 4 experimental groups, according to their order of arrival at the laboratory. A note was made of individual participant’s web usage, in
terms of hours per week, and number of years’ experience. The experiment was performed in a lab environment, and was monitored by the experimenter at all times, as an observer, to ensure that participants followed the right procedure.

3.4 Procedure

Participants were asked to find the answers to the 8 questions on the Website of the National Institute of Health (NIH). Participants in Groups 1 and 3 were asked to report their real-time enjoyment level using the CET. The maximum time allowed for each task was 15 minutes; however, each task search started from the home page of the NIH website. Each participant’s progress was monitored by the experimenter, and they were asked to continue the search if they gave an incorrect answer.

After completing the first four tasks, participants were asked to fill in the first questionnaire, which was concerned with rating the website design and level of enjoyment. This was the retrospective assessment of the easy task series for Group 1 and Group 2 who were working on the easy to hard task order; and the hard task series for Groups 3 and 4, who performed the tasks in a hard to easy order.

After completing the final four tasks, participants were asked to fill in a second questionnaire, which contained general questions about themselves, and the request for ratings of the quality of the website design, and overall enjoyment of the website,
considering the last four tasks. This was the hard task retrospective assessment of Group 1 and Group 2, and the easy task retrospective assessment for group 3 and Group 4.

3.5 Results

This section begins with the identification of the characteristics of the set of participants. It then looks at task completion time, and tests the effect of the CET on participants’ retrospective assessments of the website design, and level of enjoyment. It also examines the influence of task order on retrospective assessment. Afterwards, it presents the relationship between easy- and hard task design and enjoyment assessments, and subsequently the relationship between the ratings of selected easy- and hard real-time enjoyment moments, for Groups 1 and 3. It goes on to examine the relationship between retrospective assessments of enjoyment and easy- and hard real-time enjoyment moments, using two Spearman correlation matrices for Group 1 and Group 3 together.

Further, the section examines the adequacy of the peak-end rule, using multi-linear regressions. Regression tests were performed for the blocks of easy tasks and the block of hard tasks.
3.5.1 Characterizing the participants

40 students from the University of Manchester agreed to perform the experiment, each being paid £5 for their participation.

<table>
<thead>
<tr>
<th></th>
<th>G1 (E-H)</th>
<th>G2 (E-H)</th>
<th>G3 (H-E)</th>
<th>G4 (H-E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mean age</td>
<td>22 ± 1.94</td>
<td>22.3 ± 1.56</td>
<td>21.8 ± 2.09</td>
<td>20.4 ± 6.44</td>
</tr>
<tr>
<td>% Female</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Web experience (years)</td>
<td>6.9 ± 2.33</td>
<td>9.4 ± 1.07</td>
<td>9.3 ± 2.3</td>
<td>9.7 ± 1.56</td>
</tr>
<tr>
<td>Weekly web usage (hours)</td>
<td>32.1 ± 12.33</td>
<td>28 ± 28.27</td>
<td>20 ± 11.26</td>
<td>20.7 ± 12.65</td>
</tr>
</tbody>
</table>

Table 3-1 Characteristics of participants in the four experimental groups

Table 3-1 (above) displays the characteristics of participants in the four experimental groups. The participants’ ages ranged between 18 and 40 years (mean = 22.5, sd =3.5). Of the 40 participants who agreed to perform the experiment, 32.5% were female. Group 1, Group 2 and Group 4 each included 3 female participants out of 10, while the

4 Values are mean ± standard deviation
third group contained 4. The reported web experience of the participants ranged from 3 to 13 years (mean = 8.8, sd = 2.1). Interestingly, the maximum web usage per week was 100 hours, reported by the third participant of Group 2 (E-H), who did not provide real-time enjoyment ratings. The fact that there are only 168 hours in a week makes it hard to believe that a participant actually spends 100 of them browsing the web. Participants might have overestimated their weekly hour usage; this topic is interesting enough to warrant further investigation. The minimum reported weekly web experience was 5 hours. Overall, the 40 participants’ weekly usage equated to: (mean = 25.2, sd = 17.6).

3.5.2 Task completion times

Table 3-2 shows the mean task completion times for the two blocks (easy and hard) by each of the four groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Easy (min: sec)</th>
<th>Hard (min: sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (E-H, tool)</td>
<td>3:52 ± 1:23</td>
<td>6:35 ± 2:05</td>
</tr>
<tr>
<td>G2 (E-H no-tool)</td>
<td>2:33 ± 0:54</td>
<td>3:32 ± 0:40</td>
</tr>
<tr>
<td>G3 (H-E, tool)</td>
<td>3:09 ± 0:59</td>
<td>6:05 ± 3:22</td>
</tr>
<tr>
<td>G4 (H-E no-tool)</td>
<td>2:21 ± 0:56</td>
<td>4:20 ± 1:25</td>
</tr>
</tbody>
</table>

Table 3-2 Experiment 1, the duration of easy and hard tasks, with standard deviation, for the four groups.
Inspecting these performance times it is clear that there was the desired manipulation of difficulty. In each of the four groups the `hard` tasks took longer to complete than the `easy` tasks.

A three-way (2 x 2 x 2) mixed ANOVA was conducted, with task order and CET presence as between-subjects factors, and task difficulty as a within subjects factor.

There was a significant main effect of task difficulty (F (1, 36) =30.23, p<0.001, partial $\eta^2=0.456$). Although, there was neither significant main effect for the two-way interaction: (Fs= 0.618 (task order), 2.92 (tool effect); p>0.05), nor there was for the three-way interactions (order*tool*difficulty) (F= 0.254; p> 0.05). This means that all four groups completed the easy tasks in less time than the hard tasks.

There was no significant main effect of task order on completion time (F =0.191, p>0.05). Although there was significant tool effect (F (1, 36) =22.89, p<0.001, partial $\eta^2=0.389$) while, there was no interaction effect between the tool and task order (F =1.58, p>0.05).
3.5.3 Retrospective assessments

Table 3-3 (below) shows the participants’ mean retrospective assessments according to experimental group and task block.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Retrospective assessments</th>
<th>Easy task block</th>
<th>Hard task block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean/standard deviation</td>
<td>Mean/standard deviation</td>
</tr>
<tr>
<td></td>
<td>Enjoyment</td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Group 1 (E-H - tool)</td>
<td>2.4 ± 1.8</td>
<td>2.2 ± 1.6</td>
<td>2.1 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>2.1 ±2.7</td>
<td>2.1 ± 2.3</td>
<td></td>
</tr>
<tr>
<td>Group 2 (E-H - no tool)</td>
<td>1.7 ± 2.4</td>
<td>2.4 ± 1.7</td>
<td>2.3 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>2.3 ± 1.0</td>
<td>2.1 ± 2.7</td>
<td></td>
</tr>
<tr>
<td>Group 3 (H-E – tool)</td>
<td>2.8 ± 1.3</td>
<td>2.8 ± 1.4</td>
<td>2.1 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>2.1 ± 1.8</td>
<td>2.2 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>Group 4 (H-E – no tool)</td>
<td>1.6 ± 2.0</td>
<td>2.2 ± 2.0</td>
<td>1.6 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>1.6 ± 1.9</td>
<td>2 ± 2.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-3 Experiment1 participants’ mean design and enjoyment retrospective assessments for the four groups
Design and enjoyment retrospective assessments

The Pearson correlation test shown in Table 3-4 (below) suggests that the retrospective assessments of design and enjoyment following the easy-and-hard block tasks were strongly correlated for three of the four groups; suggesting that participants perceived design and enjoyment as being connected. The retrospective assessments of Group 2 hard block were not, however, significantly correlated.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Easy block</th>
<th>Hard block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design/Enjoyment</td>
<td>Design/Enjoyment</td>
</tr>
<tr>
<td>1</td>
<td>0.818** (66.9)</td>
<td>0.726* (52.7)</td>
</tr>
<tr>
<td>2</td>
<td>0.741* (54.9)</td>
<td>0.568 (32.2)</td>
</tr>
<tr>
<td>3</td>
<td>0.921** (84.8)</td>
<td>0.905** (81.9)</td>
</tr>
<tr>
<td>4</td>
<td>0.888** (78.8)</td>
<td>0.791** (62.5)</td>
</tr>
</tbody>
</table>

Table 3-4 Pearson correlation (% predicted variance in brackets) between retrospective assessments of design and enjoyment of easy-and-hard block tasks (** = p<0.01; * = p<0.05)

Because this relationship has been clearly demonstrated, all subsequent analyses consider solely the enjoyment ratings. As for performance times, a three-way (2 x 2 x 2) mixed ANOVA was conducted on the retrospective ratings of enjoyment; with task order and tool presence as between-subjects factors, and task difficulty as a within-subjects factor.
There was no significant effect of the task difficulty ($F = 0.204$, $p > 0.001$) on retrospective assessments of enjoyment. Furthermore, there was a significant effect for neither for the two-way interaction ($Fs = 1.275$ (task order), 3.263 (tool effect), $p > 0.05$), nor for the three-way interaction ($F = 0.051$, $p > 0.05$).

There was no task order, tool effect or interaction between subjects ($Fs = 0.029$, 0.887 and 0.26, respectively, all $p > 0.05$).

This means the participants of all groups reported similar retrospective assessments of enjoyment. There was no significant difference between Group 1 (E-H) and Group 3 (H-E): both of which performed the tasks using the tool.

Even though the hard tasks took longer than the easy tasks (as shown in the previous section) this did not affect the retrospective assessment of enjoyment. There was an effect of the presence of the tool on task duration. The additional time required was approximately 3 minutes.

3.5.4 Real-time enjoyment ratings

Only Group 1 and Group 3 reported real-time ratings. In order to investigate the relationship between peak- and end enjoyment ratings, and all other real-time moments and retrospective assessments, Spearman correlation tests were conducted; as it was assumed that ordinal level data was collected.

<table>
<thead>
<tr>
<th>Real-time enjoyment</th>
<th>mean/standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group G1 (E-H)</td>
<td></td>
</tr>
<tr>
<td>Peak Enjoyment</td>
<td>77.8 ±20.67</td>
</tr>
<tr>
<td>Initial Enjoyment</td>
<td>50.6 ±13.91</td>
</tr>
<tr>
<td>End Enjoyment</td>
<td>56.9 ±33.37</td>
</tr>
<tr>
<td>Average Enjoyment</td>
<td>52.32 ±14.81</td>
</tr>
<tr>
<td>Total Enjoyment</td>
<td>435.7 ±130.65</td>
</tr>
<tr>
<td>Group G3 (H-E)</td>
<td></td>
</tr>
<tr>
<td>Peak Enjoyment</td>
<td>87.2 ± 17.98</td>
</tr>
<tr>
<td>Initial Enjoyment</td>
<td>64.6 ± 23.18</td>
</tr>
<tr>
<td>End Enjoyment</td>
<td>79.8 ± 31.44</td>
</tr>
<tr>
<td>Average Enjoyment</td>
<td>62.15±16.17</td>
</tr>
<tr>
<td>Total Enjoyment</td>
<td>503.7 ±147.98</td>
</tr>
</tbody>
</table>

Table 3-5 Mean and standard deviation of several summary aspects of real time rating in groups 1 and 3

Table 3-5 (above) shows the mean and standard deviation of peak-, initial-, end-, average of all ratings- and total enjoyment for groups 1 and 3.

The mean values of real-time enjoyment were identified from all eight tasks. The two sets of tasks (easy and hard) were not separated in table 4-5, because, as has been
demonstrated in the previous section, there was no discrepancy between the retrospective assessments of the easy and hard tasks.

Of the Group 1 participants, 80% reported peak enjoyment during the first four tasks, which were designed to be easy. From Group 3, 70% of the participants reported peak enjoyment during the last four tasks, which were identical to the first four tasks of Group 1; however, in Group 3, they were presented at the end.

These ratings showed that users experienced moments of considerable enjoyment during the experimental procedure (see Table 3-5). Overall 20% of Group 1 participants (E-H with tool) and 50% of Groups 3 participants (H-E with tool) reported an enjoyment score of 100, which was the maximum score, at least once.

Two correlation matrices were constructed. The first matrix presents the Spearman correlation coefficient between the easy block real-time ratings and retrospective assessments of enjoyment for Groups 1 and 3 combined, since there was no difference found between the two groups’ retrospective assessments, despite altering the task order. The second matrix presents the correlations of the same groups, but between the hard block real-time ratings and retrospective assessments of enjoyment.

Easy block real-time ratings:

Table 3-6 (below) demonstrates the analysis of data for the real-time and retrospective ratings of the easy block tasks. Most of the real-time ratings seemed to be correlated with each other. Average- and total real-time ratings were found to be correlated with
retrospective assessment \((p < 0.01)\). Also, *peak- and end real-time ratings* significantly correlated with retrospective assessment of *enjoyment*.

<table>
<thead>
<tr>
<th></th>
<th>Easy-peak</th>
<th>Easy-end</th>
<th>Easy-average</th>
<th>Easy-total</th>
<th>Easy-initial</th>
<th>Easy Retrospective Enjoyment</th>
<th>Easy-duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy-peak</td>
<td>1</td>
<td></td>
<td>0.846**</td>
<td>0.725**</td>
<td>0.725**</td>
<td>0.616**</td>
<td>0.488*</td>
</tr>
<tr>
<td>Easy-end</td>
<td>0.846**</td>
<td>1</td>
<td>0.810**</td>
<td>0.810**</td>
<td>0.679**</td>
<td>0.529*</td>
<td>0.331</td>
</tr>
<tr>
<td>Easy-average</td>
<td>0.725**</td>
<td>0.810**</td>
<td>1</td>
<td>1.00**</td>
<td>0.840**</td>
<td>0.572**</td>
<td>0.160</td>
</tr>
<tr>
<td>Easy-total</td>
<td>0.725**</td>
<td>0.810**</td>
<td>1.00**</td>
<td>1</td>
<td>0.840**</td>
<td>0.572**</td>
<td>0.160</td>
</tr>
<tr>
<td>Easy-initial</td>
<td>0.616**</td>
<td>0.679**</td>
<td>0.840**</td>
<td>0.840**</td>
<td>1</td>
<td>0.437</td>
<td>0.346</td>
</tr>
<tr>
<td>Easy-retro</td>
<td>0.488*</td>
<td>0.529*</td>
<td>0.572**</td>
<td>0.572**</td>
<td>0.437</td>
<td>1</td>
<td>0.172</td>
</tr>
<tr>
<td>Easy-duration</td>
<td>0.452*</td>
<td>0.331</td>
<td>0.160</td>
<td>0.160</td>
<td>0.346</td>
<td>0.172</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3-6 Correlation matrix showing the relationship between the various characteristics of the moment-by-moment ratings of the easy task blocks of Groups 1 and 3

The correlation of the average and total values of the easy task block with the retrospective assessments of enjoyment is similar. This is due to the fact that each of the participants has rated four times (once per task). This is not the case for the block of hard tasks due to the variation in the number of real-time ratings of each task. Some participants rated a single task more than once. The number of ratings varied between a minimum of four- and a maximum of six times for the block of hard tasks.
Hard block real-time ratings:

Table 3-7 (below) shows that the *peak* and *end* did not statistically significantly correlate. However, both moments strongly correlated with retrospective assessment of enjoyment; with the peak being slightly more so, at the p<0.01 level.

