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Preface

This report contains the proceedings of The 19th Automated Reasoning Workshop (ARW
2012). The workshop was held at the University of Manchester from 2 to 4 April 2012.
ARW provides an informal forum for the automated reasoning community to discuss
recent work, new ideas and applications, and current trends. It aims to bring together
researchers from all areas of automated reasoning in order to foster links and facilitate
cross-fertilisation of ideas among researchers from various disciplines, from theoreti-
cians, from implementers and from users of automated reasoning methodologies. Since
1994, when it was held in Leeds as part of the 1994 AISB Workshop and Tutorial Series,
ARW has been organised on an annual basis.
We received a total of 25 submissions, some from as far away as Brazil, Finland, France,
and The Netherlands. All submissions were accepted for presentation as short talks and
posters after a light-weight reviewing round. The programme also included three in-
vited talks: The Antikythera Mechanism and the Early History of Mechanical Comput-
ing by Mike Edmunds (University of Cardiff, BCTCS invited speaker), Formal Verifi-
cation of Software Product Families by Reiner Hähnle (Technische Universität Darm-
stadt, BCTCS/ARW joint invited speaker), and SAT over an Abstract Domain by Daniel
Kroening (University of Oxford, ARW invited speaker). This year the workshop was
collocated with The 28th British Colloquium for Theoretical Computer Science allow-
ing participants of ARW and BCTCS to attend parallel sessions of the other event.
There were many people who helped organising ARW 2012. First, I would like to thank
the authors and presenters of the abstracts, short talks and posters, as well as the invited
speakers for their contributions. I thank the ARW Organising Committee for the advice
and support. Special thanks go to the following people helping with the local organisa-
tion for all their efforts: the staff in the School’s Academic Support Office, especially
Ruth Maddocks, the staff of the School’s Finance Office, the staff of the University who
set up the registration and accommodation booking websites, as well as Rebekah Carter,
Patrick Koopmann, Dmitry Tishkovski and Michał Zawidzki. Two people who deserve
special mention are Mohammad Khodadadi for creating and maintaining the ARW web-
site, and Fabio Papacchini for organising the reviewing of the abstracts, doing a lot of
the reviewing himself and producing these proceedings. Moreover, I am very grateful
to Ian Pratt-Hartmann, Chair of BCTCS 2012, and the BCTCS Steering Committee for
agreeing to the collocation, and Ian and his team of helpers for the shared effort in
organising both events.
Finally, it is my pleasure to acknowledge the generous support from the following organ-
isations: the Automated Reasoning Workshop, the British Colloquium for Theoretical
Computer Science, the British Logic Colloquium, the School of Computer Science at
the University of Manchester, and the University of Manchester.

Manchester, April 2012 Renate Schmidt
ARW 2012 Chair
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Monday 2nd April 2012

14:00 Registration, tea and coffee Kilburn, lower first floor

15:45 Welcome Kilburn, 1.1

16:00 BCTCS/ARW invited lecture Kilburn, 1.1

Mike Edmunds: The Antikythera Mechanism and the early history of
mechanical computing

17:30 Reception Christie Library

Tuesday 3rd April 2012

09:00 Registration Kilburn, lower first floor

09:30 BCTCS/ARW invited lecture Kilburn, 1.1

Reiner Hähnle: Formal verification of software product families

10:30 Tea & coffee

11:00 Parallel sessions:

BCTCS contributed talks A Kilburn, 1.1

Phillip James: Domain-specific languages and automatic verification

Richard Barraclough: A unifying theory of control dependence and its
application to arbitrary program structures

Patrick Totzke: Weak bisimulation approximants for BP processes

BCTCS contributed talks B Kilburn, 1.4

Giles Reger: Quantified event automata: towards expressive and effi-
cient runtime monitors

Andrew Lawrence, Ulrich Berger: Extracting a DPLL Algorithm

David Love: Why Don’t Cantor’s Sets Compute?

ARW short talks 1 (5 minutes each) Kilburn, 1.5

C. Nalon: A Linear Strategy for Modal Resolution

A. Niknafs Kermani, B. Konev: Symmetry Theorem Proving

R. Williams, B. Konev: Simplified Temporal Resolution Using SAT
Solvers

C. Sticksel, K. Korovin: A Note on Model Representation and Proof
Extraction in the First-Order Instantiation-based Calculus Inst-Gen

M. Meri: Inverse Resolution in Case-Based Planning Cycle

A. Bolotov, V. Shangin: Natural Deduction in the Setting of Paracon-
sistent and Paracomplete Logics PCont and PComp

followed by poster session 1 at 11:30 Kilburn, lower first floor
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12:30 Buffet lunch

13:30 Parallel sessions:

BCTCS invited lecture Kilburn, 1.1

Nicole Schweikardt: On the expressive power of logics with invariant
uses of arithmetic predicates

ARW short talks 2 (5 minutes each) Kilburn, 1.5

B. Lellmann, D. Pattinson: Graphical Construction of Cut Free Se-
quent Systems Suitable for Backwards Proof Search

Ş. Minică: Automatic Reasoning for Interrogative Logics

M. Zawidzki: Terminating Tableau Calculus for the Logic K(En)

D. Tishkovsky, C. Dixon, B. Konev, R. A. Schmidt: A Labelled Tableau
Approach for Temporal Logic with Constraints

F. Papacchini, R. A. Schmidt: Minimal Models for Modal Logics

M. J. Gabbay (with C. Wirth): Quantifier Rules in Reductive Proof
Using Nominal Semantics

followed by poster session 2 at 14:00 Kilburn, lower first floor

14:30 Parallel sessions:

BCTCS contributed talk A Kilburn, 1.1

Robert Piro: Model-theoretic characterisation of TBoxes and the TBox
rewritability Problem

BCTCS contributed talk B Kilburn, 1.4

Christopher Thompson-Walsh: Extending a Rule-Based Biological Mod-
elling Language Semantics with Containment

15:00 Tea & coffee

15:30 Parallel sessions:

BCTCS contributed talks A Kilburn, 1.1

Stanislaw Kikot: The length of query rewriting for OWL 2 QL

Paolo Guagliardo: On the relationship between view updates and lo-
gical definability

Chiara Del Vescovo: The modular structure of an ontology: atomic
decomposition

BCTCS contributed talks B Kilburn, 1.4

Michael Gabbay: A very simple, explicit construction of some models
of beta-equality and beta-eta-equality

Tie Hou: Modeling a language of realizers using domain-theoretic se-
mantics

Hugh Steele: Double glueing and MLL full completeness
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ARW short talks 3 (5 minutes each) Kilburn, 1.5

R. Carter, E. M. Navarro-López: Model Checking by Abstraction for
Proving Liveness Properties of Hybrid Dynamical Systems

W. Denman: Verification of Nonpolynomial Systems Using MetiTarski

A. Piel: A Formal Behaviour Representation for the Analysis of Dis-
tributed Simulations of Unmanned Aircraft Systems

M. Alzahrani, L. Georgieva: Analysing Data-Sensitive and Time-Sensitive
Web Applications

Y. Lu, A. Miller: Timed Analysis of RFID Distance Bounding Proto-
cols

R. Kirwan, A. Miller: Progress on Model Checking Robot Behaviour

followed by poster session 3 at 16:00 Kilburn, lower first floor

17:00 ARW Business meeting (organisation committee) Kilburn, LF15

19:30 ARW dinner Piccolino Ristorante e Bar

Wednesday 4th April 2012

09:00 BCTCS/ARW invited talk Kilburn, 1.1

Daniel Kroening: SAT over an Abstract Domain

10:00 Parallel sessions:

BCTCS contributed talk A Kilburn, 1.1

Jian Song: 4-coloring H-Free Graphs when H is small

BCTCS contributed talk B Kilburn, 1.4

Martin Sticht: A Game-Theoretic Decision Procedure for the construct-
ive Description Logic cALC

ARW short talks 4 (5 minutes each) Kilburn, 1.5

W. Sonnex: Deforestation + Dependent Types = Automated Induction

M. Brain: Using Algebra to Understand Search Spaces

A. Armstrong, G. Struth: Automated Reasoning in Higher-Order Al-
gebra

Q. Mahesar, V. Sorge: Generation of Large Size Quasigroup Structures
Using Algebraic Constraints

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, V. Sorge: A Term Re-
writing System for Kuratowski’s Closure-Complement

F. Cavallo, S. Colton, A. Pease: Uncertainty Modelling in Automated
Concept Formation

M. Khodadadi, D. Tishkovsky, R. A. Schmidt: METTEL2: Towards a
Prover Generation Platform
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10:30 Tea & coffee

11:00 Parallel sessions:

BCTCS contributed talks A Kilburn, 1.1

Jude-Thaddeus Ojiaku: Online makespan scheduling of linear deterior-
ating jobs on parallel machines

Tom Grant: Maximising lifetime for fault-tolerant target coverage in
sensor networks

Mihai Burcea: Online multi-dimensional dynamic bin packing of unit
fraction and power fraction items

BCTCS contributed talks B Kilburn, 1.4

Christopher Hampson: Modal Products with the difference operator

Brandon Bennett: An ‘almost analytic’ sequent calculus for first-order
S5 with constant domains

Chris Banks: Towards a logic of biochemical processes

ARW poster session 4 Kilburn, lower first floor

12:30 Buffet lunch

13:30 LMS invited lecture in discrete mathematics Kilburn, 1.1

Rod Downey: Fundamentals of Parameterized Complexity I

14:30 Parallel sessions:

BCTCS contributed talk A Kilburn, 1.1

Yavor Nenov: Computability of topological logics over Euclidean spaces

BCTCS contributed talk B Kilburn, 1.4

Evelyn-Denham Coates: Optimum sort algorithms with o(N) moves

15:00 Tea & coffee

15:30 Parallel sessions:

BCTCS contributed talks A Kilburn, 1.1

Martin Adamčík: Collective reasoning under uncertainty and inconsist-
ency

Murdoch Gabbay: Game semantics using nominal techniques

Arnoud Pastink: Approximate Nash Equilibria in an uncoupled setup
with limited communication

BCTCS contributed talks B Kilburn, 1.4

Thomas Gorry: Communication-less agent location discovery

Dirk Sudholt: The analysis of evolutionary algorithms: why evolution
is faster with crossover

Yanti Rusmawati: Dynamic networks as concurrent systems and super-
vised evolution
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17:00 BCTCS committee meeting Kilburn, LF15

19:30 BCTCS dinner Little Yang Sing

Thursday 5th April 2012

09:00 LMS invited lecture in discrete mathematics Kilburn, 1.1

Rod Downey: Fundamentals of Parameterized Complexity II

10:00 BCTCS contributed talk Kilburn, 1.1

Sam Jones: Groups, formal language theory and decidability

10:30 Tea & coffee

11:00 BCTCS contributed talks Kilburn, 1.1

Domagoj Vrgoc: Regular expressions for data words

Laurence Day: The Silence of the Lambdas

Alistair Stewart: Polynomial time algorithms for multi-type branching
processes and stochastic context-free grammars

12:30 Buffet lunch

13:30 Close
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The Antikythera Mechanism and the Early History of Mechanical
Computing
Mike Edmunds

School of Physics and Astronomy, University of Cardiff

Abstract: Perhaps the most extraordinary surviving relic from the ancient Greek world is a device containing
over thirty gear wheels dating from the late 2nd century B.C., and now known as the Antikythera Mechanism.
This device is an order of magnitude more complicated than any surviving mechanism from the following
millennium, and there is no known precursor. It is clear from its structure and inscriptions that its purpose
was astronomical, including eclipse prediction. In this illustrated talk, I will outline the results - including
an assessment of the accuracy of the device - from our international research team, which has been using the
most modern imaging methods to probe the device and its inscriptions. Our results show the extraordinary
sophistication of the Mechanism’s design. There are fundamental implications for the development of Greek
astronomy, philosophy and technology. The subsequent history of mechanical computation will be briefly
sketched, emphasising both triumphs and lost opportunities. . . . . .

R. A. Schmidt and F. Papacchini (Eds.), Proc. ARW 2012, Univ. Manchester 1





Formal Verification of Software Product Families
Reiner Hähnle

Technische Universitaet Darmstadt

Abstract: Formal verification techniques for software product families not only analyse individual programs,
but act on the artifacts and components which are reused to obtain multiple software products. As the number
of products is exponential in the number of artifacts, it is essential to perform verification in a modular fashion
instead of verifying each product separately: the goal is to reuse not merely software artifacts, but also their
verification proofs. In our setting, we realize code reuse by delta-oriented programming, an approach where
a core program is gradually transformed by code deltas each of which corresponds to a product feature. The
delta-oriented paradigm is then extended to contract-based formal specifications and to verification proofs. As
a next step towards modular verification we transpose Liskovs behavioural subtyping principle to the delta
world. Finally, based on the resulting theory, we perform a syntactic analysis of contract deltas that permits us
to automatically factor out those parts of a verification proof that stays valid after applying a code delta.

R. A. Schmidt and F. Papacchini (Eds.), Proc. ARW 2012, Univ. Manchester 3





A Linear Strategy for Modal Resolution
Cláudia Nalon

Departamento de Ciência da Computação – Universidade de Brası́lia
Caixa Postal 4466 – Brası́lia - DF - Brazil, CEP: 70.910-090

nalon@unb.br

Abstract: We discuss ongoing work on strategies for clausal resolution methods for normal modal logics. We
propose to add new inference rules to existing resolution based-method for the mono-modal system K, so that
a linear strategy can be applied to reduce the search space for a proof.

1 Introduction

Modal logics have been used to describe a variety of com-
plex computational systems. Once the system is described
by means of a logical language, an automated tool (e.g. a
theorem prover) can be used to reason about the desired
properties of that system.

In [4], we have presented resolution-based methods for
several propositional normal modal logics, that is, where
the schema (ϕ ⇒ ψ) ⇒ ( ϕ ⇒ ψ) (the axiom
K), where ϕ and ψ are well-formed formulae, is valid.
The methods presented in [4] deal with logics based on
K and combinations of the axioms T ( ϕ ⇒ ϕ), D
( ϕ ⇒ ♦ϕ), 4 ( ϕ ⇒ ϕ), 5 (♦ϕ ⇒ ♦ϕ),
and B (♦ ϕ ⇒ ϕ). These methods are sound, complete,
and terminating.

It is well known that proof methods for propositional log-
ics are intractable [1]. However, the use of strategies for
resolution-based methods can lead to spatial-efficient meth-
ods [5]. It is also well known that the satisfiability prob-
lem for K, the mono-modal logic based on the axiom K, is
PSPACE [2]. Here we investigate a linear strategy for the
resolution proof method for K [4]. In the next section, we
present the syntax and semantics of K. In Section 3, we
present the normal form and the resolution rules for K.

2 The Normal Logic K

The normal modal system K is an extension of the classical
propositional logic with the operator , where the axiom K
holds. Formulae are constructed from a denumerable set of
propositional symbols, P = {p, q, p′, q′, p1, q1, . . .}. For
the mono-modal case, besides the propositional connectives
(¬,∧), we introduce an unary modal operator , where
ϕ is read as “the agent considers ϕ necessary”. The fact

that an agent considers ϕ possible, i.e. ♦ϕ, is denoted by
¬ ¬ϕ. The set of well-formed formulae, WFFK , is de-
fined in the usual way: the propositional symbols are in
WFFK ; true is in WFFK ; if ϕ and ψ are in WFFK , then so
are ¬ϕ, (ϕ ∧ ψ), and ϕ. A literal is either a proposition
or its negation. L is the set of literals. A modal literal is
either l or ¬ l, where l ∈ L.

A Kripke structure M over P is a tuple M =
〈S, π,R〉, where S is a set of possible worlds (or states)
with a distinguished world s0 ; the function π(s) : P →

{true, false}, s ∈ S, is an interpretation that associates
with each state in S a truth assignment to propositions; and
R ⊆ S × S is a binary relation on S.

The binary relation R captures the possibility relation
according to the agent: a pair (s, t) is in R if the agent
considers world t possible, given her information in world
s. We write (M, s) |= ϕ to say that ϕ is true at world s
in the Kripke structure M . Truth of classical formulae are
given as usual; for modal formulae, we have that (M, s) |=
ϕ iff for all t, such that (s, t) ∈ R, (M, t) |= ϕ. The

formulae false, (ϕ∨ψ), and (ϕ⇒ ψ) are introduced as the
usual abbreviations for ¬true, ¬(¬ϕ∧¬ψ), and (¬ϕ∨ψ),
respectively. Formulae are interpreted with respect to the
distinguished world s0. Let M = 〈S, π,R〉 be a Kripke
structure with a distinguished world s0. A formula ϕ is
said to be satisfiable in M if (M, s0) |= ϕ; ϕ is said to be
satisfiable if there is a model M such that (M, s0) |= ϕ;
and ϕ is said to be valid if for all models M , (M, s0) |= ϕ.

3 The Resolution Method for K

Formulae in the language of K can be transformed into
a Separated Normal Form for Normal Logics (SNFK).
As satisfiability is defined in terms of the distinguished
world s0, we introduce a nullary connective start, where
(M, s) |= start iff s = s0. A formula in SNFK is rep-
resented by a conjunction of clauses, which are true at
all reachable states, that is, they have the general form
∗∧

iAi where Ai is a clause, where ∗ is the univer-
sal operator. The formula ∗ϕ holds iff ϕ holds at the
actual world and at all reachable worlds, where reachabil-
ity is defined in the usual way. The universal operator en-
sures that the translation of a formula is true at the actual
world and at all reachable worlds. A clause may be ini-
tial (start ⇒ ∨r

b=1 lb), literal (true ⇒ ∨r
b=1 lb), positive

modal (l′ ⇒ l), or negative modal (l′ ⇒ ¬ l), where
l, l′, lb ∈ L. Transformation rules and their correctness can
be found in [4].

Once a formula has been transformed in its normal form,
the resolution method can be applied. In the following, l,
l′, li, l′i ∈ L (i ∈ N) and D, D′ are disjunctions of literals.
The inference rules are shown in Figure 1.

An initial clause may be resolved with either a literal
clause or an initial clause (IRES1 and IRES2). Literal
clauses can be resolved together (LRES). MRES is also
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[IRES1] ∗(true ⇒ D ∨ l)
∗(start ⇒ D′ ∨ ¬l)
∗(start ⇒ D ∨D′)

[IRES2] ∗(start ⇒ D ∨ l)
∗(start ⇒ D′ ∨ ¬l)
∗(start ⇒ D ∨D′)

[LRES] ∗(true ⇒ D ∨ l)
∗(true ⇒ D′ ∨ ¬l)
∗(true ⇒ D ∨D′)

[MRES] ∗(l1 ⇒ l)
∗(l2 ⇒ ¬ l)

∗(true ⇒ ¬l1 ∨ ¬l2)

[GEN1] ∗(l′1 ⇒ ¬l1)
...

∗(l′m ⇒ ¬lm)
∗(l′⇒¬ ¬l)

∗(true ⇒ l1 ∨ . . . ∨ lm ∨ ¬l)
∗(true ⇒¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′)

[GEN2] ∗(l′1 ⇒ l1)
∗(l′2 ⇒ ¬l1)
∗(l′3 ⇒¬ ¬l2)
∗(true ⇒¬l′1 ∨ ¬l′2 ∨ ¬l′3)

[GEN3] ∗(l′1 ⇒ ¬l1)
...

∗(l′m ⇒ ¬lm)
∗(l′⇒¬ ¬l)

∗(true ⇒ l1 ∨ . . . ∨ lm)
∗(true ⇒¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′)

Figure 1: Inference Rules for K

equivalent to classical resolution, as a formula and its nega-
tion cannot be true at the same state. The GEN1 rule cor-
responds to generalisation and several applications of clas-
sical resolution. GEN2 is a special case of GEN1. GEN3
is similar to GEN1 but the contradiction occurs between
the right hand side of the positive i-clauses and the literal
clause. We assume standard simplification from classical
logic to keep the clauses as simple as possible.

4 A Linear Strategy

Linear resolution [3] is a popular strategy for reducing the
search space for a proof in resolution-based methods. A
linear derivation from a set of clauses S is a list of clauses
(C1 . . . , Cn), where C1 ∈ S and each Ci+1 is the resolvent
of Ci and B, where either B ∈ S or B ∈ {C1, . . . , Ci−1}.
If Cn is the empty clause, then (C1 . . . , Cn) is a linear
refutation.

The inference rules shown in Section 3 are not enough to
produce linear refutations in the modal case. For instance,
there is no linear refutation for the following set of clauses

1. start ⇒ a ∨ b
2. a ⇒ ¬ ¬c
3. b ⇒ ¬ ¬c
4. true ⇒ ¬c

although the set is unsatisfiable. We propose to extend the
set of rules shown in Figure 1 with the following inference
rules

[LLHR] ∗(true ⇒ l1 ∨ . . . ∨ ln)
∗(l1 ⇒ l′1)

...
∗(ln ⇒ l′n)

∗(true ⇒ l′1)
...

∗(true ⇒ l′n)

where li, l′i are modal literals. Similar inference rules are
also needed for dealing with initial clauses. These rules are
obviously sound. Our next step is to prove that by adding
these inference rules the strategy is complete, i.e,

Theorem 4.1 Let S be a set of SNFK clauses. There is a
refutation for S if, and only if, there is a linear refutation
for S.
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Abstract: In this paper we consider the verification of Propositional Temporal Logic in symmetric systems.
In particular, we try to verfiy a specification of a system with few number of processes and use the outcome in
order to reduce the verification complexity of the same system with larger number of processes.

1 Introduction

Propositional Temporal Logic(PTL) [4] is an extension of
classical propositional logic, specifically adding operators
relating to time. In addition to classical logic, temporal log-
ics often contain operators such as©, the next moment in
time; 2, always in the future; and 3, sometime in the fu-
ture.

If we have specified a system using the propositional
temporal formula ψ, then we can check whether a certain
temporal property ϕ, follows from the specification of the
system by establishing that ϕ is implied by ψ. This can
be done using Temporal Logic theorem proving [4]. Cur-
rently there are several automated provers such as TeMP [7]
and TSPASS [8]. Alternatively to theorem provigin for PTL,
one can use Temporal Logic Model Checking to prove some
properties within a system. e.g. Model checkers such SPIN
Model Checker [6] have proved to successfully use symme-
try properties of a system to increase efficiency; this was an
inspiration for our work.

The core aim of this research is to improve performance
for PTL theorem proving in symmetric systems. These sys-
tems consist of some identical tasks which can be the same
for all the involved processes, resource sharing i.e. Cache
Coherence Protocol [1] is a good example of a symmet-
ric system. The use of local caches in multiprocessor sys-
tems reduce both memory access latency and network traf-
fic, since each cache holds local copies of main memory
blocks. However, one has to ensure that the copies of the
same memory block in the caches of different processors
are consistent for any given number of processes. Such data
consistency can be provided by Cache Coherence Proto-
col(CCP). We apply a temporal prover to the system spec-
ification for Specific Number of processes to discover its
symmetry.

2 Symmetry Theorem Prover

We want to improve the efficiency of Clausal Temporal
Resolution [9] for symmetric systems. An overview of the
Clausal Temporal Resolution method is as follows:

1. Transform formula A into Seperate Normal
Form(SNF) [4], giving a set of clauses As.

2. Perform step resolution [4] on clauses from As until
either:

(a) A contradiction is derived, in which case A is
unsatisfiable; or

(b) No new resolvents are generated, in which case
we continue to step(3).

3. Select an eventuality from within As, and perform
temporal resolution [4] with respect to this - if any new
formulae are generated, go back to step (2).

4. If all eventualities have been resolved, then A is satis-
fiable, otherwise go back to step (3).

The main concern with the above algorithm is that Tempo-
ral Resolution can be quite slow. There have been several
attempts to increase its speed but it remains the slowest, yet
necessary, part of the method [2, 3].
In order to be able to perform Temporal Resolution we re-
quire to search for loops [2]. Once we have found the loops
we can carry on with the process using the step resolution.
In this research we aim to reduce the time for loop search
by using symmetry, the following algorithm aims to demon-
strate this.

1. Run the Resolution Method for a symmetric system P
with small number of processes i1, possibly for Pi and
Pi+1 . (Use this in essentially a propositional temporal
problem.)

2. From the results gathered from step one, try to guess a
loop for a protocol for a larger number of processes.

3. If no Loop could be guessed then terminate(we were
unable to determine the symmetry among processes).

4. Check if the guessed formula is indeed a loop for the
specification otherwise go back to step 2 and try to
guess another Loop.

