In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Magnetic Reconnection and Particle Acceleration in Semi-Collisional Plasmas

Stanier, Adam

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

Magnetic reconnection is an important mechanism for the restructuring of magnetic fields, and the conversion of magnetic energy into plasma heating and non-thermal particle kinetic energy in a wide range of laboratory and astrophysical plasmas. In this thesis, reconnection is studied in two semi-collisional plasma environments: flares in the solar corona, and the start-up phase of the Mega-Ampere Spherical Tokamak (MAST) magnetic confinement device. Numerical simulations are presented using two different plasma descriptions; the test-particle approach combined with analytical magnetohydrodynamic fields is used to model populations of high-energy particles, and a two-fluid approach is used to model the bulk properties of a semi-collisional plasma.With the first approach, a three-dimensional magnetic null-point is examined as a possible particle acceleration site in the solar corona. The efficiency of acceleration, both within the external drift region and in the resistive current sheet, is studied for electrons and protons using two reconnection models. Of the two models, it is found that the fan-reconnection scenario is the most efficient, and can accelerate bulk populations of protons due to fast and non-uniform electric drifts close to the fan current-sheet. Also, the increasing background field within the fan-current sheet is shown to stabilise particle orbits, so that the energy gain is not limited by ejection.With the second approach, the effects of two-fluid physics on merging flux-ropes is examined, finding fast two-fluid tearing-type instabilities when the strength of dissipation is weak. The model is then extended to the tight-aspect ratio toroidal-axisymmetric geometry of the MAST device, where the final state after merging is a MAST-like spherical tokamak with nested flux-surfaces and a monotonically increasing q-profile. It is also shown that the evolution of simulated 1D radial density profiles closely resembles the Thomson scattering electron density measurements in MAST. An intuitive explanation for the origin of the measured density structures is proposed, based upon the results of the toroidal Hall-MHD simulations.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Astronomy and Astrophysics
Publication date:
Location:
Manchester, UK
Total pages:
235
Abstract:
Magnetic reconnection is an important mechanism for the restructuring of magnetic fields, and the conversion of magnetic energy into plasma heating and non-thermal particle kinetic energy in a wide range of laboratory and astrophysical plasmas. In this thesis, reconnection is studied in two semi-collisional plasma environments: flares in the solar corona, and the start-up phase of the Mega-Ampere Spherical Tokamak (MAST) magnetic confinement device. Numerical simulations are presented using two different plasma descriptions; the test-particle approach combined with analytical magnetohydrodynamic fields is used to model populations of high-energy particles, and a two-fluid approach is used to model the bulk properties of a semi-collisional plasma.With the first approach, a three-dimensional magnetic null-point is examined as a possible particle acceleration site in the solar corona. The efficiency of acceleration, both within the external drift region and in the resistive current sheet, is studied for electrons and protons using two reconnection models. Of the two models, it is found that the fan-reconnection scenario is the most efficient, and can accelerate bulk populations of protons due to fast and non-uniform electric drifts close to the fan current-sheet. Also, the increasing background field within the fan-current sheet is shown to stabilise particle orbits, so that the energy gain is not limited by ejection.With the second approach, the effects of two-fluid physics on merging flux-ropes is examined, finding fast two-fluid tearing-type instabilities when the strength of dissipation is weak. The model is then extended to the tight-aspect ratio toroidal-axisymmetric geometry of the MAST device, where the final state after merging is a MAST-like spherical tokamak with nested flux-surfaces and a monotonically increasing q-profile. It is also shown that the evolution of simulated 1D radial density profiles closely resembles the Thomson scattering electron density measurements in MAST. An intuitive explanation for the origin of the measured density structures is proposed, based upon the results of the toroidal Hall-MHD simulations.
Thesis main supervisor(s):
Thesis advisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:211308
Created by:
Stanier, Adam
Created:
21st October, 2013, 16:38:09
Last modified by:
Stanier, Adam
Last modified:
14th November, 2013, 14:50:28

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.