Peak and end moments were found to be correlated with retrospective assessments in both matrices. The average real-time ratings for the easy tasks significantly correlated with retrospective assessment of enjoyment, while for the hard tasks it did not.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard-peak</td>
<td>1</td>
<td>.438</td>
<td>.669**</td>
<td>.733**</td>
<td>.393</td>
<td>.719**</td>
<td>-.212</td>
</tr>
<tr>
<td>Hard-end</td>
<td>.438</td>
<td>1</td>
<td>.489*</td>
<td>.524*</td>
<td>.067</td>
<td>.512*</td>
<td>.052</td>
</tr>
<tr>
<td>Hard-average</td>
<td>.669**</td>
<td>.489*</td>
<td>1</td>
<td>.859**</td>
<td>.551*</td>
<td>.361</td>
<td>-.517*</td>
</tr>
<tr>
<td>Hard-total</td>
<td>.733**</td>
<td>.524*</td>
<td>.859**</td>
<td>1</td>
<td>.549*</td>
<td>.528*</td>
<td>-.424</td>
</tr>
<tr>
<td>Hard-initial</td>
<td>.393</td>
<td>.067</td>
<td>.551*</td>
<td>.549*</td>
<td>1</td>
<td>.324</td>
<td>-.370</td>
</tr>
<tr>
<td>Hard-Retrospective-enjoyment</td>
<td>.719**</td>
<td>.512*</td>
<td>.361</td>
<td>.528*</td>
<td>.324</td>
<td>1</td>
<td>.186</td>
</tr>
<tr>
<td>Hard-duration</td>
<td>-.212</td>
<td>.052</td>
<td>-.517*</td>
<td>-.424</td>
<td>-.370</td>
<td>.186</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3-7 Correlation matrix showing the relationship between the various characteristics of the moment-by-moment ratings of the hard task blocks of Groups 1 and 3.
In the easy task block the peak moment significantly correlated with the duration of the procedure. In the hard task block only the average of all real-time ratings significantly correlated with the duration of the procedure. No other real-time moments of either matrix statistically correlated with the duration of the procedure. This result might be linked to the duration neglect proposed by Kahneman. There is still not much evidence of duration neglect in relation to web experience, but these results might be an indication of such. More research needs to be conducted with regard to this matter.

A (2 x 2) ANOVA was conducted, with task order and task difficulty as ‘between subjects’ factors for the peak, the average of all real-time ratings and end enjoyment moments of Groups 1 and 3.

There was a significant effect neither of task order nor task difficulty on peak real-time enjoyment (Fs = 1.36 (task order), 1.82 (task difficulty); p > 0.05). Neither was there a significant interaction between these two factors (F = 0.002; p > 0.05).

Also, there was no significant effect on the average of all real-time ratings by either of these factors (Fs = 2.061 (task order) p > 0.05, and 4.01 for (task difficulty) p = 0.053 (the p value is almost significant) although there was no significant interaction (F = 0.92 p > 0.05).

There was no significant effect of the task order on end enjoyment moments (F = 0.004, p > 0.05). On the other hand, there was a significant effect of the task difficulty (F (1, 36) =5.079; p < 0.05; partial η²=0.124). Additionally, there was a significant interaction
between the task difficulty and task order on the end enjoyment moment (F (1, 36) = 4.238; p < 0.05; partial η²=0.105). The p value = 0.047 which is considered to be small but significant.

The (2 x 2) ANOVA was conducted on real-time ratings, to give a better understanding of the effect of task order and task difficulty on particular real-time moments (peak, average of all ratings and end enjoyment moments). There was no significant difference found between the easy and hard blocks for the peak and the average of all real-time enjoyment ratings.

On the other hand, the difference between easy and hard blocks was greater for Group 3 than for Group 1 with regards to end real-time enjoyment. The easy block end enjoyment mean value = 58.7 and the hard block mean value = 56.9 for Group 1 (E-H); while the easy block end enjoyment mean value = 77.1, and hard block end enjoyment mean value = 37.3 for Group 3(H-E). This could be attributed to the sense of relief in going from the more difficult-to the less demanding tasks, or perhaps due to the fact that the participant becomes more adept at the procedure, due to the experience gained in undertaking the more difficult tasks.
3.5.5 Regression tests of the peak-end rule

In order to test the main research question, and further investigate whether peak and end enjoyment moments were equally adequate predictors as the average of all enjoyment ratings and other moments put together; multi-linear regressions were conducted. Two models were compared, following the method applied by Donald Redelmeier and Daniel Kahneman when working on their paper on colonoscopy (Redelmeier and Kahneman 1996).

The first linear model was named the simple model, which comprised peak enjoyment-and end enjoyment rating, as recorded by the twenty participants in Group 1 and Group 3. The second linear model, called the comprehensive model, was composed of the following predictors: peak-, end- and initial enjoyment, average enjoyment of all ratings, total enjoyment and duration of procedure. (Table 4-8 (below) shows R^2 of the two models).

Two regression tests were performed; one for the hard set of tasks, the other for the easy set. The first row of the table below compares the simple- and comprehensive model prediction of the retrospective assessment of enjoyment of the easy tasks. Likewise, the second row compares the predictions for the hard tasks.
Table 3-8 Regression from simple and comprehensive models- tasks retrospective assessment of easy and hard tasks

<table>
<thead>
<tr>
<th>Participants’ assessments 5</th>
<th>Simple (Peak-End)</th>
<th>Comprehensive (Initial-Peak-End-Total-Average-Duration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy retrospective assessments of enjoyment</td>
<td>0.464</td>
<td>0.478</td>
</tr>
<tr>
<td>Hard retrospective assessments of enjoyment</td>
<td>0.695</td>
<td>0.775</td>
</tr>
</tbody>
</table>

5 Values are R^2 of prediction success of each model.

Easy block regression:

Table 3-8 (above) confirms that for the easy set of tasks, there was no significant difference between the predictions of the two models: the F change value = 0.123, $p = 0.945 > 0.05$. This result suggests that peak and end moments could predict retrospective assessments of enjoyment as adequately as all moments integrated, including peak and end moments.
Hard block regression:

Again, for the hard set of tasks there was no significant difference between the simple and comprehensive model predictions of retrospective assessment of enjoyment: the F change value = 1.155; p = 0.375 (> 0.05). This result supports that found in the easy block regression; that peak and end real-time enjoyment moments were able to adequately predict retrospective assessment of enjoyment.

<table>
<thead>
<tr>
<th>Model</th>
<th>Standardized Beta Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple model</td>
<td></td>
</tr>
<tr>
<td>Easy_Peak</td>
<td>0.581</td>
</tr>
<tr>
<td>Easy_End</td>
<td>0.112</td>
</tr>
<tr>
<td>Comprehensive model</td>
<td></td>
</tr>
<tr>
<td>Easy_Peak</td>
<td>0.291</td>
</tr>
<tr>
<td>Easy_End</td>
<td>0.062</td>
</tr>
<tr>
<td>Easy_Total</td>
<td>0.504</td>
</tr>
<tr>
<td>Easy_Initial</td>
<td>-0.263</td>
</tr>
<tr>
<td>Easy_Duration</td>
<td>0.128</td>
</tr>
</tbody>
</table>

Table 3-9 Experiment 1: easy block tasks - standardized Beta coefficients of the two models as predictors
Table 3-10 Experiment 1: hard block tasks - standardized Beta coefficients of the two models as predictors

<table>
<thead>
<tr>
<th>Model</th>
<th>Standardized Beta Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple model</td>
<td></td>
</tr>
<tr>
<td>Hard_Peak</td>
<td>0.747</td>
</tr>
<tr>
<td>Hard_End</td>
<td>0.156</td>
</tr>
<tr>
<td>Comprehensive model</td>
<td></td>
</tr>
<tr>
<td>Hard_Peak</td>
<td>0.774</td>
</tr>
<tr>
<td>Hard_End</td>
<td>0.092</td>
</tr>
<tr>
<td>Hard_Average</td>
<td>-0.581</td>
</tr>
<tr>
<td>Hard_Total</td>
<td>0.642</td>
</tr>
<tr>
<td>Hard_Initial</td>
<td>-0.033</td>
</tr>
<tr>
<td>Hard_Duration</td>
<td>0.202</td>
</tr>
</tbody>
</table>

Table 3-9 and Table 3-10 show the standardized Beta coefficient of the easy and hard task blocks. The values in the tables illustrate the contribution of the calculated moments of enjoyment in predicting the overall enjoyment; in both models.
3.6 Discussion

This experiment attempted to investigate the relationship between real-time ratings and retrospective assessments, by monitoring and recording participants’ real-time enjoyment while performing specific information-seeking tasks. At the same time it tried to understand the effect of changing the task order, and the current enjoyment tool (CET).

The results have shown that the CET used by half of the participants did not influence their judgment. This was encouraging in terms of the planned future use of the tool. The results also indicated that neither task difficulty nor task order affected retrospective assessments of design and enjoyment.

In order to test the task order effect on retrospective assessments, it was necessary to establish a method to control task order. This experiment tried to connect task difficulty with task performance, and the task completion time was used as an indicator of task difficulty. The findings of this experiment have shown that there was a significant difference in the level of difficulty of tasks; people completed the block of easy tasks in less time than they did the hard tasks. However, the three-way ANOVA that was conducted between retrospective assessments of enjoyment of the hard and easy tasks has shown that there was no significant difference. This means that both sets of tasks were retrospectively similarly rated. This result was unexpected as it was assumed that the task order would have an effect on retrospective assessments. Perhaps the findings
were due to a somewhat "leaky" controlling of task difficulty which was based on the number of links required to reach a certain task answer. On the other hand this could also be linked to duration neglect, which is the part of the peak end rule that suggests that time has little or no effect on people’s judgments. The fact that there was no significant difference found between the retrospective assessments of enjoyment, but there was a significant time difference between the easy and hard tasks completion time; suggests duration neglect.

The number of links required to reach a certain task answer was not a successful method of determining the flow of enjoyment within the website experience. Gwizdka (2009) suggested that one of the difficulties that web-searchers encounter, within the information search process, is related to the cognitive or mental state of the user being affected by the search system or task itself. He added that understanding the factors which add to the user’s cognitive load while on a search task is vital in identifying search system features, and devising search tasks. (Gwizdka 2009)

Khan and Locatis (1999) found that there was no significant difference between novices and expert users, in terms of the number of links needed to reach a task answer (Khan and Locatis 1999). This suggests that it is crucial to understand the cognitive factors that influence a web user’s judgment. There are several techniques available today to capture the web user emotional state, such as: search observation, search report (questionnaires, think-aloud recordings and post-search interviews) and dual task techniques. There are also external devices that can provide additional information regarding a web user; for
instance, eye tracking, a pressure-sensitive mouse and a variety of physiological sensors. This experiment attempted to capture real-time enjoyment using the current enjoyment tool as described earlier. It was clear that determining the number of links required for each task was not an accurate method of controlling enjoyment on the web. There was no consideration given to the cognitive factors that might have an influence on user enjoyment. Task difficulty was defined by the time required for its completion, and the performance of the user; not by user opinion. User-opinion of website enjoyment was taken into account in the design process for Experiment 3.

The analysis of real-time ratings revealed some interesting findings. As demonstrated by the correlation matrices, the peak- and end real-time enjoyment were significantly more closely correlated with retrospective enjoyment, than were the average of all ratings; for the hard block tasks. However, the easy block correlation matrix shows that the average of all real-time ratings was slightly better correlated than peak and end ratings, with retrospective assessment of enjoyment.

The regressions of both the easy- and hard block tasks were confirmatory of the effect of peak and end real-time moments. The results of each block of tasks have shown evidence in support of the peak end rule, as proposed by Daniel Kahneman and Donald Redelmeier, in that peak and end moments were able to predict participants’ retrospective assessments as well as all the rated moments integrated.
3.7 **Summary of Experiment 1**

The experiment results have shown that the current enjoyment tool (CET) did not influence the participants’ judgment. This was encouraging in terms of the proposed future use of the tool. The results also indicated that neither task difficulty nor task order influenced the retrospective assessment of design and enjoyment.

There was a significant correlation between real-time ratings and retrospective assessments of enjoyment for both sets of tasks. For the `hard` tasks, the peak and end correlations with retrospective assessment were statistically (p<0.05) stronger than those of the average of all real-time enjoyment ratings (which did not statistically correlate with retrospective assessment). For the `easy` tasks, the average rating was slightly better correlated with the retrospective assessment of enjoyment (p<0.01) although peak and end moments were still found to be significantly correlated (p< 0.05) with the duration of the procedure in the easy task block. There was no significant correlation found between the duration of the procedure and retrospective assessment of enjoyment for either block of tasks. This result supports *duration neglect* found by Daniel Kahneman.

The attempt to manipulate the flow of enjoyment (task order) by controlling the level of difficulty of the tasks was not successful. It was hoped that the number of links required to complete each task would have an effect, but it appeared not to do so. One reason might be the preference of hidden cognitive factors; in other words, what one participant
considered to be easy, another did not. Participants were not involved in the design process of this method, which might be another reason for its failure. In Experiment 3 and 4, we have tried to implement this concept.

To briefly recap:

- Tool did not influence participants’ assessments.
- There was a tool effect on overall duration; estimated time cost was 3 minutes.
- Peak-end enjoyment predicted retrospective assessments as well as all other moments combined, including average of all real-time enjoyment ratings.
- Variation of task difficulty, demonstrated by differing completion time, had no significant effect on retrospective assessment.
- Duration of both easy and hard tasks was affected by use of the tool and changing task order.
- Duration of the easy tasks of the 4 groups was less than that of the hard tasks.
- Number of links required for each task did not directly correlate with the level of enjoyment or ease, so this is not a foolproof method of controlling overall enjoyment.
4.1 Introduction

Experiment 2 (E2) further examined the strength of the peak-end rule for predicting retrospective assessments of the design and enjoyment of a website. Also, it attempted to further test the relationship between the *duration* of the experimental procedure, and the participants’ assessments.

It is already known from the previous experiment that peak and end real-time enjoyment moments managed to predict retrospective assessments, when participants were asked to perform a fixed number of tasks. The idea of this experiment was to be less prescriptive in terms of tasks, allowing the participants to have more freedom while browsing for information. The goal that was set was for participants to plan a holiday to Brazil. The people were asked to freely browse a holiday-destination website that contained information regarding Brazil enabling individuals to devise a holiday according to their own liking. The holiday information-seeking task was chosen, in an attempt to provide a more enjoyable web-browsing experience; given that people seek pleasure and joy during their holiday.
The participants were instructed to browse the website, looking for information that they might consider important for their holiday. The main challenge of the experimental design was to allow for the variation of experience due to freedom of browsing. The number of participants was increased to 40, to allow for a more even spread of experience. The experiment gave people more freedom while navigating through the website; and the nature of the task was such as to encourage enjoyment and interaction with the website.

The design of this experiment did not allow for the testing of a task order effect on retrospective assessments of enjoyment. It was geared to further test the validity of the peak-end rule within a goal-oriented web-browsing task.

The results of the first experiment demonstrated that the current enjoyment tool (CET) did not influence participants’ retrospective assessments. The CET was modified by removing the embedded tasks of the previous experiment, and was used in this experiment to obtain participants’ real-time enjoyment moments, during their browsing session. Participants were encouraged at the beginning of the procedure to reflect on their level of enjoyment and to record any changes as and when they occurred throughout their browsing. Unlike the first experiment, this experiment did not involve any groups. The 40 participants were assigned the task of organising a holiday to Brazil, and to report their retrospective assessment of website design quality, enjoyment. Later, the real-time enjoyment moments such as peak-, end-, average-, total- and initial real-time enjoyment moments, in addition to the duration of the procedure; were to be
compared with retrospective assessments of design and enjoyment; in an attempt to better understand peak-end rule in goal-oriented web experiences.