5. Remove the eventuality clause and add the generated
loop to the formula and run the Theorem Prover.

1the minimum number of required processes to prove a property.
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Table 1: theorem prover comparison (Using Temp theorem prover)

Number of processes Original Problem Modified Problem results
2 0.060s 0.011s Unsatisfiable
3 1.240s 0.036s Unsatisfiable
4 16.124s 0.134s Unsatisfiable
5 119.662s 0.640s Unsatisfiable
6 1717.886s 4.138s Unsatisfiable
7 ∞ 35.108s Unsatisfiable
8 ∞ 340.408s Unsatisfiable
9 ∞ 4249.012s Unsatisfiable

3 Experimental results

The algorithm on the previous section has been tested on
the MSI Protocol [1]. We ran the theorem prover onMSI2

2

and MSI3
3 to aquire enough information to guess a satis-

faying loop. Then using the Temp theorem prover [7] and
has been compared to the results of prover on the original
formula in the table 1. Modified Problem column from ta-
ble 1 is the results of the using the clauses representing the
loop instead of the loop itself.

4 Future Work

Currently this research aims at minimizing the time re-
quired to find a loop. However, as it appears on the experi-
ments shows that for a larger number processes the provers
still find it difficult to cope. Therefore, to further improve
the efficiency we will investigate the possibilities of using
SAT solver [5] in the algorithm.
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Abstract: There have been a number of implementations of clausal temporal resolution based on the well-
known normal form (SNF) and resolution rules. This paper explores an implementation of a proposed, but
never implemented, resolution method featuring a refined normal form (DSNF) and simplified resolution
rules. The method reduces a large proportion of the problem to classic propositional logic facilitating the
use of Boolean Satisfiability (SAT) solvers. We present a discussion of the implementation and the strategies
it employs as well as the initial results of the comparative performance of the new solver against existing
solutions.

1 Introduction

Propositional Linear-time Temporal Logic (PLTL) has been
used in various areas of computer science, for example,
for the specification and verification of distributed and con-
current systems [6] or verification via model checking [1].
Many applications require to know if a given PLTL formula
is (un)satisfiable, which can be established with a number
of techniques including automata-based approaches [11],
tableau methods [12] and clausal temporal resolution [3].
Clausal temporal resolution has been successfully imple-
mented [5, 4] and shown to perform well in practice [10].

Simplified temporal resolution introduced [2] builds on
clausal temporal resolution introduced by Fisher [3] by
adopting a relaxed notion of a normal form and much more
abstractly described inference rules. The advantage of sim-
plified temporal resolution is that it provides a cleaner sep-
aration between classical and temporal reasoning, ensures
more streamlined use of temporal resolvents and requires
only unconditional eventualities. In this paper we present
an implementation of simplified temporal resolution using
SAT solvers and evaluate the implementation on known
benchmarks.

2 Preliminaries

Arbitrary PLTL-formulae can be transformed into di-
vided separated normal form (DSNF) in a satisfiability
equivalence preserving way using a renaming technique
replacing non-atomic subformulae with new propositions
and removing all occurrences of the U (‘until’) and W
(‘unless’) operator [3, 2]. The result is a DSNF problem
of the following form (where #, 2, and 3 denote ‘next’,
‘always’, and ‘eventually’, respectively): a universal part,
U , given by a set of propositional formulas (clauses);
an initial part, I, with the same form as the universal
part; a step part, S, given by a set of propositional step
temporal clauses of the form: P ⇒ #Q where P and Q
are Boolean combinations of propositional symbols; and
an eventuality part, E , given by unconditional eventuality
clauses of the form 3l, where l is a literal. The intended
meaning of a DSNF problem is given by I∧2U∧2S∧2E .

The inference system we use consists of an (implicit)
merging operation

P1 ⇒ #Q1, . . . , Pn ⇒ #Qn
n∧
j=1

Pi ⇒ #
n∧
j=1

Qi

,

and the following inference rules.

• Step resolution rule:
A⇒ #B
¬A (#U

res) , where

U ∪ {B} `⊥.

• Sometime resolution rule

A1 ⇒ #B1, . . . , An ⇒ #Bn 3l
(
n∧
i=1

¬Ai)
(3U

res) ,

where Ai ⇒ #Bi are merged step rules such that U ∪
{Bi, l} `⊥ and U ∪ {Bi,

n∧
j=1

¬Aj} `⊥ for all i

• Termination rules
The contradiction ⊥ is derived and the derivation is
(successfully) terminated if U ∪ I `⊥, or if U ∪
{l} `⊥, where l is an eventuality literal.

3 Implementation Details

As the side conditions of the inference rules are proposi-
tional problems containing no temporal operators, they can
be tested with an external SAT Solver. All that remains is to
find the appropriate merged step clause, or clauses, which
satisfy the side conditions. For the set of all step clauses S
its powerset P(S) represents the set of all possible merged
clauses. We search through the elements of P(S) to find
merged step clauses satisfying the rule side conditions. For
example, in the case of step resolution the search procedure
must return a node n such that n ∈ P(S) and n satisfies the
step resolution side condition. Sometime resolution is sig-
nificantly more complex as the procedure must find a set of
merged clauses that satisfy much more complex side con-
ditions. As a result the main loop in our solver prioritises
step resolution.
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Figure 1: Results for C1
ran (left) and C2

ran (right)

3.1 Search Strategy

Our solver STRP (Simplified Temporal Resolution Prover)
uses an A* search strategy [7]. The strategy makes use of a
very simple heuristic function based on the intuition that the
smallest (in terms of number of literals) clauses are more
likely to generate a contradiction and thus satisfy the in-
ference and termination side conditions. Thus the heuristic
value of a given node n is defined as the number of propo-
sitional literals on the left-hand side (LHS) of the merged
clause that the node n represents plus the number of literals
on the right-hand side (RHS).

h(n) = size(LHS) + size(RHS)

4 Experiments

We conducted experiments on a two classes of semi-
random benchmark formulae, C1

ran and C2
ran introduced

in [5]. We use the following parameters for the random
formulae n = 5, k = 3 and p = 0.5. The experiments
involved STRP, a clausal resolution-based solver TRP
[5] and two tableaux-based procedures implemented
in Logics Workbench 1.1 (The satisfiable function [8]
and the model function [9]). All experiments were
conducted on PC with an Intel Dual-Core E2180, 2.0
GHz processor, with 2GB of RAM running Fedora 16.
For each individual test a time-limit of 300 seconds was set.

The results (Figure 1) show promising performance
on problems in C1

ran; indeed STRP shows a similar
trend in runtime to that of TRP for problems in this set.
Performance on C2

ran is less favourable but still quite
interesting; problems in C2

ran contain a fixed number of
step clauses which impose only trivial contradictions. This
results in a large number of goal nodes being produced
before termination which leads to the increased runtime.
Future work will involve conducting further experiments

on benchmarks from [10], as well as exploring other strate-
gies/optimizations to improve performance on difficult
classes of problems such as those in C2

ran.
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Abstract: We describe the recent extensions of the instantiation-based theorem prover iProver to generate
models of satisfiable and proofs for unsatisfiable inputs, both features being demanded by applications [1, 2].

1 Introduction

The main idea behind instantiation-based methods for first-
order logic is to combine efficient ground reasoning with
smart first-order instantiations. We have been developing
the Inst-Gen calculus [4] and its equational variant Inst-
Gen-Eq [6], where the ground reasoning is decoupled from
instantiation, thus allowing one to employ efficient off-the-
shelf SAT and SMT solvers for ground reasoning. This is
unlike traditional calculi for first-order logic such as resolu-
tion or superposition, where first-order reasoning is tackled
purely by applying first-order inference rules.

We focus on two aspects important to applications and
users of automated theorem provers, namely the output of
models and proofs. In the Inst-Gen method models can be
extracted from a saturation of the input and we discuss how
to obtain compact model representations for satisfiable in-
put. Since the ground reasoning is delegated to a black-
boxed solver, the extraction of proofs of unsatisfiability re-
lies on the ground solver and we demonstrate how to use
unsatisfiable cores from the ground solver in proof extrac-
tion without a loss of performance during the proof proce-
dure.

2 The Inst-Gen Method

The basic idea of the Inst-Gen method is as follows. The
input set of first-order clauses S is abstracted to a set of
ground clauses S⊥ by mapping all variables to the same
ground term, conventionally named ⊥. If this ground ab-
straction is unsatisfiable, then the set of first-order clauses
is also unsatisfiable. Otherwise, there is a ground model I⊥
for the abstraction that is used to guide an instantiation pro-
cess. The ground satisfiability check and construction of
a ground model is delegated to a solver for satisfiability
modulo theories (SMT) in the presence of equations or to
a propositional (SAT) solver if no equational reasoning is
required.

The ground model I⊥ obtained from the solver is rep-
resented as a set of abstracted literals and an attempt is
made to extend it to a model of the first-order clauses by
reasoning on the first-order literals corresponding to the ab-
stracted literals in the model. When this fails, new (not
necessarily ground) instances of clauses are generated in a
way that forces the ground solver to refine the model in the

next iteration. Inst-Gen is therefore composed of two parts:
ground satisfiability solving on the abstraction of the set of
clauses and first-order reasoning on literals corresponding
to ground literals in the model of the abstraction.

The first-order instantiation process is guided by means
of a selection function based on the ground model I⊥.
The selection function sel assigns to each first-order
clause C in S exactly one literal sel(C) = L from C such
that I⊥ |= L⊥. At least one such literal always exists as the
ground abstraction of the clause is true in the model I⊥.

We also employ a constraint mechanism for redundancy
elimination that becomes crucial in model construction. In-
tuitively, a clause C represents all its ground instances,
hence there are ground instances represented by both the
clause C and an instance Cσ of it. In order to eliminate this
duplication we attach a constraint to each clause, effectively
blocking all ground instances of clause C that are repre-
sented by the instance Cσ. We view such a dismatching
constraint Φ as a set of substitutions {τ1, . . . , τn} and say
that a substitution σ satisfies the dismatching constraint Φ
if it is not more specific than any τi ∈ Φ.

For simplicity we only consider the non-equational cal-
culus Inst-Gen, the results about model construction and
proof extraction apply with some modification also to the
equational calculus Inst-Gen-Eq. The following inference
rule is applied to the input clause set up to saturation.

Inst-Gen inference rule

C ∨ L | Φ D ∨ L′ | Ψ
(C ∨ L)σ

(
D ∨ L′)σ

(i) σ = mgu(L,L′),
(ii) sel(C ∨ L) = L,

(iii) sel(D ∨ L′) = L′,
(iv) σ satisfies Φ and Ψ.

Both clause instances (C ∨ L)σ and
(
D ∨ L′)σ are

added to the clause set and the dismatching constraints of
the premises are extended to Φ ∪ {σ} and Ψ ∪ {σ}.

The Inst-Gen inference rule is similar to the Resolution
inference rule, but instead of resolving away the comple-
mentary unifiable literals L and L′ and combining the two
premises into the new clause (C ∨D)σ, the clauses are in-
stantiated with the most general unifier σ. We view a lit-
eral L as representing all its ground instances, hence having
both the literal L and a unifiable complement L′ selected
means that there are ground instances Lσ and L′σ repre-
sented that are contradictory. The ground model, that only
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contains the abstractions L⊥ and L′⊥, therefore cannot be
extended to a first-order model due to this conflict between
the first-order literals L and L′. After adding the clause in-
stances with the mgu σ the ground solver can witness this
conflict and evolve the model of the ground abstraction ap-
propriately. On the first-order level the dismatching con-
straint on the premises is extended with σ.

The Inst-Gen method is refutationally complete, that is,
from an unsatisfiable input an exhaustive application of
the inference rule will eventually lead to an unsatisfiable
ground abstraction. On the other hand, if the clause set be-
comes saturated under the inference rule, it is satisfiable and
we can extract a model.

3 Model Representation

If the set of clauses is closed under Inst-Gen inferences and
the ground abstraction is satisfiable, then there is no first-
order conflict on selected literals and the set of selected
literals can indeed be interpreted as a model for the input
clause set.

Instantiation-based methods generate a certain class of
models that is commonly described with a disjunction of
implicit generalisation (DIG) [3]. Instead of representing
Inst-Gen models as DIGs we represent them as predicate
definitions over the term algebra.

For each literal (¬)P (t1, . . . , tn) ∈ sel(S) that contains
the variables x̄ = 〈x1, . . . , xm〉 and occurs in a constrained
clause C | Φ with Φ = {τ1, . . . , τk} we define

Λ(¬)P (t1,...,tn)(y1, . . . , yn) ⇀↽

∃x̄[ y1 = t1 ∧ · · · ∧ yn = tn ∧
∀z̄1( x1 6= x1τ1 ∨ · · · ∨ xm 6= xnτn) ∧ · · · ∧
∀z̄k( x1 6= x1τk ∨ · · · ∨ xm 6= xnτk)],

where ȳ = 〈y1, . . . , yn〉 is a tuple of fresh variables and
var(rng(τi)) ⊆ z̄i (here z̄i ∩ x̄ = ∅). The first conjunct
containing the existential quantifier corresponds to a flat-
tening of the atom P (t1, . . . , tn) into P (y1, . . . , yn), the
remaining conjuncts express the dismatching constraints.

Given an Inst-Gen saturated set of clauses S we can ex-
tract several models. For each predicate we can collect ei-
ther all positive occurrences or dually all negative occur-
rences and define the predicate in the model as

(¬)P (y1, . . . , yn) ⇐⇒
∨

(¬)P (t1,...,tn)∈sel(S)

Λ(¬)P (t1,...,tn).

Since the sizes of positive and negative representations can
be vastly different, for each atom we can chose the smallest.
Alternatively we can use implied definitions of the form

(¬)P (y1, . . . , yn)⇐
∨

(¬)P (t1,...,tn∈sel(S)

Λ(¬)P (t1,...,tn),

and allow completing the model arbitrarily if undefined.
All model representations have been implemented in the

iProver system, such that the user can choose the one most
fit for purpose. The implementation keeps both the set of
active literals as well as the dismatching constraints com-
pactly stored in discrimination trees, thus the model can be
efficiently constructed.

4 Proof Extraction

As soon as the ground solver finds the ground abstraction
unsatisfiable, the input clause set has been proved unsatisfi-
able. Since we regard the ground solver as a black box and
proof extraction in SAT solving may cause a considerable
degradation in performance, we content ourselves with un-
satisfiable cores returned from the solver. Then, a proof of
unsatisfiability is a sequence of first-order inferences up to
a set of clauses that is propositionally unsatisfiable.

We record each first-order inference step in iProver and
run two instances of the ground solver in parallel, both con-
taining the ground abstraction of the current clause set. The
first solver instance is frequently called to check satisfiabil-
ity, the second instance is used only a posteriori to obtain an
unsatisfiable core. For this purpose we add a unique literal
to each clause in the second instance and assume the com-
plement of each tracking literal. The falsified assumptions
represent an unsatisfiable core that we can minimise.

After the first instance of the ground solver reports un-
satisfiability of the ground abstraction, the second instance
is invoked for the first time. We map the failed assumptions
to their first-order clauses and recursively trace each infer-
ence back to premises which are input clauses. Since proof
extraction is a separate step, the performance of the proof
search is not affected.

The iProver system makes use of global propositional
subsumption [5], which simplifies a clause with respect to
the some grounding. Since justifying each simplification
step during the proof search would result in a severe per-
formance hit, we postpone this step until the actual proof
extraction. If in tracing the proof tree a clause is encoun-
tered that was obtained by global propositional subsump-
tion, the second instance of the ground solver is invoked
once more to find the justification for the simplification, a
set of clauses younger than the simplified clause. We then
continue the search for input clauses from this set.

We note that for many applications proofs in this form
are sufficient. In particular the Sledgehammer tool of the
Isabelle system [1] uses automated theorem provers essen-
tially to filter an input clause set for a first-order unsatisfi-
able core, hence it requires much less than a detailed proof
and can work with the output generated here.
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Abstract: Conceptual process design is a preliminary stage of industrial process design, where model gener-
ation is the most characteristic mode of reasoning. The idea we present in this paper is an blend of reasoning
modes and knowledge base structures supporting learning by inverse resolution using the case histories, and
reasoning in forward direction using standard resolution to form a proof that acts as the frame for the concep-
tual process definition.

1 Introduction

Metallurgical industry uses processes that obey laws of
physical, mineralogical, and chemical domain theories.
This is one of the reasons conceptual process design, a
phase of the process design, is a complicated engineering
problem, mainly done based on expert intuition and prac-
tical experience. Decision support systems are required in
the field and Case-Based Reasoning (CBR) is an auspicious
candidate methodology [6]. The sub-domains are such that
combining sub-symbolic, symbolic and ontological levels
of representation are required for knowledge engineering.
Conceptual process design is iterative by nature, following
the classical phases of CBR-cycle, i.e. retrieve, reuse, re-
vise and retain. Besides own internal knowledge bases there
are case data available from research institutes and commer-
cial sources. Inverse resolution has been studied in [4]. Ear-
lier framework for integrating case-based reasoning and in-
ductive learning is presented in [1]. In this paper we outline
a new method based on logical theorem proving that uses
case-based data to learn knowledge of behavior that has ap-
peared in past solutions and modifies them to constitute to
the proof of the current plan to be made. This new method
integrating automated reasoning with CBR manages in par-
allel the current proof that essentially corresponds to the
plan that is the solution to the planning problem given, and
the case-base solutions (proofs) of case problems.

2 Knowledge

The type of integration requires well designed formal rep-
resentation and for that purpose we use a kind of STRIPS-
based action representation formalism. Actions name an
operation and list their preconditions and effects. The aim
at a logical theorem proving leads us to follow SATPLAN
type of thinking, logical axioms for operators implying both
their effects and preconditions. We assume that it is eas-
ier to gain access to the state fluents fluctuations along the
history lines recorded by the cases. There states form a se-
quence and each state has some state fluents, i.e. positive or
negative literals holding.

The case histories are arrays of arrays of attribute-value
pairs, that is each statei is described as an array of attribute
-value pairs, and states arrays form the history, see figure 1.
Figure 1 represent the kinds of knowledge elements that

CASEL HISTORY

initial
state1

…
stateN-1

final

STATEK DATA

attribute1 value1

….
attributeM valueM

on(ore, Heap)
type(reactor, ANY)

INFERENCE-RULE

statek action-schemaK

------------------------
statek+1

ACTION-SCHEMAK

Operation Leach
Precond:

attributeX > MinLevel
in(reagent, reactor)
type(reactor, OurLocal)

Effects:
attributeX < Negligible
attributeY > 150

Figure 1: Elements of knowledge

are relevant and available in conceptual design of industrial
processes. Once the conceptual process has been formed,
it is possible to complete it using model generation meth-
ods that add the resources according to the domain ontolo-
gies and check the final model against various spatial and
temporal molecular sub-theories. For the ontological part,
feature-based similarity functions can be used. The promis-
ing thing is to retrieve work-flows that are similar than the
candidate solution , as in [2].

3 Reasoning

The inference rule in the figure 1 can used in two ways: res-
olution and inverse resolution. We can deduce new states
knowing current state and the action-schema, but we can
also inductively form the action schema by looking at two
consecutive states. When we have a set of cases that have
been applied in a similar situation successfully and the ac-
tion information for the first operation is similar we can
collect the information about the preceding and following
states and form our model of the operation based on this
collected information. Once we have inductively formed
actions that work for cases, we can try to use them in for-
ward reasoning mode for solving new problems. A se-
quence of actions takes the system through a sequence of
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action
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phase
3

action
3

goal

Figure 2: Process as a proof

states if we have a proof as presented in the figure 2. The
solutions that are found are good cases as they are local-
ized to our environment. Rule association mining can be
used for handling the problem that some cases show ex-
ceptional behavior. Rules that have high support and confi-
dence levels can be used as parts of the operation learning.
In fact we see this as a possibility to statistically manage
the classical ramification and qualification problems of AI-
Planning. Fast implementation of the method will be based
on efficient indexing that allows finding similar knowledge
elements from the KB. Similarity, equality, conformance,
matching are all relevant concept in CBP. Taxonomy for
similarity concepts is provided by [3].

4 The method

Let’s have a target case 〈Π, P 〉 , where Π is the planning
problem initial and goal state description, a pair 〈I,G〉. The
standard assumption is that we wish to imply partial order
to the members of P . For the sake of simplicity and for
the linearity of the proof we assume a total order of action
to form the plan. Now our case-base is designed to consist
of prior cases, source cases that have the same structure as
our target case. The method here is to get in a target state’s
iST the n k-NN nearest neighbor states by comparing the I
parts of the cases. Say these are iSjC , j ∈ [1, n]. Now that
we have located n similar past states in the case base we
can look at what was done in these cases. The linear struc-
ture of the plans gives us the iActjC , which might or might
not unify in the logical sense or conform to each other. The
cases also tell us the goal reached and these goals are the
original goal conditions of the planning problem, not the
refined complete state descriptions. It is useful to retain the
results of having followed the least commitment principle
in the past planning efforts. The decision to be taken at this
point includes two dimensions; we can look at the goal part
and evaluate the cases based on the distance of the case goal
to our target goal definition. Is that where we are aiming at,
the other dimension being the action sequence of the case,

for which the question is, do we have what it takes do per-
form this kind of action sequence. After all, the cases can
be from other sources than our own past experience. Goal
driven similarity assessment [5] makes similarity measures
sensitive to the context of the search given by the goal, i.e.
the G component in Π.

5 Conclusion

In this article we have presented some of the initial views
of how this kind of conceptual engineering methodol-
ogy could be constructed. Our method provides a novel
view to see planning as theorem proving. A systematic
knowledge engineering methodology for managing the dis-
tributed, multi-source knowledge and combining the rea-
soning systems to support the CBR-cycle at it’s different
phases would be invaluable. Naturally we can not do much
about the worst case complexity that remains the same for
both the generative and variant techniques, but recent ad-
vances in rule association mining and kernel functions as
well as ontological support bringing in representation that
remain guarded from the point of view of computational
complexity promise a lot. The method as such is generalis-
able to other domains.
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Introduction

In this paper we tackle the problem of constructing the
natural deduction calculi and corresponding proof proce-
dures for paraconsistent logic PCont [3] and paracomplete
logic PComp [1]. The former logic is used, in particular,
for reasoning about contradictory where paradoxes do not
lead to the ’deductive explosion’, i.e. where formulae of the
type false ⊃ A, for any A, are not valid. The logic PComp
is useful to reason about uncertain systems where the law
of excluded middle does not hold. We complete the proof
searching procedure for the logic PCont and formulate the
natural deduction system for PComp.

A sound and complete natural deduction system
NPCont and NPComp

We first introduce the semantics of these logics and then
the natural deduction rules with the common base rules and
with the characteristic rules for both.

We fix a standard propositional language L over an al-
phabet p, q, r, p1, q1, r1, . . .. The following is a set of base
axioms for PCont and PComp.

1. A ⊃ (A ∨B)
2. A ⊃ (B ∨A)
3. (A ∧B) ⊃ A
4. (A ∧B) ⊃ B
5. A ⊃ (B ⊃ A)
6. ¬¬A ⊃ A
7. A ⊃ ¬¬A
8. (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))
9. (C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧B)))
10. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
11. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

12. ((A ⊃ B) ⊃ A) ⊃ A
13. ¬(A ∨B) ⊃ (¬A ∧ ¬B)
14. (¬A ∧ ¬B) ⊃ ¬(A ∨B)
15. ¬(A ∧B) ⊃ (¬A ∨ ¬B)
16. (¬A ∨ ¬B) ⊃ ¬(A ∧B)
17. ¬(A ⊃ B) ⊃ (A ∧ ¬B)
18. (A ∧ ¬B) ⊃ ¬(A ⊃ B)

∗The second author is supported by Russian Foundation for Humani-
ties, project 10-03-00570a.

Additionally, a characteristic axiom for PCont is A ∨ ¬A
while for PComp is A ∧ ¬A ⊃ B.

Rule of inference: From A and A ⊃ B infer B.

