
NUMERICAL MODELING OF

ACCELERATED CHARGED

PARTICLES BY MAGNETIC

RECONNECTION IN SOLAR FLARES

A thesis submitted to the University of Manchester

for the degree of Master of Science

in the Faculty of Engineering and Physical Sciences

2012

By

MOHAMMAD HUSSEIN HUSSEIN

School of Physics and Astronomy



Contents

Abstract 18

Declaration 19

Copyright 20

The Author 21

Acknowledgements 22

List Of Abbreviations 23

24

25

1 Introduction 26

1.1 The Corona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Solar Flares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Origins Of Electromagnetic Radiation . . . . . . . . . . . . . . . . . . 33

1.4 Flare Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Aims and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Background Theory 40

2.1 Basic Theory of MHD 2D Reconnection . . . . . . . . . . . . . . . . . 40

2.1.1 MHD Theory and Numerical Application . . . . . . . . . . . . 40

2.1.2 Magnetic Reconnection . . . . . . . . . . . . . . . . . . . . . . 41

2



2.2 Particle Motion in Electric and Magnetic Fields . . . . . . . . . . . . 46

2.2.1 Uniform E and B Fields . . . . . . . . . . . . . . . . . . . . . 47

2.2.2 Inhomogeneous B and E Fields . . . . . . . . . . . . . . . . . 49

2.3 Particle Acceleration and Test Particle Model . . . . . . . . . . . . . 52

2.3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.2 Analytical Models of Particle Acceleration . . . . . . . . . . . 56

2.3.3 Test Particle Model . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.4 Forced Reconnection Using MHD Simulations . . . . . . . . . 65

3 Methodology 70

3.1 The Full Trajectory Particle Code . . . . . . . . . . . . . . . . . . . . 71

3.2 Testing the Code Using Uniform and Static Field Lines . . . . . . . . 73

3.2.1 Analytical Configuration . . . . . . . . . . . . . . . . . . . . . 73

3.2.2 Testing the Interpolation Scheme . . . . . . . . . . . . . . . . 75

3.2.3 Testing the Runge-Kutta 4th order Method . . . . . . . . . . 78

3.2.4 Testing the Adams-Bashforth 4th Order Method . . . . . . . . 80

3.2.5 Relativistic VS. Non-Relativistic Calculation . . . . . . . . . . 81

3.2.6 Electron Testing . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Testing the Drift Theory . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 Field with ∇B Drift . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.2 Simulations and Results . . . . . . . . . . . . . . . . . . . . . 88

4 Trajectory Calculations For Analytical Fields 94

4.1 The Model and System Formalism . . . . . . . . . . . . . . . . . . . . 95

4.2 Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Error Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Trajectory Calculations For Numerical Fields 109

5.1 System Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3



5.2 MHD Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Particle Trajectory Experiments . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Matching Experiments . . . . . . . . . . . . . . . . . . . . . . 114

5.3.2 Non-Matching Experiments . . . . . . . . . . . . . . . . . . . 116

5.3.3 Numerical Issue, Problem Solved . . . . . . . . . . . . . . . . 120

5.3.4 GCA Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.5 Vgyro and The Magnetic Moment µ . . . . . . . . . . . . . . . 127

5.3.6 Non-applicable GCA Regime . . . . . . . . . . . . . . . . . . . 132

5.3.7 Kinetic Energy calculations . . . . . . . . . . . . . . . . . . . 132

6 Conclusions 139

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A 145

A.1 Important MHD Parameter’s Equations . . . . . . . . . . . . . . . . 145

A.2 Relativistic GCA Equations . . . . . . . . . . . . . . . . . . . . . . . 146

A.3 Resistive MHD Equations . . . . . . . . . . . . . . . . . . . . . . . . 147

A.4 Analytical Form Derivation . . . . . . . . . . . . . . . . . . . . . . . 147

A.5 RK4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.6 A-B4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.7 Analytical Expressions For Some GCA Values . . . . . . . . . . . . . 152

A.8 Magnetic Field and Velocity Stream Lines Derivation . . . . . . . . . 153

Word count: ∼ 35000

4



List of Tables

1.1 Most important gamma-ray lines from solar flares (Lang, 2000). . . . 38

3.1 Initial conditions and input parameters for the first 3 experiments

(not chosen for any physical reason). . . . . . . . . . . . . . . . . . . 77

3.2 The error at the final step (t = tf = 40) between analytical and

numerical calculations for the first 3 experiments all having the same

values as using uniform and static magnetic and electric field lines. . . 79

3.3 Changed initial conditions and input parameters for experiment 16. . 84

3.4 The error at the final step between analytical and numerical cal-

culations for experiment 16 simulating an electron trajectory. The

gyro-period is always much smaller for the case of electrons as they

are more magnetised than protons due to their tiny mass. . . . . . . . 86

3.5 Initial conditions and input parameters for experiment 17 testing grad

drift theory at applicable GCA regime. . . . . . . . . . . . . . . . . . 89

4.1 Realistic coronal values assigned for the 3 main normalising coeffi-

cients; Length, Density, and Magnetic Strength and the other coeffi-

cients, Alfven Speed, Alfven Time, and Electric Strength are calcu-

lated from the assigned one following up from MHD theory. . . . . . 95

4.2 All values are normalised to their characteristic coefficients except

cos(θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Performed simulations using the GCA code. Each set of constant

α and variable Nxgrid correspond for 5 numerical simulations and 1

analytical one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5



4.4 Performed simulations using the full trajectory code. Low mass par-

ticles are dismissed as they give similar results to that simulated with

GCA code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Error calculation using equation 4.8 for each experiment. Other forms

of error expression could be used but all of them would give in general

similar results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 The value of the kinetic energy at the final step for the simulated

particle using full trajectory and GCA with all grid sizes and just for

heavy particles in order to calculate the error. . . . . . . . . . . . . . 108

4.7 The calculated error in final energy between full trajectory and GCA

(analytical with analytical and numerical with numerical) at each grid

size for particles with α = 10−3, 10−1. . . . . . . . . . . . . . . . . . . 108

6



List of Figures

1.1 The solar corona at the total eclipse of 26 February 1998 observed

from Oranjested, Aruba extending deeply to the space and showing

beautiful bright fine rays (Lang, 2000). . . . . . . . . . . . . . . . . . 27

1.2 Extreme UV image at a wavelength of 17.1 nm from (TRACE) for

Coronal loops extending to millions of meters from the Sun’s surface

to the corona (http : //www.nasa.gov/images/content/113853main

trace4 lg.jpg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 A fine Solar Dynamics Observatory (SDO) image of an erupting

prominence (eruptive event) associated with a medium sized solar

flare at the same time directed off the earth at the east limb (left side)

of the Sun on April 16 2012. http : //www.nasa.gov/mission pages/

sdo/multimedia/potw/index.html. . . . . . . . . . . . . . . . . . . . 30

1.4 A schematic drawing of different processes of a solar flare model where

energy is released at the X-point generating radio burst waves and

particles are accelerated either up to space or down hitting the chro-

mosphere and releasing HXR and γ-rays leading to the evaporation

process (Lang, 2000). . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 SXR, HXR, and γ-ray count rates by RHESSI for the 2002 July

23 flare showing the 3 different phases of a flare [phase 1:∼00:18 to

∼00:27 UT, phase 2:∼00:27 to ∼00:43 UT, and phase 3:&00:43 UT]

as discussed in §1.4 (Lin, 2006). . . . . . . . . . . . . . . . . . . . . . 36

7



1.6 Electron energy spectrum of the July 23, 2002 flare upon inversion its

Bremsstrahlung spectrum showing a Maxwellian distribution for the

thermal part, where most of the particles are within this region, and

a power law for the higher energy particles extending to MeV (Piana

et al., 2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 Sweet-Parker reconnection model showing a wide diffusion region

(shaded) where inflowing plasma (thick arrows) drifte to the current

sheet with low velocities VAL
−1/2
u and outflows (long arrows) with

high velocities VA (Priest & Forbes, 2000). . . . . . . . . . . . . . . . 43

2.2 Petschek reconnection model with a very narrow diffusion region (cen-

tral shaded region). 2 slow-mode shocks (the other 2 shaded regions)

are added by Petschek that heat and accelerate the plasma with other

assumptions leads to a higher reconnection rate (Priest & Forbes, 2000). 44

2.3 Rapid perturbation at the boundary caused mainly by photospheric

motions leading to topological changes in magnetic field, thus trig-

gering reconnection and then approaching equilibrium state (Hahm

& Kulsrud, 1985). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 The amount of reconnected flux, ψ1(0), during the four phases of

reconnection. The dashed line represent equilibrium (II) which is

stable to the tearing mode. . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 The main two states of evolution, ideal (a) and reconnected (b) (Vek-

stein & Jain, 1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Particle motion in uniform B and E=0 fields where particles gyrate

around magnetic field lines. Ions and electrons gyrate in opposite

clockwise direction in a way that the magnetic field created by the

gyrating particles should always be opposite to that externally im-

posed (Chen, 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 ~E × ~B drift, where particles of opposite charges are drifted in the

same direction but with opposite clockwise orientation (Chen, 2010). 49

8



2.8 A z-directed magnetic field varying in the y-direction causing a grad-

drift where particles of opposite charges drift in opposite directions

(Chen, 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.9 Converging magnetic field lines where particles move from weak to

strong field regions thus experiencing a mirroring effect that they can

escape from or be trapped in depending on their pitch angle (Chen,

2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.10 Particle trajectories when adding a small perpendicular component of

magnetic field to the simple model. Oscillating protons and electrons

are accelerated in opposite directions but turns away from the elec-

tric field toward the same direction due to the presence of the extra

magnetic field. Figure not to scale (Speiser, 1965). . . . . . . . . . . . 57

2.11 Different components of electric and magnetic fields inside a current

sheet (Litvinenko, 1996). . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.12 Field configuration model presenting a non-zero guiding field and elec-

tric field in the y-direction and the current sheet laying in the x − z

plane (Zharkova & Gordovskyy, 2004). . . . . . . . . . . . . . . . . . 60

2.13 Asymmetry rate vs. the By/Bz ratio from work done by Zharkova

& Gordovskyy (2004). The asymmetry rate is zero for values of

By/Bz < 10−6 where particles are ejected as a neutralised beam

but this symmetry is completely destroyed when By/Bz exceeds 10−2

where particles travel all the way through different loop legs. . . . . . 61

2.14 3 energy spectra curves for a system varying its maximum electric

field E0 from 1000 Vm−1 (top curve) to 10 Vm−1 (bottom curve).

The energy spectra curve become more steeper and its spectral indices

grow up whenever the maximum electric field is decreased (Wood &

Neukirch, 2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.15 Energy spectra for a) protons and b) electrons with 4 different values

of the angle between separatrices (α) (Hannah & Fletcher, 2006). . . 62

9



2.16 Final energy vs. initial position for 50 particles experiencing different

resistivity from top to bottom, η = 10−6, η = 10−7, and η = 10−8

respectively. We can deduce that when resistivity increases, more

energy will be transformed to the particles as the tearing mode will

be more efficient pushing field lines to reconnect (Heerikhuisen et al.,

2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.17 Particle trajectories for a) protons starting with initial thermal ve-

locities vint = 0.1VA where left panel correspond to large magnetic

moment and right panel for small one and b) electrons with initial

thermal velocities vint = 3.9VA and same panel description as for

protons (Gordovskyy et al., 2010a). . . . . . . . . . . . . . . . . . . . 64

2.18 Energy spectra for a) protons and b) electrons for the magnetic re-

connection simulated in figure 2.20 (Gordovskyy et al., 2010b) for the

whole process. It can be seen that most particles remain with their

initial thermal velocities and just few of them are accelerated to high

energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.19 Initial magnetic field and current density as defined in equations 2.22

and 2.23 respectively (Gordovskyy et al., 2010a). . . . . . . . . . . . 67

2.20 Evolution of magnetic field, current density, and plasma velocity in a

current sheet due to forced reconnection (Gordovskyy et al., 2010b).

Left panels show x−y magnetic field lines in the current sheet with z-

component plotted as a colour-scale. Middle panels correspond to the

absolute value of the electric field. The right panels show how plasma

flows in and out the current sheet marked by the black arrows, and

a colour-scale for the absolute plasma velocity. The snapshots were

taken at t=[0(a),16(b),32(c),64(d),96(e),128(f)]tA. . . . . . . . . . . . 69

3.1 The numerical box having two dimensions in space (x and y) and one

in time where the 6 field components are interpolated linearly to the

particle position (figure taken from Gordovskyy et al. (2010b)). . . . 76

10



3.2 Analytical (solid black) and numerical (dashed blue) results of ex-

periment 1. Panels from top to bottom are x, y, z, vx, vy, and vz

as labelled in each graph. we can notice drifting in the negative x

direction due to the ~E × ~B drift together with gyration in x and z.

Acceleration takes place in z and y directions. Same results are ob-

tained for experiments 2 and 3 with exactly the same error results as

expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Error vs. ∆t on a logarithmic scale for the 6 phase-space components

for experiments 1, 4, 5, and 6. The 6 lines are approximately straight

and parallel to each other with a slope = 4 indicating that RK4

method is working properly. The error in z and vx are very close that

is why the 2 lines seems to be on top of each other using a logarithmic

plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Same discussion as figure 3.3 but for Adams-Bashforth method using

experiments 7-10. For some reason the error in z and vx always show

close results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Relativistic (dashed blue) and non-relativistic (solid black) calcula-

tions for the 6 phase-space components using low speeds (vx0
= vz0

=

0.5×10−4c/VA = 0.015(dimensionless)). Both calculations give sim-

ilar results where γ ∼= 1, hence relativistic effects are ignored. Ana-

lytical results for both calculations also coincide on top of the 2 curves. 83

3.6 Relativistic-analytical (dashed gray), relativistic-numerical (solid blue),

non-relativistic-analytical (dashed red), and non-relativistic-numerical(solid

black) calculations for the 6 phase-space components using relativis-

tic speeds. Relativistic effects are no more ignored and influence a

lot on the path of the particle especially in the directions of gyra-

tions. Analytical and numerical results always coincide within the

same calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11



3.7 Results of experiment 16 simulating electron trajectory. Black solid

curves correspond to analytical solutions and blue dashed one for

numerical one. Coincidence is also insured by the small error values

at the last iteration as stated in table 3.4. . . . . . . . . . . . . . . . 86

3.8 Results for experiment 17. The 1st panel shows x vs. time where the

test particle drifts in the negative x-direction due to the grad drift.

The blue line represents the motion of the guiding centre in the x-

direction drifting linearly downwards. The 2nd panel (top right) is

just zooming inside the first panel to reveal the plot structure. The

3rd panel is y vs. time where the particle oscillates normally in this

direction and a little bit of zooming in the 4th one. The 5th panel show

a complete picture of dense oscillations in x− y plane and drifting in

the x-direction. The final panel shows vy vs. vx where all circles here

accumulated above each other to indicate that the Larmor radius is

not varying throughout time, it also gives an idea on the shape of

gyrations in the x− y plane. . . . . . . . . . . . . . . . . . . . . . . . 90

3.9 Results for experiment 20. Same discussion as in figure 3.8 but in this

experiment the GCA become slightly less valid as rl/L∇B is increased

a little bit, also the number of gyrations is less as discussed above. . . 91

3.10 Results for experiment 23. The GCA is no more valid, but we can

always notice the drifting in the negative x-direction. The guiding

drift velocity no longer agrees with that calculated from the GCA. It is

worth noting that in all cases, particles simulated in exact trajectories

drift faster than what it is approximated. . . . . . . . . . . . . . . . . 93

3.11 Logarithmic plot of rl/L∇B vs. error(%) showing an approximate

linear relation between Log(error) and Log(rl/L∇B) of slope ∼ 2 with

some deviation. This indicate a squaring relation between error and

rl/L∇B justified by the basic assumption made when deriving GCA

in ignoring the term (rl/L∇B)2. . . . . . . . . . . . . . . . . . . . . . 93

12



4.1 Magnetic field lines (solid blue) showing an X-shape configuration

and V ~E× ~B (dashed black) showing inflow of plasma in the x-direction

and outflow in the y-direction indicted by the arrows in the x − y

plane (current-sheet plane). Reconnection is likely to occur with such

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 A schematic drawing showing the Cartesian components of the veloc-

ity together with the parallel and perpendicular one. . . . . . . . . . 98

4.3 Results for a particle trajectory having α = 10−9 on a fine grid of

Nxgrid = 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Same as figure 4.3 but for a heavier particle with α = 10−3. The

particle does not perfectly follow the field lines. . . . . . . . . . . . . 102

4.5 Same as before but for a much heavier particle with α = 10−1. The

particle no more follow the field lines and GCA is broken down (more

details in chapter 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 a) Numerical GCA (solid green) and numerical full trajectory (dashed

pink) trajectory in x − y-plane for a light particle having initial po-

sition near the origin. b) Trajectory in the z-direction using GCA

(solid black) and full trajectory (dashed red). (c) and (d) same as (a)

and (b) respectively but for analytical calculation without interpola-

tion from the discrete grid. The particle is sufficiently accelerated in

the z-direction in a small time before being ejected from one of the

separatrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 A logarithmic plot for error vs. Nxgrid for the 5 α values. Log(erorr)

decreases lineally in the plots with a slope of ∼ 2 indicating that error

∝ Nx−2
grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

13



4.8 Error vs. α for the 5 Nxgrid values. It is the inverse plot for the

previous one. All lines show same feature for Log(error) decreasing

slowly with increasing α till reaching the non-applicable GCA regime

where the error orientation reverses and increase rapidly. Basically

the GCA should not be used at this stage as its non-applicable so

even the error discussion would not be informative. . . . . . . . . . . 106

4.9 GCA (solid green) and full trajectory (dashed pink) trajectories for

a particle with α = 10−3. The 2 lines do not coincide exactly as the

particle can be considered as a heavy one and does not obey guiding

centre validity conditions. . . . . . . . . . . . . . . . . . . . . . . . . 107

4.10 Same as figure 4.9 but for a heavier particle (α = 10−1). The 2

trajectories show different paths. . . . . . . . . . . . . . . . . . . . . 107

5.1 Magnetic field lines in the current sheet plane (x − y plane) with a

colour scale for the current density. Data taken from Gordovskyy

et al. (2010b). The current sheet is symmetric vertically and hori-

zontally but in opposite polarity for field lines. In the bottom section

the field lines are directed from the right to the left where in the top

section it is reversed. The current density ~j is concentrated at the

centre of the sheet and decreases gradually as going away. . . . . . . . 110

5.2 Coloured contour plot for ~Bx over the defined domain. . . . . . . . . 111

5.3 Coloured contour plot for ~By over the defined domain. . . . . . . . . 111

5.4 Coloured contour plot for ~Bz over the defined domain. . . . . . . . . 112

5.5 Bx (solid line) and Bz (dashed line) vs. y at the vertical centre of the

sheet (x = 0). These are quite similar to initial profiles as shown in

figure 2.19 after long time of evolution. . . . . . . . . . . . . . . . . . 112

5.6 The absolute value of the magnetic field (| ~B|) over the defined domain.113

14



5.7 A contour plot for the z-component of the magnetic potential Az

representing the field lines in the simulated current sheet in the x− y

plane reproduced after integrating the magnetic potential equation.

Same as Figure 5.1 but without the current density. . . . . . . . . . . 113

5.8 Surface plot of the current sheet. . . . . . . . . . . . . . . . . . . . . 114

5.9 Absolute value of the electric field (| ~E|) over the defined domain. . . 114

5.10 Parallel electric field, zero everywhere except at the separatrices. . . . 115

5.12 At magnetic islands, the condition of particle passing the defined

domain stops the simulation is dismissed, that is why the particle

keep bouncing in the left current island. . . . . . . . . . . . . . . . . 117

5.13 Particle being accelerated in the negative z-direction as being placed

initially at the origin of the current sheet where it is less magnetised.

After acceleration, the particle is ejected from one of the separatrices.

We could not plot the z-component of motion from GCA and full

trajectory on the same graph as for time step differences but it is

noticeable that both curves coincide. . . . . . . . . . . . . . . . . . . 118

5.15 One of the fault experiments with low µ value. . . . . . . . . . . . . . 120

5.16 Another fault experiment but with high µ value. . . . . . . . . . . . . 121

5.18 Problem resolved for the case of low µ after introducing the notion of

corrected electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.19 Same but for the high µ case. . . . . . . . . . . . . . . . . . . . . . . 126

5.20 Analysing different types of motion accounting for the particle trajec-

tory using the GCA code. The main term accounting for the particle

path in this experiment is ~E× ~B. Direct acceleration along field lines

can be neglected as the particle is a little bit away from the centre

as shown in the 6th panel where the value is fluctuating around zero.

All other terms are also very small so the particle does not experience

any sudden change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

15



5.21 Same discussion as before but we could notice that the ~E.~b term is

very high at some places as the particle passes near the centre at the

separatrices where electric current is concentrated. The 2 peaks in

U ~E× ~B term are a results for the high value of | ~E| at these specific

locations (see figure 5.9). . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.22 A bouncing feature with a sudden change in particle direction could

be viewed as a mirroring effect where magnetic field become stronger

(see § 2.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.23 V⊥ over the whole time for one of the experiments (upper panel). The

middle panel show a little bit of zooming to reveal the plot structure

and the lower panel zooms in more to resolve gyrations with constant

amplitude. V⊥ can be decomposed into 2 functions as viewed in the

last panel. First, is the periodic one corresponding for gyrations and

the second is a lifting one corresponding for drifting. A specific func-

tion was made to separate both types of motion from each other to

evaluate Larmor radius and calculate the magnetic moment µ. . . . . 130

5.24 19 plots aims to compare between 2 approaches (analytical calculation

of drifts and averaging method). 1st panel is the particle trajectory.

The next 7 (moving horizontally) are for analytical calculation of

drift term (mainly V ~E× ~B) and its corresponding ~Vgyro, µ, and rL. The

next 8 plots are for the same parameters but using the averaging

method (1st of these 8 is ǫ vs. time). The 2 methods seems to give

similar results as GCA is applicable within this experiment and µ is

approximately constant (adiabatic particle). The last 3 panels are

zooming in inside Vgyrox
, Vgyroy

, and Vgyroz
to reveal there structure

precisely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

16



5.25 1000 times heavier particle trajectory simulated using both codes

(blue for GCA and green for full trajectory). Gyrations now appear

without zooming as the Larmor radius is much bigger than before.