The duration of the procedure was monitored, to be later tested for correlation with the retrospective assessments of the 40 participants; in order to understand the *duration neglect* notion in the web environment. The Spearman correlation test between duration of the procedure and retrospective assessment of enjoyment would help understand the nature of the relationship between experimental procedure time and people’s assessments. This information is valuable to usability testers as well as web designers and customer retention management officers of the web (CRM); especially for the retention department.

4.2 The task

The experimental procedure involved a free-browsing activity on the brazil.com website. To be more specific, participants were asked to browse this website, with the objective of planning an imaginary holiday to Brazil. In an attempt to ensure the same level of experience all participants were asked to approach the task in the same way, as follows:

Imagine that you are going on holiday to Brazil, please browse this website (brazil.com) for information that you might think is valuable to you for your stay in Brazil.
4.3 Design and materials

The tool used for the `Brazil` experiment was similar to the tool used in the first study; however, since this experiment involved a free-browsing task, there was no task included in the tool. A slide-bar, with the values from 0-100, and tagged with low, medium and high, was developed using visual studio 2005. (See Figure 4-1 below):

![Current Enjoyment Level](image)

Figure 4-1 Experiment 2 current enjoyment tool used in the Brazil experiment

The experiment was designed mainly to further test the usefulness of applying the peak-end rule to website experience. Spearman correlation tests were conducted, to test the relationship between real-time enjoyment ratings and retrospective assessments of the quality of the web design, and level of enjoyment. Additionally, linear regressions were performed to assess the validity of the peak end rule on the web (using simple and comprehensive models) as explained in the Chapter 3 ‘Design and materials’ section. At the same time the experiment procedure duration was monitored, to investigate the concept of duration neglect within web experience.
4.4 Procedure

Participants were asked to freely browse www.brazil.com for not more than 12 minutes (and not less than 4 minutes) seeking the information needed to plan a holiday trip to Brazil. During their browsing, participants were asked to give their real-time ratings using the current enjoyment tool (CET), whenever they felt their enjoyment level had changed. The design of this experiment gave more freedom to the participants, in terms of the enjoyment rating process, without the attempted manipulation of the control of enjoyment.

After completing the web browsing, participants were asked to fill in a short questionnaire, which included general information about themselves, as well as their retrospective assessments of the quality of the design, and their level of enjoyment of the website. (See Appendix A: Experiment 2 questionnaire).

4.5 Participants

The experiment was carried out in a lab environment at the University of Manchester computer labs. Forty students were asked to take part in the experiment, and were each rewarded with a £5 gift voucher. The study was not gender-specific.
4.6 Results

This section presents a description of the experiment, and an analysis of the findings:

- Key information about participants, and an outline of the procedure.

- Spearman correlation between real-time enjoyment ratings, and retrospective assessments of design and level of enjoyment.

- Relationship between real-time enjoyment and retrospective assessments. Multiple-linear regressions following simple and comprehensive models, as predictors to assess the adequacy of peak end rule, when applied to website experiences.

Unlike Experiment 1, this experiment was not designed to control the flow of the web experience, but followed a free-browsing style, which gave more freedom to the participants’ navigation within the brazil.com website.
4.6.1 Descriptive

The duration of the procedure for E2 varied from 4 minutes 0 seconds, to 11 minutes 29 seconds. The mean duration time was 9 minutes 20 seconds. Retrospective assessments of design and enjoyment were on the Likert scale: 2.17 and 2.35, respectively. The participants’ age ranged between 18 and 29, and the mean age was 22.1 years. (See Table 4-1 below)

Interestingly, the second participant reported 150 hours weekly internet use. Given that there are only 168 hours in a week, this does not allow much time for other pursuits, such as rest! This possible error of judgment was referred to as the ‘human memory limitation’ by Ariely (2001) - as discussed in the chapter devoted to the literature review. The lowest reported figure was 6 hours web use per week. The mean use in hours per week was 34.45, which appears to be within realistic and acceptable limits.

<table>
<thead>
<tr>
<th>Participants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>40</td>
</tr>
<tr>
<td>Mean age(^6)</td>
<td>22.07± 2.21</td>
</tr>
<tr>
<td>% Female</td>
<td>42.5</td>
</tr>
<tr>
<td>Web Experience (years)</td>
<td>9.95± 2.38</td>
</tr>
<tr>
<td>Weekly web usage (hours)</td>
<td>34.45± 26.71</td>
</tr>
<tr>
<td>-Duration (min)</td>
<td>09:12±01:39</td>
</tr>
<tr>
<td>Real-time enjoyment</td>
<td></td>
</tr>
<tr>
<td>-Peak Enjoyment</td>
<td>86.37±16.2</td>
</tr>
<tr>
<td>-Initial Enjoyment</td>
<td>47.05±22.14</td>
</tr>
</tbody>
</table>

\(^6\) Values are mean ± standard deviation, or percentage of each participant
Analytic

Relationship between real-time enjoyment ratings

Peak and end enjoyment moments were not significantly correlated (r = 0.182). However, peak and end moments were found to be significantly correlated with average enjoyment (r = 0.654** and r = 0.553**)\(^8\). Peak and end enjoyment moments were included in the average, which explains the strong correlation. Peak and initial enjoyment moments were also found to be correlated (r = 0.379*). Initial enjoyment was relatively low (initial enjoyment: mean = 47.05, sd = 22.14) in contrast to peak enjoyment. (Peak-enjoyment: mean = 86.37, sd =16.2). The correlation test could not explain the nature of such a relationship; although this might provide evidence of the importance of initial moments in website use, which has been noted by other researchers (as explained previously in the ‘Literature Review’ chapter). The end enjoyment moment did not statistically correlate with the initial enjoyment moment (r = - 0.274). Total enjoyment was found to be statistically correlated with peak, end and average enjoyment.

\(^7\) Note that Total enjoyment is the sum of all real-time enjoyment ratings
\(^8\) * p< 0.05, ** p< 0.01

Table 4-1 Experiment 2: characteristics of participants, and real-time and retrospective assessments

<table>
<thead>
<tr>
<th></th>
<th>End Enjoyment</th>
<th>Average Enjoyment</th>
<th>Total Enjoyment(^7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64.37±21.76</td>
<td>62.15±15.06</td>
<td>792.82±313.5</td>
</tr>
</tbody>
</table>

Retrospective assessments

<table>
<thead>
<tr>
<th></th>
<th>Participants’ design rating</th>
<th>Participants’ enjoyment rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.17±1.89</td>
<td>2.35±1.71</td>
</tr>
</tbody>
</table>
enjoyment moments ($r = 0.647^{**}$, $r = 0.419^{**}$ and $r = 0.500^{**}$, respectively). This again could be due to the fact that total enjoyment was the sum of all real-time enjoyment moments, including peak, end and the average of all ratings of enjoyment.

Relationship between design and enjoyment retrospective assessments

The Spearman correlation coefficient test results showed that retrospective assessments of website design and level of enjoyment were strongly statistically correlated ($r = 0.772^{**}$). This pattern supports the finding of the first experiment, that is, that the participants’ sense of enjoyment was strongly correlated to the quality of the design of the website.

Relationship between real-time enjoyment and retrospective assessments

The end- and average enjoyment moments were significantly correlated with retrospective assessments of design ($r = 0.314^{*}$ and $r = 0.500^{**}$), and enjoyment ($r = 0.338^{*}$ and $r = 0.508^{**}$). High peak ratings were not significantly correlated with retrospective assessments. The correlation of the ‘low peak’ with enjoyment assessment was higher than that of the high peak (0.343^{*} and 0.155 respectively) (See Table 4-2).

The matrix below shows the Spearman correlations between all real-time moments of enjoyment; including the low peak of enjoyment:
Table 4-2 Experiment 2: correlation matrix between retrospective assessments and initial-, peak-, end-, average-, and total real-time enjoyment ratings; and duration of the procedure

Multi-linear regression (simple & comprehensive model)

The results below indicate that the comprehensive model was a better predictor of retrospective assessment than the simple model. The Significant F change value between the simple and the comprehensive model for the retrospective assessment of design was 4.55; and for the retrospective assessment of enjoyment: 6.09.
Table 4-3 Experiment 2 predicting participants’ memories from combination of real-time measures

<table>
<thead>
<tr>
<th>Retrospective Assessments</th>
<th>Simple model (Peak-end)</th>
<th>Comprehensive model (Initial-Peak-End-Average-Total-Duration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design assessments</td>
<td>0.250⁹</td>
<td>0.516 *¹⁰</td>
</tr>
<tr>
<td>Enjoyment assessments</td>
<td>0.263</td>
<td>0.576 **</td>
</tr>
</tbody>
</table>

Table 4-4 (below) shows the standardized Beta coefficients of the two models moments of enjoyment and duration, as predictors of the overall assessments of enjoyment.

⁹ Values are R^2.

¹⁰ *Values which are statistically different between the two models
Experiment 2

Table 4-4 Experiment 2: standardized Beta coefficients of the two models as predictors

The ‘low peaks’ (or troughs) of the enjoyment of the forty participants, were identified. Later, they were included in the regression analysis; the same method of simple and comprehensive models, used in the first experiment, being applied. This was done to investigate the low peak in this experiment. The low and high peaks were used, along with the end moments, in the simple model. The low and high peaks of enjoyment were also included in the comprehensive model; along with the end-, initial-, total- and average enjoyment, and duration of the procedure.

Table 4-5 (below) shows the regression of the data from the simple and comprehensive models, with the addition of the low peak moments:
Table 4-5 Experiment 2 predicting participants’ memories from combination of real-time measures after adding the low peaks

It is clear that adding the low peak in the regression tests has led to a noticeable increase in the prediction of success. There was still a significant difference in the predictions of the two models (significant F change = 0.006). Table 4-6 (below) shows the standardized Beta coefficients of the two models as predictors, after adding the low peaks to both the simple and comprehensive models.

<table>
<thead>
<tr>
<th>Retrospective Assessments</th>
<th>Simple model (low and high peaks-end)</th>
<th>Comprehensive model (initial-low and high peaks-end-average-total-duration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjoyment assessments</td>
<td>0.341</td>
<td>*0.576</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Standardized Beta Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple model</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>0.298</td>
</tr>
<tr>
<td>Low/Peak</td>
<td>0.291</td>
</tr>
<tr>
<td>End</td>
<td>0.255</td>
</tr>
<tr>
<td>Comprehensive model</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>-0.262</td>
</tr>
<tr>
<td>Low/Peak</td>
<td>0.010</td>
</tr>
</tbody>
</table>
Experiment 2

End 0.103
Average 0.848
Total -0.303
Duration -0.209
Initial -0.008

Table 4-6 Experiment 2: standardized Beta coefficients of the two models as predictors after adding the low peaks to both models

Relationship between procedure duration and retrospective assessments

There was no significant correlation found between design- or enjoyment retrospective assessments, and the duration of the procedure. This result appears to concur with the phenomenon of duration neglect. (See Table 4-7)

<table>
<thead>
<tr>
<th>Retrospective assessments</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant’s design rating</td>
<td>-0.176</td>
</tr>
<tr>
<td>Participant’s enjoyment rating</td>
<td>-0.198</td>
</tr>
</tbody>
</table>

Table 4-7 Experiment 2 Spearman correlation of procedure duration with design and enjoyment assessments
4.7 Discussion

As explained in the introduction, the focus of this experiment was the free-browsing method used, and its influence on the web experience of the 40 participants. The low correlation between the real-time peak moment and the retrospective assessments of web design and enjoyment showed that the peak-end rule did not apply in this set of circumstances; that is, free-browsing for holiday information. Within this experiment, the experiences on the website were so disparate, as to make it virtually impossible to determine or to compare peak values. The large variance in peak value (24571.5) confirms the futility of using it to attempt to predict retrospective assessment.

However, because each person had chosen their own route, it does make sense to use the end moment as a predictor of retrospective assessment. There was a clear demonstration, through this experiment, that peak values are only of use when there are adequate constraints built in to the model.

It was shown earlier, in the first experiment, that by restricting the possibilities for browsing, the peak moment could be identified and used as a predictor. The average of all real-time ratings, however, which included peak and end moments, was always likely to be a good predictor of retrospective assessment.

In the free-floating experience of Experiment 2, there was no communal peak to measure, so the peak-end rule did not hold in this instance. The low correlation between
peak ratings and retrospective assessment also explains the fact that the simple model prediction was significantly lower than that of the comprehensive model. This appears to be due to the wide variance in the peak values specified by the participants.

4.8 Summary of Experiment 2

The main objective of Experiment 2 (E2) was to further test the existence of the peak-end rule in website user experience. The experiment followed a free-browsing task on brazil.com. Forty participants were asked to look for the information needed to plan a holiday.

Retrospective assessments of design and enjoyment were found to be strongly statistically correlated. Moreover, end and average enjoyment moments were strongly statistically correlated with retrospective assessments of both design and enjoyment. The average enjoyment was also found to be strongly correlated with retrospective assessment. The duration of the procedure did not correlate with retrospective assessments.

The adequacy of peak end rule was tested comparing the simple- with the comprehensive model, as described in the chapter on research methods. The results showed that the comprehensive model, which included four additional predictors (duration, initial-, total- and average enjoyment), was a better predictor than the simple model, which included only peak and end enjoyment moments as predictors.
Average and end enjoyment moments were found to be correlated with retrospective assessments, while duration and peak were not. The comprehensive model was found to be a better predictor than the simple model. There was a significant difference between the predictions of the two models.

There was a strong correlation between the retrospective assessments of design and enjoyment in both E1 and E2. (In E1, the correlation was found between easy- and hard task design and enjoyment assessments). Therefore, it was not deemed necessary to continue to request design assessments in the experiments that followed.

To briefly recap:

- Level of enjoyment was directly related to the quality of the design.

- End enjoyments, as well as the average enjoyment of all ratings, were correlated with retrospective assessment of design and overall enjoyment. The average enjoyment correlation was higher.

- Peak enjoyment did not correlate with retrospective assessment.

- Comprehensive model was a better predictor than the simple model.

- Overall duration did not correlate with design or enjoyment assessments. Perhaps the fact that the participants had been able to browse freely, caused the phenomenon of duration neglect.
5.1 Introduction

The third experiment investigated the effect of altering the order of the tasks on retrospective assessments of enjoyment of a website experience. It also tested the adequacy of the peak-end rule in predicting retrospective assessments.

Restricting participants to specific tasks had shown promising results in terms of the predictive ability of the peak and end enjoyment moments; as demonstrated in the first experiment of this research. The free-floating task of the second experiment showed the peak enjoyment moment to be a poor predictor of retrospective assessment.

The number of online shoppers is increasing every day. According to the Interactive Media in Retail Group (IMRG) of November 2002, UK online customers had spent $1.58bn; and that was almost 9 years ago. A shopping website was chosen for this experiment, to enhance participants’ level of engagement with the website.

This experiment involved restricting the participants to certain contents of a certain contents of a website, but allowing them to navigate or browse freely within these constraints. In what was called Phase 1 of the experiment, 10 participants had given their
opinion about three different websites in an attempt to identify the most and least enjoyable. The website of choice was shoplocal.com, and the most and least popular sections were, respectively, `electronics` (E) and `home & garden` (H).