Semantics
The axioms of PCont are adequate to the following ma-

trix semantics: there are three values 1, t, 0 with two des-
ignated values 1, t such that 0 < t < 1 and A ∨ B =
max(A,B) and A∧B = min(A,B). For the ⊃ and ¬ the
matrices are given below:

⊃(PCont) 1 t 0
1 1 t 0
t 1 t 0
0 1 1 1

p ¬(PCont) p
1 0
t t
0 1

The axioms of PComp are adequate to the following matrix
semantics: there are three values 1, f , 0 with the designated
value 1 such that 0 < f < 1 and A ∨B = max(A,B) and
A ∧ B = min(A,B). For the ⊃ and ¬ the matrices are
given below:

⊃(PComp) 1 f 0
1 1 f 0
f 1 1 1
0 1 1 1

p ¬(PComp) p
1 0
f f
0 1

Below we define the base set of elimination and introduc-
tion rules, where prefixes ‘el’ and ‘in’ denote an elimination
and an introduction rule, respectively.

Elimination Rules :

∧ el1
A ∧B
A

∧ el2
A ∧B
B

¬ ∧ el
¬(A ∧B)
¬A ∨ ¬B ¬ el ¬¬A

A

¬ ∨ el1
¬(A ∨B)
¬A ¬ ∨ el2

¬(A ∨B)
¬B

⊃ el A ⊃ B, A
B

¬ ⊃ el1
¬(A ⊃ B)

A

¬ ⊃ el2
¬(A ⊃ B)
¬B ∨el A ∨B, [A]C, [B]C,

C
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Introduction Rules :

∧ in A, B
A ∧B

¬ ∧ in1
¬A

¬(A ∧B)
¬ ∧ in2

¬B
¬(A ∧B)

∨ in1
A

A ∨B ∨ in2
B

A ∨B
¬ ∨ in

¬A,¬B
¬(A ∨B)

⊃ in
[C] B
C ⊃ B

¬ ⊃ in A,¬B
¬(A ⊃ B)

¬ in B
¬¬B

Characteristic Rules

PCont ∨ el
[A] C, [¬A] C

C

PComp− ∨ el A ∨B, ¬A
B

An inference in these systems is a finite non-empty se-
quence of formulae such that each formula is an assumption
or is derived from the previous ones via a NPCont/NPComp
rule; for both logics, by applying ⊃in each formula from
the last alive assumption until the result of the application
of this rule, inclusively, is discarded from the inference; by
applying ∨el each formula starting from assumption A un-
til formula C, inclusively, as well as each formula start-
ing from assumption B until formula C, inclusively, is dis-
carded from the inference; by applying PCont∨el each
formula starting from assumption A until formula C, in-
clusively, as well as each formula starting from assumption
¬A until formula C, inclusively, is discarded from the in-
ference. A proof then is an inference from the empty set of
assumptions.

A proof searching algorithm for NPCont

The complete construction of the goal directed proof
searching algorithm for NPCont has been presented in [2].
The most important cases here are the following.

Γ ` ∆, F −→ Γ,¬F ` ∆, [F ]F, [¬F ], F

Here we have an unreached goal, F , the last goal in the
list of goals, list goals, and the set of formulae in the
proof,list proof. This goal F is either a literal or A ∨ B
or ¬(A ∧ B). When we cannot reach the current goal, F ,
and other procedures are not applicable, we proceed simi-
lar to the classical refutation. However, now, in the setting
of paraconsistent logic, we deal with this situation differ-
ently. Namely, once we assumed ¬F we aim at achieving
the goal F . If this can be done then we can always add
to the a proof of F from F . These two inferences would
give us the required basis to apply PCont∨el rule, namely,
[¬F ], F and [F ], F which would enable us to derive the de-
sired F . Note that although this case invokes an elimination
rule, PCont∨el, it has a special role in our heuristic and
we consider this rule in line with other introduction rules
involved into the searching technique.

Another crucial procedure is invoked when the current
goal, F , is not reached and we are looking for the sources
of new goals. In this case we search for compound formulae
which can serve as sources for new goals. However, unlike
in classical case, here we have only two types of compound
formulae in list proof: disjunctive and implicative formu-
lae. If one of these formulae is found then the new goal is
generated as follows:

Γ, A ∨B ` ∆, C −→ Γ ` ∆, [A]C Γ ` ∆, [B]C
Γ, A ⊃ B ` ∆, C −→ Γ ` ∆, [A]C Γ ` ∆, [¬A]C

Towards a proof searching algorithm for NPComp

Completing the proof search for the paracomplete logic
PComp is our recent work. Here we invoke many of the
searching procedures developed for classical case and for
NPCont. However, the main problem in the new paracom-
plete setup, where we do not have the law of exluded mid-
dle, is to tackle the proof by refutation situation

Γ ` ∆, F −→ Γ,¬F ` false

where since the current goal F is not reachable, we add its
negation to list proof targeting to derive a contradiction. We
need to find a way to discard this assumption to achieve a
completed proof.
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Abstract: We present a graphical representation of sequents and sequent rules, which aids in the discovery
of cut-free sequent systems for non-iterative modal logics permitting backwards proof search in polynomial
space. The technique is used to construct sequent systems for conditional logic V and KLM rational logicR.

1 Introduction

Backwards proof search is one of the main techniques in
theorem proving. The systems used for this usually are se-
quent systems which have cut elimination and admissibility
of contraction. In this context the emergence of ever more
specialised modal logics in computer science gives rise to
the question of how to construct such systems.

One method of constructing cut-free sequent systems for
modal logics is the method of cut elimination by satura-
tion, previously used e.g. in [3]. As the name suggests, the
method is based on saturating the rule set under the addition
of rules which are necessary for the standard cut elimination
proof to go through. Unfortunately, in the standard notation
for sequent rules the construction of these new rules quickly
becomes very tedious and prone to error. In this work we in-
troduce a graphical representation of sequents and sequent
rules, which makes the operations needed for saturating a
rule set very simple and intuitive. Furthermore, we apply
the method to Lewis’ conditional logic V from [4] in the
entrenchment language, yielding a sequent system suitable
for backwards proof search in polynomial space. This se-
quent system moreover witnesses that deciding the flat frag-
ment of V is in the class ΠP

3 of the polynomial hierarchy.
By translation this yields a purely syntactical ΠP

3 -decision
procedure for the KLM rational logicR, which although of
suboptimal complexity might still be of interest.

2 Cut Elimination by Saturation and Backwards
Proof Search

We consider formulae over the propositional connectives,
the unary modality� and the binary entrenchment modality
4. The results easily generalise to other signatures as well.
Furthermore we assume the presence of the rules G3p of [5]
for the underlying classical propositional logic. Let’s recall
some notions and facts from [3]. The general rule format
considered is that of a shallow rule. Such a rule is given by

{Γ,Σi ⇒ ∆,Πi | i ≤ n} ∪ {Ξj ⇒ Ωj | j ≤ m}
Γ,Φ⇒ ∆,Υ ,

where the Σi ⇒ Πi and Ξj ⇒ Ωj are sequents (i.e. pairs
of multisets) of propositional variables, the contextual and

∗Supported by EPSRC-Project EP/H016317/1

noncontextual premisses respectively, and Φ ⇒ Υ is a se-
quent of modalised propositional variables, the principal
formulae of the rule. The sequent Γ ⇒ ∆ is the context.
Since axioms without nested modalities can always be con-
verted into equivalent sets of shallow axioms, this format
suffices for all logics axiomatised by (finitely many) non-
nested axioms. For two rules R1, R2 with principal formu-
lae Φ1 ⇒ Υ1, (A 4 B) and (A 4 B),Φ2 ⇒ Υ2 the rule
cut(R1, R2, (A 4 B)) is the rule with principal formulae
Φ1,Φ2 ⇒ Υ1,Υ2, whose premisses are built by cutting the
combined premisses ofR1 andR2 first onA and then onB.
Here exactly those premisses are labelled contextual, whose
construction involved at least one contextual premiss of R1

or R2. The definition for cuts on formulae of the form �A
is analogous. It can be shown that the so constructed rules
are still sound. A set R of shallow rules is cut closed if
for every two rules R1, R2 ∈ R with principal formulae
Φ1 ⇒ Υ1, C and C,Φ2 ⇒ Υ2 the rule cut(R1, R2, C) is
derivable in G3pR without using the cut rule. Similarly,
the rule set is contraction closed, if for every rule R with
principal formulae Φ ⇒ Υ, C, C there is a rule R′ ∈ R
with principal formulae Φ ⇒ Υ, C, whose premisses are
derivable from the premisses of R using only contraction
and weakening (and similarly for contractions on the left of
⇒). The method of cut elimination by saturation is based
on the fact that in cut and contraction closed rule sets based
on G3p the cut rule can be eliminated, and proof search (in
a slightly modified system) can be implemented in polyno-
mial space. Thus the missing cuts between rules and con-
tractions of rules are added until the rule set is saturated.

3 The Graphical Representation

In order to make the process of computing cuts between
rules more intuitive we now introduce a graphical represen-
tation of sequents. The main idea is to represent a sequent
Γ ⇒ ∆ by a multiarrow with tails emerging from the for-
mulae in Γ and heads pointing to the formulae in ∆. Thus
for example the sequents A,B ⇒ C,D and D,A⇒ E are
represented by the multiarrows

A B C D D A E .
An application of the cut rule to these two sequents with
cut formula D now evidently is represented by connecting
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{ Bk ⇒ A1, . . . , An, D1, . . . , Dm | k ≤ n } ∪ { Ck ⇒ A1, . . . , An, D1, . . . , Dk−1 | k ≤ m }
Γ, (C1 4 D1), . . . , (Cm 4 Dm)⇒ ∆, (A1 4 B1), . . . , (An 4 Bn)

Rn,m

Figure 1: The general rule scheme for the setRV := {Rn,m | n ≥ 1,m ≥ 0}.

the head of the left multiarrow pointing do D to the tail of
the right multiarrow emerging from D, “yanking the wire”,
and omitting the superfluous instances of the cut formula,
resulting in the multiarrow

A B C A E .
Similarly, the sequent resulting from now contracting the
two instances of A is represented by the multiarrow

A B C E .
Rules are represented by writing the formulae as parse trees
and drawing the multiarrows representing the premisses on
top, the multiarrow representing the conclusion on the bot-
tom. To mark contextual premisses we add an additional
end to the arrows, marked as a. This is to be read as an
abbreviation for tails emerging from the formulae on the
left side of the context and heads pointing to those on the
right side of the context. Thus for example the left and right
conjunction rules of G3p and an instance of the K rule of
normal modal logic are represented by

∧
A B

Γ,∆ ∧
A B

Γ,∆ �
A1

�
A2

�
B

Γ,∆

Now the operation of cutting two instances of e.g. the K
rule is visualised by performing cuts on the conclusion as
well as on the corresponding elements of the premisses re-
sulting in the dashed arrows in the diagram below

�
A1

�
A2

�
B

Γ,∆ �
C

�
D

If we wanted to saturate the set of K rules, we would now
have to add the rule represented by the dashed arrows above
to our rule set. On the other hand, if we cut the left and right

Γ1,∆1 ∧
A B

Γ2,∆2

conjunction rules we get the
rule represented by the dashed
arrows on the right. Since
this is simply an application of
contraction, we do not need to
add any rules to our rule set. In
a similar way we get contrac-
tions of rules by contracting their conclusions as well as the
corresponding formulae in their premisses.

4 Conditional Logic V and KLM LogicR
This method can be applied to construct a cut- and con-
traction closed set of sequent rules for the conditional logic
V in the entrenchment language. After turning the rules
and axioms from [4, p.123,124] into shallow rules using

the method mentioned in Section 2 and cutting and con-
tracting rules, we arrive at the set RV of sequent rules,
whose traditional representation is given in Figure 1. By
construction this set is guaranteed to be sound, and since
it subsumes the original rules it is also complete. Cut and
contraction closure can be seen by considering the graph-
ical representation of the rules. Thus by the results of
Section 2 the sequent system G3pRV has cut elimination
and admissibility of contraction and is suitable for back-
wards proof search in polynomial space. The translation
(A � B) ≡ (⊥ 4 A) ∨ ¬(A ∧ ¬B 4 A ∧ B) of
the more commonly used counterfactual � into the en-
trenchment connective 4 from [4] unfortunately yields a
blowup exponential in the nesting depth of �, but still
can be used to show a PSPACE upper bound for the right
nested fragment of V in the counterfactual language, thus
syntactically reproducing the corresponding result from [2].
Also, since the translation is only linear for formulae with-
out nested modalities, and since the alternation depth in the
algorithm for backwards proof search is determined by the
nesting depth of the modalities, we get a purely syntactical
ΠP

3 decision procedure for the flat fragment of V , and by
the correspondence from [1] also for KLM rational logicR.
Whether this procedure can be pushed down to the optimal
complexity CONP is subject of ongoing research.

5 Concluding Remarks

The described method of cut elimination by saturation us-
ing the graphical representation has also successfully been
used to construct sequent systems for several extensions of
V . Furthermore, by incorporating restrictions on the con-
text it is also possible to treat certain nested axioms such as
the axioms responsible for absoluteness in V and some ex-
amples of intuitionistic modal logics. A more thorough ex-
ploration of these issues will be subject of further research.
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Abstract: We present Interrogative-Epistemic Logic (IEL) and describe an implementation for automatic
reasoning inside IEL by means of a tableau prover synthesized from the logic. The paper is structured as
follows: In the first part we give a framework that deals with the interdependence between questioning and
epistemic aspects in an uniform setting of hybrid logic with nominals and dynamic questioning and resolution
modalities reminiscent from [4] and [2]. In the second part we show how a tableau calculus for this logic can
be automatically generated using the generic framework introduced in [1] starting from the modal semantics
and a background theory for an intersection modality and we describe an implementation in Haskell for the
resulting tableau system extending on the previous implementation from [3].

1 Introduction & Motivation

Interrogative or erotetic logics have a long tradition along-
side declarative and epistemic logics. While automated rea-
soning tools are widespread for declarative logics and also
for epistemic modal logics, there are almost none designed
to deal with interrogative aspects. Since historically logics
of questions emerged in their modern form [4, 6] as ex-
tended tableau-like calculi tailored to cope with interrog-
ative questioning actions and erotetic inferences, the task
of developing an automated reasoning tool for interroga-
tive logic is a natural desideratum. The purpose of the
present work is to develop and implement a tableau calculus
for logics that can model both interrogative and epistemic
aspects in a unified way. Such logics have been studied
recently in [2, 5] and they turn out to be variants of hy-
brid modal logics with nominals and intersection. In the
same time, various generic tableau provers [1, 3, 7] for
hybrid and intensional logics have been developed lately
which provide a general framework in which the specific
details emerging in interrogative and questioning contexts
of erotetico-epistemic scenarios can be captured. The main
contribution in this paper will be to spell out these details
and provide an implementation in which automatic reason-
ing about them can be performed. This will provide a
tool that can be useful in many applications ranging from
planning for epistemic-erotetic agents to designing efficient
querying strategies and optimal inquiry procedures in sci-
ence, and query-driven rational interaction in general.

2 Interrogative Epistemic Logic

The language of Interrogative-Epistemic Logic (henceforth,
IEL) is recursively defined by the following BNF:

ϕ ::= n | p | ¬ϕ | ϕ ∨ ϕ | �ϕ | [Q]ϕ

with � ∈ {Qa, Xa,Ka} static modalities, Q ∈ {ϕ?, !}
representing dynamic actions and n, p, a standing for nom-
inals, propositional symbols and agent labels, respectively.
The language can express the interaction between questions
and information in two ways. First by using a (static) inter-
section modalityXaϕ. Second through the dynamic modal-

ities [Q] encoding model-changing operations by means of
questioning and resolution actions. This basic language can
be extended in many ways when needed. The most com-
mon additions include the set operator {n}, the at (or satis-
faction) operator @nϕ, the slashed disjunction ∨/�, various
modalities for group notions of knowledge, questioning or
both, the down-arrow binder ↓x.ϕ, etc.

The language has a standard modal semantics over issue-
epistemic structures M = 〈W,≈,∼, V 〉 using the expected
Boolean clauses and the usual relational (modal) clauses
with ≈ for Q and ∼ for K. The intersection modality X is
defined using ≈∩∼ in the following way:

M |=w Xaϕ iff ∀v ∈W : w (
a≈∩ a∼) v ⇒M |=v ϕ

The dynamic modalities [ϕ?]ψ and [ ! ]ϕ express model-
changing operations resulting in new models M? and M! in
which ≈? =≈ ∩

ϕ≡M and ∼! =∼ ∩≈, respectively, while
all the other components remain unchanged. The intuitive
reading for the questioning modality [ϕ?]ψ is “after ϕ is
asked, ψ is the case”. The intuitive reading for the res-
olution modality [!]ϕ is “after all the questions raised so
far have been answered, ϕ is holds”. Dynamic modalities
of announcement [ϕ!]ψ and refinement [?]ϕ are sometimes
also considered in this setting, their behaviour is completely
symmetric, changing ∼ respectively ≈ correspondingly.

The static fragment of the logic is axiomatised by a cus-
tomary hybrid logic system with nominals, S5 axioms for
∼ and ≈, and an intersection axiom for static resolution:

K̂i ∧ Q̂i↔ R̂i, where i is a nominal

Formulas containing dynamic modalities can be reduced to
equivalent static formulas using reduction axioms like:

[ϕ?]Qψ ↔ (ϕ∧Q(ϕ→ [ϕ?]ψ))∨(¬ϕ∧Q(¬ϕ→ [ϕ?]ψ))

[ϕ?]Xψ ↔ (ϕ∧X(ϕ→ [ϕ?]ψ))∨(¬ϕ∧X(¬ϕ→ [ϕ?]ψ))

[ϕ?]Kψ ↔ K[ϕ?]ψ, [ ! ]Kϕ↔ X[ ! ]ϕ, [ ! ]Qϕ↔ Q[ ! ]ϕ

We refer to [2, 5] for further technical details, possible
extensions and examples of applications for the logic.
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(a)
ν1(⊥, x)
⊥ ,

¬ν1(⊥, x)
¬⊥ ;

ν1(¬p, x)
¬ν1(p, x)

,
¬ν1(¬p, x)
ν1(p, x)

;
ν1(p ∨ q, x)

ν1(p, x) | ν1(q, x)
,

¬ν1(p ∨ q, x)
¬ν1(p, x) , ¬ν1(q, x)

;

(b)
ν1(Qp, x)

¬R≈(x, y) | ν1(p, y)
;

¬ν1(Qp, x)
R≈(x, f(p, x)) , ¬ν1(p, f(p, x))

; (c)
R≈∩∼(x, y)

R≈(x, y), R∼(x, y)
,
R≈(x, y), R∼(x, y)

R≈∩∼(x, y)
;

(d)
x = x

R(x, x)
,
R(x, y)

R(y, x)
,
R(x, y), R(y, z)

R(x, z)
; (e)

x = x
,
x = y

y = x
,
x = y, y = z

x = z
; (f)

i = j

ν0(i) = ν0(j)
;

(g)
x = y, ν1(p, x)

ν1(p, y)
,

x = y

ν1(p, f(x)) = ν1(p, f(y))
; (h)

ν1(p, x) , ¬ν1(p, x)
⊥ ,

R≈(x, y) , ¬R≈(x, y)
⊥ ;

(i)
ν1([ϕ?]Qψ, x)

ϕ ∧Q(ϕ→ [ϕ?]ψ) | ¬ϕ ∧Q(¬ϕ→ [ϕ?]ψ)
,

ν1([ ! ]Kϕ, x)

ν1(X[ ! ]ϕ, x)
,
ν1(¬[ ! ]Kϕ, x)
ν1(¬X[ ! ]ϕ, x)

,
ν1([ϕ?]a, x)

ν1(a, x)
,
ν1(¬[ϕ?]a, x)
ν1(¬a, x)

.

Figure 1: Tableau Rules for Interrogative-Epistemic Logic Synthesized from the Modal Semantics & Background Theory

3 Implementing a Tableau Prover for IEL

In this section we synthesize the tableau rules for IEL and
briefly describe the resulting implementation using these
rules. The general method we followed is the one intro-
duced in [1] and consists of the following steps. Defin-
ing an object-language and a metalanguage with specific
sorts for propositions, nominals, and the domain sort based
on which the semantics of the modal connectives can be
specified. Spelling out the definitions of the specific logical
connectives and the particular background theory. Finally,
generating and refining tableau rules from the normalised
specifications. After the formal details specific for IEL are
established the generic framework provides automatically
desirable metaproperties for the resulting tableau calculus.

The resulting rules are presented in Figure 1 and they in-
clude the expected decomposition or expansion rules, syn-
thesized from the semantic definitions of the Boolean (a)
connectives. Analogously for the questioning modal logical
connectives (b). Theory rules synthesised from the back-
ground theory containing the crucial intersection axiom (c).
The usual axioms for epistemic and issue equivalence rela-
tions (d). The usual rules for equality and substitutivity (e-
g). Standard closure rules (h). Rules for dynamic modali-
ties synthesized from the reduction axioms. For the sake of
brevity the ν1(·, x) pattern was omitted in both denominator
formulae at (i). The rules in (i) merely push the dynamic
modalities inside until the rules of the static fragment will
eventually perform the final logical decomposition.

The final step consists in translating theoretical aspects
in implementation details. We only briefly describe these
here. We started from the preexisting tableau prover for hy-
brid logic developed in [3]. Here frame conditions are im-
posed by adding formulae with universal modality to the set
of starting sets of formulae. We replaced this by adding in-
tersection rules for the background theory, we also switched
from equality constraints to unrestricted blocking, which
are both more congenial with the setting from [1].

4 Conclusions and Further Work

The paper introduces a logic that describes interrogative
and epistemic aspects in an uniform setting using hybrid
logic with nominals and intersection. A tableau calculus
for this logic was generated using the generic framework
from [1] and an implementation for it was developed.

Topics on our future research agenda include the follow-
ing. Adding a richer repertoire of questioning actions. A
study of connections between search heuristic and princi-
ples for designing efficient query strategies. Implement-
ing the resulting rules as an extension module inside the
MetTel architecture. Using the resulting implementation as
a framework for studying strategic aspects in questioning
procedures and connections with notions of relevance for
questions and epistemic entropy. Investigating illustrative
applications of the resulting tableau system.
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Abstract: Logic K(En) is a powerful extension of the ordinary modal logic K. Due to adding global counting
modalities, expressive power of the logic covers all most popular hybrid logics (H(@),H(E),H(D)), as well
as the graded modal logic Kn. In this abstract a refined version of the tableau calculus for K(En) is presented,
in which we encode semantic expressions (like labels) within the K(En)-language.

1 Introduction

Modal logics with counting operators were first introduced
by Fine ([3]) under the name of ”graded modal logics”. The
idea standing behind introducing graded modalities was
to enable counting the number of successors of a partic-
ular world (which was not achievable by means of ordi-
nary modal logic). Nevertheless, it only allowed to operate
within a ”local” range (along the edges of accessibility rela-
tion). Even though the modal logic S5 with graded modal-
ities could be looked upon as making possible to count a
number of worlds in the whole model, it lacked the ordi-
nary modalities instead. That was the reason of introduc-
ing global counting modalities apart from ordinary ones.
Areces et al. ([1]) named this calculus ”modal logic with
counting”. They also provided a program that should de-
cide whether a given formula has a model. Unfortunately,
it exploited the translation function from the logic K(En)
(modal logic K with counting) to H(E) (hybrid logic with
counting modality), which leads to exponential blow-up if
numbers are coded in binary.

Calculi with counting operators were widely investigated
in the field of description logics where counting modalities
were called cardinality restrictions. There are several in-
teresting tableau systems for description logics with cardi-
nalities (ALCQ, SHCQ), see e.g. [4], [2], but either they
exploit the tools that are not available in K(En) or blocking
mechanisms used in the calculi are conceptually complex.

In this abstract we outline the terminating tableau calcu-
lus for K(En) which is complexity-optimal and utilises the
unrestricted blocking mechanism (introduced by Schmidt
and Tishkovsky in [5] and [6]) which is both conceptually
simple and effective.

We present the refined version of the calculus with no
prefixes or labels. The only expressions that occur in the
rules of the calculus are K(En)-expressions.

2 Logic K(En)
Let PROP = {p1, p2, . . .} be a countable set of propositional
letters. We define a set FORM of formulas of K(En) as

∗The research reported in this abstract is a part of the project financed
from the funds supplied by the National Science Centre, Poland (deci-
sion no. DEC-2011/01/N/HS1/01979)

follows:

FORM ∶∶= ⊺ ∣ p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣ ◇ ϕ ∣ E>nϕ, (K(En))
where p ∈ PROP, ϕ ∈ FORM, n ∈ N. Logic K(En) does not
allow transfinite numbers in subscripts of E>n operators.