The difference in path may arise from the fact that the initial position

is not the guiding centre one. Energy discussion in the next section

will insure the difference. . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.26 Same as figure 5.24 but for the particle simulated using full code in

figure 5.25. It can be easily noticed that agreement is not as good as

before and µ show a lot of fluctuation. . . . . . . . . . . . . . . . . . 134

5.27 Energy profile comparison between full and GCA codes for one of the

experiments in the applicable GCA regime. Both codes give similar

profile shape. The full profile is smoother as GCA skip saving some

data for data-storage purposes. The energies before ejection were

very close with a small error. . . . . . . . . . . . . . . . . . . . . . . . 135

5.28 Energy profile comparison for a particle placed initially at the origin.

Both look quit similar with an increase in error at the final step. . . . 136

5.29 Energy profile comparison for a particle trapped in the left magnetic

island. The error at this region is the highest among other regions

(open magnetic field regions and near the origin). . . . . . . . . . . . 137

5.30 Energy profiles for a non-adiabatic heavy particle for full (upper

panel) and GCA (lower panel) codes. The full profile will of course

show fluctuation as that for trajectory. The final step energy in the

two codes is different as expected with a huge error. . . . . . . . . . . 138

17



Abstract

In this thesis we introduce the fundamental theory leading to the occurrence of solar
flares. Observations from different missions support theoretical postulates concern-
ing the mechanism proposed for such events, “magnetic reconnection”, where we
illustrates its basic theory, and consider one of its most important consequences,
“particle acceleration”. DC electric field associated with magnetic reconnection is
now widely studied as one of the primary processes of particle acceleration in solar
flares. Individual particle trajectories and acceleration due to direct DC electric
mechanism in solar flares are modelled here using two approaches. The first is the
full particle trajectory approach by solving Lorentz equation of motion that fully
describe particle’s motion. To do so we wrote what we call the “Full Code” that
solves numerically, using different methods, the Lorentz equation. The second ap-
proach, known by Guiding Centre Approximation (GCA) Theory, is widely used
when particles behave adiabatically. For this approach we used an existing code
called “GCA” to simulate particle trajectories. A full comparison is presented to
show the applicability of the GCA theory and its efficiency and when it can be used.
Both approaches operate on an analogous model trying to simulate magnetic re-
connection leading to the formation of a current sheet where particles are primarily
accelerated and gain sufficient energy allowing them to be ejected to the outer space
or come back to the Sun’s surface. We consider the 2-Dimensional MagnetoHydro-
Dynamic “MHD” model generating data files for background fields which serve as
an input for our particle trajectory codes. We extract some limitations for impor-
tant parameters such as mass-to-charge ratio and grid size and perform experiments
at different locations at the current sheet (at the centre, far away from the centre,
and at magnetic islands) to fully discuss differences between the 2 approaches. This
coupling between particle trajectory models and data on grid arising from finite
difference models is studied numerically and analytically. Different numerical meth-
ods, relativistic effects, analytical configurations, particle specie and mass effects
and some others are taken into account.
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Chapter 1

Introduction

Solar flares are the most energetic explosions in our solar system. They seem to be

far away events, but they can damage satellites and even ground based technology

and power grids as they generate electromagnetic radiation and accelerate particles

(ions and electrons) to very high energies and relativistic speeds influencing the

atmosphere of our Earth. Much research has explored the hidden features of flares

and the particle-energising mechanisms. Magnetic reconnection is the most likely

candidate for such a mechanism. Magnetic loops stretching from the inner to the

outer surface of the Sun, for millions of meters in the corona, come close to each other

under the influence of plasma and foot-point motion to experience reconnection.

While they are reconnecting they form a very narrow current sheet of high electric

field at the centre. This current sheet has been an issue of debate for a long time

concerning its shape, length scale and how it may energise particles to the extent

they become non-thermal and emit radiation in the hard X-ray spectrum.

1.1 The Corona

As the events of this project ”solar flares and particle acceleration” occur in this

region of the Sun, it is important first to describe some features and characteristics

about the solar corona.

The solar corona (Figure 1.1) is the upper atmosphere of the Sun which extends

26
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Figure 1.1: The solar corona at the total eclipse of 26 February 1998 observed from
Oranjested, Aruba extending deeply to the space and showing beautiful bright fine
rays (Lang, 2000).

to millions of kilometres into space. It is characterised by a high temperature 1-

2 MK, while the photosphere which is at the Sun’s surface has a temperature of

∼5800K; it remains until now an unsolved problem in astrophysics to explain what

causes the corona to be as hot as it is. The corona has a low density ∼1014-1015 m−3

compared to 1023 m−3 for the photosphere. It consists entirely of plasma and can be

seen during a total eclipse or by using a corona-graph to obscure the light from the

Sun’s photosphere. It mainly emits in X-rays and Extreme Ultra Violet (EUV) with

an optically thin layer where its radiation does not penetrate the Earth’s atmosphere

(Mullan, 2010). Many solar space observations have been taken to discover the

hidden features of the corona and detect its radiation. These observations were

taken by SOHO (1995), TRACE (1998), RHESSI (2002), Hinode (2006), and Stereo

(2006). One of the most important characteristics of the solar corona are the loops

known as “coronal loops” (Figure 1.2). These loops extend from the photosphere to

the corona. They are mainly generated at magnetic Active Regions where sunspots

are located and are the main reason for the occurrence of flares and Coronal Mass

Ejections (CMEs).

The well known coronal heating problem is summarised by the following question.
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Figure 1.2: Extreme UV image at a wavelength of 17.1 nm from (TRACE) for
Coronal loops extending to millions of meters from the Sun’s surface to the corona
(http : //www.nasa.gov/images/content/113853main trace4 lg.jpg).

“How does the solar corona reach to temperatures of millions of degrees Kelvin?”

Two main mechanisms were proposed to answer this question. The first is by wave

heating where several types of waves, such as magneto-acoustic waves and Alfven

waves, carry energy from the solar interior to the solar corona crossing the different

solar layers. The second mechanism, which will be discussed later, is magnetic

reconnection where coronal loops reconnect, releasing their hidden magnetic energy

to the outer corona. One of the features suggesting this theory is the existence

of small scale flare events known as micro-flares. These occur in the lower corona

at a height of 200 km from the photosphere and releasing up to 1022 J of magnetic

energy (Jess et al., 2010). Micro-flares occur more frequently than large flares, that’s

why they could account for the energy needed to heat the corona although even

smaller and more frequent events known as ”nano-flares” are required to dominate

the heating rule (Parker, 1988). Also a combination of the above two mechanisms

is proposed. For more information about solar corona and solar Active Regions

refer to Güdel (2007), Nakariakov & Verwichte (2005), Borrero & Ichimoto (2011),
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Mullan (2010) and references therein.

1.2 Solar Flares

Solar flares (Figure 1.3) are the most dramatic, energetic events in our solar system.

They release up to ∼1026 J of stored magnetic energy in a very small period of time.

That time varies between one flare and another from a few seconds to a few minutes

and could in some cases (long duration events) extend to hours. The spatial size

also varies from one flare to another. In small events it is less than 104 km whereas

in large ones it reaches 105 km (Shibata & Magara, 2011). The size of a flare

together with its duration and amount of released energy are all related. The huge

energetic release causes the plasma in the corona to be heated up to tens of millions

of degrees Kelvin and accelerates particles (ions and electrons) to very high energies

and relativistic speeds (a few GeV in the case of ions, and tens of MeV in the case

of electrons). A great fraction of flare energy goes to such acceleration processes (up

to 50% in some flares). These high energy particles may be emitted into space or

reach the chromosphere when they are sent downwards, producing electromagnetic

radiation along the whole spectrum from radio to gamma rays (Lang, 2000).

Flares were originally discovered in white light by R.C. Carrington and R. Hodg-

son in September 1, 1858 (Carrington (1859); Hodgson (1859)). Later on, when

filters and detectors where invented, Hα, coronal radio, and X-ray emissions were

observed, demonstrating that these events are coronal phenomena and not a chro-

mospheric one as was thought for a long time.

Mainly solar flares occur in solar magnetically Active Regions (AR), above

sunspots where magnetic fields are so concentrated and complicated in structure.

Magnetic fields were first discovered on the Sun by Hale (1908) and from then the-

oretical studies developed the relation between them and solar flares. The notion

of neutral points were first reported by Giovanelli (1946) as where energy release

occurs and the theory of magnetic reconnection as a process related to flares was

first pointed out by Hoyle (1949). Zwaan (1985) reported that the Sun’s interior is
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Figure 1.3: A fine Solar Dynamics Observatory (SDO) image of an erupting promi-
nence (eruptive event) associated with a medium sized solar flare at the same time
directed off the earth at the east limb (left side) of the Sun on April 16 2012.
http : //www.nasa.gov/mission pages/ sdo/multimedia/potw/index.html.

a dynamo for magnetic fields where they cross the Sun’s layers surrounded by high

pressure plasma (Parker, 1979) resembling a twisted flux tube (Fan, 2009) to the

outer surface and providing energy source for flares. The flare scenario begins when

flux emergence starts and magnetic fields emerge to the surface carrying the inte-

rior magnetic energy. Electric current crossing magnetic fields (cross-field currents)

enhance expansion, as it generates Lorentz forces, and causes part of the magnetic

energy to be dissipated immediately. The remaining part of electric current flow-

ing along magnetic field is force-free. An important coronal feature which helps

magnetic energy to be stored is that the corona is a highly conductive medium.

This inhibits field-aligned electric current dissipation, thus free energy builds up

and serves as a reservoir for the coming event (Shibata & Magara, 2011). Of course

this energy will not accumulate indefinitely but rather different postulated scenarios

may interfere to release this tremendous stored energy. In fact a solar flare occurs

when an instability or a loss of equilibrium, triggered by a specific mechanism to be
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explained later, suddenly takes place. Thus the system erupts causing an immedi-

ate release of magnetic stored energy and then relaxes to approach a potential field

situation.

Pre-flare events take place before the onset of a flare and are known as pre-

cursors which are worth discussing. Magnetic flux tubes could interact with newly

emerging bipolar regions or magnetic flux tubes triggering a flare (Heyvaerts et al.

(1977); Martin et al. (1982); Feynman & Martin (1995)). Also, eruptive filaments

are considered as primary precursors, here cool plasma emerge into the hot corona

and due to several forces (e.g. magnetic pressure gradient force, magnetic tension,

and gravitational force), filaments may lose equilibrium and erupt (Yan et al., 2011).

The most likely energy release process in flares is magnetic reconnection where

oppositely directed magnetic field lines are pushed by plasma flow toward each

other forming a narrow current sheet where they reconnect at an X-point (a neutral

point or null point where magnetic field vanishes (Birn & Priest, 2007)). See §

2.1.2 for details about magnetic reconnection. Part of the released energy finds

its way upward in the form of a plasma “blob” called a plasmoid. This process

is important to our research as particles are accelerated to become non-thermal

and energetic. This allow them to leave the Sun and make their way toward us

or to the interplanetary space (Ramaty & Murphy, 1987). Some particles are also

accelerated downward to the Sun where they hit the dense chromosphere at the foot-

points emitting Hard X-Rays (HXRs) due to Bremsstrahlung, that’s why foot-points

are HXR sources. This also causes the chromosphere to be heated and to emit Hα

radiation and in turn to fill the loops by dense super-hot plasma (20-40MK) emitting

Soft X-Ray (SXR) (thermal emission), this process is known as “evaporation” ((Birn

& Priest, 2007); (Lang, 2000)). In some flares coronal HXRs were observed above

coronal loops which could be interpreted as thermal Bremsstrahlung from a thin

target (see Meroun Thick Target Model for Brown (1971)). Figure 1.4 demonstrates

almost all flare processes. A point worth mentioning here is the existence of a

physical relation between coronal mass ejections CME’s and solar flares. CME’s are

large-scale eruption of solar mass to outer space with a huge amount of plasma (up
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Figure 1.4: A schematic drawing of different processes of a solar flare model where
energy is released at the X-point generating radio burst waves and particles are
accelerated either up to space or down hitting the chromosphere and releasing HXR
and γ-rays leading to the evaporation process (Lang, 2000).

to 1010 tons). Several flare events are observed when CMEs occur which could be

interpreted as flares being sub events of these huge eruptions especially as magnetic

loops with solar radius sizes are observed moving away with high velocities 30-2500

km s−1 from the Sun causing shock waves to interfere in CME events (Yashiro et al.,

2004).

Flares or eruptive events can be decomposed and set into many different cate-

gories. Mainly we consider 3 types of events which are well known, Long Duration

Flares, Giant Arcade, and Impulsive Flares. Long duration flares are characterised

by their cusp-shaped loop structure accompanied by coronal mass ejection creating

a helmet streamer-like configuration which give a clue that a current sheet is formed

[Lang (2000); Tsuneta et al. (1992a); Tsuneta (1996)]. Magnetic reconnection is

proposed to occur due to the increase in the separation between the foot-points.

The temperature is observed to increase near the cusp-shaped loop (Veronig et al.,

2006).

Some observations have revealed the formation of giant arcades as also having

a cusp-shaped loop, however these are much larger spatially than long durational

flares and mostly associated with a filament disappearance as such they are not
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considered as typical flares. Their temperature also increases near the cusp-shaped

loop but their soft X-ray emission is low, and their time scale and released energy

are different from that of a typical flare due to the difference in magnetic strength

(Tsuneta et al. (1992b); McAllister et al. (1992); Watanabe et al. (1992); Shiota

et al. (2005)). Additionally, giant arcades experience what is called dimming where

SXR flux decreases with time outside the loops (Sterling & Hudson, 1997) due to

field lines eruptions (Harra & Sterling, 2001), or inflow of plasma toward the current

sheet so decreasing the density in its surrounding (Tsuneta, 1996).

Impulsive flares have a simple loop structure emitting in SXR and they do not

show any cusp-shaped structure. Some observations show that such flares have an

extra X-ray source on top of the SXR loop emitting in hard X-ray and behaving

like HXR sources at the foot-points [Masuda et al. (1994); Masuda et al. (1996)].

Shibata et al. (1995) pointed out that magnetic reconnection may occur in impulsive

flares outside SXR loops associated with plasmoid ejection.

Finally, as flares are linked to solar active regions which themselves vary in

an 11-year Sun cycle from minima to maxima, the frequency of flare occurrence

and strength vary within this cycle. At solar maxima, several flares eruptions may

happen per day, while it decreases to one per week at solar minima.

1.3 Origins Of Electromagnetic Radiation

Solar flares cause the emission of electromagnetic (EM) waves across the whole

spectrum (from radio to gamma rays). In flares, particles are accelerated to different

energies within the same species (ion or electron) according to their position when

the flare is triggered. This difference causes particles to emit at different wavelengths

when interacting with the outer space or with the chromosphere layer. There are 6

main types of emission as follows:

1. Radio bursts: due to energetic and eruptive characteristics of a solar flare

like electrons accelerated to modest energies of a few keV (Type I Bursts),

shock waves with an outward motion at about a million meters per second
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(Type II Bursts), beams of electrons thrown out from the Sun with kinetic

energy of 10 to 100 keV (Type III Bursts), synchrotron emission from energetic

electrons trapped within magnetic clouds (Type IV Bursts), and some other

mechanisms.

2. Microwaves: due to synchrotron radiation caused by gyrating high energy

electrons around magnetic field lines.

3. Hα: due to the impact of high energy particles accelerated at the X-point with

the dense chromosphere.

4. SXRs: due to hot plasma in the chromosphere filling the coronal loops after

the impact (thermal radiation).

5. HXRs: due to deceleration of high energy particles, (non-thermal) at the chro-

mosphere (free-free emission) and from coronal sources.

6. Gamma-rays: due to collision of high energy protons and ions (nuclear reac-

tions) (Lang, 2000).

1.4 Flare Observations

Flare observations have passed through different stages influenced by the techno-

logical progress. After the invention of Hα filters, Moreton (1964) reported the

variations of source sizes, ejection of plasma blobs into interplanetary space, and

blast waves. Later, Hey (1983) revealed the presence of non-thermal electrons in

the corona using meter wave radio emission first detected in 1942. The hard X-ray

instruments were a break-through in flare observations and Peterson & Winckler

(1959) were the first to detect HXR emissions during a flare in 1958. Brown (1971)

noted that the emission gave a clue that energetic particles hold a substantial amount

of flare energy. Continuing, technological progress allowed gamma-ray lines to be

discovered for heavy nuclei and energetic protons (Chupp et al., 1973). The final

flare scenario was established when the full spectrum was observed with millimetre,
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Extreme Ultra Violet (EUV), and soft X-ray emissions noting that flare heat the

plasma in coronal loops to emit thermal radiation.

From an observational point of view, a flare can be decomposed into 3 main

phases according to the type and strength of emission (Figure 1.5). These phases

are the early or pre-flare phase, impulsive phase, and gradual decay phase.

1. Early phase: It is often interpreted as preheating, where SXR and EUV emis-

sions are seen to increase gradually due to the plasma being heated slowly.

No foot-point HXR and γ-ray emissions are detected above background, but

the interesting feature is the detection of coronal HXR emission from a coro-

nal HXR source above the SXR loops, which till now is not fully understood

(Battaglia et al., 2009).

2. Impulsive Phase: This is the main flare phase where acceleration of particles

occurs and energy is released. HXR, microwave-millimetre waves and γ-rays

increase impulsively in spiky bursts lasting for a few or tens of seconds due to

Bremsstrahlung, gyro-synchrotron emission (1 GHz to beyond 100 GHz), and

ion’s nuclear reaction respectively. Non-thermal electrons show a power law

spectrum, with some electrons being accelerated to the MeV range. HXR foot-

point sources at chromosperic heights are detected for all flares at this phase

(Hoyng et al., 1981). SXR emmision continues to rise due to the evaporation

process from the super-hot thermal plasma (20-40MK).

3. Gradual decay phase: This is the post-flaring phase, where everything begins

to return to a simpler configuration. HXR and γ-ray emission decay exponen-

tially with a time constant of minutes. SXR emission reaches a peak value and

after that decays exponentially very slowly and can be detected in the next day

following the flare. Particles continue to be accelerated by different methods

e.g. direct DC electric and magnetic reconfiguration process, plasma ejection,

and shock waves emitting radio bursts in meter waves [(Hudson, 2011); (Lin,

2006)].

Observations of solar flares are essential to diagnose the different features of
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Figure 1.5: SXR, HXR, and γ-ray count rates by RHESSI for the 2002 July 23
flare showing the 3 different phases of a flare [phase 1:∼00:18 to ∼00:27 UT, phase
2:∼00:27 to ∼00:43 UT, and phase 3:&00:43 UT] as discussed in §1.4 (Lin, 2006).

flares. Different spacecraft are used for such observations like “Hinode”, “Yohkoh”

with its HXR and SXR telescopes, HXT and SXT, (but they are out of service

now), “SOHO”, “STEREO”, “SDO” with its “EVE” instrument for EUV detection,

and the most powerful capabilities spacecraft “RHESSI” (see §2 in Lin (2006) for

details on RHESSI structure and capabilities). This spacecraft can detect emission

from flares and make spectroscopic images for HXR and γ-ray which are produced

from high energy electrons and ions respectively. Such observations have revealed

new facts and surprises. Examples of these new features are coronal sources that

appear before chromospheric foot-point HXR emission, the relation between flares

and CMEs does not seem to be in correlation at major flare acceleration sites,

electrons and ions may be accelerated and ejected at different separatrices, and

magnetic topology varies from small to large events (Benz, 2008). Observations

now go deeply into flares and locate energy release sites allowing us to test our

main interest in this project, particle acceleration theory together with the processes

behind such events. It is now generally accepted from observations that reconnection
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is the trigger of energy release in flares but what remains uncertain is how such a

release scenario converts a high proportion of the released energy into non-thermal

particles?

Solar flares are now observed at a wide range of wavelengths from decametre

radio to gamma-rays. The HXR or the non-thermal emission which have a photon

energy range greater than 12 KeV and less than 500 KeV is caused by the free-

free collision of high energy and fast electrons with ions known as Bremsstrahlung.

Measurements of the time of flight support the idea that particles are accelerated

near the X-point above the SXR loops as shown in Figure 1.4. For large flares,

and deducing from the HXR fluxes, 1036-1037 electron s−1 must be accelerated into

the non-thermal energies which means that the coronal loops will be depleted from

electrons in a timescale of seconds which could be regarded as a ”Number Problem”

(Birn & Priest, 2007).

Thermal emission or SXR which have an energy range from 1.2 to 12 KeV are also

observed due to the hot thermal plasma filling the loops in the evaporation phase.

The X-ray observed spectrum can be inverted to produce the source-averaged spec-

trum of accelerated electrons producing such emission (Figure 1.6). The spectrum

shows an exponential form for the thermal emission and a broken power law for the

non-thermal emission (higher energies) (Birn & Priest, 2007).

Accelerated protons and α-particles undergo collisions with other heavy ions

which are excited to higher nuclear state. Of course after any nuclear excitation, a

rapid de-excitation happens releasing photons detected as γ-ray emission of energies

between 4-7 MeV. There are a lot of heavy ions that present in the Solar atmosphere

as Oxygen, Carbon, Neon, Silicon, Magnesium, and Iron. Neutrons produced in

nuclear reactions lose energy and slow down after a long time, so that they can

be captured by protons (1H), forming deuterium (2D) at an excited state. When

de-excited, deuterium release energy detected as γ-rays at a line of 2.223 MeV. Pair

annihilation also occurs between positrons and electrons producing 2 γ’s at 0.511

MeV (See table 1.1) (Lang, 2000).
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Figure 1.6: Electron energy spectrum of the July 23, 2002 flare upon inversion its
Bremsstrahlung spectrum showing a Maxwellian distribution for the thermal part,
where most of the particles are within this region, and a power law for the higher
energy particles extending to MeV (Piana et al., 2003).

Element Energy(MeV)
e+ + e− 0.511

2H ≡ 2D 2.223
12C 4.438
16O 6.129, 6.917, 7.117
7Be 0.431
7Li 0.478

14 N 5.105
20Ne 1.634
24Mg 1.369
28Si 1.779
56Fe 0.847

Table 1.1: Most important gamma-ray lines from solar flares (Lang, 2000).

1.5 Aims and Outline

A Test particle model used to calculate particle trajectories using magnetic and

electric fields distributed in a finite grid is studied in our work. A Test particle is an

idealised model of an object whose physical properties are assumed to be negligible

except for the property being studied, which is considered to be insufficient to alter

the behaviour of the rest of the system. This dissertation aims to compare the two

test particle approaches, Full Trajectory and Guiding Centre to discuss where they

coincide and where they do not (see § 2.3.1 for details about the test particle model
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and its different approaches). This will allow us to say if it is worthwhile to study

particle trajectories using the approximate guiding centre theory. We aim to find

limitations of numerical trajectories when using field values given in discrete grids.

We also compare different numerical methods for solving differential equations for

particle trajectories. Relativistic effects and how they influence on particle motion

and when they are important are also one of our aims. We wrote the full trajectory

code which first is tested against analytical solutions and later on compared with

an already written GCA code for analytical and numerical fields.

In the next chapter we will introduce some basic MHD theory and the test

particle approach that serves as a review of previous work in this context. Chapter 3

describe our own full trajectory code and the testing procedure, also in this chapter

we study the particle drift theory from both theoretical and numerical points of

view and compare results. In chapter 4 we use analytical field forms distributed in a

discrete grid and discuss the results. The full comparison between the 2 approaches

for realistic models and numerical MHD data is presented in chapter 5. Finally we

end our thesis with a conclusion chapter and a section about further work that could

be done in future.



Chapter 2

Background Theory

2.1 Basic Theory of MHD 2D Reconnection

2.1.1 MHD Theory and Numerical Application

Magnetohydrodynamics (MHD) theory treats the plasma as an electrically conduct-

ing fluid filled by magnetic field lines where it interacts with them. The MHD

equations are a set of nonlinear equations describing 15 quantities on the full sys-

tem: the velocity of a plasma fluid element, v; the magnetic field, B; the current, J ;

the electric field, E; the density, ρ; the pressure, P ; and the temperature, T . These

equations are derived from a combination of fluid mechanics and Maxwell’s equa-

tions. Some important parameters in MHD theory are plasma beta (β) measuring

which dominates, thermal or magnetic pressure, magnetic Reynolds number (Rn)

giving information about resistivity and Ohmic dissipation effect, Alfven speed (VA)

is the speed at which magnetic information propagates within the plasma, Alfven

time (tA) is the timescale of Alfven wave propagation, diffusion timescale τd, and

Lundquist number (Lu) defined as the ratio of the 2 mentioned timescales. Equa-

tions for these quantities are presented in Appendix A.1. For a complete introduction

about MHD theory, see Priest & Forbes (2000).

We will work out the estimated values for β, Rn, τd, VA, tA, and Lu for coronal

plasma by importing typical coronal values of B (magnetic field), ne (electron den-

sity), T (temperature), and L0 (length scale). Our choice of values is as follows: B

40
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= 300 Gauss (1 Gauss = 10−4 Tesla), ne = 1015m−3, T = 1.5× 106 K, and L0 = 107

m.

This gives the pressure, p = 2nekbT = 0.0414 Nm−2, and B = 300 ×10−4 = 0.03

Tesla, so β = 2µ0p/B
2 = 1.16 × 10−4 which is a very small number as expected

(the corona is a low beta region as magnetic pressure dominates). Next we derive

the diffusivity, η, in order to calculate Rn. It is given as η = 1
µ0σ

where σ is the

conductivity given as σ = 7× 10−4 T 3/2 so at our given temperature σ = 1.29× 106

Ohm−1m−1, thus η = 0.618 Ohm.m2. This gives Rn = 1.61× 1011, also as expected

a large number (low resistivity effects). Now τd = L2
0/η = 1.6 × 1014 s, which is ∼

5 million years and hence Ohmic diffusion could be neglected given that we are in

a high conductive case (Rn ≫1), but it is not always the case. In order to calcu-

late VA, we calculate the density ρ = nemp = 1.67 × 10−12 kgm−3. Following from

theory, VA =
√

B2/µ0ρ, so VA = 2 × 107 ms−1 and tA = L0/VA = 0.5 s. Finally

Lu = τd/tA = 3.2 × 1014 as expected also a large number.