In Phase2, the remaining participants were split into two groups. The first group performed the experiment in decreasing order of enjoyment; starting with electronics, and ending with home and garden. Each section was to be browsed for approximately 5 minutes. The second group performed the procedure in reverse order in an attempt to create an increase in enjoyment towards the end of the web experience. Reversing the website content order of the two groups was used to test the order effect on retrospective assessments of enjoyment.

Cosmetic design changes were performed on the current enjoyment tool (CET) for this experiment, to ease the participants’ real-time rating process. (See ‘Design and material’ section of this chapter)

Real-time enjoyment moments were obtained, along with retrospective assessments and general information regarding each participant, at the end of the browsing experience. The real-time moments were to be analysed, and compared with the retrospective assessment of enjoyment, to further understand peak-end rule in a task that allowed free-browsing within a restricted environment.

As in the two previous experiments, the duration of the experimental procedure was recorded. The correlation between procedure duration and retrospective assessment was
analysed, following this experiment, in an attempt to understand the phenomenon of *duration neglect*. Duration was not, however, the central focus of this experiment. There is extensive research required, in order to investigate the phenomenon of duration neglect in the web environment.

5.2 The task

A minimum 4-minute and maximum 12-minute free-browsing task was set. One group of participants was asked to begin with the `electronics` section and end with the `home and garden` section. Each section was to be browsed for 5 minutes. The other group performed the same tasks but in reverse order.
5.3 Design and materials

Minor cosmetic changes to the Experiment 3 tool were introduced, aiming to ease the participants rating experience. The tool included a text box on the left side, to give a better indication of current enjoyment rating. Furthermore, the low, medium and high terms used in the previous experiment’s tool, were changed to very negative, neutral and very positive. A command button on the right-hand side tagged with next website, was included for participants to click on, when they changed to the next section of the website. Moreover, the slide bar was extended, and the node colour was set to be red. (See Figure 5-1):

![Image of current enjoyment tool](image)

Figure 5-1 Experiment 3 and 4 current enjoyment tool

In addition to testing the effect of task order, and adequacy of the peak-end rule, the experiment was designed to look at the relationship between the duration of a procedure and its retrospective assessment.

The experiment was conducted in two phases. In Phase1, ten students from the University of Manchester were asked to rate three different websites (play.com,
shoplocal.com and shopping.com) with the intention of a) choosing a favoured site, and b) determining the low- and high enjoyment sections within it.

In Phase 2, twenty students were divided into two groups. Group 1 began with the high enjoyment section (electronics) and ended with low enjoyment section (home & garden). Group 2 followed the same procedure, but in reverse order.

5.4 Procedure

For Phase 1 of the experiment ten participants were asked to browse the three shopping websites (shoplocal.com, play.com and shopping.com) for a maximum period of ten minutes, and not less than five minutes. Participants were asked to indicate the section that they enjoyed the most and the least of each website; and provide ratings on a scale of 1 to 5 for each of the chosen sections.

Out of the three websites, shoplocal.com was chosen to be tested in Phase 2 of this experiment. The electronics section was clearly the most enjoyed on shoplocal.com. Home & garden was chosen because four users considered it as the least enjoyable section within the shoplocal.com and shoppoing.com websites. Of the three websites, the participants expressed a preference for shoplocal.com. (See Appendix A - Phase1 questionnaire)

Afterwards, twenty additional participants were divided into two groups. Group1 participants started the free-browsing task with electronics (E) and ended with home and
garden (H). Each section was browsed for five minutes. The participants provided real-time ratings using the CET. The second group followed the same procedure, but in the reverse order.

An *Independent sample* test was conducted, to test the difference between the two groups’ retrospective assessment scores. As in the previous experiments, simple- and comprehensive model multi-linear regressions were compared, to assess the adequacy of the peak end rule.

5.5 Participants

In total, thirty students from the University of Manchester volunteered to take part in this experiment. Ten students performed Phase 1, in order to determine the preferred website, as well as the sections that they enjoyed least and most; twenty students then performed Phase 2.

5.6 Results

This section contains a description of the relevant data characterising the participants, and an analysis of the results of the experiment. The analytical section presents Spearman correlation test results, regarding selected real-time enjoyment moments and retrospective assessment. It also shows the effect of altering the order of the content on retrospective assessment. There is a comparison made between the simple model and the
comprehensive model multi-linear regressions, as a means of checking the adequacy of the peak end rule. The analysis culminates with an examination of the correlation between the retrospective assessment of enjoyment, and the duration of the procedure.

Results indicated that participants most enjoyed the `electronics` section and least enjoyed the `home and garden` section.

On shoplocal.com five users rated *electronics* to be the most enjoyable section; the overall rating of the five users was 19 on scale of 1 to 5. Two users chose the *electronics* section on play.com to be the most enjoyable content of the website. Both users gave the rating of 4 on scale of 1 to 5. On shopping.com only one user rated *electronics* as the most enjoyable, and gave it the maximum score of 5. The electronics section was considered to contain the most enjoyable content across the three websites, although there was not unanimous approval for it.

Home & garden was chosen by two of the users (3 and 2 on the 1 to 5 scale) to be the least enjoyed section on shoplocal.com. Play.com did not include a *home & garden* section. On shopping.com two more users chose home & garden to be the least enjoyed section; both users’ ratings were 2 out of scale of 1 to 5.

5.6.1 Descriptive

The web usage of the twenty participants in Phase 2 varied from 6 hours- to 70 hours per week (mean = 20.9, sd=14.5). The number of years of web experience varied from 3 to 15 (mean = 8.7, sd= 2.4). The reported web experience and weekly usage of the 20
participants of phase 2 appeared more realistic than that reported in either the first or second experiment.

The minimum peak real-time enjoyment rate (on a scale of 0 to 100) reported by the twenty participants was 33, and the maximum was 100 (Mean = 75.6, SD = 14.3), while the minimum end real-time enjoyment rate reported was 12, and the maximum was 100 (Mean = 57.9, SD= 22.6)

Table 5-1 (below) illustrates the mean and standard deviation of each of the descriptive statistics for Group 1 (G1 (E-H)) and Group 2 (G2 (H-E)); as well as those of retrospective ratings.

<table>
<thead>
<tr>
<th></th>
<th>G1 (E-H)</th>
<th>G2 (H-E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mean age</td>
<td>21.2 ± 1.22</td>
<td>21.1 ± 1.79</td>
</tr>
<tr>
<td>% Female</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Web Experience (years)</td>
<td>8.1 ± 2.42</td>
<td>9.3 ± 2.26</td>
</tr>
<tr>
<td>Weekly web usage (hours)</td>
<td>22.2 ± 18.29</td>
<td>19.6 ± 10.13</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>10:50 ± 01:01</td>
<td>10:46 ± 00:54</td>
</tr>
<tr>
<td>Retrospective assessments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants’ enjoyment rating</td>
<td>0.30 ± 2.11</td>
<td>2.10 ± 1.79</td>
</tr>
</tbody>
</table>

Table 5-1 Experiment 3 characteristics of participants and procedure

11 Values are mean +- Standard deviation, or percentage of each participant
An *Interdependent sample test* was conducted between Group 1 and Group 2, in terms of initial-, peak-, end-, average- and total real-time enjoyment rating, along with experiment procedure duration. There was no significant difference between the two groups. These results suggest that the participants of each group experienced similar experimental conditions, which validated the design of the experiment. On the other hand, there was a significant difference between the retrospective assessments of Group 1 and Group 2. This will be examined in the section: Content order: - effect on retrospective assessment.

<table>
<thead>
<tr>
<th>Real-time enjoyment</th>
<th>G1</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Enjoyment</td>
<td>70.90±18.21</td>
<td>80.30±7.18</td>
</tr>
<tr>
<td>Initial Enjoyment</td>
<td>46.00±16.08</td>
<td>48.10±16.08</td>
</tr>
<tr>
<td>End Enjoyment</td>
<td>49.40±25.00</td>
<td>66.50±16.91</td>
</tr>
<tr>
<td>Average Enjoyment</td>
<td>50.47±13.56</td>
<td>59.71±5.88</td>
</tr>
<tr>
<td>Total Enjoyment</td>
<td>670.20±268.86</td>
<td>895.90±337.18</td>
</tr>
</tbody>
</table>

Table 5-2 Group 1 and Group 3 real-time enjoyment (mean and standard deviation)
5.6.2 Analytical

Relationship between real-time and retrospective assessments of enjoyment

Table 5-3 (below) presents a Spearman correlation matrix between peak-, end-, total-, initial enjoyment moments, and the average of all enjoyment ratings along with the duration of the procedure. It is clear that there was a strong statistical correlation between the peak-, end- and average real-time enjoyment moment with the retrospective assessment of enjoyment, for the 20 participants of the two groups, as shown in the table below:

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Peak</th>
<th>End</th>
<th>Average</th>
<th>Total</th>
<th>Duration</th>
<th>Enjoyment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1</td>
<td>0.271</td>
<td>-0.003</td>
<td>0.438</td>
<td>0.149</td>
<td>-0.056</td>
<td>0.198</td>
</tr>
<tr>
<td>Peak</td>
<td>0.271</td>
<td>1</td>
<td>0.538*</td>
<td>0.662**</td>
<td>0.477*</td>
<td>-0.563</td>
<td>0.755**</td>
</tr>
<tr>
<td>End</td>
<td>-0.003</td>
<td>0.538*</td>
<td>1</td>
<td>0.595**</td>
<td>0.278</td>
<td>-0.287</td>
<td>0.709**</td>
</tr>
<tr>
<td>Average</td>
<td>0.438</td>
<td>0.662**</td>
<td>0.595**</td>
<td>1</td>
<td>0.230</td>
<td>-0.122</td>
<td>0.724**</td>
</tr>
<tr>
<td>Total</td>
<td>0.149</td>
<td>0.477*</td>
<td>0.278</td>
<td>0.230</td>
<td>1</td>
<td>-0.337</td>
<td>0.340</td>
</tr>
<tr>
<td>Duration</td>
<td>-0.056</td>
<td>-0.563**</td>
<td>-0.287</td>
<td>-0.122</td>
<td>-0.337</td>
<td>1</td>
<td>-0.257</td>
</tr>
<tr>
<td>Enjoyment</td>
<td>0.198</td>
<td>0.755**</td>
<td>0.709**</td>
<td>0.724**</td>
<td>0.340</td>
<td>-0.257</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5-3 Experiment 3: correlation matrix between retrospective assessments and real-time measurements * = < 0.05, ** = <0.01

Content order: effect on retrospective assessment

An Independent samples test was conducted between the retrospective assessments of Group 1 and Group 2: (E-H) and (H-E). There was greater enjoyment reported in the H-E condition (mean = 2.11) than in the E-H condition (mean = 0.3). The mean difference between conditions was -1.8, and the 95% confidence interval for the estimated population mean difference is between -0.339 and -0.203. Mean standard deviation (2.1
The effect size $d = 2.1 - 0.3 = 1.8$, which is considerable. An independent t-test showed that the difference between conditions was significant ($t = -2.439$, adjusted $df = 12.807$, $p = 0.030$, two-tailed).

Multi-linear regression (simple & comprehensive)

This experiment followed the same analytical method used in previous experiments to test the validity of the peak-end rule. Multiple-linear regressions were performed; the first was called the *simple* model, and included peak and end real-time moments of enjoyment as predictors of the retrospective assessments of enjoyment. The second model, which was called the *comprehensive* model included peak-, end-, initial-, average of all real-time ratings-, and total enjoyment as well as the duration of the procedure, as predictors of the retrospective assessment of enjoyment. This method was inspired by Daniel Kahneman and his colleagues.

It is clear from the table below that the predictive ability of the comprehensive model was slightly better than that of the simple model. In this instance, there was no significant difference found between the predictions of the two models. This result suggests that peak- and end enjoyment moments could predict the retrospective assessment of enjoyment as well as the sum of the initial-, peak-, end-, average-, total ratings (See Table 5-4 below):
Table 5-4 Experiment 3: predicting participants’ memories from combination of real-time measures

Table 5-5 (below) shows the standardized Beta coefficients of the two models as predictors. This table helps to provide a better insight of the contribution of each of the predictors in the retrospective models.

<table>
<thead>
<tr>
<th>Retrospective assessments</th>
<th>Simple model</th>
<th>Comprehensive model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Peak-End)</td>
<td>(Initial, Peak, End, Average, Total, Duration)</td>
</tr>
<tr>
<td>Enjoyment Retrospective assessments</td>
<td>0.683(^{12})</td>
<td>0.713</td>
</tr>
</tbody>
</table>

\(^{12}\) Values are R^2.
Experiment 3

<table>
<thead>
<tr>
<th>Comprehensive model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>0.743</td>
</tr>
<tr>
<td>End</td>
<td>0.337</td>
</tr>
<tr>
<td>Initial</td>
<td>-0.076</td>
</tr>
<tr>
<td>Average</td>
<td>0.003</td>
</tr>
<tr>
<td>Duration</td>
<td>0.179</td>
</tr>
<tr>
<td>Total</td>
<td>-0.076</td>
</tr>
</tbody>
</table>

Table 5-5 Experiment 3: standardized Beta coefficients of the two models as predictors

Effect of duration on retrospective assessments

There was no significant correlation found between procedure duration and retrospective assessments of enjoyment. This result supports the findings of Experiment 2, and further suggests that duration does not significantly affect retrospective assessment. This result gives further confirmation that the phenomenon of *duration neglect* can be applied to website experiences. (See Table 5-6 below):

<table>
<thead>
<tr>
<th>Retrospective assessments</th>
<th>Procedure duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrospective assessments of enjoyment</td>
<td>-.257</td>
</tr>
</tbody>
</table>

Table 5-6 Experiment 3: Spearman correlation between overall procedure duration and retrospective assessments of enjoyment
5.7 Discussion

The peak issue which arose in the second experiment, in which the peak was ill-defined, was overcome by using bounded content for free-browsing in this experiment. The peak enjoyment moment, which was *clearly defined*, was found to be strongly correlated with the retrospective assessment of enjoyment ($r = 0.75$, $p<0.01$). The standard deviation across the peak times ($sd= 14.313$) was lower than that of the second experiment ($sd= 16.2$). The difference between the standard deviation of the peak times could explain the strong relationship between peak enjoyment and retrospective assessment of enjoyment in the third experiment, but it does not fully explain *why* the peak did not correlate with the assessments of enjoyment in the second experiment.

The *end* real-time time enjoyment moment strongly correlated with the retrospective assessment of enjoyment. The strong correlation of peak and end moments reflected positively in terms of the prediction of retrospective assessment of enjoyment. The peak and end moments could predict retrospective assessment as well as all other moments; including the average of all real-time ratings.

The strong correlation is a promising result in terms of peak-end rule replication in the web environment. It shows that peak and end moments were strongly related to the assessment of enjoyment of the website. The average of all real-time ratings also seemed to be strongly correlated. This indicates that the combination of free-floating browsing and restricted environment of this task had somehow worked to overcome the peak issue
that arose in the second experiment, where the peak had no definition. In this experiment, the peak had become *clearly defined*.

The independent sample test results suggest that the participants of Group 2 (H-E) reported greater enjoyment than the Group 1 (E-H) participants. Hence, the term *preference of improvement* used by Ariely (2001) could be replicated in website user experiences.