Other counting connectives are defined as follows:

E<n ∶= ¬E>n−1 E=n ∶= E>n−1 ∧ ¬E>nϕ
A model for K(En) is a triple ⟨W,R,V ⟩ where W is a

non-empty set, R is a binary relation on W , V ∶ PROP →P(W ) is a valuation function assigning to each p ∈ PROP
a set of worlds w ∈ W in which p holds. Given a model⟨W,R,V ⟩ and w ∈ W , the semantics for K(En) is defined
in Figure 1.

M,w ⊧ p
M,w ⊧ ¬ϕ
M,w ⊧ ϕ ∧ ψ
M,w ⊧ ◇ϕ
M,w ⊧ E>nϕ

iff
iff
iff
iff

iff

w ∈ V (p), p ∈ PROP

M,w /⊧ ϕ
M,w ⊧ ϕ and
there is a v s. t. wRv and
M, v ⊧ ϕ∥{w ∶M,w ⊧ ϕ}∥ > n,

(1)

where ∥A∥ means the cardinality of a set A.

3 Tableau calculus T Rd

K(E)n

As it occurs, expressive power of the language of K(En)
is sufficient to express semantics of the logic within. Due
to the fact that E>n-operators combine counting properties
and global range, we are able to bypass explicit labelling
expressions by exploiting E=1-operator in an appropriate
way. Thus, for each input set of formulas Γ we can encode
semantic expressions as follows:

K(En)(M, x ⊧ ϕ) = E=1px ∧E=0(px ∧ ¬ϕ)∗
K(En)(M, x /⊧ ϕ) = E=1px ∧E=0(px ∧ ϕ)∗
K(En)(xRy) = E=1px ∧E=1py ∧E=0(px ∧ ¬◇ py)∗
K(En)(¬xRy) = E=1px ∧E=1py ∧E=0(px ∧◇py)∗
K(En)(x = y) = E=1px ∧E=1py ∧E=0(px ∧ ¬py)∗
K(En)(x ≠ y) = E=1px ∧E=1py ∧E=0(px ∧ py)∗∗pi, pj are fresh prop. variables not occurring in Γ.

(2)
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Rules for the connectives:

(¬¬) ϕ ∶ ¬¬ψ
ϕ ∶ ψ (∧) ϕ ∶ ψ ∧ χ

ϕ ∶ ψ,ϕ ∶ χ (¬∧) ϕ ∶ ¬(ψ ∧ χ)
ϕ ∶ ¬ψ ∣ ϕ ∶ ¬χ (◇) ϕ ∶ ◇ψ

ϕ ∶ ◇f(◇ψ,ϕ), f(◇ψ,ϕ) ∶ ψ (¬◇) ϕ ∶ ¬ ◇ψ,ϕ ∶ ◇χ,χ ∶ χ
χ ∶ ¬ψ

(E>n) ϕ ∶ E>nψ
f1(E>nψ,ϕ) ∶ ψ, . . . , fn+1(E>nψ,ϕ) ∶ ψ ,

0<k<l≤n+1fk(E>nψ,ϕ) ∶ ¬fl(E>nψ,ϕ) (¬E>n) ϕ ∶ ¬E>nψ,χ1 ∶ χ1, . . . , χn+1 ∶ χn+1
χ1 ∶ ¬ψ ∣ . . . ∣ χn+1 ∶ ¬ψ ∣

0<k<l≤n+1 χk ∶ ¬χl

Rules for equality, closure rules, unrestricted blocking rule:

ϕ ∶ ψ
ϕ ∶ ϕ ϕ ∶ ψ,ψ ∶ ψ

ψ ∶ ϕ ϕ ∶ ψ,ψ ∶ ψ,χ[ϕ]
χ[ψ/ϕ] ϕ ∶ ψ,ψ ∶ ψ

f(χ,ϕ) ∶ f(χ,ψ) ϕ ∶ �� ϕ ∶ ψ,ϕ ∶ ¬ψ� (ub) ϕ ∶ ϕ,ψ ∶ ψ
ϕ ∶ ψ ∣ ϕ ∶ ¬ψ

Figure 1: Rules for refined calculus T Rd

K(E)n

The only thing that we need to show is that the forgoing
expressions actually encode the domain sort expressions.

Proposition 1. Semantic expressions M, x ⊧ ϕ, xRy,
x = y hold for a model M if, and only if respective K(En)-
expressions from (2) are satisfiable on a suitable conserva-
tive extension M′ of M.

Remark 1. Henceforth, we introduce new colon notation.
We abbreviate formulas of the form: E=1ϕ ∧ E=0(ϕ ∧ ¬ψ)
to ϕ ∶ ψ.

Now we define a countable set of the form: F = {fj}j∈N
where fj ∶ FORM × FORM ↦ FORM is a function. We
therefore introduce a countable set of functional symbols to
obtain an expression class analogous to a class of Skolem
functions in first-order language.

Figure 1 presents rules for the refined calculus T Rd

K(E)n
.

Profit that is yielded by expressing semantics by means of
the logic is a low number of rules.

The colon notation introduced in the forgoing refined
tableau calculus resembles standard prefixed calculi. For
a given input set of formulas Γ a label of the initial node is
a propositional variable obtained by translating M, x ⊧ ⋀Γ
in a way from (2). New labels introduced by the rules (◇)
and (E>n) are arbitrary formulas (by definition of func-
tional symbols fi). The reader might be surprised by the
rule (◇), since one of formulas in the conclusion is of the
same form as a premiss-formula, which can lead to an in-
finite derivation. What distinguishes these two is the fact
that a formula which is under the scope of ◇ in the premiss
is not necessarily a labelling formula, whereas a parallel
formula in the conclusion certainly is. This makes it sub-
jected to application of (ub) and equality rules which en-
sures finiteness (with respect to (◇)-application) of at least
one of the branches.

Theorem 1. T Rd

K(E)n
is sound and complete.

4 Termination and complexity-optimality

Lemma 1. Let Γ be an arbitrary set of K(E)n-formulas.
Suppose that N = ⟨U,S,z⟩ is a model for Γ. Then there
exists a branch B in T Rd

K(E)n
-tableau for Γ such that ∥U∥ ≥∥B∥.

Theorem 2. Logic K(En) has the effective finite
model property with the bounding function µ =
2∥{Sub(ϕ)}∥+log(n+1) for any given input formula ϕ, where
Sub(ϕ) is a set of all subformulas of ϕ and n = max{m ∶
E>m ∈ Sub(ϕ)}, n coded in binary.

Theorem 3. T (ub)
K(E)n

is terminating.

Theorem 4. K(En) is NEXPTIME-complete.

To provide a complexity-optimal derivation strategy forT (ub)
K(E)n

we formulate the following condition:

(op) Expand a branch of T (ub)
K(E)n

-tableau until the size of B
exceeds the bound from theorem 2. Then stop.
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Abstract: Frequently when formalising dynamic systems, we must represent statements, coming from phys-
ical constraints or representational issues, stating that exactly n literals (or less than n literals) of a set hold.
While we can write temporal formulae to represent this information, such formulae both complicate and in-
crease the size of the specification and adversely affect the performance of provers. In this paper, we consider
reasoning about problems specified in propositional linear time temporal logics in the presence of such con-
straints on literals. We present a sound, complete and terminating tableau calculus which embeds constraints
into its construction avoiding their explicit evaluation. We use METTEL2, an automated tableau prover gener-
ator, to provide an implementation of the calculus and give experimental results using the prover. This paper
is an abstract of the results and methods of [3].

1 Introduction

Temporal logics have been used to represent and reason
about systems that change over time [1, 4]. Often when rep-
resenting such systems we need to formalise that exactly n
or less than or equal to m propositions from a set hold or
do not hold. This may come about for two reasons. First,
they may represent real constraints in the world, for exam-
ple n machines are available to perform a task or a room
has capacity of at most m. Alternatively, they may come
about from representational issues. For example, consider
a number of robots moving about a grid. Each robot may
occupy exactly one square in the grid, so, if at(i)x,y de-
notes that the robot i is in square (x, y), then exactly one
of the propositions at(i)0,0, at(i)0,1, . . . at(i)n,n will hold,
for each robot, for an n× n grid.

One way to deal with such constraints is to rewrite them
as temporal formulae, for example, if we are required to
make exactly one from the set {p, q, r} true we can rep-
resent this as the formulae 2(p ∨ q ∨ r), 2(¬p ∨ ¬q),
2(¬p∨¬r), 2(¬q∨¬r), where 2 is the operator ‘at every
moment in time’ from propositional linear-time temporal
logic (PTL). However, introducing such additional formu-
lae lengthen and complicate the specification and adversely
affect the performance of provers. Instead, we consider a
logic, called TLC, introduced in [2]. TLC is a propositional
linear-time temporal logic that allows sets of constraints as
input.

The aim of this paper is twofold. First, it builds on and
extends the work in [2] and its related implementation in
a number of ways. We develop a tableau calculus that in-
cludes rules for reasoning about constraints in a more goal-
directed, incremental way. This retains the advantages of
using constraints and overcomes the disadvantages encoun-
tered in the approach from [2]. In particular, the new cal-
culus does not require its input to be in a particular normal

∗Corresponding author.

form so additional unconstrained propositions are not intro-
duced. We are not always forced to explicitly enumerate the
constraints. Further we can construct the tableau derivation
branch by branch in a depth-first left-to-right manner.

Second, we are interested in exploring the possibilities of
extending our METTEL2 tableau prover generation technol-
ogy [8] to temporal logic. METTEL2 presents a first step to
implement the tableau calculus synthesis framework intro-
duced in [6] and extends it to a tableau prover generation
platform. Temporal logic is an interesting case study for
the tableau synthesis endeavour because logics with even-
tualities such as temporal logics cannot be handled with
standard, essentially first-order tableau approaches. In the
current form the tableau calculus synthesis framework is
not applicable to temporal logic or other logics with even-
tualities. In this paper we show however how the tableau
prover generator METTEL2 can be used to generate an im-
plemented prover for the tableau calculus introduced for
TLC. Here we use the standard representation of the se-
mantics for PTL which involves fix-point operators.

2 Cardinality constraints and tableau calculus

A cardinality constraint C∝m is a tuple (C,∝,m), where
C is a set of literals (propositions and their negations), ∝∈
{=,≤} and m ∈ Z. The size #C of a literal set C is the
number of literals in C.

A constraint C≤m (resp. C=m)is valid in a PTL-model
if for every moment of time of the model, there are less
than or equal to m (resp. exactly m) literals in C which are
true at the given time moment. A constraint set C is valid
in a PTL-model if every constraint from C is valid in the
model. A PTL-formula φ is satisfiable with respect to a set
of constraints C if it is satisfiable in a PTL-model which
validates C.

In order to solve the problem of satisfiability of PTL-
formulae with respect to a constraint set we introduced a
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tableau calculus (see [3] for details). The tableau calculus
TTLC for TLC is based on known tableau calculi for PTL
(see e.g. [7]). The calculus has two distinguished features.
Namely, it uses a special technique for handling eventuali-
ties of fix-point operators and special rules for dealing with
boolean constraints.

Our technique to handle eventualities is inspired by algo-
rithms which are commonly used for calculating fix-points
in the µ-calculus [5]. Bad loops and good loops in the
tableau derivation are identified by checking that all even-
tualities in the current branch are fulfilled. We extend the
logical language with connectives, E3 and EU which are
introduced via the following rules.

(3):
@`3φ

@`E3(φ) (U ):
@`φU ψ

@`EU (φ, ψ)

Special rules (E3) and (EU ) for unravelling the eventual-
ities are as follows.

(E3):
@`E3(φ)

@`φ, E3(φ) ≈ 3φ | @f(`)E3(φ)
(EU ):

@`EU (φ, ψ)

@`ψ, EU (φ, ψ) ≈ (φU ψ) | @`φ, @f(`)EU (φ, ψ)

It is important that the left conclusions of these rules
contain equality expressions and since METTEL2 supports
rewriting of arbitrary (ground) expressions the rules trigger
rewriting in the left derived nodes. In this case, the partic-
ular eventuality expression E3(φ), respectively EU (φ, ψ),
is rewritten and disappears from the node indicating that
eventuality 3φ, respectively φU ψ, is fulfilled. In the right
derived node the rules (E3) and (EU ) leave the expressions
E3(φ), respectively, EU (φ, ψ), untouched indicating that
the eventualities are not fulfilled yet. The other introduced
rules (E3-test) and (EU -test)

(E3-test):
@`E3(φ)
⊥ (EU -test):

@`EU (φ, ψ)

⊥
are applied only when no other rules are applicable. These
rules close the branch in the case that some eventuality is
still not fulfilled in the branch. The intuition of this tech-
nique can be seen from the representation of the fix-point
operator in the µ-calculus and, thus, it can be extended to
other logics with fix-point operators, for example, proposi-
tional dynamic logic and the full µ-calculus.

The rules for boolean constraints are the following.

(C+
− ):

@`({p} ∪ C)∝m, @`¬p
@`C∝m

(C+
+ ):

@`({p} ∪ C)∝m, @`p

@`C∝(m−1)

(C−+ ):
@`({¬p} ∪ C)∝m, @`p

@`C∝m
(C−− ):

@`({¬p} ∪ C)∝m, @`¬p
@`C∝(m−1)

(cut+):
@`({p} ∪ C)∝m

@`p | @`¬p
(cut−):

@`({¬p} ∪ C)∝m

@`p | @`¬p

(empty):
@`C

∝−1

⊥ (cap):
@`C

=m, #C < m

⊥
To understand these rules suppose that ∝ denotes =. The

intuition of the rule (C+
− ) is as follows: if ({p} ∪ C)=m is

true and ¬p is true, that is, p is not true, then C=m must
be true. The rule (C+

+ ) says that if ({p} ∪ C)=m and p are
true then C=(m−1) must be true. The rules (C−+ ) and (C−− )
are duals. The intuitions are similar for ∝ denoting ≤. The

(cut+) and (cut−)-rules are DPLL type analytic cut rules
enumerating the possible truth assignments to propositional
symbols occurring in constraints. The rule (empty) closes a
branch for a constraint C=−1 or C≤−1, because constraints
cannot contain a negative number of literals. The (cap)-
rule is an early closure rule for the case that m literals of a
constraint must hold but the constraint already contains less
than m literals.

It is proved in the extended version of this paper [3] that
TTLC is sound, complete and terminating. The termination
is achieved via the unrestricted blocking mechanism [6].

Theorem 1 TTLC is sound, complete and terminating
tableau calculus for the logic TLC.

3 Concluding remarks

The LTLC prover used in the experiments of this paper
can be obtained from the METTEL2 Demo webpage at
www.mettel-prover.org. In a web-interface pro-
vided it is possible to select both PTL and TLC as prede-
fined logics with predefined tableau calculi for which then
a tableau prover can be generated at the click of a button.
The user can then download the generated prover or use it
directly via the web-interface.
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Minimal Models for Modal Logics
Fabio Papacchini Renate A. Schmidt

School of Computer Science, The University of Manchester {papacchf,schmidt}@cs.man.ac.uk

Abstract: Much research into automated generation of models and minimal models has been carried out.
For historical reasons, minimal model generation for classical logics has received most of the attention, but
the increasing interest and use of non-classical logics in Computer Science bring the necessity to generalise
results and techniques for classical logics to non-classical logics. In this short abstract we present and discuss
possible minimality criteria for modal logics.

1 Introduction

For classical logics, propositional logic and first-order
logic, several studies into minimal model generation have
already been performed (e.g. [2, 5, 7]). It is noticeable clear
that there is no unique definition of the notion of a minimal
model. A possible categorisation of minimality criteria is
the following: domain minimality (e.g. [5]); generation of
minimal Herbrand models (e.g. [2]); generation of models
that are minimal with respect to a certain set of predicates
(e.g. [6]).

As many non-classical logics are translatable into frag-
ments of first-order logic, it is easy to think of a way to ap-
ply the same minimality criteria also to such non-classical
logics by using a translation-based approach ([3]). Never-
theless, just relying on a translation approach may be too re-
strictive: how should minimality criteria for classical logics
be adapted for non-classical logics? Are there other mean-
ingful minimality criteria for non-classical logics?

In this short abstract we discuss what is the meaning of
the minimality criteria used in classical logics from a modal
logic point of view, and we present a brief discussion of an-
other possible minimality criterion that is more specific for
modal logics (namely, minimality with respect to bisimula-
tion).

While presenting different minimality criteria we refer
to Figure 1 to have a visual idea of the generated models
and the differences between them. It is worth to say that
the models shown in figure are not all the possible models
of the formula under consideration, but they suffice for our
purposes.

2 Minimality Criteria for Modal Logics

The discussion focuses on basic modal logic K and its ex-
tensions through common frame properties. All the con-
cepts are easily generalisable to multi-modal logic K(m)

and its extensions. Due to space restriction, we do not
formally define the syntax and semantics of modal log-
ics. But for sake of clarity and to help the discussion in
this short abstract, we recall the definition of a model for
basic modal logic. A model M = (W,R, V ) is a triple
where W is a non-empty set of worlds, R is the accessibil-
ity relations over W , and V is the labelling function that
to each propositional symbol assigns a set of worlds. In

{p}
(a)

{p, q}
(b)

{p}
(c)

{q}

{p}
(d)

{p}

{q}
(e)

Figure 1: Possible models of ♦p∨ (q∧♦♦p)∨ (♦p∧�♦q)

the rest of the abstract, every time we refer to M and M′

we mean two different models for the same modal formula
such that M = (W,R, V ) and M′ = (W ′, R′, V ′).

The first minimality criterion mentioned in the introduc-
tion is domain minimality. For modal logics the domain
is represented by the set of worlds. This directly brings
us to the following simple definition of domain minimality
for modal logics. Given a model M, M is a domain mini-
mal model iff there is no model M′ such that |W ′| < |W |,
where |W | represents the cardinality of W . Adopting this
minimality criterion, (a) and (b) are the only domain mini-
mal models among the models in Figure 1.

An important advantage in using domain minimality is
that modal logics having the finite model property cannot
have any infinite minimal model. On the other hand, cre-
ation of domain minimal model is achieved by trying to
expand formulae in the scope of diamond operators in al-
ready existent worlds. Such expansion may be inefficient in
practical implementations and may lead to minimal models
with a questionable semantic meaning. For instance, what
would be the meaning of the two domain minimal models in
the figure if the resulting reflexive relation was something
like has child of is married to? In such cases another
minimality criterion would be preferable.

In [8] we present a tableau calculus for the generation
of minimal modal Herbrand models for the multi-modal
logic K(m) and its extensions with reflexivity and sym-
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metry. A modal Herbrand model is a model obtained by
expanding a diamond formula creating always a new suc-
cessor. A possible definition of minimal Herbrand model
is as follows. Given a model M, M is a minimal modal
Herbrand model iff for any other model M′, if R′ ⊆ R
and V ′(p) ⊆ V (p) for all propositional symbol p, then
M = M′. A requisite for comparing two modal Herbrand
models is that the two sets of worlds are the same or that
is possible to map one to the other, and vice versa. In [8]
we obtain this by assigning unary functional symbols to di-
amond formulae. In Figure 1, (c), (d) and (e) are the three
minimal modal Herbrand models of the formula under con-
sideration.

Modal Herbrand models, as Herbrand models for first-
order logic, are of interest for automated deduction systems.
In fact, many semantic tableau methods for non-classical
logics generate modal Herbrand models. For this reason,
minimal modal Herbrand models may be seen as a natu-
ral minimality criterion for automated reasoning. Further-
more, the deterministic expansion of diamond formulae in
exactly one successor solves the problem affecting domain
minimality. The disadvantage of generating minimal modal
Herbrand models is that the obtained models may be infi-
nite. This implies that to ensure termination of a procedure
generating such minimal models, the use of a blocking tech-
nique or particular closure tests are required. Blocking may
result in models that are not completely Herbrand, because
it can be thought as the application of a different diamond
expansion when the model is infinite. A closure test to en-
sure termination may affect the completeness of the calcu-
lus.

As for domain minimality, it is possible to give a simple
definition of the minimisation of a specific set of predicates
as follows. Given a model M and a set S of propositional
symbols, M is a minimal model iff for any other model M′

and all p ∈ S, if V ′(p) ⊆ V (p), then V (p) = V ′(p). Also
in this case, the domains of the two models must be com-
parable as in the case of minimal modal Herbrand models.
Assuming that S = {q}, then (a) and (c) are the two mini-
mal model with respect to S among those in Figure 1.

Even though this kind of minimisation can be thought
as a specific case of circumscription, it is worth to noting
that circumscription does not require model generation but
for minimal entailment reasoning. Circumscription for de-
scription logics has recently received some attention from
both the complexity point of view ([1]) and the decision
procedure point of view ([4]), and techniques used in cir-
cumscription may be a starting point for the generation of
minimal model for specific sets of predicates.

The last criterion we take in consideration is minimality
with respect to bisimulation. This is the only criterion of
this abstract that to our knowledge does not correspond to
an existing minimality criterion for classical logics. Given
two models M and M′, if M is bisimilar to a submodel
of M′, then M is minimal with respect to M′. Using this
criterion, all models in Figure 1 are minimal except the
model (d). In fact, the model (d) is a supermodel of (c). It

can be argued that also other models in the figure should not
be considered minimal, such as (b) and (e). Their minimal-
ity is due to characteristics of bisimulation: two bisimilar
worlds must agree on all the propositional symbols. This
is why the model (b) is not considered a supermodel of (a),
the zag condition of bisimulation requires a backward re-
lation to preserve the accessibility relation of M′. This is
why the model (e) is not considered a supermodel of (c).
It is important to point out that bisimulation is the only
presented criterion that is able to compare two models by
changing the graph structures of the models under consid-
eration (obviously the changes are such that the resulting
model is equivalent to the originals).

3 Conclusion

We discussed several minimality criteria for modal logics.
The presented criteria are not the only possible minimisa-
tions for modal logics. In fact, it is not difficult to think of a
composition of them, or even completely new criteria. We
believe that it is not possible to rank these minimality cri-
teria and select “the best”, such selection depends on what
kind of constraints must be imposed to the models and what
are the desired characteristics. This must, however, not stop
the interest in creating formal procedures for the genera-
tion of minimal models for non-classical logics, as they can
be useful in several areas of Computer Science including
model checking and non-monotonic reasoning.
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Quantifier rules in reductive proof using nominal semantics
Murdoch J. Gabbay (reporting on work with Claus-Peter Wirth)
http://www.gabbay.org.uk

Abstract: Reductive proof-search tries to reduce a goal to tautologies. In the presence of quantifiers
this becomes a complex design problem by which proof-theory shades into ‘proof-engineering’.
There is no single right answer here, but there are a lot of practical problems with strong roots
in theory. In this work we consider a nominal semantics for this design space. The reduction in
complexity is striking, and we get an elementary account of reductive proof-search with quantifiers.

1 The problem

It is not enough to study proof in principle; we may
also want to prove things in practice. This means
creating notions of derivation that are succinct and
amenable to automation. We concentrate on reductive,
analytic, or backward proof-search, reducing goals to
assumptions. Examples include sequent, tableau, ma-
trix, and indexed-formula-tree systems.

The quantifier ∀ is what interests us. It generates
a pair of rules, called left-intro and right-intro, or (δ∀)
and (γ∀) rules respectively. Intuitively:

1. left-intro/(γ∀) means “∀x.φ implies [r/x]φ for
any r”, where here [r/x] is the usual capture-
avoiding substitution of r for x (call r a witness).

2. right-intro/(δ∀) means “[r/x]φ for some suffi-
ciently generic r implies ∀x.φ”.

(γ∀) has obvious potential for branching and we de-
lay the choice of witness as long as possible by in-
troducing variables called existential variables, meta-
variables, or (in tableaux) free variables. These are vari-
ables whose instantiation transforms the proof as a
whole. We use variables X from nominal terms to do
this (no surprise to the expert in nominal techniques;
X was a unification unknown in [20]).

Concerning (δ∀): what should ‘sufficiently generic’
mean? The standard rule takes a fresh entity variously
called a fresh constant, a fresh variable, an eigenvariable,
or parameter. Here it is in sequent style:

Γ ` ψ,∆ (x fresh for Γ,∆)
(∀R)/(δ−∀)

Γ ` ∀x.ψ,∆
This rule is inefficient because x is unnecessar-
ily generic; choosing x ‘completely fresh’ does not
record—and cannot take advantage of—information
about what variables existed when x was created.