2.1.2 Magnetic Reconnection

Magnetic reconnection is a process that occurs in highly magnetised plasma by

changing the magnetic topology of the field lines by breaking some and reconnect-

ing others of opposite polarity causing stored magnetic energy inside and outside

the current sheet to be converted to thermal and kinetic energy (Schrijver & Siscoe,

2009). Jain et al. (2005b) discussing forced reconnection states that ”reconnection

occurs when a sheared force-free field is perturbed by a slow disturbance (pulse) at

the boundary which is representative of the solar corona where the reconnection is

induced by the photospheric motions”, or newly emerging flux, or by any kind of

coronal disturbances such as coronal waves. In the simplest model magnetic field

lines are straight and divided into 2 sets of opposite polarity. Electric current cross-

ing magnetic field lines (cross-field current) is dissipated under the action of a finite

value of resistivity causing Ohmic dissipation near the current sheet. This sudden

perturbation causes a change in the magnetic topology where field lines relax to lower

energy states and are driven by plasma flow to an X-point (where magnetic field
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vanishes) and thus reconnection takes place. An important consequence of recon-

nection is the generation of strong convective electric field in the sheet surrounding,

which accelerate particles.

Magnetic reconnection can either be steady or unsteady and driven (forced) or

spontaneous. Two main steady models were proposed, the Sweet-Parker (1958) and

Petschek (1964) models which are presented below. Unsteady reconnection known

by “Tearing Mode” or “Tearing Instability” is related to locally enhanced resistivity

and non-uniformity introduced to the current sheet associated with magnetic islands

coalescence. Spontaneous reconnection occurs due to resistive MHD instability like

tearing instability. In our simulations we use driven-type reconnection known as

”Forced Reconnection” which is presented below.

Sweet-Parker model

Figure 2.1 illustrate the geometry for Sweet-Parker model in which the magnetic

diffusion layer has the same length as the global external length scale. Assuming

incompressible flow and neglecting viscosity, Sweet and Parker (1958) determined

the inflow rate as:

Vin = VAL
−1/2
u (2.1)

and the outflow as:

Vout = VA (2.2)

Reconnection is associated with an electric field perpendicular to the current sheet.

This electric field in 2-dimensional steady-state models is uniform in space in the

invariant direction influencing the rate of reconnection which measures the magnetic

flux reconnecting per unit time as this rate is normalised to the characteristic electric

field defined as, E0 = vAB0, where B0 is the characteristic magnetic field. Defining

the Alfven Mach number MAe (rate of reconnection) as:

MAe =
Vin

Vout
= L−1/2

u , (2.3)
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Figure 2.1: Sweet-Parker reconnection model showing a wide diffusion region
(shaded) where inflowing plasma (thick arrows) drifte to the current sheet with

low velocities VAL
−1/2
u and outflows (long arrows) with high velocities VA (Priest &

Forbes, 2000).

the typical coronal value for Lundquist number is of order 1014, so MAe = 10−7, and

the reconnection time would be of orders 108 − 109 s. From observations, the time

scale of a flare is 102 − 104 s which is much smaller than the reconnection time, so

how could a fast energy release occur with such model (Schrijver & Siscoe, 2009)?

Petschek Model

This model (Figure 2.2) has a higher reconnection rate by dramatically reducing the

length of the current sheet. Also Petschek(1964) added two outward slow shocks

that accelerate and heat the plasma. Assuming current-free inflow magnetic fields

and no sources of field at large distances (Schrijver & Siscoe, 2009), leads to an

increase in the reconnection rate such that:

MAe =
π

8ln(Lu)
, (2.4)

giving values between 0.01-0.1 for the case of the corona (Petschek, 1964). The

reconnection time for such a model is comparable with flare time scale. Forbes &

Priest (1987) later on extended the model and pointed out that speed of recon-

nection is controlled by the spatial pattern of flow (converging or diverging) in the

inflow region. With the aid of numerical simulations, it was shown that Petschek’s

model is likely to occur. Sato & Hayashi (1979) showed using forced reconnection

that the Petschek model occurs when the resistivity in the current sheet is locally
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Figure 2.2: Petschek reconnection model with a very narrow diffusion region (central
shaded region). 2 slow-mode shocks (the other 2 shaded regions) are added by
Petschek that heat and accelerate the plasma with other assumptions leads to a
higher reconnection rate (Priest & Forbes, 2000).

enhanced. Biskamp (1986) perform simulations with a uniform resistivity distri-

bution and showed that in this case Petschek model does not arise, but instead

Sweet-Parker is formed. Ugai & Tsuda (1977) and Scholer (1989) reproduce using

spontaneous reconnection (no plasma inflow toward the current sheet to produce

perturbations) the Petschek model by locally enhancing resistivity in the current

sheet, thus locally enhanced resistivity is essential for the Petschek model to occur.

Forced Reconnection

Hahm & Kulsrud (1985) proposed the forced magnetic reconnection model as a sim-

ple analytically tractable model of a reconnection event triggered by an external

perturbation, which could be due to photospheric foot-point motions, newly emerg-

ing magnetic flux, or any type of coronal disturbance like coronal waves in case of

coronal eruptive events. Initially an incompressible plasma in equilibrium with a

magnetic field of uniform gradient in x-direction is considered. The domain is de-

fined such that x ∈ [−a,+a], where a is a constant, and conducting walls exist at the
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boundaries. The magnetic field is given by: ~B = B0x/a ~j+BT
~k, where B0 and BT

are constants. The authors studied the time evolution of the magnetic field islands

by perturbing the boundary surrounding the incompressible plasma with a transient-

disturbance having spatial dependence of the form: x = ±(a − δcosky), where δ is

the perturbation amplitude (see Figure 2.3). The amplitude of the boundary dis-

turbances affects the size of the islands as well as the time scale for reconnection

and island formation. they pointed out that, for sufficiently small perturbations,

the tearing mode time scale applies and small islands are formed, whereas for larger

perturbations, nonlinear time scales operate with larger islands forming. There ex-

ist two natural equilibrium states which are noticeably different by their behaviour

near the resonant surface i.e. the centre of system where the current sheet is lo-

cated. Equilibrium (I) contains surface current (a discontinuity in magnetic field)

on the resonant surface, while equilibrium (II), which has lower energy than (I),

possesses magnetic islands and has finite current density. The whole process can

be decomposed into four time phases, A, B, C, and D when considering the case of

small boundary perturbation with tearing mode time scale as postulated by Hahm

& Kulsrud (1985). Phase A corresponds to the ideal MHD theory where after the

initial change in boundary occurs, the plasma behaves ideally approaching equilib-

rium (I). Phase B corresponds to ideal MHD with small resistive corrections, where

magnetic field lines begin to reconnect and build up a concentration of current near

the resonant surface, but the dynamics of the plasma are unaffected by the resistiv-

ity. In phase C (the major phase), finite resistivity is applied and reconnection of

flux across the resonant surface occurs, affecting plasma dynamics; thus a full resis-

tive theory and tearing mode analysis with non-constant perturbed flux function is

invoked. As a result, magnetic islands start to form. Reconnection proceeds for a

relatively long time, decreasing the surface current, while the perturbed flux func-

tion simplifies to a constant and the plasma approaches equilibrium (II). These are

the features for the final phase, phase D, concluding the evolution of the reconnected

flux. Figure 2.4 demonstrates the amount of reconnected flux with time during the

four phases. Vekstein & Jain (1998) investigated forced magnetic reconnection in a
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Figure 2.3: Rapid perturbation at the boundary caused mainly by photospheric
motions leading to topological changes in magnetic field, thus triggering reconnection
and then approaching equilibrium state (Hahm & Kulsrud, 1985).

Figure 2.4: The amount of reconnected flux, ψ1(0), during the four phases of recon-
nection. The dashed line represent equilibrium (II) which is stable to the tearing
mode.

sheared force-free magnetic field. They found that for such field, the response for

external perturbation becomes very strong near the marginal stability of the tearing

mode, so that any weak perturbation can cause high relaxation. Figure 2.5a shows

deformation of force free magnetic fields in an ideal MHD equilibrium corresponding

to phase B, and figure 2.5b corresponds to phase C where reconnection takes place

and magnetic islands are formed.

2.2 Particle Motion in Electric and Magnetic Fields

One of the main issues in plasma physics is to understand how particles move in

electric and magnetic fields with different configurations. The basic equation of
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(a) Ideal MHD state deforming field
lines preparing the system for recon-
nection. The current sheet is located
at x = x0.

(b) Reconnection state associated
with magnetic islands formation.

Figure 2.5: The main two states of evolution, ideal (a) and reconnected (b) (Vekstein
& Jain, 1998).

motion is the Lorentz equation:

m
dv

dt
= q(E + v × B). (2.5)

We will present key points, therefore, for a full discussion there are many text-

books and review papers for example Chen (2010), Northrop (1966), Cary & Brizard

(2009), and references therein.

2.2.1 Uniform E and B Fields

E=0

This is the simplest case, particles gyrate around the magnetic field lines in a har-

monic motion with a cyclotron frequency ωc given as:

ωc =
|q|B
m

, (2.6)
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so electrons gyrate more rapid than protons. The gyration radius (Larmor radius)

rl is given by:

rl =
mv⊥
|q|B , (2.7)

hence, an electron’s Larmor radius is smaller than that of protons. Typical values

of Larmor radius for particles can be calculated when their velocities are known.

Thermal velocities for particles with mass mi and temperature Ti can be calculated

from the following equation:

VT i =

√

3kbTi

mi

(2.8)

substituting for protons and electrons mass and with typical coronal temperature of

1.5 × 106 K, we get:

VTp = 1.92 × 105ms−1

VTe = 8.25 × 106ms−1

using Equations 2.6 and 2.7 and setting B = 300 Gauss we get:

ωcp = 9.58 × 103rad.s−1

ωce = 1.75 × 107rad.s−1

rlp = 6.7cm

rle = 0.15cm

Electrons and protons always gyrate in opposite directions as the Larmor radius

depends on the particle charge as shown in Figure 2.6.

Finite E

The parallel component (E‖) will accelerate particles along the field lines and per-

pendicular one (E⊥) will generate the ordinary gyro-motion around B. A new term,
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Figure 2.6: Particle motion in uniform B and E=0 fields where particles gyrate
around magnetic field lines. Ions and electrons gyrate in opposite clockwise direction
in a way that the magnetic field created by the gyrating particles should always be
opposite to that externally imposed (Chen, 2010).

Figure 2.7: ~E × ~B drift, where particles of opposite charges are drifted in the same
direction but with opposite clockwise orientation (Chen, 2010).

known as the electric drift or (E×B) drift is established, such that:

ve =
E ×B

B2
, (2.9)

which is independent of q, so electrons and protons drifts in the same direction

(Figure 2.7).

2.2.2 Inhomogeneous B and E Fields

Introducing inhomogeneity into the system makes it impossible to get exact solu-

tions, thus approximation is needed. This approximation is known as the Guiding
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Figure 2.8: A z-directed magnetic field varying in the y-direction causing a grad-drift
where particles of opposite charges drift in opposite directions (Chen, 2010).

Centre Theory. “Guiding Centre theory provides the reduced dynamical equations

for the motion of charged particles in slowly varying electromagnetic fields, when

the fields have weak variations over a gyration radius (or gyro-radius) in space and

a gyration period (or gyro-period) in time” (Cary & Brizard, 2009), thus it is valid

when rl ≪ L0 (length scale) or gyration period p≪ t0 (time scale of variations).

∇ B ⊥ B, Grad Drift

Expanding B along the direction where it is varying and averaging over gyrations

yields:

vgrad = ±1

2
v⊥rl

B ×∇B
B2

, (2.10)

where electrons and protons drift in opposite directions (Figure 2.8).

Curved B, Curvature Drift

Curved field lines of curvature radius Rc ≫ rl cause centrifugal force such that:

vR =
mv2

‖
qB2

Rc ×B

R2
c

. (2.11)

∇ B ‖ B, Magnetic Mirroring

Figure 2.9 show fields converging toward stronger regions, which generate a force

when acting on particles, causing them to bounce backward. This force is given as:

Fz = −µ∇‖B, (2.12)



2.2. PARTICLE MOTION IN ELECTRIC AND MAGNETIC FIELDS 51

Figure 2.9: Converging magnetic field lines where particles move from weak to strong
field regions thus experiencing a mirroring effect that they can escape from or be
trapped in depending on their pitch angle (Chen, 2010).

where µ is the magnetic moment given by:

µ =
1

2

mv2
⊥

B
(2.13)

Derivation on µ shows that it is adiabatic invariant. Adiabatic invariance is the

constant of the motion (action integral taken over one period) which does not change

even if the motion becomes not quite periodic when the system slightly changes. µ

is one of three adiabatic invariants in plasma physics. This invariance in µ allows

particles to be reflected when moving from weak to strong field.

Other Drifts

A non-uniform E field causes a drift such that:

vE = (1 +
1

4
r2
l ∇2)

E× B

B2
(2.14)

and a time varying E field causes polarisation drift given by:

vp = ± 1

wcB

dE

dt
(2.15)
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2.3 Particle Acceleration and Test Particle Model

2.3.1 Basic Concepts

A substantial fraction, 10-30 %, of flare released energy is transformed to kinetic

energy in non-thermal electrons and ions ((Aschwanden, 2002); (Klein & MacKin-

non, 2007)). A characteristic length scale for the kinetic process is the ion Larmor

radius which is of the order one meter in the corona. Thus it is very difficult to

study particle acceleration and motion during flare evolution as the global structure

has much larger typical size. The transformation from magnetic to kinetic energy

can be divided into 2 phases, primary and secondary. The primary phase occurs

during the impulsive phase of the flare where electrons, for instance, with coronal

thermal energies (about 0.1 keV) gain energy of more than 2 orders of magnitude

in less than 1 second known as bulk energisation. This is observed in hard X-ray

(Kiplinger et al., 1984). The secondary phase could be interpreted as a result of the

primary, accelerating particles by shock waves associated with flares or CMEs. It is

less efficient than the first, in the context of particle acceleration in solar flares, but

important in the context of SEPs (solar energetic particles) accelerated into inter-

planetary space. Our main interest is in the primary phase and shocks are beyond

the scope of this thesis; however, a point worth mentioning here related to flares are

the shocks produced by magnetic reconnection. Aurass et al. (2002) and Mann et al.

(2006) detected radio signatures of such shocks, reporting that they are extremely

rare. These shocks, which may be slow or fast at inflow or outflow regions, could

accelerate ions, for example, to high energies (100 MeV) in less than 1 sec (Ellison

& Ramaty (1985); Tsuneta & Naito (1998)).

Several processes may be involved in the conversion of magnetic energy into

kinetic energy of non-thermal particles in flares with variable priority depending in

the event itself. The most accepted processes are ((Melrose, 1990); (Benz, 2002)):

1. Stochastic acceleration.

2. Electric field parallel to magnetic field.
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3. Fermi acceleration by shocks.

In our thesis we concentrate on the second, despite the first being preferred when

dealing with resonant acceleration by magnetic field of low frequency waves ((Miller

et al., 1997); (Schlickeiser & Miller, 1998); (Petrosian et al., 2006)). The convective

electric field associated with reconnection, which plays an essential role in particle

acceleration, can be estimated in Gaussian units as follows (Shibata & Magara,

2011):

E ∼ vi

c
Bi ∼

vjet

c
Bjet

E ∼ 3 × 103
(MA

0.1

)( B

100G

)2( njet

1010cm−3

)−1/2

Vm−1 (2.16)

This formula explains why acceleration by electric field is efficient in the impulsive

phase and less important in the decay phase as vjet, which is the plasma inflow

speed, decreases significantly in the final phase of a flare. In addition for the above

estimation, we could define a critical parameter in the solar corona (in the context of

electric field responsible for particle acceleration) termed as the Dreicer electric field

which is related to Coulomb collisions. Above the Dreicer value, where Coulomb

collisions become unimportant, particles are freely accelerated. The equation for

the Dreicer electric field is:

Ed =
elnΛ

4πǫ0λ
2
D

∝ n

T
(2.17)

where ln Λ ≈ 20 is the coulomb logarithm and λD is the Debye length having the

formula:

λD =

√

ǫ0kbT

ne2
(2.18)

Observations and studies of particle acceleration show that electric fields present in

flares are super Dreicer by many orders of magnitude. Working out typical coronal

value of Ed where, n = 1014m−3, and T = 1.5 × 106 K, yields that Ed ∼ 4 × 10−4

Vm−1.

Particles which are driven to the current sheet by the E × B drift become

closer to the X-point (or more precisely when talking in 3D to the X-line) where

the magnetic field vanishes and so particles are no longer magnetised and can be



54 CHAPTER 2. BACKGROUND THEORY

directly accelerated by the electric field. Of course, any particle that manages to

become close to the X-line acquires more energy. Besides particles that remain in

the current sheet for longer times before being ejected out also acquire more energy;

that is why protons acquire more energy than electrons as the latter are ejected more

quickly from the current sheet (Speiser, 1965). For a particle to be accelerated to

a specific Ekin, this should happen in a time less than the collision time for energy

loss, τcoll(Ekin), given in the following formula for an electron with velocity v3
T and

electron density ne (Benz, 2008):

τcoll(Ekin) = 0.31
( vT

1010cms−1

)3(1011cm−3

ne

)

s (2.19)

Substituting typical coronal values yields that electrons are accelerated within less

than 1 sec and high densities make particle acceleration inefficient. Electron ac-

celeration is more likely to occur in every major coronal eruptive event than ion

acceleration due to the difference in inertia between electrons and ions, which allows

electrons to move more freely. These high energy electrons could contribute to the

formation of HXR sources at the foot-points and loop-top above SXR source and

some could manage to escape to the outer space driving plasma oscillations observed

in type III radio bursts. One thing to add here is that when a strong electron beam

is formed due to large amounts of electrons being accelerated, a reverse or a return

current is formed which could contribute to atmosphere heating (Karlicky, 2008);

however as Holman (1985) and Litvinenko (1996) reported, observed accelerated

electrons are difficult to match with the classic current sheet model as the number

of electrons is limited by the current.

In order to understand the flare progress and particle behaviour near the recon-

nection region in the corona, a lot of analytical studies and numerical simulations

dealing with very complex configurations as that existing in the corona have been

done. Until now, no self-consistent model could explain all the phenomenologi-

cal features of particle acceleration in solar flares, as it is widely accepted that

multi-mechanisms contribute for such phenomena. Two main numerical simulations
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could be used in our subject, the test particle, and Particle-In-Cell (PIC) simula-

tions. Both methods have their advantages, disadvantages, and limitations. PIC

simulations are beyond the scope of this thesis, but one of its advantages is the

self-consistent treatment of particles and fields, whilst one of its disadvantages is

the severe limitation concerning the particle mass and simulation region dimensions

(some PIC work can be found in Birdsall (1991), Drake et al. (2005), Tsiklauri

& Haruki (2007), and Siversky & Zharkova (2009)). On the other hand, the test

particle method, (used method in this work and probably the major numerical ap-

proach used), has proved its applicability especially when considering large accel-

eration length and time scales. The test particle method means choosing electric

and magnetic fields from a model (either a MHD simulation or analytical model)

and calculating particle trajectories in these fields. The electric and magnetic fields

generated by the test particle are ignored. The concept of a test particle often sim-

plifies problems and can provide a good approximation for physical phenomena. In

addition to its uses in the simplification of the dynamics of a system within par-

ticular limits, it is also used as a diagnostic in computer simulations of physical

processes. In our context, plasma physics or electrodynamics, the most important

characteristics of a test particle is its electric charge and its mass. When adding

external electric and magnetic fields, the behaviour of a test particle is determined

by effects of the Lorentz force. This method itself is divided into two approaches,

the Full Trajectory, and Guiding Centre Approximation (GCA). The first calculates

full particle motion by solving Lorentz equations of motion, whereas the second has

its own theory as discussed in § 2.2 (the relativistic set of GCA equations being

solved is presented in Appendix A.2). In our thesis we perform both approaches

and compare results. MHD and test particle simulations are related as the second

need to import the results of the first to perform. MHD simulations give us the

values of the magnetic and electric fields and their derivatives and can image the

progress of the reconnection region before and after reconnection. Test particle sim-

ulations use these calculated values of magnetic and electric fields and import them

as snapshots to give information about particle trajectories and their corresponding
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energy spectra.

2.3.2 Analytical Models of Particle Acceleration

Although analytical solutions are limited to simple configurations of magnetic and

electric fields and the numerical simulation approach is more efficient for complex

cases, it is worth considering some of them to build up some basics. Speiser (1965)

was among the first to develop an analytical model for a current sheet and solve

particle trajectories within it. Sonnerup (1971) and Cowley (1978) also did similar

work. Speiser was motivated by the discovery of a magnetically neutral sheets in

the Earth’s geomagnetic tail reported by Ness (1965). The author formulates two

types of neutral sheets, those with and without a perpendicular magnetic field to

the sheet plane. The fields are as follows

~B = b
(

ηêx −
x

d
êy

)

(2.20)

~E = −aêz (2.21)

When η = 0, the model reduces to the simple case where no perpendicular magnetic

field exists. For this simple model, particles are trapped inside the sheet and undergo

damped oscillations about the sheet where their energy grows without bound. When

adding a small component of perpendicular magnetic field, particles turn away from

the accelerating electric field toward the same direction and are ejected off the

sheet when they turn 90o. The Author noticed that both protons and electrons

are ejected with the same velocity but with electrons being ejected sooner as they

are turned much faster (see Figure 2.10). Litvinenko & Somov (1993) pointed out

that the case studied by Speiser (1965) has only a small probability of occurrence

as the latter consider trajectories near a neutral plane where B = 0. In reality,

a magnetic field should be always present with its transverse (perpendicular to

the current sheet plane) and longitudinal (parallel to the electric current inside

the sheet) components (Gorbachev et al., 1988). Such a current sheet is called

non-neutral current sheet. Litvinenko & Somov (1993) showed that a transverse
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Figure 2.10: Particle trajectories when adding a small perpendicular component of
magnetic field to the simple model. Oscillating protons and electrons are accelerated
in opposite directions but turns away from the electric field toward the same direction
due to the presence of the extra magnetic field. Figure not to scale (Speiser, 1965).

magnetic field turns the particle trajectory causing it to leave the current sheet,

whilst in contrast, the longitudinal component tries to keep or to return the particle

back to the sheet. Speiser (1965) consider the case of transverse magnetic field and

showed that particles are ejected in a very small time thus not allowing them to

have sufficient energy to explain the first stage of acceleration in flares, hence the

longitudinal component should not be ignored. This longitudinal component has a

effective role in accelerating particles and energy gain that could explain the first

stage of electron acceleration in solar flares and the production of X-rays. Besides,

it cannot be ignored after being observed in the geomagnetic tail (Fairfield, 1979)

and X-ray observations of solar flares showing a strong longitudinal magnetic field

at separators (Mandrini & Machado, 1992).