For the first time in this research, there was a task- or content order effect on retrospective assessment. The results of this experiment have shown that those people who experienced increasing enjoyment towards the end of the browsing period reported a greater retrospective assessment of enjoyment than those who experienced decreasing enjoyment. The findings of Phase 2 confirmed the grading of the elements determined by Phase 1. This demonstrated the value of keeping users involved in the design of an experiment.

The duration of the procedure did not correlate with retrospective assessment. This result supports what had been found in the two previous experiments; that the duration of the procedure did not influence the retrospective assessment of a website. This was a further example of *duration neglect* in the web environment.
5.8 Summary of Experiment 3

Experiment 3 (E3) further tested peak-end rule in a website shopping experience. It also attempted to examine the effect of changing the order of tasks on retrospective assessment (what we shall call content order). The effect of duration on retrospective assessments was again monitored.

In a preparatory study, ten participants browsed three shopping websites and indicated both their favoured site, and the most and least enjoyable sections. The results showed that the electronics section was considered to be the most enjoyable, while home and garden, the least enjoyable.

Afterwards, twenty students from the University of Manchester were employed to browse the chosen shopping site: shoplocal.com. The students were divided into two groups. Group 1 started browsing the `electronics` section and ended with `home and garden`; each for a period of 5 minutes. The second group performed the same procedure, but in reverse content order. This procedure attempted to create increasing enjoyment towards the end, in order to control the enjoyment flow of the shopping experience.

Independent sample test results indicated that the retrospective assessment of enjoyment was affected by content order. The participants of Group 2 (home and garden-electronics), reported greater enjoyment than those of Group 1 (electronics-home and
Experiment 3

garden). The overall duration of the procedure did not significantly affect the retrospective assessment of enjoyment of either group.

The comprehensive model appeared to be a slightly better predictor than the simple model, although there was no significant difference between the predictions of the two models. It was clearly demonstrated that peak enjoyment and end enjoyment moments could predict retrospective assessment as reliably as a combination of all of the moments. This result suggests that the peak end rule can be applied to website experience.

To briefly recap:

- Eliciting participants’ opinions in terms of the most and the least enjoyable sections of a website was a crucial element in the design process of the experiment.

- Participants that ended with the `electronics`- and started with `home & garden` section reported greater enjoyment than those who started with the `electronics`- and ended with the `home & garden` section.

- Peak and end enjoyment moments could predict retrospective assessment as well as all other moments together (initial-, peak-, end-, average-, total enjoyment and duration of the procedure).
• Reversing the order of contents in order to increase enjoyment towards the end of the website experience, resulted in a greater sense of enjoyment of the process.

• Duration of the procedure did not significantly correlate with retrospective assessment.
Chapter 6 Experiment 4

6.1 Introduction

Experiment 4 (E4) examined the end effect on the retrospective assessment of enjoyment of a website. It also looked at the adequacy of peak-end rule with respect to web site user experience. At the same time this experiment attempted to assess the relationship between the duration of the procedure and retrospective assessment.

The results of the third experiment that used online shopping experience were promising in terms of testing the content order effect on retrospective assessments of enjoyment for that reason it was decided to use online shopping experience again in the fourth experiment. There was a need for a website that would provide participants with a fluctuating enjoyment experience in that it would contain a variety of sections with could cause the user enjoyment to increase or decrease rapidly. After studying a number of shopping websites, waitrose.com was chosen for this experiment. The waitrose.com includes a wide a diversity of contents that range from grocery, electronics, clothes and many others.
In the previous experiments, end moments were found to be highly correlated with retrospective assessments of enjoyment. The current experiment focused more on the effect of the end real-time enjoyment moment on the retrospective assessment of the participant. The experiment tried to control the real-time end moments, in an attempt to test whether high enjoyment at this particular moment would result in greater perceived enjoyment of the process than when a participant ends their web browsing experience when feeling less satisfied. The fact that the end moment always occurs at the end of the experience for each participant has increased the temptation to test whether low- and high end-enjoyment would cause a significant difference in the participants’ retrospective assessments.

Participants were asked to free-browse waitrose.com, replicating a web shopping experience. A shopping experience was used in this experiment to increase the participants’ interaction with a website, to keep them involved. It was assumed that people would be likely to experience moments of pleasure during on-line shopping experiences.

Participants were given more freedom than in the previous experiment in terms of content browsing. They were advised to cover as much as possible of the waitrose.com website content, without any specific task restriction. Participants had no clue that the tool would start monitoring their real-time ratings after 8 minutes had passed. This method was used to increase the chances of a participant ending with low-, medium-, or high real-time enjoyment.
The current enjoyment tool (CET) was modified so as to manipulate low-, medium- and high end enjoyment. This was done by creating a conditional statement after 8 minutes web browsing had passed: if the end real-time moment rating was less than 25, it was considered to be low end, while if it was above 75 then it was considered to be high end. In either of these instances, the tool would then terminate the browsing experience, and ask the participant to proceed to fill in the questionnaire; giving their retrospective assessment of enjoyment; as well as general information about themselves. The participants that recorded their real-time enjoyment as being between 25 and 75 would continue browsing until 12 minutes had passed; at which point the tool would stop and direct them to the final questionnaire. This will be further explained in the Design and materials section (below).

Participants were instructed to use the tool to provide real-time enjoyment ratings while they browsed the contents of waitrose.com. Later on, this was used to identify initial-, peak-, end-, total- and average of all real-time enjoyment ratings. Afterwards, these moments were compared using Spearman correlation tests, as well as multi-linear regression, similarly to the previous experiments.

The duration of the procedure for each of the 28 participants was obtained through the CET. The duration was to be compared with the retrospective assessments of enjoyment again, using the Spearman correlation test. It was thought that this might be helpful in understanding the nature of the relationship between duration and assessment.
6.2 The task

Participants were asked to free-browse the waitrose.com web site, in order to cover as much as possible of the content.

6.3 Design and materials

The tool design used for the fourth experiment was similar to that of the third experiment (Figure 5-1) in previous chapter, but without a `next website` command button. The enjoyment level tool was modified for this experiment, by adding a timer to the code, which would run an `if` statement after 8 minutes of the experiment. If the enjoyment level was < 25, the system would stop, and ask the participant to proceed to the questionnaire, to report their final ratings. This group were considered to be the low-end enjoyment group; if the enjoyment level was >75, the message box would appear, and ask the participant to carry on to the questionnaire. This group, in turn, will be considered as being high-end enjoyment group. If the enjoyment level was between 26 and 74, the system would let them carry on until they hit the time limit; which was 12 minutes. This group were classified as the moderate enjoyment group. The design of the tool was intended to test the end effect on retrospective assessments of enjoyment.

A computer was equipped with Internet explorer, and a modified current enjoyment tool (CET) was used to measure each participant’s real-time enjoyment. The CET was modified for this experiment by adding a timer to the code, which ran an `if` statement
query after 8 minutes of the experiment: if the enjoyment level was <= 25 or => 75, the system would stop and ask the participant to proceed to the questionnaire, to report their final ratings. The two groups thus formed would be classified as low- and high end enjoyment groups. If the enjoyment level was between 26 and 74, the system would let them carry on until they hit the time limit, which was 12 minutes. This group would be classified as the moderate end enjoyment group.

6.4 Procedure

Waitrose.com was used as a `playground` web site, replicating an online shopping experience to further test peak-end rule. The nature of the web site was such that it would provide a fluctuating enjoyment experience.

A demonstration of the working of the CET was provided to each participant, prior to their browsing session. Participants were asked to freely browse the web site, starting from the home page, for a maximum period of 12 minutes, depending on their ratings after 8 minutes (See chapter 5 (E2), figure 5-1). Participants were observed during their browsing experience, and were encouraged to use the CET whenever their enjoyment level changed, or as much as they chose. Towards the end of the experiment, participants were asked to fill in a short questionnaire, providing general information, as well as their final enjoyment ratings of the whole experience; using the Likert scale system: from -5 to +5 (See appendix A).
The experiment was designed to facilitate the testing of the relationship between real-time ratings and final ratings; and in particular, the effect of the end moments on retrospective assessments. The tool was designed to identify three groups: low-, medium- and high end enjoyment.

6.5 Participants

Thirty Students from the University of Manchester were asked to take part in this experiment. The male and female participants were selected randomly upon entering the George Kenyon computer cluster at the University of Manchester campus.

6.6 Results

The following section is divided into a descriptive element and an analytical element, as in Chapters 3 to 5. The descriptive section comprises the groups’ summary statistics. Using multi-linear regressions, the analytical section examines end effect and its influence on retrospective assessment; as well as peak-end rule adequacy.

6.6.1 Descriptive

Thirty participants were categorized according to their end rating. End ratings of 0-25 were considered to be low end. Thirteen participants were in this grouping (Group 1, or G1). Those people whose end ratings were 26-75 were considered to be medium end and
classified as Group 2 (G2); which consisted of seven participants. The third group (G3) end ratings, between 76 and 100, were considered to be *high end*; and constituted ten participants.

Participants were given the choice to stop the experiment at any time, according to the ethics of research criteria; this explains why the average duration of the procedure for the medium-end group is not exactly 12 minutes.

Two of the users that performed the experiment were excluded from the data analysis, as they exceeded the 12 minute time limit. One user reached 16 minutes and the other performed the task for 20 minutes! These expectations occurred due to the user missing the message box that appeared towards the end of the experiment, and continuing to browse the task.

Table 6-1 (below) shows mean values and standard deviations of both the characteristics and the procedure ratings of the three groups:

<table>
<thead>
<tr>
<th></th>
<th>G1 (low-end)</th>
<th>G2 (medium-end)</th>
<th>G3 (high-end)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>12</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Mean age(^{13})</td>
<td>21.08± 2.1</td>
<td>22.4±2.6</td>
<td>23.1±3.3</td>
</tr>
<tr>
<td>% Female</td>
<td>38.46</td>
<td>57.14</td>
<td>60</td>
</tr>
<tr>
<td>Web Experience (years)</td>
<td>8.5±2.7</td>
<td>10.8±2.7</td>
<td>9.1±2.6</td>
</tr>
<tr>
<td>Weekly web usage (hours)</td>
<td>40.1±27.8</td>
<td>42.8±28.8</td>
<td>32.8±15.3</td>
</tr>
<tr>
<td>Duration (min)</td>
<td>08:40 ± 01:24</td>
<td>11:20± 01:15</td>
<td>08:46± 01:25</td>
</tr>
</tbody>
</table>

Table 6-1 Experiment 4 characteristics of participants and duration of procedure

\(^{13}\) Values are mean+- standard deviation; or percentage of each participant
Relationship between real-time enjoyment moments

Table 6-2 (below) shows the mean and standard deviation of the real-time ratings of enjoyment of the three groups:

<table>
<thead>
<tr>
<th>Real-time enjoyment</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Enjoyment</td>
<td>80.4 ± 11.6</td>
<td>69.86 ± 11.44</td>
<td>91.5 ±8.3</td>
</tr>
<tr>
<td>Initial Enjoyment</td>
<td>55.3 ± 13.4</td>
<td>47.85 ±7.38</td>
<td>52.6 ±16.6</td>
</tr>
<tr>
<td>End Enjoyment</td>
<td>18.7 ± 7.6</td>
<td>53.57 ±17.41</td>
<td>85.2 ± 5.4</td>
</tr>
<tr>
<td>Average Enjoyment</td>
<td>49.4 ± 8.2</td>
<td>55.4 ± 5.1</td>
<td>69.8 ±13.4</td>
</tr>
<tr>
<td>Total Enjoyment</td>
<td>787.9 ±347.4</td>
<td>632.8 ± 290.75</td>
<td>1157 ± 602.3</td>
</tr>
<tr>
<td>Retrospective enjoyment</td>
<td>0.66 ± 2.3</td>
<td>0.43 ±1.40</td>
<td>4.0 ± 0.088</td>
</tr>
</tbody>
</table>

Table 6-2 peak-, initial-, end-, average- and total real-time enjoyment in addition to retrospective assessment of enjoyment (mean and standard deviations of Groups 1, 2 and 3)

The mean rating of the real-time end enjoyment was 18.7 for G1, 53.57 for G2 and 85.2 for G3. These figures support the design of the experiment, creating low-, medium- and high real-time end enjoyment moments.

Relationship between real-time ratings and retrospective assessment

Table 6-3 (below), demonstrates the relation between real-time ratings and the retrospective assessment of enjoyment:

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Peak</th>
<th>End</th>
<th>Average</th>
<th>Total</th>
<th>Duration</th>
<th>Enjoyment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1</td>
<td>0.268</td>
<td>-0.174</td>
<td>0.028</td>
<td>0.217</td>
<td>-0.109</td>
<td>0.268</td>
</tr>
<tr>
<td>Peak</td>
<td>0.268</td>
<td>1</td>
<td>0.349</td>
<td>0.463*</td>
<td>0.559**</td>
<td>-0.350</td>
<td>0.598**</td>
</tr>
<tr>
<td>End</td>
<td>-0.174</td>
<td>0.349</td>
<td>1</td>
<td>0.703**</td>
<td>0.165</td>
<td>0.097</td>
<td>0.582**</td>
</tr>
<tr>
<td>Average</td>
<td>0.028</td>
<td>0.463*</td>
<td>0.703**</td>
<td>1</td>
<td>0.375*</td>
<td>0.258</td>
<td>0.619**</td>
</tr>
<tr>
<td>Total</td>
<td>0.217</td>
<td>0.559**</td>
<td>0.165</td>
<td>0.375*</td>
<td>1</td>
<td>-0.119</td>
<td>0.494**</td>
</tr>
<tr>
<td>Duration</td>
<td>-0.109</td>
<td>-0.350</td>
<td>0.097</td>
<td>0.258</td>
<td>-0.119</td>
<td>1</td>
<td>-0.095</td>
</tr>
<tr>
<td>Enjoyment</td>
<td>0.268</td>
<td>0.598**</td>
<td>0.582**</td>
<td>0.619**</td>
<td>0.494**</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-3 Experiment 4 correlation matrix between retrospective assessments of enjoyment and real-time enjoyment moments, and duration of the procedure

It is clear from Table 6-3 (above) that the peak-, end-, and average of all ratings were highly correlated with the retrospective assessment of enjoyment. This result was promising in terms of peak-end rule replication in the web environment.
6.6.2 Analytical

This section of results further examines the real-time end enjoyment effect on retrospective assessment. It also investigates peak-end rule adequacy by comparing simple and comprehensive linear regression models; as explained in this work.

Retrospective assessments of enjoyment

A One-way ANOVA test was performed between the retrospective assessments of enjoyment of the three groups. There was a statistically significant effect of the end ratings condition (F (2, 27) = 11.15, p<.001). A Bonferroni post-hoc was conducted, to identify which of the groups’ retrospective assessments significantly differed. The results showed that there was significant variation between the three groups.

Multi-linear regression (simple & comprehensive)

Table 6-4 (below) demonstrates the comparative predictability of retrospective assessment by the two models investigated in this thesis:
Table 6-4 Experiment 4 predicting participants’ memories by a combination of real-time measures

<table>
<thead>
<tr>
<th>Retrospective assessments</th>
<th>Simple model</th>
<th>Comprehensive model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Peak-End)</td>
<td>(Initial, Peak, End, Average, Total, Duration)</td>
</tr>
<tr>
<td>Retrospective assessment</td>
<td>0.488<sup>14</sup></td>
<td>0.567</td>
</tr>
</tbody>
</table>

There was no significant difference found between the two models. Each model managed to predict the retrospective assessment of enjoyment with some degree of accuracy. This result was a confirmation of the application of the peak-end rule to website experience; supporting the findings of the previous experiment. The Significant F change value between simple and comprehensive model was 0.95.