An industry exists devising rules to prove ∀a.φ
more efficiently, and it is worthwhile to list some of it:
Fitting’s original free-variable δ-rule [7, Section 7.4];
then its ‘liberalised’ version δ+ (introduced in [16],
and treated in [8, Section 7.4]); δ+

+

[2]; δ∗ [1];1 δ∗∗ [3];2

and δε [15, Section 4.1].
1This had error corrected in [4, Subsection 5.3].
2This also had errors, also corrected in [4, Subsection 5.4].

So in the quest for efficiency, inference systems have
developed interesting kinds of names and binding,
and there is a direct connection between recognising
how names in derivations interact (and when they
must be generated, and when they may be thrown
away) and devising efficient quantifier rules.3 This
kind of thing is hard to get right, errors have been
made, and aside from work by Wirth reported in [21],
no semantics has been available to aid understanding.

This abstract reports on cutting-edge research in the
application of two nominal tools to reductive proof-
search: permissive-nominal terms from [6] and nominal
sets semantics from [14] (surveys in [9, 11]).

Technical details are elided. In this abstract we give
a flavour of how this rather substantial body of math-
ematics hangs together. If pressed to describe this
work in a sentence, it is this: we have an elementary
explanation of the variables and meta-variables typ-
ically found in proof-search, as nominal atoms and
unknowns, and of the proof-search rules listed above;
and if you can get past the unfamiliar nominal-ness
of the semantics, the technical difficulty threshold is
quite low.

2 Sketch of the syntax

Fix disjoint countably infinite sets of atoms a, b, c and
variables/unknowns X , Y , Z.

Atoms a are variables in goals and resemble the pa-
rameters or eigenvariables found in the literature. This
is the entity introduced by the (∀R) rules of sequent
systems. Variables X are proof-search variables; these
display complex ‘nominal’ behaviour but have the ef-
fect of Skolem terms, without extending the signa-
ture or introducing functions. X corresponds to the
dummy variable of [19] and [18] and the free variable of
[8], the meta-variable of planning and constraint solv-
ing, and the free γ-variable of [21].

Assume constants ⊥, >, ¬, ∧, and ∀ and a simple
type system which we elide.

Then terms are just r ::= a | X | f | r′r | [a]r.4

3Speedups can be significant. The (δ+) of [16] allows exponen-
tial speedup relative to (δ−) [8], and (δ+

+
) [2] allows further expo-

nential speedup relative to (δ+) [1, Section 3].
4A white lie: X is moderated as π·X . See [20, 6].
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This looks familiar (variables; meta-variables; con-
stants; application; abstraction) but substitution for
X is capturing and the semantics of [a]r is nomi-
nal atoms-abstraction instead of functional abstrac-
tion. So, the underlying semantics is different, non-
functional, and ‘first-order’; for details see [13] which
applies this to Henkin-style semantics for higher-
order logic.

Atoms are not constant symbols; models are subject
to a permutation symmetry group of atoms, so atoms
are special symmetric elements, translated specially in
the denotation. Constant symbols are interpreted ar-
bitrarily; no special properties are assumed. So [a]r
makes sense because the interpretation of a is specific
such that atoms-abstraction has meaning; [f]r makes
no model-theoretic sense because there is virtually no
restriction on how f is interpreted.

3 Sketch of the proof-rules

Here are the two crucial rules, in sequent style:

C, X↑[a]¬φ;H ` φ[a7→X]
(δX∀R)

C;H ` ∀a.φ
C;φ[a7→r] ` ψ

(δX∀L)
C;H,∀a.φ ` ψ

H is a set of predicates. C is a maximisation condi-
tion; a set of syntax of the form X↑[a]φ. This can be
read as an instruction to ‘maximise’ the truth-value of
φ[a7→X]. Intuitively, if the value ofX makes¬φ[a7→X]
true, then ∀a.φmust be true. If this reminds the reader
of expressing ∀a.φ as φ[a7→εa.¬φ] [5, page 15] then
that is no accident—but here there is no choice made,
only a maximisation condition.

The nominal semantics makes itself particularly
useful because φ is a possibly open predicate—it may
have free atoms. Nominal semantics allow us to map
this open predicate to an open element of a nominal
algebra of possibly open truth-values.

The underlying message is that nominal semantics
here replace Skolemisation in both syntax and seman-
tics. The price we pay is a notion of ‘truth-values alge-
bra with atoms’, but this seems not only worthwhile
but is in itself interesting.

4 Sketch of the semantics

We just give the flavour of how it works; the partic-
ularly dedicated reader can find full details of simi-
lar technology applied in abstract algebra in [10]. We
assume a Boolean algebra, but elements are nominal
and contain free atoms. These atoms can be substi-
tuted for; this substitution is not syntactic, but an ab-
stract nominal algebraic axiomatisation of substitu-
tion following [12]. Next is quantification, which is
just an operation on algebra elements related to the
quantification operation of cylindric algebra [17] but in
a nominal context. Atoms are interpreted as them-
selves and variables X are interpreted with valua-
tions.

Once all this is in place, proving compositionality
of the semantics and the proof-rules is very easy, be-
cause the semantics includes abstract nominal struc-
tures which mirror what is done in the syntax. Every
‘normal’ model (with Skolemisation and choice) can
be converted to a nominal model, so this simplicity
does not come by absurd restriction of models.

5 Summary

What we have discussed can be accomplished with
choice and Skolemisation. But these are powerful,
and using such tools has a price; we must manipu-
late a system with more structure than necessary, and
must use many emulations.

Nominal techniques give the benefits of Skolemi-
sation without introducing functions or higher types.
Maximisation conditions give the benefit of Hilbert’s
choice without making choices. The nominal seman-
tics is not hard—we can even import it off-the-shelf
from [13, 10]—and allows us to talk about open ele-
ments easily and directly, and it all fits together nicely.
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Model Checking by Abstraction for Proving
Liveness Properties of Hybrid Dynamical Systems
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Abstract: In this extended abstract, we consider a method for model checking certain properties of continuous
dynamical systems, by adapting an abstraction method previously proposed so that it will work with the timed
automata model checker UPPAAL. We also describe our ongoing work to extend this method to verify liveness
(reachability) properties of hybrid dynamical systems.

1 Introduction

Hybrid systems are very complex, characterised by interac-
tions between continuous and discrete parts. For instance, a
controlled robot can be modelled as a hybrid system: it has
continuous dynamics governing how it moves in the real-
world, and discrete behaviour of the controller making de-
cisions on what it sets out to do.

In the academic community, a lot of effort has gone into
trying to verify such hybrid systems, mostly through using
model checking methods. One class of such methods in-
volves abstraction of the hybrid system to a discrete system
(usually a finite-state automaton) in order to be able to use
model checkers on these finite automata to prove properties.
The properties that can be proved are mostly safety proper-
ties of the form 2φ, saying that we always satisfy some
‘safe’ predicate φ, and in fact these finite automaton ab-
stractions are unable to prove liveness-type properties, even
the most simple reachability-type 3ψ.

In order to prove these reachability-type properties, we
need to keep some information about the times at which
events occur in a discrete system, and so we turn to us-
ing timed automata (TAs) for our abstraction. In Section
2 we consider a method by Maler and Batt [2] which ab-
stracts a continuous system to a TA, making use of multiple
clocks. We discuss interfacing this algorithm with the most
commonly used TA verification program, UPPAAL [1], in
Sect. 3. We describe our current and future work in Sect. 4.

2 The Algorithm of Maler and Batt

In [2], Maler and Batt define an algorithm to approximate
continuous systems by TAs. The approximation method
they use is intuitive, based on minimum and maximum ve-
locities of a system defining bounds on the time taken to
cross a certain distance in the system. This creates an over-
approximation of the system, in the sense that every trajec-
tory in the system is matched by one in the abstraction, but
additional trajectories may be allowed in the abstraction.

The basic idea is to split the state space of a continuous
system into hyper-cubes of unit length, and to define clocks
to keep track of the time crossings that are made in each

∞≤z1
≤∞

1≤z1
−≤7

5≤z1
≤∞

6≤z1
−≤∞

2≤z1
≤4

∞≤z1
−≤∞

∞≤z2
≤∞

3≤z2
−≤9

3≤z2
≤∞

8≤z2
−≤∞

1≤z2
≤5

∞≤z2
−≤∞

z≤3

z≤4

z≤4

z≤8

z≤∞

z≤5

z≤6

z≤7

z≤5

Init

Figure 1: Split the state space into hyper-cubes (rectangles
in this case, as system in R2), calculate which edges exist
(denoted by arrows) and calculate the minimum/maximum
times on the clocks z, z+1 , . . . .
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Figure 2: The timed automaton resulting from the method
of [2] applied to the dynamical system. If a clock is not
given an explicit bound in a location, it is clock ≤ ∞.
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dimension. We then put bounds on these clocks within each
cube which limit the amount of time we can spend in a cube
or a slice of the space (made up of cubes). Other clock
bounds also limit the times when a transition can be taken,
capturing extra information about the system.

Figures 1–2 show the process of making an abstraction
of the system by this method.

3 Changes to Use UPPAAL for Verification

UPPAAL [1] is the most widely used tool for modelling and
verification of TAs, so interfacing it with the method of [2]
will increase the number of people who can make use of it.
UPPAAL has a few restrictions for this method:

1. UPPAAL does not accept disjunctions of conditions in
the guards of edges of the TA.

2. UPPAAL defines all clocks to start at value zero.
3. UPPAAL must have integer valued comparison values

for clocks.

3.1 Removing Disjunctions

For the method of Maler and Batt, it is necessary to have
disjunctions in the invariants of the locations and in the
guard conditions of the edges in the TA. As UPPAAL will
not allow this we must remove the necessity of checking
whether clocks are active, and we achieve this by only hav-
ing one clock in each dimension, plus the one which deals
with time spent in cubes. To preserve the approximation,
when exiting a slice of the space in the positive (negative)
direction, we only allow minimum time guards to be present
if the flow in this slice was always positive (negative).

3.2 Removing Set-Valued Initial Conditions

The method of [2] requires that the initial condition on the
clocks be set-valued, in order to allow the abstracted timed
automaton to start anywhere within an initial cube. UP-
PAAL only allows clocks to start at zero, so to preserve
over-approximation with respect to trajectories, one option
is to not allow minimum times on clocks to be specified
anywhere in the slice in which an initial cube appears. An-
other option we are considering is to simulate the set-valued
initial condition in UPPAAL, using non-deterministic tran-
sitions to allow various initial clock values.

3.3 Scaling Time to the Order of the Integers

As UPPAAL only allows clocks to be compared to integers,
it is necessary (once the TA is calculated) to scale the min-
imum/maximum time bounds to roughly the order of the
integers. This is seen particularly clearly in electronic cir-
cuit examples, where the scale of time is typically 10−4.
The main step in this rescaling is to divide all time bounds
by the minimum value, so that the minimum becomes 1
and other bounds are greater than this. We must also take
the ceiling (resp. floor) of the maximum (resp. minimum)
times to give integer comparison values.
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Figure 3: The TA created by the revised method.

3.4 The Revised Method

Figure 3 shows a revised TA for the same system as Figs. 1–
2, using the new aspects of the method discussed here. The
important result of [2], which is preserved here, is that the
abstraction is neo conservative. This means that every tra-
jectory of the actual continuous system can be matched in
time and location by a trajectory of the TA.

4 Ongoing Work

This method is able to deal with any continuous system as
an abstraction technique, and it can be used in an abstrac-
tion refinement loop to keep improving the size of the ab-
straction until a desired property is proved. We have cur-
rently implemented this method for linear continuous sys-
tems with liveness (reachability) properties.

We are extending this method to deal with piecewise con-
tinuous systems, and also hybrid systems (modelled as hy-
brid automata). The main problem we forsee is when deal-
ing with resets (the extra part in hybrid systems), and it may
be necessary to restrict the type of resets we allow.
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Abstract: Complex systems generally do not admit closed form solutions, requiring the use of potentially
inaccurate numerical methods for their analysis. On the other hand, qualitative methods such as Lyapunov
functions, do not require explicit solutions but can be extremely difficult to use in practice. Preliminary results
show that the automated theorem prover MetiTarski is useful in the analysis of hard verification problems such
as the reachability, stability and abstraction of continuous and hybrid nonpolynomial systems.

1 Introduction

Formal verification is a broad field that encompasses a num-
ber of mathematical and logical techniques for proving the
correctness of models. Until recently, automated formal
verification research has been focused on discrete-state sys-
tems. There have been several breakthroughs and now for-
mal methods are beginning to find a place in industrial
work-flows. Examples include the verification of software
and digital circuits. On the other hand, there are still not
many options for the automated formal verification of con-
tinuous systems. Techniques that do exist are either con-
strained to linear systems or can only be applied to polyno-
mial nonlinear systems.

MetiTarski [2] is an automated theorem prover for arith-
metical conjectures involving transcendental functions (sin,
cos, exp etc.). It has been successful in proving arithmeti-
cal theorems that are used to verify the behaviour of certain
analogue circuits [3] and linear hybrid systems [1]. The
next step is to leverage the power of MetiTarski for the anal-
ysis and verification of continuous and hybrid systems de-
scribed by transcendental and special functions.

The input to MetiTarski is a first-order formula that may
involve inequalities that contain transcendental functions.
The question is then : How can a complex engineering veri-
fication problem be translated into a sequence of MetiTarski
problems? If the behaviour of the system can be described
using linear differential equations, then an analytic solution
(trajectory) can be computed and will contain transcenden-
tal and special functions. It will then be possible to reason
directly about whether the system will reach an unwanted
state using MetiTarski.

Most engineering systems can only be specified using
nonlinear differential equations and closed form solutions
are generally not computable. This is because, not sur-
prisingly, nonlinear systems present a richer dynamics than
purely linear systems. It is for these reasons that the analy-
sis of nonlinear dynamics uses a combination of both quali-
tative analysis and repeated numerical simulation [6]. How-
ever, any numerical method can potentially be incorrect due
to the finite precision used to calculate the result.

2 Abstraction of Continuous and Hybrid Systems

Safety, the fact that some bad behaviour will never happen,
is perhaps the most important property that should be veri-
fied for a system. The reachability computation remains the
most common way to check safety of a system. However, it
cannot be stressed enough that the exact reachability of con-
tinuous and hybrid systems cannot be computed. Therefore
most verification methods compute an over-approximation
of the reachable states to enable a decidability result [4].
Another equally important method is abstraction, which re-
duces the complexity of the system but at the same time
must preserve the properties under verification.

By abstracting properly and preserving the relevant un-
derlying behaviour of the system, tools that are already de-
veloped can be used. Sloth and Wisniewski [7] developed
a method for creating a sound and complete abstraction of
continuous systems using Lyapunov functions. By using
the Lyapunov function as a predicate for partitioning, they
were able to convert the infinite state space of a continuous
system into timed automata.

There are several restricted classes of hybrid systems and
continuous systems that have been shown to have decidable
reachability properties but most are too weak for practical
applications. Another method of abstraction borrows from
the domain of qualitative reasoning. Qualitative reasoning
is motivated by the idea that numerical simulation is lim-
ited when not all the parameters of the system are known.
Instead of trying to compute a solution, it is sufficient to
look at how the vector field itself changes over time. Ti-
wari [9] uses predicates that evaluate over the three symbols
{+,−, 0} to split up the infinite state space. This construc-
tion of the abstraction uses the decidability of the first order
theory of real closed fields [8] to compute the transitions be-
tween abstract states. Once the abstraction is created then
a model checker is used to evaluate CTL properties on the
abstract system. For linear systems it is easy to choose the
predicates, but nonlinear systems still require a search that
relies mostly on heuristics.

3 Reachability : Aircraft Collision Avoidance

In air traffic control, collision avoidance protocols are used
to direct planes in case of a catastrophic error. This could
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be caused by the pilots themselves, flight directors on the
ground, faults within the air control software or physical
system faults. The avoidance protocols must be able to
make the correct decision quickly because at the point that
a possible collision is detected, there might be at most one
minute of time to react [5].

If we consider a single aircraft flying in the xy plane the
following system of differential equations describes its be-
haviour

x′1(t) = d1(t) x′2(t) = d2(t)

d′1(t) = −wd2(t) d′2(t) = wd1(t)

x1(0) = x1,0 x2(0) = x2,0

d1(0) = d1,0 d2(0) = d2,0

with x′1(t) and x′2(t) the speed in the x and y direction.
d′1(t) and d′2(t) the acceleration in the x and y directions.
d = (d1, d2) = (v cos(θ), v sin(θ)) a linear speed vector
that defines both speed and orientation together and w the
angular velocity.

Solving for two aircraft travelling in a plane
((x1, x2), (y1, y2)) gives us the following set of posi-
tional equations.

x1(t) = x1,0 +
d2,0 cos (wt) + d1,0 sin (wt)− d2,0

w

x2(t) = x2,0 +
d1,0 cos (wt)− d2,0 sin (wt)− d1,0

w

y1(t) = y1,0 +
e2,0 cos (wb t) + e1,0 sin (wb t)− e2,0

wb

y2(t) = y2,0 +
e1,0 cos (wb t)− e2,0 sin (wb t)− e1,0

wb

To ensure that the planes do not hit each other, it is re-
quired that they keep a minimum separation distance p.
This can be described mathematically as

(x1 − y1)2 + (x2 − y2)2 ≥ p2

We have been able to prove this separation using Meti-
Tarski for two aircraft in a plane flying at different but
constant angular velocities. This simplification reduces
the problem to one variable. A collision avoidance proto-
col would have varying velocities and therefore would add
more variables to the resulting problem. Recent improve-
ments to MetiTarski have made these multi-variable prob-
lems more tractable.

4 Conclusion

The verification problem of nonpolynomial systems re-
mains wide open. We are currently working on several

methods that use MetiTarski to construct valid abstractions
of nonpolynomial vector fields. Abstraction based meth-
ods are essential because analytical solutions to nonlinear
systems normally do not exist and in some cases numeri-
cal methods diverge quickly. There are verification tech-
niques for abstracted nonlinear polynomial hybrid systems
but none for systems described using transcendental and
other special functions.

Beyond the idea of merely creating a method for verify-
ing hybrid systems, we want to be able to verify real world
engineering problems. This will require that any techniques
we develop are able to scale properly to larger systems. Ab-
straction techniques can be scaled as long as it is possible to
calculate correct transitions in the abstract system. Formal
tools for the analysis of discrete state systems would then
be directly applicable to the abstract models.

References

[1] B. Akbarpour and L. C. Paulson. Applications of Meti-
Tarski in the verification of control and hybrid systems.
In Hybrid Systems: Computation and Control, volume
5469 of Lecture Notes in Computer Science, pages 1–
15, 2009.

[2] B. Akbarpour and L. C. Paulson. MetiTarski: An auto-
matic theorem prover for real-valued special functions.
Journal of Automated Reasoning, 44:175–205, 2010.

[3] W. Denman, B. Akbarpour, S. Tahar, M. H. Zaki, and
L. C. Paulson. Formal verification of analog designs
using MetiTarski. In Formal Methods in Computer-
Aided Design. FMCAD 2009, pages 93 –100, Novem-
ber 2009.

[4] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray,
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Abstract: This thesis, devoted to activity recognition, sets itself within the framework of distributed simulation
data analysis, relying on a particular temporal logic, the chronicle language. The aim is to model the notion
of chronicle recognition and to prove the validity of this model in the perspective of developing a tool for
analysis.

1 Introduction

This work tackles activity recognition in complex prob-
lems. The first applications explored in this field were
related to the configuration of alarms in planes (defining
which alarms should be transmitted to the pilot). Other ap-
plications concern notably informatics security.

In these situations, several agents interact through time,
and it is difficult, not to say impossible, to proceed to a
real experiment, especially for aerospace systems since they
are very critical. It is therefore necessary to carry out dis-
tributed simulations. These produce a huge mass of data
on which deduction must be assisted in order to detect haz-
ardous behaviours.

The chronicle language has been introduced by C. Dous-
son in [4] and P. Carle in [2] to describe arrangements of
events. In his Ph.D. [1], O. Bertrand formalises the no-
tion of chronicle in order to model their recognition in an
event flow using coloured Petri nets. This model was re-
worked in [3] by P. Carle, C. Choppy and R. Kervarc. In
the continuation of this work, we propose to rigorously for-
malise all of the notions and tools used in order to then
show the validity of the recognition system, and apply it to
the surveillance and verification of Unmanned Aircraft Sys-
tems (UAS), whether it is to manage failures or to prevent
collision risk as much as possible.

2 Chronicles

The chronicle language. The chronicle language has
been developed in order to formally describe behaviours
within a flow of events. It is inductively defined as follows:

C ::= A | C C | C&C | C || C | (C)− [C]
where the operators respectively correspond to a single
event, a sequence, a conjunction, and an absence.

The stake is to recognise the instances of a chronicle in
an event flow (i.e. a sequence of events).

To achieve this, the notion of chronicle recognition is for-
malised by inductively defining the setRC(ϕ) of the recog-
nitions of chronicle C in flow ϕ.

Coloured Petri net model. In order to model chronicle
recognition, a model using coloured Petri nets has been de-
veloped. For any chronicle C, an associated coloured Petri

Figure 1: Structure of the nets associated to chronicles

net N(C) is built by induction. Irrespective of chronicle C,
N(C) has the same global structure presented in Figure 1:
place Start(C) plays a role in the chronicle sequence,
place Present(C) contains the value of the event meter,
place Wini(C) is used for absences, and place Success(C)
contains the list of recognitions of C. This common struc-
ture allows a linear and inductive construction which then
makes it possible to formally reason on the nets and prove
the validity of the model.

Validity of the model. Hence, for each chronicle C, a
function which associates to an event flow ϕ the set RC(ϕ)
of the recognitions of C in this event flow has been defined
(recognition). In order to model chronicle recognition, a
Petri net N(C) has been built associated to each chronicle
C (translation). According to the event flow ϕ, the marking
(Mi) of this net evolves (marking), and it is thus possible
to read in it the recognitions of chronicle C in event flow ϕ
(interpretation).

This system is represented by this diagram:

C
recognition //

translation

��

ϕ 7→ RC(ϕ)

N(C)
marking

// ϕ 7→ (Mi)

interpretation

OO
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In the following theorem, the commutativity of the dia-
gram, or in other words the fact that the recognitions read
in the Petri nets correspond exactly to the theoretical defi-
nition of RC(ϕ), is established.
Theorem. Let ϕ be an event flow. Let C be a chronicle and
N(C) the associated Petri net. After having fired the tran-
sitions associated to ϕ, the marking of place Success(C)
corresponds exactly to RC(ϕ).

Chronicle Recognition Library (CRL). In addition to
the coloured Petri net model, a program has been developed
in C++ in order to directly analyse online distributed simu-
lation data. Its algorithms straightforwardly result from the
theoretical set definitions of chronicle recognition.

3 Application to Unmanned Aircraft Systems (UAS)

The Unmanned Aircraft System. An unmanned aircraft
system (UAS) is composed of three entities, the unmanned
aircraft (UA), the remote pilot station (RPS), and the air
traffic control (ATC). All three interact via several commu-
nication links as represented in Figure 2. This application
deals with the problem of certifying UAS in order to insert
them in controlled or uncontrolled airspace. The dynamic
data flows between the agents of the system and between
different systems if several UAS are considered are very
complex. In addition, each agent deduces from its own ob-
servations the state of the other agents. Therefore, chroni-
cles are well-suited to address the situation.

UAS operation safety analysis in case of fault. In [5],
the faults that may arise within the system have been stud-
ied, and scenarios have been established to codify the be-
haviour to follow and thus ensure the security of the system
and its environment even in critical situations. In this work,
the synchronisation of the different elements of the sys-
tem during breakdown situations has been examined, with,
as a first step, telecommand failure. To this end, a state-
transition UML diagram describing the procedure to follow
has been developed. It has then been implemented in C++
with the help of the MSM (Meta State Machine) library of
boost. Chronicles have then been determined to oversee the
behaviours of the unmanned aircraft (UA), the remote pilot
station (RPS), and the air traffic control (ATC).