In a complementary paper to Litvinenko & Somov (1993), Litvinenko (1996)

gave a nice explanation for the role of electric and magnetic fields (consider fields

as shown in Figure 2.11). The paper, stated that the particle motion along the

electric field causes efficient acceleration and the presence of a magnetic field can
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Figure 2.11: Different components of electric and magnetic fields inside a current
sheet (Litvinenko, 1996).

change the particle trajectory allowing the displacement along ~E and the energy

gain to be finite although it does not affect the particle kinetic energy. The parallel

~B component ( ~Bx and ~By in Figure 2.11) magnetises charged particles forcing them

to follow magnetic field lines and keep them inside the current sheet, to gain more

energy from the electric field, whereas the perpendicular component also known

by the guiding field ( ~Bz in Figure 2.11) tries to eject them, reducing the gained

energy. This guiding field when present has a great influence in the whole processes

as it can disturb particle orbits and change their bounce frequency and can, when

reaching some limiting values, cause trajectory asymmetry between electrons and

ions (Zhu & Parks, 1993). Considering a nonzero guiding field as in Figure 2.12,

particles accelerated at the reconnecting current sheet will lose the symmetry of

their orbits in the phase space about the z = 0 plane, hence also change their

bounce frequency. Importantly, its presence allows us to use the guiding centre

approximation to calculate particles orbits (Wood & Neukirch, 2005). Zharkova &

Gordovskyy (2004) showed that when By/Bz > 10−2, then symmetry is completely

destroyed and opposite charged particles are ejected into different legs or foot-points
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of the reconnecting loops. Assuming asymmetry between electron and proton beams

occurs and knowing that electrons take about 1 sec and protons about 10 sec to

cross the 107 m loops leg, then a temporal delay in the occurrence of HXR caused

by this asymmetry would takes place. Trajectories are completely symmetric when

By/Bz < 10−6 as proposed by Zharkova & Gordovskyy (2004) and a neutralised

beam is ejected. Between the 2 limits, a partially symmetric event occurs (see

Figure 2.13).

It is worth noting that all authors who have studied particle acceleration in

reconnecting current sheets from an analytical point of view derive extensively a

lot of critical expressions. These include when a particle could leave the sheet

and in what time, taking into account the existence or absence of transverse and

longitudinal magnetic fields and the particle behaving adiabatically or not with other

features. We do not present them here, as all expressions depend on the model

considered. In addition to following the field lines, particle solved analytically show

clearly the ordinary E × B drift known to be the dominant one among all other

drifts (Schmidt, 1979). One interesting point discussed by Litvinenko (1996) is

the theoretical value of the electric field in the reconnecting region, E0. He stated

that E0 = 10 V cm−1. Forbes (1992) through numerical simulations showed that

magnetic reconnection in erupted filaments in corona proceed at this value, and

Foukal & Behr (1995) measured a field of ∼ 35 V cm−1 in the flare surge.

2.3.3 Test Particle Model

Kliem (1994) using the full trajectory approach with a fragmentary electric field

model showed that particles are accelerated during very small time ∼ 10−2 sec to

relativistic energies. As we mentioned previously, Zharkova & Gordovskyy (2004)

considered particle orbits in simple non-neutral current sheet and showed that the

symmetry is completely destroyed when using strong longitudinal magnetic field

and opposite charged particles are ejected into different legs or foot-points of the

reconnecting loops. Gordovskyy et al. (2010a) get similar results as Zharkova &

Gordovskyy (2004) and show that electrons and protons are accelerated to tens of
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Figure 2.12: Field configuration model presenting a non-zero guiding field and elec-
tric field in the y-direction and the current sheet laying in the x−z plane (Zharkova
& Gordovskyy, 2004).

MeV in the forced reconnection model mainly near the X-point and less effectively

around the magnetic islands. This was also seen by Oka et al. (2010) of 2 inter-

acting islands. Dalla & Browning (2006) reveal the existence of two population of

accelerated particles around 3D null points, one manages to escape near the spine

(the reconnection site in 3 dimensions), and others are trapped near the null-point.

Gordovskyy et al. (2010b) also denote two distinct populations of accelerated parti-

cles in fragmenting periodic current sheets. Particles accelerated in open magnetic

fields have an energy spectrum which is a combination of a Maxwellian distribution

and power law, and particles accelerated in closed magnetic field lines around O-

points follow the guide field with a narrow energy range. Hannah & Fletcher (2006)

also using the full trajectory approach with constant electric field and hyperbolic

X-point showed that particles are accelerated during few gyro-periods in constant

electric field. The authors pointed out that the number of accelerated particles in-

crease when the guiding field exists. Similarly, Petkaki & MacKinnon (2007) using

oscillating electric fields indicated that energy spectra are bi-modal with protons

and electrons being accelerated to ∼10 MeV and ∼ 1 MeV respectively.

The values of some basic parameters of the field configuration influences a lot
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Figure 2.13: Asymmetry rate vs. the By/Bz ratio from work done by Zharkova &
Gordovskyy (2004). The asymmetry rate is zero for values of By/Bz < 10−6 where
particles are ejected as a neutralised beam but this symmetry is completely destroyed
when By/Bz exceeds 10−2 where particles travel all the way through different loop
legs.

on the final shape of the energy spectra. The stronger the maximum electric field

is the smoother the curve becomes and the greater the energy gain of the particles

(Wood & Neukirch, 2005). Figure 2.14 shows 3 different curves when varying the

maximum electric field, E0, by 2 orders of magnitude from 10 to 1000 Vm−1, where

the spectral index γ is steeper for lower E0. Hannah & Fletcher (2006) discussed

the influence of the angle between separatrices (arctanα), where (0 < α ≤ 1), when

using a simple flare model such as, ~B = B0(α
2y, x, const.) and ~E = E0~z. Figure 2.15

shows the energy spectra results when varying α. “Three things are immediately

clear: as α decreases, the heated component of the distribution moves to a slightly

higher energy, more particles are accelerated out of the thermal distribution into the

bump in the tail, and this bump occurs at lower energies” Hannah & Fletcher (2006).

Obviously when the resistivity increases in the system more magnetic energy will

be transferred to the particles. Figure 2.16 shows the final energy for 50 particles

versus their initial positions when varying the resistivity by 2 orders of magnitude.

We can see that particles at the same position gain more energy in case of higher

resistivity (Heerikhuisen et al., 2002). Finally, concerning the spectral indices γ, we

can note that its value is smaller in the case of protons than electrons, so protons

have harder spectra than electrons. Typical values show indices of γ ∼ 2 in case of
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Figure 2.14: 3 energy spectra curves for a system varying its maximum electric field
E0 from 1000 Vm−1 (top curve) to 10 Vm−1 (bottom curve). The energy spectra
curve become more steeper and its spectral indices grow up whenever the maximum
electric field is decreased (Wood & Neukirch, 2005).

(a) (b)

Figure 2.15: Energy spectra for a) protons and b) electrons with 4 different values
of the angle between separatrices (α) (Hannah & Fletcher, 2006).

electrons between 10 KeV and 1MeV, while γ ∼ 1.0-1.5 in case of protons with energy

of ∼1MeV (Gordovskyy et al., 2010b). In addition, γ differs within reconnection

stages (X or O-stages). Energy spectra seems to be harder in the X-point stage, that

is X-point has lower γ value. At E = 100KeV, γ is between 1.0 and 1.5 in the X-

stage while its between 1.5-3 at the same energy in the case of O-point reconnection

stage (Gordovskyy et al., 2010a).
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Figure 2.16: Final energy vs. initial position for 50 particles experiencing different
resistivity from top to bottom, η = 10−6, η = 10−7, and η = 10−8 respectively. We
can deduce that when resistivity increases, more energy will be transformed to the
particles as the tearing mode will be more efficient pushing field lines to reconnect
(Heerikhuisen et al., 2002).

Particle Trajectories and Energy Spectra

All mentioned references in the previous section and a lot other authors simulate

particle trajectories and energy spectra in the context of their acceleration in so-

lar flares using the test particle approach. We cannot present them all here, but

instead we will concentrate on Gordovskyy et al. recent work as it is used later

within our own work for comparison as both use the same MHD data for forced

reconnection events. Figure 2.17 shows single proton and electron trajectories for

certain experiments in the forced reconnection model created using the GCA ap-

proach in Gordovskyy et al. (2010a) paper. It can be seen that both protons and

electrons follow to a high extent the magnetic field lines. The E × B drift effects

particle paths at some stages, where they cross the magnetic field lines, but it re-

mains a secondary effect in the view of particles following field lines (Gordovskyy

et al., 2010a). Gordovskyy et al. (2010b), after distinguishing between 2 magnetic

regions, open (near the boundaries of the current sheet) and closed (at magnetic is-

lands near the diffusion region), noted that particles experience different trajectories

within these regions. They travel long distances with some oscillation in the first



64 CHAPTER 2. BACKGROUND THEORY

while being trapped with rotation motion in the sheet plane in the second and in

both cases following the magnetic field lines. One further point to add is that when

particles encounter a slow shock layer associated with reconnection, (mainly after

being accelerated at the neutral line), they suffer large orbit modification leading

to them no longer following field lines but rather a complicated motion. This is

particularly important for protons. This sudden change is accompanied by a small

gain of energy of several eV for electron and 10 KeV for protons (Sato et al., 1982).

Figures 2.18 show the energy spectra for protons and electrons for a certain exper-

(a)

(b)

Figure 2.17: Particle trajectories for a) protons starting with initial thermal veloc-
ities vint = 0.1VA where left panel correspond to large magnetic moment and right
panel for small one and b) electrons with initial thermal velocities vint = 3.9VA and
same panel description as for protons (Gordovskyy et al., 2010a).

iment done by Gordovskyy et al. (2010b). Both species have a similar evolution of

their energy spectra. Most of the electrons and protons are in the thermal region as

their initial state with a Maxwellian distribution and a small fraction have higher

energies making a tail that evolves as a broken power law (N ∼ E−γ). This is true

as just small number of particles can enter the diffusion region and be accelerated to

higher energies. The authors show that particles acquire in the X-stage more energy

than the O-stage and a higher percentage of simulated particles are accelerated. In

addition, particles within closed regions gain more energy than that in the open one.



2.3. PARTICLE ACCELERATION AND TEST PARTICLE MODEL 65

Unfortunately, in our thesis we study single particle motion rather than simulating

a large number to deduce the energy spectra due to time matter. Extending this

work to simulate a large number of particles could be a project for the future.

(a) (b)

Figure 2.18: Energy spectra for a) protons and b) electrons for the magnetic recon-
nection simulated in figure 2.20 (Gordovskyy et al., 2010b) for the whole process. It
can be seen that most particles remain with their initial thermal velocities and just
few of them are accelerated to high energies.

2.3.4 Forced Reconnection Using MHD Simulations

In order to perform the test particle approach, it first needs to be defined in a con-

venient model consistent with the solar corona. We have shown in detail previously

that reconnection is the preferred process for such a model, thus we need to establish

this model by simulating it to know how the magnetic field, electric current, plasma

velocity, and their associated parameters evolve during reconnection. Several MHD

codes exist for reconnection. The code we use, is widely used in our field, is the

LareXD code (Arber et al., 2001) with ”X” standing for the number of dimensions

(2 or 3). In our case we are dealing with 2D, so we use the Lare2D code. In general

LareXD are Lagrangian remap codes for solving the nonlinear MHD equations in

2 or 3 dimensions with user controlled viscosity and resistivity (the standard set of



66 CHAPTER 2. BACKGROUND THEORY

resistive MHD equations being solved by the code are given in Appendix A.3). The

code uses a staggered grid and is second order accurate in space and time. The

staggered grid is used to build conservation laws into the finite difference scheme

and time step splitting into Lagrangian step followed by remapping onto the original

grid make it easy to add any additional physics. LareXD is compatible with IDL

and V isIt visualisation packages.

The current sheet is produced by external deformation of smooth magnetic

fields. The preferred initial magnetic configuration is a stationary force-free Harris

sheet (Harris current sheet is a stationary solution to the Maxwell-Vlasov system

(Schindler, 2010)), which is magnetically dominant (low-β plasma). For simplicity,

thermal conduction, radiation, and viscosity effects are ignored. This sheet is more

relevant to the solar corona than a neutral Harris sheet as the latter is MHD sta-

ble whereas sheared force-free field might be tearing unstable, thus releasing more

magnetic energy (Vekstein & Jain, 1998). The initial magnetic field configuration

for the force-free Harris sheet is:

~Bini =
[

tanh
y

L0
; 0 ; sech

y

L0

]

(2.22)

hence, as j × B=0 (force-free) the current density is:

~Jini =
[

− 1

L0
tanh

y

L0
sech

y

L0
; 0 ; − 1

L0
sech2 y

L0

]

(2.23)

where L0 is the characteristic length scale and current sheet half-width. Figure

2.19 shows magnetic field and current density initially. The local current-dependent

resistivity is defined as a step-like function such as:

η = 0, (j < jcr)

η = η1, (j ≥ jcr) (2.24)

Initially the resistivity is zero and the system is steady by setting the critical current
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Figure 2.19: Initial magnetic field and current density as defined in equations 2.22
and 2.23 respectively (Gordovskyy et al., 2010a).

density greater than the maximum initial current density (jcr = 1.02jmax(t = 0)).

At t = 0, the stable system experiences a transient spatially varying displacement

at one of its boundary edges mainly by letting the plasma flow perpendicular to this

boundary for a specific perturbation time tp. From Gordovskyy et al. (2010b) and

Gordovskyy et al. (2010a), the plasma flows in the y-direction such that:

Vx(y = ±y1) = 0

Vy(y = −y1) =
∆

tp
cos

(2π

Lx
X

)[

1 − cos
(2π

tp
t
)]

Vy(y = +y1) = −∆

tp
cos

(2π

Lx
X

)[

1 − cos
(2π

tp
t
)]

Vz(y = ±y1) = 0 (2.25)

where ±y1 are top and bottom boundaries in y-direction, ∆ is the displacement

amplitude, and Lx = lx/L0 is the period of boundary deformation in the x-direction.

As a result, magnetic field lines begin to deform and at the end of the impulse,

(t = tp), these lines are deformed near the top and bottom boundaries by δY =

∆cos
(

2π
Lx
X

)

and δY = −∆cos
(

2π
Lx
X

)

. Boundary conditions for such a system

should be chosen carefully to insure no extra forces or electric currents oriented
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perpendicular to the perturbed boundary exist and to insure the rigidity of the

boundary when perturbation ends ((Hahm & Kulsrud, 1985); (Vekstein & Jain,

1998); (Jain et al., 2005a)).

Simulating reconnection reveals a lot of details. Figure 2.20 shows how magnetic

fields, current density, and plasma flow evolve with time in a forced reconnection

event. First within the perturbation time, when magnetic fields are deformed, cur-

rent density is observed to accumulate at the centre, allowing the threshold value

for the switching resistivity to be reached. Thus resistivity becomes active and

reconnection proceeds at the central region, as a result magnetic islands begin to

form. At the first stages, as shown in Figure 2.20, plasma inflows in the y-direction

and outflows in the x-direction and as time proceeds, the thickness of the sheet in

the y-direction decreases and the plasma begin to outflow in 4 separatrix jets (Gor-

dovskyy et al., 2010a). An expected and observed feature during this time is the

decrease in magnetic energy and increase in thermal internal energy. Gordovskyy

et al. (2010a) in agreement with analytical estimation for dissipation rate of mag-

netic energy in forced reconnection by Hahm & Kulsrud (1985) and Vekstein & Jain

(1998), pointed out that dEm/dt = η−0.6
1 where Em being the magnetic energy and

η the magnetic diffusivity. When the process approaches the end, magnetic islands

grow around O-points to relatively large sizes where magnetic field and electric cur-

rent are concentrated. When the field reaches a new equilibrium, the reconnection

rate diminishes and all parameters do not change.
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Figure 2.20: Evolution of magnetic field, current density, and plasma velocity in a
current sheet due to forced reconnection (Gordovskyy et al., 2010b). Left panels
show x − y magnetic field lines in the current sheet with z-component plotted as
a colour-scale. Middle panels correspond to the absolute value of the electric field.
The right panels show how plasma flows in and out the current sheet marked by
the black arrows, and a colour-scale for the absolute plasma velocity. The snapshots
were taken at t=[0(a),16(b),32(c),64(d),96(e),128(f)]tA.



Chapter 3

Methodology

Our aim in this project is to test particle trajectories and their acceleration mech-

anism by the direct DC acceleration process. Dealing with plasma is really a hard

job due to its schizophrenic personality. Plasma sometimes behaves like fluid where

the motion of individual particles could be dismissed. In this regime, the density is

high and collisions dominate and simple equations of fluid dynamics operate. On the

other hand, when densities are very low, plasma behave as a collection of individual

particles each having its own trajectory. Plasma densities vary dramatically from

one region to another. In the case of the Sun, it is well known that the corona is

a low density region and things become more dense when we go down to the Sun’s

surface. As our interest is to investigate how particles are accelerated due to solar

flares in the corona where densities are low, then single particle trajectories need

to be considered. Two numerical approaches will be considered to solve particles

trajectories: the full trajectory approach by solving the Lorentz equation of motion

without any approximations, and the Guiding Centre Approximation (GCA) theory

as discussed previously. We will compare both methods when working with field

data on finite grid. What we expect is to see similar motions using the 2 codes

when the conditions of GCA are fulfilled, together with all other parameters like

velocities, drift, energy and so on. We already have a well organised and tested

GCA code written by one member of our Solar physics group, Dr. Mykola Gor-

dovskyy, thus our first task would be to write a well organised program that solves

70
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the Lorentz equation of motion with other functions that give us data on drifting,

energy conservation, and some others.

3.1 The Full Trajectory Particle Code

Writing numerical codes especially for those solving differential equations, with other

packages for different functions, may be tricky as any addition to a single loop can

cause a lot of time and data-space consumption. In order to test the code we use

some analytical solutions for the case of uniform and static electric and magnetic

configurations as we shall discuss in the next section. We use two numerical methods,

the first is Runge-Kutta of 4th order (RK4) and the second is Adams-Bashforth also

of 4th order (A-B4), where the user can select the method; this will let us compare

between the two methods. Besides, relativistic and non-relativistic calculations is an

optional feature of this code, where the user should specify this in the input file. The

code is written in C++ and divided into 4 modules for the 4 different combination

of methods (RK4 or A-B4) and calculations (relativistic or non-relativistic).

The code can output many parameters, but for purpose of testing we will concen-

trate on the coincidence of particle trajectories calculated analytically and numer-

ically to make sure that the numerical scheme is working properly. Hence, output

data files will contain positions (x, y, and z), velocities (vx, vy, and vz), magnetic

fields (Bx, By, and Bz), electric fields (Ex, Ey, and Ez), and differences in posi-

tions and velocities at each step between numerical and analytical calculations. In

order to reduce numerical errors within the code and to allow generality, all param-

eters are made to be dimensionless. We introduce three characteristic parameters

which are L0 (characteristic length), ρ0 (characteristic density), and B0 (charac-

teristic magnetic field) which need to be consistent with corona values when using

real MHD data. Defining these characteristic quantities allow us to define the di-

mensionless coordinates as x∗ = xL−1
0 , y∗ = yL−1

0 , z∗ = zL−1
0 , and dimensionless

time and velocity as t∗ = tt−1
A , v∗ = vv−1

A where tA and vA are Alfven time and

velocity respectively. The Alfven velocity is given by, vA = B0/
√
µ0ρ0, and the
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Alfven time by, tA = L0/vA. The dimensionless magnetic field will be, B∗ = BB−1
0 ,

and electric field, E∗ = EE−1
0 , where the characteristic electric field is defined as,

E0 = B0vA. We define the parameter α to be the dimensionless mass-to-charge ratio

as follows, α = m/q
(m/q)0

. Arranging the expression of Larmor radius, rL = mv⊥
|q|B , and

using t = rL/v⊥, we find that, (m/q)0 = B0tA, therefore:

α =
m

qB0tA
=

1

ωctA
=
rL

L0

(3.1)

where ωc is the cyclotron frequency. α could measure and control the validity of

GCA by varying it as we shall discuss later. It has a wide range from very light

particles (e.g. α = 10−9) to very heavy one (e.g. α = 10−1). Ions for instance have

values around 10−4 like protons having, αp+ ≃ 1.47×10−4. The dimensional Lorentz

equation of motion is:

m
dv

dt
= q(E + v × B). (3.2)

Now, by using dimensionless variables, the dimensionless Lorentz equation become:

dv∗

dt∗
=

1

α
(E∗ + v∗ × B∗) (3.3)

Concerning the time step, the code contains a function that calculates it for the

next iteration, thus the code can have an adaptive time step. This feature could be

shut off and the user should assign the time step a constant value. Three limits are

taken into account when calculating the adaptive time step which should be less by a

certain factor indicated by the user than the gyration period, velocity to acceleration

magnitudes ratio, and grid separation to velocity ratio derived from the following

simple relations, δt ≪ T, δv ≪ v, and δr ≪ ∆, respectively where ∆ is the mini-

mum grid separation (our numerical box is a square, so ∆x = ∆y). When the code

calculates the above three values, it takes the minimum one and multiplies it by a

precision factor assigned by the user. If the user set the time step to be non-adaptive

the code takes the time step to be constant and equal to the precision factor.

In order for the code to operate, the user must specify initial position, velocity,
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and the pitch angle. These initial value are the same as entered to the GCA code

to guarantee that both codes are operating with same initial quantities. As the

full trajectory code works with Cartesian components while GCA with parallel and

perpendicular basis, where the entered initial information is for GCA code, then

full code need to make a switching to operate with its own basis (see section 4.2

for more information). In the testing section there is no need to make switching

as there is no comparison with GCA, hence initial position and velocity can be in

the Cartesian form. After calculating position and velocity, many quantities can be

calculated depending on what we are searching for. At each stage of our thesis we

create different functions to compare aspects between full trajectory and GCA.

3.2 Testing the Code Using Uniform and Static

Field Lines

In order to test the full trajectory code, we first compare thoroughly with analyt-

ical solutions for uniform static fields. Mainly in our context, 5 things should be

tested which when giving acceptable results mean that we can continue to the next

steps with non-uniform fields and real MHD data. These tests are the Interpolation

scheme, Runge-Kutta 4th order method, Adams-Bashforth 4th order method, rel-

ativistic and non-relativistic calculations, and finally test if every thing holds true

when using electrons as first we will use protons as they save time and are mainly

easy to handle.

3.2.1 Analytical Configuration

We choose a specific configuration of electric and magnetic fields and solve it ana-

lytically by hand and then program it in our code. Our chosen configuration was

not that sophisticated but also not trivial to solve. We let the magnetic field be in

the y−z plane having 2 components (By and Bz) and the electric field just be in the

z-direction. As we mentioned previously, the fields do not vary in space (uniform)
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and time (static), that is why an analytical solution could be obtained for such a

case. To solve for positions and velocities we should solve the Lorentz equation of

motion:

dv

dt
=

q

m
(E + v × B) (3.4)

A full derivation is found in Appendix A.4. The 6 expressions for the phase-space

variables are then programmed in the code in a separate function to be called when in

need. We should note that this configuration was solved using the non-relativistic

version of Lorentz equation of motion and so it only serves when using the non-

relativistic module in the code. Concerning the relativistic case, the Lorentz equa-

tion become:

dp

dt
= q(E +

p

γm
× B) (3.5)

where

p = γmv (3.6)

In this case we will not use the same configuration as used for the non-relativistic

one as the solution is more complicated and very hard to obtaine. Hence we used

a simpler case with no electric field and just the z-component of the magnetic field.

The general solution for the motion of a particle in a uniform and static magnetic

field using the relativistic version of equation is found in Jackson (1998), which when

solved for our case yields:

x =
v⊥
ω
sin(ωt) + x0 (3.7)

y =
v⊥
ω
cos(ωt) + y0 −

v⊥
ω

(3.8)

z = vz0
t+ z0 (3.9)

vx = v⊥cos(ωt) (3.10)

vy = −v⊥sin(ωt) (3.11)

vz = vz0
(3.12)
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where

ω =
qB

γm
(3.13)

~v⊥ is the perpendicular velocity around the direction of the magnetic field (in our

case ~v⊥ = ~vx + ~vy), and γ = 1/
√

1 − v2/c2 is the relativistic coefficient.