¹⁴ Values are adjusted R^2
<table>
<thead>
<tr>
<th>Model</th>
<th>Standardized Beta Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple model</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>0.416</td>
</tr>
<tr>
<td>End</td>
<td>0.455</td>
</tr>
<tr>
<td>Comprehensive model</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>0.200</td>
</tr>
<tr>
<td>End</td>
<td>0.409</td>
</tr>
<tr>
<td>Initial</td>
<td>0.191</td>
</tr>
<tr>
<td>Average</td>
<td>0.120</td>
</tr>
<tr>
<td>Duration</td>
<td>-0.003</td>
</tr>
<tr>
<td>Total</td>
<td>0.171</td>
</tr>
</tbody>
</table>

Table 6-5 Experiment 4: standardized Beta coefficients of the two models as predictors

Table 6-5 (above) shows the standardized beta coefficient of individual moments of enjoyment, in addition to the duration of the procedure.

Overall procedure duration and retrospective assessments of enjoyment

A Spearman test showed that there was no significant correlation found between the overall procedure duration and the retrospective assessment of enjoyment (Table 6-6, below):
Table 6-6 Experiment 4: Spearman correlation between overall procedure duration and retrospective assessments of enjoyment

This gives further confirmation of the existence of duration neglect, as proposed by Kahneman and his colleagues, and its replication in web experience.

6.7 Discussion

The free-floating shopping task of this experiment, using the waitrose.com website, aimed to test for the relationship between real-time enjoyment experience, and retrospective assessment. The particular emphasis was on the retrospective assessment of enjoyment in a web environment.

The current enjoyment tool (CET) was modified as to manipulate the creation of the three groups, experiencing low-, medium- and high real-time end enjoyment. This was done by setting up a timer, which after 8 minutes monitored and interrupted people’s browsing session, as has been explained earlier. The method of monitoring and stopping
the process was successful in producing three distinct groups, with low-, medium-, and high real-time end moment ratings.

The minimum peak enjoyment reported was 48, and the maximum was 100, based on the current enjoyment tool scale which was from 0-100. The variance between the 28 participants’ peak enjoyment values was 174.1. This variance was lower than that found in the second experiment, conducted on Brazil.com. This suggests that peak values were more communal in the current experiment than in the Brazil experiment. The online shopping experience produced better results than the online holiday experience, with respect to peak-end rule.

The difference between the retrospective assessments of the three groups was later tested using a one-way ANOVA test. The results have shown that the participants that ended their browsing with low- and medium real-time end enjoyment, recorded lower retrospective assessments, than those who reported a greater level of enjoyment towards the end of their browsing experience.

This result further confirms the importance of the end browsing moment and its influence on retrospective assessments. This finding seems to be in line with what Ariely (2001) suggested: that an experience that deteriorates towards the end results in a lower retrospective assessment than an experience which improves with time; when both experiences are equally weighted.
The experiment used a free-browsing task. The nature of the web-browsing experience, and the participants’ subjectivity, made it impossible to replicate the exact series of events for each participant. This experiment tried to provide participants with a similar level of experience by giving them the freedom to browse the content of a single website, then manipulating the end of their browsing experience, in an attempt to capture a pronounced end effect, and inspect its bias on retrospective assessment.

Both the simple and comprehensive models managed to predict the retrospective assessment of enjoyment with a fair degree of accuracy. There was no significant difference between the predictions of the two models. This result was again promising in terms of the application of the peak-end rule to website experience.

As in previous experiments duration of the procedure did not influence retrospective assessments of enjoyment. This further suggests that duration does not play a big role in web experiences.

6.8 Summary of Experiment 4

Experiment 4 (E 4) further examines the end effect on retrospective assessment. The effect of duration was also tested. Following on from the previous three experiments, it further investigated the existence of peak-end rule within a web site shopping experience (waitrose.com).
Thirty participants from the University of Manchester volunteered to take part in the experiment. Participants were categorized according to end enjoyment ratings. End ratings between 0 and 25 were considered to be low end. Twelve participants were included in this Group1 condition. End ratings between 26 and 75 were considered to be medium end (Group 2); constituting seven participants. End ratings between 76 and 100 were considered to be high end (Group 3); nine people were in this group.

The retrospective assessment of enjoyment did not statistically significantly correlate with the duration of the experimental procedure.

There was found to be a significant end effect on retrospective assessments. A One-way ANOVA test was performed between the retrospective assessments of the three groups. There was a statistically significant effect on the assessments of enjoyment by the end ratings condition (F (2, 27) = 11.15, p<.001). A Bonferroni post-hoc was conducted to identify which of the groups’ retrospective assessments of enjoyment differed significantly. The results showed that the assessments for Groups 1, 2 and 3 varied significantly. The simple and comprehensive models for prediction did not significantly differ. Each model predicted retrospective assessments with a fair degree of accuracy.

To briefly recap:

- End moments of the experience seemed to have a significant effect on retrospective assessments of enjoyment.
- Greater enjoyment towards the end resulted in higher retrospective assessments.
- Experimental design enabled easier control and identification of end enjoyment moments, than peak moments.
- Peak and end enjoyment moments could predict retrospective assessment as well as all other moments integrated, including the average of all real-time enjoyment moments.
- Duration of the procedure did not significantly correlate with the retrospective assessment of enjoyment.

6.9 Regression of all four experiments combined

Each experiment was designed with its own particular emphasis to investigate different aspects of peak-end rule; in the case of E1 the examination of the effect of the CET, altering the order of tasks with the idea of studying the flow of enjoyment; in E2 analysing the design and enjoyment of a website; E3 returning to the content order and exploring the phenomenon of duration neglect; and E4 focusing again of duration and looking closely at the end effect. Despite the difference in emphasis within this research, the one factor that was common to all experimentation was the testing of the peak-end rule in a web environment, with specific reference to perceived enjoyment.

As all the work share this common element, it was thought to be of interest to combine the results of all four experiments, thus creating a considerably larger sample size,
The peak-, end-, average-, total- and initial enjoyment moments; as well as the duration of the procedure of all four experiments; were included in one file. Simple and comprehensive regression models were used, as discussed earlier in the first experiment. In total, there were 128 users. In the case of the first experiment, the easy- and hard moments were included as separate values; and of course synchronised with their reported enjoyment moments; enjoyment being the dependent variable in all four experiments. The regression analysis comes out as follows:

<table>
<thead>
<tr>
<th>Participants’ assessments(^{15}) (all 128 users)</th>
<th>Simple (peak-end)</th>
<th>Comprehensive (initial-peak-end-total-average-duration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrospective assessment of enjoyment</td>
<td>0.438</td>
<td>0.463</td>
</tr>
</tbody>
</table>

\(^{15}\) Values are \(R^2\) of the prediction success of each model.

6-7 predicting participants’ memories using a combination of real-time measures of all four experiments

Table 6-7 (above) shows the regressions for the simple- and comprehensive models for the whole set of 128 users. Easy- and hard block tasks of the first experiment were
included as individual moments, which is why the total number of users was 128, rather than 108.

There was no significant difference found between the two models (significant F change = 0.231). R^2 (where R^2 is the prediction success of each model), was 43.8% for the simple model, and 46.3% for the comprehensive model.

The results are very interesting, in that the combination of the peak and end were equally good at predicting the perceived retrospective enjoyment as all moments combined. This was a startling result, given that none of the experiments individually came up with such a close match. This shows the benefit of using the larger sample size.

In addition, analysis was done of the standardized Beta coefficient values for each moment, as shown in Table 6-8 (below):

<table>
<thead>
<tr>
<th>Model</th>
<th>Standardized Beta Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple model</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>0.454</td>
</tr>
<tr>
<td>End</td>
<td>0.311</td>
</tr>
<tr>
<td>Comprehensive model</td>
<td></td>
</tr>
</tbody>
</table>
Experiment 4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>0.386</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td>0.256</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>-0.011</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-0.061</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>-0.091</td>
<td></td>
</tr>
</tbody>
</table>

6-8 Standardized Beta coefficients of the two models as predictors for all four experiments

As can be seen from the above table, the peak and end far and away exceed any of the other moments in their predictive ability, in terms of the retrospective enjoyment perceived by the individual.

This drawing together of the four experiments gives considerable weight to the hypothesis that the peak-end rule can hold for web experience.
Chapter 7 General discussion

This chapter summarises the results of the four experiments carried out in this thesis, and their implications in terms of user experience. It attempts to answer the main research questions by comparing and offering explanations of the analyses. It also relates the author’s findings to the work done by other researchers on the replication of peak-end rule in fields other than that of website experience. Additionally, this chapter discusses the emotional impact of web experience. Towards the end it provides recommendations for designers and practitioners, and suggests possibilities for future research on the assessment of the emotional impact of website use.

Website design can have a marked effect on a user’s experience. Consequently, the empirical evaluation of websites plays an important part in their design. Increasingly, such evaluations include subjective aspects of user experience, such as satisfaction. Standard evaluation methodology would allow users to interact with a website (perhaps using a fixed set of tasks) and subsequently to report their degree of satisfaction, or monitor other areas of impact.
Recent work in experimental psychology has, however, shown that retrospective summary evaluations are biased in a number of ways, when compared with real-time experiences.

In particular, retrospective evaluations are influenced by the order of moment-by-moment experiences, as well as their total or average intensity. Thus, when exposed to a sequence of aversive sounds, people will prefer an experience that gets progressively less unpleasant, to the reverse; even if the sum total of unpleasantness is equal. This study investigated whether or not the order of experiences affects the retrospective assessment of enjoyment for websites. It was assumed that if so, then evaluators would need to pay attention to the order of tasks used in evaluation studies.

Motive:

The phenomenon of user need is crucial in any design process. Emotions and perceptions are interrelated. The part of the human brain that is responsible for detecting a bad smell, for example, borders that which is affected when a person is frustrated. Many researchers have emphasised the importance of design in generating pleasure. The real-time emotional response of the web user was considered as something of importance. The central theme of this research was to come to some understanding of the relationship between *real-time* and *retrospective* assessments of enjoyment.
Method:

Many researchers have discussed the importance of emotional response to the web. Most work has focused on the theoretical aspects relating to this, but this thesis used an analytical approach. Web users’ emotions were recorded and monitored in an experimental setting. Later, the peak and end enjoyment ratings of each participant were identified. These two moments were then compared to others, in predicting the retrospective assessments of enjoyment.

This thesis also attempted to test the preference for improvement. Two methods to control enjoyment flow were implemented in order to test for this phenomenon. Additionally, the effect of browsing duration on web user assessments was observed.

Summary of experiments:

The four experiments attempted to answer the three main research questions. The first experiment, with the use of 40 participants, tested the influence of the current enjoyment tool on participants’ judgments. The second experiment mainly focused on the efficacy of using peak- and end enjoyment ratings, as against the average of all ratings and other moments; as predictors of retrospective assessment. Again, 40 participants were involved. The third and fourth experiments mostly tested for the phenomenon of preference for improvement.
In an attempt to control the flow of enjoyment, Experiment 1 used a method involving *variable task-difficulty*; whereas a *content order* method was used in Experiment 4. The former was unsuccessful; however, the latter was successful in controlling enjoyment.

The second experiment involved a free-browsing search to create about a possible holiday. The extent to which peak and end enjoyment predicted retrospective enjoyment ratings was low compared to the average of all moment-by-moment ratings. This perhaps was due to the difference in the challenges set by each of the participants; referred to the *concept of flow* by Csíkszentmihályi (1975) as where *flow* is defined as a `situation where the perceived challenges of an activity are matched by the person's perceived skills` (Csíkszentmihályi 1975).

The third experiment, on the other hand, focused more on testing the effect of manipulating the level of enjoyment towards the end of a web experience (following the rating by participants in a preparatory study). The results showed that the more enjoyment towards the end the better the retrospective assessment.

The third experiment made use of 30 participants, and was conducted in two phases. The purpose of the first phase, performed by 10 participants, was to identify the most and least enjoyable sections of three different websites, and to determine their favoured website. The *electronics-* and *home & garden* sections were later used in the design of the second phase of the experiment.
The fourth experiment controlled the real-time end moment, to further test for preference for improvement. This last experiment used 30 participants. Three distinct groups were separated by their low-, medium-, and high ratings of end enjoyment. Table 7.1 summarises the main results of each experiment.

This chapter is organised as follows:

- Use of current enjoyment tool (CET)
- Peak-end rule
- Effect of task order on retrospective assessment
- Effect of procedure duration on retrospective assessment
- Web use and emotion
- Future work
General discussion

<table>
<thead>
<tr>
<th>Experiment 1: www.nih.com (Chapter 3)</th>
<th>Experiment 2: www.brazil.com (Chapter 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fixed set of 8 health information-seeking tasks)</td>
<td>(Free-browsing holiday information-seeking task)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>- There was a task-difficulty effect (hard tasks took longer)</td>
<td>- There was no significant correlation with retrospective assessments of enjoyment ($r = -0.198$)</td>
</tr>
<tr>
<td>- There was no task-order effect</td>
<td></td>
</tr>
<tr>
<td>- There was a tool effect—users of the tool completed tasks more slowly</td>
<td></td>
</tr>
<tr>
<td>- The estimated time lost was 3 minutes out of average of 10 minutes for the groups that used the tool, i.e. 30%. Those groups that did not provide real-time ratings used the tool to perform the tasks only and the average duration of the procedure was about 6 minutes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Retrospective assessments of design- and enjoyment were highly correlated</td>
</tr>
<tr>
<td></td>
<td>- Peak enjoyment did not correlate with retrospective assessment of enjoyment (this was due to the considerable variation in peak time)</td>
</tr>
<tr>
<td>- There were no tool-, task-difficulty or order effects</td>
<td>- Average of all real-time and end-enjoyment moments were correlated with retrospective assessments of enjoyment</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>- Peak and end enjoyment moments correlated with the retrospective assessments of enjoyment for both easy- and hard task blocks</td>
<td></td>
</tr>
<tr>
<td>- Average of all real-time enjoyment moments correlated for the easy task block but not for the hard task block</td>
<td></td>
</tr>
<tr>
<td>- There was a contrast effect of end enjoyment</td>
<td></td>
</tr>
</tbody>
</table>
moment (starting with the hard tasks and ending with the easy tasks made the hard tasks harder, and the easy tasks easier, than when the tasks were in reverse order)

- Peak and end enjoyment moments could predict retrospective assessments of enjoyment as well as all other moments combined together, including peak-, end-, average-, total- and initial enjoyment moment as well as duration of the procedure for both easy- and hard task block

- There was a significant difference between the predictions of the simple (peak and end) and comprehensive (peak, end, average, total, initial and duration) models

Experiment 3: www.shoplopcal.com (Chapter 5)

(Free-browsing but controlled shopping task, `electronics` and `home& garden` were used to test order effect on assessments)

- There was no significant correlation with retrospective assessment of enjoyment (r = -0.257)

Experiment 4: www.waitrose.com (Chapter 6)

(Free-browsing online-shopping task; CET was modified to manipulate end- moment)

- There was no significant correlation with retrospective e assessments of enjoyment (r = -0.042)

Multiple-regression

Time
• Group 2 reported more enjoyment than Group (Group 2 ended with `electronics` and started with `home & garden` - that is, the reverse order to Group 1)

• The method used to manipulate rating at end-enjoyment moment (low, medium or high) confirmed what had been found in the third experiment; that is, ending web experience with high enjoyment would have a positive effect on the retrospective assessments of enjoyment

• Peak-, end- and average of all real-time enjoyment were highly correlated with retrospective assessment of enjoyment

• Peak-, end- and average of all real-time enjoyment were highly correlated with retrospective assessment of enjoyment

Multiple-regression

(Experiment 3 and Experiment 4)

• Peak and end enjoyment moments could predict retrospective assessments of enjoyment as well as all other moments combined; including peak-, end-, average-, total- and initial enjoyment moments, as well as duration of the procedure

7-1 Summary of the results of the four experiments
This thesis has followed an analytical approach to better understand people’s website evaluation. Real-time enjoyment ratings were monitored using what is called a current enjoyment tool (CET) (see Chapters 3, 4, 5 and 6, ‘Design and material’ sections). All four experiments were conducted to test the relationship between real-time enjoyment moments and the retrospective assessment of enjoyment, in a website environment.