ATC Pilot

UA
Voice

Voice

Telecommand
& Voice

Telemetry
& Voice

Figure 2: Structure and links within an UAS

4 Conclusion, Ongoing Work, and Perspectives

In conclusion, a well-established formal framework to-
gether with a Petri net model have been developed. The
latter provides an acute understanding of the mechanisms
of chronicle recognition, and the C++ library enables direct
analysis of simulation data. The application to UAS tackles
a problem of particularly great importance in the field of
civil aviation and shows that chronicles are an interesting
means to address this kind of issue.

The work presented here deals with theoretical founda-
tions and practical applications, the two of which are to be
pursued. Chronicles and both associated recognition mod-
els shall be extended to improve the expressivity of the
framework. Delay-related constructs inspired from inter-
val logics are currently considered for inclusion. The UAS
application previously exposed tackles the crucial prob-
lem of the insertion of UAS in controlled or uncontrolled
airspace and the associated certification and safety analysis
processes. This first step deals with physical failures in one
aircraft but there are other issues, as separation and colli-
sion avoidance which are the cornerstone of flight safety.
A model for this is currently being developed in collabora-
tion with UAS engineers. Chronicles, already applied to a
wide variety of different fields, are shown to be an adequate
generic means to represent knowledge in a multi-agent sys-
tem, and, as such, benefit to a large spectrum of applica-
tions. Moreover, the insertion of UAS into general airspace
raises concerns that cannot be solved without a formal rep-
resentation which chronicles seem to fulfill fairly.
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Abstract: Modelling and analysing data-sensitive and time-sensitive web applications allows designers to
find security flaws, eliminate navigation errors, and simplify the applications’ design. We study the use of the
model checker SPIN for analysis of navigation and security properties. In this paper the web application is
modelled as a two-timed finite state machine representing the web pages and the internal states. Our model is
realistic; we augment it by introducing discrete time, web-session management, and authentication.

1 Introduction

Web applications have become common in today’s eco-
nomic and social life. Sectors like banking, shopping and
governmental services are relying on the internet to pro-
mote and deliver their services [11, 8]. Such applications
have a time-dependent behaviour and need to be secure
due to, for example, their distribution and complexity as-
pects. The data that web applications handle is often sen-
sitive (e.g. credit card numbers) to both the users and the
service providers. Web applications’ vulnerabilities, which
may lead to the compromise of sensitive information are
being reported continuously (See for example [9]).

As a result, new methods to support the design, im-
plementation and verification of web applications need to
be applied. A successful verification technique is model
checking [2]. Model checking provides a fully automatic
analysis and verification of the initial system design; by
constructing a model of a system and its desirable be-
haviour a model checker can carry out a verification task.
If an error is found, the tool shows under which circum-
stances the error can be generated. Traditionally model
checking has been widely used for verification of hardware
systems, more recently model checkers have been increas-
ingly used for the verification of communication, security
protocols and in software development [2, 7].

2 Modelling Web Applications

We build a formal model of a web application and investi-
gate its possible behaviour under different scenarios. The
desirable behaviour of the web application is written as a
formal requirement specification. In order to address data
and time sensitivity, we model both the time and the spe-
cific security protocol used (in one of our case studies SSL
3.0). By integrating discrete time in our model, we initially
simulate a security protocol at the start of the session and
users’ authentication.

Security protocols (such as SSL 3.0) are widely used in
online banking to ensure that the online data transmission
is secure.

When modelling and verifying distributed applications
capturing time-bound message exchange is important. For

example, when a message between parties does not arrive
within pre-fixed time, this will result in timeout, data re-
transmissions or other actions have to be considered at this
stage [3].

We model web applications as concurrent systems where
only one component executes an action at a time and the
concurrent actions are arbitrarily ordered. We are inter-
ested in the verification of the application behaviour prop-
erties, rather than data transmitted properties. However, we
model both web pages transactions and the business logic
of a web applications, since the nature of web applications
is dynamic and different input could lead different pages
(i.e. wrong authentication credentials).

We model web applications models using a finite state
automata. The use of automata models allow us to employ
a clear formalism, which can be used in analysis and veri-
fication [7]. Our model uses two finite state automata and
extends the work presented in [8]. The first automata spec-
ifies transitions between web pages, the second represents
the internal state transitions (business logic) of the web ap-
plications.

Time in our model is discrete. Using discrete time adds
realism to web applications’ models. Modelling using dis-
crete time allows us to both represent a web session man-
agement and to simulate timeout scenario in a web applica-
tion. In model checking timed models, discrete time is pre-
ferred as it reduces the risk of the state space explosion [13].

3 SPIN and Promela

SPIN and its input language Promela developed by [7] for
the verification and analysis of distributed software systems
making them suitable for simulating and verifying web ap-
plications. The models written in Promela (a Process Meta
Language), demonstrate the system components as pro-
cesses that can communicate between each other via chan-
nels, earthier by buffered message exchange or rendezvous
operations, and also through shared memory represented as
global variables [1, 7]. As a model checker SPIN has been
successfully applied in simulating and formal verifying se-
curity protocols and web applications. Since SPIN does not
support the modelling of time, we extend our model with
discrete time macros, similarly to [1].
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4 Our model

We first use Promela and SPIN [7] to express the navigation
properties of a standard stand-alone web application (e.g.
online banking). We next verify the correctness of the web
application by comparing compromised and secure models.

The following are examples of navigation properties: (i)
The home page is reachable from all pages. A user can
logoff at any stage of the transition. (ii) The account page
is reachable from all pages. (iii) A page reachable from the
home page or account page always has a next page in the
transition.

Example of security properties are: (i) At a time t1 only
one user u1 can be authenticated with the same password
or user name. (ii) A user must interact with the web appli-
cation within a pre-set time limit. (iii) The web application
must receive the unaltered user’s data as send by the user.

We model both secure and a compromised user inter-
action with a web application. To analyse to data ex-
change, we first develop a secure model, where the user
of the web application authenticates herself correctly and
responds within the required pre-set time limit.

Next, we introduce an attacker which interferes with the
communication at various stages (week points) in the mes-
sage exchange, for example by intercepting and altering the
message exchange.

We use discrete time to analyse and compare the models
and their simulation. In a compromised model, for exam-
ple, if the attacker is active and attempts to impersonate the
client, the sequence of actions modelled by the time stamp
is different than the intended one. For example, during a
man in the middle attack the compromised model is more
complex than the secure one and the sequences of actions is
different than the intended one. In a denial of service attack,
for example, there may be a delay in the client accessing her
bank account.

5 Related Work

A related approach for modelling web applications is de-
veloped in [6]. The approach uses communicating finite
automata models which are based on the user-defined prop-
erties that are to be validated. Similarly to our approach,
in [5, 12] web applications are modelled as pages, links and
frames in one state transition.

An alternative framework for modelling of high-level
specification of interactive, data-driven web applications is
proposed in [4]. The work specifies data-driven web ap-
plication and is not concerned with security or timeliness
issues. Similarly, behaviour and structure of web appli-
cations are modelled in [10]. Test cases for the structure
and behaviour of the applications are then derived automat-
ically.

Purposefully developed tools, such as ReWeb have been
used to analyse web applications [5]. In contrast, we do not
rely on specially developed tools, but use a standard model
checker.
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Abstract: Modelling real time is fundamental to reason about pervasive systems. The formal analysis of some
time sensitive security protocols, such as distance bounding protocols, could lead to a more formal approach
to time dependent properties formalisation and verification of pervasive systems.

1 Introduction

Pervasive systems often contain devices which must op-
erate in very different environments and connect together
in different ways, and still satisfy all the desired security
properties. The rapid development of wireless technolo-
gies (such as RFID) has led to new application areas for
pervasive systems with novel security requirements for the
protocols employed. Unlike traditional security protocols
concerning message secrecy or different types of authenti-
cation, these new protocols employed in new applications
usually establish security properties coupled with the wire-
less network environment.

Physical location is used as a measurement of trust in
wireless networks, RFID-based systems and vehicular com-
munication that require secure localisation, time synchro-
nisation, neighbour discovery, and neighbour verification.
For such location services, it is crucial to securely estimate
distance between two nodes in a wireless network and thus
impede man-in-the-middle attacks. The main countermea-
sure against such attacks is the use of Distance bounding
(DB) protocols. DB protocols are a class of identifica-
tion protocols in which one “verifier” node in wireless net-
works measures an upper bound on its distance to another
“prover” node in the network. Accordingly, the security
of DB protocols is applicable to most pervasive computing
applications.

So far, DB protocols have been extensively studied: a
large number of protocols have been proposed and anal-
ysed in the past decade. Regardless of the different type of
DB protocols, the distance bound is obtained from a rapid
exchange of messages between the verifier and the prover
in the fast bit phase. In this phase, the verifier sends a chal-
lenge to the prover, to which the prover responds after some
processing time. The verifier measures the round-trip time
between sending its challenge and receiving the responses
from the prover, subtracts the prover’s processing time, and
based on the remaining time, computes the distance bound
between the devices.

Typically, DB protocols are designed and analysed with
respect to three different classes of attack scenarios:

• Mafia fraud attacks where the attacker A relays com-
munication between a honest prover P and a honest
verifier V in different sessions

• Distance fraud attacks where a malicious prover P

claims to be closer to the verifier V than it actually
is

• Terrorist fraud attacks where the attacker A gets lim-
ited active support from the prover P to deceive the
verifier V

All attacks aim to make the verifier believe that the
prover P is physically closer to the verifier V than it re-
ally it. Recently, a fourth type of real time attack on DB
protocols, called Distance hijacking attacks, has been de-
fined and analysed [4]. Although nowadays many proposed
DB protocols are resistant to mafia fraud, verifying DB pro-
tocols using existing informal and formal frameworks still
does not guarantee the absence of other attacks, e.g., the
distance hijacking.

2 Related Work

The first DB protocol was proposed in [3] in 1993, but the
first formal analysis of DB protocols was presented in 2007
([9]). In [9], the authors not only proposes a new protocol
for distance bounding that requires less message and cryp-
tographic complexity, but also uses authentication and se-
crecy logics to analyse its security. Their logical framework
is only based on qualitative analysis and does not provide
any extended analysis of the timing properties. Since then,
several quantitative frameworks for the verification of real
time sensitive protocols have been proposed.

The constraint solver tool, which is a protocol security
analyzer taking advantage of constraint programming tech-
niques, was used to automatically analyse DB protocols in
[8]. A natural limitation of their analysis is that it cannot
tackle unbounded analysis since the constraint solver only
considers bounded number of protocol processes. Mean-
while, a related approach to modelling and verifying physi-
cal properties (namely communication, location, and time)
of DB protocols using HOL/Isabelle was presented in [10].
Being a verification effort, the two approaches in [8] and
[10] differ in the classical way that model checking differs
from theorem proving: the former tests for attacks while the
latter proves their absence of.

It seems that since the introduction of the first RFID dis-
tance bounding protocol [7] in 2005, numerous DB proto-
cols have been proposed, in an attempt to make them ap-
propriate for the RFID systems. Unfortunately, many pro-
tocols in the literature address no rigorous cryptographic
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security models, nor the case of clear security proof. Also,
they are commonly designed without any formal meth-
ods, which lead to inaccurate analyses. We consider that
distance bounding for RFID systems is more difficult to
achieve due to constrained resource of RFID tags.

During the last two years, there has been a recent surge
in interest and research, in the arena of formal approaches
to RFID-based distance bounding protocols. A new frame-
work [6] was proposed, based on common game-based no-
tion on cryptography, to analyse the security of the RFID
DB protocols. Although this new approach addresses RFID
authentication and can also be applied to general DB pro-
tocols, it still abstracts away from timed analysis. Another
systematic method [2] aims to improve analysis and design
of RFID DB protocols. Although the unified framework in-
cludes a thorough terminology about frauds, attackers, and
provers, thus clarifying many misleading terms, the generic
model only allows for the refinement of the security analy-
sis, but not to verify security properties.

3 Our Approach

To the best of our knowledge, all the existing techniques for
verifying security protocols specifically for pervasive sys-
tems abstract away from real time, focusing only on the
sequencing of events. Although this has many advantages,
it is a serious limitation for reasoning about RFID protocols
for secure distance bounding, which rely on real time con-
siderations. Furthermore, past efforts to analyse DB pro-
tocols have only been manual. Automated analysis would
avoid the problems and distrust in manual analysis of pro-
tocols that have often been reported. Thus, we consider that
automated approaches are critical since they are quite likely
to find flaws that manual approaches cannot.

Our contributions will be threefold: (1) To give in-depth
and rigorous analyses of how to formalise time dependent
properties in security protocols using modelling languages
such as applied pi calculus [1], (2) to define the time de-
pendent security properties formally against attacks RFID
distance bounding protocols could address. Finally, (3) we
will extend existing formal verification techniques (such as
model checking and process calculi), towards a automated
verification of such protocols.

The most two popular approaches are based on auto-
mated methods, such as model checking, and interactive
methods, such as theorem proving. In both scenarios, it is
standard to formalise an intruder model based on the Dolev-
Yao model [5], which identifies the intruder with the net-
work. However, the conventional Dolev-Yao style analysis
of security protocols is inappropriate to analyse DB proto-
cols in our case. Analysis of RFID DB protocols involves
examining whether it is possible to make a tag appear closer
than it really is, to an honest reader. The problem is differ-
ent and difficult compared to standard Dolev-Yao analysis
of protocols that only consider whether an attacker can gen-
erate messages required to violate some security properties.
Thus, we need to consider the timing required for genera-

tion and transmission as well.
Formal verification using automatic verifier ProVerif has

been discussed in [8] as an extension of their analysis. In
particular, it suggests adding four events in the DB proto-
cols, two each for the verifier and prover, corresponding to
sending and receiving the challenge and rapid response in
the fast bit phase. The security property they formulate is
a time-based trace equivalence that we plan to formalise in
applied pi calculus as a starting point for our timed analysis.

4 Conclusion

The timed analysis of RFID distance bounding protocols
will enable us to tackle the problem of modelling real-time
aspects in timed process calculi and thus define and for-
mally verify time dependent security properties. This will
be essential to formally verify pervasive systems.
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Abstract: We model systems that involve a learning robot which interacts with obstacles in a static envi-
ronment. Our models are specified in Promela with a view to verifying them using SPIN [2]. Because of the
complex nature of these systems our initial models have intractable state-spaces: we aren’t able to model check
them. Last year [4] we introduced an abstraction technique to greatly reduce the state-space of our models.
One of the challenges we now face is to prove that our abstraction technique is correct i.e., it preserves the
properties of concern.

1 Introduction

Traditionally, testing and simulation have been used to validate robot behaviour and to validate algorithms defining robot
learning. Model checking [3] robot behaviour allows us to formally check properties and, potentially, to measure the
performance of learning algorithms.

The robot behaviour captured in our models is as defined in [5]. Behaviour analysis is the study of how learning is
affected by an environment and by the perception of the learner. Through simulations, the ability of a robot to successfully
navigate its environment is used to assess the robot’s sensor configuration and the learning algorithm it uses. These
assessments are generated by averaging results from sets of simulated experiments. By applying model checking we can
derive properties by a single search of the state-space (per property).

Our initial models are specified with a view to verification. We begin our modelling process by generating the Explicit
model of the system. This is a highly detailed model with a state-space too large to verify. Our next step is to apply our
abstraction technique [4] to the Explicit model to generate a tractable model, the Relative model. The current challenge is
to prove the correctness of our abstraction technique.

2 Explicit model

The Explicit model uses polar coordinates to determine position within an environment. This allows us to calculate the
turning angles of the robot more accurately than with a standard grid representation. All positions in the environment are
stored as an angle and a distance relative to the centre of the environment.

The robot is modelled as the only moving object in an environment. As in the real systems it is composed of two distal
and two proximal antennas. In our model we don’t include the robot’s motors or external wheels. The robot is simply
modeled to represent its avoidance behaviour.

We use embedded C code, within the Promela specification, to calculate the precise location of the robot as it moves
around an environment. The robot’s angle from the centre and it’s distance from the centre are used in the calculation. We
also consider the angle that the robot is facing, relative to North.

The robot’s learning is implemented with a simple calculation that involves incrementing a learning factor every time
the robot collides into something. If the robot collides with something then it learns to respond more strongly to the type
of signals that it received before the collision.

3 Relative model

The Relative model is our abstraction of the Explicit model. Unlike the Explicit model the robot is not represented as a set
of coordinates and an orientation, but as the centre of a polar axis. We model an environment from the perspective of the
robot, we will herein refer to the area that this perspective covers as the cone of influence.

The cone of influence has 80◦ of angle and is split into nine units of distance. Each unit of distance is the length of
a proximal antenna (the smallest object in the system). The robot’s learning is implemented in the same way as in the
Explicit model. The resulting state-space is tractable, allowing us to verify LTL properties using model checking. E.g., the
LTL formula “[] (ω <11) ” checks that the robot’s learning factor (ω) always remains less than 11.
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4 Proving the equivalence of our models

One of the biggest challenges we face is proving the correctness of the Relative model. Our proof is based on one given in
[6] where a similar proof is used for abstracted featured networks. We achieve this by converting our models to Guarded
Command Form (GCF). We map sets of transitions in the Explicit model to transitions in the Relative model. An example
of a Promela specification GCF is given in both sides of Figure 1. Once we have our models in GCF we map transitions,
as shown in Figure 1.

Figure 1: Equating guarded command line from Explicit to Relative model.

With our proof we hope to conclude that there is a simulation relation between the Explicit model (M) and the Relative
model (M′). This relation implies that any property that holds forM′ also holds forM.

IfM′ simulatesM then for every LTL formula ψ
M′ |= ψ implies thatM |= ψ.

5 Future Work

We have begun to use PRISM [1] to create similar system models, but have not verified any quantitative properties yet.
Principally, we want to develop a proven abstraction technique for systems that involve robot learning. One further aim is
to develop a custom-made tool to automatically abstract and model check this type of system.
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Abstract: This is joint work with Vijay DSIlva, Leopold Haller, and Michael Tautschnig. We present a
generalisation of the DPLL(T) framework to abstract domains. As an instance, we present a sound and com-
plete analysis for determining the range of floating-point variables in embedded control software. Existing
approaches to bounds analysis either use convex abstract domains and are efficient but imprecise, or use
floating-point decision procedures, and are precise but do not scale. We present a new analysis that elevates
the architecture of a modern SAT solver to operate over floating-point intervals. In experiments, our analyser
is consistently more precise than a state-of-the-art static analyser and significantly outperforms floating-point
decision procedures.
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Abstract: We present an extension to Wadler’s deforestation which can automatically simplify a twice re-
versed list (rev (rev xs)), to just the list itself (xs). We then show how the same deforestation algorithm can be
used to construct a proof by induction of the validity of this simplification as a dependently typed program.

1 Deforestation

Walder’s deforestation[2] removes intermediary trees from
functional programs, aimed at optimizing runtime speed. In
Figure 1 we give an example where T JEK is the deforesta-
tion of E. At (1.1) we define a new arity-2 function rev2
xs n to be the result of deforesting rev (xs ++ [n]). We ap-
ply β-reduction within our deforestation to get to (1.3). To
get to (1.4) we then use a rule from [2], whereby a case-
analysed case-analysis is pushed to the top and the original
topmost case-analysis is pushed into each of its branches;
deforestation can then move into these branches as we have
a case-analysed variable topmost (xs). β-reduction gets us
to (1.5). Finally (1.6) is the result of applying our original
definition in (1.1) for rev2, but with cs for xs, and finishing
deforestation. We now have a recursive definition for rev2
which only traverses our input list once, as opposed to rev
(xs ++ [n]) which traverses it twice.

as ++ bs = case as of { []→ ys; (c:cs)→ c:(cs ++ bs) }
rev ds = case ds of { []→ []; (e:es)→ (rev es) ++ [e] }
rev2 xs n ∆

= T Jrev (xs ++ [n])K (1.1)
=β T Jcase (xs ++ [n]) of {

[]→ []; (e:es)→ (rev es) ++ [e] }K (1.2)
=β T Jcase (case xs of {

[]→ [n]; (c:cs)→ c:(cs ++ [n]) }) of
[]→ []; (e:es)→ (rev es) ++ [e] }K (1.3)

=W case xs of {
[]→ T Jcase [n] of {
[]→ []; (e:es)→ (rev es) ++ [e] }K;

(c:cs)→ T Jcase c:(cs ++ [n]) of {
[]→ []; (e:es)→ (rev es) ++ [e] }K (1.4)

=β case xs of { []→ T J[n]K;
(c:cs)→ T J(rev (cs ++ [n])) ++ [c]K } (1.5)

= case xs of { []→ [n];
(c:cs)→ (rev2 cs) ++ [c] } (1.6)

Figure 1: Wadler’s deforestation

2 Deforestation within contexts

Our first extension comes from the fact that n:(rev xs) is a
simpler form of rev (xs ++ [n]) than rev2 xs n. Ordinary
deforestation cannot simplify a term to head normal form.
The first step is to discover this static context which the
recursive function sits inside (e.g. (n:)). For this we take

a dynamic approach and enumerate inputs to our original
term to find a common context in the outputs, e.g. taking
E

∆
= rev (xs ++ [n]): E[xs := []] =β [n],E[xs := [a]] =β [n, a],

E[xs := [a, b]] =β [n, b, a] . So the common context can be
recognised as (n:). In Figure 2 we use this information to
assume the existence of a function rev3 xs n, such that rev (xs
++ [n]) is n:(rev3 xs n) (2.1). We now perform deforestation
within the context (n:), where 〈C〉JEK is the deforestation of
E in context C. This acts identically to our previous defor-
estation example up to (2.3), first expanding then rewriting
(also applying ++ to move (n:) topmost). The difference
with ordinary deforestation is that we cannot finish defor-
esting a branch until its topmost term is within our context,
but since [n] and n:((rev3 xs n) ++ [c]) are, we remove this
outer context and finish. By removing the unused parameter
n we now have a definition for rev3 which is α-equivalent to
our original definition for rev.

n:(rev3 xs n)
∆
= 〈n:〉Jrev (xs ++ [n])K (2.1)
= case xs of { []→ 〈n:〉J[n]K;

(c:cs)→ 〈n:〉J(rev (cs ++ [n])) ++ [c]K } (2.2)
= case xs of { []→ 〈n:〉J[n]K;

(c:cs)→ 〈n:〉Jn:((rev3 xs n) ++ [c])K } (2.3)
= case xs of { []→ [];

(c:cs)→ (rev3 cs n) ++ [c] } (2.4)

Figure 2: Deforestation inside a context

Using this simplification we can deforest rev (rev xs) into
id rec xs (a recursive identity function on lists), shown in
Figure 3. Normal deforestation occurs up to (3.2) then we
get to (3.3) by applying our simplification from Figure 2
and removing the unnecessary n parameter. We then per-
form our substitution (modulo α-equivalence) from the def-
inition in (3.1) to get to (3.4). Since deforestation cannot re-
move the final tree of id rec we have an additional technique
which removes recursive identity functions.