3.2.2 Testing the Interpolation Scheme

The MHD data given to us consists of magnetic and electric field values distributed

on a discrete grid. The particle is free to move at any position inside the numeri-

cal box and at any time between the snapshots. This requires interpolation in two

space dimensions and time, which causes some numerical error. Our code uses a

2-Dimensional linear interpolation method in order to calculate the magnetic and

electric fields at any position inside the numerical box and at any time in between

the snapshots known by bi-linear interpolation. Thus we interpolate first in posi-

tion inside the numerical box for the 2 snapshots, the one exactly before the time

step now under operation and the one exactly after. After position interpolation

in the 2 snapshots, we interpolate in time, hence the problem could be viewed as a

3-dimensional interpolation separated into 2 steps. Figure 3.1 clarifies the idea of

interpolating inside the numerical box. Consider any particle at a position (xp, yp)

and at any certain time tp, and take fold(xp, yp) and fnew(xp, yp) to be any interpo-

lated functions in the old and new snapshot respectively. Also let F (xp, yp, tp) to be

the final interpolated function in space and time, then we have:

fold(xp, yp) = (1−δx)(1−δy)foldi,j
+δx(1−δy)foldi+1,j

+(1−δx)δyfoldi,j+1
+δxδyfoldi+1,j+1

(3.14)

fnew(xp, yp) = (1−δx)(1−δy)fnewi,j
+δx(1−δy)fnewi+1,j

+(1−δx)δyfnewi,j+1
+δxδyfnewi+1,j+1

(3.15)

F (xp, yp, tp) = (1 − δt)fold(xp, yp) + δtfnew(xp, yp) (3.16)

where

δx =
xp − xi

xi+1 − xi
(3.17)
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Figure 3.1: The numerical box having two dimensions in space (x and y) and one in
time where the 6 field components are interpolated linearly to the particle position
(figure taken from Gordovskyy et al. (2010b)).

δy =
yp − yj

yj+1 − yj
(3.18)

δt =
tp − tk
tk+1 − tk

. (3.19)

One way of checking that there is no major errors in the interpolation method is by

varying Nxgrid and Nygrid quantities, the number of grids in x and y respectively,

which should not influence the difference between analytical and numerical results

at any step as we are using uniform fields where values of electric and magnetic fields

do not change from one point to another. Also if we output the values of electric and

magnetic fields at each iteration we should notice that there is no change in their

quantities as they are all the same. Of course this does not really test interpolation

method fully but serves as a good test for fatal mistakes. In order to do that we

perform 3 experiments (1, 2, and 3) all having the same initial conditions but with

the only difference in the Nxgrid = Nygrid values where we took them to be 16,

128, and 256 respectively. The initial conditions and input parameters are shown

in table 3.1. It is worth mentioning that the above values are chosen arbitrary, and

some of the characteristic values like L0 are not consistent with real values of the
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Calculation Non− Relativistic
Method RK4
Particle Proton
B0 0.01 T
L0 10 m
t0 10−6 sec
E0 105 V.m−1

V0 107 m.s−1

( q
m

)0 108 C.Kg−1

x0 20/L0

y0 30/L0

z0 10/L0

vx0
1.5 × 105/VA

vy0
105/VA

vz0
1.5 × 105/VA

tsnap 10
tinitial tsnap = 10
tmax 40

xmin, ymin 0
xmax 80/L0

ymax 60/L0

~B = ( ~Bx, ~By, ~Bz) (0, 1, 0.2)
~E = ( ~Ex, ~Ey, ~Ez) (0, 0, 0.01)
T ime Step Non−Adaptive
Precision 0.1

Table 3.1: Initial conditions and input parameters for the first 3 experiments (not
chosen for any physical reason).

corona, since this is just for purpose of testing the code. The initial time is equal

to zero (tini = 0) for the analytical solver and to the snapshot time (tini = tsnap) for

the numerical solver where the particle begins to move from the first snapshot taken

(it could be taken to be any time between any existing snapshots, but it could not

be equal to zero or anything less than tsnap as this will cause problems). We pick 2

steps to test the interpolation, one in the middle and the second is the final step at

t = tf . After running the 3 experiments we notice that the errors between analytical

and numerical solutions at the 2 steps for the 6 phase-space components are exactly

the same. The gyro-period was constant all over the simulation as expected and the

interpolation was also constant, that is the values of Bx, By, Bz, Ex, Ey, and Ez

did not change during the simulation as they are uniform. Figure 3.2 shows the result

of plotting the exact and numerical solutions on the same graph where they coincide
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on top of each other. The solid black line refers to the exact one and dashed blue

one refers to the numerical one. Table 3.2 shows the difference between analytical

and numerical results at the final step along with the gyro-period in dimensionless

unit.
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Figure 3.2: Analytical (solid black) and numerical (dashed blue) results of experi-
ment 1. Panels from top to bottom are x, y, z, vx, vy, and vz as labelled in each

graph. we can notice drifting in the negative x direction due to the ~E × ~B drift
together with gyration in x and z. Acceleration takes place in z and y directions.
Same results are obtained for experiments 2 and 3 with exactly the same error results
as expected.

3.2.3 Testing the Runge-Kutta 4th order Method

It is obvious from figure 3.2 that analytical and numerical solutions apparently

coincide but this does not mean that the method is running properly. It is known

that the error at each time step using a 4th order numerical methods deduced from



3.2. TESTING THE CODE USING UNIFORM AND STATIC FIELD LINES 79

diffx 1.46.10−7

diffy 1.20.10−7

diffz 6.00.10−7

diffvx 5.98.10−7

diffvy 2.80.10−8

diffvz 1.40.10−7

gyro− period 6.43

Table 3.2: The error at the final step (t = tf = 40) between analytical and numerical
calculations for the first 3 experiments all having the same values as using uniform
and static magnetic and electric field lines.

Taylor expansion is ∆t5 i.e.

error = |fexact − fnumerical| ≃ C(∆t)5 (3.20)

where C is a constant and ∆t is the time step. The accumulative error after n steps

is reduced to ∆t4 as n = t/∆t , so global error ∝ ∆t4. Taking the logarithm of both

sides yields, when plotting Log(error) versus Log(∆t), a straight line of slope 4. To

check if the method is running properly we perform 4 experiments having all the

same initial conditions as experiment 1 but with different time steps as follows 0.1,

0.05, 0.025, and 0.0125 (we divide by a factor of 2 rather then 10 to avoid reaching

the limit of double precision). The first one is actually experiment 1, so we need

to perform experiments 4, 5, and 6 with the other 3 values of ∆t. We also choose

the final step to be our testing point. Figure 3.3 shows a logarithmic plot for the 6

phase-space components each represented by a coloured curve for experiments 1, 4,

5, and 6. We can notice that the 6 lines are approximately parallel, then we can say

that they have the same slope. Taking any of the lines and calculating its slope, lets

say the y-trajectory values, gives slope = 4.00 exactly. We can conclude that our

RK4 method is working properly (an explanation on how the RK4 method works is

found in Appendix A.5).
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Figure 3.3: Error vs. ∆t on a logarithmic scale for the 6 phase-space components
for experiments 1, 4, 5, and 6. The 6 lines are approximately straight and parallel
to each other with a slope = 4 indicating that RK4 method is working properly.
The error in z and vx are very close that is why the 2 lines seems to be on top of
each other using a logarithmic plot.

3.2.4 Testing the Adams-Bashforth 4th Order Method

Using the same method to test RK4, we perform a set of 4 experiments (7, 8, 9,

and 10) with same time steps as used before i.e. ∆t=[ 0.1, 0.05, 0.025, 0.0125 ] and

with the same initial conditions as used in experiment 1. Figure 3.4 shows the same

thing as in figure 3.3 but this time for A-B4 method (an explanation on how the

A-B4 method works is found in Appendix A.6). Also in this figure we can notice

that the 4 lines are approximately parallel and when calculating the slope for any

arbitrary line, say for instance vx, we get slope = 3.99. One interesting thing we

should note here when comparing the efficiency between the two numerical methods

used, is that RK4 method is more accurate. It always gives less error at any certain

time step than A-B4. Looking at the y-axis in figures 3.3 and 3.4 shows this. The

error decreases in RK4 with decreasing time step from orders of magnitude of −8

when ∆t = 0.1 till −11 at ∆t = 0.0125, while in case of A-B4, error converges from

−6 till −9 or −10, which infer that RK4 could reach to accuracy of 2 orders of

magnitude better than A-B4.
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Figure 3.4: Same discussion as figure 3.3 but for Adams-Bashforth method using
experiments 7-10. For some reason the error in z and vx always show close results.

A good question here may be about which of the 2 methods perform faster. To

answer this question, we put time-marks on the loops which solve the differential

equations for the 2 methods. Using same initial conditions, we notice that there is

no big difference. The program was very fast and the particle moves through the

whole domain (crossing one the boundaries, where simulation stops) or consuming

all the time (tf=tmax, were simulations stops also) by a fraction of a second using

the 2 methods. Hence RK4 seems to be more accurate, that is why we use it in the

future.

3.2.5 Relativistic VS. Non-Relativistic Calculation

So far we checked that the interpolation and differential equation solvers are work-

ing properly, what remains to check is relativistic and non-relativistic modules and

determine when relativistic calculation is required. Finally we will check if every-

thing works for electrons as well as protons. To test relativistic and non-relativistic

calculations we perform 4 experiments also with protons. Experiment 12 and 13 con-

firms that relativistic module agrees with the non-relativistic when particles have
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low speeds and experiments 14 and 15 aims to show that relativistic effects cannot

be ignored when working with relativistic speeds as it is known. The configurations

of magnetic and electric fields in this section are changed for the purpose of getting

an analytical solution using the relativistic version of Lorentz equation of motion

as discussed in § 3.2.1. In this new configuration where electric field is set up to

zero and magnetic field is directed in the z-direction, the motion of any charged

particle will be a simple helix where it gyrates in the x − y plane and move with

a constant velocity in the z-direction. As the electric field is zero then we expect

the kinetic energy to be constant all the way, along with the perpendicular velocity

(in our case ~v⊥ = ~vx + ~vy). As we are using non-relativistic speeds in the first test

(experiments 12 and 13) then we expect gamma (γ) to be close to unity through

out the whole simulation. The initial velocities (before normalisation) were set as

follows, vx0
= vz0

= v⊥ = 0.5 × 10−4c, vy = 0, where c is the speed of light. We

perform the simulation with the relativistic module in experiment 12 and with the

non-relativistic module in experiment 13. Figure 3.5 shows the results for both ex-

periments in the same graphs, where dashed blue lines correspond for relativistic

values and solid black lines for non-relativistic one. It is easily noticeable that the

2 modules coincide in all phase-space components as expected. The value of γ was

viewed in each iteration and it was always equal to 1. v⊥ was also constant and

equal to 0.015 as vx0
(after dividing by the characteristic velocity VA). The kinetic

energy was constant as well. It is worth noting that analytical solutions for both

experiments also coincide on top of the 2 curves in each plot (one can wonder that

there should be a very small numerical error i.e. γ very close to 1 but not equal

to 1, kinetic energy is constant but with a small percentage change and so on. We

say that theoretically, γ = 1.000000003, for our chosen velocities and so the change

occurs in the 9th decimal digit which could not appear in our output data files).

Now we consider the case where speeds become relativistic and perform experiments

14 (with relativistic module) and 15 (with non-relativistic module). The initial ve-

locities are as follows, vx0
= vz0

= v⊥ = 0.5c, and vy = 0. As before, kinetic energy,
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Figure 3.5: Relativistic (dashed blue) and non-relativistic (solid black) calculations
for the 6 phase-space components using low speeds (vx0

= vz0
= 0.5 × 10−4c/VA =

0.015(dimensionless)). Both calculations give similar results where γ ∼= 1, hence
relativistic effects are ignored. Analytical results for both calculations also coincide
on top of the 2 curves.

γ, and v⊥ should be constant as no electric field exist. There values are:

EK = mc2(γ − 1) = 389.2MeV, (3.21)

where γ = 1.41421 and

v⊥ = 15 (in dimensionless units).

At each time step we viewed γ, v⊥, and Ek and the results were exactly as we

expected concerning values and the constancy of these parameters. The same thing

was done in experiment 15 but with the non-relativistic module. Figure 3.6 shows

the results of the 6 phase-space components for both experiments on the same graphs

together with their corresponding analytical results. We can notice that curves in

each plot except for z (constant all the way) and vz (linear with time) do not match
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and this what we were expecting when using relativistic speeds. However, there is

very good agreement between the numerical relativistic solution and its analytical

one. If we discuss the issue from the energy side, the picture is more informative.

Protons have a rest mass of 938.272 MeV/c2 while that of electrons is 0.511 MeV/c2.

Simulations show that protons and electrons can gain energy of hundreds of MeV.

As the rest mass of electrons is so small compared to that of protons then the latter

need high speeds very close to the speed of light in order for the relativistic effects

to significantly affect its trajectory. Even in our last experiment the disagreement

is obvious, but the motion in general is the same and the kinetic energy is less then

the rest mass. Hence we would say that relativistic effects are less important for

the case of protons. As most of our coming experiments are for protons simulations,

non-relativistic module will be mainly in use.

3.2.6 Electron Testing

Now after testing interpolation, methods, and relativistic and non-relativistic mod-

ules, what remains is to test the code using electrons rather than protons as the

numerical error may be larger due to thier smaller gyro-period. We will not re-test

all aspects of the modules as we did before, but we will set one experiment to see

if we get the expected behaviour. To do so, we perform experiment 16 with mainly

the same conditions as experiment 1 but with some differences listed in table 3.3.

We expect electrons to have a similar behaviour as protons in experiment 1 with

y0 55/L0

vx0
1.5 × 106/VA

vy0
1 × 106/VA

vz0
1.5 × 106/VA

T ime Step Adaptive

Precision 0.01

Table 3.3: Changed initial conditions and input parameters for experiment 16.

gyrations in the x and z directions and moving in the negative y-direction rather

than the positive one as in experiment 1. As ~E × ~B drift does not depend on the
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Figure 3.6: Relativistic-analytical (dashed gray), relativistic-numerical (solid blue),
non-relativistic-analytical (dashed red), and non-relativistic-numerical(solid black)
calculations for the 6 phase-space components using relativistic speeds. Relativistic
effects are no more ignored and influence a lot on the path of the particle especially in
the directions of gyrations. Analytical and numerical results always coincide within
the same calculation.

charge of the particle so protons and electrons should drift in the same direction (in

our case the negative x-direction). After running the experiment, it stops at t = 12

as the particle travel all the way down from y = 5.5 till y = 0 in this small duration

of time. This small time does not mean a small number of iterations, in fact there

was a lot of iterations as the time step is very small. Figure 3.7 shows the results

of experiment 16 for the analytical and numerical solutions. We zoom in inside the

curves in order to resolve gyrations in x and z directions that is why the time in the

figure is just from t = 10 till t = 10.15 in most of the plots. The error at the final

step was as expected very small, confirming that every thing is running properly

(results shown in table 3.4).
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diffx 3.99.10−8

diffy 7.40.10−10

diffz 3.43.10−9

diffvx 6.28.10−6

diffvy 1.40.10−5

diffvz 7.02.10−5

gyro− period 0.0035

Table 3.4: The error at the final step between analytical and numerical calculations
for experiment 16 simulating an electron trajectory. The gyro-period is always much
smaller for the case of electrons as they are more magnetised than protons due to
their tiny mass.
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Figure 3.7: Results of experiment 16 simulating electron trajectory. Black solid
curves correspond to analytical solutions and blue dashed one for numerical one.
Coincidence is also insured by the small error values at the last iteration as stated
in table 3.4.

3.3 Testing the Drift Theory

After testing the code using uniform and static fields indicating that it is working

properly, now we can move on to the case of non-uniform field lines or more precisely
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the non-uniform magnetic fields. In this case no analytical solution exists, but an

approximate solution can be find under appropriate conditions within the Guiding

Centre Approximation (GCA) theory (see § 2.2). We compare our numerical solu-

tions with GCA solutions for simple model fields in which the drift velocities can be

calculated exactly. The purpose of this is to test the validity of GCA when varying

specific parameters which could break down GCA conditions.

3.3.1 Field with ∇B Drift

We choose a field in which the only drift velocity is the ∇B drift. Thus we take

the magnetic field lines to be directed in the positive z-direction and varying in the

y-direction, thus ∇ ~B will be ⊥ to ~B. The mathematical formula for the field is:

~B = α(y + δ)~k, (3.22)

where α is a constant used to vary the strength of the magnetic field, and δ is also

a constant used to avoid getting B = 0 at y = 0 (particles become un-magnetised

in this case). The electric field is set to zero. Following up from § 2.2 we get:

vgc = ∓v⊥rl

B

1

2

∂B

∂y
~x (3.23)

The main condition for the guiding centre theory to be satisfied is that the Larmor

radius should be much smaller than the length scale of the system, that is:

rl

L
≪ 1 (3.24)

In our case, the length scale of the system is the distance where the magnetic field

changes (L∇B) given by the following formula:

L∇B =
| ~B|
|∂ ~B|

=
|α(y + δ)|

α
= y + δ (3.25)
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and thus after substituting in rl/L∇B and knowing that rl = mv⊥
qB

we get:

rl

L∇B

=
mv⊥

qα(y + δ)2
. (3.26)

Deriving the guiding centre velocity gives:

vgc =
mv2

⊥
2qα(y + δ)2

(3.27)

As ~B is in the z-direction and it is varying in the y-direction and we are using

protons, then we expect the test particle to drift in the negative x-direction in a

linear way where the Larmor radius does not change but the particle itself drifts

slightly after each gyration.

3.3.2 Simulations and Results

Here we perform 7 experiments, aiming to calculate test particle trajectories in non-

uniform magnetic fields given by equation 3.22. The main difference between these

7 experiments is the value of rl/L∇B where we begin from small values satisfying

the condition as stated in equation 3.24, where as we shall notice that the guiding

centre approximation agrees with our exact trajectory calculations and then begins

to increase the value of rl/L∇B gradually until approaching 1, where we expect a

large difference between the GCA theory and our simulations. The guiding centre

drift velocity is calculated using 2 methods. First by using equation 3.27 giving us

the value of vgc from the GCA theory. vgc is calculated also from our simulations

by calculating the slope in the drifting direction. The particle with our chosen con-

figuration of magnetic field should be drifting linearly downwards in the x-direction

governed by the following equation:

x = vgct+ x0. (3.28)

For each gyration we get the maximum and minimum values in the x-direction

(the drifting direction) using a C++ script together with their associated time and
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α 3
B0 1
c 10
x0 20/L0

y0 110/L0

z0 0/L0

vx0 1.5 × 107/VA

vy0 1.5 × 107/VA

vz0 0/VA

ymin 10
ymax 60/L0

T ime Step Adaptive
Precision 0.01

Table 3.5: Initial conditions and input parameters for experiment 17 testing grad
drift theory at applicable GCA regime.

calculate the midpoint which is the position of the guiding centre in the x-axis

together with its approximated time. Knowing the position of the guiding centre at

each time allows us to calculate the slope of motion which is the drift speed. The

7 experiments are labelled from experiment 17 till 23. The initial conditions and

input parameters for experiment 17 are presented in table 3.5 (Calculation, Method,

Particle, Characteristic values, tsnap, tmax, ti, xmin, xmax are the same as experiment

1). Changes made for other experiments are stated later on. In this experiment the

value of rl/L∇B = 1.67× 10−3 ≪ 1, so the GCA theory would be valid. Calculating

vgc from the theory as in equation 3.27 gives us, vgc = −1.7751×10−3, and calculating

the slope of the drifting motion from our simulations as shown in figure 3.8 gives,

slope = −1.774 × 10−3, and hence the error given in the following formula:

error =
|vgc − slope|

|vgc|
(3.29)

would be 0.06%. In experiment 18 we just increase the velocities vx and vy to 108

and thus rl/L∇B = 0.01 which may also be considered as ≪ 1. In this experiment,

vgc = −0.078893, and the slope of the drifting line in our simulation is −0.0801, and

thus the error is 1.558%. So we notice that the error had increased when rl/L∇B

approaches 1. In experiments 19, 20, 21 and 22 we decreased α from 3 to 2, 1, 0.7,

and 0.3 respectively in order to increase rl/L∇B slightly as it is inversely proportional
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Figure 3.8: Results for experiment 17. The 1st panel shows x vs. time where
the test particle drifts in the negative x-direction due to the grad drift. The blue
line represents the motion of the guiding centre in the x-direction drifting linearly
downwards. The 2nd panel (top right) is just zooming inside the first panel to reveal
the plot structure. The 3rd panel is y vs. time where the particle oscillates normally
in this direction and a little bit of zooming in the 4th one. The 5th panel show a
complete picture of dense oscillations in x− y plane and drifting in the x-direction.
The final panel shows vy vs. vx where all circles here accumulated above each other
to indicate that the Larmor radius is not varying throughout time, it also gives an
idea on the shape of gyrations in the x− y plane.

to α getting values of 0.0167, 0.031, 0.0435, and 0.1 respectively. As a result the

error increased to 2.37%, 4.5%, 6.2%, and 17.33% respectively. Figure 3.9 shows

results for experiment 20 with same analysis as for figure 3.8 but with an increase

in the error. We should note that the number of gyrations is decreasing as viewed

in the figures due to the increase in the gyration period given by following formula:

Tc =
2πm

qα(y + δ)
(3.30)



3.3. TESTING THE DRIFT THEORY 91

0 2 4 6 8
x

10.5

11.0

11.5

12.0

12.5

13.0

y

10 15 20 25 30 35 40
t

0

2

4

6

8

x
10 15 20 25 30 35 40

t

10.5

11.0

11.5

12.0

12.5

13.0

y

-20 -10 0 10 20
vx

-20

-10

0

10

20

vy

Figure 3.9: Results for experiment 20. Same discussion as in figure 3.8 but in this
experiment the GCA become slightly less valid as rl/L∇B is increased a little bit,
also the number of gyrations is less as discussed above.

so as we decrease α, Tc increase and as fc = 1/Tc so the number of gyration decreases.

Also it is worth mentioning that in some experiments as in 21 and 22 we were obliged

to enlarge the boundaries of x and y as the Larmor radius given by the following

formula:

rl =
mv⊥

qα(y + δ)
, (3.31)

and is increasing with decreasing α that could in some cases be larger than the

initial boundaries.

Finally we perform experiment 23, but before going through the details, we

should note that we find a difficulty in choosing the numbers for this experiment

as we have limited choices when we approach 1. The Larmor radius becomes very

large to the extent that we cannot achieve even one gyration. We tried to find a

high value for rl/L∇B that would make some gyrations but show a huge difference

between theory and simulations by keep decreasing y in equation 3.22 as much as we
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can till the value of y itself becomes a problem i.e. the particle crosses the boundaries

in this direction and thus the simulation stops. we take α to be 0.0241 (a value that

we calculated first to make rl/L∇B = 0.5 and choosing y=25, but it turns out that

it does not work and the particle even did not complete one gyration, but any way

we keep using it), also we enlarge the boundaries such that ymin = 1, ymax = 50,

xmin = 0, and xmax = 200, hence here some useful values, rl/L∇B = 0.2761 (very

close to 1), rl = 13 (so large), vgc = −1.95 (very fast drifting). The slope of drifting

from our simulations is = −4.77 and so the error is 144% which indicates that

the GCA is no more valid in such cases where rl/L∇B is not much smaller than

1. However, the behaviour still qualitatively follows drift theory, just the value of

the drift speed is quite inaccurate. Figure 3.10 shows results for experiment 23

where we can just see 3 gyrations from the simulations where time runs out before

completing the fourth one due to the large gyration period. If we plot the influence

of increasing rl/L∇B on the accuracy of GCA using the preceding 7 experiments on

a logarithmic plot as shown in figure 3.11, we could notice an approximately linear

relation between Log(error) and Log(rl/L∇B) of slope ∼ 2 with some deviation.

Thus we can say that, error ∝ (rl/L∇B)2, which is true, as within the derivation of

GCA, the second order of the parameter rl/L∇B is always ignored because it is too

small.
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Figure 3.10: Results for experiment 23. The GCA is no more valid, but we can
always notice the drifting in the negative x-direction. The guiding drift velocity no
longer agrees with that calculated from the GCA. It is worth noting that in all cases,
particles simulated in exact trajectories drift faster than what it is approximated.
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Figure 3.11: Logarithmic plot of rl/L∇B vs. error(%) showing an approximate linear
relation between Log(error) and Log(rl/L∇B) of slope ∼ 2 with some deviation.
This indicate a squaring relation between error and rl/L∇B justified by the basic
assumption made when deriving GCA in ignoring the term (rl/L∇B)2.