Experiment 1 was constructed to examine the effect of the CET on retrospective assessments of design and enjoyment. Participants who used the tool to rate real-time enjoyment during a browsing session took longer to finish the experiment, so there was an effect on overall duration. The estimated time lost was 3 minutes out of 10, or 30%. Given the importance of monitoring emotion in web use, the minimal additional time involved would appear to be worthwhile. It is important to note that the tool did not tamper with the judgment of the participants; there was no ‘tool effect’ found on retrospective assessment. This result was encouraging in terms of the tool design.

One prospective use of the tool in future experiments is to embed it within a website as a component; to give web designers and developers a better understanding of the moments that influence a web user’s judgment. It could work as an indicator of users’ emotional responses. The emotional response of the web user could be more efficiently monitored using the tool, than by the almost standard method of the questionnaire. Questionnaires are more time consuming, and for this reason are often avoided.
7.1 Peak and end enjoyment predictions

Using multi-linear regressions on the results from Experiment 1, it was demonstrated that the simple model (using peak and end ratings) was as good a predictor of retrospective assessment as the comprehensive model (which also included initial-, total-, and average enjoyment, as well as duration of procedure, as factors). There was no significant difference between the predictions of the respective models. The comprehensive model predicted 64.4% of the variance in retrospective assessments, whereas the simple model predicted 62.3% of the same variance.

In Experiment 2, there was a significant difference between the retrospective predictions of the two models. These findings were not in support of the peak-end rule. The comprehensive model, and indeed just the average of all ratings, was a better predictor than peak and end enjoyment moments. The peak-end rule seems more likely to apply when the peak and the end appear (despite their special status) to be somehow representative of the whole episode that is judged retrospectively. This seems more likely when the episode is constrained in terms of experience, and perhaps only varies, or varies most saliently, in terms of the single parameter that is being judged (pain during an operation, enjoyment during browsing). And perhaps it is this factor of constraint that is compromised in the instance of free browsing. People may set very different goals moment to moment, and explore different parts of the website. The low correlation between peak times supports this view. The comprehensive model prediction
of retrospective assessment was 57.6%; whereas the simple model prediction was 26.3%.

In Experiment 3, the prediction of retrospective assessment using peak and end enjoyment ratings was relatively good, when compared to that of all ratings. There was no significant difference between the two models. Simple and comprehensive model predictions of retrospective assessments of enjoyment were: 68.3% and 71.3% respectively. This result supported that of the first experiment; and further suggested that peak- and end enjoyment could predict retrospective assessments within a constrained environment; as accurately as all moments combined (average of all real-time enjoyment ratings).

In Experiment 4, the predictions of retrospective assessment of enjoyment of both the simple and comprehensive models were 48.8% and 56.6% respectively. There was no significant difference found between the predictions of the two models. This result further supported what had been found in E1 and E3, that the peak and end could predict retrospective assessment of enjoyment as well as all moments combined.

The regression analysis of a combination of the results of all four experiments has shown very promising results. The peak and end moments were found to predict the overall assessment of enjoyment as well as all other factors combined.
Experiment 2 and 4 involved free-browsing tasks. Each individual taking part in such a `high-end` task will end up finding their own route, devising their own challenges, in order to remain stimulated (as suggested by Csíkszentmihályi (1975)).

The likelihood of two people taking an identical path, when there are so many options, is very small indeed. The individuals in the set do not, therefore, have a shared experience, and it follows that there will not be a clearly-defined peak.

However, the ending of an experience can be manipulated, as in Experiments 3, and by this means it was demonstrated that the retrospective assessment of enjoyment could be predicted.

The findings regarding the use of the combination of peak and end enjoyment ratings, as a predictor of retrospective assessment, could be summarised as follows:

- Identifying peak enjoyment was found to be very difficult.
- Experiment 2 results suggested that the average of all ratings was a more accurate predictor of retrospective assessment; than peak and end enjoyment ratings.
- Peak and end enjoyment ratings of E1, E3 and E4 were found to be as accurate as the combination of all ratings in predicting retrospective assessment of enjoyment.
- Peak and end enjoyment ratings were not always successful in predicting retrospective assessment.
- Human emotion being so complex, it is very hard to predict the response to a website.

7.2 Changing the order of events: effect on retrospective assessment

This thesis tries to understand the emotional impact of website experience. More precisely, it attempts to investigate perceived enjoyment on websites, by recording people’s real-time enjoyment ratings, and comparing them to their overall enjoyment ratings. The concept of pleasure being a result of an interaction with a product or a website is not new in the field of design. Pleasure that results from the interaction with a product can influence the overall judgment of that experience. However, is it possible to turn a negative emotional experience into a more pleasurable one? Why not apply, or further test what has been found in the field of psychology, to web use experience?

Ariely (2001) highlighted the fact that reversing the order of experience changed the overall evaluation. If the experience was less satisfying towards the end, the overall rating would be reduced: the reverse situation would result, conversely, in a higher overall rating; when both experiences were weighted the same. Experiments 1 and 3 of this work have investigated this matter, in an attempt to test whether or not such a rule applies within website experience.
The challenge was to find a way to recreate, within a web experience, equally weighted events, of differing enjoyment rating. The number of links needed to complete a certain task (the method used in E1) was not successful as a means of increasing and decreasing task difficulty and its attending potential enjoyment. In that experiment, the task order did not affect the retrospective assessment of either design or enjoyment.

The design of the first experiment failed to test for preference for improvement (Loewenstein and Prelec 1993; Ariely 2001). The number of links required to reach a task answer proved not to be a successful method of controlling enjoyment flow. Due to the complexity of creating enjoyment flow on the web, there was a need for a different approach. Preference for improvement was to be further tested in Experiment 3.

The second experiment was not designed to test for preference for improvement. Instead, it looked for answers to the first and third research questions: - Which are the better predictors of the retrospective assessment of enjoyment: peak- and end enjoyment; or the average of all ratings? Is there a relationship between duration and retrospective assessment?

E3, on the other hand, used a different approach to test order effect. It attempted to examine what we can term website content order (See Chapter 5). In the first phase of this experiment, 10 students were asked to identify a preferred website (of 3 options) and its least- and most enjoyable sections. The shoplocal.com website was chosen; on which the `electronics` section was deemed to be the most enjoyable, and `home and
garden` the least enjoyable. In the second phase, two groups consisting each of ten participants were tested. The Group 1 participants performed the procedure and provided real-time enjoyment ratings, starting with `electronics` and ending with the `home and garden` section; whereas Group 2 performed the same procedure, but in reverse order. There was a significant content order effect on retrospective assessments, since the Group 2 participants gave a higher enjoyment rating than Group 1. T-test results showed that there was a significant difference between the two groups’ assessments of enjoyment.

A usability test based on laboratory experiments focuses on the audience of a specific site, requiring them to perform a sequence of tasks. A participants’ screening questionnaire and recruiting script would be provided. Usually, the participants perform the tasks under the controlled conditions of an experimental procedure. People are generally tested individually. The usability testing of websites seeks measurable answers to questions, which confirm or challenge the assumptions of the developers. It provides help in the creation of alternative designs. Ordinarily, there is a test plan, or test design document, which will include the issues and questions to be answered by a certain group of participants. Based on that test plan, the usability team develops scripts for the test administrator, to ensure that all the participants receive the precise instructions, and that there is an avoidance of errors. Afterwards, the participants would be asked to complete a questionnaire, or to take part in a brief interview, regarding their experience (Kantner and Rosenbaum 1997).
There are concerns regarding the use of such a method. One, is that it requires more resources and time than heuristic evaluations; and two, the process of recruiting participants in laboratory testing can be an issue, given that their profile needs to match certain criteria; based on the aim of the test and target audience (Kantner and Rosenbaum 1997).

According to the results obtained from E3, the order of the content of a website affects people’s retrospective assessment of enjoyment. Practitioners and usability conductors are to be encouraged to give more attention to the task order effect on people’s global evaluation. This thesis recommends randomizing for each participant, or deliberately manipulating order (as done in this thesis) to look at how much differences it makes.

7.2.1 Preference for improvement

The findings of the third experiment were interesting. For the first time, it seemed that what was called the content order method, had managed to control enjoyment flow; and showed that participants who ended with a higher enjoyment rating, retrospectively reported greater enjoyment, than those who ended with a lower enjoyment rating. In other words, the experience was perceived as being more enjoyable overall, when there was an increase in the intensity of enjoyment; even though the sum of the intensity of enjoyment was the same: participants who ended with `electronics`, recorded a higher retrospective assessment of enjoyment, than those who ended with `home & garden`.
The recognition that students enjoyed `electronics` more than `home & garden` (from the previous questionnaire) led to a means of controlling enjoyment.

The fourth experiment further tested *preference for improvement*. The experimental design attempted to control enjoyment flow by controlling the end enjoyment (see Chapter 6 `Design and material` section). The results confirmed the *preference for improvement* effect on retrospective assessment. They demonstrated that people who ended with a high enjoyment experience gave a correspondingly elevated assessment. This phenomenon, suggested by Ariely, occurred in the third and fourth experiments, which replicated online shopping experience. The results confirmed the existence of *order effect* or *preference for improvement* in the retrospective assessments of enjoyment of web users.

Here is what we have learned about *preference for improvement* in the web environment:

- It was very difficult to control the enjoyment of the user on the web by manipulating a simple proxy for task difficulty.
- The number of links required to complete a task did not equate with task difficulty. This was not, therefore, a method to control enjoyment.
- Enjoyment flow can be manipulated, *when there is prior knowledge of the user*. In this instance, the set was pre-tested, to confirm a preference for `electronics` over `home & garden`.
• Preference for improvement occurred in Experiments 3 and 4:

Increasing the intensity of enjoyment towards the end caused an elevated retrospective assessment of enjoyment; demonstrated by an online shopping experience.

7.2.2 The effect of end enjoyment moment on retrospective assessments

E4 was designed to further investigate the end effect on the retrospective assessment of enjoyment of a website. The tool was modified to match the experimental design; to manipulate the creation of low-, medium-, and high end- enjoyment (see Chapter 5 Figure 5.1). Participants who ended their web browsing at a high enjoyment level recorded a higher retrospective assessment than those who ended with low or even medium enjoyment. This result indicates the influence of end moments on the retrospective assessment of websites.

7.3 Duration neglect

The relationship between the duration of a procedure and its retrospective assessment was investigated. The study did not focus on duration neglect but attempted to monitor its presence/ absence.

In Experiment 1, the duration of the procedure was not significantly correlated with the retrospective assessment of enjoyment, for the four groups. The results also showed that
there was a significant effect of the tool on overall duration, as explained earlier; but changing the task order (E-H and H-E) did not have an effect on overall duration, and there was no significant interaction between the factors. The easy- and hard tasks each took longer to complete with the tool: (mean with tool = 4 min 20 sec; mean without tool = 3 min 9 sec). The task order had no effect on the duration of the easy tasks, but the hard tasks took longer to complete when participants started with them, compared with when they finished with them; and this effect was greater *with* the tool than without the tool.

In Experiment 2, the procedure duration did not statistically correlate with retrospective assessments of design or enjoyment. This suggested that the duration did not affect the participants’ judgments.

The effect of the duration of a procedure on retrospective assessment was monitored throughout the four experiments. The procedure duration was not statistically correlated with retrospective assessments of enjoyment in any of them. It was assumed that duration had played a relatively insignificant role, and that the participants in some way seemed to greatly ignore it. This was a clear example of duration neglect.

Therefore, it was found that:

- Duration did not influence retrospective assessment of enjoyment when participants performed free-browsing, or a fixed set of tasks.
• There was a time cost involved in using the tool, but this did not affect the overall ratings
• The correlation of duration with overall enjoyment rating for the free-browsing task was negative, while the same correlation for the fixed set of tasks was positive: both correlations were very low and not statistically significant
• Free web-browsing method might have reduced the intensity of the experience.

7.4 Research outcomes:

The current enjoyment tool succeeded in capturing the real-time enjoyment of the web-user. The assessment of the real-time emotions experienced on the web is not straightforward. Much work remains to be done in this area.

Website real-time evaluation provided more understanding about how people come to form their retrospective judgments. The research has met the seven objectives outlined earlier. Peak and end predictions of retrospective assessments were good in some elements of the work, and poor in others. Experiments 3 and 4 provided strong evidence of preference for improvement on the web. Duration neglect occurred in the free-browsing task, and duration was found not to be correlated with assessment when participants were required to do a set of tasks or free-browsing task.

The peak-end rule is of considerable importance to web practitioners, in particular, the preference for improvement implications on retrospective assessment. Peak-
especially end real-time enjoyment moments are unique, and found in some cases to be related to retrospective assessment; while in others not. It is not recommended to depend entirely on peak and end enjoyment moments at this stage; rather it is highly advisable to consider all other real-time enjoyment moments, and to identify the moments and factors that influence retrospective assessment by the web user.

Preference for improvement occurred in the third and fourth experiments of this thesis. This result is invaluable for usability testers and web evaluators. The results of this research clearly demonstrate that providing the user with the most enjoyable section towards the end of a procedure has the greatest effect on retrospective assessment. It increases web user enjoyment, and the chances of him/her returning to the website. It is crucial to give close attention to task-order in web usability testing. Randomizing task-order is not recommended.

7.4.1 Peak-end rule: implication for web experience

Regardless of the explosion in information technology, and increasing dependency on computers in all aspects of social life, it is only recently that user need has been taken seriously; in the design process of products, and in particular, websites. Usability engineering is all about studying and designing an easy-to-use product. Human computer interaction (HCI) is considered to be a major component of usability engineering. HCI focuses on how people interact with computer technology, and how to improve the efficiency of such interaction. It provides a theoretical foundation for
applying usability concepts to software applications and computer interfaces; including websites.

The following section includes recommendations to user-experience practitioners and web-designers; as well as to web-evaluators.

- Peak-, and more importantly end enjoyment moments of web experience were found to be relatively good predictors of retrospective assessment. User-experience designers and practitioners are highly recommended to consider these moments in the design process; since it easier than integrating the rating of all moments. Although the average ratings of all enjoyment moments were better correlated with retrospective assessment in some cases, peak and end moment ratings are still considered to be beneficial.

- The effect of duration on the assessment of a web experience, tested by the Spearman correlation, seemed to be very low.

- Usability testers are highly recommended to pay more attention to the ordering of tasks, and on the presentation of website contents through a usability test procedure. The aim is to end the web experience at a high enjoyment level.