3 Inductive theorem proving as deforestation

Having discovered that rev (xs ++ [n]) ≡ n:(rev xs) and
rev (rev xs) ≡ xs we would now like to prove it. We found
that the generation of such a proof in dependent type theory
can be done using another new form of deforestation, which
we call P -deforestation. Figure 4 is an example.
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id rec xs
∆
= T Jrev (rev xs)K (3.1)
= case xs of {

[]→ T J[]K;
(c:cs)→ T Jrev ((rev cs) ++ [c])K } (3.2)

= case xs of {
[]→ [];
(c:cs)→ T Jc:(rev3 (rev cs))K } (3.3)

= case xs of {
[]→ [];
(c:cs)→ c:(id rec cs) } (3.4)

Figure 3: Deforesting rev (rev xs)

refl :: a ≡ a

trans :: a ≡ b→ b ≡ c→ a ≡ c

cong :: f→ a ≡ b→ f a ≡ f b

(revapp xs n) :: rev (xs ++ [n]) ≡ n:(rev xs)
∆
= P Jrev (xs ++ [n]) ≡ n:(rev xs)K (4.1)
= case xs of {

[]→ P J[n] ≡ [n]K;
(c:cs)→
P Jrev (cs ++ [n]) ++ [c] ≡ n:(rev cs ++ [c])K} (4.2)

= case xs of {
[]→ P J[n] ≡ [n]K;
(c:cs)→ trans (cong (++ [c]) (revapp cs n))
P Jn:(rev cs ++ [c]) ≡ n:(rev cs ++ [c])K} (4.3)

= case xs of {
[]→ refl;
(c:cs)→ trans (cong (++ [c]) (revapp cs n)) refl (4.4)

Figure 4: Proving rev (xs ++ [n]) ≡ n:(rev xs)

(revrev xs) :: rev (rev xs) ≡ xs
∆
= P Jrev (rev xs) ≡ xsK (5.1)
= case xs of {

[]→ P J[] ≡ []K;
(c:cs)→ P Jrev (rev cs ++ [c]) ≡ c:csK} (5.2)

= case xs of {
[]→ refl;
(c:cs)→ trans (revapp (rev cs) c)
(P Jc:(rev (rev cs)) ≡ c:csK}) (5.3)

= case xs of {
[]→ refl;
(c:cs)→ trans (revapp (rev cs) c)

(trans (revrev cs) (P Jc:cs ≡ c:csK)) (5.4)
= case xs of {

[]→ refl;
(c:cs)→ trans (revapp (rev cs) c)

(trans (revrev cs) refl) (5.5)

Figure 5: Proving rev (rev xs) ≡ xs

At (4.1) we define a new function revapp xs n, whose type
is our property, to be equal to the P -deforestation of the
property. Getting to (4.2) uses the expansion from (1.1)

to (1.5), we then float the case-analysis outside of the P -
deforestation, as it is over a variable (xs). Since rev (cs ++
[n]) from (4.2) is an instance of the LHS of our originally
defined equality we can rewrite it to n:(rev cs) in (4.3), this
is equivalent to applying the inductive hypothesis in a “reg-
ular” induction proof and is manifested in the recursive call
to revapp cs n. Here trans and cong are machinery to indi-
cate how this rewrite is applied and will be familiar to Agda
users. Finally in (4.4) we translate any P JE ≡ EK into just
refl(exivity of equality). This final definition for revapp in
(4.4) gives us a recursive, dependently typed function rep-
resenting our proof.

Using this process we then prove rev (rev xs) ≡ xs in Fig-
ure 5. In getting from (5.2) to (5.3) the algorithm has de-
tected the available simplification from Figure 2 (i.e. rev
(rev cs ++ [c]) to c:(rev (rev cs))) and applied it (using the
proof-term revapp). It then detects the potential to rewrite
c:(rev (rev cs)) to c:cs by calling revrev cs at (5.4) and the
proof finishes with refl at (5.5).

4 Controlling deforestation

One difficulty with this technique is controlling which func-
tion definitions are expanded when, to ensure termination.
Wadler’s original work relied on all defined functions be-
ing of a restricted shape in order to ensure this. Having
found this correspondence with inductive theorem proving
we have instead taken our earlier work [1] on controlling
this process using critical pairs and adapted it to our de-
forestation algorithm. We found that it worked perfectly
with not only our P -deforestation but our 〈C〉 version and
Wadler’s T version. Unfortunately we have no proof of ter-
mination for this technique, but we are optimistic this can
be produced with further work.

5 Conclusion

We have shown a fully automated technique which will
transform the term rev (rev xs) to xs and how the same tech-
nique can also be used to generate a proof term verifying
this transformation. So far we have implemented a work-
ing simplifier (which can do the rev (rev xs) simplification)
but not the inductive theorem prover. Another interesting
transformation it does is length (rev xs) to length xs.
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Abstract: Existing formal approaches to understanding the performance of SAT, SMT, CSP and ASP solvers
are language or algorithm specific. As such, they tend to be of limited applicability and tied to the detail of
language syntax. This paper proposes an algebraic formalism for understanding combinatorial search. Results
include a characterisation of deterministic inference and a language independent metric of problem difficulty.

1 Introduction

Over the past two decades tools such as SAT, SMT, CSP and
ASP solvers have become widely used in academic and in-
dustrial fields including AI, planning and verification. Im-
provements to the performance of these solvers strengthen
a wide range of applications and enable new areas that were
previously impractical. Progress has been rapid and impres-
sive but is practically focused; algorithms are evaluated by
timed benchmarks of implementation and there is little ex-
planation of why certain techniques work better than others.
There is a need for a formalism that enables one to discuss
the process of reasoning and searching, as opposed to the
result of reasoning.

This paper describes an ongoing program of work aimed
at developing a suitable theoretical framework based on ab-
stract algebra. The aims of developing a new formalism and
the advantages of using algebra are described in Section 2.
The key mathematical structure is described in Section 3
with Section 4 describing inference and reasoning used and
Section 5 giving an algebraic model of difficulty. Finally,
Section 6 gives some of the future directions for this work.

2 Motivation

Most fields that develop combinatorial search or model gen-
eration tools have some language for describing their algo-
rithms and executions. For example, proof complexity in
SAT [2], abstract solver frameworks in SAT and ASP [5]
and the numerous uses of trees in CSP [3]. Thus it is im-
portant to understand what advantages the new approach
gives:

1. It is representation-independent and not tied to any
particular style of language semantics. This makes
results much more general and allows for unification
between different fields.

2. It allows formalisation of both search spaces and the
algorithms used to traverse them. This can be used to
show how the behaviour of solver algorithms is influ-
enced by the properties of the search space and to pro-
vide implementation and algorithm independent met-
rics.

3. It lays the foundations for discussions of structure and
its role in making combinatorial search tractable.

To achieve this, there are two key innovations:

1. Rather than starting from a language specific structure,
an abstract algebra is used to represent a search space.
This allows development analogous to that of group
or ring theory and the re-use of existing results from
universal algebra.

2. Instead of just formalising the trace of a solver, the
whole search space is formalised with execution traces
appearing as substructures.

3 I-Spaces

Search spaces are modelled using a mathematical structure
called an I-Space:

Definition 1 Let I = (L,6,Φ, S). I is an an I-Space under
the following conditions:

ISpace(I) ⇔ latticeOrder(L,6) ∧
(Φ ∈ L) ∧ (∀I ∈ L � I 6 Φ) ∧
(S ⊆ L \ {Φ}) ∧
(∀Is ∈ S � ↑Is \ {Φ} ⊆ S)

For example, the propositional logic formulae:

(a ∨ ¬b) ∧ (a ∨ b) ∧ b

generates the I-Space shown in Figure 1. The base set (com-
monly denoted L) is the set of all partial interpretations of
the atoms a and b (written as disjoint pairs of sets) plus
an extra point, Φ, at the top. The additional point means
that when the partial interpretations are ordered by inclu-
sion they form a lattice order. The final part of the defini-
tion is a set of ‘solutions’; the things that are sought in the
search space. In the case of the example, this is the single
interpretation with both a and b true.

4 Homomorphisms and Inference Functions

One of the first steps when exploring a mathematical struc-
ture is to define the concept of a homomorphism. In the
case of I-Spaces, these are maps that preserve the ordering
and conserve the solutions and solubility of the space:
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{}, {}

{a}, {} {b}, {} {}, {b} {}, {a}

{a, b}, {} {a}, {b} {b}, {a} {}, {a, b}

Φ

Figure 1: Partial interpretations for the set {a, b} aug-
mented with Φ

Definition 2 Given I-Spaces I1 = (L1,6,Φ1, S1) and
I2 = (L2,4,Φ2, S2), a function h : L1 → L2 is a lax
homomorphism under the following conditions:

laxHomomorphism(h, I1, I2)⇔
(∀I1, I2 ∈ L1 � I1 6 I2 ⇒ h(I1) 4 h(I2))∧
h(Φ1) = Φ2 ∧ h(S1) ⊆ S2

Homomorphisms form the basis of the model of infer-
ence. The idea of inference or reasoning used is very gen-
eral; it is a deterministic method of adding information that
necessarily holds if the point in question is part of a so-
lution. It is important to note that inference functions are
intended to capture the effect of reasoning, not the mecha-
nism.

Definition 3 Given an I-Space I = (L,6,Φ, S) a function
e : L→ L is an inference function if it meets the following
criteria:

inferenceFunction(e, I)⇔
laxHomomorphism(e, I, I)∧
closureOperator(e, (L,6))

The use of closure operators to model reasoning is not
novel [1, 6]. However when combined with the explicit
model of search space, it has a number of useful proper-
ties. For example, the space of inference functions (on a
given I-Space) form a lattice when ordered pointwise. The
corresponding join operator is:

(e1 ∪ e2)(I) =
⋃

n∈Z
(e1 ◦ e2)n(I)

which can be found directly implemented in ASP, CSP and
SMT solvers as well as many hybrid reasoning systems.
Furthermore, the space of inference functions can be shown
to form an I-Space. Homomorphisms on this space seem
a theoretical construct but correspond to ‘meta-heuristics’
such as lookahead.

5 Models of Difficulty

A key concept when solving search problems is whether or
not the current partial information is part of a solution. De-
termining this computationally is often as hard (or harder)

than solving the problem. However it can be defined math-
ematically:

Definition 4 Given an I-Space I = (L,6,Φ, S), an ele-
ment I ∈ L is green or red in I under the following condi-
tions:

green(I, I) ⇔ ↑I ∩ S 6= ∅
red(I, I) ⇔ ¬green(I, I)

Defining the “solubility” of a point as a colour allows a
representation and algorithm dependent definition of diffi-
culty:

Definition 5 Given an I-Space I = (L,6,Φ, S), a path is
a totally ordered subset of L and the difficulty of I is the
length of the longest red path.

This gives a bound on the complexity of performing
DPLL-like depth first search. Furthermore it is equal to
proof width (when the I-Space corresponds to a resolution
proof) and is bounded by induced width (when the I-Space
corresponds to a Constraint Satisfaction problem).

6 Conclusion

I-Spaces give an algebraic account of combinatorial search,
including inference and difficulty. Although still under
exploration, they have the potential to unify the study of
search across a number of areas, provide techniques for im-
plementation and algorithm independent performance met-
rics and to serve as a foundation for understanding of the
role of problem representation and structure in search.
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Abstract: We report on the development of a repository for algebraic methods in Isabelle/HOL. It is based on
Isabelle’s integrated ATP systems and SMT solvers. We are currently implementing higher-order properties
such as directed sets, continuity, fixpoint calculi, Galois connections and set-theoretic models. This often
combines algebraic reasoning with reasoning about numbers, sets and inductive data types.

1 Overview

Automated reasoning has recently made considerable im-
pact on the area of algebraic methods. Calculational proofs
at textbook level can often be fully automated; more dif-
ficult theorems can usually be mechanised at the granu-
larity of paper and pencil proofs. A very suitable proof
environment is Isabelle/HOL with its recent integration of
ATP systems and SMT solvers through the Sledgehammer
tool (c.f. [3]), which complements the sheer power of auto-
mated reasoning with higher-order facilities for proof man-
agement and theory engineering. Isabelle’s type classes and
locales support the design of theory hierarchies, the propa-
gation of theorems across them and the formal connection
of abstract algebras with concrete models. Isabelle’s sup-
port for higher-order logic yields (co)inductive proofs and
data types as well as mechanisms for abstraction and in-
stantiation.

We are currently developing a large repository for alge-
braic methods in Isabelle that is strongly based on ATP1.
Its purpose is to serve as a reference of the state-of-the-art
in that area, to support the specification and verification of
computing systems, and to help the working mathematician
in exploring new variants. A main focus is on Tarski’s rela-
tion algebras and variants of Kleene algebras.

The repository so far contains about 2000 facts, mostly
of calculational nature. The next step is to explore higher-
order features by ATP: to extract and generalise common
features among algebras; to link existing first-order and
higher-order variants; to provide simpler, more abstract and
more generic proof mechanisms. Here we use variants of
Kleene algebras to illustrate these features.

2 Kleene Algebras

A dioid is a structure (D,+, ·, 0, 1), where (D,+, 0) is a
semilattice with least element 0, (D, ·, 1) is a monoid, · dis-
tributes over + from the left and right, and 0 is a left and
right annihilator (0 · x = 0 = x · 0). A Kleene algebra [6]
is a dioid expanded by the unary operation ∗ that satisfies
the unfold axioms 1 + xx? = x∗ and 1 + x?x = x∗ as
well as the induction laws z + xy ≤ y ⇒ x∗z ≤ y and
z + yx ≤ y ⇒ zx∗ ≤ y. Here, ≤ is the usual semilattice
order defined by x ≤ y ⇔ x+ y = y.

1http://staffwww.dcs.shef.ac.uk/people/G.Struth/isa/

Suppose the elements of a Kleene algebra represent the
action of some system. Then x + y models the nondeter-
ministic choice between x and y, xy their sequential com-
position, 1 the ineffective action (skip) and 0 the abortive
one. x∗ models a finite iteration of x, essentially as a least
fixpoint of λy.1 + xy (and λy.1 + yx). Kleene algebras
have many interesting models, e.g., regular languages (see
below) and binary relations under union, relational com-
position and the reflexive-transitive closure operation. Our
repository contains a large number of facts about Kleene
algebras, many variants and the most important models.

3 Higher-Order Variants

We are currently implementing more expressive variants
called regular algebras [4, 2]. They are usually based on
quantales, i.e. complete lattices that satisfy infinite distribu-
tivity laws with respect to suprema. Backhouse, in partic-
ular, requires the equivalent condition that the maps λy.xy
and λy.yx are lower adjoints of a Galois connection. For-
mally, given two posets (A,≤A) and (B,≤B), a pair of
functions f : A → B and g : B → A is a Galois connec-
tion between A and B iff f(x) ≤B y ⇔ x ≤A g(y) holds
for all x ∈ A and y ∈ B. The function f is called the lower
adjoint and g the upper adjoint of the Galois connection.

In this higher-order setting, the existence of the Kleene
star as the least fixpoint of the isotone map λy.1 + xy is
guaranteed by the Knaster-Tarski theorem. More generally,
quantales support a fixpoint calculus for isotone functions
over the underlying complete lattice.

Alternatively, a ∗-continuous Kleene algebra [6] is a
dioid expanded by the Kleene star that satisfies xy?z =
supn xy

nz where sup is defined with respect to the semilat-
tice order. We have shown that every ∗-continuous Kleene
algebra is a Kleene algebra. This requires induction, but the
base case and induction step are essentially automatic.

A powerful tool in this context are fixpoint fusion laws
(c.f. [2]). Roughly, if f is a lower adjoint in a Galois con-
nection on a complete lattice and if g and h are isotone func-
tions on that lattice, then f ◦ g = h ◦ f ⇒ f(µg) = µh,
where µg and µh denote the least fixpoints of g and h. A
dual fusion law holds for greatest fixpoints.

We have implemented regular algebras, ∗-continuous
Kleene algebras and Galois connections in Isabelle. The
Knaster-Tarski and fixpoint fusion theorems are work in
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progress; they reconstruct and extend previous approaches
in Isabelle by ATP.

4 Examples

We now discuss some examples that highlight the applica-
bility of ATP in higher-order algebra. We focus on Galois
connections, which are are interesting because they yield
theorems for free, and on fixpoint fusion.
Action Algebras These are first-order variants of regular
algebras in which λy.xy and λy.yx are lower adjoints of
the residuals λy.x→y and λy.y←x. By general properties
of Galois connections, residuation can be equationally ax-
iomatised; more interestingly the Kleene star can be equa-
tionally axiomatised as well [7]. Having formally linked
the Galois connections of action algebra with its general
definition in Isabelle, several laws about residuals can be
automatically instantiated. The proof that every action alge-
bra is a Kleene algebra is fully automatic. Using Isabelle’s
locale mechanism, all theorems about Kleene algebras are
then automatically inherited by action algebras.
Modal Kleene Algebras Dioids and Kleene algebras can
be expanded by domain and range operations that abstractly
model those on binary relations, e.g., d(R) = {(x, x) :
∃y.(x, y) ∈ R} [5]. Based on these, abstract image
and preimage operators can be defined. They give rise
to forward and backward box and diamond operators, e.g.
|x〉y = d(xd(y)) and 〈x|y = r(r(x)y). Boxes and dia-
monds are adjoints in Galois connections, which automati-
cally yield modal theorems in Isabelle. Next, a divergence
(or nontermination) operator can be defined that models
states in a system from which infinite sequences of actions
may start, as a greatest fixpoint using∇(x) = |x〉∇(x) and
d(y) ≤ |x〉d(y)+d(z)⇒ d(y) ≤ ∇(x)+|x〉d(z). Greatest
fixpoint fusion shows that the second axiom is equivalent to
d(y) ≤ |x〉d(y)⇒ d(y) ≤ ∇(x) in Isabelle.
Solving Systems of Regular Equations The induction
axioms of Kleene algebra can be strengthened, e.g., to
z + xy = y ⇔ x∗z = y, to solve the regular equation
z + xy = y in y. An application is the extraction of regu-
lar expressions from automata. This, however, requires side
conditions. We call x deflationary if ∀y.(y ≤ xy ⇒ y = 0)
and strongly deflationary if ∀y, z.(y ≤ xy+z ⇒ y ≤ x∗z).
It is easy to show by ATP that strong deflationarity implies
deflationarity. The converse direction can be proved in reg-
ular algebra by fixpoint fusion in Isabelle.
Language Kleene Algebras and Arden’s Rule Isabelle
supports a seamless transition between algebras and their
models; e.g. Kleene algebra and the language model. In
Isabelle, words are represented as lists; languages as sets
of lists. The product of two languages X and Y is defined
as XY = {xy : x ∈ X, y ∈ Y } and X∗ = supi≥0X

i.
Since ATP is rather fragile in this setting, we use rules such
as z ∈ XY ⇔ ∃x, y.z = xy ∧ x ∈ X ∧ y ∈ y and
x ∈ X∗ ⇔ ∃i.x ∈ Xi to reduce to first-order reasoning.
Isabelle’s simplifier can then be called with these rules be-
fore ATP. This approach makes it straightforward to prove

that regular languages form ∗-continuous Kleene algebras
in Isabelle. All algebraic facts about Kleene algebras are
then available for regular languages. This is very conve-
nient, e.g., for proving facts such as Arden’s rule [1], which
states that if a languageX does not contain the empty word,
then Z + Y X = Y implies ZX∗ = Y . We can show by
induction that y ≤ yx+ z ⇒ yxi+1 + zx∗ holds for all i in
Kleene algebra. Both the base case and the induction step
are by ATP. In the language model we can then show that
the term Y Xi+1 vanishes if X does not contain the empty
word and i is sufficiently large. The proof is again induc-
tive and essentially automatic. Arden’s rule then follows
from this and the second induction axiom of Kleene alge-
bra. Apart from one single descent to the language model,
the entire proof is fully algebraic.

5 Conclusion

These examples support our claim that Isabelle’s integra-
tion of ATP systems and SMT solvers supports algebraic
reasoning beyond pure first-order logic. We believe that
this yields a new and particularly simple style of interac-
tive theorem proving in which trivial and routine proof steps
can by and large be discharged automatically. With regular
and relation algebra, this allows the seamless integration
of higher-order, pointfree algebraic and pointwise model-
based reasoning with a high degree of flexibility and au-
tomation. In the future we plan to apply our repository in
the development and verification of sequential and concur-
rent programs.
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Abstract: The generation of finite algebraic structures with particular properties is useful when they are
needed in the context of concrete application. For algebraic structures more general than groups this is a
very challenging computational problem. We focus on the generation of quasigroups using a combination
of symbolic algebra computation and automated reasoning techniques. We present two algebraic methods
for restricting the search space for a constraint solver: Firstly we compute and evolve generating system for
quasigroups and secondly we filter randomly pre-computed elements by automated theorem prover.

1 Introduction

Quasigroups are non-associative algebraic structures whose
operation has to satisfy only a single axiom, the Latin
square property. There exists a very large number of dif-
ferent finite quasigroups for very small orders. This com-
binatorial explosion makes them ideal candidates for ap-
plications where the generation of a large number of sim-
ple structures is necessary such as in cryptography. How-
ever, the lack of structure makes them difficult to handle
algebraically, in particular to enumerate or to classify. We
have developed methods to automatically generate quasi-
groups of large size by bootstrapping structural properties
of smaller size quasigroups, instead of exhaustive search.
We use bespoke symbolic algebra computations for the con-
struction of generating systems that allow an easier compu-
tation of large size structures. This construction employs
automated theorem proving to ensure a goal-directed gen-
eration of quasigroup-structures with particular properties.
The work has applications both in the pure mathematical
theory to solve open existence problems for finite quasi-
groups and loops, as well as potentially in areas such as the
generation of cryptographically strong quasigroups.

The concept of generating systems was first introduced
in [6], where classification theorems in quasigroup the-
ory were generated incorporating a set of diverse reason-
ing techniques. We have further exploited these techniques
and in particular the concept of generating system intro-
duced in that work for the goal directed construction of
quasigroups. In our work, we generate quasigroups with
particular properties for small sizes using the model gener-
ator Mace4 [4]. The computed generating systems are then
evolved for larger size quasigroup structures using bespoke
symbolic algebra manipulations. We then give an alterna-
tive method that aims at using little structural knowledge by
simply generating random elements for a Cayley table. But
in order to rule out immediate failure due to property viola-
tion we employ a two stage filter process by filtering single
elements via symbolic computation techniques and sets of

elements via an automated theorem prover. Both techniques
as well as their combination are encoded as constraint satis-
faction problems to be solved by the constraint solver Min-
ion [2]. Our experimental results demonstrate that our pro-
posed approaches and their combination outperform exist-
ing techniques, for difficult, non-equational properties, en-
abling the generation of quasigroups that were previously
unattainable.

2 Generating Systems Approach

The concept of generating systems for quasigroups was in-
troduced in [6] and can be used to determine a quasigroup
structure of size n using n complex equations rather than
n2 simple equations of its Caley table. We define a word of
a quasigroup Q with binary operation ∗ as the combination
of elements a1, ..., an ∈ Q under the operation ∗ and write
w(a1, ..., an) for short. The concept of generating systems
can then be defined as follows:

Definition 2.1 LetQ be a finite quasigroup with binary op-
eration ∗, and let q1, ..., qn ∈ Q be the elements of Q. Let
a1, ..., am ∈ Q where n,m ∈ N and 1 6 m 6 n. Then, we
define the generating system G for Q as follows:

G = 〈{a1, ..., am}|{q1 = w1(a1, ..., am), ...,

qn = wn(a1, ..., am)}〉

• The set of elements {a1, ..., am} ⊆ Q are called the
generators.

• {w1(a1, ..., am), ..., wn(a1, ..., am)} represents a set
of words. Every element q ∈ Q can be expressed as a
word by a relation or factorisation.

The generating systems computed from small size quasi-
groups are further evolved to generating systems sufficient
for larger structures. This can essentially be achieved in
two different ways: (a) by adding a new element as a gen-
erator, or (b) by expressing the new element as a relation in
the existing generators. The newly added element is veri-
fied by our symbolic algebra system, that it does not violate
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the desired property of the quasigroup including the Latin
square property. More formally we define the expansion of
a generating system as follows:

Let (Q, ∗) be a quasigroup of size n, i.e., Q =
{0, . . . , n − 1}, with generating system G = 〈S|R〉. Then
we can obtain a generating system G′ by either one of the
two steps:

(i) G = 〈S ∪ {n}|R ∪ {n = n}〉

(ii) G = 〈S|R ∪ {n = w(s1, . . . , sk)}〉, where
s1, . . . , sk ∈ S.

The resulting generating systems for the desired size and
property of quasigroup are then verified by the automated
theorem prover Prover9 [3], such that they do not violate
the desired quasigroup property.

3 Element Filtering Approach

In the element filtering approach, for a quasigroup Q, we
randomly generate triples that are added to a set of the
form S = {(r, c, e)‖r, c, e ∈ Q}. Every time an element
is added, we use a symbolic verification function to check
that all the elements in the set are unique and that the Latin
square property is not violated. We continue this process
until we obtain the set SF of filtered elements that is of a
particular pre-defined size. Generally, we specify the size
of SF as a multiple of the size n of the quasigroups Q. In
a second filter step we then check for the entire set SF that
its elements do not violate the desired quasigroup property
P — which can in general be a combination of properties
— using an automated theorem prover.

4 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) for a quasigroup
is a triple (V,D,C), consisting of (i) a finite set V of vari-
ables which represent the operator or Cayley table of the
quasigroup, (ii) a finite set D, called the domain, of val-
ues that are the elements of the quasigroup, (iii) set of
constraints C that assign values to the variables V from
the domain D, posing constraints to represent quasigroup
axioms. Quasigroups of order n can be found by con-
sidering a table of n2 variables of the form xi,j where
i, j ∈ {0, 1, ...n− 1} with possible values in the domain D
of the variables where D = {0, 1, ..., n− 1} and constrain-
ing the variables of each row and column to be all different
by using the constraints such as xi,j 6= xk,j and xi,j 6= xi,k
where i, j, k ∈ {0, 1, ...n− 1}.