Chapter 4

Trajectory Calculations For

Analytical Fields

All that we did in the previous chapter can be considered as a testing procedure

to check if our code is working properly and it appears to be. Now we can go

a step further and perform simulations using more realistic MHD data using the

2 approaches (approximation approach using an already written and tested Guid-

ing Centre Approximation Code (GCA), and our full trajectory code) and we shall

compare the results. However, before investigating numerical MHD data, it is in-

teresting to compare full trajectory and GCA using analytical field models. This

could be done using two approaches. Firstly, we calculate trajectories using both

codes with analytical fields within the codes i.e. using exact values of fields with

no interpolation from finite grid, and secondly we use the same analytical expres-

sions but map these to a discrete grid. In this way we can figure out what are the

effects of interpolation and using numerical data on grid points on the trajectory

of a particle. Two variables should be taken into account, the first is the grid size,

Nxgrid or Nygrid, and second is the dimensionless mass-to-charge ratio, q/m, called

α related to the dimensionless Larmor radius. When changing the grid size at a fixed

mass-to-charge ratio, and calculating the error between analytical calculations using

analytical fields and numerical calculations using analytical fields in grid points, we

could specify the critical or the minimum grid size that should be used later on when

94
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L0 104 m

ρ0 4 × 10−11 kg.m−3

B0 10−2 T

VA 1.4 × 106 m.s−1

tA 7.1 × 10−3 sec

E0 1.4 × 104 V.m−1

Table 4.1: Realistic coronal values assigned for the 3 main normalising coefficients;
Length, Density, and Magnetic Strength and the other coefficients, Alfven Speed,
Alfven Time, and Electric Strength are calculated from the assigned one following
up from MHD theory.

using pure numerical data. Also we could see how things go when increasing the grid

size. Of course we expect the error to decrease as grid size decreases, but in which

way? Furthermore, comparing things at fixed grid size and variable α would give

us an idea about the limitations of the guiding centre theory. Similarly, we know

that GCA should break down at larger α, but for what range of values does it give

meaningful results? These comparisons will be made in this chapter, for analytical

fields, and afterwards, for numerical fields.

4.1 The Model and System Formalism

The system in our current work will differ from what we had done before as we are

now dealing with more realistic fields. Therefore, now the normalisation coefficients

will be given realistic coronal values. The domain is defined s.t. x and y ∈ [ -2.0

, 2.0 ]. To insure that ∆x = ∆y, Nxgrid is always taken to be equal to Nygrid.

The basic normalising coefficients are (L0, ρ0, and B0). We assign realistic coronal

values to these coefficients as shown in table 4.1, and also corresponding values for

VA (Alfven velocity), tA (Alfven time), and E0 (characteristic electric field).

Concerning analytical forms of electric and magnetic fields, we tried to formulate

them such that they could be similar to that postulated and observed to the case

of particle acceleration in solar flares. The simplest relevant form is an X-shape

magnetic field in the x− y plane with a transverse magnetic field and electric field
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in the z-direction with constant values. The expressions are as follows:

Bx = B0
y

a
(4.1)

By = B0
x

b
(4.2)

Bz = B0 (4.3)

Ex = 0 (4.4)

Ey = 0 (4.5)

Ez = E0 (4.6)

Same or similar field configurations where used by many authors like [Speiser (1965);

Litvinenko & Somov (1993); Litvinenko (1996); Browning & Vekstein (2001) and

references therein]. If a = b, then we are assuming a two-dimensional potential

magnetic field configuration (j=0), while if a 6= b, then a current exists such that,

j=B0

µ0
(1/b− 1/a) ~k. The GCA code needs the values of ∇| ~B|, (~b.~∇)~b,

~E× ~B
B2 , and ~E.~b

on the grid points as an input. These values should be evaluated for the specified

field configuration chosen and then programmed into the GCA code (there analytical

forms can be found in Appendix A.7). The data was created and saved into data

files using a C++ program. The magnetic field lines can be plotted by two ways;

either by calculating the equation of field lines; or by calculating the z-component

of the magnetic potential associated with the magnetic field given by the formula,

~B = ∇× ~A, as the current sheet lies on the x−y plane, and making a contour plot. Az

can be calculated analytically by integrating the previous equation. Also we could

evaluate the value of the ~E × ~B velocity and plot it as it shows how plasma inflows

and outflows from the sheet. The derivations for this is presented in Appendix A.8.

Figure 4.1 shows a contour plot for Az in the defined domain (solid blue) along with

V ~E× ~B (dashed black) with arrows indicating how plasma inflows and outflows from

the sheet. This ensures that our chosen configuration represents reconnection as

plasma inflow in vertical direction and outflow in horizontal direction. The contour
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Figure 4.1: Magnetic field lines (solid blue) showing an X-shape configuration and
V ~E× ~B (dashed black) showing inflow of plasma in the x-direction and outflow in
the y-direction indicted by the arrows in the x − y plane (current-sheet plane).
Reconnection is likely to occur with such configuration.

plot for Az alone will be used as a background for our experiments to show how

particles move within these magnetic field lines.

4.2 Switching

GCA codes use one parameter less than full trajectory codes. This parameter is

the gyration-phase angle φ as GCA codes average over one gyration so there is no

need to define this angle. Besides, in GCA versions, all velocity calculations are

held in a basis perpendicular and parallel to the magnetic field (V⊥ and V‖). On the

other hand, the full trajectory code performs simulations in the basis of a Cartesian

Coordinate where (Vx, Vy, and Vz) are calculated in each step (see figure 4.2). Thus

we need a switching procedure for which we can guarantee that we enter the same

initial conditions in both codes. Initially the GCA code takes as an input, Vini
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Figure 4.2: A schematic drawing showing the Cartesian components of the velocity
together with the parallel and perpendicular one.

normalised to VA, and cos(θ) ∈ [-1,1] s.t. V‖ = cos(θ)VA. In order to enter the same

initial information to the full trajectory code, we define an arbitrary vector ~e and

calculate initially the vector ~b which is the unit vector of the magnetic field. Then

we create 2 new basis vectors (~a, and ~c) both ⊥ ~b s.t. ~a = ~e×~b and ~c = ~a×~b and

then we take ~V⊥ = | ~V⊥|(cos(φ)~a+ sin(φ)~c). After some extra algebra we end up by

the following initial values for Vx, Vy, and Vz:

Vx = V‖bx + V⊥cos(φ)cx + V⊥sin(φ)ax

Vy = V‖by + V⊥cos(φ)cy + V⊥sin(φ)ay

Vz = V‖bz + V⊥cos(φ)cz + V⊥sin(φ)az (4.7)

hence the full code can perform simulations with same initial values entered to the

GCA code.
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4.3 Experiments

Now everything is ready to begin performing simulations. What remains is to specify

the values associated to the variables a, b, E0, B0, initial speed (Vini), pitch angle (θ)

(see table 4.2), Nxgrid, and α. One problem faced us with Nxgrid is that the maxi-

a 1

b 1

E0 5

B0 1

Vini 0.1

cos(θ) 0.8

Table 4.2: All values are normalised to their characteristic coefficients except cos(θ).

mum value for a 2 dimensional array that could be used in our machine is 508 where

beyond this number a segmentation error happens, and as Nxgrid would always be

preferred to be a power of 2, then the maximum number would be 256. Later on we

learnt how to overcome this problem by using heap arrays but already we had done

our experiments with no time to remake them. Thus Nxgrid ∈ [16, 32, 64, 128, 256].

We choose α to represent very light particles increasing gradually to very heavy

ones. α ∈ [10−9, 10−7, 10−5, 10−3, 10−1]. As analytical calculations have nothing to

do with grid size then one simulation is done for every set of fixed α and variable

Nxgrid, while for numerical ones, 5 simulations are done at a fixed α with changing

Nxgrid. There is no need to perform simulations using the full trajectory code with

small mass particles as we already know they will agree very well with the GCA one

(see the full comparison in chapter 5), hence we dismiss α = 10−9, 10−7, and 10−5

from full simulations. Table 4.3 and 4.4 summarises the simulations performed for

GCA and full trajectory respectively where “N” and “A” denotes numerical and

analytical simulations respectively. All particle trajectory experiments presented in

both tables have initial positions as follows: x = z = 0 and y = −0.76 (relatively far

from origin). One extra experiment is performed near the origin with all previous

parameters the same but fixing α = 10−9 and Nxgrid = 256, and with different

initial position such that, x = 0.1, y = −0.1, and z = 0, using GCA and full
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H
H

H
H

H
H

H
H

H
α

Nx
16 32 64 128 256

10
−9

N N N N N A

10
−7

N N N N N A

10
−5

N N N N N A

10
−3

N N N N N A

10
−1

N N N N N A

Table 4.3: Performed simulations using the GCA code. Each set of constant α and
variable Nxgrid correspond for 5 numerical simulations and 1 analytical one.

H
H

H
H

H
H

H
H

H
α

Nx
16 32 64 128 256

10
−3

N N N N N A

10
−1

N N N N N A

Table 4.4: Performed simulations using the full trajectory code. Low mass particles
are dismissed as they give similar results to that simulated with GCA code.

trajectory both with analytical and numerical modules. This extra experiment aims

to show how particles are sufficiently accelerated near the origin when they are less

magnetised.

4.4 Results

All numerical experiments having any grid size and mass-to-charge ratio coincide

with that simulated analytically for the same α value. Figure 4.3 shows one of these

experiments with Nxgrid = 256 and α = 10−9. As the particle is so light then it is

well-described by guiding centre theory and follows closely the field lines as shown

in the first figure. The second one show the motion in the z-direction (out of the

plane). For our chosen fields configuration, all drifts are out of plane except ~E × ~B

drift, that is why we can notice a significant motion in this direction.

If we change the grid size, nothing will happen to the whole picture where the

particle would also follow nicely the field lines, but entirely the error will change
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(a) Analytical (solid green) and numerical (dashed pink) particle motion in the sheet plane (x−y

plane). The particle follows closely the field lines as it is very light. The asterisk correspond
for the initial position.
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(b) The motion in the z-direction due to the presence of all drifts except ~E× ~B in this direction.

Figure 4.3: Results for a particle trajectory having α = 10−9 on a fine grid of
Nxgrid = 256.
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Figure 4.4: Same as figure 4.3 but for a heavier particle with α = 10−3. The particle
does not perfectly follow the field lines.

as we shall discuss later. The same also if α = 10−7 or 10−5 where those particles

remain in the GCA regime. When performing simulations with α = 10−3 and 10−1

the situation differ as now GCA is no more valid (see chapter 5 for more details on

non-applicable GCA regime). Figure 4.4 and 4.5 shows particle trajectory using the

GCA code for the preceding values of α respectively.

The results of the extra experiment for a light particle, α = 10−9, on a fine grid,

Nxgrid = 256 having initial position near the origin (x = 0.1, y = −0.1, and z = 0)

are presented in figure 4.6. The upper panel (a and b) show numerical results, while

the lower one (c and d) show analytical results for both GCA and full trajectory.

Figures (b) and (d) indicate a noticeable acceleration in the z-direction after the

particle drifts toward the centre as shown in figures (a) and (c). After passing a

long distance in the z-direction, the particle is being ejected from the lower left

separatrix.
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Figure 4.5: Same as before but for a much heavier particle with α = 10−1. The
particle no more follow the field lines and GCA is broken down (more details in
chapter 5).

4.5 Error Discussion

What we mainly care about here is the error analysis and the dependence of the error

on the different parameters, in our case Nxgrid and α. The error is calculated as the

difference between the analytical value and the numerical one, for given Nxgrid and

α. The final error is given by the following formula:

error =
1

N

√

√

√

√

N
∑

i=0

(xa − xn)2 + (ya − yn)2 + (za − zn)2 (4.8)

where subscript “a′′ stands for analytical, “n′′ for numerical and “i′′ for summing

over all calculated positions. A similar error can be calculated using velocities

rather than positions. Table 4.5 shows the results using the GCA code. Figure

4.7 shows a logarithmic plots for error when fixing α and varying Nxgrid. As we

expect, error decrease as the grid becomes finer. The plots show a linear relation

between Log(error) and Log(Nxgrid), thus we could conclude that error ∝ Nx−n
grid
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Figure 4.6: a) Numerical GCA (solid green) and numerical full trajectory (dashed
pink) trajectory in x − y-plane for a light particle having initial position near the
origin. b) Trajectory in the z-direction using GCA (solid black) and full trajec-
tory (dashed red). (c) and (d) same as (a) and (b) respectively but for analytical
calculation without interpolation from the discrete grid. The particle is sufficiently
accelerated in the z-direction in a small time before being ejected from one of the
separatrices.

H
H

H
H

H
H

α
Nx

16 32 64 128 256

10−9 1.094925.10−4 2.992065.10−5 7.822563.10−6 2.009044.10−6 5.304022.10−7

10−7 3.448845.10−5 9.424147.10−6 2.463145.10−6 6.325505.10−7 1.669911.10−7

10−5 1.838233.10−5 5.110984.10−6 1.277694.10−6 3.319355.10−7 9.364546.10−8

10−3 2.269898.10−5 6.723262.10−6 1.875811.10−6 5.024031.10−7 1.449038.10−7

10−1 1.274749.10−3 3.824872.10−4 1.029695.10−4 2.646001.10−5 6.676308.10−6

Table 4.5: Error calculation using equation 4.8 for each experiment. Other forms of
error expression could be used but all of them would give in general similar results.

where n is the slope of the parallel lines. A simple calculation for the slope yields

that n = 1.92. This value is fully justified by our used linear interpolation method;

following from Taylor expansion for linear interpolation, the error should be of second

order, O(Nx2
grid), which our results indicate. If we were to choose a critical or

minimum value for Nxgrid in a basis that the minimum error using any mass-to-

charge ratio would be acceptable (e.g. 10−4 or 10−5 and smaller) then we would say
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Figure 4.7: A logarithmic plot for error vs. Nxgrid for the 5 α values. Log(erorr)
decreases lineally in the plots with a slope of ∼ 2 indicating that error ∝ Nx−2

grid.

that Nxgrid = 128 is a good choice.

Now we consider the effect of fixing Nxgrid and varying α, which is an interesting

case as we do not have any predictions for it. Figure 4.8 shows these plots. All five

curves show similar orientation, so a general conclusion can be drawn. The error

decreases as α decreases till the mass-to-charge ratio reaches 10−5 where it then turns

up and begin increasing. What we know about this point is that it is a turning point

between applicable and non-applicable GCA regime, so we can say that when GCA

is applicable, the error decreases slowly with decreasing α, whereas when GCA is

not applicable the error increases rapidly with increasing α.

On the other hand, the full trajectory data will not hold any surprising results.

As we said before, small particles will obey the rules of the guiding centre theory that

is why we perform simulations using the full trajectory code with heavy particles.

The first thing to do is comparing the 2 results just by plotting both trajectories

on the same graph. Figures 4.9 and 4.10 shows these plots for α = 10−3 and 10−1

respectively. It is obvious that the 2 trajectories do not coincide and the case
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Figure 4.8: Error vs. α for the 5 Nxgrid values. It is the inverse plot for the previous
one. All lines show same feature for Log(error) decreasing slowly with increasing
α till reaching the non-applicable GCA regime where the error orientation reverses
and increase rapidly. Basically the GCA should not be used at this stage as its
non-applicable so even the error discussion would not be informative.

become worse when α become larger. We also calculate the error in the numerically-

calculated kinetic energy at the final step. This is relevant because main use of

trajectory calculations in solar flare modellings is to evaluate energy gain of particles.

We are interested in comparing full trajectory with GCA so we will not compare

analytical data with numerical one within the full trajectory calculations. We would

rather compare analytical with analytical and numerical with numerical between full

trajectory and GCA. The non-relativistic equation of kinetic energy is:

EK =
1

2
mv2 (4.9)

dropping the first 2 terms as they are constants then v2 is taken into account. Table

4.6 illustrate the values of v2 for different parameters for both full trajectory and

GCA at the final step. In table 4.7 we calculate the error at certain Nxgrid and α,

analytical with analytical and numerical with numerical between full trajectory and
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Figure 4.9: GCA (solid green) and full trajectory (dashed pink) trajectories for a
particle with α = 10−3. The 2 lines do not coincide exactly as the particle can be
considered as a heavy one and does not obey guiding centre validity conditions.
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Figure 4.10: Same as figure 4.9 but for a heavier particle (α = 10−1). The 2
trajectories show different paths.
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GCA.

P
P

P
P

P
P

P
P

P
PP

α

Nxgrid 10−3 10−1

Full

16 1.582015.104 1.414568.102

32 1.582866.104 1.415142.102

64 1.583060.104 1.415358.102

128 1.583135.104 1.415429.102

256 1.583119.104 1.415435.102

Analytical 1.583130.104 1.415459.102

GCA

16 1.587208.104 1.342827.102

32 1.588349.104 1.343811.102

64 1.588591.104 1.343905.102

128 1.588662.104 1.343963.102

256 1.588653.104 1.343955.102

Analytical 1.588660.104 1.343980.102

Table 4.6: The value of the kinetic energy at the final step for the simulated particle
using full trajectory and GCA with all grid sizes and just for heavy particles in order
to calculate the error.

P
P

P
P

P
P

P
P

P
PP

α
Nxgrid 16 32 64 128 256 Analytical

10−3 0.328 0.346 0.349 0.349 0.349 0.348

10−1 5.07 5.04 5.05 5.05 5.05 5.05

Table 4.7: The calculated error in final energy between full trajectory and GCA (an-
alytical with analytical and numerical with numerical) at each grid size for particles
with α = 10−3, 10−1.

As the value of the error hardly varies with using coarse or fine grid, then we could

say that the choice of grid size will not influence the error between full trajectory

and GCA at this certain grid size. Of course, using a finer grid reduces the error

when comparing analytical and numerical solutions.



Chapter 5

Trajectory Calculations For

Numerical Fields

In this chapter we are going to make further comparisons between full trajectory

and GCA. Now simulations will be held using real data from MHD simulations. We

expect that full trajectory will give similar results when the Larmor radius is much

smaller than the length scale of the system, but we need to determine how small the

Larmor radius needs actually to be. Also, we will perform simulations at different

positions within the current sheet (near and far from the origin and at magnetic

islands). Besides, we will consider conditions that violate the requirements of the

guiding centre theory, and see how the particle behaves non-adiabatically.

5.1 System Formalism

The formalism will not change in this chapter and all characteristic values used

before will remain unchanged. The only difference is the domain of definition of

the y-axis where y ∈ [ -1.0 , 1.0 ] because the MHD data delivered to us is defined

over this domain where Nxgrid = 256 and Nygrid = 128. This data correspond to

one snapshot of the forced reconnection described in section 2.3.4 for the phase in

which a current sheet and X-point are formed. This stage is the most important

stage through the reconnection procedure, as the current is concentrated at the

109
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Figure 5.1: Magnetic field lines in the current sheet plane (x − y plane) with a
colour scale for the current density. Data taken from Gordovskyy et al. (2010b).
The current sheet is symmetric vertically and horizontally but in opposite polarity
for field lines. In the bottom section the field lines are directed from the right to the
left where in the top section it is reversed. The current density ~j is concentrated at
the centre of the sheet and decreases gradually as going away.

centre and along 2 separatrices making an X-shape where particles are sufficiently

accelerated. Figure 5.1 shows a plot for the field lines with a colour scale for the

current density.

5.2 MHD Data Analysis

Before going through the experiments for particle trajectory, we shall first anal-

yse some parameters for the MHD data given, in order to understand what type

of particle motions we expect at different positions in the domain. Figures 5.2,

5.3, and 5.4 are contour coloured plots of the 3 components of the magnetic field,

Bx, By, and Bz respectively. Bx and By are both zero near the X-point. They

increase in magnitude as we go away from the reconnection site (Bx has a tanh

shape if we fix x and plot y as it is defined initially shown in Figure 5.5 similar to

that shown in Figure 2.19). The guiding field Bz has a high value near and at the

X-point. We could notice also that its highest value is at the 2 magnetic islands and
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Figure 5.2: Coloured contour plot for ~Bx over the defined domain.
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Figure 5.3: Coloured contour plot for ~By over the defined domain.

that its magnitude decrease as we go further from the centre. Figure 5.6 shows the

absolute value of the magnetic field in the grid i.e. | ~B| =
√

B2
x +B2

y +B2
z . As we

expect, | ~B| has its lowest values near the centre of the domain where reconnection

occur as particles become un-magnetised there and ready to be accelerated by the

electric field.

The z-component of the magnetic potential associated with the magnetic field is

evaluated by numerically integrating over Bx andBy using a specific code and used as

a background. Figure 5.7 shows a contour plot for Az corresponding to the magnetic

field lines in the x− y plane (a surface plot is provided in Figure 5.8). Figure 5.9

shows a contour coloured plot for the absolute value of ~E i.e. | ~E| =
√

E2
x + E2

y + E2
z .
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Figure 5.4: Coloured contour plot for ~Bz over the defined domain.

Bx (solid line), Bz (dotted line) vs. y at x=0
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Figure 5.5: Bx (solid line) and Bz (dashed line) vs. y at the vertical centre of the
sheet (x = 0). These are quite similar to initial profiles as shown in figure 2.19 after
long time of evolution.

As we expect also, E is zero far from the centre where no current exist and particles

are strongly magnetised. This value increases dramatically near the reconnection

site making 2 peaks around the centre and its nearly zero at x = y = 0. The

final plot in figure 5.10 represent the dot product between ~E and ~B divided by | ~B|

( ~E. ~B/| ~B|) which represent the parallel component of the electric field responsible

for the direct acceleration along longitudinal field lines. This component is mainly

significant near and at the X-point, and along the X-shaped separatrices due to the

anomalous resistivity which operate at these regions. We expect that this component



5.3. PARTICLE TRAJECTORY EXPERIMENTS 113

-2 -1 0 1 2
x

-1.0

-0.5

0.0

0.5

1.0

y

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Figure 5.6: The absolute value of the magnetic field (| ~B|) over the defined domain.
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Figure 5.7: A contour plot for the z-component of the magnetic potential Az repre-
senting the field lines in the simulated current sheet in the x − y plane reproduced
after integrating the magnetic potential equation. Same as Figure 5.1 but without
the current density.

will influence on the energy gain of the particle at these locations as we shall see

when we plot each component of motion from the GCA separately in coming plots.

5.3 Particle Trajectory Experiments

In all what follows, unless otherwise stated, the value of mass-to-charge ratio is,

α = 4.4× 10−4, which is an Helium-3 ion (3He), not chosen for any physical reason.



114CHAPTER 5. TRAJECTORY CALCULATIONS FOR NUMERICAL FIELDS

-2

-1

0

1

2

x

-1.0
-0.5

0.0
0.5

1.0

y

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Figure 5.8: Surface plot of the current sheet.
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Figure 5.9: Absolute value of the electric field (| ~E|) over the defined domain.

5.3.1 Matching Experiments

In this first section of experiments, we will present the work when the guiding centre

can be applied where both GCA and full trajectory codes give similar results. The

guiding centre theory is expected to be applicable since rl/L∇B shows a value around

10−5 throughout all the following experiments (the value of L∇B = | ~B|/|∇ ~B| was

calculated by interpolating x, y, and z components of ∇ ~B within the interpolation

function as the MHD data contain this information). We performed numerous sim-

ulations, and present some typical examples here. We divide the experiments into

2 sets, low magnetic moment, µ, where V‖ dominates over V⊥ initially by choosing
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Figure 5.10: Parallel electric field, zero everywhere except at the separatrices.

cos(θ) near to one (in our case we take it to be 0.8), and the opposite case, high

µ, with cos(θ) = 0.1. Mainly the noticeable difference between high-µ particles and

low-µ one is that the former undergo some mirroring. We begin first with the low

µ case and show results for 9 particles simulated both by GCA and full trajectory

with Vini = 0.1VA and cos(θ) = 0.8 with different initial positions as shown in fig-

ures 5.11 and 5.12. The same initial phase-space components are entered to both

codes in each experiment. We can see that both codes in this set give similar results

and particles follow nicely the field lines. Magnetic field and due to reconnection is

divided into two regions, open and closed field lines near upper and lower bound-

aries and at magnetic islands in the outflow region respectively. This gives rise to

particles being distributed into two distinct categories; particles moving in an open

magnetic field travel long distances in the x-direction and oscillate in the y-direction

(all experiments in figure 5.11 and 3 experiments in figure 5.12), while those moving

in a closed field lines are trapped in the magnetic islands (one experiment in figure

5.12). All these experiments have initial positions relatively far from the origin.