7.5 Web use and emotion

It was found to be difficult to manipulate the flow of enjoyment within a website experience. This could be due to the nature of website experience. For instance, it is
almost impossible to alter the order of the links required to set up an email account, whereas a dentist, for example, has more control over the sequence of a procedure. In a web experience, users are more involved in an interaction. This noticeable difference between website experience and other experiences, which influenced the course of the research, is named in this thesis level of involvement.

In the earlier part of the work, an effort was made to control enjoyment flow, by varying the number of links required to complete a task. This proved to be unsuccessful. On the other hand, what we refer to as website content order demonstrated that increasing the enjoyment level towards the end of a web experience resulted in a higher retrospective assessment of enjoyment.

Predicting the emotional response to a website experience is very difficult. The interaction of an individual with a website can vary dramatically. There are many factors which come into play, to affect people’s judgment: attitude, level of interest, or response towards certain visual cues within the website (for instance, the logo). This thesis focused on people’s enjoyment within a website experience, and worked on the assumption that the participants were in a relatively calm, emotionally stable state.

7.6 Future work

The primary focus of this study was to test the efficacy of peak-end rule in website experience. The real-time enjoyment of a web experience was assessed using the
perspective of individual participants. Future research may focus on different techniques for identifying peak and end enjoyment moments; perhaps using a magnetic resonance imaging (MRI) to keep track of a participant’s emotional state during a browsing session; to come to a better understanding of emotions that are aroused during interaction with a website. Another interesting topic to investigate might be the use of the peak-end rule in a social interaction environment; to see how one person’s peak could influence the judgment of one or more others; to determine what implications there may be.

The work in the field of real-time emotions on the web has barely begun. There are many factors and a range of emotions that remain to be tested in the web environment. Further study of the duration neglect effect on retrospective assessment is required. Identifying the factors responsible for generating certain emotions would aid the control of the flow of the web user experience. Modifications to the current enjoyment tool could help to ‘fine-tune’ the monitoring of hedonic emotions, and give greater clarification to researchers and designers, in order to facilitate the connection with the user.

The aim is to understand people’s web assessments; to learn from the web user about emotional response on the web.

Could one person’s peak affect another’s? What factors could be identified?
An experimental setting was considered to test the peak-end rule in a collaborative environment. Two groups of 20 participants would perform the procedure. The first group would comprise ten participants browsing a shopping website; each participant would browse using the Current Enjoyment Tool (CET) assigned to them for five minutes in turn; so each could report his real-time emotion throughout the browsing session. The second group would perform the same procedure as the first group, but each participant would browse and report his real-time rating of the browsing session alone, without any collaboration. This design would allow the testing of the influence of people’s peak emotion on each other during a web browsing experience; and at the same time, this design would further investigate the emotional peak, and its relationship with retrospective assessment, as each group would be asked for their emotional assessment following their browsing. The comparison of the assessments of the two groups through the use of the Spearman correlation tests and ANOVAs as well as multi-linear regression analysis, similar to the models used in this thesis; this might enable the identification of the collaboration and individual factors or the understanding of the nature of the peak-end rule in a collaborative web setting.

The details regarding the above proposed experimental work would take time to fine tune. The emotional impact of the peak moment in web browsing, on the self and potential other(s), needs more investigation. The consideration of age as an additional factor, looking at within- and cross-generation influence is something of considerable interest and importance. The research on emotional response on the web has barely
begun. There are many seeds of ideas that are in need of further investigation. The future work connected with this study could be summarised as the in-depth analysis of the emotion generated at the peak and end moments on the web; in order to identify the factors that influence such moments. (The end moment was found to be of particular importance from the findings of the current research.)

The phenomenon of *duration neglect*, which is part of the peak-end rule, would need to be considered in any future work. The effect of the duration of the experimental procedure would be monitored throughout the proposed studies above.

There is a need for new ideas and methods to keep a better track of the experiment procedure timings, such as start time and end time. One of the challenges faced in the current research was the complexity of the design of the tool, in recording time variables of each participant’s experience. Linking this to the previous proposed experiments, it is important to consider devising an easy and efficient method for recording the ratings of individuals and paired participants (as proposed above) in order to maximise the benefit of the data gathered, and ease the statistical analysis. This could be done by working with experienced web application developers, in order to simplify the tool functionality, in an attempt to gather data that best serves the research objectives, and that is tailored to the data analysis process.

As has been said, the end moment of enjoyment seemed to be very influential on retrospective assessments of enjoyment, in the current research. The result of the current
research has shown the importance of the end moment, at least regarding the enjoyment level on the web. This research directs to further testing the relation of the end moment on retrospective assessments on various positive emotions, such as happiness, excitement and fun.

The experiments conducted in the current research could be replicated by shifting the investigated emotion from enjoyment to happiness or fun perhaps since of triumph or relief or amazement and even excitement. This would help us understand the nature of different positive emotions on the web (separately).

An idea that came to light is related to multiple recording of emotions at the same time; to include more than one sliding bar to gather more emotions. For instance, imagine the CET with three emotional slides joy, fun and excitement; would the user of the web be able to express such emotions at once? Would he or she (the user) be able to distinguish between those emotions? Is it technically possible or practical to gather such emotions on the web? Because of the complexity of such mixed emotion it has been decided to delay the implementation of this method and try to apply a more realistic way by focusing on single emotion that promotes positive web experience as discussed in previous paragraph.

One of the challenges encountered during the analysis of the data of the current research, was the link between the web page and the value of the enjoyment reported. There was neither enough time nor resources to gather such information. Now that the
understanding of the whole process has developed, along with a knowledge of the potential pitfalls, it has been possible to think of a simple idea that could be developed over time; that of keeping track of each web page, and linking it with the emotional value reported by the web user. To put it simply, a print screen command could be programmed for every time the participant gives a real-time emotional response. This snapshot of the web page would be linked, and kept in a database in accordance with the user group and reported real-time emotions, for further statistical analysis.

Identifying new means of testing the preference for improvement on the web, following the review of the peak-end rule theory, as proposed by Ariely 2001, could be done by expanding the method defined in this thesis as content-by-content. The method, which used ‘electronics’ and ‘home and garden’ sections, to replicate decreasing and increasing enjoyment on the web, assumed that the electronics section was perceived as the more enjoyable; based on a preparatory study. This could be replicated in other preparatory studies, to better understand the user group in relation to such positive emotions as those proposed above. After identifying the sections, and relating them to the emotion, it would be possible to come up with three sections that replicated increasing fun, excitement... and then to examine whether or not there is any significant difference in reversing the sequence.
7.7 Summary

This thesis followed an analytical approach, seeking to understand the ways that people evaluate their enjoyment of website experiences. All four experiments were conducted to test the replication of *peak-end rule* (proposed by Daniel Kahneman and his colleagues) for website experience.

Peak moments were difficult to identify, and did not correlate with retrospective assessment as well as *end* moments. Due to the fact that people are operating at different levels, they end up devising their own strategies to remain stimulated (Csíkszentmihályi 1975).

The peak for one will not equate with the peak for another in an open task, such as free-browsing. This disparity of interest, ability and emotional nature is perhaps the reason why the peak-end rule will not hold for a group, in these circumstances; even though it may well hold for an individual. The *content order* had an effect on people’s overall judgments. It was concluded that *duration* plays little or no role in retrospective assessment.

When designing a website, it is crucial to have a client-group in mind, in order to be able to accommodate as far as possible the need of the people in it. Referring to Lindgaard’s work it is important to create an image that is sufficiently imaginative to draw the user in almost instantly. Once the user is ‘caught’, as it were, then what is
required of them must be stimulating in order to hold their interest (Lindgaard, Fernandes et al. 2006). As Csíkszentmihályi (1975) suggests, if it is too demanding, the user is likely to lose heart; if too easy, they will be likely to move on elsewhere (Csíkszentmihályi 1975).

The current enjoyment tool (CET) has been developed and amended throughout the four experiments of the current research. At first, the CET was designed to keep records of the participants’ real-time enjoyment ratings; using a sliding bar that ranged from 0 to 100. Informal pilot studies were conducted, asking users to use the CET while browsing different websites. Following this, the CET had to be modified to fit the design of the first experiment, which involved using a set of eight tasks; in order to ease participants’ browsing, and eliminate the use of paper in this experiment. The set of eight tasks were included in the CET itself; according to the conditions of the experimental design, that made use of four groups (as explained in Experiment 1).

Modifications were also made to the second experiment CET. This time, the enjoyment tool was stripped of all the tasks, and simply left with the sliding bar that ranged between 0 and 100; marked with low-, medium- and high enjoyment. The disappointing results of the first experiment, which attempted to test for the preference for improvement on the web; relying on the number of links required to reach a task answer, to determine task difficulty; led to this decision. There were neither tasks, nor the testing of preference for improvement in the second experiment. At this point in the research, it was decided to focus on the assessment of peak-end rule replication on the
web, to adjudge whether or not it is possible in such a hectic setting given the comparatively unconstrained nature of the experimental environment, when compared with that of the experiments conducted by Kahneman and his fellow workers, in proving the peak-end rule.

The third experiment, on the other hand, returned to testing for the preference for improvement in the web environment. However, unlike the method used in the first experiment, that in the third made use of two sections of a single website; based on the opinions of a sample of 10 students, who decided which of the sections were the most and least enjoyable. The experiment gave promising results: controlling the web experience to allow greater enjoyment towards the end may well be beneficial; the design of sites to this end needs very careful planning, with a good knowledge of the target user. Ending an experience in an enjoyable way appears to have a positive influence on the way that the individual perceives their experience. The more pleasurable the overall impression, the more likely is a return to the same site. There are many factors and challenges; it has not been easy to test for the preference of improvement on the web in a laboratory setting: clearly the real world environment is considerably more complex.

All four experiments attempted to test the peak-end rule. Overall, the current research stresses the importance of the peak and end enjoyment moments, with the end enjoyment being more predictive of the overall assessments of enjoyment of people on the web. There was an issue with the predictive power of the peak enjoyment moment,
at least in the second experiment. The free-browsing task of the second experiment resulted in the peak being ill-defined; presumably due to individual meanderings. This is a demonstration of the limitations of the peak-end rule, which does not appear to hold in an unconstrained environment. As the work progressed, it became clear that what was needed was the creation of a constrained environment, in order to test the adequacy of the peak-end rule. This was to determine the nature of the design of the later experiments, which despite constraints allowed a degree of freedom to the participants; given that this thesis was geared to the assessment of the validity of the peak-end rule, using the factor of enjoyment rather than pain or discomfort.

Further statistical testing with the inclusion of the low peak showed an improvement in the peak prediction, but there was still a significant difference when compared to the comprehensive model. The prediction of the overall assessment of enjoyment by the average of all real-time moments was greater than that of the peak and end moments: although it is the case that the peak and end moments were included in the average of all real-time moments.

This research indicates the importance of the real-time moments: without their identification, it would be very difficult to understand how people make their judgments. Collecting real-time ratings is a difficult task, time consuming, and could be very complicated in real-life. Therefore, focusing on the peak and end moments could save
time and resources, and help to provide people with better web experiences. Before pronouncing the importance of these two moments, there is a need for more testing.

In creating a large sample size by the use of the experiment cluster, the results were very promising indeed: the fact that future work would benefit from this, is clear to see.

The duration of the procedure of the four experiments was recorded, and tested using Spearman’s correlation, for its significance on retrospective assessments of enjoyment within laboratory experiments on the web. The correlations were very low and in most cases in the negative. Because of this, it was concluded that time has little or no effect on participants’ retrospective assessments of enjoyment. This suggests that participants appear not to pay much attention to the duration of their browsing when reporting overall assessments. Considerable thought and effort was put into the research to encourage a sense of flow to the participants’ web browsing. It would appear that as participants become deeply involved in rating and browsing they naturally disregard the duration of a procedure. The individual has agency. Further experimentation would help to give a better understanding of the relationship between the duration of a procedure, and its assessment.

The key is to do the groundwork, in order to have as great an understanding of the user group as possible. Then the material can be pitched at an appropriate level.

UX designers, and usability testers and practitioners, are advised to pay attention to content order in usability studies, and the web-design process. Emotion plays a big role
in web experience. The ending of a web experience with increasing enjoyment, results in the perception of an overall more pleasurable experience. Therefore, it is highly recommended that the design is such, that it creates a pleasant ending to the experience.
Appendix A

Experiment 1: first questionnaire: After the first block of tasks.

Considering the four tasks you have just completed:

1. Could you give your opinion about the design of the website?

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. To conclude could you please rate the overall enjoyment you experienced with the website:

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiment 1 second questionnaire: After the second block of tasks.

Considering the four tasks you have just completed please complete the following

1. Age ________________

2. Gender Male / Female

3. What is your occupation/subject? ________________

4. For how long (in months) have you used the web? ________________

5. How many hours do you use the internet per week? ________________

6. Could you give your opinion about the design of the website?

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
</tr>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
</tbody>
</table>

Very bad design | Neutral | Very good design

7. To conclude could you please rate the overall enjoyment you experienced with website:

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
</tr>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
</tbody>
</table>

Low | Medium | High
Experiment 2: questionnaire

1. Age __________

2. Gender Male / Female

3. What is your occupation/subject? _______________

4. For how long in years have you used the web? ______________

5. How many hours do you use the internet per week? ______________

6. Make a list of few places you would like to visit in Brazil? ______________

7. Could you give your opinion about the design of the website?

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
</tbody>
</table>

Very bad design | Neutral | Very good design

8. To conclude could you please rate the overall enjoyment you experienced with website:

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
</tbody>
</table>

Low | Medium | High
Experiment 3: Phase 1 questionnaire

1. Have you used this website before? Yes / No

2. Which section did you enjoy the most?

3. How much did you enjoy it? (Please select one only)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Which section did you enjoy the least?

5. How much did you enjoy it? (Please select one only)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Play.com

1. Have you used this website before? Yes / No

2. Which section did you enjoy the most?

3. How much did you enjoy it? (Please select one only)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Which section did you enjoy the least?

5. How much did you enjoy it? (Please select one only)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shopping.com

1. Have you used this website before? Yes / No

2. Which section did you enjoy the most?

3. How much did you enjoy it? (Please select one only)

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>O</th>
<th>O</th>
<th>O</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Which section did you enjoy the least?

5. How much did you enjoy it? (Please select one only)

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>O</th>
<th>O</th>
<th>O</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General information:

1. Age ____________

2. Gender Male / Female

3. What is your occupation/subject? _____

4. For how long in years have you used the web? _______

5. How many hours do you use the internet per week? _______
Experiment 3: Phase2 questionnaire

Please fill in the following:

1. Age ______________

2. Gender Male / Female

3. What is your occupation/subject? ______

4. For how long in years have you used the web? ______

5. How many hours do you use the internet per week? __________

6. Please rate the overall enjoyment you experienced with website:

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
<td></td>
</tr>
</tbody>
</table>

Low | Medium | High
Experiment 4: questionnaire

Please fill in the following:

1. Age ________________

2. Gender Male / Female

3. What is your occupation/subject? ________________

4. For how long in years have you used the web? ________________

5. How many hours do you use the internet per week? ________________

6. Did you use the website Yes/ NO

7. Please rate the overall enjoyment you experienced with website:

<table>
<thead>
<tr>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
</tbody>
</table>

Low | Medium | High
References

Triandis, H. C. (1980). Values, attitudes, and interpersonal behavior. Lincolin, NE, University of Nebraska