The quasigroup problem is encoded in the constraint
solver Minion [2], using the primal model [1]: This model
has a variable xi,j for each cell of the Latin Square, with
i and j as its coordinates (row and column). Their possi-
ble values are the elements of the quasigroup. To enforce
Latin Square property i.e. the variables in the same row
or column to take different values, we use the constraint in
Minion [2] which uses generalized arc consistency [5] to

force the variables to take different values. The following
are constraints for some particular quasigroup properties:

Anti-Commutative: xi,j 6= xj,i if and only if i 6= j for all
pairs xi,j and xj,i.

Commutative: xi,j = xj,i if and only if i 6= j for all pairs
of xi,j and xj,i.

Unipotent: xi,i = xj,j on all xi,i and xj,j where i, j ∈
{0, 1, ...n− 1} and n is the order of the quasigroup.

Idempotent: xi,i = i on all xi,i where i ∈ {0, 1, ...n− 1}
and n is the order of the quasigroup.

5 Conclusion

Our experimental results demonstrate that our advanced
approaches increase the solvability horizon of Minion.
The following table shows the largest quasigroup with a
particular property under consideration we were able to
find with Minion alone and with one of our approaches:

Property Minion Our approach
unipotent 142 147
anti-commutative 140 143
idempotent 142 145
anti-idempotent 23 28
anti-commutative, unipotent 138 143
We are currently extending our experiments to other

interesting and more complex properties of quasi-
groups. One possible application, is the solution of
some open existence problems, for example, it is
unknown if Stein quasigroups (that is, quasigroups sat-
isfying the identity x(xy) = yx) exist for orders n =
22, 23, 26, 27, 30, 34, 38, 42, 43, 46, 50, 54, 62, 66, 74, 78,
90, 98, 102, 114, 126.

References
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Mura Anteo Zamboni, 7 (BO) Italy
sacerdot@cs.unibo.it

Abstract: We present a term rewriting system to solve a class of open problems that are generalisations of
Kuratowski’s closure-complement theorem. The problems are concerned with finding the number of distinct
sets that can be obtained by applying combinations of axiomatically defined set operators. While the original
problem considers only closure and complement of a topological space as operators, it can be generalised by
adding operators and varying axiomatisation. We model these axioms as rewrite rules and construct a rewriting
system that allows us to close some so far open variants of Kuratowski’s problem by analysing several million
inference steps.

1 Introduction

In 1922 Kuratowski asked and solved the following ques-
tion on an arbitrary topological space: how many different
combinations of the operators of complement and closure
exist? The number turns out to be just 14 and the proof
is quite small. The problem has been generalised in many
different ways to consider other operators, such as union or
intersection, or slightly different settings, such as point free
topology (locale theory). The solution to a generalised ver-
sion can be a significantly larger number of combinations,
but it could also be a proof that infinitely many combina-
tions exist. Computing finite large solutions, or obtaining
an intuition for infinite variants is infeasible by hand and
therefore computer automation is crucial to our solutions of
the problems. Solutions or partial solutions are represented
as directed graphs whose vertices are equivalence classes
of provably equal combinations of operators and whose arcs
represent the order relation. We present a generalised Kura-
towski problem — originally proposed by Sambin in [4] —
which is particularly demanding in terms of size of the ap-
proximating graphs. In order to exhibit sufficient evidence
of regularities in the graph we need to compute several mil-
lion edges, i.e., we need to prove several million lemmas on
relations between pairs of operator combinations. We have
developed a term rewriting system that models all inference
rules of the problem in a uniform way and, coupled with
a particular strategy and some standard graph algorithms,
can show the large numbers of necessary lemmas in a few
minutes. The implementation of our ideas have enabled us
to prove the infinite nature of the generalised Kuratowski
problem, which was up to now unknown, and serves as a
basis to tackle other variants of Kuratowski’s problem.

2 The Problem

Kuratowski’s classical closure-complement problem [3]
can be solved by observing that the following identities hold

for the interior operator i, the closure operator c, and the
complement ‘−’ for subsets x of an arbitrary topological
space. (i) c(c(x)) = c(x), (ii) −−x = x, (iii) i(x) =
−c(−x), and (iv) c(i(c(i(x)))) = c(i(x)). Applying the
previous equalities only, one can show that there exist at
most 14 distinct subsets one can obtain by different combi-
nations of the three operators.

The generalisation of the Kuratowski’s problem is ob-
tained by introducing a partial order relation ≤— that cap-
tures the inclusion relation for subsets — and relaxing the
axioms for the operators which define the problem in a rule
format, as shown below:

reflexive: x ≤ x
anti-monotone: x ≤ y → −y ≤ −x
transitive: x ≤ y ∧ y ≤ z → x ≤ z
saturates: x ≤ −− x
anti-symmetric: x ≤ y ∧ y ≤ x→ x = y
quasi-idempotent: −−−x = −x
reduces: i(x) ≤ x
saturates: x ≤ c(x)
monotone-i: x ≤ y → i(x) ≤ i(y)
monotone-c: x ≤ y → c(x) ≤ c(y)
idempotent-c: c(x) = c(c(x))
idempotent-i: i(x) = i(i(x))

compatible-1: c(−x) ≤ −i(x)
compatible-2: i(−x) ≤ −c(x)

Since we are effectively interested in the number of dif-
ferent combinations of operators that can lead to distinct
sets when applied to any subset of a topological space,
we define the generalised Kuratowski problem in terms of
equivalent operator combinations.

Definition 1 [Generalised Kuratowski closure-
complement problem] Let (P,≤) be any partially
ordered set and let {i, c,−} be the set of operators on P
axiomatised. Let S = {i, c,−}∗ be the set of all words
over the operators (i.e., all possible finite combinations).
We define the order relation ≤ over S as w1 ≤ w2 iff
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w1(x) ≤ w2(x) for all x ∈ P and w1, w2 ∈ S. Finally,
let ≡ over S be the reflexive closure of ≤. The generalised
Kuratowski closure-complement problem then consists in
computing the cardinality of S/≡, the set of equivalence
classes of S modulo ≡.

Since the cardinality of S/≡ is not necessarily finite, for
practical purposes it is necessary to define finite approxi-
mations to the solution.

Definition 2 [nth approximation] Let Sn =
{i, c,−}≤n ⊂ S be the set of all operator combina-
tions up to order n. For w1, w2 ∈ Sn we define ≤n as
w1 ≤n w2 iff for all x w1(x) ≤ w2(x) can be shown using
combinations w ∈ Sn only (i.e., only combinations of
maxiamlly n operators). Finally, let ≡n be the symmetric
closure of ≤n. Then the nth approximation of the gener-
alised Kuratowski closure-complement problem is defined
as computing the cardinality of S/≡n

.

The nth approximation of the problem can be visu-
ally represented as a directed graph whose vertices are the
equivalence classes of Sn/≡n

and whose edges represent
one step of the ≤n relation.

Definition 3 [Approximating graph of order n] Let G =
(V,A) be a directed graph, where we define the set of ver-
tices V = Sn and the set of arcs A by (v1, v2) ∈ A iff
v1 ≤n v2 for v1, v2 ∈ V . Now let V ′ be the set of all
strongly connected components in G. We then define the
approximating graph of order n as G′ = (V ′, A′) where
(v′1, v

′
2) ∈ A′ iff v′1 ≤n v′2 for v′1, v

′
2 ∈ V ′.

The goal is effectively to construct the graph by parti-
tioning Sn into equivalence classes, which amounts to an
inference procedure that determines if [w1]/≡ ≤n [w2]/≡
for [w1]/≡n

, [w2]/≡n
∈ Sn/ ≡n.

Theorem 4 If the solution of the generalised problem is
finite, then there exists an n such that every (n+m)th ap-
proximation is isomorphic (as a directed acyclic graph) to
the solution.

The theorem says that approximations stabilise, in the
sense that larger approximations only augment the cardi-
nality of the equivalence classes, but they do not collapse
any existent distinct classes, nor do they add new arcs to
the approximating graph.

The theorem does not provide an effective way to decide
if an approximation is (isomorphic to) the solution.

Conjecture 5 There exists an m such that, if for a given
n the nthand the (n+m)thapproximations are isomorphic,
then they are isomorphic to the solution.

Theorem 6 If the solution of the generalised problem is
infinite, then there exists an infinite increasing sequence of
approximations with larger and larger cardinalities.

Our experience shows that in this case a clear pattern
emerges, which after some time allows us to predict what
new classes will be generated passing from any nth approx-
imation to the (n+1)th approximation. This prediction can
then be manually turned into a proof that these new classes
will never be collapsed in later approximations and there-
fore the solution is infinite.

3 Implementation and Results

We have developed a bespoke Term Rewriting System
(TRS) implementing the axioms of the generalised Kura-
towski problem given previously [1]. The TRS has been
written in pure OCaml using a graph data structure at its
core. The connected-components algorithm exploits the
ocamlgraph library [2] instantiated with an ad-hoc, op-
timised hashing function for equivalence classes of combi-
nations. The TRS is fully parametric not only on the list of
reduction rules, but also with respect to the words of S (i.e.,
the combination of operators) it generates. For the transi-
tive reduction of the obtained graph we employ the tred
tool and for its visualisation we use the dot tool.

The parametric features were particularly important for
gaining intuition for the generalised Kuratowski problem,
as the resulting graph is quite chaotic, in that, we were
not able to find any simple description of either the set
of equivalence classes or the elements of most equivalence
classes. However, narrowing the elements generated in S
allowed us by manual inspection of the generated graph
to spot sufficient regularity to solve the problem by show-
ing that the number of equivalence classes is infinite. In
fact, all the equivalence classes whose representatives are
generated by the following regular expression are distinct:
c?(−−c)∗(−−)?. Moreover, each one is less than or equal
to every other class generated by a longer representative
(e.g. −−c ≤ −−c−−) and they are all bounded by −i−,
which is also distinct from them and is the minimum of the
lattice.

Although the rewriting system had been developed as
a bespoke approach to solve the generalised Kuratowski
problem, with its parametric implementation our proce-
dure can be applied to a variety of related problems lying
between the classical and general problem. These prob-
lems are generated by introducing the following axioms
which restrict the general problem, or generalise the clas-
sical one: (i) −− = ε, (ii) c− = −i, (iii) i− = −c, and
(iv) c−− = −−c. (v) c = −i−. For these problems we
obtained a mixed picture of both finite and infinite cases.
Applying our implementation to other problems in the do-
main we could quickly verify known results as well as ob-
tain some new previously unknown results.
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Abstract: Categorisation and classification are areas that have been well studied in machine learning. How-
ever, the use of cognitive theories in psychology as a basis to implement a category formation system designed
for creative purposes and based on human behaviour is still largely unexplored. Our aim in this project is to
verify how some of the ideas on uncertainty and ambiguity in classification could influence concept classifica-
tion in an automated theory formation system.

1 Introduction

Our research aim in this project is to investigate how influ-
ential psychological theories of human concept formation,
such as those described in [8], can be interpreted for the au-
tomation of creative acts. In particular, we choose to focus
on the automated theory formation system HR developed
by Colton et al. [1]. This program works by combining
given concepts according to a set of productions rules and
heuristic measures to build a theory. Here, concepts are
represented by logic predicates (definitions), and by a set of
constants (examples) that satisfy these predicates. This rep-
resentation corresponds to the one proposed by the classical
view in the field of conceptualization in cognitive psychol-
ogy [10]. As many cognitive psychologists point out, this
representation is inadequate if we want to represent con-
cepts in a human like manner because:

• There is no way to distinguish between categories’
members, and to take into account the typicality of an
item with respect to the category.

• It does not take into account in-between categories
cases: items that partly belong to more than one cate-
gory.

• It does not consider how knowledge and high-level
perceptions, such as beliefs, goals and context, influ-
ence categorization.

Our aim in this project is to extend HR to enable it to oper-
ate over real word examples in a human-like way. The final
scope is bidirectional: we aim to determine both how ideas
suggested by the cognitive psychology community can be
used to improve and extend automated concept formation
techniques, and also to clarify the notions put forward in
the psychology literature research by providing results and
analysis from experiments undertaken.

2 HR

HR is an Automated Theory Formation program which
takes a theory, conceived as a set of initial concepts, and
applies a set of production rules on it in order to construct
new concepts. These production rules take as an input the
definition of one or two concepts and output the definition

for the new concept. For example, the match production
rule equates two variables in a definition, and the negate
rule negates certain clauses in a definition. Once the new
concept definition is created, HR calculates the success set
of the definition by collating all tuples of objects which sat-
isfy the definition. The set of positive examples is then
used to make conjectures about the new concept, in the
form of equivalence conjectures, implication conjectures,
or non-existence conjectures. Conjectures are either proved
by the OTTER theorem prover [5] or rejected because of a
counterexample found by the MACE model generator [6].
The theory is then enriched with either the new theorem
or with the newly found counter-examples. HR follows a
best-first non-goal-oriented search. This is dictated by an
ordered agenda and a set of heuristic rules used to evaluate
the interestingness of each concept. The scope of HR is to
form interesting clausal theories, starting with some mini-
mal knowledge and enriching it by performing both induc-
tive and deductive reasoning.

3 Project Outline

According to the prototype view in the field of cognitive
psychology, humans categorize an item by comparing it
with each known category’s most typical item (real or imag-
inary), which is also called a prototype [3]. The similarity
between each pair is used to determine the new object’s typ-
icality with respect to every category and can be interpreted
as a measure of how much the item belongs to the respec-
tive categories. Prototypes are represented as schemata re-
porting the features which we gradually learn are the most
frequent and relevant to each category. Hence prototypes
are flexible entities and they are influenced by the catego-
rization process itself. We have decided to explore how
these observations can influence category creation and the-
ory formation by including a similar notion into HR. To do
so, we will assign a degree of membership to every tuple
of objects constituting an example of a concept. This pa-
rameter will represent the percentage with respect to which
the example belongs to the concept, and hence will be di-
rectly proportional to its typicality. Note that this implies
that an item does not need to fully belong to just one cat-
egory - in-between categories cases are allowed. The idea
is similar to the one used in fuzzy logic, where the degree
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of membership of an item is determined by a membership
function. However, in our case, this membership function
will be flexible over time, depending on the already classi-
fied category members and modified every time a new item
is classified within a category.

4 Calculation of Typicality

Dunmore [2] observed how concept definitions are chosen
and developed according to their use by presenting a study
on the definition of prime numbers. This concept was ini-
tially defined as “a number which is only divisible by 1 and
itself”. The number 1 satisfies this definition, and hence it
is considered a positive example. However, 1 constitutes a
counterexample to many conjectures about primes, for ex-
ample the Fundamental Theorem of Arithmetic, stating that
every natural number is either a prime or can be represented
uniquely as a product of primes. In the current version of
HR, the above counterexample would be enough to make
this conjecture false. A different approach is to review the
concept definition of prime numbers itself, for example by
considering a different definition such as “number with ex-
actly two divisors”. Another example has been proposed by
Lakatos [4] who, in the attempt to prove Euler’s conjecture,
reported five different definitions for polyhedra.

In our system, we will allow a concept to have multiple
definitions. In the examples above, prime numbers would
have two definitions and polyhedra would have five defini-
tions. The typicality of an item with respect to a concept
will then be calculated according to three measures:

• The number of concepts’ definitions that the item sat-
isfies. In the prime number case, 1 satisfies 50% of the
definitions, 3 satisfies all definitions and 4 satisfies no
definition. In the polyhedra case, the only polyhedra
that satisfy all five definition are the regular polyhe-
dra.

• The amount of tweaking that each definition would
need in order to include the item. In the prime number
example above, the definition “number with exactly
two divisors” could be modified to “number with ex-
actly one divisor” or “number with maximum two di-
visors” in order to include 1. The amount of tweaking
will be measured by the number of HR’s production
rules that would be involved in modifying the defini-
tion. The salience of each part of the definition will
also be taken into consideration. To calculate it we
will take inspiration from psychological studies that
underline the importance of both the relevance and the
familiarity of attributes in a similarity task [9, 7].

• The number of conjectures about the concept that the
item supports, in a similar way to what Lakatos sug-
gested in [4]. In the example above, the typicality of 1
will decrease as we discover that 1 is a counterexample
of the Fundamental Theorem of Arithmetic.

The typicality measures over a category success set
would help us recognize that conjectures like the Funda-
mental Theorem of Arithmetic are probably true, as they
are true for most typical examples. Moreover, these ob-
servations will change our beliefs on what the correct def-
inition of a prime number is. The uncertainty over these
beliefs would then be used as new properties about the con-
cept are discovered, and as new more complicated concepts
are constructed.

5 Conclusion

This project is still at a preliminary stage. However, we can
see it leading to results that can be applied in different areas.
For example, the program could be used as a learning and
data-mining system on large datasets representing human
behaviours which are classifiable, whose properties are not
known, and to which a computer could actively contribute
in a creative way. A possible application follows the lines
of the example given above: the study of how mathematical
concepts, conjectures and proofs gradually evolve as more
things are discovered about them.
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Abstract: This paper introduces METTEL2, a tableau prover generator producing JAVA code from the spec-
ifications of a logical syntax and a tableau calculus. It is intended to provide an easy to use system for
non-technical users and allow technical users to extend the implementation of generated provers.

1 Introduction

The tableau method is one of the most popular deduction
approaches in automated reasoning. Tableau methods in
various forms exist for various logics, and many tableau
provers have been implemented. Based on this collective
experience in the area, our recent research has been con-
cerned with trying to develop a framework for synthesising
tableau calculi from the specification of a logic or logical
theory. The tableau synthesis framework introduced in [5]
effectively describes a class of logics for which tableau cal-
culus synthesis can be done automatically. This class in-
cludes many modal, description, intuitionistic and hybrid
logics. Our long-term goal is to synthesise not only tableau
calculi but also implemented tableau provers.

As a step towards this goal, we have implemented a tool,
called METTEL2, for automatically generating an imple-
mented tableau prover from the specification of a set of
tableau rules provided by the user. METTEL2 is the suc-
cessor of the METTEL tableau prover [7, 1]. METTEL and
other existing generic tableau provers such as LOTREC [4]
and the Tableaux Work Bench (TWB) [2] do not produce
code for a prover but rather act as virtual machines that per-
form tableau derivations.

METTEL2 considerably extends METTEL functionali-
ties. METTEL2 generates JAVA code for a tableau prover
to parse problems in the user-defined syntax and solve sat-
isfiability problems. In order to come closer to the vision
of a powerful prover generation tool, METTEL2 is equipped
with a flexible specification language. This allows users
to define their logic or logical theory with their syntac-
tic constructs. Thus no logical operators are predefined in
METTEL2. The generated tableau provers can be tuned fur-
ther. Addressing the needs of an advanced user, an API of
the tableau core engine is designed to accept user-defined
tableau expansion strategies implemented as JAVA classes.

Compared with the previous METTEL system, the
tableau reasoning core of METTEL2 has been completely
reimplemented and several new features have been added,
the most important being: dynamic backtracking and
conflict-directed backjumping, ordered forward and back-
ward rewriting for operators declared to be equality and
equivalence operators. There is support for different search
strategies and rule application strategies. To our knowl-
edge, METTEL2 is the first system with full support of these
techniques for an arbitrary logical syntax.

2 Language and tableau calculus specification

The language in METTEL2 for specifying the syntax of a
logical theory is in line with the many-sorted object specifi-
cation language of the tableau synthesis framework defined
in [5]. Following is a simple ‘non-logical’ example for de-
scribing and comparing lists.

specification lists;
syntax lists{

sort formula, element, list;
list empty = ’<>’ |

composite = ’<’ element list ’>’;
formula elementInequality =
’[’ element ’!=’ element ’]’ |
listInequality = ’{’ list ’!=’ list ’}’;

}

The first line starting with the keyword specification
defines lists to be the name of the user-defined logical
language. The syntax lists{...} block consists of a
declaration of the sorts and definitions of logical operators
in a simplified BNF notation. Here, the specification is de-
clared to have three sorts. For the sort element no op-
erators are defined. This means that all element expres-
sions are atomic. The second line defines two operators for
the sort list: a nullary operator <> (to be used for the
empty list) and a binary, infix operator <..> (used to in-
ductively define non-empty lists). composite is the name
of the operator <..>, which could have been omitted. The
rest defines two types of inequality as expressions of sort
formula. The first mentioned sort in a declaration, in our
case formula, is the main sort of the defined language.

The tableau rule specification language of METTEL2 is
loosely based on the tableau rule specification language of
METTEL, extended with rule priority value. Smaller prior-
ity values imply a rule has higher priority.

Tableau rules for list comparison might be defined as fol-
lows.

[a != a] / priority 0$;
{L != L} / priority 0$;
{<a L0> != <b L1>} / [a != b] $|

{L0 != L1} priority 2$;

As the parsing of rule specifications is context-sensitive the
various identifiers (a, L, L0, etc) are recognised as symbols
of the appropriate sorts. Thus sorts of identifiers are distin-
guished by their context and not their case. The first two
rules are closure rules since the right hand sides of the / are
empty. They reflect that inequality is irreflexive. The last
rule is a branching rule.
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3 Prover generation

The parser for the specification of the user-defined logical
language is implemented using the ANTLR parser genera-
tor. The specification is parsed and internally represented as
an abstract syntax tree (AST). The internal ANTLR format
for the AST is avoided for performance purposes. The cre-
ated AST is passed to the generator class which processes
the AST and produces the following files: (i) a hierarchy
of JAVA classes representing the user-defined logical lan-
guage, (ii) an object factory class managing the creation of
the language classes, (iii) classes representing substitution
and replacement, (iv) an ANTLR grammar file for generat-
ing a parser of the user-specified language and the tableau
language, (v) a main class for the prover parsing command
line options and initiating the tableau derivation process,
and (vi) JUNIT test classes for testing the parsers and test-
ing the correctness of tableau derivations.

The generated JAVA classes for syntax representation and
algorithm for rule application follow same paradigm as in
the old METTEL system [7].

METTEL2 implements two general techniques for reduc-
ing the search space in tableau derivations: dynamic back-
tracking and conflict directed backjumping. Dynamic back-
tracking avoids repeating the same rule applications in par-
allel branches by keeping track of rule applications com-
mon to the branches. Conflict-directed backjumping de-
rives conflict sets of expressions from a derivation. This
causes branches with the same conflict sets to be discarded.

The core tableau engine METTEL2 provides various ways
for controlling derivations. The default search strategy is
depth-first left-to-right search. Other strategies can also be
implemented and passed to the core.

The rule selection strategy can be controlled by speci-
fying priority values for the rules in the tableau specifica-
tion. Rules with the same priority values are iterated se-
quentially. To ensure fairness all applicable rules within the
same priority group are queried for applications an equal
number of times. Preference is given to rules from groups
with smaller priority values. Again the user could imple-
ment their own rule selection strategy and modify the gen-
erated code.

Blocking in tableau derivations can be implemented as
variants of the unrestricted blocking rule [5]. The unre-
stricted blocking rule ensures termination of a sound and
complete tableau calculus in case the specified logic has the
finite model property (cf. [5, 6]).

The binary version of METTEL2 is available for down-
load from [1] as a jar-file. A web-interface for METTEL2

is also provided, where users can generate a prover by en-
tering their specifications and tableau calculus. The user
can then either download the generated prover as a jar-file
or directly run the generated prover in the interface.

Several test cases have been prepared for the system cov-
ering a variety of logics including Boolean logic, modal
logic S4, description logics ALCO and ALBOid [6], a hy-
brid logic with graded modalities and linear-time tempo-
ral logic, with or without capacity constraints [3]. Sample

specifications with unrestricted blocking are the tableau cal-
culi for S4, ALBOid and linear-time temporal logic (with
constraints). Some of these test cases and the lists exam-
ple from this paper (as well as an extended version with a
concatenation operator) are available at [1].

4 Concluding remarks

METTEL2 and METTEL are small but essential steps to
the very ambitious goal to create a reliable and easy to
use prover generation platform which implements the au-
tomated synthesis framework [5]. We do not aim to pro-
vide a sophisticated meta-programming languages, but to
provide easy to use systems, for non-technical users, and
for technical users, expandable systems by allowing them
to write their own JAVA classes and integrate them using
the provided API. More information about how to generate
a prover using METTEL2 is available at [8].
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