Figure 5.13 shows one extra experiment in this set for a particle initially at the

origin, (x = y = z = 0), being accelerated in the negative z-direction. After being

sufficiently accelerated out of the plane, the particle is ejected from the lower right

separatrix.

Figure 5.14 show results for 3 experiments for the other set of simulations (high
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(a) 5 experiments in the set of low µ done using the GCA code. The
asterisk marks the initial position.
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(b) The same 5 experiments simulated using the full trajectory code.

Figure 5.11

µ) with Vini = 0.1VA and cos(θ) = 0.1 using GCA and full trajectory. It is probably

the same or slightly different with high µ as particles will remain following the field

lines but we can notice some slightly crossing over the lines.

5.3.2 Non-Matching Experiments

While performing some experiments, we notice that some of them do not match

(GCA and full trajectory). The high µ case makes very weird motions completely
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(a) 4 extra experiments in the set of low µ done using GCA code.

-2 -1 0 1 2
x

-1.0

-0.5

0.0

0.5

1.0

y

(b) The same experiments using the full trajectory code.

Figure 5.12: At magnetic islands, the condition of particle passing the defined do-
main stops the simulation is dismissed, that is why the particle keep bouncing in
the left current island.

different from that of GCA and what we expect. Figure 5.15 shows one of these

faulty experiments for the low µ case. Here the problem is that the full trajectory

particle experiences one extra bouncing motion than the GCA, but the motion in

general is the same. The problem seems to be in the full trajectory code and not in

the GCA code as there is no reason for such a bounce at the specific location where

the bounce occur. As we discussed earlier in § 2.2.2 about magnetic mirroring that

this happens when a particle is drifting from a weaker to a stronger magnetic region,
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(a) Full trajectory (solid green) and GCA (dashed pink) par-
ticle trajectory in the current sheet.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

-8

-6

-4

-2

0

2

z

(b) Trajectory along the z-direction from the Full simulation.
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(c) Trajectory along the z-direction from the GCA simula-
tion.

Figure 5.13: Particle being accelerated in the negative z-direction as being placed
initially at the origin of the current sheet where it is less magnetised. After accel-
eration, the particle is ejected from one of the separatrices. We could not plot the
z-component of motion from GCA and full trajectory on the same graph as for time
step differences but it is noticeable that both curves coincide.
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(a) 3 experiments in the set of high µ done using the GCA code.
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(b) The same experiments simulated using the full trajectory code.

Figure 5.14

which is not the case at the specific location of the extra bounce in figure 5.15b.

Figure 5.16 shows the same problem but for the high µ case; things become worse,

as the particle motion is completely different and messy. Again it is obvious that

the full code show the wrong trajectory as it is unlikely for an adiabatic particle

to behave as the particle in figure 5.16b do. Every thing seems to be fine within

the code as we review it several times especially that it passes the testing procedure

without any fatal mistakes, so what is going on!!??
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(a) The particle simulated using the GCA code. The trajectory shown is
the normal one.
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(b) The same experiment using the full code. The trajectory show extra
bouncing which was not understood.

Figure 5.15: One of the fault experiments with low µ value.

5.3.3 Numerical Issue, Problem Solved

When we were trying to understand the reasons behind the anomalous experiments,

we discovered something interesting and surprising in the code. First, we guessed

that such unusual motions like extra bouncing could happen when the parallel elec-

tric field is so high but we could not find any explanation for it. In fact any term

could cause such an effect but the parallel electric field is mainly zero everywhere
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(a) The normal trajectory using GCA.
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(b) Same experiment using the full code. The trajectory looks very messy
raising a fundamental problem.

Figure 5.16: Another fault experiment but with high µ value.

except near the diffusion region where it has small values, whereas E⊥ always has

relatively higher values, thus any small numerical error in calculating E‖ may cause

artificial effects; that is why we suspect it to cause the problem. In attempt to

solve the problem we get the minimum and maximum values for the parallel elec-

tric field defined on the initial mesh given from the MHD data. We find that,

min( ~E‖) = −0.0012489010 and max( ~E‖) = 7.3752310×10−8 in dimensionless units.

We analyse in detail the results of the experiment shown in figure 5.15, and tried to
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understand what happens when the particle bounces backward and forward where

it should (according to GCA) continue its path without any bouncing. When we

output the value of the parallel electric field near the first bounce it was above 10−6

which itself is greater by 100 times than the maximum value of the parallel electric

field defined on the grid without interpolating, thus an error may have happened

during interpolation. We choose an arbitrary point to check what is happening

within the interpolation, and we make the calculations by hand using 2 approaches.

First after getting the 6 fields at the 4 grid points around the particle position, we

calculate the parallel component of the electric field at the 4 corners all having val-

ues around 10−9 and then when interpolating these 4 values to get the interpolated

parallel electric field, we get an acceptable value in the same range of the 4 values

(figure 5.17a). The second approach, which our code uses, is calculating the inter-

polated values of the 6 fields at the particle position and then calculates the value

of the parallel electric field (figure 5.17b) which will not necessarily be the same

value as before but should be very close. Surprisingly the value was 1000 times

greater in the range of 10−6 in consistent with the values we noticed at the bounce.

So in fact this gives rise to a numerical error that should be solved to get accurate

values at all positions. In fact we could explain what happened as a leakage from

the perpendicular component of the electric field to the parallel one at places where

the electric field is approximately perpendicular to the magnetic field where parallel

electric field is ∼ 0. Such an error could cause a severe change in the angle between

electric and magnetic fields causing a sudden change on the particle motion showing

a bounce feature. In attempt to solve this problem we create a corrector electric

field having the following formula:

~Ecorr = ~E − ( ~E.~b).~b+ | ~E‖|.~b (5.1)

where ~E are the three interpolated values of the electric field at the 4 corners (giving

these fault results) and ~b is the magnetic unit vector after interpolating the 4 values

for each of the 3 components of the magnetic field, and | ~E‖| is the scalar of the
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interpolation of the parallel electric field at the 4 corners (giving the acceptable

results). In this way we guarantee that the parallel electric field is correct and dismiss

its fault values from the interpolated ~E field. Now after applying changes to the

interpolation function within our code we re-perform all our previous experiments.

All matching experiments re-match and the non-matching one now show similar

results. Figures 5.18 and 5.19 show the new results for the non-matching experiments

shown previously in figures 5.15 and 5.16.

5.3.4 GCA Data Analysis

In order to get a better understanding for the results especially that done using

GCA code we plot each component of motion separately. The GCA code solves

equations in Appendix A.2 where we can plot each term accounting to the motion

separately like the ~E × ~B, curvature drift, grad drift, mirroring, acceleration due

to parallel electric and some others. In full trajectory, the code solves equations

3.3 where all aspects of motion are hidden entirely and add up to form the particle

trajectory. We should note that the GCA version delivered to us is a ”light” one i.e.

the higher terms of GCA expressions (last 4 terms of equation A.12) were turned off

as they do not have any noticeable difference. These terms would be important if

U ~E× ~B has a comparable value with the local Alfven velocity, but this is not always

the case as at maximum U ~E× ~B ∼ 10−2VA. The ~E × ~B and the ~E.~b terms represent

the bulk plasma (in our case, “particle”) motion (~E.~b term tends to zero far from

the centre of the sheet as shown in figure 5.10 and as we shell show now). Other

terms become important at specific locations, for instance curvature drift becomes

important when field lines are curved enough as discussed in § 2.2.2.

We will take some experiments and analyse them in more depth. In each figure

we will present 8 plots; the 1st (upper-left panel) shows how the particle moves in

the domain (same as shown in previous plots), the 2nd (upper-centre panel) shows

U ~E× ~B, the velocity due to ~E × ~B drift versus x, the 3rd (upper-right) shows U ~E× ~B

versus y (not that informative as particles are mainly moving in the x-direction)

, the 4th (middle-left panel) shows the curvature drift component vs. x, the 5th
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(a) Method 1, calculating E‖ at the grid points and then interpolating them giving acceptable
results.

(b) Method 2, interpolating different fields at grid points and then calculating E‖ at the
particle position causing numerical error.

Figure 5.17
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(a) The same as figure 5.15a using GCA.
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(b) The new trajectory simulated using the full code showing a similar
path to that simulated using GCA one.

Figure 5.18: Problem resolved for the case of low µ after introducing the notion of
corrected electric field.

(middle-centre panel) shows the ∇ ~B component, the 6th (middle-right) shows the

q
m

( ~E.~b) component (direct acceleration) versus x, the 7th (lower-left) represent the

mirroring term, and the final one (lower-centre) corresponds for something related

to the variation of electric field along the magnetic field (just a GCA term). Figure

5.20, 5.21, and 5.22 correspond to 3 experiments from the low µ set. What we can

say is that U ~E× ~B value increases whenever we become closer to the reconnection site.

This can be deduced first when looking at each U ~E× ~B plot, as it reaches its maximum
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(a) GCA
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(b) Full trajectory

Figure 5.19: Same but for the high µ case.

when its y is closer to 0, and secondly when comparing U ~E× ~B plots between figures,

for instance in figure 5.20 its maximum value is around 0.0011 corresponding to a

maximum y around −0.3 whereas in figure 5.22, it has a maximum value of about

0.008 corresponding to its maximum y around −0.15. The q
m

( ~E.~b) term is ∼ 0 in

any position away from the region around the X-point (this term can be understood

when looking at the contour plot of ~E. ~B/| ~B|) shown in figure 5.10). We can note

the 2 maxima in U ~E× ~B term when plotted versus x in figure 5.21, these are due to

the maximum value of | ~E| as shown in figure 5.9 resembling to be as 2 summits.
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Figure 5.20: Analysing different types of motion accounting for the particle trajec-
tory using the GCA code. The main term accounting for the particle path in this
experiment is ~E × ~B. Direct acceleration along field lines can be neglected as the
particle is a little bit away from the centre as shown in the 6th panel where the
value is fluctuating around zero. All other terms are also very small so the particle
does not experience any sudden change.

5.3.5 Vgyro and The Magnetic Moment µ

Magnetic moment µ is one of the most important parameters in the context of

particle acceleration. The basic equation for the magnetic moment is as follows:

µ =
1

2
m
v2

gyro

B
. (5.2)

As the mass term is just a constant, it is necessary just to plot is v2
gyro/2B. It gives

an idea if the particle simulated is adiabatic or not in such a way that if its constant

through out the simulation than this means that we are in the adiabatic regime. In

the Guiding Centre Approximation Theory µ is assumed constant, where dµ
dt

= 0

is one of the equations used within the code. The particle in the full trajectory
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Figure 5.21: Same discussion as before but we could notice that the ~E.~b term is very
high at some places as the particle passes near the centre at the separatrices where
electric current is concentrated. The 2 peaks in U ~E× ~B term are a results for the high

value of | ~E| at these specific locations (see figure 5.9).

can move and gyrate in any direction and the trajectory consists of many kinds of

motions such as drifting, gyrating, and moving along the field lines. In order to

calculate µ we are interested in the gyration term. The particle velocity terms can

be written as follows:

~V = ~V‖ + ~V⊥ (5.3)

and

~V⊥ = ~Vgyro + ~Vdrift. (5.4)

The full trajectory code operates in the Cartesian Coordinate, but as ~Vgyro can just

be extracted from ~V⊥ then we need to supply an extra bit of code to do this. The

three Cartesian components of the perpendicular velocity (~V⊥x
, ~V⊥y

, and ~V⊥z
) can

be easily calculated by first calculating the three Cartesian terms of ~V‖ = ~V . ~B/| ~B|
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Figure 5.22: A bouncing feature with a sudden change in particle direction could be
viewed as a mirroring effect where magnetic field become stronger (see § 2.2.2).

in each iteration and then subtract them from the total velocity. Now we should

find a way to separate the 2 different components of ~V⊥, (~Vdrift and ~Vgyro). One

approach is to use the known drift components for an adiabatic particle; mainly the

~E × ~B drift, ∇ ~B drift, and the curvature drift (the last 2 terms are mainly very

small as shown in figures 5.20, 5.21, and 5.22 so they can be usually neglected).

We can calculate these values analytically as we know their expressions from the

GCA theory and then subtract them from ~V⊥ and what remains would be ~Vgyro.

This method works if we assume that we are in the GCA regime, but this is not

known in advance and later on we will consider cases where GCA is not valid and

the particle becomes non-adiabatic; thus, we must think of another method. Figure

5.23 shows the absolute value of ~V⊥ for one of the experiments shown in figure

5.12 over the whole simulation (upper panel) and zoomed in between time 18.4

and 19.6 in dimensionless units (lower panel). What we can notice from this figure

(mainly from the lower panel) is that ~V⊥ can be approximated by 2 functions. The
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Figure 5.23: V⊥ over the whole time for one of the experiments (upper panel).
The middle panel show a little bit of zooming to reveal the plot structure and the
lower panel zooms in more to resolve gyrations with constant amplitude. V⊥ can
be decomposed into 2 functions as viewed in the last panel. First, is the periodic
one corresponding for gyrations and the second is a lifting one corresponding for
drifting. A specific function was made to separate both types of motion from each
other to evaluate Larmor radius and calculate the magnetic moment µ.

first is a periodic function that we believe corresponds to ~Vgyro and the second is

a lifting function holding ~V⊥ above the axis which represents ~Vdrift. Thus we now

consider the drifting velocity to be a constant function over a small period of time

where we average a specific number of gyrations and then subtract this average

from the original function (~V⊥) and what remains should be gyrations centred at

the axis. This method should be performed at each direction separately (x, y, and

z) by calculating ~Vdriftx , ~Vdrifty , and ~Vdriftz and then subtract them from there

corresponding ~V⊥ to get ~Vgyrox
, ~Vgyroy

, and ~Vgyroz
, and then evaluate the absolute

value of ~Vgyro which will be used to calculate extra 3 parameters, µ, rL, and ǫ. rL is

the Larmor radius, and ǫ gives us an idea on how much the guiding centre theory is

applicable having the following formula, ǫ = rL/L∇B, where L∇B = | ~B|/|∇ ~B which
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represents the length scale of the system. As argued previously, if ǫ≪ 1 then GCA

is applicable, otherwise it is not. In order to perform what we have just discussed,

we add a small function to our code that averages over gyrations within a specific

number of steps specified by the user. This function calculates the magnetic moment

µ, rL, and ǫ and saves them into data files. Then we can use the two approaches

(calculating analytically the drifts, and averaging over gyrations) and compare the

results. Figure 5.24 shows one of these experiments using the 2 approaches. As we

can notice, the 3 components of gyrations are centred at the x-axis and they coincide

using the 2 approaches (|~Vgyro| and rL also coincide), V ~E× ~B completely coincide with

~Vdrift, µ is ∼ constant and coincides with the 2 methods, and ǫ≪ 1.

-2 -1 0 1 2
x

-1.0
-0.5

0.0

0.5

1.0

y

-2 -1 0 1 2
x

0.000
0.002

0.004

0.006

0.008

V
ex

b

10 15 20 25 30
t

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

V
gy

ro
(x

)

10 15 20 25 30
t

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

V
gy

ro
(y

)

10 15 20 25 30
t

-0.04
-0.02

0.00

0.02

0.04

V
gy

ro
(z

)

10 15 20 25 30
t

0.04
0.05

0.06

0.07

0.08

|V
gy

ro
|

10 15 20 25 30
t

0.0000
0.0005

0.0010

0.0015

0.0020

µ

10 15 20 25 30
t

2.0•10-4

2.5•10-4

3.0•10-4

3.5•10-4

4.0•10-4

r l

10 15 20 25 30
t

0

2•10-5

4•10-5

6•10-5

ε

-2 -1 0 1 2
x

0.000
0.002

0.004

0.006

0.008

V
dr

ift

10 15 20 25 30
t

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

V
gy

ro
(x

)

10 15 20 25 30
t

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

V
gy

ro
(y

)

10 15 20 25 30
t

-0.04
-0.02

0.00

0.02

0.04

V
gy

ro
(z

)

10 15 20 25 30
t

0.04
0.05

0.06

0.07

0.08

|V
gy

ro
|

10 15 20 25 30
t

0.0000
0.0005

0.0010

0.0015

0.0020

µ

10 15 20 25 30
t

2.0•10-4

2.5•10-4

3.0•10-4

3.5•10-4

4.0•10-4

r l

13.0 13.2 13.4 13.6
t

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

V
gy

ro
(x

)

13.0 13.2 13.4 13.6
t

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06

V
gy

ro
(y

)

13.0 13.2 13.4 13.6
t

-0.04
-0.02

0.00

0.02

0.04

V
gy

ro
(z

)

Figure 5.24: 19 plots aims to compare between 2 approaches (analytical calculation
of drifts and averaging method). 1st panel is the particle trajectory. The next 7
(moving horizontally) are for analytical calculation of drift term (mainly V ~E× ~B) and

its corresponding ~Vgyro, µ, and rL. The next 8 plots are for the same parameters
but using the averaging method (1st of these 8 is ǫ vs. time). The 2 methods
seems to give similar results as GCA is applicable within this experiment and µ is
approximately constant (adiabatic particle). The last 3 panels are zooming in inside
Vgyrox

, Vgyroy
, and Vgyroz

to reveal there structure precisely.
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5.3.6 Non-applicable GCA Regime

All that we reported so far with full trajectory code was in the region where GCA

is applicable and the two codes give similar results. Now we go a step further and

break the conditions that govern this relation between the guiding centre theory

and full trajectory. The main issue is to make the Larmor radius not much smaller

than the length scale of the system. This can be achieved by several methods but

an easy one is to perform simulations using heavier particles than protons which

have larger Larmor radius (another way of doing it for instance is by decreasing the

strength of the magnetic field). To do this we just multiply mass-to-charge ratio

(α = m/q) by a factor κ greater than one. To achieve noticeable result, this number

κ should be high enough to show gyrations in the simulated region. First we take

it to be 1000 (large enough that no particle exists that has such a mass, but our

simulated region is small that is why we need high κ to see differences). Figure 5.25

shows a simulation done both using full trajectory and GCA for the low µ case.

Now gyrations from the full trajectory can be easily seen; still the particle mainly

follows the field lines, but a small difference of path can be noticed. Actually this

difference could arise from the fact that both particles begin moving from the same

initial position which is not the guiding centre position, so the GCA particle is not

following the guiding centre of full trajectory particle. Hence, this small difference

could not be a direct evidence of the non-applicability of GCA. Figure 5.26 shows

some plots from the full trajectory to the particle simulated in figure 5.25. We

can now see that V ~E× ~B is different from ~Vdrift, also the parameter ǫ is not so small

and closer to 1, and µ now varies significantly. These parameters ensure that this

simulated particle is no longer behaving adiabatically and GCA is non-applicable as

µ show noticeable inconstancy.

5.3.7 Kinetic Energy calculations

One of the things that can be plotted and compared between the two regimes (appli-

cable and non-applicable GCA) is the kinetic energy of the simulated particle before
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Figure 5.25: 1000 times heavier particle trajectory simulated using both codes (blue
for GCA and green for full trajectory). Gyrations now appear without zooming as
the Larmor radius is much bigger than before. The difference in path may arise from
the fact that the initial position is not the guiding centre one. Energy discussion in
the next section will insure the difference.

leaving the domain. Kinetic energy is relevant in our context (particle acceleration

in solar flares) as now we can detect radiations from flares and evaluate particles

energy gain and kinetics and compare them with simulations. When the guiding

centre theory is applicable, we expect that when simulating the same particle us-

ing both codes to have almost equal energies at any time and at the end, with a

very small error. As most of our simulated particles do not begin or end up with

relativistic speeds then the kinetic energy for any particle at any step is:

EK =
1

2
mv2 (5.5)

The first 2 terms are just constants so we can drop them from plots and comparison,

thus we will just consider v2. Figure 5.27 shows plots for kinetic energy profiles for
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Figure 5.26: Same as figure 5.24 but for the particle simulated using full code in
figure 5.25. It can be easily noticed that agreement is not as good as before and µ
show a lot of fluctuation.

the experiment shown in the first panel in the regime where GCA is applicable and

the particle is relatively far from the origin. We can notice that the 2 curves matches

with some few difference (the full trajectory energy curve seems to be more smooth

as in GCA not all steps are plotted. We skip saving some data to avoid big data

files). We could not plot the 2 curves on top of each other in the same graph as the

calculated adaptive time step for sure is different in each code as well as the number

of iterations. The error given as follows:

error =
|EKfull

− EKGCA
|

EKfull

(5.6)

at the final step is, error = 0.041%. If we consider the same particle but now being

initially at the origin (the particle simulated in figure 5.13), things may differ slightly.

Figure 5.28 shows kinetic energy profile for this particle using both approaches.
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(a) Particle trajectory for one of the experiments.
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(b) Energy profile through out the whole time for the simulated
particle using the full code.
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(c) Energy profile using the GCA code.

Figure 5.27: Energy profile comparison between full and GCA codes for one of the
experiments in the applicable GCA regime. Both codes give similar profile shape.
The full profile is smoother as GCA skip saving some data for data-storage purposes.
The energies before ejection were very close with a small error.
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The error at the final step is 0.08%, double the previous experiment, which means

that acceleration near the origin where particles are less magnetised increase the

difference between full trajectory and GCA. The same particle, but now trapped in
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(a) Energy profile using the full code.
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(b) Energy profile using the GCA code.

Figure 5.28: Energy profile comparison for a particle placed initially at the origin.
Both look quit similar with an increase in error at the final step.

the magnetic island (portion of the particle trajectory shown in figure 5.12) shows

more difference as it experiences more instability and high change in electric field

(figure 5.29). The error at the final step is ∼ 0.35%, which means that the bound

between GCA and full trajectory is the weakest at closed magnetic field regions

among other regions.

Now we consider the other case where we choose a specific position and vary the
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(a) The particle trajectory being trapped in the magnetic island.
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(b) Energy profile using the full code.
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(c) Energy profile using the GCA code.

Figure 5.29: Energy profile comparison for a particle trapped in the left magnetic
island. The error at this region is the highest among other regions (open magnetic
field regions and near the origin).
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Figure 5.30: Energy profiles for a non-adiabatic heavy particle for full (upper panel)
and GCA (lower panel) codes. The full profile will of course show fluctuation as
that for trajectory. The final step energy in the two codes is different as expected
with a huge error.

mass of the particle. This is an interesting case as it will give us a limitation to what

extent can we increase the mass of a particle and the difference of energy remains

acceptable. We choose the same position used for the ”far from the origin” region

as shown in figure 5.27a and increase α by 3 orders of magnitude from 4.4×10−3 till

4.4× 10−1. The error increased gradually with increasing α having values of 0.49%,

7.47%, and 16.4% respectively. The last 2 experiments can be considered to be in the

non-applicable GCA regime and plotting their trajectories from the full code shows

their gyrations on the field lines with such a large difference as expected in their

final energy between the two approaches. We should note that there is nothing in

common between full trajectory data and GCA one for these 2 experiments i.e. time

and position are different at the final iteration hence we choose this step to compare

energies just because it is the final step. Figure 5.30 shows plots for trajectory and

energy profile for the last experiment (α = 4.4 × 10−1) for both calculations (Full

and GCA). Gyrations in the full trajectory appear obviously causing gyrations as

well in the energy profile.



Chapter 6

Conclusions

We have investigated through our work almost all essential similarities and dif-

ferences between Full Trajectory and Guiding Centre Approximation test particle

approaches using analytical, analytical with numerical tool, and numerical electro-

magnetic field models to fully compare both approaches. Mainly our aim was to

determine the conditions under which it is valid to use guiding centre approxima-

tion to calculate particles trajectories on a reconnected current sheet analogous to

that formed in solar flares and also when it is acceptable to use electromagnetic

field values from a discrete grid. On our way to making such a comparison, we

draw out some computational remarks that could be useful in later numerical work.

First, we can say that using linear interpolation to calculate different field values is

reliable even for quite coarse grids. We used it in all our experiments and it gave

small numerical errors, so there is no need to consider more complicated interpo-

lation methods, such as polynomials, at least in similar work like ours. Secondly,

as our full code contains two different numerical methods for solving differential

equations (Runge-Kutta and Adams-Bashforth, both 4th order), this allow us to

compare between them and conclude which is better and more accurate. To judge

the efficiency of a numerical method, two things should be taken into account of the

following priority, accuracy and time efficiency. When we were testing the full code,

we noticed that Runge-Kutta method is more accurate than Adams-Bashforth at

certain time steps by 2 orders of magnitude. Concerning time consumption, both

139
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methods show similar speeds with differences by fraction of a second, at least in

the testing procedure. This leads us to conclude that it is better to use the RK

numerical method when solving differential equations.

We developed both relativistic and non-relativistic modules and compared the

results. Protons need very high energies (not expected in flare particles) for the

relativistic effects to be taken into account while electrons are more sensitive at

lower energies. Protons, in most simulations, end up with kinetic energy at most

of order of hundreds of MeV, which is comparable with there rest mass of 938.27

MeV/c2 (relatively massive), thus for protons and heavier particles, only the highest

energy particles may be significantly affected by relativistic effects. Alternatively,

electrons having light rest masses (0.511 MeV/c2) with same initial speeds as that

given to protons, are accelerated and gain energy to the order of tens and hundreds

of MeV which is greater by 2 or 3 orders of magnitude than their rest mass, so

relativistic effects matter much more in case of electrons, therefore electrons should

be always treated as relativistic particles.

Studying the drift theory theoretically and numerically made us more certain

about the influence of the factor rl/L∇B on the accuracy of GCA in general. When-

ever this ratio becomes closer to 1, the GCA is less valid. Several experiments were

done for the case where the only drift velocity is the ∇B drift. We vary the value

of rl/L∇B from 1.67 × 10−3 ≪ 1 to 0.276, and as a result, the error in calculating

the drift velocity between GCA and full trajectory increases from 0.06% to 144%.

However, the behaviour still qualitatively follows drift theory even with very large

rl/L∇B values. An approximate linear relation between Log(error) and Log(rl/L∇B)

of slope 2 was observed indicating that, error ∝ (rl/L∇B)2, justified by the basic

assumption made when deriving GCA in ignoring the term (rl/L∇B)2.

In chapter 4 we studied what effects of using discrete data on grid on the accuracy

of particle trajectory. We concluded that using linear interpolation causes the error

to be inversely proportional to the squaring of the grid size, as expected from Taylor

expansion of any linear method. We used a range of grid sizes varying from 16 till

256. We would say that using a grid of 16 or 32 points at better cases will achieve
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an error of 4.5 × 10−4 away from using heavy particles. A grid size of 64 would be

considered as an intermediate range with errors around 10−5, and grids with 128,

256, and more allow the accuracy to reach values of 10−6 or 10−7. We proposed that

the minimum Nxgrid should be used from an error point of view is 128. This will

allow the error between calculations using analytical fields and calculations using

the same field forms in discrete grid to be at most 10−4 for all range of particles (very

light to massive ones). We also noticed from calculating the error in energy between

full trajectory and GCA having same grid sizes for the whole range of grid sizes from

16 till 256 that it does not have any effect and the error remains constant between

the two approaches. We also investigated the effect of varying α, the normalised

mass-to-charge ratio, as an indication for the applicability or non-applicability of

GCA from an error point of view. We showed out that error decreases slowly when

α increase till GCA becomes invalid where error begin to increase rapidly; however,

it would not be expected to use GCA with large α values or in the parameter range

between [10−3, 10−1], so this is not a serious restriction.

In chapter 5, a full comparison between both test particle approaches was pre-

sented using data from MHD simulations of forced reconnection. A numerical prob-

lem was discovered in regions where one of the electric field values (parallel or per-

pendicular) is very small. The problem was in interpolating this weak field where

it show a higher value by many orders of magnitude than what we would expect.

This numerical issue may change totally the particle behaviour to a very unrealistic

one. This was resolved by creating a corrector electric field that dismisses the field

that caused the error before interpolation, and then adding it after performing the

interpolation. An important remark when performing interpolation in finite grid

for any set of parameters, is that it is always better and more accurate to calculate

these parameters on the grid points and then interpolate rather than interpolating

basic parameters and then evaluating these parameters.

The comparison between both approaches (full trajectory and GCA) lead us to

say that both of them give similar results concerning trajectories and energy values

when GCA conditions are satisfied i.e. when the Larmor radius is much smaller
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then the length scale of the system or when the gyro-period is much smaller then

the Alfven time. In this case µ is conserved and the particle behaves adiabatically.

Besides, we figure out that drifting velocity can be approximated by a constant

value at a very small portion of time together with gyration from the perpendicular

velocity. When deliberately violating the conditions of GCA by considering very

heavy particles, the latter show different path and energy value when simulated

with full code from that of GCA.

Since a major application of test particle models is to calculate particle energy

gains, it is important to consider the accuracy of kinetic energy calculations. These

calculations are relevant to our work on solar flares modelling, as evaluating the

energy gain of particles is the main issue when considering particle trajectories that

could be compared with observations to have a better understanding of the picture.

We performed simulations using the same particle (Helium-3) initially at the three

main regions within our reconnected current sheet, far from the origin, at the ori-

gin, and at magnetic islands. We noticed that the difference at the final energy

between GCA and full trajectory increased between these three regions from very

small far away from the origin (∼ 0.041%), then the error was doubled at the origin

(∼ 0.08%), than it increases noticeably at magnetic islands to ∼ 0.35%. The error in

general is small as the particle behaves adiabatically, but this difference in error lead

us to say that the accuracy between GCA and full trajectory depend on the initial

particle position as well as the nature of this particle. In another set of experiments

we choose the first region, far from the origin region, and perform experiments with

different values of α ranging from 4.4 × 10−4 till 4.4 × 10−1 with a spacing of one

order of magnitude. The error increased as follows: 0.041%, 0.49%, 7.47%, 16.4%

respectively. Hence to get an error in final energy below ∼ 0.5% between full tra-

jectory and GCA, the mass of the particle should not exceed 30 times the mass of a

proton, at least in regions which are far from origin and magnetic islands which for

sure should have less particle mass to be in this range.

To sum up, the overall comparison between full trajectory and GCA leads us to

say that in the whole picture full trajectory should be always used when considering
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particle trajectories. This method performs under any conditions, and has no lim-

itations. On top of that, concerning codes time consumption, there was no such a

big difference. Of course GCA is faster (finally it is an approximation method) but

also the time taken to evaluate a single particle trajectory using the full code is not

that much. Quantitatively, GCA code in worst cases (simulating heavy particles and

outputting all time steps), take up to 10 seconds to evaluate the particle trajectory,

while full trajectory, with our own version, performing under same conditions as

that of GCA could take up to 2 or 3 minutes to complete the same trajectory, which

is still acceptable taking into account the difference in equations solved and accu-

racy. Maybe when considering thousands of particles, things will add up to change

this fact but at least we are talking about single particles. Does this mean that

there is no point of using GCA? No, one can not ignore the fact that GCA give us

more insight on how does specific terms (parallel acceleration, drifting terms, etc...)

affect the trajectory as they are fully evaluated separately. This allows us to fully

understood different particle motions (following field lines, bouncing, accelerating,

etc...) at each step. On the other hand, full code uses approximated methods to

calculate these effects, like the one we used to evaluate the drift by averaging over

gyrations. It is an argumentative issue, on one side full trajectory is full motion

with high accuracy, and GCA fully diagnose each term of motion!!!

6.1 Future Work

During the previous 12 months we investigated individual particle motion in differ-

ent magnetic and electric field configurations using the two test particle approaches,

full trajectory and GCA. On one hand, time was enough to formulate and establish

pre-experiment tools to perform several experiments and compare main aspects be-

tween the 2 approaches. On the other hand, if more time is given, we could perform

the same work but with different numerical tools and physical concepts. For ex-

ample, considering non-linear interpolation method (e.g. polynomial interpolation),
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other numerical methods for solving differential equations (e.g. the method of col-

location, which is unlike any of the single-step or multi-step methods outputting a

function rather than a discrete set of values), perform relativistic experiments using

electrons instead of protons as GCA is more useful for electrons and light particles,

other analytical fields (e.g. with or without transverse and longitudinal magnetic

fields with all possible combinations, weak and strong guiding fields, models more

convenient to the case of current sheet in solar flares, etc...) formulating analyti-

cal expressions and comparing with simulations, other stages of reconnection rather

than the X-point (e.g. pre-reconnection or O-point stage), and many others. This

will allow us to extract more computational and physical conclusions, derive more

restrictions and limitations for the GCA theory, and to see to what extent they

could explain observed features of particle acceleration like energy spectrum. Last

but not least, we could simulate large number of particles rather than single par-

ticle, which contain a lot of extra physics (Hall term, partial ionisation, Cowling

resistivity, parallel thermal conductivity, etc...), and discuss their energy spectrum

and compare it with GCA and observational data.



Appendix A

A.1 Important MHD Parameter’s Equations

η, the magnetic diffusivity is defined such that:

η =
1

µ0σ
(A.1)

where σ is the conductivity related to collisions between ions and electrons which is

related to the plasma temperature. σ is given in the following formula:

σ = 7 × 10−4 T 3/2 (A.2)

The equation of state :

p = nkBT (A.3)

for hydrogen plasma we get:

p = 2nekBT (A.4)

Some dimensionless parameters can be defined to reveal basic properties of the

studied plasma, as the plasma beta (β) and magnetic Reynolds number (Rn).

β =
thermal pressure

magnetic pressure
=

p

B2/2µ0
=

2µ0p

B2
(A.5)
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Coronal plasma is a low beta plasma as it is highly magnetised, thus magnetic

pressure dominates the thermal pressure.

Rn =
L0V0

η
(A.6)

where L0 and V0 are the length and velocity scales of the plasma respectively.

Diffusion timescale:

τd = L2
0/η. (A.7)

Magnetic field lines are wave carriers as they have tension T = B2/µ0, so the

information will propagate within the plasma at a speed:

VA =
√

T/ρ =
√

B2/µ0ρ (A.8)

where ρ is the mass density and VA is termed by the Alfven speed. The timescale

of propagation of Alfven waves is:

tA =
L0

VA
(A.9)

We can also define a new dimensionless parameter Lu, the Landquist number as:

Lu =
τd
tA

=
µ0L0VA

η
(A.10)

Which is always a very high number in the solar corona.

A.2 Relativistic GCA Equations

dr

dt
= u +

γ(v‖)

γ
b (A.11)

u = uE +
m

q

(γv‖)
2

γκ2B
[b× (b · ∇)b] +

m

q

µ

γκ2B
[b× (∇(κB))] +

m

q

(γv‖)

κ2B
[b× (b · ∇)uE ]

+
m

q

(γv‖)

κ2B
[b× (uE ·∇)b] +

m

q

γ

κ2B
[b× (uE ·∇)uE ] +

1

γc2
E‖
κ2B

(γv‖)[b×uE ] (A.12)
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d(γv‖)

dt
=

q

m
E ·b− µ

γ
(b ·∇(κB)) + (γv‖)uE · ((b · ∇)b) + γuE · ((uE · ∇)b) (A.13)

γ =

√

c2 + (γv‖)2 + 2µB

c2 − u2
(A.14)

dµ

dt
= 0 (A.15)

r(t) is the position vector, u is the particle drift velocity perpendicular to the

magnetic field, v‖ is the particle velocity parallel to the magnetic field, uE = E×b
B

is the local ~E × ~B drift velocity, and b is the magnetic field direction vector b =

B/B. γ is the relativistic factor, γ = c√
c2−v2

, where v is the absolute particle velocity

and κ is the coefcient reducing the field value to the particle frame of reference,

κ =
√

1 − u2
E/c

2. Finally, µ is the particle magnetic moment, µ = u2
g/2B.

A.3 Resistive MHD Equations

∂ρ

∂t
= −∇ · (ρv) (A.16)

∂v

∂t
= −(v · ∇)v − 1

ρ
j × B − 1

ρ
∇p (A.17)

∂w

∂t
= −(v · ∇)w − (γ − 1)w ∇ · v +

η

ρ
j2 (A.18)

∂B

∂t
= ∇ × [v × B] − ∇ × (ηj) (A.19)

j =
1

µ0
[∇ × B] (A.20)

where w is the specific internal energy density related to pressure and density as

p = (γ - 1)ρw, and µ0 is the magnetic permeability. All other parameters with their

standard definitions.

A.4 Analytical Form Derivation

The main equation to be solved is the Lorentz equation given as:

dv

dt
=

q

m
(E + v ×B) (A.21)
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In our case:

~v × ~B = (Bzvy −Byvz)~i− Bzvx
~j +Byvx

~k (A.22)

and so:

dvx

dt
=

q

m
(Bzvy −Byvz) (A.23)

dvy

dt
= − q

m
(Bzvx) (A.24)

dvz

dt
=

q

m
(Ez +Byvx) (A.25)

or in other words we would say (dot represent a derivative with respect to time):

ẍ =
q

m
(Bzẏ −By ż) (A.26)

ÿ = −qBz

m
ẋ (A.27)

z̈ =
q

m
(Ez +Byẋ) (A.28)

so

ẏ = −qBz

m
(x− x0) + ẏ0 (A.29)

ż =
q

m
(Ezt+By(x− x0)) + ż0 (A.30)

Thus

ẍ =
q

m

[

Bz

[

− qBz

m
x+

qBz

m
x0 + ẏ0

]

−By

[qEz

m
t+

qBy

m
x− qBy

m
x0 + ż0

]]

(A.31)

Hence

ẍ = −
(qBz

m

)2

x+
(qBz

m

)2

x0 +
qBz

m
ẏ0 −

q2ByEz

m2
t−

(qBy

m

)2

x+
(qBy

m

)2

x0 −
qBy

m
ż0

(A.32)

a little bit of arranging

ẍ+
[(qBz

m
)2 + (

qBy

m

)2]

x =
[(qBz

m

)2

+
(qBy

m

)2]

x0 +
qBz

m
ẏ0 −

qBy

m
ż0 −

q2ByEz

m2
t

(A.33)
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now assuming

ω2 =
(qBz

m

)2

+
(qBy

m

)2

(A.34)

using the auxiliary solution

r2 + ω2 = 0 (A.35)

r = ±iω (A.36)

and so

x1 = Aeiwt + Ce−iwt (A.37)

taking just the real parts

x1 = Ucos(ωt) + V sin(ωt) (A.38)

the second solution would be linear such that:

x2 = Pt+Q (A.39)

x1 and x2 both satisfy the equation and hence their addition is also a solution,

thus

x = x1 + x2 (A.40)

as x2 is a solution then we can substitute to get the constants P and Q, i.e.:

ω2(Pt+Q) = −q
2ByEz

m2
t+ ω2x0 +

qBz

m
ẏ0 −

qBy

m
ż0 (A.41)

by comparison:

P = − ByEz

B2
z +B2

y

(A.42)

and

Q = x0 +
Bz ẏ0 − Byż0
q
m

(B2
z +B2

y)
(A.43)
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Therefore:

x = Ucos(ωt) + V sin(ωt) − ByEz

B2
z +B2

y

t+
Bz ẏ0 −By ż0
q
m

(B2
z +B2

y)
+ x0 (A.44)

initially at t = 0, x = x0 and thus we get:

U =
By ż0 − Bz ẏ0
q
m

(B2
y +B2

z)
(A.45)

now differentiating x and substituting at t = 0, we get

V =
mẋ0

q(B2
y +B2

z )
1

2

+
mByEz

q(B2
y +B2

z )
3

2

(A.46)

Finally we can substitute to get the final answer for positions and velocities as

follows:

x =
m(Byż0 − Bz ẏ0)

q(B2
y +B2

z )
cos(ωt) +

[ mẋ0

q(B2
y +B2

z )
1

2

+
mByEz

q(B2
y +B2

z )
3

2

]

sin(ωt) − ByEz

B2
y +B2

z

t

+
m(Bz ẏ0 − Byż0)

q(B2
y +B2

z )
+ x0 (A.47)

y =
mBz(Bz ẏ0 − By ż0)

q(B2
y +B2

z )
3

2

sin(ωt)+
[ mBzẋ0

q(B2
y +B2

z )
+

mByBzEz

q(B2
y +B2

z )
2

]

cos(ωt)+
qByBzEz

2m(B2
y +B2

z )
t2

−Bz(Bz ẏ0 − Byż0)

B2
y +B2

z

t+ ẏ0t−
mBzẋ0

q(B2
y +B2

z)
− mByBzEz

q(B2
y +B2

z )
+ y0 (A.48)

z =
qEz

2m
t2+

mBy(Byż0 − Bz ẏ0)

q(B2
y +B2

z )
3

2

sin(ωt)−
[ mByẋ0

q(B2
y +B2

z)
+

mB2
yEz

q(B2
y +B2

z )
2

]

cos(ωt)−
qB2

yEz

2m(B2
y +B2

z)
t2

+
By(Bz ẏ0 − Byż0)

B2
y +B2

z

t+ ż0t+
mByẋ0

q(B2
y +B2

z)
+

mB2
yEz

q(B2
y +B2

z)
2

+ z0 (A.49)

vx = −(By ż0 −Bz ẏ0)

(B2
y +B2

z)
1

2

sin(ωt) +
[

ẋ0 +
ByEz

B2
y +B2

z

]

cos(ωt) − ByEz

B2
y +B2

z

(A.50)

vy =
Bz(Bz ẏ0 −By ż0)

B2
y +B2

z

cos(ωt)−
[ Bzẋ0

(B2
y +B2

z )
1

2

+
ByBzEz

(B2
y +B2

z)
3

2

]

sin(ωt)+
qByBzEz

m(B2
y + B2

z)
t

−Bz(Bz ẏ0 − Byż0)

B2
y +B2

z

+ ẏ0 (A.51)
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vz =
qEz

m
t+
By(By ż0 −Bz ẏ0)

B2
y +B2

z

cos(ωt)+
[ Byẋ0

(B2
y +B2

z)
1

2

+
B2

yEz

(B2
y +B2

z )
3

2

]

sin(ωt)−
qB2

yEz

m(B2
y +B2

z)
t

+
By(Bz ẏ0 −By ż0)

B2
y +B2

z

+ ż0 (A.52)

A.5 RK4 Method

Runge-Kutta methods are a family of implicit and explicit iterative methods that

solves ordinary differential equations of the form:

dy

dx
= f(x, y)

y(0) = y0 (A.53)

Runge-Kutta 4th order method is a member of this family based on the following

numerical scheme:

yi+1 = yi + (a1k1 + a2k2 + a3k3 + a4k4)h (A.54)

where knowing the value of y = yi at xi, allow us to find the value of y = yi+1 at

xi+1, and h = xi+1 − xi. Expanding equation A.54 to the first five terms of Taylor

series and substituting dy/dx = f(x, y) and h, one can get:

yi+1 = yi + f(xi, yi)h+
1

2!
f

′

(xi, yi)h
2 +

1

3!
f

′′

(xi, yi)h
3 +

1

4!
f

′′′

(xi, yi)h
4 (A.55)

One of the popular solutions used for equation A.55 is:

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)h

k1 = f(xi, yi)

k2 = f(xi +
1

2
h, yi +

1

2
k1h)

k3 = f(xi +
1

2
h, yi +

1

2
k2h)
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k4 = f(xi + h, yi + k3h) (A.56)

Our Full Trajectory code uses the presented numerical scheme for solving the Lorentz

equation of motion.

A.6 A-B4 Method

Adams-Bashforth methods are also a family for numerically solving ordinary differ-

ential equations of the same form as in equation A.53 where A-B4 is a one member

of this family. Instead of taking some intermediate steps (e.g. half step as in RK4),

A-B4 uses a linear multi-step process that uses previous calculated steps rather than

discarding them as in RK to calculate the next step. The numerical scheme for A-B4

is:

yi+4 = yi+3 + h
[55

24
f(ti+3, yi+3) −

59

24
f(ti+2, yi+2) +

37

24
f(ti+1, yi+1) −

3

8
f(ti, yi)

]

.

(A.57)

Mainly, just one initial condition is given for the problem, so the other three initial

needed values for this method to operate can be computed using other methods like

Euler or RK. In our programmed full trajectory code, we evaluate these three values

using RK4 and then A-B4 continue normally.

A.7 Analytical Expressions For Some GCA Val-

ues

Following up from § 4.1 in chapter 4 we present the analytical expressions for ∇| ~B|,

(~b.~∇)~b,
~E× ~B
B2 , and ~E.~b for the chosen magnetic and electric configuration.

∂|B|
∂x

=
B0

b2

[(y

a

)2

+
(x

b

)2

+ 1
]−1/2

x (A.58)

∂|B|
∂y

=
B0

a2

[(y

a

)2

+
(x

b

)2

+ 1
]−1/2

y (A.59)
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∂|B|
∂z

= 0 (A.60)

[(~b.~∇)~b]i = −y2
[

y2 +
(x

b

)2

+ 1
]−2 x

b2
+ x

[

y2 +
(x

b

)2

+ 1
]−1/2[(y

a

)2

+ x2 + 1
]−1/2

−xy2
[

y2 +
(x

b

)2

+ 1
]−3/2[(y

a

)2

+ x2 + 1
]−1/2

(A.61)

[(~b.~∇)~b]j = y
[

x2+
(y

a

)2

+1
]−1/2[

y2+
(x

b

)2

+1
]−1/2

−yx2
[

x2+
(y

a

)2

+1
]−3/2[(

y2+
x

b

)2

+1
]−1/2

−x
2y

a2

[

x2 +
(y

a

)2

+ 1
]−2

(A.62)

[(~b.~∇)~b]k =
xy

b2

[(y

a

)2

+
(x

b

)2

+1
]−3/2[

y2+
(x

b

)2

+1
]−1/2

−xy

a2

[(y

a

)2

+
(x

b

)2

+1
]−3/2

[

x2 +
(y

a

)2

+ 1
]−1/2

(A.63)

[ ~E × ~B

B2

]

i
=
E0x

bB0

1

[(y
a
)2 + (x

b
)2 + 1]

(A.64)

[ ~E × ~B

B2

]

j
= −E0y

aB0

1

[(y
a
)2 + (x

b
)2 + 1]

(A.65)

[ ~E × ~B

B2

]

k
= 0 (A.66)

~E.~b =
E0

√

(y
a
)2 + (x

b
)2 + 1

(A.67)

A.8 Magnetic Field and Velocity Stream Lines

Derivation

There are 2 ways to plot magnetic field lines on a current sheet laying on the x− y

plane. The first is by calculating the equation of field lines such that:

dx

Bx
=
dy

By
(A.68)

Assuming a = b in equations 4.1 and 4.2, one can find:

xdx = ydy (A.69)
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integrating both sides and rearranging we get:

1

2
(x2 − y2) = constant (A.70)

These field lines are magnetic field lines. The second way of doing it, is to calculate

magnetic potential, in our case we have:

∂Az

∂y
= Bx = B0

y

a

∂Az

∂x
= −By = −B0

x

b
(A.71)

integrating, we get:

Az =
B0y

2

2a
+ f(x)

Az =
−B0x

2

2b
+ f(y) (A.72)

comparing and knowing that we choose a = b, therefore:

Az =
B0

2a
(y2 − x2) (A.73)

One interesting thing we can do here, is evaluating velocity stream lines and over-

plot them on magnetic field lines to now how inflow and outflow of plasma would

happen. The plasma is driven to the current sheet by the ~E × ~B drift such that:

~VE×B =
~E × ~B

B2
(A.74)

evaluating and arranging, we get:

~VE×B|x = −E0x

B0b

1

(y
a
)2 + (x

b
)2 + 1

~i

~VE×B|y =
E0y

B0a

1

(y
a
)2 + (x

b
)2 + 1

~j

~VE×B|z = 0 ~k (A.75)
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Now to calculate equations of field lines we set:

dx

Vx

=
dy

Vy

(A.76)

which gives:

x

dx
= − y

dy
(A.77)

integrating and arranging yields:

xy = constant (A.78)

which is the simple equation of a stagnation point.
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